Testing the Resilience of Fail-Operational Systems
Early On with Non-Intrusive Data Seeding

Joachim Fréhlich
Siemens AG
Otto Hahn Ring 6
81739 Miinchen, Germany

I. FAIL-OPERATIONAL SYSTEMS ARE RESILIENT

Fail-operational systems are resilient systems. Fault pat-
terns and the system structure, e.g., the degree of redundancy,
the independence of fault regions and the availability of
resources, determine the elasticity of a fail-operational system.
Faults can be considered to deform a fail-operational system
temporarily or permanently. Faults that occur temporarily or
intermittently give systems reversible resilience. Permanent
faults and component failures give systems irreversible re-
silience. When working under real-time constraints, the pres-
sure on a fail-operational system increases. Mechanisms for
detection, evaluation and handling of faults must attempt to
promptly reshape the system when deformations occur.

II. HARD AND SOFT SYSTEM DEFORMATIONS

The safety analysis and the corresponding fault model
of a fail-operational system define the HW and SW faults
that it must detect and handle. HW faults, however, do not
occur deterministically; they arise stochastically, which can be
problematic for new HW for which there is little empirical
data. SW faults, on the other hand, occur with certainty.
The problem with SW faults is to find the faulty program
execution paths and critical combinations of program state and
data for complex systems in different situations. Under these
conditions, design, implementation and execution of repeatable
tests that stimulate the system with faults (fault-injection tests)
are difficult and expensive. Tests are considerably facilitated
if they can access system internals, that is, can read and write
data as it flows through the system as well as access data
quality indicators (time and value quality).

III. TESTS IN VIRTUAL AND REAL ENVIRONMENTS

From technical and economic points of view it is advisable
to start as early as possible with the evaluation of individual
and integrated systems. It is profitable and advisable to test
their capabilities to handle faults promptly and correctly even
prior to the availability of actual system HW through the use
of virtual environments like HW abstracting test beds. Hence,
tests evaluating resilience properties of a system have to be
designed and maintained as cross-platform and cross-phase
regression tests. To this end, a safety-critical system must be
modular and portable. In particular, a fail-operational, real-time
system must enable fault-injection tests free of side-effects in
order to avoid undesirable functional and temporal distortions

41

Jelena Frtunikj
fortiss GmbH
Guerickestrasse 25
80805 Miinchen, Germany

Alois Knoll
Technische Universitidt Miinchen
Boltzmannstrasse 3
85748 Garching, Germany

of the system under test (SUT). Only then can these tests pro-
vide reliable statements about the fault-elasticity of a system
that are traceable between virtual and real environments.

IV. FUNCTIONS AND FORM OF TESTABLE SYSTEMS

To obtain definite statements about the effectiveness of
fault handling mechanisms from test runs, tests must seed
data, including HW and SW faults, at precise time points and
system locations. More specifically, the SUT must enable non-
intrusive monitoring and manipulation of signal data, state data
and data quality indicators. We therefore assume the SUT to
basically have the following properties (Fig. 1):

@ cyele Tx

cycle Tx-1

(axin) (bxrn) __

safety mechanisms

test control (local or remote)

Legend:

SW Application N-DB = Real-time database (ax), (ax+1) = Variable a at Tx and Tx+1

Test Probe (DB) on node N (ax+1)’ = Variable a manipulated at Tx+1
Fig. 1. Data flow in a time-triggered system node with a built-in test probe

(1) Time-triggered architectures (TTA) [3] behave deter-
ministically because systems control events and not vice versa
as in event-triggered architectures. In each cycle the system
sequentially executes safety operations, like data monitoring
(DM), error detection (ED) and fault handling (FH).

(2) Databases continually capture, for each node and cycle,
flows of signal data, state data and data quality indicators.

(3) All system nodes contain built-in test probes (Fig. 1,
Fig. 2, TP). TP operations are always scheduled at the end of
each cycle. In this position between adjacent cycles, a TP can
(i) monitor data accumulated in the N-DB during the last cycle
and (ii) manipulate data for the next cycle.

(4) TPs use exclusively reserved resources, including time
slots, memory areas and communication links. Other modules
cannot use TP resources, even when a TP is deactivated;
otherwise, a TP would be intrusive because the SUT would
behave differently from the final system.

REES 2015

cycle Tx+1: TP manipulates data

O cycle Tx: TP monitors data
)

—— e

L ;
N-pB [I[ST] [82];!
%@9,,,,) 1{bs)

test control (local or remote)

—— Legend:
@ evaluate data quality [manipulated value Ip = logical processing level
[data S1, 82 = signals from sensors 1 and 2 pp = physical processing level

==

] data quality indicator |~

:J' coherent data items TP = Test Probe

Fig. 2. Manipulate data (ax+1)’ or data quality indicator (bx+1)’

V. SYSTEM OF NON-INTRUSIVE TEST PROBES

Remote tests, local tests, or both combined, control a
test probe (TP). Remote tests require a point-to-multipoint
connection between one common, central test processor at one
end and several test probes at the other ends. Test programs on
the central test processor monitor and control nodes system-
wide, while test programs on a local node operate within the
node. Probe instructions are location transparent: a test probe
does not know where the program that issues instructions runs.

Probe instructions manipulate, monitor and check data of
the probe-containing node with a single cycle delay. If a remote
test program on a central test processor controls one or more
test probes, then the test reaction delay for a round trip of a
test control loop takes 4 cycles minimum: (i) Test probes read
and send values to the central processor in cycle Tx, (ii) the
central processor evaluates received values, takes decisions and
instructs test probes in cycle Tx+1, (iii) test probes follow the
instructions received in cycle Tx+2 which are (iv) effective 1
cycle later in cycle Tx+3. Throughout a test, probes and the
central test processor monitor node vitality and test plausibility.
Because of test probes running synchronously with the node,
tests provide cycle-accurate results in virtual environments and
real environments for target HW in the lab and in the field.

VI. TESTING SYSTEM RESILIENCE

For demonstration purposes we test a system of three
nodes, instances of which are parts of larger systems that can
be built with RACE! [1], [4]. Two redundant sensor nodes in
the system periphery provide signal data to a central processing
node. The test (Algorithm 1 written in ALFHA? [2]) checks
the elasticity of the central node if a sensor fails temporarily
(reversible resilience) or permanently (irreversible resilience).

The test injects (seeds) faults into one of the input channels
that connects the central node with the sensors (Fig. 2, (ax+1)’)
after all nodes are up and run normally (lines 11-12). Alterna-
tively, the test can intervene in the data flow in the central node
by manipulating data quality indicators that signify value and
time quality of the sensor data (Fig. 2, (bx+1)’). Algorithm 1
allows both approaches (line 18) because the location where
the test seeds data is a parameter, as is the fault duration (lines

'Robust and reliant Automotive Computing environment for future Ecars,
www.projekt-race.de/en
2 Assertion Language for Fault-Hypothesis Arguments

REES 2015 42

Algorithm 1 Masking sensor fault on signal receiver
1: TEST Masking sensor fault WITH
N, N1, N2, // Central node N process signals from sensors N1, N2
F', /I N executes system function F
L, V., /I Location L to inject V in N
C, D, /I Injection instant (cycle C) and duration (number of cycles D)

T, I/ Tolerance across 2 succeeding values V
P /I Length of node period P in milliseconds

A A e

EXPECT Function gets data from redundant sensor

9: SYSTEM PERIOD P // Cycle length

10: TIME BOUND 1000 // Obtain definite verdicts within 1000 ms
11: SETUP Masking sensor fault WITH N, N1, N2

12: CLOCK WHEN N x.State == eNormalOperation

13: INVARIANT // N, F are resilient to sensor shocks:

14: // Uninterrupted, smooth data stream

15: N.F.Input == N.F.Input@Q[—1] TOLERANCE T
16: BEGIN

17: /I Invariant holds (!!) during fault injection ...

18: [C:<+D]!"N.L=V/ .. fromC to C+D-1

19: END

4-5). In any case, the system function that processes the sensor
data must always get valid input values (test invariant, line
15). It is not necessary for the test to simulate the environment
because, with RACE, nodes can start and run in a neutral mode
processing default values. With the steering wheel in neutral
position (default), the reversible elasticity of a node executing
the steering function can be tested as follows:

N = CentralNode, N1 = Sensorl, N2 = Sensor2,
F = Steering, L = In.Sensorl, V = InvalidData,
C=100,D=2,T=1,P=10

For testing irreversible elasticity, we extend the fault injec-
tion duration D from 2 cycles to, say, 1000 cycles indicating
a permanent failure of Sensorl. For testing the fault-resilience
of the system at various nodes, including the communication
links between them, test invariant (line 15) and fault injection
(line 18) must refer to different nodes. Then we can change the
fault-injection location to, for example, Sensor2.Out.Steering,
independent of the test invariant still checking the correctness
of the data stream at CentralNode.Steering.Input.

VII. RESILIENCE TESTS STRENGTHEN SAFETY CASES

Testing fail-operational systems early on with non-intrusive
data seeding provides quick and precise feedback in virtual and
real environments. Such reliable tests are strong arguments in
safety cases of fault-resilient, fail-operational systems.

REFERENCES

[1] J. Frohlich and R. Schmid. Architecture for a Hard-Real-Time System
Enabling Non-intrusive Tests. In 25th IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW), page 24,
November 2014.

[2] J. Frtunikj, J. Frohlich, and A. Knoll. Qualitative Evaluation of Fault
Hypotheses with Non-Intrusive Fault Injection. In 5th International
Workshop on Software Certification (WoSoCer 2015). IEEE, November
2015.

[3] H. Kopetz and G. Bauer. The Time-triggered Architecture. Proceedings
of the IEEE, 91(1):112-126, January 2003.

[4] S. Sommer, A. Camek, K. Becker, C. Buckl, A. Zirkler, L. Fiege,
M. Armbruster, G. Spiegelberg, and A. Knoll. RACE: A Centralized
Platform Computer Based Architecture for Automotive Applications. In
Vehicular Electronics Conference and the International Electric Vehicle
Conference (VEC/IEVC). IEEE, October 2013.

