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Abstract

In an information society, large volumes of data are being captured or produced on a
daily basis using various technologies in many domains such as remote sensing, compu-
tational simulations and location-based services. However, getting insights into big data
is very challenging due to their complexities in the size and structure. These challenges
demand joint research efforts from multiple disciplines such as cartography, geovisualiza-
tion, scientific visualization, information visualization, and the recently coined discipline
visual analytics.

The aim of this thesis is to bridge the gaps between thematic mapping and scientific
visualization and to achieve their synergetic effects for the visual analysis of big data. To
establish a theoretical foundation, the author first conducted a systematical comparative
study of thematic cartography and scientific visualization. The comparison covered seven
essential aspects along the visualization pipeline: purposes, data sources, georeferenc-
ing, data preprocessing, classification, symbolization, and finally perception and cogni-
tion. The results showed that these two disciplines reveal different visual analytical levels
and are mutually complementary, which encourages the author to seek their synergetic
effects.

Based on the theoretical findings, the author conducted extensive experiments of vi-
sually analyzing massive and complex real-world taxi floating car data (FCD). Two FCD
event categories at different abstraction levels, namely point-based and trajectory-based
events, were identified for visual analysis. For point-based events, from the scientific vi-
sualization perspective, the author proposed several visualization methods including pie
radar glyphs, time graphs and a salience-based method. The resulting compact visual-
izations revealed the underlying interesting data distributions. From the thematic map-
ping perspective, choropleth mapping and proportional mapping techniques are applied
to communicate easily understandable spatiotemporal patterns. To analyze the trajectory-
based events using scientific visualization methods, highly interactive techniques were
employed, including interactive clustering methods and a parallel coordinates technique,
to let users visually explore potentially interesting clusters, which were further explored
on map views using gradient line rendering, direct line rendering and space-time cube ap-
proaches. A variety of thematic mapping techniques, including flow mapping, dot map-
ping, temporal matrix, and pie-chart mapping, are proposed to effectively communicate
the spatial interactions and the taxi drivers’ behavior patterns.

These visual analysis experiments have demonstrated that the techniques from both
disciplines can strongly support users to win insight into the movement data by jointly
revealing human mobility patterns, land use types and taxi driving patterns, which oth-
erwise cannot be discovered by employing visualization methods from either discipline.
The results have confirmed the synergetic effects of both disciplines.

v





Zusammenfassung
In einer Informationsgesellschaft werden tagtäglich große Datenmengen durch die ver-

schiedensten Technologien in vielen Bereichen, wie etwa in der Fernerkundung, der Com-
putersimulationen oder der ortsbezogenen Dienste, erhoben oder produziert. Allerdings
ist es herausforderd, einen Überblick über die Big Data aufgrund ihrer Komplexität der
Größe und Struktur zu verschaffen. Angesichts dieser Herausforderung sind multidiszi-
plinäre Forschungsarbeiten, beispielsweise in der Kartographie, der Geovisualisierung,
der Wissenschaftlichen Visualisierung, der Informationsvisualisierung, sowie in der neu
entstandenen Disziplin Visual Analytics, erforderlich.

Das Ziel dieser Arbeit ist zwischen der Thematischen Kartographie und der Wis-
senschaftlichen Visualisierung eine Brücke zu bauen und die Synergieeffekte beider Diszi-
plinen für die visuelle Analyse von Big Data zu gewinnen. Zu Bildung der theoretis-
chen Grundlage findet zuerst eine systematische Vergleichsanalyse statt. Die Reihenfolge
des Visualisierungsprozesses folgend, deckt die Vergleichsstudie sieben essentielle Bere-
iche ab: Verwendungszweck, Datenquellen, Georeferenzierung, Datenvorverarbeitung,
Klassifizierung, Symbolisierung und letztlich Wahrnehmung und Kognition. Die Ergeb-
nisse haben unterschiedliche visuell-analytische leistungen der beiden Disziplinen sowie
deren komplementäre Rollen gezeigt. Diese Ergebnisse deuten auf die Machbarkeit und
Notwendigkeit hin, die Vorteile der komplementären Eigenschaften bzw. Synergieeffekte
dieser zwei Disziplinen zu gewinnen.

Von den theoretischen Befunden ausgehend führt die Autorin umfangreiche Unter-
suchungen der visuellen Analyse von großen und komplexen Taxi-Bewegungsdaten
(FCD) durch. Zwei FCD Eventkategorien in verschiedenen Abstraktionsebenen, der punk-
tbasierten und der trajektorienbasierten Events, wurden für die visuelle Analyse identi-
fiziert. Für punktbasierte Events sind mehrere wissenschaftliche Visualisierungsmethod
einsatzbar, die Kreis-Radar-Diagramme, Zeitgraphen und eine Aufmerksamkeitsbasierte
Methode umfassen. Die resultierende kompakte Visualisierung offenbart grundle-
gend interessante Datenmuster. Thematischen kartographische Methoden, wie Choro-
plethenkarten und proportionale Symboltechniken dagegen kommen zum Einsatz, um le-
icht verständliche raumzeitliche Muster zu kommunizieren. Um die trajektorien-basierten
Events mit wissenschaftlichen Visualisierungsverfahren zu analysieren, hat die Autorin
interaktive Techniken, wie z.B. die interaktive Clusterbildung und parallele Koordinaten,
entwickelt, damit die Nutzer visuell potentiell interessante Cluster erkunden, die genauer
auf Kartenansichten mit direkt-Rendering Methoden und im Raum-Zeit-Würfel unter-
sucht werden können. Eine Auswahl an thematischen Visualisierungstechniken, die Dy-
namische Ablaufkarten, Punktstreuungskarten, temporale Matrizen und proportionale
Symbolkarten umfassen, werden für zur effektiven Kommunikation von räumlichen In-
teraktionen und Taxifahrtverhalten eingesetzt.

Die visuell-analytischen Experimente, die die Techniken beider Disziplinen syn-
thetisieren, sind in der Lage, z.B. Mobilitätsmuster, Landnutzungstypen und Bewe-
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gengsmuster der Taxifahren zu entdecken, die mit einer einzigen Disziplin allein nicht
möglich wären. Die Ergebnisse haben die Ausgangshypothese bestätigt, dass die beiden
Disziplinen aufgrund ihrer komplementären Eigenschaften vorteilhafte Synergieeffekte
erzeugen können.
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1 Introduction

1.1 Background

In an information society, large amounts of data are being captured or produced on a
daily basis using various technologies in many domains such as remote sensing, computa-
tional simulations and location-based services. The exponentially growing data are mostly
heterogeneous and multi-dimensional. Getting insights into these data and discovering
interesting patterns are demanding and challenging for both data suppliers and data con-
sumers. Visualization that unites the human vision, domain expertise and computational
power is an effective means that helps to turn the large data volumes into meaningful in-
formation (interpreted data) and, subsequently, into knowledge (understanding derived
from integrating information) [MK01].

The idea of using visual representations for humans to interpret and understand datasets
has a long history and is well reflected in cartography which is dedicated to the visu-
alization of the earth’s surface. Only until recent decades, with the rapid development
of computer technologies, the advanced hardware and software have made it popular to
render large datasets on screens. System developers can develop complicated interactive
tools to visualize as much data as possible, for instance, multimedia cartographic infor-
mation systems emerged around 2000s benefit from multimedia technologies [Buz01]. To
the one end, users, particularly system developers and domain experts, enjoy a lot of free-
dom to explore the unknowns hidden in the graphics. However, too much information
embedded in a graphic does not necessarily mean a concise design with more knowledge.
Ill-designed visualization systems with a visual overload would confuse domain special-
ists or even system developers themselves. To the other end, there is a growing demand
on the communication of the known scientific results to general users (e.g., political de-
cision makers, publics), which requires that visualization results should be more easily
understandable and synthesized.

Facing these challenges, joint efforts from multiple disciplines, such as cartography, geo-
visualization, scientific visualization, and information visualization, are demanded. In
particular, thematic mapping and scientific visualization are two dedicated areas for vi-
sualizing a wide range of domain-specific datasets. Since its emergence in mid-17th cen-
tury, thematic mapping methods have been widely applied to show the spatial patterns
of one or more geographic attributes or variates. The term “mapping” in cartography
mainly refers to depicting geographic space, although thematic maps can also be used
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as metaphors to represent non-geographic space. Thematic mapping methods are mostly
computerized as a consequence of the technological (r)evolutions. Outside cartography,
the term “visualization” is widely adopted in computer sciences, especially in scientific
visualization that emerged in late 1980s and addresses all kinds of data. By taking the
advantage of human-computer interactions, scientific visualization is designed for the ex-
ploration of the unknowns in large multivariate datasets.

From a general perspective, thematic mapping and scientific visualization reveal large
overlaps in terms of visualization methods. However, due to diverse historical develop-
ments and disciplinary focuses, the concerns involved in the thematic mapping workflow
that ranges from data sources, data processing to map design principles may be quite dif-
ferent from those in scientific visualization, and vice versa. With the increasing share of the
rapidly developing technologies and the necessity to handle extremely large datasets, the
two disciplines now tend to increasingly converge. Current cartography-related systems,
such as GeoVISTA Studio software [TG02] and V-Analytics (formally called CommonGIS)
software [AA04], have integrated visualization techniques from scientific visualization
and thematic mapping to explore large geospatial datasets and allow both overview and
detailed views. Some interdisciplinary researches between general mapping and scientific
visualization have been conducted. The widely used concept spatialization in scientific
visualization [Che06] as well as in cartography [SF03] are an example. However, little
knowledge about the differences and commonalities between thematic mapping and sci-
entific visualization is available. To avoid reinventing techniques and raise awareness of
the overlapping areas, an in-depth comparative study is necessary.

This thesis aims to bridge the gaps between thematic mapping and scientific visualiza-
tion by identifying their methodological strengths and achieve their synergetic effects for
the visual analysis of big data. To establish a theoretical foundation, a systematical com-
parative study of those two disciplines is essential.

Moreover, the theoretical findings of the comparative study motivate us to carry out
extensive experiments for visual analysis of massive and complex data. Ideally, the ex-
pected test data for the experiments should be real world data of large volume and com-
plex structures. The Floating Car Data (FCD) satisfies all the requirements and will be
served as test case in this thesis. Indeed, FCD analysis, in general movement data analy-
sis, is currently a hot research topic with numerous studies focusing on modeling human
mobility patterns [GHB08; Zhe+08; DYM15], uncovering taxi driving behaviors [LAR10;
DFM15], mining interesting locations or places [Zhe+09; And+11; And+13b], and inferring
urban land uses and city structures [Liu+15a], etc. We believe that insights can be derived
from the movement data by taking advantage of the complementary characteristics from
scientific visualization and thematic mapping.
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1.2 Research Tasks

This thesis strives for an interdisciplinary research that bridges the gap between thematic
mapping and scientific visualization. It involves the following research tasks:

• Identify the complementary characteristics of thematic mapping and scientific visu-
alization by investigating their commonalities and differences.

• Demonstrate the necessity and feasibility of achieving synergetic effects for visual
analysis of large geospatial database by taking advantage of the two disciplines.

• Identify use cases of real-world movement data for experimenting the synergetic
effects.

• Propose concrete scientific visualization and thematic mapping techniques for visual
exploration and communication of movement events.

• Implement and evaluate the proposed visualization methods.

1.3 Thesis Structure

The thesis is structured as follows.

• Chapter 2 is dedicated to the theoretical foundation for bridging the gap between sci-
entific visualization and thematic mapping. The author first conducts a systematical
comparative study of these two discipline. Following the order in the visualization
pipeline, the comparison covered seven essential aspects: purposes, data sources,
geo-referencing, data preprocessing, classification, symbolization, and finally per-
ception and cognition.

• Chapter 3 introduces the test datasets and data preprocessing steps. Massive and
complex real-world taxi floating car data (FCD) collected in Shanghai in the year
2010 are used for conducting extensive experiments. According to an event-based
view, the author first categorizes the movement events and then identifies two types
of events: point- and trajectory-based events, for visual analysis.

• Chapter 4 deals with the visual exploration and communication of point-based event
patterns. From the scientific visualization perspective, we propose pie radar glyphs,
time graphs and a salience-based method for effective visual exploration and analy-
sis of four types of point-based events, referred as (occupancy, non-occupancy, pick-up,
drop-off). From the thematic mapping perspective, choropleth mapping and propor-
tional mapping techniques are applied to communicate spatiotemporal patterns.

• The trajectory-based events are analyzed in Chapter 5. Using scientific visualization
methods, highly interactive techniques are employed, including interactive cluster-
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ing methods, the parallel coordinates approach, gradient and direct line rendering
techniques, and space-time cube, to let users visually explore the spatiotemporal pat-
terns of potentially interesting clusters. A variety of thematic mapping techniques,
including flow mapping, dot mapping, temporal matrix, and proportional mapping,
are proposed for the communication of the spatial interactions and taxi drivers’ be-
havior patterns.

• Chapter 6 concludes the thesis and discusses the future work.

4



2 Scientific Visualization vs. Thematic
Mapping

This chapter is dedicated to the theoretical foundation for bridging the gaps between sci-
entific visualization and thematic mapping. We conduct a systematical comparative study
of these two disciplines following the order in the visualization pipeline, which covers
seven essential aspects: purposes (Section 2.2), data sources (Section 2.3), georeferencing
(Section 2.4), data preprocessing (Section 2.5), classification (Section 2.6), symbolization
(Section 2.7), and finally perception and cognition (Section 2.8). In Section 2.9, we con-
clude that the comparison results show that these two disciplines reveal different visual
analytical levels and play a complementary role with each other. These results suggest
the necessity and feasibility of achieving synergetic effects from two disciplines by taking
advantage of their complementary characteristics.

2.1 A Comparative Study Framework

Thematic mapping and scientific visualization are two dedicated areas for visualizing a
wide range of domain-specific data sets. From a general perspective, thematic mapping
and scientific visualization reveal large overlaps in terms of visualization methods. How-
ever, these two disciplines are shaped by different driving forces and usage purposes.
Accordingly, the concerns involved in the thematic mapping workflow that ranges from
data source, data processing to map design principles may be quite different from those
for scientific visualization and vice versa. Although some interdisciplinary researches be-
tween general mapping and scientific visualization have been conducted [SF03; Che06],
little knowledge about the differences and commonalities between thematic mapping and
scientific visualization is available. This chapter is devoted to an in-depth comparative
study with the aim at bridging these two disciplines by identifying their methodological
strengths and synergetic effects.

Thematic mapping and scientific visualization both cover a wide variety of aspects and
issues such as those related to static vs. dynamic visualization and human-computer inter-
action. It is difficult to list and compare their characteristics exhaustively. In this study, we
will tackle some essential aspects that could demonstrate their emphases, commonalities
and distinctions. This section introduces a framework that confines the overall spectrum
of this comparative study.
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Data Sources
Geo-

referencing
Data pre-

processing Classification Symbolization
Perception

and cognition

Figure 2.1: The specific aspects in the visualization pipeline involved in the comparative
study.

Section 2.2 firstly gives an overview about the two disciplines by examining their pur-
poses, disciplinary natures and different visualization guidelines. Detailed comparisons
on specific aspects of these two fields will be unfolded mainly according to the visualiza-
tion pipeline. The term “visualization pipeline” used in scientific visualization describes
the (step-wise) process of creating visual representations of data, which mainly consists of
data filtering, data mapping and data rendering. In thematic mapping, the corresponding
term is “map making”, which is a creative procedure from raw data to cartographic rep-
resentations. The thematic mapmaking procedure normally contains steps such as data
preprocessing, classification and symbolization. Generally speaking, “data filtering” is a
sub-step of “data preprocessing”; “data mapping” is synonymous to “symbolization”. To
consistently compare different aspects, this work adopts terms and processes involved in
thematic mapping. More specifically, we compare the following aspects in the visualiza-
tion pipeline: data sources (Section 2.3), georeferencing (Section 2.4), data preprocessing
(Section 2.5), classification (Section 2.6), and symbolization (Section 2.7). Figure 2.1 illus-
trates these involved aspects in the comparative study framework.

Beyond the visualization pipeline, the user interaction with the visual representations
or cartographic representations is also an important aspect and a rather complicated cre-
ative process. In Section 2.8, we address the generic perception and cognition issues that
demonstrate users’ understanding of different visual displays and possible influences on
their behavior. At this moment, extensive experiments on (map) reading of the visualiza-
tion results generated from thematic mapping and scientific visualization using the same
dataset are not discussed here because of the theoretical nature of this section.

2.2 Purposes

Visualization serves for a variety of purposes and functions. For example, DiBiase [DiB90]
models map-based scientific visualization as a four-stage process that starts with explo-
ration, moves to confirmation, transitions to synthesis, and ends with presentation. MacEachren
and Kraak [MK97] developed the space-cube representation for map-use ranging from
private-high interaction-exploration of the unknown corner to public-low interaction-presentation
of the known corner. However, distinguishing those visualization stages and use goals
does not mean there are crisp boundaries among them. In fact, exploratory visualization
is also capable of communicating useful results, while visualization for presentation may
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promote new insights as well. Rather, the stress is to apply different visualization strate-
gies according to different purposes.

Thematic mapping emerged as a response to the growing knowledge of natural sciences
and the intensified exploration of our living planet in the 17th century. In its early stage of
development, it was focused on the communication of known information from the map
designer to the map user. Effortful cognitive processes are involved in each step of the
map design procedure. For example, to effectively portray the phenomenon of interest,
cartographers must decide upon the appropriate spatial level of detail. In most cases, car-
tographers would aggregate data to certain geographic units, which involves both spatial
and semantic aggregations that largely reduce the data amounts and reveal meaningful
information. Besides, cartographers choose appropriate classification and symbolization
methods so that the map information can be conveyed to users without their considerable
cognitive effort. For example, most thematic maps show data with no more than seven
classes. When reading a thematic map, map users are supposed to be able to understand
the meaning of each symbol immediately. With the digital (r)evolutions, thematic mapping
tends to be increasingly democratized, allowing the users to takes over more analytical
and explorative responsibilities. This has added to the thematic mapping a flavor of scien-
tific visualization. In particular, with the embedded analytical functions in an interactive
mapping environment, users may not only efficiently receive the known information, but
also explore the unknown information. For example, in modern GIS systems with various
specialized functions, map overlay is dedicated to exploring and detecting correlations of
multiple layers. Nevertheless, the individual layers are still thematic maps conveying the
known qualities or quantities of the underlying themes. In a similar way, most elaborately
designed thematic maps in Atlas information systems serve as information sources and
their designer bares the responsibilities of communicating the processed information to
the viewer who but enjoys the freedom of interactively sifting through the maps in order
to detect information beyond what is known to the system developer. In this scenario, the
communication process in thematic mapping can be regarded as a push-based approach
that cartographers take more responsibilities, hence the potential of making mistakes as
well.

The purpose of scientific visualization is to provide a thinking instrument that helps
domain specialists to form and verify hypotheses, to explore the unknown information
hidden in the graphics and understand scientific datasets. Scientific visualization sys-
tems provide the possibilities to cope with massive data and facilitate exploration through
human-computer interactions. Driven by the explorative nature, scientific visualization
does not usually generalize data as thematic mapping does. Its data preprocessing mainly
deals with the normalization of data instead of replacing the original data with synthe-
sized values. Semantic aggregation is often applied to reveal the distributional patterns
or relationships of the data items, whereas spatial aggregation is rarely applied so that
individual-level data could be further explored. Since there is no much spatial aggrega-
tion, symbols (e.g., glyphs, icons) of individual data items are rendered at their representa-
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Figure 2.2: Illustration of the purposes of thematic mapping and scientific visualization in
the map use cube.

tive locations. Consequently, scientific visualization often results in a visual representation
of compact symbols. Its whole structure is obvious while the individual symbols are indis-
tinguishable. Interaction techniques are often used for information retrieval and display,
and most of the information is just temporarily visualized on demand by the user [Buz99].
Being characterized by its high interactivity, scientific visualization systems then allow
users the maximum freedom to manipulate the visualization, such as zooming into inter-
esting hotspots, querying exact data values by selection, extracting cluster boundaries or
the distribution structures. Since the final analytical step is left to users, users rather than
system developers must spend significant cognitive efforts to analyze the visualization re-
sults. Instead, system developers pay much attention to develop advanced computational
algorithms to cope with mass data and enhance the rendering performance. This kind
of pull-based interaction style also indicates that users rather than system developers or
designers would run the risk of making mistakes and getting lost in the information space.

From the aforementioned paragraphs, we can learn that thematic mapping is based on
the communication model and emphasizes the communication of known information from
the map maker to the map user via information abstraction. In contrast, scientific visual-
ization is based on an exploration model and emphasizes the exploration of unknown
information. Their distinctive purposes and natures reveal that the two disciplines can be
regarded as locating at the two corners of the well-known map-use-cube as illustrated in
Figure 2.2. We summarize the detailed comparisons of the nature of thematic mapping
and scientific visualization in Table 2.1.

8



2.3 Data sources

Thematic mapping Scientific visualization
Theory Communication model Exploration model
Design style Push-based Pull-based
Information abstraction degree High Low
Cognitive efforts of the developer High Low
Cognitive efforts of the user Low High
Main responsibility Map makers Users

Table 2.1: The nature of thematic mapping vs. scientific visualization.

2.3 Data sources

Thematic mapping and scientific visualization both cover a variety of raw data sources col-
lected or created by advanced sensors, computational simulations, financial transactions,
etc. In thematic mapping, the data source could be individual data items but more likely
spatially aggregated data, such as national census data. There are a variety of reasons us-
ing aggregated data. For example, national agencies mostly provide aggregated data to
ensure personal confidentiality. For thematic mapping, even if massive raw data scatter-
ing over the space are available, it is necessary to partition the space into smaller units
and aggregate the individual data items within each unit to one single value in order to
summarize information and reach a more effective communication.

However, it is essential for scientific visualization starting with individual raw data
items, because besides a global picture of the spatial and temporal behavior of the data,
scientific visualization should allow interactive exploration of the details. Raw data are
normally associated with relatively accurate positions. Data processing in scientific visu-
alization should also keep the data as accurate as possible. That means, analytical algo-
rithms can help reduce data noise and enrich data by means of semantic aggregation, but
the spatial resolution or the level of detail remains unchanged.

For example, remote sensing imagery serves as an abundant data source for both disci-
plines. In most cases, scientific visualization starts from the raw remote sensing images,
and processes the imagery data, e.g., by classification, segmentation, based on the seman-
tic meaning of each pixel. The spatial aggregation is not applied and the image resolution
does not change. The well-classified images reveal the underlying data distribution and
the global structure (sometimes with extracted boundaries based on pixel semantics). In
thematic mapping, those well-classified images are often taken as its raw data or back-
ground rather than the final products. Classified images can be further aggregated or
(re)sampled to lower resolutions or to geographic areas (e.g., states, districts, blocks). Clas-
sification and symbolization then could be applied to show patterns of these areas.

9



2 Scientific Visualization vs. Thematic Mapping

In this study, we use Financial Times Global 500 2012 as a test dataset to illustrate the
characteristics of thematic mapping and scientific visualization. This dataset provides an
annual snapshot of 500 individual companies with several indicators, e.g., company name,
sector, market value, and the number of employees. Fictional areas are designed to rep-
resent geographic areas where the companies are located. Each company is assigned to
a position inside one of these areas. While a thematic map usually displays the spatially
aggregated or classified data as shown in Figure 2.3(a) with one area being selected, the
scientific visualization may tend to choose a direct rendering of the raw dataset contain-
ing the individual attribute values of 500 individual companies shown in Figure 2.3(b).
One single company is highlighted. Figure 2.3(b) can also be regarded as a pre-stage for
Figure 2.3(a).

We can conclude from the aforementioned examples that the significant distinction of
the two fields in terms of data sources is that scientific visualization mostly starts from
individual raw data items while thematic mapping could start from individual raw data
items but mostly from spatially aggregated data.

2.4 Georeferencing

Georeferencing explicitly or implicitly relates data such as world events and placenames
to geographic locations. Georeferencing theories and techniques are essential for cartogra-
phy, geography and related disciplines especially when data from different sources need
to be combined. In this section, we discuss the differences of georeferencing in thematic
mapping and scientific visualization.

Georeferencing in thematic mapping

Thematic data in thematic mapping are inherently geo-referenced to locations (e.g., enu-
meration units) in a 3-D geographic space (i.e. geospace). Geospace is a continuous phys-
ical space, in which location, distance, orientation, area, size and so forth can be measured
based on physical or functional measurements. For instance, distance on thematic map-
ping can be physical Euclidean distance or time distance; regions can be homogeneous
zones based on physical objects (e.g., forest, lake) or functional regions (e.g., administra-
tive units).

In thematic mapping, geospatial features are mostly represented by geometrical primi-
tives, points, lines, polygons (areas) and volumes. Vector data model is used to represent
those points, lines and polygons as a series of coordinates (e.g., longitude and latitude),
and may also store topological information that describes the relative positions of objects to
each other. Irregularly shaped administrative and statistical base areas, which are mainly
used for the aggregation of the attribute or thematic data, are easily represented by poly-
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gons. For example, U.S. census bureau offers TIGER/LINE shapefiles as a vector data
format to represent thematic base data, such as coastlines, country borders, and census
tract boundaries. Besides vector data model, raster data modal is another way to represent
spatial objects, discrete or continuous, static or dynamic. Vector data can be overlaid on
top of a raster image.

To represent the 3-D geographic space on physical planes (e.g., paper maps, computer
screens), thematic mapping should appropriately choose map projections depending on
the purposes. In addition to orthographic projections, central and parallel perspective
projections widely used in map-related representations could also be applied. Geomet-
ric distortions are no longer the unwanted side effect [Men03]. Instead, map distortion
or anamorphosis with functions such as value-by-area, poly-focal projection or dynamic
lens is increasingly designed as an effective means to make thematic maps more attractive.
During the distortions, invariance (e.g., topological relationships) would be preserved to
make sure that no confusion occurs in the communication process. For example, in the
choropleth map in Figure 2.4(a) the aggregated market values are geo-referenced to the
fictional areas. The larger the quantity is, the darker the color tone. In the value-by-area
map in Figure 2.4(b) the distorted fictional geographic areas are proportional to the corre-
sponding market values, which may evoke the user’s attention and curiosity.

Georeferencing in scientific visualization

In scientific visualization, two distinctive visualization categories can be identified in terms
of spatial properties of the data. One category concerns on data with reference to the earth
or a specific object in the physical space. The other category emphasizes on visualizing
aspatial data.

Spatial data

This category concerns data with reference to the earth or a spatial object (e.g., human
bodies in medical visualization) in a physical space. Here, we focus on measurable spa-
tial data that are geo-referenced to the earth’s surface with location, distance, orientation,
etc. Remote sensing images, geo-located social media data (e.g., Geo-Twitter), floating car
data generated from GPS-enabled taxis, etc. belong to this kind of geo-referenced data
that are huge in amount and with a full coverage of a certain geographic region. These
geo-referenced data could represent discrete entities or continuous fields and are encoded
either in vector or raster format. Geospatial locations and attribute values occur in raster
format in regular pixels and color tones. In vector format, they are typically expressed
using primitive features such as points, lines and polygons which are not generalized as
required in thematic mapping. For example, Figure 2.4(c) shows the individual market
values of individual companies. The size of each green circle is scaled to reflect the relative
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market value of a company. Each circle is geo-referenced to a geographic location inside
one polygon. Depending on the visualization purpose, some additional efforts of con-
verting pixels or points (e.g., discrete measurements of continuous surfaces) to irregular
vector shapes are necessary. Typical methods are triangulations, re-sampling on uniform
grids and mesh grids. However, during these procedures, individual values should be
kept as accurate as possible.

To represent the physical space on a screen, similar projection methods as in thematic
mapping are also employed. While for the accuracy purpose, distortions should be mini-
mized.

Aspatial data

Aspatial data do not have a spatial reference. For example, a set of publications is an
aspatial dataset, in which each document contains information such as title, author, and
publishing date. To allow a better comprehension, aspatial data with multiple attributes
could be associated with a high-dimensional virtual space. Mapping an aspatial dataset
on a spatial reference is termed as spatialization [SB97]. The imposed spatial metaphors,
such as location, distance, size and orientation, make the structure and relations of aspatial
attributes straightforward to see and to compute. For example, multidimensional scaling
(MDS), latent semantic indexing (LSI), or statistical correlations can be used to locate the
numerical data. Generally speaking, the relative locations on the base map are more im-
portant than the absolute locations and the distance indicates the strength of semantic
relationships such as similarity.

The spatialized virtual space is normally modeled by a directional graph composed of
a set of nodes (vertices) and their attributes, as well as a set of links (edges). Nodes rep-
resent individual abstract objects, and attributes represent the properties of those objects.
Links indicate object relationships that can be derived by means of statistical or mathe-
matical data analysis methods. For instance, Figure 2.4(d) is a treemap visualization of
the companies. Each rectangle is a node and represents a company. The rectangle sizes
are proportional to the market values. The absolute locations of the rectangles have no
geographic meaning while their relative locations shows the relationships (e.g., hierarchi-
cal relationship indicated by different color tones) among the rectangles. Fabrikant and
Skupin [FS05] have theoretically investigated a series of spatial metaphors and empiri-
cally examined those metaphors in a number of experiments. Software programs utilizing
spatial metaphors are also common, such as Citespace [Che06], Galaxy and ThemeView
visualization [INS05]. Besides spatialization, distortion techniques, such as hyperbolic
graph and perspective wall [MRC91], are deliberately applied to make visual represen-
tation more attractive by means of focusing on details while preserving an overview of
data.

Concluding this section, we can say that in thematic mapping aggregated data in geospace
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Thematic mapping Scientific visualization
Space 3D geographic space 3D physical space Hyper- or high di-

mensional virtual
space

Spatial concepts (Location,
distance, region, etc.)

Physical or functional mea-
sures

Physical measures Spatial metaphors

Projections Physical to physical Physical to physi-
cal

Virtual to physical

Data model Mostly vector data model Both raster and
vector data model

Directed graphs

Geometry Irregularly or regularly
shaped polygons

Grids (e.g., pixels,
triangles) or prim-
itive geometries
representing indi-
vidual objects (e.g.,
scatter points)

Any kind

Spatial aggregation Common Uncommon
Pitfalls Statistical pitfalls No pitfalls
Distortion Geometries and metric rela-

tionships can be intention-
ally distorted in order to em-
phasize or preserve impor-
tant thematic information

Absolute loca-
tional accuracy is
preferred

Geometric dis-
tortion without
physical meaning

Table 2.2: Georeferencing in thematic mapping vs. scientific visualization.

are normally geo-referenced to irregularly or regularly shaped polygons, while in scien-
tific visualization individual data items with spatial characteristics can be geo-referenced
to accurate locations of individual objects or measurements in a 3-D physical space, and as-
patial data in a hyper-dimensional space can be spatialized to a 2-D or 3-D physical space
usually based on a graph model. More detailed comparisons between thematic mapping
and scientific visualization in terms of georeferencing are summarized in Table 2.2.
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(a) Aggregated data of fictional areas in thematic mapping

(b) Individual companies with their attribute values used in scientific visualization.

Figure 2.3: The comparison of thematic mapping and scientific visualization in terms of
data sources.
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(a) A choropleth map with the aggregated market
values geo-referenced to the fictional geographic
areas

(b) A value-by-area map with the fic-
tional areas proportional to the corre-
sponding market values

(c) A point map of the geo-referenced individually scaled market values

(d) A treemap visualization with locations of rectangles bear-
ing no spatial meaning, but sizes reflecting the relative
market values

Figure 2.4: Examples of georeferencing in different visualization techniques.
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2.5 Data preprocessing

In thematic mapping, data preprocessing aims to reduce the amount of data and reveal cer-
tain spatial patterns of the themes. Besides the regular data preprocessing steps like noisy
data filtering, spatial and semantic aggregation are highly involved. Generally speaking,
if the raw data source contains numerous individual data items, the very first step is to
aggregate the data to an appropriate spatial level of detail. Then, the data could be scaled
to certain level of measurements using spatial statistical techniques.

Spatial aggregation. Spatial aggregation is a rather subjective procedure. Cartographers
may choose a specific spatial level that they believe fits the purpose of the map or the goal
of the problem. The data can be spatially aggregated to a certain level of geographic ar-
eas (such as blocks, states, and countries) when an appropriate base map is accessible, or
they can be aggregated to area units that are calculated based on their spatial distributions.
For instance, when creating a point density map of incident data, the incident points are
firstly clustered and conceptual points are generated as the geometric centers of the clus-
ters. Then Voronoi diagram techniques can be applied to partition the space into polygons
that contain a conceptual point each. Incident points are then spatially aggregated into
these polygons. Finally, a choropleth map can be derived based on the Voronoi meshes.
Sometimes, regular grids of relatively large cells are superimposed on the mapping area
and data inside each grid are then aggregated.

Data scaling. A wide spectrum of techniques could be applied to scale geospatial data
to nominal, ordinal, interval or ratio level of measurements. Descriptive statistical meth-
ods, such as the mode or chi-squared technique, are appropriate to scale count values to
nominal level of measurement (e.g., race, ethnicity, marital status). Ordinal scaling assigns
observations, usually collected from social surveys of preferences and perceptions (e.g.,
English-speaking ability, education attainment), to discretely ranked categories. Statistical
techniques, such as median and percentile, could be useful in dealing with ordinal data.
For interval and ratio scaling, more descriptive as well as inferential statistical methods
could be applied, such as mean, standard deviation, correlation, regression, and analysis
of variance. Besides, geostatistical techniques and space-related data analysis methods are
also well developed. Depending on the level of measurements, different analytical op-
erations, such as grouping, isolation, cross-tabulation, differentiation, and classification,
could be applied [Chr02]. Data scaling often leads to a reduction of data amount and the
improved insight into the datasets. For example, in Figure 2.5, the aggregated market val-
ues of the fictional areas can be further projected onto an ordinal level, which leads to the
loss of the numerical values of the fictional areas but helps reveal the relative quantities in
a more abstract and legible manner.

Pitfalls induced by spatial aggregation. Since thematic data are mostly aggregated to the
geo-referenced areas, the sizes and shapes of the areas may exert pronounced influences
on the accuracy of derived values, thus the accuracy of corresponding thematic maps. In
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[Mac85] and [Sch55; HXR70], size and shape effects have been investigated on the accuracy
of choropleth and isopleth mapping respectively. More seriously, aggregated data could
also induce spatial data analysis pitfalls. Typical pitfalls are modifiable unit area problems,
edge effects, ecological fallacy, etc. For example, edge effects may arise where an artificial
boundary is imposed on a study area, and are particularly prominent in studies of spatial
point patterns [FR93]. Therefore, map makers should be aware of these limitations and
try to maximize the thematic map accuracy when designing a thematic map, such as by
choosing an appropriate form of symbolization. Meanwhile, map users could be alerted
of the possible pitfalls (such as provided with the measure of the thematic accuracy), and
take caution in interpreting the insufficiently accurate thematic map.

In scientific visualization, data preprocessing emphasizes on normalizing attribute data
and data enrichment via various data analysis methods. Data normalization (or standard-
ization) is widely applied due to the fact that measurement scales are not uniform. For
example, temperature could be measured in both Fahrenheit and Centigrade. Both are
valid, but they produce different numbers. The measurements need to be scaled to the
same “neutral” or “standard” level to allow the comparison. Normalization techniques
are different, depending on whether the variables are scaled at nominal, ordinal, inter-
val, or ratio levels. For example, nominal (e.g., different naming systems for flowers in
different areas) and ordinal variables (e.g., clothes sizes in different countries) could be
normalized by looking up standardization tables; linear or some non-linear (e.g., loga-
rithm) transformation methods are often used for normalizing interval and ratio data. In
general, normalized data are at the same level of the original data and the accuracy of the
original data is kept as much as possible. Besides data normalization, other data analysis
methods could be used to derive data values for data enrichment. For example, in Cites-
pace [Che06], besides the original data (e.g., author, title, citations), derived values, such
as frequency and betweenness centrality, are also calculated using statistical methods, text
mining algorithms or graph analysis methods. Note that the derived data are intended
to enrich the original data rather than to replace them. Therefore, the data preprocessing
in scientific visualization results in more accurate and enriched data. Since data are not
spatially aggregated as required in thematic mapping, statistical pitfalls are also avoided.
However, interpreting the less generalized dataset demands for more cognitive endeavors.

In short, through data preprocessing, data items in thematic mapping are normally
scaled to more abstract levels of measurement based on semantic aggregation and the
data amounts can be largely reduced through spatial aggregation which may induce some
statistical pitfalls; whereas in scientific visualization raw individual data items are nor-
malized and filtered for the accuracy purpose based on semantic aggregation. Table 2.3
lists the compared results of data preprocessing between thematic mapping and scientific
visualization.
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Figure 2.5: A choropleth map with three ordinal market values.

Thematic mapping Scientific visualization
Preprocessing techniques Mostly geostatistical tech-

niques and space-related
data analysis methods

Mostly data normalization
(e.g., statistics, image pro-
cessing, graph analysis)

The scaling of measurement The scaling at the same
level or more aggregated
level

Mostly the same level of scal-
ing

Data amount Largely reduced Rarely reduced
Derived data May replace the original

data
As additional data

Original data accuracy Decreased Kept
Information abstraction High Low

Cognitive effort Low High

Table 2.3: The data preprocessing for thematic mapping vs. scientific visualization.
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2.6 Classification

2.6 Classification

In thematic mapping, classification allows the designer to structure the message of the
thematic communication [Den90]. The quantitative information, being directly measured
(e.g., total population) or derived (e.g., population density), is usually classified before its
symbolization in a thematic map. Theoretically, accurate classes that best reflect the dis-
tributional character of the dataset can be calculated. However, thematic mapping should
also take the perceptual constraints into account by restricting the number of classes, thus
allows a quick and immediate overview and interpretation of spatial patterns. In addi-
tion, a thematic map is also assumed to permit its readers to identify exactly the class to
which each individual symbol belongs [Dob73]. Therefore, thematic maps are normally
with a limited number of classes that fits for perception. Note that the perception-driven
classification is different from the data-driven scaling process that aims to reflect the data
distribution. The widely adopted principle in thematic mapping is that no more than seven
classes are used. Under this constraint, optimal classifiers, which strongly affect the visual
impression of a thematic map, are applied to determine the class intervals and class bound-
aries. Extensive empirical case studies on classification issues have been conducted, such
as the determination of an appropriate number of classes for human perception [JK03], the
selection of class intervals and boundaries [Eva77; Har03; GB09; Fis10].

In scientific visualization, accurate information should be preserved for the purpose of
future exploration. According to the goodness measures, a variety of mathematical and
statistical techniques are employed to find optimal classifiers, which assure that each in-
dividual data item precisely falls into a certain group. It is often the case that more than
10 categories are classified. For example, satellite images are segmented and classified
to many land use types. Sometimes, data values are merely normalized and mapped to
graphic variables without classification. For example, normalized data values in stick fig-
ure icon visualization are directly mapped to corresponding stick angles [PG88]. Those
accurately classified groups or unclassified individual data can be helpful for the further
exploration but may call for longtime interpretation or understanding.

Figure 2.6 illustrates the classification emphasis of the two disciplines by using three
visualization techniques. Figure 2.6(a) shows a choropleth map with 5 classes. In Fig-
ure 2.6(b), the color tones of the circles are scaled to reflect the relative market values with
more than 20 classes along the color bar. The treemap visualization in Figure 2.6(c) uses
unclassified market values to calculate the sizes of the individual rectangles. The chang-
ing darkness of the color tones reflects the quantity of each company’s net income value
(the larger the quantity, the darker the color tone). Obviously, the more generalized the-
matic map with 5 classes leads to the loss of more detailed information, and reduced data
accuracy. However, users can comprehend the classified results more easily.

We can summarize from the aforementioned paragraphs that classification in thematic
mapping normally has more constraints from perception consideration that can largely af-
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2 Scientific Visualization vs. Thematic Mapping

fect the visual impression of a thematic map; while classification in scientific visualization
try to make sure that each of the individual data items can be optimally classified to a
group. The comparison of classification between thematic mapping and scientific visual-
ization is illustrated in Table 2.4. For better exploration as well as user-centered effective
perception in the visualization systems, a trade-off of classification is required between the
fitness for the natural distributions and the fitness for human perception.

Thematic mapping Scientific visualization

Necessity Mostly classified Classified or unclassified
Driving force Fitness for perception Goodness measure reflecting

the distributions
Number of classes Usually <7 Can be very large (e.g., >10)
Evaluation Readability and legibility Accurate classification of in-

dividual data items

Table 2.4: Classification in thematic mapping vs. scientific visualization.
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2.6 Classification

(a) A choropleth map of the company market values with five classes

(b) A point map of the company market values with more than 20 classes

(c) Treemap visualization of unclassified market values represented pro-
portionally by the sizes of the corresponding rectangles.

Figure 2.6: Exemplary classification approaches applied in choropleth mapping, point
map, and tree map visualization.
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2.7 Symbolization

Semiotics or semiology, in particular Bertin’s semiology of graphics [Ber83] and extended
graphic variables [Mac95; Buz01], has profoundly influenced both thematic mapping and
scientific visualization. A wide spectrum of symbols together with their graphic variables,
as well as various design styles could be found in both disciplines. However, in terms of
symbolization results and methodologies, there are many differences.

For the purpose of communication, each symbol representing certain classified data on a
thematic map should be clearly seen. Users should quickly and intuitively relate a symbol
with its referent so that they can understand the meaning of the symbol. Although there
are no firm rules for symbol construction, cartographers have carried out many research
works to enhance thematic map legibility and reliability [Men01]. How to do properly with
symbolization has been a long concern. MacEachren [Mac94] developed a useful set of
models of geographic phenomena arranged along discrete-continuous and abrupt-smooth
continua and a set of symbolization methods appropriate for these models. Numerous
usability studies on symbolization issues and map effectiveness have been conducted as
well. For example, user perception issues related to the different symbol styles on thematic
maps were investigated [Slo+08]. However, more studies should be done on relatively new
symbolization methods and graphic variables, such as animation, transparency, shading,
and viewing angles.

In scientific visualization, symbolizing large amounts of unclassified data or classified
data (usually more than 10 classes) often results in a clustered visual pattern with indis-
cernible individual symbols. “How-to-do”-symbolization has been well stated in this dis-
cipline. For example, a transfer function is often specified in volume visualization so that
scalar data values can be mapped to optical quantities such as colors and opacities [WS11].
However, “how-to-do-properly”-symbolization is largely missing. Although some sym-
bolization issues are partly solved, questions concerned with the impacts of design solu-
tions on users are seldom addressed. Researchers rarely study or apply what is known
about the visual system when designing visualization techniques [JH04], and the growth
of usability studies and empirical evaluations has been relatively slow [Che05].

To demonstrate the symbolization characteristics of thematic mapping and scientific vi-
sualization, we have designed a scenario of multivariate visualization. Figure 2.7 shows
four equal-sized gray scale images that are simulated in a random process, each represent-
ing one variable. For the purpose of scientific visualization, we designed a square icon
with four equally divided sub-squares (Figure 2.8). Each sub-square corresponds to one
variable. We firstly normalize all of these four variable values to the range [0,1] and then
map the four variables to the sub-squares according to a specific order. Figure 2.9 shows
the 4-variate scientific visualization result. The whole structure of data distribution with
several hot spots could be easily perceived, while the individual color icons in the whole
structure are indiscernible. However, each variate value can still be acquired. We also
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Figure 2.7: Four simulated gray scale images.

apply the parallel coordinate system technique on the same dataset to show the similar
compact effect of scientific visualization in Figure 2.10. For the purpose of thematic map-
ping, we predefine several irregular areal units and impose the boundaries on each gray
scale image. Image pixels inside each polygon are aggregated and a mean value is gener-
ated. Figure 2.11 shows multiple choropleth maps of the aggregated mean values of each
variable. Due to the spatial aggregation, individual symbols within the referenced area
and the whole pattern could be easily perceived and interpreted. Note that, superimpos-
ing many themes over each other or integrating them with each other in thematic mapping
may require too much cognitive efforts on the user’s part.

The aforementioned paragraphs and examples illustrate that sophisticated symboliza-
tion design in thematic mapping makes the whole pattern of data distribution easily com-
prehensible and each individual symbol easily discernible; while the symbolization results
of scientific visualization usually show a whole pattern of data distribution with compact
and indiscernible individual symbols. The compared results in terms of symbolization in
thematic mapping vs. scientific visualization are presented in Table 2.5.

Thematic mapping Scientific visualization
Symbolization results Often with known pat-

terns
Often naturally clustered
symbols

Individual symbols Easily discernible Hardly discernible
Usability studies More Less

State of the art Both how-to-do and why-
to-do

How-to-do instead of why-
to-do

Table 2.5: The symbolization in thematic mapping vs. scientific visualization.
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Figure 2.8: A square icon with four equal sub-squares. In this example, four variables are
mapped to the sub-squares according to a specific order; x and y axes indicate
the position of the icon on the image.

Figure 2.9: A compact presentation of the 4-variate color icon. The left sub figure shows
the enlarged pixels.

2.8 Perception and Cognition

For both thematic mapping and scientific visualization, users construct or adjust their per-
sonal mental images based on their perception and cognition of the visual representations.

Properly designed thematic mapping results in easily discernible individual symbols.
Individual symbols with high pre-attentive distinctions can immediately draw user’s at-
tention and be easily memorized by users. This is particularly important when users surf
on Internet and look for interesting contents. Graphics (e.g., Internet maps) that do not
possess the ability of pre-attention will be possibly ignored during the short-time usage of
Internet. In addition, most individual symbols are self-explaining or can be quickly under-
stood by general users referring to the legend. Similarly, just by an overview of a thematic
map, users can perceive and understand the whole spatial pattern without much cogni-
tive effort. Moreover, multiple representation methods are often simultaneously applied
to help users get a comprehensive understanding of the phenomena.
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2.8 Perception and Cognition

Figure 2.10: A compact presentation of the four variables by the parallel coordinate system
technique, generated by XmdvTool (http://davis.wpi.edu/xmdv/).

Figure 2.11: Four choropleth maps showing distributions of the mean values of four vari-
ables.

From the scientific visualization result, domain experts may get a rough idea about the
data distribution, whereas general users without domain knowledge often find it difficult
to interpret the naturally clustered symbols. An in-depth understanding of the interesting
hotspots or outliers often demands more cognitive efforts. Users need to drill down the in-
formation space, often via complicated interactive operations (e.g., zoom in/out, brushing
and liking), in order to figure out the meaning of each symbol. When visualizing aspatial
data, familiar spatial metaphors may be helpful to enhance quick understanding of the
representations.

To conclude, the whole pattern of the data distribution on a well-designed thematic map
should be easily comprehensible and each individual symbol be easily discernible, while
in scientific visualization the whole pattern of the data distribution is easy to perceive but
the compact and indiscernible individual symbols may require more cognitive effort and
interactions to interpret.
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2.9 Summary

In this chapter, we systematically compared some essential aspects in thematic mapping
and scientific visualization. They include the purposes, data sources, georeferencing, data
preprocessing, classification, symbolization, and perception and cognition.

From the aforementioned comparisons, we can learn that thematic mapping is based
on the communication model and emphasizes the communication of known information
from the map maker to the map user via information abstraction. This information ab-
straction is reflected in every step of the visualization pipeline. Thematic mapping starts
with raw data sources, which can be individual data items but more likely aggregated
data geo-referenced to irregularly or regularly shaped polygons. Through data prepro-
cessing, thematic data are normally scaled to more abstract levels of measurement based
on semantic aggregation; while at the same time, the data amounts can be largely reduced
through spatial aggregation. Classification in thematic mapping further abstracts infor-
mation by imposing classification constraints such as limiting the number of classes up
to seven. These constraints largely reduce the data complexity and allow an immediate
understanding of the whole classification results. Furthermore, sophisticated symboliza-
tion design principles in thematic mapping make the whole pattern of data distribution
easily comprehensible and each individual symbol easily discernible. However, informa-
tion abstraction in each step will lead to the loss of detailed information and may also be
misleading and result in statistical pitfalls.

In contrast, scientific visualization is based on the exploration model and emphasizes on
the exploration of unknown information from large amounts of dataset. With the aim of
exploring detailed information, scientific visualization starts normally with raw individ-
ual data items and tries to keep the data accuracy during every step of the visualization
pipeline. Individual data items with spatial characteristics can be geo-referenced to accu-
rate locations in 3-D physical space based on either a vector or raster data model, while
aspatial in hyper-dimensional space can be spatialized to the 2-D or 3-D physical space
based on a graph model. Through data preprocessing steps, raw individual data items
may be normalized and filtered based on semantic aggregation. In the data classification
step, optimal classifiers are calculated to accurately group each of the individual data items
to a class without strict constraints of the number of classes. The symbolization in scien-
tific visualization usually results in a whole pattern of data distributions with compact
and indiscernible individual symbols. Thus, the visualization results may require more
cognitive effort and interactions to interpret. During the visualization procedure, accurate
individual data items can be acquired at each step.

We can conclude from the comparative study that thematic mapping and scientific vi-
sualization reveal different visual analytical levels and play a complementary role with
each other. Thematic mapping emphasizes the communication of known information to
general users via easily perceivable graphics; whereas scientific visualization emphasizes
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the exploration of unknown information and usually needs more efforts from the user. In
terms of data preprocessing, thematic mapping goes steps further than scientific visualiza-
tion while scientific visualization relies more on the capability of users to visually process
the data by themselves. Based on their complementary characteristics, we can say that sci-
entific visualization can very well profit from thematic mapping methods to achieve some
communication effects while thematic mapping methods can be very well extended to
embrace some explorative scientific visualization methods for the hotspot investigations.

This systematic study also provides a theoretic background to achieve synergetic effects
of the two disciplines in future visualization systems, particularly providing meaningful
ways to tackle with significant challenges posed by big data. From a technical point of
view, facing big data, such as the flourishing crowdsourcing data, both thematic mapping
and scientific visualization need intermediate steps to process the big data and make it
manageable. In thematic mapping, the raw data sets would be largely reduced through
spatial aggregation. The much smaller amount of aggregated data are then visualized on
maps, resulting in an overview of data distribution. In scientific visualization, the big data
should be divided into smaller and computationally manageable subsets. The scientific
visualization systems then may progressively load data and allow users to interactively
explore the information space. For example, the recent imMens system utilizing mul-
tivariate data tiling and parallel query processing techniques are developed to support
real-time visual analysis of big data [LJH13]. According to Meng [Men13], the big data
problem will enforce the shift of the map-making procedure from coverage-orientation to
feature-orientation. We envision that the synergetic effects of thematic mapping and sci-
entific visualization may visualize big data in a more controlled way. For example, based
on a well-designed thematic map with an overview of density distribution, users can first
identify some hotspots, and then progressively analyze and explore the subsequent data
utilizing techniques from scientific visualization.
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3 Movement Events and Shanghai Taxi
Floating Car Data

Mobility has been one of the top priorities in the industrial regions and has profound
impacts on economic growth. With the advances in location positioning and wireless com-
munication technologies, collecting spatial trajectories that represent the mobility of a va-
riety of moving objects (e.g. people, vehicles) becomes prevalent in the digital society. The
resulting complex and large movement data give rise to unprecedented opportunities for
understanding the mobility patterns and their social interactions of moving objects. In our
thesis, we pick floating car data (FCD) collected from moving taxis as our test dataset to
understand mobility patterns of taxis, and as the basis for the empirical proof of concept.

This chapter aims at identifying use cases of real-world movement data for experiment-
ing the synergetic effects of scientific visualization and thematic mapping. In Section 3.1,
we introduce movement data and investigate the concepts of movement events. More
specifically, we distinguish movement events at two different levels, which can provide
two different views for the visual exploration of movement data. At the basic level, each
movement record naturally represents an individual event; beyond the basic level, for a
series of continuous records, one could group them into trajectories and derive a variety of
trajectory-based events. Section 3.2 describes the test movement data set, i.e. taxi floating
car data, which are collected from about 2000 taxicabs in the year 2010 in Shanghai. In
Section 3.3 and Section 3.4, we investigate the point-based and trajectory-based events in-
depth, derive and pre-process the corresponding event dataset for the subsequent visual
analysis.

3.1 Movement Events

Recent years have witnessed pervasive usage of location positioning and communication
technologies (e.g. GPS devices, mobile phones) and dramatic increases of movement data
produced from these technologies (e.g. floating car data, mobile phone data). Those
massive movement data contain rich information and bring new opportunities for us
to understand urban dynamics, which are crucial for decision making in environmental
and transportation planning. Movement data analysis is currently a hot research topic
with numerous studies focusing on modeling human mobility patterns [GHB08; Zhe+08;
DYM15], uncovering taxi driving behaviors [LAR10; DFM15], mining interesting loca-
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tions or places [Zhe+09; And+11; And+13b], and inferring urban land uses and city struc-
tures [Liu+15a], etc. In addition, movement data have also been combinatorially explored
with other data sources, e.g. POI data [YZX12], check-in data [Liu+14; Liu+15b], and Flickr
data [MT15], for understanding place semantics. In spite of the numerous work, due to
the inherent spatiotemporal complexity and uncertainty, analysis of movement data is still
challenging.

Basically, movement data consist of position records generated by moving objects. Each
record can be represented by a point, e.g. of p = (x, y, t). A series of chronologically or-
dered points form a spatial trajectory (p1, p2, ..., pn). There are different views of movement
data. For instance, Andrienko, Andrienko, and Heurich [AAH11] stated that movement
can be viewed as consisting of continuous paths in space and time, referred as trajectories,
or as a composition of various spatial events. Hence, movement data can be analyzed both
as trajectories and as spatial events [And+13a].

In this work, we analyze taxi floating car data from an event-based view, although we
still use “trajectory” as a general reference to the traces in the geographic space. In spite
of extensive definitions of event and movement event [BDP08; And+13a], we distinguish
two abstract levels of movement events, i.e. point-based and trajectory-based events. The
point-based event view considers each discrete point (e.g. a GPS entry) as a point-based
spatial event, while the trajectory-based event view considers a sequence of temporally
ordered points (e.g. GPS records) as a trajectory-based event. We will introduce in detail
the two types of events and their derivation and preprocessing steps in Section 3.3 and
Section 3.4.

3.2 Shanghai Taxi Floating Car Data

The test fcd dataset is temporally ordered position records collected from about 2000 GPS-
enabled taxis within 52 days from 10th May to 30th June 2010 in Shanghai with a temporal
resolution of 10 seconds, resulting in more than half billion GPS entries. Each GPS entry
is associated with a certain amount of fields, i.e. date, time, car identifier, location, instan-
taneous velocity, car status and GPS effectiveness. Table 3.1 lists the fields for each GPS
record along with sample values and the description.

As an illustration of the spatial distribution of the raw GPS points, we extract GPS points
of a taxi with an identification number of 10003 on 12th May 2010. We distinguish two
states of the extracted GPD points based on the value of “car status”, i.e. occupied (O)
with a “car status” value of 1, and non-occupied (N ) of 0. Figure 3.1 illustrates the raw
GPS points of a taxi with an identification number of 10003 on 12th May 2010 with the
occupied and unoccupied states coded in blue and red. In Figure 3.1, the street networks
and occupied and non-occupied trajectories can be clearly identified.

The raw data are provided as compressed CSV files. For each day, the size of CSV file
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Field Example value Field description

Date 20100517 8-digit number, yyyymmdd
Time 235903 6-digit number, HHMMSS
Company name QS 2-digit letter
Car identifier 10003 5-digit number
Longitude 121.472038 Accurate to 6 decimal places, in degrees
Latitude 31.236135 Accurate to 6 decimal places, in degrees
Velocity 16.1 In km/h
Car status 1/0 1-occupied; 0-unoccupied
GPS effectiveness 1/0 1-GPS effective; 0-ineffective

Table 3.1: Test data properties.

is about 4.5G after decompression. We load the data into MongoDB1 because of its flex-
ibility in data modeling and its native support for geo-spatial operators and indexes. In
MongoDB, the geometries can be stored naturally as GeoJSON2 objects. The data pro-
cessing is mostly implemented in the Mongo Aggregation Framework and some ad-hoc
JavaScriptfunctions. The screenshots in the following sections are captured from interac-
tive HTML pages, where several JavaScript libraries are employed, including notably the
OpenLayers3 library for displaying maps, and d3.js4 and c3.js5 for plotting figures.

3.3 Derivation of Point-based Events

We consider each raw GPS point as an event of some status from an event-based view.
For instance, a GPS point with the car status of 1 defines an occupancy event and 0 a non-
occupancy event. Beside the occupancy and non-occupancy events, we derive from a time
series of GPS points two additional special types of event, namely pick-up and drop-off
event. A pick-up event is an event when the current one is non-occupancy and the next is
an occupancy. Similarly, a drop-off event is an event when the current status is occupied
and the next is non-occupied. Table 3.2 summarizes four types of events, i.e. occupancy,
non-occupancy, pick-up and drop-off.

According to the definitions in Table 3.2, we firstly differentiate in the database the oc-

1https://www.mongodb.org/
2http://geojson.org/
3http://openlayers.org/
4http://d3js.org/
5http://c3js.org/
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3 Movement Events and Shanghai Taxi Floating Car Data

Figure 3.1: GPS points of the taxi with ID 10003 on the 12th May, 2010. Red and blue dots
respectively indicate GPS points of occupied and unoccupied states.

Event type Description

Occupancy (O) A taxi is occupied by a passenger
Non-occupancy (N) A taxi is without a passenger
Pick-up (P) A taxi is picking up a passenger
Drop-off (D) A taxi is dropping off a passenger

Table 3.2: Four types of point-based events (O,N, P,D).

cupancy and non-occupancy events, and then derive the pick-up and drop-off event ac-
cordingly. The extracted and derived data of (O,N,P,D) events will be used for analysis
in the following chapters.

Due to the huge amount of (O,N, P,D) events in the time span in the whole study area,
we partition them into certain spatial (e.g. 100m × 100m) and temporal chunks (e.g. 1
hour). For each spatial and temporal partition, we calculate for each event type its sum-
marized value (e.g. the total number of Os) and assign it to the partition. The following
subsections firstly introduce how we compute and investigate the temporal patterns of the
dataset. Then we look into the spatiotemporal patterns and show the necessity of data
normalization.
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(a) occupancy and non-occupancy events

(b) pick-up and drop-off events

Figure 3.2: The focus + context hourly temporal variation of the total numbers. The context
views show the temporal pattern from 10 May – 30 June, 2010, while the focus
views show in detail one week temporal pattern from 31 May – 6 June, 2010.

3.3.1 Temporal Partition

For each hour in the 52 days, we compute the total numbers of (O,N,P,D) events respec-
tively in the study area. Since the O and N events are of the same orders of magnitude,
and P and D are at the same orders of magnitude, we plotted in the pair of (O,N) and
(P,D) separately in Figure 3.2(a) and Figure 3.2(b).

From Figure 3.2, the temporal variation of the four variables can be clearly identified:

1. The frequency distributions of the four event types exhibit a strong daily rhythm.

2. The occupancy and non-occupancy events have a negative correlation. At midnight
and early morning from about 10 p.m. to 6 a.m., the number of non-occupancy events
is much larger. There are three peaks of occupancy events at about 8 a.m., 17 a.m. and
21 p.m. when the number of occupancy events exceeds that of the non-occupancy.

3. On the contrary, the pick-up and drop-off events have a positive correlation. The
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(a) occupancy and non-occupancy events (b) pick-up and drop-off events

Figure 3.3: The hourly temporal variation of the total amount of different events.

overall temporal pattern of the two variables has three peaks (at about 8 a.m.-9 a.m.,
12 p.m. and 18 a.m.) and one deep valley (at about 4 a.m.).

Furthermore, we can calculate the general temporal patterns during each hour. We use
O[d, h] for the number of occupancy events in the hour h of on the day d, and O[h] for the
number of occupancy events in the hour of h on all days. Formally, the total numbers of
events of O, N , P and D in each hour h of total 52 days are

O[h] =
D∑

d=1

O[d, h] N [h] =
D∑

d=1

N [d, h]

P [h] =
D∑

d=1

P [d, h] D[h] =
D∑

d=1

D[d, h]

where 0 ≤ h ≤ H(= 23).

The results are plotted in Figure 3.3 showing similar temporal patterns as Figure 3.2.

3.3.2 Spatiotemporal Partition

Besides temporal patterns, we also investigate furthermore the spatiotemporal patterns of
the dataset. We firstly decompose the study area based on the simple regular R × C grids
or cells. Each cell has a fixed size (e.g. 500m×500m) and is denoted as a pair of (i, j) where
1 ≤ i ≤ R, 1 ≤ j ≤ C. This method is relatively simple and easy to implement, and one
can directly determine the size of the resulting decomposition by changing the size of the
grids (Castro et al. 2013).

Based on the area decomposition, for each cell during the studied time span of 52 days,
we compute the total number of events of O, N , P and D in a spatial partition. Let
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O[i, j, d, h] indicate the number of occupancy events in the cell (i, j) in the hour of h on
the day d, and O[i, j, h] for the number in the cell (i, j) in hour of h on all days. Formally,
the total number of O, N , P and D in each cell (i, j) in each hour h of total 52 days are

O[i, j, h] =
D∑

d=1

O[i, j, d, h] N [i, j, h] =
D∑

d=1

N [i, j, d, h]

P [i, j, h] =
D∑

d=1

P [i, j, d, h] D[i, j, h] =
D∑

d=1

D[i, j, d, h]

where 1 ≤ i ≤ R, 1 ≤ j ≤ C, 0 ≤ h ≤ H(= 23).

Furthermore, for each cell during the studied time span of 52 days, we compute the total
numbers of events of O, N , P and D.

O[i, j] =
H∑

h=0

O[i, j, h] N [i, j] =
H∑

h=0

N [i, j, h]

P [i, j] =
H∑

h=0

P [i, j, h] D[i, j] =
H∑

h=0

D[i, j, h]

where 1 ≤ i ≤ R, 1 ≤ j ≤ C.

We plot the results in Figure 3.4. To reveal the underlying distribution, an equal inter-
val classification method is used to group the values to seven classes and a bipolar color
scheme from blue to red is applied to show the distribution of the data.

From Figure 3.4, we can see the spatial patterns of the four event types. Most of the
cells are of small values reflected by the dominant blue color, especially the occupancy
and non-occupancy events. There are a few light blue dots scattered in Figure 3.4(a), and
notably two red dots around the two airports in Figure 3.4(b). Compared with the spatial
distribution of the occupancy and non-occupancy events, the pick-up (Figure 3.4(c)) and
drop off (Figure 3.4(d)) events are more concentrated in the city center of Shanghai, which
means the center region are associated with very strong pick-up and drop-off activities
than the suburban area.

3.3.3 Data Normalization

Although the visualization results of the original data in Figure 3.4 can reveal the under-
lying data distribution, it is hard to detect obvious spatial patterns. This motivates us to
inspect the frequency distribution of the total amount of events for each variable. In Ta-
ble 3.3, the 2nd and 3rd columns show the data frequency and its normalized distribution
using the range scaling method. The two histograms with heavy tails reflect that the ma-
jority of grids have a very small amount of events and only a very few portion of grids
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Event type Number of events Normalization Nomalization

Aij Aij/max(Aij)
log(Aij + 1)

max(log(Aij + 1))

Occupancy

Non-occupancy

Pick-up

Drop-off

Table 3.3: Normalization of the number of events: the number of events in each cell (2nd
column); the number of events divided by the max value (3rd column); The log-
arithm of the number of events divided by the max log value (4th column).

has extreme large number of events. For further pattern recognition and more meaningful
visualization results, an appropriate normalization technique should be selected.

Due to the long tail characteristic of the variable frequency distribution, a logarithm
transformation is a good choice. The 4th column in Table 3.3 shows the frequency distri-
bution of (O,N,P,D) based on the range scaling normalization after the logarithm trans-
formation.

We apply the same equal interval classification method with seven classes and the same
color scheme to visualize the normalized data of logarithm transformation. The visualiza-
tion result is shown in Figure 3.5.
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(a) occupancy (b) non-occupancy

(c) pick-up (d) drop-off

Figure 3.4: The frequency distribution of the total numbers of (O,N,P,D) events in each
cell.
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(a) occupancy (b) non-occupancy

(c) pick-up (d) drop-off

Figure 3.5: The spatial distribution of normalized events (O,N, P,D) after the logarithm
transformation.
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Compared with Figure 3.4, the visualizations of the normalized (O,N, P,D) events af-
ter the logarithm transformation in Figure 3.5 reveal visually enhanced spatial patterns,
showing the densities of the four events decrease from city center to suburban area. In
Figure 3.5(a) the heavily occupied major roads can be identified in the city center. In Fig-
ure 3.5(b), unlike the distribution of the occupancy events, there are no obvious significant
clusters in the city center or along with the road network. Instead a few dark cells associ-
ated with very high non-occupancy events are scattered around the city. According to the
non-occupied characteristics that taxis can cruise on the road or parking at some places,
we may infer that the scattered dark red cells may correspond to possible long parking
places (e.g. airport waiting pools, parking lots, taxi drivers’ homes). Compared with the
distribution of the occupancy and non-occupancy events, the pick-up and drop-off events
in Figure 3.5(c) and Figure 3.5(d) are much denser in the city center than suburb regions.
Some peaks (in dark red) can also be easily detected.

3.4 Derivation of Trajectory-based Events

A trajectory is a complex object consisting of many GPS records with several associated
attributes. Numerous types of events can be extracted from a collection of trajectories. In
Section 3.4.1, we first categorize trajectory-based events into a variety of different types
along two dimensions: attributes and abstraction levels. Then, we select two types of
trajectory-based events, i.e. origin-to-destination event and non-occupancy event, for fur-
ther investigation.

3.4.1 Categorization of Trajectory-based Events

In our study, we categorize the trajectory-based events that can be derived along two di-
mensions, namely the abstraction levels and the attributes. The abstraction levels refer to
the levels of detail resulting from a variety of generalization methods that can be applied
to a trajectory. The attributes mainly refer to spatial, temporal and thematic attributes,
which impose constraints to a trajectory for the derivation of new types of trajectory-based
events. According to the two dimensions, we summarize the categorization matrix in Ta-
ble 3.4 and 3.5 respectively. In addition, we give specific examples for each category. The
types of trajectory-based event that will be analyzed in the following chapters are high-
lighted.
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Abstraction level Examples

non-generalized reconstructed trajectories

generalized point-to-point
simplified trajectories (e.g. after Douglas-Peucker algorithm)

Table 3.4: Categorization of trajectory-based events using abstraction levels.

Attributes Constraints Example values

spatial lon & lat starts from starts from an airport
ends to ends to a station
inside inside a county
crosses crosses a bridge

temporal timestamp starts starts at 9 a.m.
ends ends at 12 p.m.
before before May
during during daytime

thematic occupation occupancy 1
non-occupancy 0

speed high >80
low-speed <20

direction eastwards E, NE, SE

Table 3.5: Categorization of trajectory-based events using attributes.
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Table 3.4 illustrates the categorization of the trajectory-based events using their abstrac-
tion levels. According to different mapping purposes, a trajectory can be represented at
different levels of detail. The most detailed trajectory-based events are reflected by the
non-generalized trajectories that consist of almost all the raw GPS records without sacri-
ficing much information. This kind of events reflects the detailed dynamics of the mov-
ing object during the time period. In our study, the non-generalized trajectory-based event
refers to the event extracted from the reconstructed trajectory formed by connecting a time
series of recorded GPS points. On the other hand, trajectories can be generalized to dif-
ferent levels of detail according to a variety of cartographic line generalization methods.
The trajectory-based events derived from generalized trajectories show the distinguished
characteristics of the reduced spatial traces of the moving object. One extreme case of the
simplified events is the point-to-point (P2P) event that keeps only the first and the last points
of a trajectory disregarding all the intermediate details.

Table 3.5 shows the categorization of trajectory-based events based on the attributes of
a trajectory. A trajectory is associated with a variety of spatial, temporal and thematic
attributes. The three basic attributes impose a variety of constraints on the trajectory based
on which a variety of different types of trajectory-based events can be derived.

Spatial and temporal attributes. Due to the inherent spatial and temporal characteristics of
spatial trajectories, different types of trajectory-based events can be derived based on their
locations and timestamps. Spatial constraints are numerous, for example, “starts from”,
“ends to”, “inside”, and “crosses” etc. More specifically, for instance, by imposing the
“starts from” constraint to an airport on a trajectory, the “starts from the airport” trajectory-
based event can be extracted. Similar with the spatial attributes, a variety of temporal
constraints, e.g. “starts”, “ends”, “before”, “during”, can also be naturally applied. For
instance, by imposing “during” to lunch (e.g. 12h-13h), “during lunch” events can be
derived.

Thematic attributes. A trajectory is associated with different thematic attributes . In this
study, the reconstructed trajectories have a variety of derived attributes including occu-
pation status, speed, direction, distance. For instance, occupancy and non-occupancy
trajectory-based events can be derived based on their occupation status. More categories,
e.g. high-speed, eastwards, can be found in Table 3.5.

Note that countless new types of events can be derived by imposing constraints to the
listed types of events. For instance, the occupancy trajectory-based events derived based
on the thematic attribute of “occupation status” can be further abstracted to occupancy
point-to-point events, which reflects the passenger transfer event from the origin to desti-
nation and will be referred as origin-to-destination events in this thesis.
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number

Occupancy events 2906716
Non-occupancy events 2919597

Table 3.6: The numbers of the occupancy and non-occupancy trajectory-based events.

Figure 3.6: The frequency distribution of the daily number of reconstructed occupied tra-
jectories.

3.4.2 Origin-to-Destination Event and Non-occupancy Event

Based on the categorization, we can easily distinguish two types of trajectory-based events,
namely occupancy and non-occupancy events. The derivation is based on the thematic
attribute constraint “car status”. Occupancy events are of “car status” value of 1 and non-
occupancy events are of “car status” value of 0.

We connect the temporal sequences of GPS points of each event type and reconstruct the
event trajectories and save them to the movement database. Table 3.6 shows the number
of the respective types of trajectory-based events.

As an illustration, we plot the number of occupied trajectories of each day in Figure 3.6.
From Figure 3.6, we can observe the temporal distribution of the daily total number of
occupied trajectories. The overall trend exhibits a slow increase in every week with a
peak usually shown on Saturday, which reflects that there might be more activities using
taxicabs on Saturday.

Figure 3.7 illustrates the reconstructed occupied trajectories of about 100 cars on 10 May,
2010, and their corresponding origin-destination lines. In Figure 3.7(a), each orange line
represents a reconstructed occupied trajectory and is drawn with an opacity of 0.3. The
trace footprints show clearly the road network structure. Darker orange lines indicate
denser trajectories along the roads. Figure 3.7(b) shows the origin-destination lines of the
corresponding trajectories. We can see that there are some very popular origins or des-
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(a) Occupied trajectories (b) Origin-Destination lines

Figure 3.7: The reconstructed occupied trajectories of 100 cars on 10 May 2010 and their
corresponding origin-destination lines.

tinations. For instance, there is clearly a hotspot on the right of the screenshot, which
corresponds to the Shanghai Pudong international airport.

Based on the reconstructed trajectories, a number of associated trajectory statistics can be
derived e.g. trajectory distance, duration. For instance, Figure 3.8(a) shows the frequency
distribution of distance of the derived occupied trajectories on 10 May, 2010. Similar to
the frequency distribution of the total number of events for spatial cells, the histogram of
the traveling displacement and elapsed time show long tails as well. The logarithm of the
frequency represented by the dot graphs in Figure 3.8(b) show that the frequency follows
roughly the exponential law.
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(a) The distance frequency distribution of the oc-
cupied trajectories

(b) The logarithm of the frequency

Figure 3.8: The distance frequency distribution and the logarithm of the occupied trajecto-
ries on 10 May 2010.

When the taxi is occupied, the taxi driver usually finds out the fastest route to send
passengers to a destination based on his knowledge [Yua+12]. On the contrary, when the
taxi is vacant, the taxi driver has a large freedom to plan his/her routing to minimize
his/her waiting time of the next trip. Generally speaking, experienced taxi drivers are
more likely to pick up their next passengers quickly while novice drivers may cruise on the
roads for a longer time. Therefore, different taxi driving behaviors may exhibit significant
influence on the income of taxi drivers.

Based on these assumptions, in our work, for occupancy events, we do not care about
their real physical traces and pay attention to the origin-to-destination events, which can
be extracted by connecting the starting and ending point of the occupancy event trajec-
tories. For non-occupancy events, we would focus on the analysis of two groups of taxi
drivers, i.e. high-income and low-income groups, and investigate their different driving
behaviors when they are free during the non-occupied time periods.

3.4.3 Derivation of the Income of Taxi Drivers

Occupied trips and non-occupied trips can be reconstructed by connecting the temporal
sequences of GPS points with the ‘car status’ attribute value of 1 and 0 respectively. A num-
ber of associated trip statistics, e.g. trip distance and duration, are also derived. Based on
the occupied trip distance and the taxi fare system of Shanghai in 2010 shown in Table 3.7,
the average daily income of each taxi driver can be calculated. The following formula is
used to calculate the fare of an occupied trip.

f(d) = P0 + P3 ∗min(max(d− 3, 0), 7) + P10 ∗max(d− 10, 0)

where d is the distance of the occupied trip.

In Figure 3.9(a), the histogram represents the distribution of the average daily income
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ITEM Day timing Night timing
(05:00 - 23:00) (23:00 - 05:00)

P0 Minimum fare for the first 3km 12 CNY 16 CNY
P3 Fare above minimum fare until 10km 2.4 CNY/km 3.1 CNY/km
P10 Fare above 10km 3.6 CNY/km 4.7 CNY/km

Table 3.7: The taxi fare calculation system of Shanghai in 2010.

(a) Average daily income distribution (b) Occupied ratio of high- and low-income taxis

Figure 3.9: Distribution of taxi incomes.

of the taxi dataset (2000 taxis in 47 days). The normal distribution of the daily income
indicates the income discrepancy among the taxis. This paper categorizes the 100 highest-
income taxis as the top group and the 100 lowest-income taxis as the bottom group.

Moreover, we estimate the occupied ratios by utilizing the distance of the occupied and
unoccupied trip with the formula

dist(tripsoccupied)/(dist(tripsoccupied) + dist(tripsunoccupied).

The line chart in Figure 3.9(b) illustrates the occupied ratios of the top and the bottom taxis.
Basically, the occupied ratio of both groups has several peaks (e.g. at 8am) and valleys
(e.g. at 4am) and the high-income taxi group generally has a much higher occupied ratio.
However, in the early morning between 2am and 7am, the differences between the top and
bottom taxi groups are much smaller than that in other time slots.
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4 Visual Analysis of Point-based Events

This chapter is dedicated to analyzing the point-based (O,N, P,D) events extracted from
floating car data in Section 3.3. A variety of visualization techniques by means of scien-
tific visualization and thematic mapping are proposed for effective and comprehensive
visual exploration and communication of the four types of events. Section 4.1 investigates
the state-of-the-art of the theories, methodologies and applications related to point-based
events. In Section 4.2 we propose three visualization techniques for visual exploration
of the movement events: a multivariate visualization method based on pie radar glyph,
a univariate visualization method based on time graph, and a salience-based visualiza-
tion method. Section 4.3 aims to communicate the spatiotemporal patterns by means of
thematic mapping techniques. Based on the aggregates resulting from spatial clustering,
Voronoi tessellation and aggregation, easily legible thematic maps are then designed to
convey the spatiotemporal patterns. Section 4.4 analyzes and summarizes the visualiza-
tion results. Section 4.5 compares and synthesizes the proposed visualization methods.
Section 4.6 summarizes this chapter.

4.1 Related Work

Point-based movement data can be viewed at multiple granularities from multiple aspects,
e.g. characteristics of location, their dynamics over time, as well as the relations between
events and the properties of the context. For a comprehensive exploration and under-
standing of massive point-based event data, a wide range of visual techniques, being direct
depictions of original/raw data or representations of computationally extracted patterns
[Zhe+14], are necessary and should be integrated.

Numerous researches and applications have been conducted on exploration of move-
ment events. At a conceptual level, Beard, Deese, and Pettigrew [BDP08] proposed a
general framework for visual exploration of events. Andrienko, Andrienko, and Heurich
[AAH11] suggested an event-based conceptual model for context-aware movement analy-
sis. Research projects like ViAMoD (Visual Spatiotemporal Pattern Analysis of Movement
and Event Data) 1 aim to develop theoretical foundations as well as appropriate analy-
sis methods that combine visual, interactive and algorithmic techniques for the scalable
analysis of movement and event data. In addition, researchers developed new methods

1http://geoanalytics.net/and/projects.html
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4 Visual Analysis of Point-based Events

to detect and track dynamic clusters of spatial events [And+14], and discover and analyze
temporal patterns in complex event data [Peu+15]. Novel visualization methods in the
interactive environment are addressed for visually exploring multidimensional and mul-
tivariate movement events using space-time cube [GAA04], interactive difference views
[LKH10] and non-overlapping aggregated multivariate glyphs [SVV14].

At the individual level, a point-based event can be represented by a dot and a straight-
forward way to show event patterns is by dot plotting. Interactive techniques, such as fil-
tering, brushing, linking, can be applied to the dot plots to query the interesting part of the
data set, explore the spatial distributions of each variable and their relationships. For in-
stance, the interactive visualization system HubCab 2 developed by MIT Senseable city lab
plots individual pick-up and drop-off events as blue and yellow dots. The system allows
users to get insight into the taxi mobility patterns at a very fine granularity and supports
future taxi sharing based on a model named “shareability networks” [San+14]. In some
scenarios, multiple types of events may occur at the same location during a time inter-
val. Those co-located events can be either simultaneously shown in one view by mapping
them to multiple visual variables, or presented separately in small multiples. Advanced
multidimensional multivariate visualization techniques are developed and widely used,
e.g. scatter plot, color-icon, stick figure icon, and hyperbox [WB97].

At the collective level, visual analysis of massive events incorporates data transforma-
tion and data aggregation, which aims to represent groups of objects and reduce visual
cluttering and overlapping effects. A typical procedure for visual analysis of events in-
volves event clustering, space partition, spatiotemporal aggregation and the analysis of
aggregated data. Andrienko and Andrienko [AA10] systematize the possible approaches
for aggregation of movement data in a framework that clearly defines what kinds of ex-
ploratory tasks each approach is suitable for. The aggregates can be mapped to propor-
tional symbols, diagrams, etc. The analysis of event aggregates at the collective level has
many applications, for instance, aggregating the events to meaningful places and analyz-
ing the relevant places [And+13c] and detecting dynamic activity patterns [SL14].

This chapter develops visualization methods for visual exploration and communication
of the spatiotemporal patterns of multivariate point-based events, starting at a fine resolu-
tion and gradually moves to more abstract levels. The test data are the (O,N,P,D) events
extracted from floating car data in Shanghai (see Section 3.3) with the spatial resolution of
100m× 100m and the temporal resolution of 1 hour.

4.2 Visual Exploration by Means of Scientific Visualization

This section inspects the spatiotemporal patterns of the movement events at a detailed
level. The normalized data based on the range scaling of maximum values from Sec-

2http://hubcab.org/
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Non-occupancy Occupancy

Pick-up Drop-off

Figure 4.1: A pie radar glyph.

tion 3.3.3 are applied as input data set to reflect the underlying data distribution. We firstly
introduce a multivariate visualization method based on a pie radar glyph to show the spa-
tial density distributions of the co-located (O,N,P,D) events simultaneously. Secondly, a
time graph mapping method is designed focusing on the investigation of uni-variate tem-
poral patterns. Furthermore, we propose a salience-based method to highlight only the
most salient variable and its quantity rather than all the variables at a specific location.
Finally, the salience-based method is applied to visualize the temporal changes of pick-up
and drop-off events, which leads to the exploration and inference of urban land use types.

4.2.1 Pie Radar Glyph

An appropriate visual representation is necessary to map the co-located spatial events of
multiple variates. Glyph-based visualization methods like star/radar plot are widely used
to represent multivariate scientific data. Rose diagram (also known as polar area diagrams)
and its variant flower diagram is also applied to visualize groups of co-located spatial
events. For instance, Andrienko et al. [And+13a] adopted a rose diagram to represent
cyclic phenomena.

In this work, we propose a pie radar glyph to represent the co-located events. The glyph
is comprised of four filled sectors assigned with orange, green, red and blue anticlockwise
to represent the variates of O,N,P,D respectively. The radius of each sector is propor-
tional to the value of the mapping variate. Figure 4.1 depicts the mapping of a pie radar
glyph from the co-located four variate data.

To avoid clutter effects, we design the map by carefully choosing the following elements:

Filtering To reduce the computational complexity and the visual cluttering effects, we
firstly filter out the very small data values of the four variables that are visually
insignificant. The filtered multivariate data are then mapped to pie radar glyphs
accordingly.

Ordering In spite of the filtering mechanism, visual cluttering effects still cannot be totally
avoided due to the fine spatial resolution. A proper order of glyph rendering is
necessary to enhance the visual appearance. This is achieved by assigning a larger
z-index value to small glyphs so that small glyphs are on top of larger glyphs rather
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than occluded.

Opacity setting To make sure that the underlying big glyph would not be overlapped,
semi-transparency rendering technique is applied. The radius of the glyph sectors
are also carefully chosen.

The extracted (O,N,P,D) events in 52 days at each 100m × 100m is mapped to the
designed pie radar glyph. The visualization result is illustrated in Figure 4.2. We also
zoom in several interesting places with attractive patterns.

The overall distribution in Figure 4.2 shows that the events in the city center are gener-
ally denser than in the suburban area. There are several significantly dense places. For the
occupancy (orange) and non-occupancy (green) events, there are only a few dense places,
which means that their spatial distributions are very uneven. On the contrary, pick-up
(red) and drop-off (blue) events scatter more evenly.

We zoom in some of the dense areas which might be interesting to be explored in de-
tail. Area (1) and (2) carry several extremely large glyphs, of which there are two big
sectors of the non-occupancy events (green) and several relatively big sectors of pick-up
and drop-off events. The background map reveals these two areas as two international
airports, which makes the phenomena easily understandable. The two big green sectors of
non-occupancy events are exactly located in the waiting pools of the two airports, where
most of the taxis wait for a long time for the passengers resulting in a large number of
non-occupancy events. There are also several pick-up and drop-off hotspots in the termi-
nals, which correspond to the taxi stands where passengers arrive or depart the airports.
Area (3) has a unusually large sector in orange. The place is a cross-way with a very high
density of occupancy events resulting from long traffic jams. Area (4) and (5) with very
high densities of pick-up and drop-off events are two railway stations. Area (6) and (7)
also demonstrate very dense pick-up and drop-off activities. But unlike (4) and (5), they
correspond to two famous commercial centers.
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Figure 4.2: The pie radar glyph visualization results. The rectangles represent areas of in-
terest (AOIs): (1) Hongqiao international airport; (2) Pudong international air-
port; (3) A cross-way; (4) Shanghai railway station; (5) Shanghai south railway
station; (6) Xujiahui commercial zone; (7) Wujiaochang commercial zone.
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To explore the temporal patterns, we may apply the glyph in different time slots. Fig-
ure 4.3 shows the spatiotemporal variances of the event distributions in four time slots.

(a) 3-4h (b) 6-7h

(c) 8-9h (d) 18-19h

Figure 4.3: Temporal distributions of (O,N,P,D) events using the pie radar glyph.

From Figure 4.3, we can observe very distinct temporal patterns from the compact vi-
sualization results. Figure 4.3(a) at 3-4h shows dominant red sectors indicating relatively
active pick-ups, while Figure 4.3(b) at 6-7h has a few places of significantly dense drop-
offs. The three biggest blue sectors on the west, south, and middle (from left to right) are
located in the Hongqiao international airport (Terminal 2 and 1), Shanghai south railway
station and Shanghai railway station. Figure 4.3(c) and Figure 4.3(d) are daily rush hours
at 8-9h and 18-19h which have relatively larger number of events and the main roads in
the city center are dominantly related to occupancy events. During the rush hour at 8-9h
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0 6 12 18 24h

Figure 4.4: A schematic example of a time graph for a variable.

there are obvious places of blue sectors of drop-off events and the red sectors of pick-up
events scattering around. On the contrary, during the rush hour at 18-19h, there are obvi-
ous places of red sectors of pick-ups. Besides, there is a big green sector of non-occupancy
events in the airport.

4.2.2 Time Graph

Besides using small multiples in Figure 4.3 to visualize the temporal patterns of the multi-
variate data, we want to simultaneously observe the temporal patterns of each individual
variate at different time intervals. A time graph is designed to show the uni-variate tempo-
ral variations. It consists of four components as four area graphs, representing four time
intervals, i.e., early morning (00:00 – 06:00), morning (06:00 – 12:00), afternoon (12:00 –
18:00) and evening (18:00 – 24:00). Colors of green, orange, red, and blue are assigned to
the four area graphs to represent the four time intervals respectively. Each area graph is
plotted using its 6 hourly event quantities with the value mapped to the height of the area.
Figure 4.4 is a schematic example of a time graph.

Similar to the pie radar glyph introduced in Section 4.2.1, each time graph is located in
the center of each cell. Filtering, ordering and opacity setting approaches are applied to
reduce the computational complexity and visual clutters. The time graph visualization of
the individual types of events is shown in Figure 4.5.

From the compact symbols shown in Figure 4.5, we can observe the following patterns:

(1) The distribution of the occupancy events in Figure 4.5(a) exhibits quite obvious spa-
tiotemporal patterns. In the time slots (06:00 – 24:00), the occupancy activities are
highly concentrated in the city center continuously along the main roads (shown in
orange, red and blue). This temporal phenomena is quite easy to understand since it is
normal during the day time that main roads are mostly taken. However, we can also
observe quite counter-intuitive phenomena that in the early morning (00:00 – 06:00)
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(a) Occupancy (b) Non-Occupancy

(c) Pick-up (d) Drop-off

Figure 4.5: The temporal patterns of the four event types.

there are also intense occupancy activities (in green) in the north suburban areas in
Shanghai. The reason might be that there are recording mistakes, for example, when
the driver arrives at home he/she forgets to turn-off the GPS devices or switch the car
status to non-occupied.

(2) The density of the non-occupancy events is unevenly distributed. Generally speak-
ing, there are strong non-occupancy activities in the early morning (00:00 – 06:00) in
the whole Shanghai areas, especially in the north part. In the other three time in-
tervals, some hotspots are scattered around the Shanghai area. There are two promi-
nent hotspots at the westernmost and easternmost corresponding to the Hongqiao and
Pudong international airports.

(3) The spatial distributions of the pick-up and drop-off events are very similar to each
other that events are concentrated around the city center with a few exceptions far from
the city center. With regards to the temporal patterns, generally the pick-up and drop-
off events are very active from 06:00 to 24:00. However, pick-up events happen more
frequently from the afternoon till midnight (12:00 – 24:00) reflected by the dominant
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red and blue colors in Figure 4.5(c), while drop-off events happen more frequently
from morning till evening (06:00 – 18:00) reflected by the dominant orange and red
colors in Figure 4.5(d).

4.2.3 Salient Feature Image

Section 4.2.1 and Section 4.2.2 can reveal the spatial and temporal distribution of move-
ment events at a detailed level. In spite of the easily perceivable overall compact visu-
alization results after data filtering, ordering and opacity setting, cognitive efforts and
interactive operations are still highly demanded to explore and understand the cluttered
symbols.

To simplify the visual complexity, we propose a salience-based method to represent only
the most salient feature in each cell. More specifically, the co-located four types of events
in each cell are regarded as four features and the feature of the largest value is selected as
the salient feature. Formally, the selection of the salient feature is as follows:

salient featureci = argmax(occupancyci ,non occupancyci , pick upci , drop off ci)

We apply the salience-based method to the normalized multivariate data. Figure 4.6
shows the visualization results. The same color scheme as previous sections is chosen to
represent the four types of events. The quantities of the events are mapped to the opacity
values. The smaller the value is, the more transparent the cell.
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Figure 4.6: Salience-based map of four variables.

In Figure 4.6, occupancy (in orange) and non-occupancy (in green) events are the most
salient features. Occupancy events are mostly distributed on the main streets and non-
occupancy events on small streets as well as in off-street areas. Pick-up (in red) and drop-
off (in blue) events are highly concentrated in only a few small places.

Besides the resulting spatial distributions, we can also investigate the temporal charac-
teristics of the events using the salience-based method. Taking two hourly time intervals
7-8h and 18-19h of two event types - pick-up and drop-off - as exemplary features, the spa-
tial distribution of two features in the two time intervals are demonstrated in Figure 4.7(a)
and Figure 4.7(b).
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(a) 7-8h (b) 18-19h

Figure 4.7: The salience-based spatial distribution of pick-up and drop-off events at (a) 7-
8h and (b) 18-19h.

From the two images, we can easily observe dense pick-up (red) and drop-off (blue)
areas at the two time intervals as well as roughly complementary spatial distribution pat-
terns of the salient features. For instance, the dense drop-off areas at 7-8h become dense
pick-up areas at 18-19h.

In spite of the distinctive patterns of Figure 4.7(a) and Figure 4.7(b), comparing the two
individual images side by side is still tedious and the temporal change patterns are not
explicitly presented. An appropriate solution is to synthesize the two images into one
temporal change map and do further spatial temporal analysis. More specifically, we view
each cell as a pixel in the image and do algebraic addition operation on the corresponding
pixels of two images. The result is a synthesized temporal change image.

With regard to the salience-based images of pick-up and drop-off events at 7-8h and 18-
19h, we define three categories of temporal changes. The first category is the change of the
salient feature from drop-off at 7-8h to pick-up at 18-19h. The second one is the change
of the salient feature from pick-up at 7-8h to drop-off at 18-19h. In the last category, the
salient feature is unchanged. More specifically, the salient features are either “pick-up”
at 7-8h and 18-19h or “drop-off” at 7-8h and 18-19h, but the values of the salient feature
might be changed at the two time intervals.

For the visual mapping, we use a color scheme of magenta, steel blue and yellow to
represent these three categories. Figure 4.8 shows the three categories of the temporal
changes.

Furthermore, we calculate the amount of change in each cell as follows. For the first
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7h–8h 18h–19h

Drop-off → Pick-up
Pick-up → Drop-off
Pick-up → Pick-up
Drop-off → Drop-off

Figure 4.8: The color scheme for temporal change from 7-8h to 18-19h.

category, the amount of the change in a cell is calculated by adding up the quantity values
of drop-off events at 7-8h and of pick-up events at 18-19h. Similarly, the amount of tem-
poral change of the second category is the addition of the quantity value of pick-up events
at 7-8h and the value of drop-off events at 18-19h. With regard to the third category, the
amount of change is the difference between the quantities at 7-8h and 18-19h. The resulting
value of change in each cell is then proportionally mapped to an opacity value.

Figure 4.9 shows the temporal change image of the pick-up and drop-off events at 7-
8h and 18-19h, which allows a straightforward detection of change patterns during the
corresponding time intervals. With regard to the spatial extent, the dominant temporal
change is the change of the salient variable from pick-up to drop-off events (in steel blue),
occupying almost the whole Shanghai area. The next spatially large temporal change is
the change of salient variable from drop-off to pick-up events, which can be identified by
several magenta areas of irregular size. Finally, we can detect quite a few relatively small
but very shiny yellow areas scattered in Shanghai, which indicates these areas are of either
significant pick-up or drop-off changes during this time intervals.

Stimulated from the spatiotemporal pattern in Figure 4.9 and based on the knowledge of
the regular human activity patterns, we naturally associate the temporal change patterns
with distinct land use types. For instance, areas with intense drop-off activities at 7-8h and
intense pick-ups at 18-19h probably correspond to the working places. There is a class of
land use/cover change detection problems in a variety of fields. An example in remote
sensing field is understanding landscape dynamics by applying image change detection
techniques to multi-temporal satellite imagery. With the increasing usage of data collected
from mobile devices and social medias, some hot research topics have emerged in recent
years with the aim to infer land use types from mobile phone data [Gra+15], GPS trajec-
tories [YZX12], social network [Jia+15], and the combination of a variety of data sources,
like GPS and social media data [Liu+15b; MT15].

To deeply understand the temporal change patterns in Figure 4.9, we enclose areas of
interest in orange and yellow with irregular polygons. These areas of interest are then
manually checked with the Shanghai base map and labeled with their functions or names.
Figure 4.10 shows the distinct areas of interest.

In Figure 4.10, the irregular polygons with orange frames and labels are regions espe-
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Figure 4.9: The salience change map.

cially active with drop-off events at 7-8h and pick-up events at 18-19h. As Castro et al.
[Cas+13] explained, people use vehicles for commuting to and from work, for regular and
‘irregular’ chores, and for leisure activities. We would infer that these regions might corre-
spond to the working places where people take taxis to the place in the morning and back
home in the evening. After manually checking the functions of these regions, we find that
most of them are free trade zones, high-tech zones, industrial and development zones, and
financial centers, which match our assumptions fairly well. Interestingly, we find that the
area of Shanghai Expo 2010, located on both banks of the Huangpu River, is also of this
kind of temporal change pattern. Since Expo 2010 was held from 1 May to 31 October 2010
and covered the total time span of our data set, it is reasonable that the data during this
time period can reveal the human mobility patterns related to this international events.

59



4 Visual Analysis of Point-based Events

Figure 4.10: Regions of Interests. (CZ stands for commercial zone.)

This kind of event-driven land use type usually happens during limited time intervals
and is a sort of come and go type, which is termed “Ad hocs” POI/AOI. Regretfully, we
do not have a data set of longer time span to test whether the mobility pattern in this area
disappears or changes prior or post the Expo event.

Similarly, the areas enclosed by ellipses with yellow frames and white labels are associ-
ated with significant changes of either pick-up or drop-off events from 7-8h to 18-19h. By
reading the corresponding regions on the base map, we find most of the areas are transport
hubs and commercial zones (CZs). For example, the easternmost and westernmost ellipses
correspond to Pudong and Hongqiao international airports. The other ellipses are mostly
commercial zones, e.g., the commercial zones of Wujiaochang in the north, Xinzhuang in
the south, and Nanjing road, Zhongshan and Xuhui in the city center.
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Since the steel blue pixels cover almost the whole Shanghai area, it is not so interesting
to explore them in detail at the moment. Nevertheless, we would infer from the temporal
pattern of dense pick-ups at 7-8h and drop-offs at 18-19h that these areas are probably of
residential function.

4.3 Visual Communication based on Thematic Mapping

In spite of the advantage of examining multivariate events at a very fine granularity, highly
cognitive efforts are required to understand the compact symbols in the visualization re-
sults. To reduce the visual complexity and let users comprehensively explore the events,
we can aggregate events to coarser but appropriate levels. Depending on various anal-
ysis tasks, the data can be aggregated to diverse spatial partitions. For instance, if the
task is related to the administrative divisions, the aggregation is necessarily conducted on
the predefined administrative regions. Otherwise, the spatial partition can be proceeded
based on the underlying data distribution.

In this section, we focus on communicating spatiotemporal distributions at high levels
by virtue of thematic mapping techniques. We firstly group event data through hierar-
chical clustering methods, based on which the study area are divided into irregular sub-
regions by means of Voronoi tessellations. The event aggregates calculated through the
Voronoi partitions can reveal the underlying data distribution quite well and are used for
choropleth and proportional symbol mapping.

4.3.1 Cluster Analysis

Spatial clustering, which groups similar spatial objects into classes, can be used as a stand-
alone tool to gain insight into the data distribution, to observe the characteristics of each
cluster, and to focus on a particular set of clusters for further analysis. It may also serve as
preprocessing step for other algorithms, such as classification and characterization, which
will operate on the detected clusters [HKT01]. There are several popular clustering meth-
ods, including partitioning method (e.g. k-means), hierarchical method, density based
methods (OPTICS, DBSCAN).

In this work, a hierarchical agglomerative clustering method [KR90] is applied to group
similar events and serves as a pre-processing step for future classification. The principle of
the algorithm is that for a given set of data objects it is hierarchically decomposed, forming
a dendrogram - a tree that splits the database recursively into small subsets. The dendro-
gram can be formed either ‘bottom-up’ or ‘top-down’. The agglomerative approach adopts
the ‘bottom-up’ way. It starts with each object forming a separate group and successively
merges the objects or groups according to some measures like the distance between the
two group centers, which is done until a termination condition holds.
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We choose the hierarchical clustering method for two reasons. Firstly, it allows an easy
investigation of the clustering results at multiple scales. Secondly, since each cell is already
associated with a density value, we use this value as the third dimension with the spatial
location of the input data. The algorithm has two parameters, namely a distance function
and a linkage criterion. The parameter setting is largely dependent on the applications or
tasks. The output is the assignment of events to its cluster.

There are two possibilities in applying the method to clusters of the four types of events.
One is to do the tessellation of the territory once using a summarized variate, e.g. the total
number of the four types of events in each cell. Then, the aggregation is done separately
for each variate. The other possibility is to do the tessellation separately for each type of
the events. The latter one can reflect the data distribution of each type of events quite well
but is hard for the comparison and analysis of the relationship among the variables. In
this work, we adopt the former one using the same spatial tessellation for the four types
of events. The variable for generating the tessellation is the total number of events inside
the cells, which is the sum of the (O,N,P,D) events. This tessellation can roughly reflect
the data distribution of the four variables.

The parameters for the clustering are chosen as follows. Taking into account of the
spatial scale of the analysis (the whole territory of Shanghai) and the sparseness of the
relevant events in suburban areas, the maximal neighborhood radius has been set to a
Euclidean distance of 700m and the linkage criteria is set to the average. The resulting
number of the representative clusters is 93. Figure 4.11 illustrates the clustering results.
Each cluster is represented as a gray polygon in which the small gray dots represent cluster
elements. The gray polygons are the convex hulls of the corresponding cluster elements.
The black circles represent the cluster centroids. The resulting cluster pattern in Figure 4.11
shows that far more clusters are distributed in the city center than the surrounding areas.
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Figure 4.11: Hierarchical clustering results.

4.3.2 Spatial Partition and Aggregation

The cluster results in Figure 4.11 reflect the natural spatial divisions of underlying event
similarities. Based on the clustering results, we partition the study area into corresponding
sub-regions as follows.

• Voronoi tessellation. To divide the territory into appropriate compartments, we ap-
ply the Voronoi tessellation method. The centroids of the 93 clusters are the generat-
ing points for Voronoi cells. The resulting Voronoi cells are shown in Figure 4.12(a).
Due to the uneven distribution and the sparseness of data in the suburban areas, the
resulting Voronoi cells are of arbitrary sizes, some of which are especially large.

• Adding additional generating points. To obtain cells of more even sizes and shapes,
we adopt the similar method described in [AA11] to generate additional generating
points in the areas where there are no characteristic points from the original data, i.e.
the clustering centroids. The principle of the method is that we preset the maximum
size of the Voronoi cells. If the size of a Voronoi cell exceeds the predefined maximum
size (e.g. 500m), then the Voronoi cell is split into smaller cells.

• Clipping the area. From the accuracy and aesthetic point of view, the Voronoi poly-
gons inside the Shanghai border are clipped. The number of the Voronoi cells after
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(a) The original Voronoi tessellation (b) The tessellation with additional generating
points and boundary clipping.

Figure 4.12: The Voronoi tessellation.

adding the additional generating centroids and the clipping of the Shanghai bound-
ary is 197. Figure 4.12(b) shows the final spatial partitions.

Based on the spatial partitions in Figure 4.12(b), for each type of (O,N,P,D) events we
aggregate the total number of its events to the corresponding Voronoi cell. Additionally,
we compute their statistics by the hourly time intervals. The aggregates are then applied
in the following sections for choropleth and proportional symbol mapping.

4.3.3 Univariate Choropleth Mapping

A choropleth map is a thematic map in which areas are shaded or graded in proportion
to the measurement of the statistical variable being displayed on the map. It provides an
easy way to visualize how a measurement varies across a geographic area. In this section,
we adopt the choropleth mapping technique for visualizing the (O,N,P,D) events.

According to the cartographic design principles, the aggregates generated from Sec-
tion 4.3.2 are classified into 7 classes for an easy perception of the spatial distribution.
Equal interval classification methods are chosen to generate a balanced visual appearance
with each class of the same number of class members. The same color scheme used in Sec-
tion 4.2.1 is adopted for the four variates. An opacity value of 0.7 is applied to each spatial
division for orientation purpose.

Figure 4.13 shows the univariate choropleth maps of the four variables respectively. The
general distributions of the four types of events reveal that the density gradually decreases
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from the city center to the suburban areas. In the southwest of the city center, there is an
obvious outlier area of high dense events, which is distinct with its neighboring areas.
This outlier corresponds to a town called Xinzhuang, where a commercial zone and an
industrial zone are located.

Compared to the other types of events, the non-occupancy events are more disperse and
have several dense areas outside the city center. For instance, there is one dense event
area in the north part of the city and two other dense areas located at the easternmost and
westernmost of the city. The pick-up and drop-off events have similar spatial distribution
patterns except that the drop-off patterns are more compact.
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(a) Occupancy (b) Non-occupancy

(c) Pick up (d) Drop off

Figure 4.13: The univariate choropleth maps of (O,N,P,D) events.
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4.3.4 Thematic Mapping of Temporal Changes

This section investigates the spatiotemporal patterns of the events and the temporal change
patterns. To be consistent with Section 4.2.3, the pick-up and drop-off events at 7-8h and
18-19h are extracted and mapped using thematic maps for the illustration of their effec-
tiveness.

We adopt mainly two thematic mapping techniques to visually represent the spatiotem-
poral patterns as well as the temporal change patterns. Firstly, proportional symbol map-
ping techniques are applied to show the spatiotemporal distributions of the total number
of the pick-up and drop-off events at the two time intervals. Pie charts are selected to rep-
resent the two variables. The size of the pie chart is proportional to the sum of the total
number of each variable. Each pie chart has two sectors. Red and blue are assigned to
the sectors representing the two variables and the size of each sector is proportional to
the quantity of the aggregate of each variable. The total number of pick-up and drop-off
events are classified as usual into 7 classes. An opacity value of 0.7 is applied for the ori-
entation purpose. Figure 4.14(a) and Figure 4.14(b) illustrate the bivariate proportional
symbol mapping results. The spatial distribution of each variable and the temporal differ-
ences can be clearly identified.

(a) 7-8h (b) 18-19h

Figure 4.14: Bivariate proportional symbol mapping of the spatial distribution of (P,D)
events.

Figure 4.14(a) and Figure 4.14(b) show the spatiotemporal patterns of the pick-up and
drop-off events at 7-8h and 18-19h. At 7-8h, there are several places with high proportion
of drop-off events, for instance, in the city center as well as two extreme drop-off dense
areas in the two international airports. Compared with the spatial patterns at 7-8h, the
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proportions of pick-up and drop-off events are equal at 18-19h except some small unequal
quantities in the suburban areas.

Furthermore, the choropleth mapping technique is chosen to map the salient variables
of larger aggregated values inside the Voronoi cells. For each Voronoi cell, we calculate
the salient variable and its quantity value. The principle of calculating the salient variable
and its value is the same as the calculation of the salient feature in Section 4.2.3. Two color
hues red and blue represent the two variables. The values are classified into 7 classes,
each being represented by a color value. An opacity of 0.7 is applied for orientation pur-
pose. Figure 4.15(a) and Figure 4.15(b) show the spatiotemporal distribution of the salient
variables at 7-8h and 18-19h.

(a) 7-8h (b) 18-19h

Figure 4.15: Choropleth mapping of salient features of (P,D) events.

Figure 4.15(a) and Figure 4.15(b) show respectively the distributions of the salient vari-
ables and their quantities at 7-8h and 18-19h. These two maps reveal a trend of opposite
patterns. Interestingly, the region around the Hongqiao international airport has nearly
no values at 18-19h. If we check the proportional symbol map at 18-19h, we can see that
the quantities of pick-up and drop-off events are both large but quite close to each other,
resulting in small change values.

Finally, a synthesized choropleth map is designed to show the temporal change pattern.
We calculate the temporal difference of the distribution at the two time intervals and cat-
egorize them into three categories. The categories and the calculation of the quantity of
the temporal changes as well as the color assignment are the same as Section 4.2.3. The
difference is that the change quantities of each category are classified into 4 classes and
mapped to 4 color values of each color hue.
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Figure 4.16: Temporal change map of salient features of (P,D) events from 7-8h to 18-19h.

The choropleth map in Figure 4.16 illustrates the temporal change patterns. The first
category with significantly active pick-ups at 7-8h and drop-offs at 18-19h (Blue) is areas
of Xinzhuang, around the Hongqiao airport, and of the Lujiazui financial center. The sec-
ond category of active drop-offs at 7-8h and pick-ups at 18-19h (red) is Hongqiao interna-
tional airport and the Lujiazui financial center etc. The third category of no salient feature
changes but of large quantity change is the Pudong international airport and Shanghai
south railway station etc.

4.4 Analysis of the Visualization Results

This section summarizes and systematically analyzes the visualization results from the
previous sections. The analysis and the findings are as follows:

The spatial density distribution of the four types of events. Generally, the overall density
of each type of events decreases gradually from the city center to the suburban areas as
shown in Figure 4.2 (see Figure 4.17(a)) and Figure 4.13 (see Figure 4.17(b)), except that
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in Figure 4.13(b) the non-occupancy events are more disperse and have several dense ar-
eas outside the city center. Besides, in Figure 4.13 we can detect an obvious outlier in the
southwest of the city center, which is located in a town called Xinzhuang and is very likely
related to a commercial and an industrial zone. Furthermore, in Figure 4.2, we can ob-
serve several significantly dense places. For the occupancy (orange) and non-occupancy
(green) events, there are only a few dense places, which means that the occupancy and
non-occupancy events are unevenly distributed. On the contrary, pick-up (red) and drop-
off (blue) events are relatively more evenly distributed. We zoomed in those hotspots and
examined them carefully with the base map. The analysis results show that Areas (1) and
(2) with dense non-occupancy events (in green) and relatively dense pick-up and drop-off
events correspond to two international airports. Area (3) of dense occupancy events is a
road intersection. Areas (4) and (5) with very high densities of pick-up and drop-off events
are two railway stations. Areas (6) and (7) of dense pick-up and drop-off activities are two
very famous commercial centers.

The temporal patterns of the events. In general, the overall temporal distribution of the
four types of events reveals large differences. Figure 4.5 (see Figure 4.18) illustrates large
temporal variations. The occupancy events in the early morning (00:00 – 06:00) are mostly
distributed in the northern part of the Shanghai area and in the other time slots are highly
concentrated in the city center along the main roads. The density of the non-occupancy
events are unevenly distributed with more non-occupancy activities in the early morning
(00:00 – 06:00) in the whole Shanghai area, especially in the northern part, and in the other
three time slots, there are two hotspots with very large values in the two international
airports. The pick-up and drop-off events have similar spatial patterns and temporal dis-
tributions from 06:00 to 24:00. However, there are temporal lags of pick-up and drop-off
events with more pick-up events in the afternoon till midnight (12:00 – 24:00) and more
drop-off events in the morning till evening (06:00 – 18:00).

The spatiotemporal patterns of the events. Previous visualization techniques show signifi-
cant spatiotemporal patterns of the four variates. Figure 4.3 (see Figure 4.19(a)) presents
very distinct spatiotemporal patterns of the multivariate events at four hourly time slots,
i.e. 3-4h, 6-7h, 8-9h and 18-19h. At 3-4h, pick-up events are relatively active mostly in the
city center. At 6-7h, there are a few significantly dense drop-off places concentrated in the
big transport hubs. During rush hours at 8-9h and 18-19h, the events become dense in the
whole area with the main roads in the city center mostly of occupancy events (orange). At
8-9h there are quite a few places with dense drop-off events while at 18-19h these places
are of more pick-up events. In terms of the non-occupancy events, they are highly concen-
trated in the Hongqiao airport reflected by the big green pie radar sector. When examining
the spatiotemporal pattern using the salience-based method, we also found their signifi-
cant spatiotemporal distributions. Figure 4.7 (see Figure 4.19(b)) uses pick-up and drop-off
events as exemplary variables to show roughly complementary spatial distributions at the
two time slots, i.e. 7-8h and 18-19h. This stimulates the interpretation of the land use types
related to the usage of the pick-up and drop-off events. Figure 4.9 (see Figure 4.19(c)) syn-
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thesizes the temporal changes of Figure 4.7 at a disaggregated level. At an aggregated
level, the proportional symbol maps in Figure 4.14 (see Figure 4.19(d)) illustrate the dif-
ferent distributions of the pick-ups and drop-offs at 7-8h and 18-19h. At 7-8h there are
several places with high proportion of drop-off events in the city center and two extreme
dense areas of drop-offs in the two international airports. At 18-19h the quantities of pick-
up and drop-off events are nearly the same except a few regions in the suburban areas.
Figure 4.15 (see Figure 4.19(e)) further abstracts salient variable of pick-up and drop-off
events and shows a complementary temporal patterns at 7-8h and 18-19h. Figure 4.16 (see
Figure 4.19(f)) synthesizes the two figures in Figure 4.15 and explicitly shows significant
temporal changes in one choropleth map.
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(a) Figure 4.2

(b) Figure 4.13. From left to right (O,N, P,D).

Figure 4.17: Spatial density distributions of (O,N, P,D) events using (a) pie radar glyph
and (b) choropleth mapping.
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(a) Occupancy (b) Non-occupancy (c) Pick-up (d) Drop-off

Figure 4.18: The temporal patterns of the events in Figure 4.5.
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(a) Figure 4.3

(b) Figure 4.7 (c) Figure 4.9

(d) Figure 4.14

(e) Figure 4.15 (f) Figure 4.16

Figure 4.19: The spatiotemporal patterns of (O,N, P,D) events using: (a) pie radar glyph;
(b, c) salience-based method; (d) proportional symbol mapping; and (e, f)
choropleth mapping.
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Temporal changes and land use. Figure 4.10 (see Figure 4.20(a)) and Figure 4.16 (see Fig-
ure 4.20(b)) illustrate the temporal changes at a disaggregated and an aggregated level
respectively. The analysis of these temporal changes obviously reveals distinct land use
types. In Figure 4.10, the significant areas with more drop-off events at 7-8h and more
pick-up events at 18-19h are mostly free trade zones, high-tech zones, industrial and de-
velopment zones, and financial centers. The areas with significant changes of drop-off or
pick-up events mostly correspond to transport hubs and commercial zones. We also sup-
pose that the areas with more pick-ups at 7-8h and more drop-offs at 18-19h are probably
residential areas. At the aggregated level, the choropleth map in Figure 4.16 illustrates
the final temporal changes in three categories. The regions (blue) with more active pick-
up at 7-8h and drop-off at 18-19h include Xinzhuang, the Hongqiao airport and the areas
around the Lujiazui financial center. The regions (red) which are more active drop-off at
7-8h and pick-up at 18-19h include Hongqiao international airport and the Lujiazui finan-
cial center etc. The regions (yellow) which are always active of drop-off at 7-8h and 18-19h
or always active of pick-up correspond to the Pudong international airport and Shanghai
south railway station etc.

(a) Figure 4.10 (b) Figure 4.16

Figure 4.20: The temporal changes using (a) salience-based method and (b) choropleth
mapping.

4.5 Comparison and Synthesis of the Visualization Methods

The analysis results in Section 4.4 show that the visualization methods by means of sci-
entific visualization and thematic mapping reveal distinctive spatiotemporal patterns at
multiple scales from different perspectives. From both data and visual abstraction point
of view, the results in previous sections follow an order of increasing abstraction and con-
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struct a consistent example for comprehensive visual exploration of the event data. To
explicitly compare the visualization results, we select the representative visualization re-
sults of “drop-off” at a same region and sructure them in Figure 4.21 by the sequence of
the visualization techniques proposed in the previous sections.
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(a) Figure 4.2 (b) Figure 4.5(d)

(c) Figure 4.6 (d) Figure 4.9

(e) Figure 4.13(d) (f) Figure 4.14(a) (g) Figure 4.16

Figure 4.21: The previous process and visualization results from high to low level of detail.
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Figure 4.21(a) shows the multivariate visualization resulting from Section 4.2.1. Utiliz-
ing the pie radar glyph, this method shows the spatial distributions of the four types of
(O,N,P,D) events simultaneously. The pre-attentive visual variables, i.e. color and size,
are mixed to allow an immediate perception and detection of significant big pie radar sec-
tors from the compact visualization. The spatial patterns of drop-off events (in blue) can
also be observed with especially dense locations in city center as well as very dense loca-
tions in some areas. By zooming into interesting places, users can examine their accurate
quantities. In addition, by using temporal screenshots in Figure 4.3, spatiotemporal pat-
terns of the multivariate at different time slots can be inspected.

To further explore and analyze the temporal patterns, Section 4.2.2 applied a time graph
(see Figure 4.21(b)) to show the univariate event quantities at an hourly time interval. From
the visualization result, the user can effortlessly get a general idea about the spatiotempo-
ral distribution of “drop-off” event, which are dense around the city center with a few
exceptions far from the city center. With regards to the temporal patterns, drop-off events
are especially active from 06:00 to 18:00. Similar to the multivariate visualization based on
pie radar glyph, a hotspot or outlier can be examined in detail by interactive operations.

Instead of representing the co-located multivariate events simultaneously, Section 4.2.3
simplified the visual representation utilizing the salience-based method to just show the
most significant feature at a specific location (see Figure 4.21(c)). Several significant “drop-
off” hotspots scattering around the city center can be detected. This method benefits in
further steps from a variety of image processing methods. For instance, two images result-
ing from this method at different time slots can be arithmetically added to detect temporal
changes. Temporal changes of “drop-off” events and the relationships to “pick-up” events
can be detected and are used to infer different land use types (see Figure 4.21(d)).

Rather than only inspecting the spatial pattern at the pixel level, Section 4.3.1 and Sec-
tion 4.3.2 used sophisticated clustering methods to group similar objects, partition the
space into proper spatial compartments, and calculate the aggregates that can reflect the
underlying data distributions. Based on the aggregates, choropleth maps (see Figure 4.21(e))
in Section 4.3.3 are designed to allow the users to interpret the spatial patterns of individ-
ual types of events at a coarser level of detail. The general distributions of “drop-off”
events reveals a very compact dense patterns in the city center and the density gradually
decreases to the suburban areas.

Along with the generalized information, the visual complexity is largely reduced. Fur-
thermore, in Section 4.3.4, proportional symbol mapping (see Figure 4.21(f)) and choro-
pleth mapping techniques (see Figure 4.21(g)) are applied to illustrate the temporal changes.

To systematically compare these methods in detail, we summarize several of their as-
pects ranging from data processing to the perception of the visualization results in Ta-
ble 4.1.
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Scientific Visualization Thematic Mapping
Pie radar
glyph

Time
graph

Salient
feature

Proportional
symbol
mapping

Choropleth
mapping

Filtering X X X

Ordering X X

Clustering X X

Aggregation X X

Classification X X

Symbol overlaps X X

Visual variables color, size color, size color color, size color
Legibility low low medium high high
Cognitive efforts high high medium low low

Table 4.1: Comparison of the aspects of different visualization methods.

From Table 4.1, we can see that with the increasing abstraction the characteristics of
the methods on data processing, clustering and classification, design principles of visual
variables tend to diverge. At the low abstraction level, with the pie radar glyph, there
is no need to aggregate the data and the four types of events and their quantities can be
simultaneously visualized. The overall spatiotemporal distribution and the hotspots or
outliers can be perceived immediately with the compact visual representations. However,
at such a fine resolution, individual symbols can be hardly distinguished and understood
because of the symbol overlapping and the complex meaning of the multivariate symbol.
The users need to inspect very carefully by zooming into the interesting areas. On the
contrary, at the high abstraction level, e.g. the choropleth maps, the legibility of each
symbol is very good due to the data aggregation but it is impossible to inspect the detailed
data items.

The comparison results of this example suggest that for a comprehensive visual explo-
ration of massive point-based events, it is necessary to synthesize a series of effective visual
representations, ideally, a series of representations of continuous abstraction levels. Fur-
thermore, with more advanced interactive techniques, e.g. filtering, linking and brushing,
the different visualization results may validate each other and their synergetic effects can
also be explored.

As an demonstration, we link the visualization results of Figure 4.9 (see Figure 4.22(a))
and Figure 4.16 (see Figure 4.22(b)) for the purpose of comparison and synthesis. High-
lighting and linking techniques are applied for interactive selection of interesting spatial
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(a) Figure 4.9 (b) Figure 4.16

(c) Three polygon areas that are highlighted in (a) and (b) and their zoomed-in images

Figure 4.22: The comparison of the temporal change of the salient variable between (a) the
salience-based visualization method and (b) the choropleth mapping method.

divisions in the choropleth map and investigation in detail the specific types of events
inside them on the left image. Figure 4.22 show the three zoomed in homologe polygons.

As explained in Section 4.2.3, Figure 4.22(a) is the temporal change map of (P,D) at 7-8h
and 18-19h resulting from the salience-based method and the algebra addition operation.
Quite a few regions in certain specific colors can be distinguished from the compact dis-
plays of the image, for instance, the regions in orange. However, when examined closely,
each uni-color region is a mixture of different types of temporal changes. Then it is dif-
ficult for human to associate the region with certain specific functions. On the contrary,
in Figure 4.22(b) each region is assigned with a deterministic function that can be easily
understandable.

On the other hand, scientific visualization results can be used to validate and compen-
sate the thematic mapping result. Take the three highlighted polygons as examples. The
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polygon in the middle in Figure 4.22(a) is in orange and corresponds to the Shanghai Expo
area. The counterpart in Figure 4.22(b) consists of mostly the orange pixels as well, which
means the aggregate reflects the underlying data distribution quite well. However, over-
generalization phenomena might appear in the aggregation procedure. For instance, the
left polygon in Figure 4.22(b) is in blue. However, when examining the corresponding area
in Figure 4.22(a), it includes a small shiny yellow area which is overgeneralized by the ab-
straction process. Furthermore, the aggregation may also lead to pitfalls. For instance, the
right polygon in yellow in Figure 4.22(b) indicates that there is no temporal change of the
salient variable in the region. While examining the counterpart in Figure 4.22(a), we find
that it consists of pixels both in blue and red. The contradictory patterns in the two images
show that the scientific visualization result is a necessity to validate and compensate the
thematic mapping result.

4.6 Summary

In this chapter, we propose three scientific visualization techniques for visual exploration
of multivariate events and adopt two thematic mapping techniques for effective commu-
nication of event patterns. More specifically, a pie radar glyph, a time graph, a salience-
based method, proportional symbol and choropleth mapping techniques are applied in
combination with spatial data mining and image processing techniques. The proposed
methods are tested using the (O,N,P,D) events derived from the real-world floating car
data. The systematic visual analysis results demonstrate that our proposed methods can
reveal the spatial and temporal patterns of the underlying data at multiple levels of details
from different perspectives. We also suggest that visual analysis of event data integrating
scientific visualization and thematic mapping methods can achieve complementary effects
that support a deeper understanding of event patterns.
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In Chapter 4, we have analyzed the spatial distribution of point-based events using scien-
tific visualization and thematic mapping techniques. This chapter focuses on the analysis
of trajectory-based events by synthesizing the scientific visualization and thematic map-
ping techniques. More specifically, we investigate two types of trajectory-based events
based on different abstraction levels of trajectories. The first one is the generalized trajectory-
based events, namely the origin-to-destination events. The second one is the non-generalized
non-occupancy trajectory-based events.

Section 5.1 reviews the related work of the methods and applications for analysis of
trajectories. In Section 5.2, we introduce a general visual analytic framework for analyz-
ing trajectory-based events. Consequently, this framework is applied to the two above-
mentioned concrete types of trajectory-based events in the following two sections. Sec-
tion 5.3 is dedicated to the visual exploration and communication of origin-to-destination
event patterns. To explore the overall individual events, we propose and incorporate inter-
active clustering techniques, parallel coordinates, and gradient line rendering techniques
in the framework. For the communication of summarized origin-to-destination event pat-
terns, flow maps are designed building on Voronoi spatial divisions. In Section 5.4, we
emphasize on visual analysis of non-occupancy events of two income taxi groups, i.e.
high- and low-income taxi drivers. For exploration purpose, direct line rendering and
space-time cube techniques are investigated showing different dynamic processes of the
two groups. At a high abstraction level, dot mapping, time matrix and pie-chart mapping
techniques are applied to reveal the distinctive mobility patterns between these two taxi
groups. Finally, Section 5.5 summarizes this chapter.

5.1 Related Work

Massive movement data can be explored and analyzed from a trajectory-based view for
understanding the spatial interaction mechanism and human mobility patterns in urban
areas. There have been extensive researches and applications in understanding the spatial
interactions through visual analytics, which is helpful for understanding human mobility
patterns and revealing the city structures at an intracity scale [Liu+12; Liu+15a; KLW14]
or intercity scale [Kan+13; Liu+14].

At the individual level, a straightforward way to visualize trajectories is to draw a line
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connecting the adjacent trajectory segments. Recall the individual reconstructed occupied
trajectories and their origin-destination counterparts shown in Figure 3.7. However, over-
plotting or too many line intersections make the users hardly discern any meaningful pat-
terns. To deal with the visual cluttering issues, numerous techniques have been proposed.
For instance, the NYC Taxi holiday visualization system1 uses animation technique to
show the dynamic behaviors of the trajectories. Triple perspective visual trajectory analyt-
ics (TripVista) [Guo+11] and layered visual analytics approach [Elz+13] adopt interaction
techniques to inspect a subset of massive data in a controlled way. Timeline [WY14] and
Space-Time cube [And+13d] show movement patterns in a compact way via data transfor-
mation techniques. Edge bundling [Hol06; HW09; Zho+13] is another popular technique
in information visualization field to reduce edge intersection and visual clutter.

At the aggregated level, spatial trajectories can be grouped to visualize the movement
flows. In cartography, flow mapping techniques have been long used to show the move-
ment of objects, such as people in a migration from one location to another. Andrienko and
Andrienko [AA08] presented a generic spatial generalization and aggregation approach
for visual analysis of trajectory-based movement events by transforming trajectories into
aggregate flows between areas. In addition, Andrienko et al. [And+09] introduced an in-
teractive visual clustering approach by combining clustering and classification for visual
analysis of large collections of trajectories at individual and aggregated levels. Scheepens
and his colleagues focused on using density maps to explore the multivariate trajecto-
ries [Sch+11; Sch+12; SWW14].

Thanks to the advancement of computational and graphical techniques, multivariate
trajectory-based events can be explored in an synthesized environment. Buziek [Buz01]
designed 2-D and 3-D multimedia interactive environments using a variety of visual and
acoustic variables to analyze traffic congestion related information, for instance, by using
vertical bands in perspective views. Tominski et al. [Tom+12] used a hybrid 2D/3D display
to visualize trajectories as stacked 3D trajectory bands along which attribute values are en-
coded by color. Elzen and Wijk [EW14] enabled users to gain insights through selected
interests (manually or automatically), and producing high-level, infographic overviews
simultaneously. For mapping origin(O)-destination(D) flows, Guo et al. [Guo07; Guo09;
Guo+12; GZ14] developed and implemented new approaches and systems like VIS-STAMP
for flow mapping and multivariate visualization of large spatial interaction data. Wood,
Dykes, and Slingsby [WDS10] proposed a technique, by mapping OD vectors as cells while
preserving the spatial layout of all O and D locations, for the visual exploration of origins
and destinations arranged in geographic space. Boyandin et al. [Boy+11] presented Flow-
strates technique to allows the users to perform spatial visual queries, focusing on different
regions of interest for the origins and destinations, and to analyze the changes over time.

1http://taxi.imagework.com/
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5.2 A Visual Analytics Framework for Trajectory-based Events

In this section, we propose a visual analytics framework for exploration and communica-
tion of trajectory-based event patterns. As illustrated in Figure 5.1, this framework consists
of three components ranging from visual querying of the movement database, interactive
clustering and aggregation, to visual representations. The interactions in the framework

are annotated with the icon . We implemented the framework in a web-based interac-
tive environment incorporating database querying techniques, spatial clustering and ag-
gregation methods, scientific visualization, and thematic mapping techniques.

(1) Movement Database Visual Querying. This component allows visual query of the move-
ment database for interesting trajectory subset. Since the income is an essential factor
for taxi drivers and might be of interest for the analysis, we design a histogram view
to show their average incomes as well as allow the interactive selection of data at cer-
tain income levels. Besides, a time graph view is designed for the selection of data in
specific time windows. Through visual queries, the amount of data is largely reduced
and only the interesting sub-dataset is selected.

(2) Interactive Visual Clustering and Statistical Calculation and Aggregation. In this compo-
nent, there are three aspects that process the queried trajectories.

Firstly, according to the trajectory-based event categorization in Section 3.4.1, we can
derive a variety of types of events. In this study, we focus on “origin-to-destination”
and “non-generalized non-occupancy” events. Secondly, the two types of events are
dynamically clustered through the adjustment of the clustering parameters, which op-
timizes and steers the complicated processes. Thirdly, we can derive the statistics about
the two types of events as well as their spatiotemporal aggregates.

(3) Visual Representations. The resulting clusters and aggregates are displayed in a variety
of visual representations that are helpful for the investigation of the movement data at
multiple scales from different perspectives.

In the following part of this section, we will introduce the details of each component.
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Figure 5.1: The framework for visual analysis of movement trajectory-based events.
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5.2.1 Visual Querying of Movement Database

For the sake of the computational efficiency, a reasonable way to inspect massive data is
to retrieve only relevant interesting data partitions from the database. In our framework,
we retrieve relevant data sets according to taxi drivers income in specific time intervals
by interactively brushing an income histogram and a time line graph. As illustrated in
Figure 5.1, the first component for querying movement database has the following four
parts.

• Movement database. The database contains raw GPS data, and derived occupied and
non-occupied trajectories among others.

• A histogram of taxi drivers’ average income derived from the movement database for
querying taxis at a certain income level (See Section 3.4 for the derivation of incomes).
In our experiment, the daily income of the 2007 taxis in 47 days are classified into 20
groups. As shown in Figure 5.2, the daily income follows a normal distribution,
which indicates the income discrepancy among the taxis. Interactive selection of
the histogram bars allows users to freely access objects at certain income levels for
further inspection, for instance, to inspect behavior differences between high- and
low-income taxi driver groups.

Figure 5.2: The histogram of taxi drivers’ income. High income bars are selected.

• A time line graph for querying data in a time window from the database. The temporal
view with line charts shows the temporal variation of certain attributes. A focus +
context technique is applied to show the detailed and overview information. Users
can select a time window from the context view and inspect the details in the focus
view. Figure 5.3 illustrates the time line view. The statistics in the time line graph is
about the hourly numbers of pick-up and drop-off events of occupied trajectories.
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Figure 5.3: The time line view for brushing specific time window.

• Selected trajectories. By brushing the income histogram and time line graph, a subset
of trajectories are selected according to the range of incomes and time periods for
future analysis.

5.2.2 Interactive Visual Clustering and Aggregation

The second component of our framework (shown in Figure 5.1) aims to derive and analyze
interesting types of trajectory-based events. According to the categorization discussed in
Section 3.4, we can derive a variety of trajectory-based events from the selected trajecto-
ries using spatial, temporal and thematic constraints. In this chapter, we focus on two
specific types of events: “origin-to-destination” and “non-generalized non-occupancy”
events. Two parallel streams are designed to analyze the two derived events at low- and
high-abstract levels using interactive clustering and aggregation techniques respectively.
To analyze the trajectory-based events at a detail level, the interactive visual clustering
method is designed to allow users to select clustering features and adjust clustering pa-
rameters. To understand the trajectories at a collective level, we calculate relevant statistics
and aggregate the events to coarser spatial and temporal partitions.

Interactive clustering via feature selection and parameter setting

Clustering is a generic data mining approach for exploring massive data. For multivariate
data, multivariate clustering techniques can be used for the identification of potentially
interesting multidimensional subspaces from a high-dimensional data space. We stress
that meaningful clustering results, requiring appropriate clustering features and optimal
parameters as inputs for a clustering algorithm, are hardly possible to achieve with fixed
features and parameters.

Take the derived trajectory-based events as an example. The events have multiple at-
tributes including timestamps and locations of the origins and destinations, distance, and
duration. Analysts sometimes might be interested in inspecting event patterns of trajecto-
ries starting from or ending to the same locations, which requires the clustering algorithm
to group them according to the spatial locations of the same origins or destinations. Like-
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wise, analysts may be interested in events of certain semantic properties, e.g. distance,
then it is necessary to cluster the events based on the distance attribute. Furthermore,
appropriate parameter setting is a key factor in the clustering method. Different cluster-
ing parameters will lead to diverse results and therefore have strong influences on further
analysis. For instance, trajectory-based events of same origins may show distinctive event
patterns with different distance parameters. Thus, for exploration purpose, it is crucial to
allow interactive selection of clustering variables/features and adjustment of parameters.
In our study, we design an interactive clustering interface to serve this purpose. The ag-
glomerative hierarchical clustering method is applied for the multivariate clustering of the
trajectory-based events.

Statistics calculation and data aggregation

In parallel with the visual clustering process, we apply data statistics and aggregation tech-
niques to summarize the characteristics of the derived events. Unlike the visual cluster-
ing of individual trajectory-based events, data statistics and aggregation serve as effective
ways to reveal the general tendency of the dataset and the overall patterns of the events.

To reveal different event characteristics, a number of statistic values can be calculated,
for instance, the number of the events, the geometric center of the trajectory-based events,
the distribution of events in specific time intervals. Furthermore, besides the basic statis-
tics, we aggregate the trajectory-based events into irregular spatial partitions which can
reflect the underlying data distribution quite well. Here we adopt similar techniques used
in Section 4.3.1 for spatial aggregation, which includes steps of spatial clustering, Voronoi
tessellation and spatial aggregation. The statistical and aggregated values are then visu-
ally communicated by using a variety of mapping techniques, e.g. direct rendering and
flow mapping, as described in the next section.

5.2.3 Visual Representations

The third component of our framework (in Figure 5.1) focuses on visually representing the
event clusters and the summarized and aggregated event data derived from previous steps
by means of scientific visualization and thematic mapping techniques. More specifically,
we apply the following scientific visualization methods: parallel coordinates for visual
exploration of trajectory clusters, gradient line rendering for inspection of the origin-to-
destination event clusters, and direct line rendering and space-time cube techniques for
the investigation of the dynamic process of the non-occupancy events. For visual com-
munication of spatial interaction patterns of origin-to-destination flows, flow maps of the
aggregated origin-to-destination events are designed; while for communicating the spa-
tiotemporal non-occupancy event patterns, dot maps, time matrix graphs and pie-chart
maps are proposed.
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Visual representation using scientific visualization methods

For the exploration of individual trajectory-based events, parallel coordinates are pro-
posed and well designed to show the resulting clusters from the interactive clustering
process. Users can further select interesting clusters by inspecting the patterns in the par-
allel coordinates. Depending on the specific event types, the individual events in the se-
lected clusters will be shown on a map view, either using gradient rendering technique for
origin-to-destination events or direct rendering and space-time cube for non-occupancy
events.

• Parallel coordinates for visualizing and analyzing the high-dimensional geometry of
the precomputed clusters, and as an interactive medium for interactive selection of
interesting clusters.

Parallel coordinates [Ins97] have been widely applied to visualize and explore high-
dimensional and multivariate data. The compact parallel lines can easily reveal nat-
ural clusters of data and is helpful for discerning cluster patterns within the data.
As Heinrich and Weiskopf [HW12] summarized in their survey that parallel coordi-
nates can be used to address a set of high-level tasks, e.g. clustering, classification,
regression, summarization, dependency modeling, and change and deviation detec-
tion.

In our work, the parallel coordinates approach is designed to primarily fulfill two
tasks: to visualize the precomputed clusters and their characteristics; and to serve
as an intermediate tool for visually detecting and selecting potentially interesting
clusters, which is beneficial for future analysis.

• Gradient line rendering for showing the spatial and directional distribution of origin-
to-destination clusters.

As the parallel coordinates show the high-dimensional origin-to-destination events
in transformed way, we use a 2-D map to show the spatial distribution of the events
in the geographical space. In our work, this 2-D map is linked with the parallel
coordinates. Only the visually salient clusters in the parallel coordinates selected
by the analysts will be rendered on the map for further investigation. Through this
linking technique, the number of individual lines is significantly reduced, resulting
in decreased line intersections.

Inherently, a generalized origin-to-destination trajectory contains a dynamic process
and directional behavior starting from its origin and ending at its destination. To rep-
resent the origin-to-destination clusters in a straightforward way, we design a gra-
dient rendering technique by applying gradients to the lines, which can effectively
convey the dynamic and directional information and achieve preattentive visual ef-
fects.

• Direct line rendering and space-time cube for visualizing the dynamic process of the
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non-generalized trajectory-based events.

The non-generalized trajectories reconstructed from the GPS points approximately
represent the continuous process of the moving objects in the geographical space.
A straightforward way to present the events on a 2-D map is direct line drawing.
Here we apply color and opacity to render lines in an easily understandable way.
Furthermore, space-time cube is used to show the lines in a 3-D space. Space-time
cube is a commonly used visualization technique to show the dynamics of objects. In
its basic appearance these images consist of a cube with on its base a representation
of geography (along the x- and y-axis), while the cubes height represents time (z-
axis). A typical space-time cube could contain the space-time-paths of for instance
individuals or bus routes [Kra88]. In this work, we extract non-occupancy events
of two income-level taxi groups related to an exemplary airport and use space-time
cube to explore and understand their dynamic processes.

Visual representation using thematic mapping methods

To effectively communicate spatiotemporal patterns of trajectory-based events, thematic
mapping techniques are employed representing highly abstract data derived from the
origin-to-destination and non-occupancy events. More specifically, we design flow maps
to allow an easy perception of origin-to-destination flow patterns. To understand the taxi
drivers’ behaviors from non-occupancy events, in particular two sub-event types: cruising
and waiting, we propose dot mapping, time matrix graph and pie-chart mapping tech-
niques to let users inspect the spatial distribution of the cruising events and the spatiotem-
poral patterns of long-waiting spots.

• Flow mapping to show the origin-to-destination movement patterns.

Based on the spatial distribution of origins and destinations of the origin-to-destination
events, the study area is divided into irregular spatial regions and events are aggre-
gated to the regions. Based on the aggregated data, the origin-destination matrix
of each pair of spatial regions can be calculated and used for designing flow maps.
Proportional line symbols are designed to convey the flows between different spa-
tial regions, and proportional circle symbols to represent the inner flows of a spatial
region.

• Dot mapping to represent the spatial distribution of the mean centers of non-occupied
cruising events.

For individual trajectory-based events, one possible and reasonable way is to get
a summarized indicator that reveals their high-level distribution patterns. In this
work, we abstract for each driver in the two income-level groups their spatial daily
mean centroids of corresponding trajectory events and investigate their general spa-
tial distribution patterns. Dot mapping techniques are applied to show the daily
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mean centroid patterns with each dot representing a centroid of a group of individ-
ual lines. In addition, standard deviation is derived to represent the spread trends
of the daily mean centroids. Ellipse symbols are applied to represent the standard
deviations.

• Time matrix graph to get a temporal overview of the stationary spots extracted from
non-occupancy events. We calculate temporal aggregates and design a time matrix
graph to visualize daily and quarterly density of the stationary events extracted from
the non-occupancy events.

• Pie-chart mapping and proportional symbol mapping to reveal the spatiotemporal dis-
tribution of non-occupied long-stationary event clusters and stationary spots in off-
peak hours.

Long-stationary events can be interesting for analysis since they reflect unusual be-
haviors during the moving process, especially when the events are too long to affect
a taxi driver’s income. For long-stationary event clusters, we use pie-chart maps
to visualize their spatial patterns at four time intervals, namely midnight, morning,
afternoon and evening. Furthermore, we derive the parking and traffic congestion
places from stationary events and investigate on a proportional symbol map the dif-
ferent spatiotemporal distributions between the two taxi groups.

5.3 Origin-to-Destination Event Visualization

In this section we apply the proposed visual analytics framework to the visualization of
origin-to-destination events. Recall that in Section 3.4.1, an occupied trajectory can be
generalized to an origin-to-destination event, denoted as a pair (o−d), which discards the
details of the trajectory and emphasizes on the simplified passenger transfer event starting
from a location o and ending at a location d. In this section we focus on the visual analysis
of the origin-to-destination event patterns at multiple levels by means of scientific visu-
alization and thematic mapping. In Section 5.3.1, we apply a clustering method to group
the events and use a parallel coordinates view to show the clustering results as well as al-
low the exploration of individual potential interesting clusters. The selected clusters with
individual origin-destination lines will be then inspected on a map view by using the gra-
dient line rendering technique. In Section 5.3.2, we design a flow map to communicate the
spatial interaction patterns of the origin-to-destination trajectory events at the aggregated
level.
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Figure 5.4: Interactive clustering interface for feature selection and distance setting.

5.3.1 Exploration by means of Scientific Visualization

In this section, we visually explore and analyze massive and complex (o−d) trajectory-
based events by employing a hierarchical clustering method, the parallel coordinates and
a gradient rendering technique. Correspondingly, we build an interactive clustering in-
terface for feature selection and parameter setting, a parallel coordinate view for cluster
visualization and brushing, and a map view for spatial representation of pairs of individ-
ual (o−d)s.

Interactive clustering interface

For a comprehensive exploration of massive and complex (o−d) events, it is necessary
to first group similar events to different categories and then investigate potentially inter-
esting groups. In Section 5.2.2, we have discussed the importance of integrating analysts
knowledge for visual exploration of (o−d) events by allowing them to interactively choose
clustering features and adjust parameters.

As a widely applied tool for analyzing multivariate data at multiple scales, the agglom-
erative hierarchical clustering method (refer to Section 4.3.1 for algorithm descriptions)
is appropriate for our analytic tasks. In our case, the (o − d) events can be abstracted as
multi-dimensional multivariate points. Here, the location of the origin and destination,
the duration and distance are used as exemplary attributes. Besides, the algorithm has
two parameters, namely a distance function and a linkage criterion. The parameter setting
is largely dependent on the applications or tasks. The output is an assignment of events to
its cluster.

For interactive clustering, we design an interface (shown in Figure 5.4) for feature se-
lection and parameter setting. In this interface, a checklist of related features is used for
feature selection and a slider bar is employed for distance parameter setting. As shown in
Figure 5.4, the selected features are the longitude and latitude of the destination and the
clustering distance is 100m.
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A parallel coordinates view

To explore potentially interesting patterns, we would expect that the resulting clusters can
be presented in an intuitive way that the natural and significant clusters can be distin-
guished easily. To achieve this, we adopt the interactive parallel coordinates technique
and design the visual representation of the clustering results as follows.

Firstly, besides the aforementioned multiple attributes, we add to the parallel coordi-
nates two more features, i.e. the individual cluster identification numbers and the number
of the elements of each cluster. The aim is to explicitly show the cluster results as two
axes and allow an easy inspection of individual clusters. Secondly, we design the par-
allel coordinates in an easily understandable way by ordering the objects using Z-index
and semi-transparency to clusters. We order the objects using Z-index according to the
number of elements in each cluster so that clusters with large number of elements would
be displayed on top of the small numbers. The semi-transparency can on the other hand
reveal the hidden objects. Finally, for immediate perception of individual clusters, we as-
sign distinctive colors to clusters with distinct number of cluster elements to reveal the
natural clusters. For the clusters with relatively more elements, which normally are po-
tential hotspots, we assign distinctive colors to them. Here, we adopt the qualitative color
scheme designed from colorbrewer. For the other clusters with few elements, we use the
same color.

Take the trajectory data from 07:00 to 10:00 on 31 May 2015 as an example. The origin-
destination pairs can be selected from the time line graph. We cluster the (o−d) events by
using their destinations. The distance parameter for the clustering method is set to 100m,
which results in about 250 clusters. These 250 clusters are then represented by the parallel
coordinates shown in Figure 5.5(a). The first axis represents the number of elements in
each cluster. The second axis shows the identity number of each specific cluster. The third
and fourth axes represent the distance and duration of the (o−d) events. The last four axes
show the locations of origin and destination.
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(a) Clusters of events based on “destination” from 07:00 to 10:00 on 31 May 2010.

(b) Selection of interesting individual clusters.

Figure 5.5: The parallel coordinates view.

As shown in Figure 5.5(a) the parallel coordinates reveal the natural data distribution
and the clusters in an intuitive manner. For an easy perception of prominent groups and
multivariate relationships, large clusters with more than 15 elements of individual (o− d)
events are colored according to the chosen categorical color scheme. Since we cluster the
events using their destinations, it is natural that the large clusters converge at the last two
axes. One more interesting pattern is that larger clusters converge at the middle range of
the last two axes, which indicates that large clusters of (o−d) events happen in the middle
of the study area.

Looking at the first axis, we can get an overview about the distribution of the number
of elements in each large cluster. For instance, the largest clusters have approximately 40
elements, and the second largest clusters around 30 elements. For further exploration and
analysis, the users can inspect interesting individual clusters by brushing any of the axis
or multiple axes at the same time. For instance, Figure 5.5(b) shows two elements in the
first axis are brushed, which correspond to two clusters of about 30 elements. Clearly, the
events in blue cluster are of relatively shorter distances than those in the green cluster and
also there are differences in terms of the start and end locations. The un-brushed events
in the parallel coordinates are shown in light gray as context information. Users can also
brush other axes to examine events with specific characteristics. For instance, to investigate
small or local scale spatial interactions, the users can brush the distance axis with the range
from 0km to 3km.
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A map view of (o−d) events by gradient line rendering

The parallel coordinates can reveal the general multivariate relationships of the events.
Users can also infer spatial distributions of the clusters from the last four axes. For instance,
large event clusters of destination converging at the middle of the last two axes means
that a lot of (o−d) events end in the middle of the study area. However, high cognitive
efforts are needed to interpret and understand the spatial relationships without a spatial
reference. In this section, we use a map view to explicitly show the spatial distribution
and interaction of the interesting (o − d) events. Since it can get easily cluttered with line
objects on a map, the map view is linked with the parallel coordinates and only render the
selected clusters of events for detailed examination.

To allow an intuitive interpretation of the (o−d) lines, we apply the following techniques
to render them on the map.

1. Round the coordinates of origins/destinations. To reduce the line intersections and
make the rendering results more appealingly, we simplify the spatial locations of the
origin or destination to round values.

2. Order the origin-destination lines according to their distances. Lines with long dis-
tances are pushed into the background (using a small z-index) so that short line
would not be hidden.

3. Assign the lines from origin to destination with gradient colors. Firstly a line is seg-
mented to a certain number of line segments and the intermediate nodes are inter-
polated. Secondly the line segments from the origin to destination are assigned color
from dark to light color values to give the user an intuitive feeling of line direction.

Take the selected clusters in Figure 5.5(b) as an example, Figure 5.6 shows the individ-
ual (o−d) events on the map view after applying the aforementioned gradient rendering
techniques. The detailed spatial interaction can be clearly identified. The two clusters cor-
respond to two transport hubs with the blue cluster of the Shanghai south railway center
and the green one of the Hongqiao international airport.
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5.3 Origin-to-Destination Event Visualization

Figure 5.6: The map view of the selected (o−d) lines.

So far, we have introduced the parallel coordinates visualization technique and the gra-
dient rendering technique. We use the (o−d) events from 7h to 10h on 31 May 2010 to
demonstrate the effectiveness of these methods. The events are clustered using “destina-
tions” and the distance parameter is set to 100 meter. The clusters can be visually detected
in the parallel coordinates in Figure 5.5(a). We brush large clusters and show the individ-
ual events in these clusters in Figure 5.7. The largest two clusters of about 42 individual
event elements (Figure 5.7(a)) are with their destinations concentrated in the city center.
This phenomena is reasonable since there should be more taxis going to the city center
during rush hours. The third and fourth largest clusters of about 30 individual events
(Figure 5.7(b)) correspond to Hongqiao airport and Shanghai south railway station. Due
to the spatial locations of the two transport hubs, especially Hongqiao airport, there are
some long distance (o−d) events. The fourth to ninth largest clusters (Figure 5.7(c) and
Figure 5.7(d)) are of around 25 to 30 event elements and are primarily with destinations
near the city center.

The gradient line rendering results show not only the spatiotemporal distribution of the
lines but also the spatial interaction of the events between different areas. Mostly, there are
more local interactions. The radiation shape of the (o−d) lines are different and difficult to
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(a) cluster 1 and 2 (b) cluster 3 and 4

(c) cluster 5 and 6 (d) cluster 7,8 and 9

Figure 5.7: Significant clusters of destinations at 7h-10h on 31 May 2010.

foresee, which relies on the spatial location of the cluster. Likely, users can explore the spa-
tial patterns of other clusters by brushing their correspondences in the parallel coordinates
view.

Similarly, we can cluster the same dataset by using “origins”. We also set the distance
parameter of 100m. The clustering results are shown in Figure 5.8(b). Compared with
cluster results using “destination” in Figure 5.5(a), Figure 5.8(b) has relatively less clusters
with large number of elements. For instance, the largest cluster in Figure 5.5(a) has about
42 event elements, however, the largest cluster in Figure 5.8(b) only has about 25 elements.
This means that during 7h-10h on 31 May 2010, the destinations are more concentrated
than the origins.
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(a) Clustering features (origin) and parameters (distance).

(b) Clusters of events based on “origin” from 07:00 to 10:00 on 31 May 2010.

Figure 5.8: Interactive clustering of origins from 07:00 to 10:00 on 31 May 2010.

Similarly, we brush several large clusters of origin and inspect their spatial distribution
in Figure 5.9. The first and second clusters (Figure 5.9(a)) are of about 27 individual events
with the destination centers in the city center. However, the two clusters are relatively
interconnected in comparison with the two largest clusters of destination in Figure 5.7(a).
The third and fourth clusters (Figure 5.9(b)) are of about 20 to 23 individual events. The
fourth to ninth clusters (Figure 5.9(c) and Figure 5.9(d)) are of around 17 to 20 elements.
We can roughly judge from the geographical location that the green cluster in Figure 5.9(c)
origins from the Xinzhuang town and the red cluster on the left in Figure 5.9(d) origins
near the Waigaoqiao Free Trade Zone.

By comparing Figure 5.7 and Figure 5.9, we can observe asymmetric patterns of starting
and ending behaviors. There are fewer large origin clusters than destination clusters. In
addition, the spatial interactions of the large origin clusters are more local with their near
neighboring areas compared with the destination clusters.

By taking the advantage of the interactive functions, the users can also explore differ-
ent event patterns by imposing a variety of attribute constraints. For instance Figure 5.10
shows the spatial distribution of events with distance less than 3km and greater than 30km
respectively. Several large clusters can be found near the city center and Xinzhuang Town
in Figure 5.10(a). While in Figure 5.10(b) one prominent cluster is related to the location of
easternmost Shanghai, which corresponds to the Pudong airport. Besides, the two figures
show far more event clusters of short distance than clusters of long distance. The phe-
nomenon conforms to the geographic first law and reflects the distance effect, and thus
can be easily understood.
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(a) cluster 1 and 2 (b) cluster 3 and 4

(c) cluster 5 and 6 (d) cluster 7,8 and 9

Figure 5.9: Large clusters of origins at 7h-10h on 31 May 2010.

(a) Distance < 3km (b) Distance > 30km

Figure 5.10: Exploration based on different distance values showing the distance decay
effects.
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5.3.2 Communication via Thematic Mapping

In the previous Section 5.3.1, we have introduced the visual exploration of the (o−d) events
by means of scientific visualization. Highly interactive techniques, e.g. selection, slider,
brushing and linking, incorporated in the hierarchical clustering and parallel coordinates
steps allow users to freely query and explore fractions of event dataset at rather detail
levels. For instance, the parallel coordinates visualization reveal the multivariate relation-
ships in a compact way by transforming the high-dimensional data into two dimensions.
Complementary to the aspatial patterns in the parallel coordinates, the gradient line ren-
dering of significant clusters of (o−d) events on a map reveals their spatiotemporal move-
ment patterns.

In spite of fully explorative characteristics of the aforementioned visualizations, effort-
ful cognitive endeavors are required to control the interactive process and interpret the
complicated visualization results. For example, users need to select interesting features
and set parameters during hierarchical clustering to generate appropriate clusters in the
parallel coordinates. For the interpretation of the cluttered lines in the parallel coordinates,
users need to understand the meaning of each axis and mentally associate the visual rep-
resentation to the underlying data distribution and relationship. Besides, the explorative
steps are more effective and computationally efficient when relatively small fractions of
dataset are applied so that line clutters are reduced and the whole exploration procedure
is accelerated.

To relieve the cognition burden and show overall pattern of large amount of (o−d)
events in an easily understandable manner, an alternative visual representation is pos-
sible by data summarization and representation of their movement patterns at a high ab-
straction level. In our study, we propose a flow mapping technique to communicate the
movement patterns of the (o−d) events.

Flow mapping is a widely applied technique that can effectively visualize the collective
movement of objects from one location to another. The algorithm and design of the flow
mapping technique is described as follows.

Firstly, we partition the study area to meaningful sub-regions that can well reflect the
(o−d) distributions. We adopt the hierarchical clustering techniques used in Section 4.3.1
for the spatial division. The spatial locations of the origins and destinations are used as the
clustering features. The centroids of the resulting clusters are applied as generating points
for Voronoi tessellations. To generate more evenly sized sub-regions, additional generating
points and boundary clipping techniques are applied (refer to Section 4.3.1). Secondly, we
calculate the (o−d) flow matrix of each pair of the sub-regions. The Voronoi cells resulting
from the first step are used to aggregate the events. To generate the aggregates, we take
each Voronoi cell as a node and calculate the number of (o−d) events that moves from one
cell and to another. Then the number of the flows between each pair of nodes is assigned
as the edge weight. Note that we also calculate the flow values inside each cell, i.e., the

101



5 Visual Analysis of Trajectory-based Events

Figure 5.11: The placement of the line symbols. A1 and A2 are two regions.

number of trajectories from the cell to itself. Finally, we design a flow map to show the
calculated flow matrix. Basically, we use proportional line symbols to represent the flows
between pairs of sub-regions (inter-regional flows) and proportional circle symbols for the
movements inside each sub-region (intra-regional flows). For the line symbols, two visual
variables, i.e., color and line width, are applied to represent the calculated flow aggregates.
According to cartographic design principles, the aggregates are grouped to five classes and
proportionally mapped to a sequential color scheme and also an array of line sizes. The
symbol of half arrow is added to the end of the line to indicate the flow directions. The
size of the circle symbols are proportional to the aggregate values calculated for each sub-
region.

To reduce line intersections and enhance the legibility of the flow map, we design the
flow symbols and their placements carefully. Firstly, we scale each line connecting each
pair of the regions using a factor of 0.9 so that the lines do not directly connect the geo-
graphic centroids of each region, which will reduce line symbol overlapping effects espe-
cially around the centroids. Secondly, we translate the lines along their normal directions
so that the line symbols in opposite directions can be separated. The design schema of the
placement of the line symbols are shown in Figure 5.11.

Following the design principles, flow maps of (o−d) event data from 7h to 10h on 31May
are designed as an illustration to show the high-level spatial interaction patterns. The
origin and destination points are as input for the hierarchical clustering method with the
distance parameter of 300 meter. Figure 5.12(a) shows the resulted flow map. Furthermore,
we also utilize basic interaction techniques to allow the users investigating the flows of
specific regions. For instance, when the users are interested in one region, they can select
the region which will highlight the line symbols connecting to the cluster centroid and
gray other line symbols as context. Figure 5.12(b) shows the highlighted flows related to a
selected region.
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(a) A flow map at 7 a.m. - 10 a.m. on 31 May 2010.

(b) The flow map after selecting a spatial partition.

Figure 5.12: Flow maps of origin-to-destination events.
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In Figure 5.12(a), we can see that the flow map clearly reveal the overall flow patterns.
Both the volume and the direction information of the flows are legible and can be easily
interpreted with little effort. The overall distribution of the inter-regional (o−d) flows at
this time slot exhibits a northeast-southwest shape and shows that neighboring areas has
stronger spatial interactions than distant areas. In addition, through the unevenly sized
directional lines, the users can easily discern asymmetrical flow patterns between pairs of
regions, indicating that at this time period some regions have more flow-ins than flow-
outs, and vice versa. Keeping in mind that the purple circles in the flow map reveal the
intra-regional flow volumes in respective regions, we can observe that normally regions of
strong inter-regional connections also have strong intra-regional movements. Several pe-
ripheral regions are of high intra-regional movements but without obvious inter-regional
movements.

Figure 5.12(b) shows a selected region in the city center with related flows highlighted.
The users can notice that the flow directions show the movements are flowing into this
region.

We also compare the visualization results from flow mapping and gradient line render-
ing results. Figure 5.12(a) and Figure 5.9(d) are taken as examples. An area on the top
right corner of Shanghai in both figures is framed in orange to illustrate their differences
(Figure 5.13(a) and Figure 5.13(b)). Their enlarged counterparts are shown in Figure 5.13(c)
and Figure 5.13(d). From the size of the circle symbol in Figure 5.13(c) we can estimate the
flow volume in this region. In Figure 5.13(d), instead of the summarized value, we can
investigate in detail each individual (o−d) events and their destinations and directions in-
side this area. We can also see three long-distance lines from this region to other remote
regions. However, due to the generalization effect in Figure 5.13(c), the inter-regional flows
of this region are invisible.
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(a) Figure 5.12(a) (b) Figure 5.9(d)

(c) Enlarged part of Figure 5.12(a) (d) Enlarged part of Figure 5.9(d)

Figure 5.13: Comparison of a place from Figure 5.12(a) and Figure 5.9(d).

5.4 Non-Occupancy Event Visualization

In this section we apply the proposed visual analytics framework to the visualization of
non-occupancy events by means of scientific visualization and thematic mapping. As we
have already stated in Section 3.4.2, when a taxi is occupied, the taxi driver usually takes
the fastest route based on his/her knowledge to bring passengers to a destination; on the
contrary, when the taxi is vacant, the taxi driver has a large freedom to plan his/her routing
to minimize his/her waiting time for the next trip, which may result in large income dif-
ferences for experienced taxi drivers and novices. This motivates us to visually analyze the
non-occupancy events with the emphasis of two groups of taxi drivers, i.e. high-income
and low-income groups.

In Section 5.4.1, similar to the procedure in Section 5.3.1, we interactively cluster the re-
trieved non-occupancy events and visualize the clusters in the parallel coordinates. The
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users then can select significant clusters in the parallel coordinates and render the individ-
ual cluster elements on a 2-D map. Furthermore, a space time cube is applied to show the
non-occupancy event in 3-D to reveal the space-time dynamic profiles of the moving taxis.
In Section 5.4.2, we focus on the visual communication of the driving behavior patterns
between the two specific taxi groups by dot mapping, time matrix and pie-chart mapping.

5.4.1 Exploration by means of Scientific Visualization

In this subsection, we focus on the visual analysis of the non-generalized non-occupancy
events at detailed level. The following principles are analogous to those in the visual ex-
ploration of origin-to-destination by means of scientific visualization. (a) Using interactive
clustering methods, the analysts can cluster a chunk of non-occupied events by choosing
clustering features and setting appropriate parameters via the interactive graphic user in-
terface. (b) To reveal the underlying data distribution patterns of the non-occupancy events
and the multivariate relationships, we adopt the parallel coordinates technique, which al-
lows easy visual detection of interesting clusters. (c) Moreover, analysts can interactively
inspect interesting clusters by brushing individual clusters and render them accordingly
on a map to support the investigation of their spatial distribution.

To demonstrate, we retrieve the non-occupancy events of the bottom and top taxi groups
from 06:00 to 12:00 on 31 May 2010. Based on their “starting” points, we cluster these
events and show the clustering results in the parallel coordinates in Figure 5.14. Then we
select the significant clusters in the respective parallel coordinates, which are rendered on
the 2-D map with an opacity of 0.2 and with the same colors of the clusters in the parallel
coordinates.

In Figure 5.14, we can see from the parallel coordinates that there are more large clusters
of non-occupancy events in the high-income taxi group (Figure 5.14(b)) than those in the
low-income group (Figure 5.14(a)). In the map views, the overall spatial distribution of
the selected clusters and the driving routes starting from the cluster centers can be easily
detected with the help of the different colors and opacity values of individual spatial tra-
jectories. The denser line areas (i.e. rendered with lower values of opacity) are with more
frequent non-occupancy events. We also observe that in each cluster there is a distance
decay effect of the event frequency from its center to its border. Moreover, in terms of the
spatial distribution, the cluster centers of both taxi groups largely overlap. There are also
some notable differences. For instance, in the top taxi group there is a significant cluster
related to the Pudong airport (on the easternmost), which does not appear in the bottom
group.

106



5.4 Non-Occupancy Event Visualization

(a) bottom income group

(b) top income group

Figure 5.14: Non-occupancy event clusters based on “starting location” in the parallel co-
ordinates and significant clusters on the map from 06:00 to 12:00 on 31 May
2010 for two groups.
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By comparing cluster centers with the base map, we can also infer their possible seman-
tics. For instance, we can identify the most important transport hubs in the test area, in-
cluding Shanghai railway station, Shanghai south railway station, Hongqiao airport, and
Pudong airport. Figure 5.15 annotates these transport hubs by their names.

Figure 5.15: Identified transport hubs.

The map view visualization by rendering the individual trajectories is suitable for the
investigation of the overall spatial distribution of non-occupancy events. However, one
cannot observe the spatial-temporal behavior of individual trajectories. To address this,
we use the space-time cube to reveal their dynamic processes.

Since we have already detected different spatial patterns related to Pudong airport for
high-income and low-income taxi groups, we continue to use Pudong international airport
as a test case. For each taxi group, we extract the non-occupancy trajectory-based events
starting from or ending to the airport from the movement database. The dynamics of the
non-occupancy events related to the airport on 31 May 2010 are visualized in the space-
time cubes shown in Figure 5.16.
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(a) bottom income group from Pudong (b) bottom income group to Pudong

(c) top income group from Pudong (d) top income group to Pudong

Figure 5.16: The non-occupancy trajectory-based events related to Pudong international
airport on 31 May 2010.
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From Figure 5.16, we can get an overview of the spatiotemporal profiles of the four
types of events related to the airport. Regarding the amount of events, obviously for the
top taxi group, there are far more events of “non-occupancy from airport” (Figure 5.16(c))
than those of “non-occupancy to airport” (Figure 5.16(d)). The large number of “non-
occupancy from airport” events indicates that most of the high-income taxi drivers directly
cruise back to the city center after dropping off passengers in the airport rather than wait-
ing there for the next passengers. While the small amount of “non-occupancy to airport”
indicates that only few high-income taxi drivers cruise to the airport without passengers.
On the contrary, for the bottom income taxi group, we cannot find such difference in “non-
occupancy from airport” events (Figure 5.16(a)) and “non-occupancy to airport” events
(Figure 5.16(b)).

Looking at the time dimension, we can also observe the frequency distribution patterns.
For instance, in the bottom taxi group, there are more “non-occupancy to Pudong” events
(Figure 5.16(b)) happening in the afternoon around 15:00. While in the top income taxi
group there are more “non-occupancy from airport” events (Figure 5.16(c)) in the early
morning (00:00-05:00).

Furthermore, we can identify from the “non-occupancy to airport” events in both taxi
groups (Figure 5.16(b) and Figure 5.16(d)) that there are many vertical lines. These vertical
lines reflect that the taxis are stationary at particular locations for rather a long period.
Indeed we checked these places on the base map and found that they correspond to airport
taxi waiting pools where taxi drivers can rest or wait for picking up their next passengers.

5.4.2 Communication using Thematic Mapping

In this section, we emphasize the investigation of the overall spatiotemporal patterns by
using thematic mapping techniques for visualizing the statistics and aggregates of the non-
occupancy events introduced in Section 5.2.2. We firstly differentiate two sub event types
of stationary spots and cruising trips in Section 5.4.2. The differentiation of the two sub-
types is stimulated by the vertical lines observed from space-time cube visualization re-
sults in Figure 5.16(b) and Figure 5.16(d). In Section 5.4.2, for both taxi groups we investi-
gate the spatial distribution of the cruising events using dot mapping. In Section 5.4.2, we
focus on the spatiotemporal patterns of the stationary events by proposing a time matrix
and a pie-chart mapping technique.

Detection of stationary spots and cruising trips

From the vertical lines shown in space-time cube visualization results (Figure 5.16(b) and
Figure 5.16(d)), we observe that there are different driving behaviors when the taxi is non-
occupied, either stationary for a long time or keep moving without passengers. This stim-
ulates us to extract two sub event types from the non-occupancy events, namely stationary
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Top taxi group Bottom taxi group

Cruising trips 249600 141698
Stationary spots 30623 24263

Table 5.1: The numbers of the occupied, cruising trips and the stationary spots.

(1a) (1b) (1c) (2a) (2b) (2c)

Figure 5.17: The procedure of detecting the stationary spots. The black dots are stop
events.

event and cruising event.

This section details the process for detecting stationary spots from the non-occupied
events. A stationary spot is the location where a sequence of stop events occur and last for
more than five minutes. A two-step approach is designed to detect the stationary spots.
The specific work flow is illustrated in Figure 5.17 and described as follows:

First, we aggregate a sequence of static GPS points (v = 0) of a taxi to predefined grids
(grid size is about 100m×100m) and calculate the centroids of the points inside each grid.

(1a) Extract raw GPS points from the dataset with cars of unoccupied state and with the
instantaneous velocity of zero, and partition the study area into grids with the side
length of lg.

(1b) Assigning the extracted GPS points into the grids. In Figure 5.17 (1b), G1, G2, G3
and G4 are the grid divisions.

(1c) Calculate the duration and the count of the time-series GPS points inside each grid
for each taxi. If a sequence of stop events in a grid lasts a long enough time period
(e.g. more than 5 minutes) and are geographically close enough (e.g. lg/4), we treat
such a sequence as a cluster. In Figure 5.17(1c), the green dots in the grid G2 and G3
are two clusters of stop events.

Next, a refinement step is applied to the clusters, whose centroids are close to the bound-
ary of the grid by adjusting the surrounding grids to recalculate the clusters inside the new
grid.
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(2a) Move the grid by lg/2 if the mean center inside a grid is close to its grid boundary.
For instance, in Figure 5.17 the green rectangle named G2shifted is a new grid.

(2b) Repeat step (1c) and get the cluster in the new grid. The red dot in Figure 5.17 (2b) is
the new mean center of G2shifted.

(2c) Finally, the mean centers are identified as the stationary spots of the GPS points. In
Figure 5.17 (2c), there are two stationary spots denoted by red dots.

The detection of stationary spots by the above procedure largely reduces the amount
of GPS points. Note that the detected stationary spots are associated with temporal and
thematic attributes (e.g. stationary duration, starting and ending timestamp) and they may
refer to locations with different meanings such as parking lots, railway stations or hotels,
or traffic congestion locations at road segments or intersections.

After the detection, the stationary event can be extracted from the non-occupancy event
and the rest of the GPS points are of the cruising state and can be used for reconstructing
the cruising trips. Table 5.1 shows the numbers of the reconstructed occupied, cruising
trips and the stationary spots analyzed in this thesis.

In the following part of this section, we focus on the visual analysis of spatiotemporal
patterns of the cruising and stationary events. To investigate the general spatial patterns
of the cruising events, we use dot mapping technique and standard deviational ellipses for
visualizing their average daily spatial mean centers and the corresponding standard devi-
ations. To inspect the temporal patterns of the stationary events, we use time matrix graph
representing the temporal aggregates. For the spatiotemporal patterns of the stationary
events, we design pie-chart maps.

Dot mapping

When a taxi driver is cruising, he or she plans to minimize his or her cruising time and
intends to quickly pick up the next passenger. To investigate the temporal patterns of
the cruising trips between top and bottom income taxis, we calculate the average hourly
cruising duration (shown in Figure 5.18) between the two groups. The top income taxis are
normally cruising longer than the bottom group, especially in the time slots of midnight
and early morning from 22:00 to 06:00. During the day, typically at 09:00 and 17:00, the
differences of their cruising durations are relatively small.
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Figure 5.18: The average hourly cruising duration for top and bottom income groups.

To get an overview of the spatial distribution of the cruising events, we examine the
distribution of their mean centers.

Given a taxi trip t = ((x1, y1), (x2, y2), ..., (xn, yn), its spatial mean center is

mctrip(t) = (1/n
∑

i=1,...,n

xi, 1/n
∑

i=1,...,n

yi)

Consequently, given a set of taxi trips T = (t1, t2, ..., tm) in one day, the spatial mean
center of the trips is

mctripday = 1/m
∑
t∈T

mctrip(t)

Based on the above definitions, the average daily spatial mean centers of each car in the
47 days are calculated. Furthermore, to investigate the amount of variation or dispersion,
we also calculate the standard deviation of the daily spatial mean centers of each taxi.

Dot maps are designed to show the average daily spatial mean centers of selected tra-
jectories and their standard deviations patterns or uncertainties. We use filled circles to
represent the daily spatial mean centers, and semi-transparent ellipse to represent the cor-
responding standard deviations. Figure 5.19 shows the exemplary results of the dot maps.
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(a) bottom income group (b) bottom income group

(c) top income group (d) top income group

Figure 5.19: The average daily spatial mean centers of the cruising trips (a, b) and their
standard deviations (c, d). In (a, b), dots represent the average daily spatial
mean centers of each taxi and ellipses in (c, d) their standard deviations.

Figure 5.19 shows the distribution of the average daily spatial mean centers (Figure 5.19(a)
and 5.19(b)) of the cruising trips and their standard deviations (Figure 5.19(c) and 5.19(d))
of the bottom group (Figure 5.19(a) and 5.19(c)) and top group (Figure 5.19(b) and 5.19(d)).
The rings in Figure 5.19(a) and 5.19(b) are spatial partitions indicating the areas from the
center of Shanghai to the peripheral. One can easily observe that the spatial distribution
of the average daily cruise centers of the top group is more compact and concentrated in
the city center, while the spatial distribution of the daily cruise mean centers of the bottom
group is more dispersed. The orange ellipses in Figure 5.19(c) and 5.19(d) indicate that the
daily spatial mean center for the top group is more centralized than those of the bottom
group. For the bottom group, the further they cruise from the city center, the more they
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(a) The time graph of the stationary durations aggregated into
15-minute intervals.

(b) Average hourly durations
at stationary spots.

Figure 5.20: Temporal patterns of stationary events.

spread from their daily cruising spatial mean centers.

Time matrix graph and pie-chart mapping

To get a temporal overview of the stationary spots, we calculated the average stationary
durations of all the 2000 taxis, divided into 15-minute time intervals. The average station-
ary duration is visualized in a time graph (see Figure 5.20(a)). The rows represent the dates
from 10 May to 30 June, and the columns represent every 15 minute in 24 hours. The color
scheme is chosen from the colorbrewer system. The darker the individual block is, the
longer the taxis remain static. The white color means missing data (11 May, 4 hours on 11
June, and 12 - 14 June).

The time graph in Figure 5.20(a) shows significant daily and weekly rhythm. The daily
pattern is illustrated in each row where the dark red colors occur in the early morning
(01:00 - 06:00), at noon (especially from 11:30 - 13:00), and in a short period of evening
(around 19:00). These time slots can be interpreted as the sleeping, lunch and dinner peri-
ods respectively.

The weekly pattern is that for every seven rows the dark red color occurrences shifted
about two or three hour’s right, which means that stationary durations at weekends are
about 1 - 2 hours longer and later than that at weekdays. Interestingly, one exceptional
weekend pattern can be found on 15 and 16 June (Tuesday and Wednesday). By looking
up the Chinese calendar of 2010, we found that 14th to 16th June is the three-day national
holiday for the Duanwu Festival (unfortunately the data on 14 June are missing). To study
the difference between the top and bottom groups, we also inspected the time graphs
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of the stationary duration for them and found similar daily and weekly patterns. Next,
we created the line graph of Figure 5.20(b) which shows the average hourly stationary
duration of the top and bottom drivers. Unsurprisingly, the bottom taxi drivers stay at one
places longer than the top taxi drivers.

We investigate the spatiotemporal distribution of stationary spots with relatively long
durations, which are normally breaks or long waiting periods. For instance, during the
night, such stationary spots are mostly related to sleeping, and during the day, they may
imply long waiting in a queue. It is important to know the spatiotemporal distribution of
such events since they may have significant impacts on the taxis’ overall income.

Here, we extract and examine the stationary spots with the duration more than 30 min-
utes. A density-based spatial clustering approach is applied to cluster these stationary
spots. Specifically, DBSCAN (density-based spatial clustering of applications with noise)
algorithm [Est+96] is applied to detect clusters of arbitrary shapes, with the distance pa-
rameter set to 20m and the minimum point parameter to 10. The number of the extracted
spatial clusters of the bottom and top groups are 216 and 137 respectively.

Furthermore, we divided one day into four time intervals, namely midnight (00:00 -
06:00), morning (06:00 - 12:00), afternoon (12:00 - 18:00) and evening (18:00 - 24:00) and
calculate in each cluster the number of cluster elements (stationary spots) in each interval.
Pie-chart maps are used to visualize the spatial and temporal distribution of the clusters.
The location of each pie chart represents a cluster centroid; the size of the pie chart is
proportional to the total number of elements in each cluster; and the colors (i.e. orange,
red, yellow and blue) of the pie chart sectors correspond to the four time intervals and
these sectors are proportionally sized to the respective number of the cluster elements in
each time interval.
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(a) Bottom income group (b) Top income group

Midnight Morning Afternoon Evening

Figure 5.21: Comparison of the spatiotemporal distribution of the cluster centroids of the
stationary spots. The predefined four time slots are color coded; the number
of stationary spots in the each cluster is proportionally sized to the size of
each pie.

The two screeshots in Figure 5.21 show the spatiotemporal distribution of the cluster
centroids of stationary spots with the duration more than 30 minutes. There are two rela-
tively large pie charts in both graphs, which means that both groups often stay at these two
places. These two pie charts have large proportions of afternoon and evening. Actually,
they are located at the two transport hubs of Hongqiao (Figure 5.21(a)) and Pudong inter-
national airport (Figure 5.21(b)). We also notice that the cluster at Pudong for the top group
is much smaller than that for the bottom group. For both taxi groups, the relative small
pie charts are mostly in orange and correspond to the midnight while for the bottom taxi
groups there are more blue portions (Figure 5.21(a)) and refers to more stationary spots
during the evening interval (18:00 - 24:00). We can interpret that the small circles with
a large midnight and evening portions may correspond to their long-break and familiar
places, e.g. the locations of the taxi companies or taxi drivers’ home.

Proportional symbol mapping of stationary spots in off-peak hours

We noticed in (Figure 3.9(b)) there is a large discrepcany of the occupied ratios between
the top and bottom driver groups from 10am to 12pm. This off -peak-hour occupied ratio
difference might result from distinct driving behaviors and is interesting to get an insight.

To understand the spatiotemporal patterns of the stationary spots from 10:00 to 12:00,
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(a) Bottom income group (b) Top income group

Figure 5.22: Comparison of the spatiotemporal distribution of the stationary spots with
space-time cube between the bottom (a) and top (b) taxi groups from 10am
to12pm in the 47 days. Red dots represent the traffic congestion places and
yellow dots the parking places.

we extract from the detected stationary spots about 1100 and 1500 stationary spots during
this time interval for the bottom and top taxi groups respectively.

Until now, we did not differentiate the meanings of the stationary spots. Here, we clas-
sify the stationary spots from 10:00 to 12:00 to traffic congestion and parking places. To
identify the traffic congestion clusters, we utilize the road networks to calculate the dis-
tance from the clustered stationary spots to their nearest roads. A threshold (e.g. 20
m) is adopted between a traffic congestion place (< 20m) and a parking place (≥ 20m).
Figure 5.22 shows the space-time cube of the stationary spots of the bottom and top taxi
groups from 10:00 to 12:00 in the 47 days. Red dots represent the traffic congestion places
and yellow dots the parking places. From Figure 5.22, we can see that there are obvi-
ously more parking events indicated by the yellow dots from the bottom taxi group (Fig-
ure 5.22(a)), while there are more congestion events denoted by the red dots from the top
taxi group (Figure 5.22(a)).

To compensate the occlusion effect the space-time cube, a pie chart map of the cluster
centroids are inspected (shown in Figure 5.23). Similarly, we apply the DBSCAN clustering
method and get 95 and 102 clusters after the clustering method. Each pie chart corresponds
to a cluster centroid. If more than half of the elements in a cluster are traffic congestion,
the cluster centroid is regarded as a traffic congestion place and coded in red; otherwise it
is a parking place and coded in yellow. The color values correspond to the average hourly
stationary duration in the cluster. The size of the pie charts is proportional to the number
of elements in clusters. There are about 33 cluster centroids representing traffic congestion
for the bottom taxis and 47 for the top taxis. We can see from Figure 5.23 that bottom taxi
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5.4 Non-Occupancy Event Visualization

Figure 5.23: Comparison of the spatiotemporal distribution of the parking and traffic con-
gestion places between the bottom (a) and top (b) taxi groups. The parking
places are in yellow and the congestion places in red. The color values corre-
spond to the average duration at the places. The size of the circle is propor-
tional to the count of the cluster elements of parking or traffic congestion.

group are more likely go eastward to the airport “Pudong” at this time interval with a
longer parking time.

Figure 5.24 shows the average stationary duration (in minutes) spent on the traffic con-
gestion and the parking places (waiting for passengers) for top and bottom taxi groups.
The average time spend on traffic congestion is more or less the same, while the parking
time from 10:00 to 12:00 for the bottom taxi group are much longer than the top taxi group.
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5 Visual Analysis of Trajectory-based Events

Figure 5.24: The average stationary duration spent on the traffic congestion and parking
places (waiting for passengers) for top and bottom taxi groups.

5.4.3 Analysis of the Visualization of Non-Occupancy Events

The above sections studied in detail the spatial and temporal distribution of the trajectory
traces of top and bottom taxi groups, which reflects their distinctive driving behaviors.

Differences of the overall temporal patterns when they are cruising or stationary The trend of
the occupied ratios between the top and bottom taxi groups (Figure 3.9(b)) reveals that
the top taxi group drives longer distance with passengers than the bottom group. In spite
of their longer occupied trips, in terms of cruising durations, the top taxi group normally
cruises longer than the bottom taxi group especially in the evening and during the mid-
night (Figure 5.18), which might reduce the profit via the cost of gas consumptions. How-
ever, in terms of stationary durations, top taxis have constantly shorter average durations
(Figure 5.20(b)), which might in turn compensate the loss of longer cruising. In addition,
we also found the daily and weekly routines of all the taxis by investigating their station-
ary durations (Figure 5.20(a)). The daily patterns show that long breaks often occur in
the midnight and early morning, lunch or dinnertime. The weekly pattern shows obvious
differences between weekdays and weekends.

Differences of their spatial cruising distributions In terms of spatial driving behaviors, the
cruising patterns of the top taxi group are more compact and concentrated in the city cen-
ter, as shown in Figure 5.19, while the spatial distribution of the bottom taxi group is more
dispersed and the further they cruise from the city center, the more they spread. Moreover,
comparing the cruising patterns with the spatial distribution of the long break stationary
spots, we can observe that there are no obvious relationships of the cruising mean centers
and the long-parking places around midnight, and thus can interpret that taxis might not
cruise around their long-parking or long-break places.

Differences of their stationary spatiotemporal characteristics We observe from the occupied
ratio plot (see Figure 3.9(b)) that there are relatively large differences during off-peak
hours, which might be the main reason that result in the income differences. Thus we
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study in detail the spatial and temporal distributions during the off-peak time intervals,
especially from 10:00 to 12:00, and found that the top and bottom taxi group spend sim-
ilar quantity of time on the road congestion but significantly distinct quantity of time on
the parking places (see Figure 5.24). One reason might be that bottom drivers wait much
longer in some places, for instance, in Figure 5.23, we can easily see that there are a large
number of bottom taxis in the Pudong airport waiting for a relative long time period.

5.5 Summary

In this chapter, we have extensively investigated the spatio-temporal patterns of two types
of trajectory-based events, i.e. origin-to-destination and non-occupancy events, by using
specific scientific visualization and thematic mapping techniques.

We have first considered the origin-to-destination events. For the extensive exploration,
we have employed highly interactive techniques which can serve for diverse purposes.
Move specifically, we have proposed an interactive visual clustering method, parallel co-
ordinates, and gradient line rendering techniques. For the communication of overall pat-
terns, we have design easily understandable flow maps. Meanwhile, simple interaction
techniques have been employed to highlight the flows of particularly interesting spatial
regions.

We have then moved to visual analysis of non-occupancy events focusing on the two
taxi groups of different incomes. For exploration, we have applied the interactive clus-
tering technique, parallel coordinates, direct line rendering, and space-time cube to show
the dynamic process of the events. For communication, we have further identified two
sub-type events, i.e., cruising and stationary events, and focus on mapping their statistics
and aggregates by thematic cartography techniques. More specifically, we have used dot
mapping techniques to reveal the spatial patterns of cruising events, and time matrix and
pie-chart mapping of stationary events.

To summarize, we list in Table 5.2 the techniques of visualizing the trajectory-based
events in this chapter. We conclude from the aforementioned examples that:

• Scientific visualization techniques are highly interactive and suitable for event explo-
ration for diverse purposes. Thematic maps are especially designed to communicate
specific aspects of the summarized data and easily understandable patterns.

• The exploration stage in scientific visualization can be helpful to identify interest-
ing patterns that can be communicated through thematic mapping. For instance,
the space-time cube visualization results (Figure 5.16) stimulate us to differentiate
two sub types of non-occupancy events, which are further mapped using a diverse
thematic mapping techniques to show their respective spatiotemporal patterns.

• Thematic mapping results with some hotspots can be helpful for orienting the next
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5 Visual Analysis of Trajectory-based Events

Techniques Origin-to-destination Non-occupancy

Interactive visual clustering
Scientific Visualization Parallel coordinates

Gradient line rendering Direct line rendering

Dot mapping
Thematic mapping Flow mapping Time matrix graph

Pie-chart mapping

Table 5.2: Visualization techniques for trajectory-based events.

step exploration. For instance, from the flow map (Figure 5.12), users can perceive
the flow volume between pairs of the spatial divisions and may easily find interesting
flow patterns in a specific area. The users then can select the area and check the
individual events by rendering the lines on a map.
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6 Conclusion and Outlook

6.1 Conclusion

This thesis is devoted to bridging the gaps between two disciplines thematic mapping
and scientific visualization to achieve synergetic effects for the visual analysis of big data.
To demonstrate the necessity and feasibility, the author first conducted an in-depth com-
parative study of these two disciplines, and proposed a variety of thematic mapping and
scientific visualization techniques for the visual exploration and communication of spa-
tiotemporal patterns of massive movement events derived from taxi floating car data.

This work makes the following main contributions:

• It established the theoretical framework to achieve synergetic effects for the visual
analysis of big data by taking advantage of the two disciplines. Chapter 2 conducted
a systematical comparative study of thematic cartography and scientific visualiza-
tion. Following the order in the visualization pipeline, the comparison covered seven
essential aspects: purposes, data sources, georeferencing, data preprocessing, classi-
fication, symbolization, and finally perception and cognition. The comparison re-
sults showed that these two disciplines reveal different visual analytical levels and
play a complementary role with each other. These findings suggest the necessity and
feasibility of achieving synergetic effects from two disciplines by taking advantage
of their complementary characteristics.

• Based on the theoretical findings, we identified specific use cases and conducted
extensive experiments of visually analyzing massive and complex real-world taxi
floating car data (FCD). Two FCD event categories at different abstraction levels,
namely point-based and trajectory-based events, were identified for visual analysis.

• For the visual analysis of multivariate point-based events (O,N, P,D), we proposed
a variety of scientific visualization and thematic mapping techniques, which reveal
spatiotemporal patterns of the events at multi-scales from multiple perspectives. The
visual exploration by means of scientific visualization methods is based on the pro-
posed pie radar glyphs, time graphs and a salience-based method, which reveal the
spatiotemporal patterns of multivariate events, the temporal patterns of each indi-
vidual variate and the most salient variates. Their compact visualizations revealed
the underlying interesting data distributions, which can be used for further mining,
e.g. inferring urban land use types. To effectively communicate the patterns of the
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four types of point-based events, choropleth and proportional mapping techniques,
are applied, which allow an easy perception and interpretation of high-level spa-
tiotemporal event patterns.

• For trajectory-based events, we firstly identified two specific trajectory-based events,
i.e. origin-to-destination and non-occupancy events, and then proposed a visual
analysis framework integrating multiple scientific visualization and thematic map-
ping techniques. From the perspective of scientific visualization, highly interac-
tive techniques were employed, including interactive clustering methods, a paral-
lel coordinates approach, gradient and direct line rendering techniques, and space-
time cube, to allow users freely explore potentially interesting clusters. A variety of
thematic mapping techniques, including flow mapping, dot mapping, time matrix
graph, and proportional mapping, are proposed for the effective communication of
the spatial interaction patterns and taxi driving behavior patterns.

6.2 Outlook

The diverse historical developments of thematic mapping and scientific visualization led
to the different disciplinary focuses. However, facing the challenges proposed by big data,
future geovisual analytics needs to integrate exploration functions by means of scientific
visualization and the communication functions based on thematic mapping to allow the
analysts to effectively get insights into massive geospatial data.

On the basis of this work a number of future improvements are possible:

• Based on the theoretical framework and empirical findings of this thesis, we will con-
solidate a methodological design system that can effectively couple thematic map-
ping with scientific visualization techniques.

• Following the experiments on the FCD data, we plan to carry on user evaluations on
fundamental questions of what and how much information the user can effectively
and efficiently derive from various combinatorial functionalities from scientific visu-
alization and thematic mapping.

• From the visualization technical point of view, we will continue to extend the existing
visualization techniques for better exploration and communication. From the practi-
cal usage perspective, we will identify target user groups that can benefit from using
the developed tools, e.g. taxi companies and city/traffic/transport planners. For in-
stance, understanding the significant different driving behaviors between high- and
low-income taxi groups of the non-occupancy trajectory events (Section 5.4) may
help both taxi drivers and taxi companies to make more profits.

• We also plan to experiment our techniques on other large datasets, e.g., social media
data, point clouds, and mobile phone data.
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