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Abstract—As current studies show, in the last couple of
years software functionality of modern cars has increased
dramatically. This growth will gradually increase the system
complexity, because the new functionality is more and more
interconnected. To cope with this process, it is necessary to
change the current electrics and electronics (E/E) architecture.
An adequate run-time environment (RTE) is the heart of such
a new E/E architecture and orchestrates the interaction and
communication between the components in such systems. Due
to high safety requirements of modern driver assistance, the
RTE must also provide built-in safety features. This paper
analyses these requirements and derives a set of software
modules of an RTE that enforce the safety critical behavior
of the entire system. The suggested software architecture can
act as a blueprint for other run-time environments that deal
with similar requirements. The proposed concept has been
integrated in the RTE, that is developed in the RACE project1.

Keywords-embedded systems, automotive systems, safety-
critical systems, middleware, components and reusability,
safety, fault tolerance

I. INTRODUCTION

Over the past 30 years, software and electronics have
made significant innovations in automotive construction pos-
sible: from the anti-lock braking system in 1978 to electronic
stability control in 1995 and to the emergency brake assist
in 2010. Accordingly, software has expanded significantly,
from about 100 lines of code (LOC) in the 1970s to as much
as ten million LOC [5].

For a recent study [3], 240 experts worldwide have been
interviewed to discover how the automotive electrics and
electronics (E/E) architecture will evolve in the next 20
years. The study identified several architectural changes of
modern cars influenced by disruptive changes in society
and environment. Currently people are getting older, but
nevertheless want to stay active as in the past. In order

1Robust and Reliant Automotive Computing Environment for Future
eCars, http://www.projekt-race.de/

to support these social changes, the new automotive ar-
chitecture must support autonomous functionality, such as
driving [6], [15], parking and new driver assistance systems.
Due to high criticality of these features, the E/E architec-
ture implementing them must provide built-in mechanisms
to achieve fault-tolerance. Architectural solutions for both
hardware and software, which support critical applications,
already exist in the industry. Yet they lack the possibility of
providing additional services or integrating new components
after assembly of the car (through Plug&Play). This miss-
ing feature can be found in service oriented architectures
(SOA). SOA has been studied in the IT community for
years as an architectural pattern [2], and corresponding
middleware technologies have been developed. Therefore,
we believe that the automotive industry may benefit from
these established solutions. Nevertheless, to fulfill the safety-
requirements automotive RTE must provide functionality
that allows for reliability, safety and security.

This paper describes the challenges (Section II) of the new
automotive architecture and its related run-time environment.
Section III describes the proposed RTE architecture with
special attention to safety and reliability, and how these can
be satisfied and integrated into a generic safety concept. In
section IV, a summary of development process requirements
that need to be taken into consideration when implementing
such a RTE is given. The essential components of the
proposed concept have been developed and integrated in a
demonstrator, which is presented in section V. Section VI
compares our approach to available solutions provided by
industry and scientific community. Section VII provides the
conclusion and summarizes future steps.

II. CHALLENGE: ADAPTIVE
AUTOMOTIVE RUN-TIME ENVIRONMENT

As outlined in the introduction, the novel run-time envi-
ronment must provide a flexible basis for executing platform-
independent high-level automotive applications and support
fail-operational behavior. A preliminary requirement to be



Figure 1. Middleware architecture

able to satisfy these challenges is a hardware architecture
providing redundancy and reliability both regarding com-
munication, processing and power supply. The run-time
environment must support the execution of components up
to the highest safety class ASIL D. Such architecture is
suggested in [16]. In this architecture all system components
are interconnected by a network system in such a way, that
a single-point failure can be tolerated without noticeable
degradation. For the remainder of this paper, we assume
such hardware architecture as the underlying basis for the
discussed run-time system.

Besides mechanisms provided by common run-time sys-
tems such as real-time deterministic scheduling and data
exchange services, the RTE must provide a set of safety-
related mechanisms. These include health monitoring and
diagnosis. The architecture should benefit from early error
detection and a unified error handling. Redundant execution
of functions shall be supported by the RTE without any
special treatment at application level. A centralized diagnosis
unit should allow for identification of errors based on mul-
tiple possibly disjoint symptoms. Reconfiguration services
should be available to support graceful degradation and
application migration scenarios.

Besides safety requirements, another important aspect
pointed out in the study [3] was adaptivity. Via Plug&Play
an owner should be able to personalize his car, stay up-to-
date by adding new hardware and software components, or
upgrade old components with newer software. To support
Plug&Play, the traditional message-oriented design should
be replaced by a data-centric approach: instead of specify-

ing sender-receiver relationships, the component developers
have to specify the component interfaces by a standardized
data model. Based on this data model, the RTE shall
establish data paths between components.

This late system expansion with components, which influ-
ence the safety of cars, must comply with pre-defined quality
specifications. To provide flexibility in safety mechanism
instantiation and configuration, separation of these mecha-
nisms from application code is required. The main advantage
of the data-centric approach is that data redundancy can
be exploited to achieve fault-tolerance and improve error
detection. If, for example, several sensors provide informa-
tion about the velocity of the car, detection of an erroneous
sensor can be simplified, and the failure of this sensor can
be tolerated by using the redundant sensor information.

III. RUN-TIME ENVIRONMENT COMPONENTS

The proposed RTE architecture is depicted in Figure 1
and the components that ensure the safety requirements are
described below. The RTE data model exploits the data-
centric approach to decouple applications from the infras-
tructure components, as specified by [2]. In this approach,
data is not directly delivered from sender to receiver. Instead
a publisher announces the available data and a subscriber
registers to these publications (Publish-Subscribe, [4]). This
approach provides the first step towards enabling Plug&Play.
A generic implementation of Publish-Subscribe mechanism
requires route calculation at runtime. However, dynamic data
routing makes it hard to provide real-time guarantees. To
address this issue, the Plug&Play procedure is logically sep-



arated into two phases. At (re-)configuration time (”Plug”
phase) data paths are (re-)calculated. After (re-)configuration
has been completed (”Play” phase), static data routes are
used, so an inefficient route lookup is avoided.

To represent various information of the car, e.g., velocity
or exterior temperatures, different semantic data types (so
called topics) are defined. These publications are used for the
communication among software components over hardware
boundaries.

In the following, we describe in detail the most relevant
components of the suggested RTE.

A. Data Handler (DH)

Central component of the RTE is the signal database
or Data Handler, which stores system data, corresponding
safety and quality attributes, as well as information concern-
ing the data flow. All communication between applications is
performed via the DH. Therefore, separation of the different
application components can be reached and validity of data
flow can be checked.

Furthermore, the data handler can restrict the access to
the different data elements and therefore enforce safety
and security rules. Data elements, which are instances of
topics, can only be deleted or created in the ”Plug” phase.
Components are not allowed to delete or add new data
elements to the DH. The operations for reading data from
and writing data to the DH are atomic and so are not
interruptible by other processes, thus these operations are
performed exactly once. In case of an operation failure, the
operation will not be executed, or the transaction will be
reverted, so that no inconsistency will remain in the storage.

It will be even possible to log every operation, such as
read, write, and recognition of safety problems for future
audits. These records could contain information about date
and time of the event, the identified subject, and the outcome
of the event. In addition, one could add a mechanism to
dump the content of the DHs periodically or at shut down to
a persistent storage, e.g., hard disk, to allow error recovery.
This dump can also be checked for integrity and consistency
at specified time periods.

B. Data Flow Monitor (DFM)

Data Flow Monitor is an important requirement to critical
application as defined by [10]. The DFM provides mecha-
nisms for plausibility and consistency checks on data, such
as a validation of data against a pre-defined range of ex-
pected values. Only valid data is forwarded to applications.
DFM also hides data redundancies from the applications
by merging data from different sources, which represent
same information. Beyond semantic checks, checking of data
correctness can be performed by applying data hardening
strategies in a transparent way, such as duplication with
encoding.

C. Scheduling and Execution of Functions

Safety-critical systems and their corresponding fault-
detection mechanisms require deterministic execution of
calculations [10]. The Execution Manager (EM) implements
time-triggered execution of applications and RTE compo-
nents in a cyclic manner with a pre-defined minor cycle
length, e.g., 10 ms. A major scheduling cycle containing
multiple minor cycles allows scheduling functions with
longer periods. A schedule set consists of multiple static
scheduling tables. Typically one scheduling table corre-
sponds to a single platform mode. Activation of a specific
schedule is triggered by a mode change.

An application component can have at least one alterna-
tive implementation specified, which enables configuration
of a recovery block. To free resources for more critical
applications in case of graceful degradation, passivation of
application components shall be supported.

The schedule configuration can be modified by privileged
RTE components at runtime to enable adaptive behavior
(including Plug&Play). Such changes are performed on a
schedule copy and applied in a transactional manner, which
guarantees a consistent schedule set. If reconfiguration can-
not be performed in at least one schedule of the required set,
the changes are not feasible, and the transaction is rolled
back. The switch from an old to a new configuration is
performed at the end of a major cycle to eliminate any
unwanted side effects.

D. Health Monitoring (HM)

The health monitoring concept is built around various
monitor components, tests, and plausibility checks, which
report their status through publication of indication mes-
sages. These messages are instances of a special topic
type named ”MonitoringIndication” and are processed by
the Platform Supervision service. The overall structure of
health monitoring subsystem is depicted in Figure 2. Below,
first we describe in detail the different types of health
monitoring components and after that we give an overview
of the Platform Supervision concept whose main task is the
processing of the results produced by the HM.

The concept proposes the following health monitoring
components:

An Application-specific monitor is a specific supervisor
developed for a concrete software unit independently based
on function specification. Typical examples are plausibility
checks developed by an independent team. It has read access
to input data and internal state of the function and performs
checks to ensure state consistency and transition correctness.
If a function is specified as a state machine, generation of
concurrent state checker logic is possible, as given in [18],
[13]. Otherwise, a set of constraints on state and inputs of
the function needs to be specified by a domain expert or is
generated from assertions in the function code, as specified
by [9]. One specific class of such monitors are control flow



Figure 2. Example structure of Health Monitoring

monitors, which can compare series of checkpoints during
module execution with allowed set of control flow paths.

Monitoring of application data flow is provided by DFM
and mostly deals with data exchanged over the network. De-
sign diversity is supported by configuration of components,
which perform correlation or comparison over function
outputs. In this way diverse implementations of the same
function run in parallel, and the outputs are fused into a
single one.

Application-independent protection mechanisms perform
local protection of data and control flow, such as trans-
parent monitoring of memory blocks with a hash function,
replication of memory blocks or repeated execution of
functions. Memory and time partitioning belong also to this
category. Along with that to support external monitoring
facilities, as required by [10], corresponding components
can be instantiated within RTE (e.g., heartbeat monitoring
or interface to external watchdog).

Global tests include, for instance, periodic CPU tests,
validation of ROM/Flash checksums, memory tests, and
hardware-assisted built-in self-test for arbitrary hardware
components.

Internal consistency checks are executed on RTE com-
ponent boundaries and within RTE components. Similar to
application-specific monitors these checks can be generated
from state-machine descriptions or assertions in code. Asser-
tions are usually inserted at design time to allow detection
of inconsistent states within RTE components. In production
code the generated checks are used to detect systematic
latent faults in software.

E. Platform Supervision (PS)

The Platform Supervision service handles hardware (ran-
dom) and software (systematic) faults, as well as illegal
access in combination with the Security Manager. Its main

functions are: reception of MonitoringIndication messages
from different components, aggregation and inference of
these indications to produce ConsolidatedIndications (Figure
2). The latter set is then synchronized with other nodes in
order to achieve a consistent view on the system state as a
whole. ConsolidatedIndications are then updated and made
available to the state management components. Systematic
errors in specific functions are signalled to the Application
State Manager service, which performs necessary recovery
of the function. Detected faults currently classified as ran-
dom hardware faults or RTE systematic faults are passed to
the Platform Mode Manager and also accumulated locally
to achieve statistically sound diagnosis of intermittent faults.
The process of fault detection, consolidation and reaction
and the corresponding mapping to RTE components is
depicted in Figure 3.

Figure 3. Separation of fault detection from fault handling

F. Platform Mode Manager (PMM)

PMM monitors the presence and triggers reconfiguration
of computing nodes in the network. It supports various
platform modes, such as self-test, startup, integration of new
nodes into the core, and self-isolation. PMM controls those
platform modes and it triggers changes of the schedule. The
new mode is calculated in each cycle based on the current
platform mode, ConsolidatedIndications published by PS
and the reconfiguration events.

G. Application State Manager (ASM)

ASM functionality is based on application states, which
are computed based on ConsolidatedIndications published
by PS. Application state reflects the state of an application
or an application cluster2 and the quality of its execution on
all nodes.

In case redundancy of applications is applied, ASM aggre-
gates application states across all network nodes. ASM also
performs preconfigured recovery actions (restart, migrate,
or shutdown) triggered by application or application cluster
state changes. Two recovery strategies for application clus-
ters are supported: a recovery action that handles erroneous

2An application cluster is a group of applications that share software
components and belong to the same fault containment region.



applications only, and recovery action that considers the
entire cluster.

H. Safety Manager (SM)

Safety Manager is a specialized configuration component,
which is triggered by the Plug&Play Manager3 during
instantiation of a new safety-critical application. Based on
safety related information delivered with the component, the
SM will execute the following steps: During the ”Plug”
phase SM is responsible for: (a) performing a lightweight
run-time safety analysis in order to check early the possibil-
ity of adding a application to the local node, (b) checking
the feasibility of extension of local HM services in order
to support adding a application, (c) performing necessary
final configuration of application-independent monitoring
services, such as memory protection, before instantiating the
application, (d) ensuring correct configuration of ASM and
PMM to support fault-tolerant execution of the application,
and (e) reaching consensus with other nodes ready to deploy
the application.

When adding safety-critical function into a system, the
concept proposes the following sequence:

1) Minimum required degree of redundancy Redmin is
explicitly specified during installation of the application
within safety information. If execution with Redmin

allows reaching the required safety level ASILreq, the
SM accepts it and proceeds with the configuration. To
check this, a lightweight qualitative and quantitative
safety analysis is performed, and the result of the
analysis is compared to the requirements for ASILreq.
Otherwise, a higher redundancy degree is selected.

2) The set of health monitoring services for the applica-
tion is determined. For example, if the application is
supplied with a function-specific application monitor,
and its diagnostic coverage is already high, then there
is no need in scheduling additional tests to guarantee
consistency. Otherwise mechanisms are selected based
on requirements to residual failure rate and available
resources.

3) In a redundant execution scenario, additional network
paths and DFM component instances need to be con-
figured before completion.

4) Consensus must be met with other nodes ready to
execute the component with the same degree of redun-
dancy.

5) Reconfiguration is completed when all nodes ready to
execute the component are synchronized in ”ready to
start” state. SM completes state manager configuration,
and signals Plug&Play Manager that the function is
ready to be started.

3The Plug&Play Manager is responsible for calculating new configura-
tions if new components should be added. In case a valid configuration can
be calculated, new components will be integrated into the system.

IV. QUALITY REQUIREMENTS TO THE DEVELOPMENT
PROCESS OF THE RUN-TIME ENVIRONMENT

According to ISO 262626, the development process of
a run-time environment as proposed above, shall consider
techniques that satisfy the requirements on development of
ASIL D systems. Even though the techniques described
below are not the focus of this paper, their importance should
be taken into consideration during development.

1) Software Quality Control: Some of the necessary
techniques [10, part 6] that ensure high quality of the
development process are:

• enforcement of low complexity through well defined
software architecture;

• coding and modelling guidelines, including naming
conventions;

• usage of language subsets (e.g., MISRA C [12]);
• usage of design principles, such as limited use of

interrupts, scheduling properties, etc.;
• application of design for testability concept (not only at

unit level but also on system level) e.g. fault-injection,
back-to-back testing;

• utilisation of test coverage metrics that state the com-
pleteness of tests with metrics such as branch coverage
and MC/DC (Modified Condition/Decision Coverage).

The architectural concept described above does not only
allow application of the mentioned techniques, but also pro-
vides some benefits through, e.g., DH logging capabilities,
which allow in-field monitoring.

2) Requirements to Tool Certification for Specified RTE:
To support configuration of RTE and applications, configu-
ration tools are required. Tool confidence level (TCL) 2 [10,
part 8] should be reached by such tools. This means that tool
development process should be evaluated, and an extended
verification and validation workflow should be developed
to check the output of the generator against expectations.
An example technique is to generate testbenches for the
configuration generated by the tool, using two separate and
independent code generation paths or templates.

Figure 4. RACE system architecture



V. EXPERIMENTAL EVALUATION

To evaluate our RTE architecture, the essential compo-
nents were combined and tested firstly in a simulation envi-
ronment and then we integrated them into one demonstrator.

The “Revolution” car prototype is set up in the context of
RACE project. The essential features of the proposed run-
time environment together with the operating system and
drivers, run on all vehicle control computers of the central
platform computer (Figure 4).

VI. RELATED WORK

A. AUTOSAR

The AUTOSAR standard [1] describes a platform which
allows implementing future vehicle applications and mini-
mizes the current barriers between functional domains. AU-
TOSAR maps functions and functional networks to different
control nodes in the system, almost independently from the
associated hardware. Therefore, AUTOSAR introduced a
RTE, which implements together with the operation system,
AUTOSAR COM, and other Basic Software Modules the
concept of Virtual Functional Bus (VFB). The VFB interface
realizes the communication between AUTOSAR software
components, thus the RTE encompasses both the variable
elements of the system infrastructure as well as standardized
services. The communication in AUTOSAR can be catego-
rized by sender-receiver, message passing facility, or client-
server, which provides function invocation. Communication
is provided not only on a task basis (intra-task and inter-
task) of the same partition, but also as a paradigm to
exchange data between partitions and ECUs. Partitioning
was introduced in version 4.1 of AUTOSAR [1] in order
to enhance safety and support ISO26262 [10]. AUTOSAR
applications and RTE are configured during design phase
and then deployed on the ECU. Since AUTOSAR does not
provide interfaces enabling Plug&Play, the whole system
must be replaced when integrating a new functionality. This
is not necessary in our system, so our approach can be seen
as an extension to AUTOSAR.

In [11] an approach to bring safety mechanisms com-
plementary to AUTOSAR is described. The goal of the
approach is to limit influence to the target middleware and
OS services, and to use certain platform interfaces as ”sen-
sors” for the defense software system, which in turn through
”actuator” interfaces influences the behavior of the system.
This allows integration of described strategy not only into
AUTOSAR systems, but also implies high variability of the
corresponding implementation. For embedded systems the
overhead resulting from glue layer between the actual system
and the defense system might be unacceptable.

B. SOA in the Automotive Domain

SOA systems provide Plug&Play functionality and enable
integration of new services into existing systems. Different

car manufactures started to integrate the SOA approach into
their automotive systems.

One example is SOA for Diagnostics that grants access
to the diagnostic information by a special crafted applica-
tion through a wireless interconnection. Diagnostics helps
manufacturers to find and understand faults in the system
by accessing the Onboard-Diagnostics version 2 (OBD-II)
port with a specific connector and software. Manufacturers
improved the access to the diagnostics memory by wireless
connection through the infotainment system. An example is
given in [8]. This solution is only used to acquire diagnostic
information and to install firmware updates for selected
components. Furthermore, standard SOA approaches do
not take into account safety requirements. In contrast, our
approach offers the possibility to dynamically upgrade the
whole system with new functionality, such that safety-critical
functionality remains correct.

Another example is SOA in the Infotainment domain, as
given in [7]. There, the main objective is the installation
of applications, download of media streams, or usage of
services outside the vehicle. Compared to our approach,
infotainment systems and services are not safety-critical.

C. Adaptive Systems in Automotive Domain

There are numerous approaches to integrate different
aspects of adaptivity in the real-time systems domain. How-
ever, most researchers from the adaptive systems commu-
nity treat safety as one of many properties of the real-
time systems, as noted by [14]. Many researchers try to
adapt strategies of the high performance computing in the
embedded domain, e.g., for storage [17]. This improves the
reliability of the distributed data storage and allows certain
self-healing behavior, but adaptivity in those approaches is
limited by a specific application and node set.

A practice-oriented approach is presented in [14]. The
authors share their views on safety certification perspectives
for open adaptive systems, and present their approach, which
is based on conditional safety certificates. Conditional cer-
tificates describe preprocessed technical safety requirements
with a domain-specific language and transfer these require-
ments to the runtime safety model. Their approach is initially
oriented at assisted adaptive living or car2car communication
and similar loosely coupled systems. Our approach also uses
runtime safety analyses before it instantiates new functions
dynamically, but is focused on automotive control systems.

VII. CONCLUSION

This paper describes an architecture blueprint of a fu-
ture adaptive automotive RTE. The essential challenges
and expectations of the new automotive architecture and
its related RTE have been summarized. To tackle these
challenges a proposal for an RTE architecture is presented
with special focus on safety and reliability. The concept has
been validated by simulation and developed demonstrator.



Security as an additional requirement for such systems is
also considered in the proposed RTE concept, as both safety
and security can cooperatively use many mechanisms. The
potential for optimization of the new E/E architecture to
reach high cost efficiency will be explored in future. Com-
patibility with existing development processes and supply
chains is also to be considered.
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