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Abstract. Fuzzy neural networks are a powerful machine learning tech-
nique, that can be used in a large number of applications. Proper learn-
ing of fuzzy neural networks requires a lot of computational effort and
the fuzzy-rule designs of these networks suffer from the curse of dimen-
sionality. To alleviate these problems, a simplified fuzzy neural network
is presented. The proposed simplified network model can be efficiently
initialized with considerably high predictive power. We propose the en-
sembling approach, thus, using the new simplified neural network models
as the type of a general-purpose fuzzy base-learner. The new base-learner
properties are analyzed and the practical results of the new algorithm
are presented on the robotic hand controller application.
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1 Introduction

Fuzzy neural networks have found successful applications in a wide range of
domains. The most commonly used models are the additive fuzzy system models,
rule-based universal approximators [2,1]. Fuzzy rules are the core of the fuzzy
neural models and can be interpreted as the local submodels, interacting with
each other through the fuzzy inference design.

Fuzzy neural networks suffer from a number of problems. First of all, the de-
sired number of the fuzzy rules is typically not known beforehand. This problem
is very similar to the problem of choosing the number of neurons in a common
neural network, which is typically approached by trial and error or by means
of cross-validation. In fuzzy neural networks this problem can be efficiently cir-
cumvented with clustering procedures [1,3], used for rule-base estimation. Using
Gaussian mixture models, one can efficiently initialize the rule-base in an un-
supervised manner and to inspect the optimal number of rules by means of
some information criteria, like Bayesian Information Criterion. However, mix-
ture models in their turn greatly suffer from the curse of dimensionality, making
them less applicable to a large portion of real-world datasets.

The second problem of the fuzzy neural networks is their learning speed, which
is typically higher, when compared to other methods like common MLPs, SVMs
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or Random Forests. The fuzzy neural network model is simply more complex,
which leads to increased learning time, in order to achieve a similar level of
generalization accuracy.

We propose the solution to the described fuzzy neural network problems by
designing a specific low-cost fuzzy neural network architecture, which will be
used as a base-learner in the ensemble models. For this purpose we have devel-
oped a simplified fuzzy neural network model, efficiently initialized with k-means
clustering and only one least-squares estimation. Under different hyperparame-
ter settings, the proposed simplified network model can have different properties,
which are addressed in this paper.

The ensembling approach, based on the gradient boosting algorithm [4] is in-
troduced for fuzzy neural networks. Previous approaches to form fuzzy-based en-
sembles were mostly based on the bagging procedure, i.e. Fuzzy Random Forests
[5]. In our approach, we want to fix the fuzzy base-learner complexity and take
advantage of boosting for efficient learning of the details, not captured with other
models in the ensemble. In this paper, we will provide both the algorithmic de-
scription of the proposed model, and the justifications about the choice of the
hyperparameters with the resulting model properties.

In Section 2, we describe the fuzzy neural network models. In Section 3,
we provide the basic gradient boosting algorithm description. In Section 4, the
proposed fuzzy neural base-learner is presented and it’s properties are analyzed.
Section 5 provides the application example of the GBM ensembles with the
proposed fuzzy base-learners on the robotic hand controller. In Section 6, the
results and conclusions are discussed.

2 Fuzzy Neural Networks

In the course of this article, only the regression problem will be considered. Let’s
suppose that we are given the dataset (x,y)Y |, where x = (21, ..., z4) € R? refers
to the explanatory input variables and y € R to the corresponding response

variable. The goal is to reconstruct the unknown functional dependence x ER Y
with the parameterized estimate f(x,6), such that the empirical squared error
function is minimized. Within the regression problem context, we will consider

the estimate f(x,6) to be the additive fuzzy system.

2.1 Additive Fuzzy System Model

Fuzzy system is a set of fuzzy "IF-THEN” rules that maps the explanatory
input variables x to the response output variable y. Additive fuzzy systems
reconstruct the underlying functional dependence by covering the joint input-
output distribution with fuzzy patches which encode these fuzzy rules. Fuzzy
patches form coordinate-wise fuzzy sets in the ”"IF”, or premise, part of the
fuzzy rules, and local regression models in the "THEN”, or consequent, part.
Given G fuzzy rules, the i-th fuzzy rule is give in (1), i = 1..G.

Rule; : IFz Is A; THEN vy is f;(z,6;), (1)
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— A; is a fuzzy set defined on z, i = 1..G;
— fi(x,0;) is a consequent model of the rule.

We will consider the additive model, where the fuzzy sets A; are defined on R?
by cartesian product coordinate-wise: A; = A;1 X Ajo X ... X A;q. Each fuzzy set
A;j, defined on z;, is in it’s turn characterized with some membership function
MAi,j(xj) €10,1],i= m,] =T.n;

There are different design choices for the membership functions to be used.
In this paper we will focus on the Gaussian model of the membership function,
parameterized with it’s mean m;; and standard deviations s;;:

2
(wj—m;j)

pa,(x)=e *u  i=1.G,j=1.d (2)

The consequent models ﬁ (2) used can also be of different form and complexity.
We will consider the commonly used linear regression consequents, as they are
easy to estimate by solving LSE problem:

d
l‘) = Zcijxj + ¢i0,7=1..G (3)

j=1
After all the G fuzzy rules are fired, having calculated all the p4,; and fl, the

aggregated memberships pa, = H pa,, (x;) are calculated.
]_

At last, the overall output of the network is calculated as the weighted average
of consequents, with weights equal to normalized aggregated memberships. The
overlapping fuzzy rules are fuzed with respect to their relative certainty. The
overall functional model of the additive fuzzy model is given in (4):

G d
> kA, (D2 cijry + cio)
i=1 j=1 —

j = = i=1.G,j=1.d (4)
;MAi

2.2 Fuzzy Neural Network Model

The (4) fuzzy function estimator can be represented in the form of a feedfor-
ward neural network with two parametric layers, containing the evaluation of
the premise and consequent parts of fuzzy rules. The resulting neural network
architecture is shown on Figure (1a).

For learning in these networks, hybrid learning algorithms are used. At each
iteration, at first the fuzzy membership function parameters of the Gaussians
m;, 8;; are optimized by a gradient descent step, i = 1..G,j = 1..d. Then, the
consequent parameters c;; are optimized by solving a single least squares linear
regression problem, i = 1..G,j = 0..d. Due to the limited size of the article, we
omit describing the details of the learning procedure. One can find the learning
algorithms thoroughly described in [11].
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Fig. 1. Fuzzy neural network model

One of the most efficient and compact ways to approach fuzzy rule initial-
ization is based on unsupervised clustering procedures. The joint input-output
x X y space is covered with cluster patches in an unsupervised way. Then, the
obtained clusters are marginalized over y, in order to get cluster projections on
2 and initialize the fuzzy rule’s membership functions.

Having the membership function parameters initialized, one can proceed to
the hybrid learning. Demonstration of the initialization process is shown on
Figure (1b). For the demonstration purposes, synthetic noisy sin(z) function
was used as the data input.

3 Gradient Boosting

Gradient boosting machines, or simply GBMs, are a family of efficient ensemble
models that can capture complex nonlinear function dependencies. This family of
models has shown considerable success in not only various practical applications,
but also in various machine-learning and data-mining challenges [9,10].

The GBM models are based on a constructive strategy of ensemble formation.
The main idea is to add new models to the ensemble sequentially. The learning
procedure consecutively fits new models to provide more accurate estimates.
The base-learners used can be chosen in various ways, the most commonly used
base-learner models are the decision trees and generalized additive models [6].

The principle idea behind the GBM algorithm is to construct the new base-
learners to be maximally correlated with the negative gradient of the loss func-
tion, associated with the whole ensemble. We will consider the squared error
loss, where the learning procedure would result in consecutive error-fitting.

The GBMs have some hyperparameters. The most important hyperparameter
is the number of base-learners, or boosting iterations in the ensemble M. Larger
numbers of M increase the model complexity and can lead to overfitting. Also,
two regularization hyperparameters have been introduced. The first of them is
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the shrinkage A\, which penalizes the effect of each boosting iteration. The second
regularization parameter is the bag fraction bag, which specifies the percentage
of the data to be used at each iteration. The overall description of the GBM
algorithm, used in this article is described in Algorithm (1). For more details
about the GBMs we recommend the reader the [4,6,7] articles.

Algorithm 1. GBM Algorithm with squared error loss function
Inputs:

— input data (z,y),

— number of iterations M

— regularization parameters A and bag
— choice of the base-leaner model h(x, )
— base-leaner hyperparameters 6

Algorithm:

1: initialize fo with a constant

2: for t =1 to M do

3:  sample Bag: = bag - N indices, used for fitting a base-learner
t=1 __

4:  compute the negative gradient g:(z) = Y. (yi — > fi(x:))

1€Bagt =0
5:  fit a new base-learner function h(z,0) to the gradient g;
6:  find the best gradient descent step-size p;:
pr=argmin, Y [g:(x:) — ph(zi, O)]
i€ Bagt
7:  update the ensemble: N N
Jt & fi—1 + peAh(z, 0)
8: end for

4 Simplified Fuzzy Neural Base-Learner

We now aim at designing a simplified fuzzy neural network model, which will
have two important properties. First of all, it is going to be a fuzzy non-linear
model, which can capture complex non-linearities. And second, it will be very
fast to initialize and learn, in order to be the base-learner, used for boosting
thousands of neural network models in reasonable time.

If we consider the model in (4) and it’s demonstration on Figure (1b), we
can denote that the model tends to fit fuzzy patches with local linear models,
slightly smoothing the models with respect to their memberships. An obvious
way to simplify the model will be to cut the consequent model to the constant
terms c;o only, i = 1..G.

This model will still remain smooth and continuous due to taking member-
ships into account. In hybrid learning, to estimate the parameters c;;, one has
to solve a LSE problem for a very large matrix, having dimensions n x (d+1)G,

i =1..G, j = 0..d. Using only the intercept parameters in each rule’s consequent
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will dramatically reduce the size of this matrix to n x G. This particular simpli-
fication is equivalent to the Takagi-Sugeno model of the 0-th order, but we aim
at simplifying the model even further.

The next problem is the initialization of the fuzzy system. Mixture-based
clustering, currently considered in the model, is a computationally expensive
procedure. Moreover, inferring the number of clusters is also a problematic task.

To deal with these issues, one can consider the k-means clustering as an ex-
ample of a simple mixture model, where the Gaussian clusters have all equal
covariance structure of the form X = wvI. This spherical simplification of the
model significantly decreases the initialization time. The parameter v > 0 is
held out as a hyperparameter that describes the uncertainty of the fuzzy rules.

Exploitation of the k-means clustering also allows us to use larger number of
fuzzy rules, which in the clustering context is equal to the number of clusters. The
larger the number of rules, the more complicated patterns one can capture. This
particular design choice allows us to reduce the number of fuzzy rule parameters
from G x d x 2 to F' x d+ 1, having only the Gaussian center parameters and
the only instance of v considered.

The last constraint that we haven’t touched upon yet is the curse of dimension-
ality: the geometrical structure, captured by the clustering algorithm vanishes
with the dimensionality of data increased. We will use a simple heuristic, used in
Random Forests: for each of the base-learners in the ensemble we will randomly
sample p = (\/E] dimensions, used for fitting. We constrain ourselves with the
dimensionality p and number of clusters G for each of our base-learners.

To summarize, the simplified fuzzy neural (SFN) model is given in (5). The
fitting procedure of one SFN base-learner is organized in the Algorithm (2).

_(wj—mij)2 n
Ha;; =€ v yHA; = HA;; (xj)v
j=1
G
> pia,(c) (5)
)= ,i=1.G,j e R’ c R*
> 1A,
=1

4.1 SFN Properties

The hyperparameter v defines the uncertainty of the whole fuzzy model, be-
having like a fuzzy membership modifier, either sharpening or smoothing the
membership values. However, there is one important effect, connected with this
parameter. To illustrate it we define the average winning normalized membership
awnm as (6).

N

awnm = — E max
N i€l.

< G/LAi (1’]) (6)
=1 kgluAk (xj)
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Algorithm 2. Fitting a simplified fuzzy base-learner
Inputs:

— input data (z,y)N,
— number of fuzzy rules ~ clusters G
— number of dimensions p < d, used for fitting. default value: p = [\/E]

— uncertainty hyperparameter v > 0

Algorithm:
1: sample p dimensions of z, used for fitting «”
2: apply k-means clustering with G clusters to the joint (x?,y) distribution
3: marginalize the y variable from the obtained cluster centers:
(mijs may) = (mij), i = 1.G, j=T.p
4: calculate the average cluster standard deviations:

Q

P

2 _ 1 2 2 _ 1 o )2

0" = 7N . E 0i5:04i5 = N—1 Z (xky mij)
i=1j=1 keCluster;

5: initialize the parameter V = -

6: estimate the ¢; parameters by fitting a linear regression model to normalized mem-
berships pa,, i = 1..G

When the value of awnm is near to 1, the smooth borders between rules are
nearly diminished and the SFN model has a sharp discontinuous form, similar to
the decision trees. On the contrary, when the awnm is near to é, constructive
membership information vanishes and the coefficients ¢; become unstable. Visu-
alization of these effects for fixed number of rules G = 20 on the same simulated
sin(z) data is given on Figure (2).

From Figure (2a) we can see that starting from awnm = 0.7 the coefficients
become less stable. If we consider the dependence between G, awnm and MSE
error, we can see that from some number G the model stabilizes and converges

awnm

\ Dependence between v, G and MSE Dependence between v, G and awnm
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Fig. 2. SFN hyperparameter dependencies
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to the same output, regarding complexity. And the awnm has a similar behavior
all across the hyperparameter grid. The plot with the described dependencies is
given on Figure (2b). In future works, parametrization based on awnm will be
considered, as this statistic is more descriptive than paramater v.

4.2 SFN’s Connection to Other Base-Learners

SFNs have one important common property with decision trees: they extrapolate
the data with constant values. This means that the extrapolation with the SFN
model will most likely result in exactly the coefficient value of the closest fuzzy
rule, on the border of the observed data., just like a decision tree. This can be
considered both a shortcoming and a feature.

Another property of the SFNs is that if the boosted model is considered to
be additive, they can be used as a substitute for spline base-learners. Together
with the variety of continuity in shape, this makes the SFNs a general purpose
base-learner, lacking only the purely linear effects.

It feasible to interpolate a linear function with the SFNs, unlike the decision
trees, but the linear effects can be intuitively added to the model. Thus, forming
a model that captures nonlinear SFN effects, accounted after a linear fit.

5 Application Example

We will consider building a regression model to map the EMG signals to the
robotic hand controller, in a similar manner as described in [8]. The data was
provided by the TUM Roboroterhalle machine learning laboratory. 8 surface
EMG electrodes, positioned on the hand, were used to record the muscular ac-
tivity of the person performing different hand movements. These movements
were then visually tracked to gather the actual spatial positions of the hand.
Combined, this data was used to design a robotic arm control system. The ma-
chine learning task was to reconstruct the hand’s position and orientation from
the EMG channels and then to use it online as the robotic hand control. In
our application we will consider a slightly altered experiment setup than the
originally described one. We will focus on predicting the 3D hand positions only.

For each of the hand position coordinates, the data comprises 8 pre-processed
signal features and 27,161 observations. Originally, the controller was first trained
on all of the available data and then tested live, without knowing the correct
labels, as the hand-tracking device was not available. In our case, we train the
models on one half the available data and validate it on the other part. The
train/test separation is organized sequentially: the first 100 points are used for
training, the following 100 for validation, the next 100 points are used for train-
ing again and so on. As a consequence, the training set consists of 13,561 points
and the test set consists of 13,600 points.
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The model performance metric to be used will be the root mean squared
error (RMSE), evaluated for each of the position variables y;, i = 1,2,3 and the
compiled, 3D error metric:

N
1
RMSE; = | >~ (vij — Uij)?
= (7)

N
1 — — —
M3DE = Z N\/(yli —y1i)® + (y2i — V2i)* + (y3i — ¥3i)®

i=1

We consider 3 SFN models with different number of rules G. The regular-
ization parameters shrinkage A\ = 0.01 and bag = 0.5 were chosen beforehand
because they are a sensible guess of GBM model’s detalization. The optimal
number of base-learners was chosen by cross-validation as M = 1000, number
of dimensions used p = 4. We have also cross-validated the v parameter and for
this application selected it equal to v = 2.

To make the model evaluation fair, we will compare the SFN model with
other popular machine learning techniques: SVMs, ANFIS, Random Forests and
tree-based GBMs. For each of these models the optimal hyperparameters were
chosen by the 5-fold cross-validation, applied to the grid-search. The algorithm
accuracy comparisons are given in Table (1).

Table 1. Machine learning algorithm accuracy

Method RMSE1 RMSEs RMSEs M3DE
Boosted SFN, G=10, v=2 0.073  0.057  0.078  0.087
Boosted SFN, G=20, v=2 0.069  0.054 0.071 0.084
Boosted SFN, G=30, v=2 0.065 0.052 0.067 0.081

GBM, trees 0.063  0.054  0.066 0.081
Random Forests 0.062 0.054 0.067  0.081
Support Vector Machine  0.076 0.069 0.084  0.100
ANFIS 0.074  0.069  0.089 0.103
Linear Regression 0.100 0.087  0.095 0.136

From Table (1) we can see that the new base-learner can efficiently compete
with other machine learning techniques, delivering the same high level of ac-
curacy. And the accuracy level is significantly higher than the accuracy of a
single ANFIS, trained with all the necessary parameters and no simplifications.
At last, the although the accuracy is nearly the same as the GBM and RF, the
predictions of the new model are much smoother.

The high SFN performance can be explained by accurately catching nonlinear
interactions. RF and GBM also exploit the interaction structure of the data in
the ensemble, but due to decision tree limitations in approximating continuous
functions, Boosted SFNs outperform these methods.
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To summarize, the developed SFN model allowed us not only to design a
competitive machine learning algorithm, but also to efficiently exploit all of the
available information and build an accurate predictive model.

6 Conclusion

We have developed a new type of base-learner, which is not only interesting from
a theoretical perspective, but has shown considerable success in practice, com-
pared to other machine learning algorithms. The new model allows to have a fast
fit of smooth interactions between variables, like the currently used generalized
additive base-learners, but in multiple dimensions. Varying the hyperparameter
v, one can also achieve different model behavior. Besides generalizing the model
to the classification task, a straightforward extension to the algorithm would be
to estimate the optimal parameter v with several gradient steps.
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