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Foreword

Paraphrasing Helmholtz, ”perception is our best guess as to what is in the world, given our

current sensory input and our prior experience”. Indeed, one of the most enduring quests

in neuroscience and engineering alike concerns the perception of the external world. There

are still fundamental questions to tackle about the possible mechanisms underlying the

ability to perceive, yet some important principles were derived. These principles enable

both biological and technical systems to leverage their capability to interact with their

environment. This is where it all started.

I could never have imagined that after spending many years among electronic circuits,

control theory, and robots, I will finally work on investigating processing subtleties of

neural systems. Joining the Neuroscientific System Theory Group (NST) fed my curiosity

and opened a new world of possibilities. Not too far from the great feeling of designing and

building robots, I have been given the opportunity to go one step further, to understand

information processing in neural systems, to develop novel algorithms inspired by brain

functionality, and, finally, to transfer these to robots.

A roboticist dream? Well, this thesis quantifies my effort to respond this question

and moreover summarizes the research I conducted within Neuroscientific System Theory

Group at the Technische Universität München since late 2011. The amazing journey from

the first neurobiology courses and mathematically dense neural computation compendiums,

the first ideas sketched on the whiteboard, the first proof-of-concept implementations, to

finally testing the hypotheses in real-world robotic scenarios, has been an exciting one.

Looking back in time I realise that I could not have undertaken it without the great

support of many people.

First of all, I would like to thank my advisor Prof. Dr. Jörg Conradt. Starting from

our first discussion on distributed processing, he opened a new perspective for the fresh

robotics graduate I was, a new exciting niche, neuromorphic robotics. Combining a sharp

and scientifically rigorous mindset with a pragmatic engineering approach to problems, he

supported me in every aspect of my research. Enabling me to freely explore this truly

multidisciplinary area, he carefully supported me towards tackling challenging problems I

encountered during my PhD years.

An exotic mixture of amazing people, NST was genuinely a creativity pool. Years spent

among this great team will definitely put a mark on both my scientific and personality

profiles. Randomizing the order, I would like to thank Dr. Viviane Ghaderi, for her great

moral support, her pragmatic view on the outcome of research, and her permanent and

contagious enthusiasm. Patient enough, yet really active in analysing data and formalism,

Dr. Christoph Richter’s mentorship helped me to leave those painful states in which

research didn’t really progressed. Always a mature presence, Dr. Marcello Mulas was the

person to tame my enthusiasm and bring value to my scientific approach to problems and

paper writing. Never ending discussions on cortical circuits, inference, or more earthly

topics, Mohsen Firouzi was always the mathematically correct opinion to have. Ranging
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from self-construction algorithms, to programming subtleties, from sports, to obscure music

genres, Nicolai Waniek was always the perfect man to talk to and to already sketch a

solution for problems. Finally, I would like to thank Susanne Schneider, who took care of

all administrative details and made it all transparent for me.

Over the years, I have been involved in a number of projects and collaborations. I espe-

cially thank Dr. Matthew Cook from INI, University of Zürich and ETH Zürich for fruitful

discussions shaping my perspective on neural computation. Moreover, during my stay at

the Neuroscientific System Theory Group, I became a member of the neuromorphic engi-

neering community, and an active participant in both Telluride Neuromorphic Cognition

Engineering Workshop and Capocaccia Cognitive Neuromorphic Engineering Workshop.

I thank this great community for the opportunity to extend my basic formation with

extensive experience in neuromorphic hardware and neural computation.

Finally, this work would not have been possible without the great support from the

Bavarian Elite Network which generously funded my research and offered me the possibility

to share my results within the community.

Besides research, a lot of people have made daily life a perfect balance. I would like to

thank my ”local group” of friends who unconditionally listened to all my ”network con-

vergence issues” and helped me to detach from such research problems. Thank you Xenia

Sabodash, Meisi Zhan, Milla Widmer, Izabela Maria Kolodziej (credits for the cover), and

all my ”remote” Romanian friends for their patience and support.

Last but not least, I would like to thank my parents for believing in me and my work and

their tireless guidance even from 3000 km away. Thank you for supporting my adventure

of being a student along with its perks and drawbacks.

Munich, November 2015 Cristian Axenie
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Abstract

Biological and technical systems live in a rich environment for which, due to the mul-

timodal nature of incoming sensory streams and variety of motor capabilities, there is no

single representation and no singular unambiguous interpretation. Furthermore, there is

no single neural process or engineering algorithm to interpret sensorimotor streams for all

possible scenarios in which a system might operate in.

In this work we proposed an alternative computational architecture, inspired by the

distributed macro-architecture of the mammalian cortex. The underlying computation is

performed by an interconnected network of computational maps, each representing a differ-

ent sensory quantity. All the different sensory streams enter the system through multiple

parallel channels and the system aligns, and given incoming observations, combines them

into a coherent representation. In biological systems sensory representation and interpre-

tation are flexible and context dependent operations underlining the use of dynamically

adaptive sensory integration mechanisms. These mechanisms are learned and result as the

outcome of a developmental process. Along these lines, the second component of this work

focuses on the mechanisms underlying self-creation and learning of the functional relations

between the computational maps encoding sensorimotor streams directly from the sensory

data.

Depicting a synthetic view of our contribution, Figure 1 introduces a novel approach to

representing, learning, and processing various sensory streams for multisensory fusion.

Project sensors to
common representation

Extract associations
between sensors

Synthesize network connectivity
between sensory representations

Extract underlying correlations 
among sensors

Sensory integration
for improving features estimation

Fig. 1: Distributed cognitive systems for multisensory fusion: from sensory representations,
to integration and cross-sensory learning for precise representations using autonomous
synthesis processes.

Combining principles of distributed cortical computation for generic data representation

and inference, our framework supports the change of paradigm towards neurally-inspired
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Abstract

sensory processing. The results of our preliminary instantiations in various robotic scenar-

ios (i.e. 2D mobile robot motion estimation, 3D attitude estimation on a quadrotor) make

our approach a promising candidate for robust real-time multisensory fusion in robotic sys-

tems because of intrinsic scalability/parallelisation and automatic adaptation to unforeseen

sensory perturbations.
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Zusammenfassung

Biologische wie technische Systeme müssen sich in einer sensorisch ausgesprochen reich-

haltigen Umgebung zurechtfinden. Die multimodale Natur der eingehenden Sensorströme

und die mannigfaltigen Bewegungsmöglichkeiten machen eine eindeutige Repräsentation

oder zweifelsfreie Interpretation unmöglich. Es gibt weder einen einzelnen bekannten neu-

ronalen Prozess, noch einen technischen Algorithmus, der sensomotorische Signalströme

in beliebig gewählten Szenarios, in denen ein System operieren kann, zu interpretieren

vermag.

In dieser Arbeit stellen wir eine alternative Datenverarbeitungsmethode vor, die von

der verteilten Makro-Architektur des Säugetierkortex inspiriert ist. Die zugrundeliegen-

den Rechenoperationen werden von einem Netzwerk miteinander verbundener ”Rechen-

karten”durchgeführt. Jede dieser Karten repräsentiert hierbei eine andere Sensormodalität.

Die unterschiedlichen Sensorströme fließen parallel und zeitgleich in die Rechenkarten ein.

Sie beeinflussen das System so, dass es sich an die gegebenen Beobachtungen anpasst, und

sie zu einer kohärenten Repräsentation kombiniert.

In biologischen Systemen sind sensorische Repräsentation und Interpretation flexibel

und abhängig vom jeweiligen Kontext. Biologische Sensorintegrationsmechanismen sind

also adaptiv. Sie werden erlernt oder ergeben sich aus natürlichen Entwicklungsprozessen.

Hierauf beruht die zweite große Komponente dieser Arbeit: Die selbstorganisierte Ent-

stehung und das Erlernen von funktionalen Zusammenhängen zwischen unterschiedlichen

Rechenkarten.

Figure 1 gibt eine schematische Darstellung unserer Methode wieder, vielschichtige Sen-

sorströme zu repräsentieren, zu verarbeiten, aus ihnen zu lernen und sie hiermit letztlich

sinnvoll zu vereinigen.

Die vorgestellte Kombination kortikaler Datenverarbeitungsprinzipien mit einem univer-

sellen Ansatz zur Datenrepräsentation ermöglicht einen Paradigmenwechsel in praktisch re-

levanten Anwendungsfeldern der Sensorverarbeitung. Wir zeigen dies anhand ausgewählter

Einsatzbeispiele aus der Robotik: Zweidimensionale Bewegungsschätzung einer fahrbaren

Plattform und dreidimensionale Fluglagebestimmung einer Schwebeplattform. Die Beispie-

le belegen weiterhin, dass unser Ansatz naturgemäß skalier- und parallelisierbar ist, was ihn

zu einem vielversprechenden Kandidaten für echtzeitfähige und ausfallsichere Sensorfusion

für Roboter macht.
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1 Problem formulation

1.1 Preamble

The reciprocity between the environment and the perceiver, be it a biological or artificial

entity, builds itself as a mutual interactive system. This perspective assumes that the

operating environment provides opportunities, resources for decision-making, and actions,

as well as information for what is to be perceived to guide actions [Gibson et al., 2003].

Moreover, actions have consequences that provide more useful and informative content to

the perceiver, so as to properly describe a rich internal representation of the environment.

In this context, at any given moment, both biological and technical systems need to pro-

cess multiple inputs from their different sensory modalities. Deciphering this broad array of

sensory information is by far a non-trivial problem and both biology and engineering came

up with successful approaches to make sense of the multisensory world. Different sensors

are tuned to different forms of energy, each giving rise to a qualitatively and quantitatively

different perceptual experience. A proactive physical system needs to constantly combine a

plethora of sensory information and moreover track and anticipate changes in one or more

of the incoming streams in order to consistently create an internal representation. This

representation subsequently provides the base to build autonomous behaviour and flexible

interaction with the environment [van Atteveldt et al., 2014].

In order to properly set up the context and define the problem, we need to extract

the key principles governing multisensory fusion systems in both biological and technical

systems. By far a pragmatic perspective, we will try to focus on the main principles of

information representation and computation known to occur in neural systems and transfer

these principles in technical systems. For validating this approach we use robotic systems

as a flexible experimentation platform to develop and test hypotheses.

Either for environment interpretation or self-state estimation, both biological and tech-

nical systems need the capability to disambiguate perception by using different sources of

sensory data. This subsequently guides their behaviour. We can already extract a fun-

damental principle governing multisensory fusion, the need for a coordinated interplay of

available senses to properly interact with the environment [Kayser et al., 2015].

In order to make sense of the environment and own state, given all available sensory data,

the system needs to solve several computational problems. For instance, given the avail-

able sensory observations, the system needs the capability to compensate for uncertainty

and noise, assuming inherent redundancy in sensory observations. Moreover, systems have

to infer new quantities from existing sensory observations, given known or learned causal

relations. Finally, to optimise efficient processing of incoming sensory streams, systems

should constantly generate predictions about future events. Multisensory cues play an

important role in anticipation, as some sensory cues will often predict what will happen in

other sensory cues. This principle is supported by the fact that different sensory modalities

have different timing properties, which can enhance the predictive capacity across modal-
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Problem formulation

ities. These features are usually a trademark of active sensing, where sensory events enter

the system as a result of motor activity the system is generating. Active sensing defines a

fundamental component of autonomous systems.

Another computational problem that a multisensory fusion system should handle, is

related to the capability of inferring temporary degraded or missing information in sensory

modalities. Exploiting data redundancy and intrinsic alignment mechanisms, the multi-

sensory fusion scheme should handle inconsistencies and imperfections, assigning judicious

confidence levels to contributing quantities. The goal is to exploit this feature in order to

use the different detection / discrimination capabilities of each sensor, to extract a precise

estimate in a timely manner.

Due to heterogeneous nature of the incoming sensory streams, a multisensory fusion sys-

tem should align multiple scales and representations to improve precision in the estimated

features. Moreover, the system must align different data types and accommodate high-level

representations emerging from low-level sensory data processing. This capability of extrap-

olating from the data space to decision space is crucial in complex perception-action-cycles

found in autonomous systems.

Focusing more on the computational substrate, distributing processing and representa-

tion provides a powerful paradigm for multisensory fusion. This paradigm ensures that, by

maintaining only local knowledge of observed features, and by mutually exchanging infor-

mation between distributed sensory representations, a consistent global representation can

be constructed. In such distributed architectures, observations from each sensory source

are processed locally before being fused. The fusion mechanism balances contributions

from all available sources such that each sensory representation provides a local view of

the observed feature. This distributed representation is then combined in a global view by

the fusion mechanism.

Finally, in order to combine available sensory streams, the multisensory fusion system

needs to exploit the structure in the sensory data and extract spatio-temporal associations

from it. These associations yield an adaptive layer for sensory processing towards reducing

uncertainty and judging environment’s causal structure for subsequent decision making.

Disentangling the impact that sensory data statistics have in the fusion process is still

a challenge, but its heavily contributing to increase the flexibility and robustness of the

system.

To sum up, the aforementioned principles provide basic design requirements for robust

and flexible multisensory fusion systems. The proposed work builds upon these princi-

ples in order to bridge progress in neuroscience, involving modelling formalism and com-

putational paradigms, with robotics, providing a unified conceptual framework to build

adaptive technical systems. Today’s engineered multisensory fusion implementations use

a mature iterative design methodology involving mathematical models, simulation, anal-

ysis, and experimentation, yet lack the flexibility and adaptation capabilities proven by

biological systems. Notwithstanding their excellent results they are highly constrained

and dedicated to the operation scenario. On the other side, biomimetic designs provide

an approach that seeks sustainable solutions for multisensory fusion by emulating nature’s

time-tested patterns and strategies [Passino, 2005]. The primary focus of this work is not to

model, emulate, or analyse (neuro-)biological systems, but rather to use ”bio-inspiration”

for injecting new ideas, techniques, and perspectives into the engineering of complex au-
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Problem formulation

tonomous systems. Embarking in such a challenge draws some important questions we

will try to tackle throughout the thesis. What is the minimal description level useful in

developing robust, flexible, and general brain-inspired multisensory fusion mechanisms for

robotics? Furthermore, how complex and biologically plausible the models should be, and

given the validation in a real-world scenario, do we feed back to neuroscience? Finally,

given that today’s multisensory fusion architectures are fast and precise, but specific and

inflexible, and (neuro-)biological systems bring more complex, and not well understood,

but flexible and robust models, where do we place ourselves when aiming at providing

tractable solutions for real-world technical systems? An interesting view trying to provide

a plausible approach and solution on these issues was formulated as a set of ”universal

laws and architectures” [Doyle et al., 2011]. This rather holistic perspective was described

using various case studies to illustrate concepts like robustness, complexity, and archi-

tecture under an integrated theory. One central theme of this theory is that there is a

balance between robustness and efficiency, marked as trade-offs and constraints, in both

biological and technical systems, Figure 1.1. In-line with the aforementioned perspective,

a

Flexible /
General

Inflexible /
Specific

Slow

Fast

constraints on computation

Efficient Useless

Fragile

Robust
Complex 

algorithms

Simple 
algorithms

Potentially
Robust

Hopelessly
Fragile

b

Fig. 1.1: Universal ”conservation laws” (constraints) and universal architectures (constraints
that deconstrain) [adapted from [Doyle et al., 2011]]: a) Perspective on system de-
sign and trade-offs given computational constraints; b) General unifying perspective.

we guided our design towards a robust approach, while keeping the complexity at a rea-

sonable level. Using relatively simple computation, given by the physics of the sensors (e.g.

formulated as mathematical functions), our model ”does its best” in combining individual

sensory contributions, described by different reliabilities, noise patterns and uncertainty.

The model aims at providing its best interpretation of a perceived feature, given available

sensory streams and their relations by reaching consensus between all sensory contributions

as fast as possible. Relaxing the condition to converge to an optimal solution, our model

provides a flexible approach (not being bound to a certain scenario) to extract a plausible

interpretation of the incoming multisensory streams of information.

1.2 Structure of the thesis

This section provides a brief overview on the thesis structure. Providing insight on state-of-

the-art methods for multisensory fusion and the mathematical apparatus formalising them,
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Problem formulation

Chapter 2 also introduces specific computational models known to explain multisensory

processing in the mammalian brain. This parallel description was introduced in order to

extract the main principles followed in the thesis for the design and implementation of a

robust and flexible multisensory fusion mechanism. The second chapter ends by revamping

the perspective and motivation behind the proposed work.

In line with the goal of the thesis, to strengthen the bridge between neuroscience and

engineering, Chapter 3 introduces the formalism and functionality of the proposed mul-

tisensory fusion model. Focusing on concepts, and using dynamical systems analysis,

the chapter introduces the key ingredients of the model: distributed representation and

computation, concurrent dynamics to reach consensus, and mutual interaction, between

computing units encoding different quantities, towards a generic consistent representation.

Chapter 4 introduces a sample instantiation of the proposed framework in a motion

estimation scenario. Investigating 2D egomotion estimation for omnidirectional mobile

robots, an in-depth analysis of the capabilities of the model and comparison with state-of-

the-art implementations is provided. Following a neurally inspired distributed processing

scheme, the parallelisation capabilities of the model are further investigated. From se-

quential or parallel implementations on standard PCs, to massively parallel neuromorphic

computing hardware, we investigate the real-time operation capabilities in real-world sce-

narios. Taking advantage of existing low-power parallel hardware, we evaluate the model

for estimation accuracy and performance on such an embedded platform.

Chapter 5 introduces an extension of the proposed model for multisensory integration,

namely by introducing a learning process, similar to the one taking place during the de-

velopment of a biological nervous system. This extension enables our system to extract

mappings between sensory cues, instead of manually creating the network architecture

given prior knowledge about sensory configuration. The employed learning model is able,

given various sensory inputs, to converge to a state providing a coherent representation of

the sensory space and the cross-sensory relations defining the fusion process dynamics.

Focusing on self-construction and learning, Chapter 6 introduces sample model instanti-

ations in order to test its applicability and performance in real-world scenarios. Alleviating

the need for tedious design and parametrisation, the model is capable to learn sensory data

statistics and distribution for efficient representation and computation. We analyse model’s

capabilities in a 3D egomotion estimation scenario on a quadrotor.

Chapter 7 summarizes the work and emphasizes the main advantages brought by the

proposed framework for multisensory fusion. The discussion session analyses the most

important design principles guiding the proposed work along with an objective analysis

of its advantages and limitations in the instantiated real-world scenarios. Revamping the

proposed perspective over multisensory fusion by emphasizing the need for an adaptive

substrate to extract the underlying sensory statistics for improved fusion, the discussion

ends with proposing a series of extensions which might contribute to obtain a more mature

and versatile framework.
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2 Introduction and context

Biological and artificial systems (e.g. robotic systems) alike need a way to leverage their

sensing capabilities in order to autonomously adapt their behaviour. Through evolution,

biological systems refine their adaptation capabilities and are able to robustly represent,

and interact with, their environment. On the other side, today’s technical systems lack

the capability to adapt to uncertainty and dynamic changes in their noisy, ambiguous, and

sometimes partially observable environment. In order to disambiguate their perception,

physical systems use a complex pattern of interactions to act upon the environment which

reciprocally influences their state. These interactions are flexible and context-dependent

due to the large number of possible actions to take and the variety of complementary

environment features to sense. Moreover, these interactions underline the need for an

adaptive processing substrate to handle all context-dependent variations in the incoming

perceptual streams.

As a result of this continuous interaction cycle with the environment, sensory input is

acquired through, or modulated by, motor routines, such that perception itself becomes

a sensorimotor process. Despite immediate effect on the system’s state, sensorimotor

cues contribute to the incremental development of experience by adapting and learning

correlations between available cues. Using its past exposure to the environment and new

observations, a physical system can build more precise representations which subsequently

contribute to understanding, and adapting to, new contexts.

This view suggests that the interaction capabilities with the environment, and the inter-

pretation of its perceptual representations builds upon a developmental trajectory, in which

a physical system learns and continuously adapts it’s internal environment representations

and sensorimotor processing mechanisms.

2.1 Perception and multisensory processing

Environment unfolds itself as a rich multisensory percept continuously contributing to

the system’s state changes. The coexistence of different sensory modalities enhances a

system’s likelihood to survive and the direction in which it can develop. The multiple

sources of simultaneous inputs free the system from environmental constraints extending its

perception of the environment, such that its internal representations are rich and decision

making is more robust.

Different senses are tuned to different forms of energy, and give rise to a qualitatively

and quantitatively different perceptual experience which the system must disambiguate.

In this process the system must constantly combine all available information and moreover

track and anticipate changes in one or more of these streams. The problem of maintaining

a coherent internal representation of the environment and own state, given complementary

percepts of the environment is not trivial and expects considerable adaptive capabilities

from the physical system.
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Introduction

Light
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Vibration

Perception 
and 

multisensory 
fusion
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Biological
representation
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Fig. 2.1: Transfer principles from biology to robotics. Validate models from biology through
results in robotics. (adapted from [Meredith et al., 2012])

Generally, the process responsible of combining information from a number of different

sources of information to provide a robust and complete description of the environment

and/or own state, is termed multisensory fusion. Instantiating this process allows the sys-

tem to extend the range and variety of features it can detect and experience. This abstract

and general perspective on environment representation and interpretation subsumes the

fundamental principles guiding the design of multisensory fusion systems for autonomous

systems. The current work aims at providing a bridge between neuroscience and technical

systems, in order to enhance the adaptation and robustness of today’s technical systems,

by means of transferring principles of mammalian neural substrate processing to technical

implementations.

In order to set up the context and to properly place the proposed work, the rest of this

chapter is dedicated to a review of state-of-the-art methods for multisensory fusion. Not

aiming at providing an exhaustive overview, the section will basically focus on extracting

the main principles which guide current approaches for designing multisensory fusion sys-

tems. This overview is complemented by a review on the computational principles known

to enable models of multisensory fusion in the mammalian brain.

Starting with a simple functional classification, the overview will then switch to mul-

tisensory fusion architectures in both engineered and neural systems. The chapter will

provide a broad overview on the formal mathematical models and techniques employed in

engineering and also models known to describe fusion processes in neural systems. The

dual perspective motivates the framework proposed in the current thesis and how bridg-

ing the two areas is beneficial to enhance the capabilities of today’s technical systems. A

synthetic description of the goals of the current work is given in Figure 2.1.
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2.2 Multisensory fusion: classifications, functionality and

architectures

Viewed as ”a multi-level process dealing with the association, correlation and combina-

tion of data and information from single and multiple sources to achieve refined position,

identify estimates and complete timely assessments of situations, threats and their signif-

icance” [White, 1991] or either as a technique to ”combine data from multiple sensors to

achieve improved accuracy and more specific inferences than could be achieved by the use

of a single sensor alone” [Hall et al., 1997], multisensory fusion is an important component

for all physical systems, enabling more complex environment perception, interpretation,

and interaction. In the following section instead of following an exhaustive overview,

[Khalengi et al., 2013, Castanedo, 2013], the focus falls on those relevant aspects for the

proposed work. We analyse and discuss multisensory fusion techniques, architecture clas-

sifications, and functional aspects for state estimation and data association. The overview

will emphasize design principles which govern today’s implementations.

Providing improved confidence and reliability, as well as a reduction in data ambigu-

ity, while extending spatial and temporal coverage, multisensory fusion mechanisms can

be divided according to the relations between the input data sources; according to the

abstraction level of the employed sensory data; or according to the input and output data

types and their nature.

From the perspective of the relations between the sources of sensory data, mul-

tisensory fusion can be complementary, redundant or cooperative [Hall et al., 1997].

The three different fusion mechanisms are briefly presented in Figure 2.2. In the

complementary scheme the data provided by sensory inputs represent different parts

of the perceived scene and thus can be used to extract more complete information

[Bagher et al., 2011, Asnath et al., 2014]. Conversely, the redundant scheme assumes that

the sensory inputs provide data about the same perceivable feature or quantity and thus can

be used for improving confidence and accuracy [Scherba et al., 2005]. Finally, in the coop-

erative scheme, the sensory sources are combined into new information which is typically

more complex than the original data [Kubelka et al., 2014, Huerta et al., 2014]. These

schemes reflect fundamental principles behind multisensory fusion, namely the capability

to disambiguate perception by using different sources of sensory data to augment envi-

ronment representation or own state; the capability to compensate for failures and / or

to infer missing quantities due to redundant observations; and the capability to infer new

quantities from existing observations.

Taking one step back from the functional relations between the input data, one can

analyse multisensory fusion mechanisms from the abstraction level of the employed data,

[Luo et al., 2002]. There are three main levels on which multisensory fusion systems op-

erate: sensory observations, characteristics or decisions. This architectural classification

is synthetically depicted in Figure 2.3, where we exemplify sensor fusion levels separation

for quadrotor pitch angle estimation using inertial data. The first abstraction level is the

signal level, in which the system combines the individual sources to provide more accurate

data (a lower signal-to-noise ratio). This level uses raw data from the sensors, without

preprocessing, eventually only de-noised. Successful implementations of low-level multisen-

sory fusion were developed in assistive robotic systems. For example, gait control perfor-
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mance of a robotic walker was improved through a feedback loop based on reaction forces

and gait kinematics estimated from low-level signal regularities [Cifuentes et al., 2014]. In

another scenario, targeting wearable robotics, primary modalities like electromyography,

electroencephalography, and mechanical sensors, were fused for optimal assistance and
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quick reactions to perturbations or changes in user intentions [Novak et al., 2014].

Going higher on the abstraction scale, the pixel level fusion, operates at an aggre-

gated level between the signal level and the feature level, usually embedded in the feature

level. Fusing data using this aggregate representation, [Liu et al., 2014] obtained improved

performance in adaptive image fusion based on wavelet transform in trinocular vision of

picking robots. Furthermore, in a real-time visual environment mapping for quadrotors for

both indoor and outdoor operation [Zhou et al., 2014] obtained a precise representation of

the environment and loop closure.

Generally speaking, feature level multisensory fusion is applied when characteristics or

features are readily available from the sensory signals. This abstraction level employs

the use of more concrete quantities (e.g. shape, velocity, depth, optic flow) useful for

direct recognition, as in the case of mobile robot vision guided localization and navigation

[Siagian et al., 2014] or data fusion for biometric protection [Chin et al., 2014].

The highest level where multisensory fusion mechanisms are employed, typically in

large scale systems, is the decision level, or the symbol level. Symbol-level fusion is com-

monly employed in applications where multiple sensors are of different nature or observe

different features of the environment. Pattern recognition is the best example. In this

case feature information is extracted from sensor data, defining a point in the feature

space. This point is mapped to a symbolic representation of the environment based

on that symbol’s neighbourhood in the feature space. Such a neighbourhood function

may be defined using probability theory [Soumalya et al., 2014], Dempster-Shafer’s the-

ory of evidence [Denoux et al., 2014], fuzzy logic [Santos et al., 2015], or neural networks

[Dani et al., 2014].

In a second functional classification, we extend, with a finer granularity, the fusion

process [Dasarathy, 1997], such that the outcome of the multisensory fusion system takes

into account the type and nature of the input data. This functional classification is syn-

thetically described in Figure 2.4 emphasizing that the fusion mechanism is able to align

multiple scales and representations to improve precision, or to infer new quantities in a

visual scene interpretation scenario [Cook et al., 2011]. Following a data in-data out (DAI-

DAO) paradigm, a multisensory fusion algorithm for ambient noise estimation in wireless

sensor networks was developed [Polastre et al., 2004]. Using a moving average filter the

fusion mechanism was able to provide more accurate and reliable output data estimates

given raw input data. Employing a slightly different paradigm in which multisensory fu-

sion uses raw data from different sources to extract features or attributes that describe an

entity (i.e. data in-feature out, DAI-FEO) improved real-time digital image stabilization

was obtained [Erturk, 2002].

In this same context, multisensory fusion can be applied on a set of features to improve

or refine another feature, or extract new ones (i.e. feature in-feature out, FEI-FEO). In

such a scenario [Singh et al., 2006] provided an adaptive learning mechanism for mobile

sensing networks for environmental monitoring. Creating feature maps from aggregated

sensory data, the algorithm was able to geographically describe the distribution of a sensed

parameter.

Going further from the low-level of raw sensory data, we reach the decision level in

which we combine features and decisions in a feature in-decision out scheme (FEI-DEO).

In this scheme the multisensory fusion system takes a set of features described using a
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symbolic representation or a decision and infers new quantities. Such approach proved its

advantages in fusing features describing the data transmission traffic decay to infer node

failures in sensor networks [Nakamura et al., 2005, Luo et al., 2006].

This classification based on heterogeneous inputs and outputs strengthens the idea that

the fusion system must also align different data types and accommodate high-level represen-

tations emerging from low-level sensory data processing. This capability of extrapolating

from the data space to decision space is crucial in complex perception-action-cycles found

in autonomous systems.

Focusing on data related aspects in sensor fusion, the last taxonomy emphasizes differ-

ent approaches in handling inherent problems of the data to be fused. Combining different

levels of abstraction, the fusion mechanism should handle data irregularities such as in-

consistencies (i.e. conflicts and outliers) and imperfections (i.e. uncertainty, imprecision

and granularity) [Kumar et al., 2006]. Exploiting data redundancy and intrinsic alignment

mechanisms, the multisensory fusion scheme should be able to handle inconsistencies and

imperfections assigning judicious confidence levels to contributing quantities [Smets, 2007].

The aforementioned functional classifications analyse the internal data handling and
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combination mechanisms of multisensory fusion systems. To understand how these prin-

ciples are deployed in real-world systems, and how processing is performed, we introduce

a new classification, based on the type of architecture of the multisensory fusion system.

A principled depiction of most important multisensory fusion architectures is given in

Figure 2.5. The basic architecture of a multisensory fusion system is the centralized archi-

tecture, Figure 2.5a. In this paradigm the fusion process is handled by a central processing

unit interfacing with all sensory data sources. This simple processing scheme, in an ideal

case of correct data alignment, data association and negligible data communication time,

proves to be an optimal approach.

However, these assumptions do not hold in real-world scenarios, due to differences in

time delays from the different sensors to the central processor. To counteract the disad-

vantages of the centralized scheme, a decentralized architecture was proposed.

Alleviating the need to concentrate communication and processing on a single process-

ing unit, this scheme uses a network of nodes with local processing and communication
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capabilities, Figure 2.5b. Making the process autonomous, each unit is able to locally

fuse its readouts and the information from its peers. Albeit its attractive distribution of

processing load, communication costs increase proportionally with the number of nodes.

In order to overcome the drawbacks of the decentralized architecture, various adaptive

schemes were applied to shape the communication load. Using adaptive data transfer

mechanisms in a multi-robot scenario [Rajesh et al., 2014] proposed an algorithm to gen-

erate precise maps of the environment subsequently used for planning. Moreover, using

parallelisable sparse approximations of Gaussian processes for spatio-temporal prediction,

a decentralized data fusion scheme was efficiently used for active sensing with mobile sen-

sors [Chen et al., 2012]. Suffering from scalability issues, this architecture was modified

towards a distributed architecture, Figure 2.5c.

The main difference is that in the distributed architecture, observations from each source

node are processed locally before being sent to a central fusion node. This central node

balances contributions from all the nodes in the architecture. Basic data association and

filtering are performed locally, at the source node, each node providing a local view of the

observed feature. This distributed representation is then combined in a global view in the

central fusion node. Being able to parallelise computation and distribute the representa-

tion, this scheme provided a suitable candidate for a large number of robotics applications

for environment representation and intelligent ambient interaction [Pennisi et al., 2014].

Due to the the fact that the distributed architecture is based on local interactions, it

was successfully used for extracting sensorimotor models for robotic proprioceptive and

exteroceptive sensory calibration in cluttered environment navigation [Kelly et al., 2014].

In order to combine the advantages of both decentralized and distributed architectures

hierarchical schemes were developed. These hybrid architectures ensure that the fusion

process takes place at different levels in the hierarchy. This paradigm provides the means

to reduce the necessary communication and computational costs because aggregation and

computation are performed in a distributed fashion.

The last section provided an insight in the architectural details of multisensory fusion

systems, focusing on the practical processing schemes. Distributing processing and repre-

sentation, while maintaining only local knowledge of observed features and mutual exchange

of information to extract the global representation, provide important design principles.

After providing a commonly regarded view of different strategies and their underlying

functional details for multisensory fusion, the focus shifts towards the classes of problems

for which multisensory fusion is applied. The two classes of multisensory fusion mechanisms

that we address in the thesis are state estimation, and data association and correlation

extraction. This is the core part of the current chapter as it will formally introduce the

techniques currently employed in multisensory fusion systems. Along with state-of-the-art

models we will also introduce the neural models known to explain multisensory integration

mechanisms in the brain. This comparative approach serves as a means to frame the

proposed work and emphasize its motivation and advantages.

2.3 Multisensory fusion: state-of-the-art techniques

In the upcoming section we will focus on methods and the mathematical apparatus typi-

cally used in multisensory fusion systems for state estimation. The models will be comple-
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mented by their biological counterparts to emphasize and extract the functional principles,

and at the same time, frame the model proposed in the thesis.

2.3.1 State estimation

State estimation mechanisms aim at determining the changes in the state of a target or

a certain perceived quantity, given sensory observations or measurements. In its general

form, state estimation accounts for a tracking technique, in which it is not guaranteed that

the target observations are relevant, measurements being affected by noise and uncertainty.

State estimation is an important multisensory fusion mechanism that aims at providing

a global target state given the available sensory observations. From a functional point of

view, this process typically accounts in finding the set of parameters that provide the best

fit to the acquired redundant observations. As sensory observations are generally corrupted

by errors, uncertainty and the propagation of noise in the measurement process, state

estimation mechanisms are able to alleviate these problems by integrating prior knowledge

and incoming observations.

Most of the state estimation methods employ the probability theory to describe and

extract a state estimate from sensory measurements. The most commonly used estimation

methods, including maximum likelihood estimation, maximum a posteriori estimation and

Bayesian programming, Kalman filter (standard formulations and distributed version) and

the particle filter (standard formulation and distributed version) are introduced in this

section. Supported by mature implementations in engineering, the probabilistic approach,

gained an important role and became a tool also in neuroscience, such that models of

perceptual processing have been found to obey Bayesian inference rules. Furthermore,

there is a growing body of experimental evidence consistent with the idea that animals are

somehow able to represent, manipulate, and ultimately make decisions based on probability

distributions.

Maximum Likelihood Estimation

Far from the constraints and assumptions of the laboratory, real-world environment fea-

tures enable different sensory cues to capture its structure and dynamics. In real systems,

sensory cues are often imperfectly related to the physical environment feature they measure

due to measurement errors and the variability in the mapping between the cue value and

the feature. This implies an unknown probability distribution describing the state variable

or the quantity of interest. Probabilistic estimation provides an appropriate solution to

this problem. Let’s assume that θ is the state or quantity being estimated and z= (z1, z2,

..., zn) a sequence of n previous sensory observations of θ. The likelihood function λ is

defined as a probability density function of the sequence of observations z given the true

value of θ,

λ(θ) = p(z|θ). (2.1)
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The Maximum Likelihood Estimator (MLE) finds the value of θ that maximizes the like-

lihood function, such that:

θ̂(k) = argm
θ
ax p(z|θ) (2.2)

The model expresses the probability of the observed sensory data and requires the existence

of analytical or empirical models of the sensors to compute the likelihood function. This

relatively simple linear mathematical framework has been shown to explain and describe

basic cue integration processes in the brain [Landy et al., 2012].

However, in most perceptual problems encountered in the natural world, sensory cues

are often imperfectly related to physical environmental properties due to the variability

in the mapping between the sensory cue value and the measured property, hence special

assumptions must be considered. A typical instantiation of this framework is the linear cue

integration model of maximum reliability. Basically, this model accounts for an averaged

sum of all sensory contributions. Given zi samples of n independent Gaussian sensory vari-

ables Zi, with same mean, η, and variance, σ2
i , the minimum variance, unbiased estimator

of η is a weighted average:

ẑ =
n∑
i=1

wizi, (2.3)

where the weights, wi, are proportional to the cue reliabilities, ri,

ri =
1

σ2
i

, wi =
ri
n∑
j=1

rj

(2.4)

The global estimate reliability is computed as

r =
n∑
i=1

ri (2.5)

and, given that the cues are conditionally independent, unbiased values, will be smaller

than individual cues reliabilities and never worse than the least reliable. Despite its simplic-

ity, the model verified interesting predictions in psychophysical experiments for optimal cue

integration of vision and haptic information in estimating size, shape and position of ob-

jects, [Ernst et al., 2002], as depicted in Figure 2.6. For estimating the size of a real world

object, SW , visual (SV ) and touch information (SH) were considered. Considering typical

sensory models assuming unbiased sensory signals, with normally distributed independent

noise components, this scenario provided that integration is beneficial to disambiguate the

scene. This is due to a weighting scheme based on each cue’s reliability, such that the vari-

ance of the combined estimate from vision and touch is smaller than individual estimates

fed to the fusion process (i.e. in this case weighted averaging). From the basic models in

neuroscience, the MLE has been extensively used as a mechanism for multisensory integra-

tion in technical systems. Targeting mobile robot localization in robot teams, fusing only

local information about robot position, such that each robot is able to estimate the relative

pose of nearby robots together with changes in its own pose, [Howard et al., 2002] obtained
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precise results without any external cues. Furthermore, using a dynamic grid represen-

tation, which improved the maximum likelihood estimation mechanism [Feng et al., 2014]

provided a rapidly converging solution for dynamic self-localization in a robotic navigation

scenario.

In order to characterize sensory cue integration in real world scenarios the linear model

by itself is not sufficient. It can systematically underestimate the variance of the likelihood

such that it biases the estimate for insufficient sensory observations. A powerful framework

which can characterize more complex problems is Bayesian estimation and decision theory.

Bayesian Maximum a Posteriori Estimation

Bayesian theory offers a more generic and flexible framework for cue integration. Within

this framework, information reliability provided by sensory observations, z, of a certain

feature of interest, θ, is represented by a ”posterior” probability distribution,

P (θ|z) =
P (z|θ)P (θ)

P (z)
, (2.6)

where P (θ|z) is a posterior probability distribution which describes how true are the val-

ues of θ given the sensory data z. A narrow (i.e. low standard deviation) probability

distribution indicates reliable data, while a broader probability distribution represents un-

reliable data. In this formulation prior knowledge about sensory data distribution, P (θ),

provides information on how likely are some values of θ to be found in the environment.
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Fig. 2.6: Likelihood functions in maximum likelihood estimation of visual-haptic integration
for size estimation. The combined visual-haptic estimate ˆSV H is a weighted average
of the individual visual and haptic estimates ŜV , ŜH . The variance associated with
the combined estimate is less then either of the two individual estimates.
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Furthermore, to quantify how likely different values of θ can give rise to observed data

z the model uses a likelihood function, P (z|θ). To normalize the posterior probability

distribution the product between prior sensory data distribution and likelihood is divided

by P (z) =
∫∞
−∞ P (θ|z)dθ.

The most straightforward Bayesian theory approach to cue integration assumes that

the sensory cues are conditionally independent. If this condition is ensured, the likelihood

function of all sensory cues is given as a product of all individual cues likelihoods,

P (z1, z2, ..., zn|θ) =
n∏
i=1

P (zi|θ). (2.7)

Employing this formulation and ignoring the constant normalization denominator, the

posterior probability distribution P (θ|z1, z2, ..., zn) can be computed using

P (θ|z1, z2, ..., zn) ∝ P (z1, z2, ..., zn|θ)P (θ). (2.8)

In order to optimally extract the estimate contained in the inferred posterior probability

distribution, the maximum a posteriori estimate (MAP) is used. This estimate extracts

the value of θ that maximizes the posterior probability distribution P (θ|z1, z2, ..., zn),

θ̂(k) = argm
θ
ax P (θ|z1, z2, ..., zn). (2.9)

The Bayesian approach offers a more general formulation than the linear model, such

that it replaces averaging with prior-likelihoods multiplications and point representations

of perceptual estimates with probability distributions.

Using the representation provided by Bayes’ formalism and relating sensory variables to

each other over adjacent time steps inside a Dynamic Bayesian Network (DBN), a generic

sensor fusion system was developed [Besada-Portas et al., 2002]. The proposed model was

able to extract a homogeneous and formalized way of capturing the dependencies that exist

between a robot location and the state of the environment. To achieve this the algorithm

fused sensory data from a magnetometer, wheel encoders, a beacon, and ultrasonic sen-

sors on-board the platform. Extending the basic Bayesian formalism [Ferreira et al., 2012]

proposed a neuromimetic Bayesian programming framework for multimodal active per-

ception. The model was able to deal with uncertainty and ambiguity in a multisensory

fusion scenario for fast egomotion processing in a behavioural relevant fashion, using vi-

sual, auditory and inertial data. Using rather global cues in each sensory modality (i.e.

visual-disparity, auditory-binaural time difference, and vestibular-angular velocities) the

proposed framework in [Ferreira et al., 2012] was extended to use distributed representa-

tions of the data and features in the form of perceptual maps, given as input for Bayesian

programs [Ferreira et al., 2013].

Albeit good results in both describing psychophysical results predictions and technical

implementations, the two basic models (e.g. MLE, MAP) for multisensory fusion follow

strong modelling assumptions. If sensory noise sources are independent, described by

Gaussian probability distributions, and individual sensory cues are unbiased and redun-

dant, then the integration mechanism is optimal, because it provides the lowest possible

variance of its combined estimates [Ernst et al., 2012]. The aforementioned assumptions
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are not always fulfilled in real-world scenarios and limit models’ capabilities. This limita-

tion motivates the need for more robust and adaptive mechanisms in precise multisensory

fusion for state estimation.

The Kalman Filter

As an exceptional case of the Bayes filter, the Kalman filter is the most popular multisen-

sory fusion technique for state estimation. Enforcing simplifying constraints on the system

dynamics, linear measurement and system models, and zero-mean Gaussian noise affected

observations, the Kalman filter is widely used due to its relatively simple structure, ease

of implementation, and optimality (i.e. minimal MSE).

Using a discrete state space model of a dynamical system, the Kalman filter, estimates

the state, x,

x(k + 1) = A(k)x(k) +B(k)u(k) + w(k), (2.10)

given the sensory observations, z,

z(k + 1) = H(k)x(k) + v(k), (2.11)

where A(k) is the system’s state transition matrix, B(k) is the input transition matrix,

u(k) is a control signal, H(k) is the sensory observations matrix, and w(k) and v(k) are

system and measurement noise respectively. Both system and measurement noise signals

are considered zero-mean Gaussian noise signals described by covariance matrices Q(k) and

R(k) respectively. Given the system parameters, the Kalman filter relaxes to a solution

after an iterative prediction-correction process, as depicted in Figure 2.7. Despite its ca-
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Fig. 2.7: Generic Kalman filter processing scheme.

pability to progressively adapt, the Kalman filter is sensitive to data corrupted by outliers,
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and becomes inappropriate for scenarios in which the error signal is not parametrized. To

address these drawbacks, as well as nonlinear dynamical models and nonlinear observation

models, the Kalman filter has been extended using first-order (i.e Extended Kalman Filter,

EKF) and second-order (i.e. Unscented Kalman Filter, UKF) approximations as Taylor

expansion of the state estimates.

The EKF is mainly used in multisensory fusion for robotic applications. In an indoor

quadrotor control scenario, the EKF model in [Engel et al., 2012] fused camera, inertial and

altitude data, to implement a monocular SLAM algorithm for stabilization. The algorithm

was robust to temporary loss of visual tracking and significant delays in the communica-

tion process and was able to eliminate drift using SLAM. In a slightly different scenario

[Erdem et al., 2015], visual information from a camera was fused with inertial cues to esti-

mate 3D egomotion. The proposed model showed clear advantages in fusing both gyroscope

and accelerometer during correction stage in EKF, to gain position tracking accuracy (due

to acceleration data) and orientation tracking accuracy (due to gyroscope data). Using a

different, rather high-level representation of the environment, [Barczyk et al., 2015] pro-

posed a multisensory fusion scheme based on EKF, combining on-board motion sensors

with readings from point clouds from a depth sensor for indoor robot localization. The

EKF was improved by using invariant (symmetry-preserving) observers, such that the re-

sulting Invariant EKF used its non-linear structure to take advantage of the geometry of

the problem and provide a more robust solution.

Although used in a widespread range of scenarios, the EKF has some disadvantages due

to the computation of the Jacobian matrices, slowing down the entire processing scheme.

Attempts to alleviate this problem have been attempted, mainly aiming at linearising the

model, but this introduced large errors in the filter, driving to instability. Having the

capability to avoid the linearisation steps and the errors in the EKF, the UKF gained

much attention in the robotics community.

Employing deterministic sampling of nonlinear functions to capture and recover the

mean and covariance of sensory observations, the UKF extracts the minimum set of points

of interest around the mean value of the state. Easily parallelisable, the UKF has been

successfully used in visual guidance for robotic surgery, by providing real-time pose es-

timates of surgical instruments [Vaccarella et al., 2013]. Combining optical tracking and

electromagnetic tracking data, the model was able to provide robust estimates of posi-

tion during robot navigation given marker occlusions, and magnetic field distortions. In a

robotic egomotion estimation scenario [Bloesch et al., 2014], a UKF was developed to fuse

optic flow and inertial measurements, minimizing the dimensionality of the state space,

allowing a fast implementation.

Going away from technical implementations there are several behavioural experiments

suggesting that the mammalian nervous system uses an internal model of the dynamics

of the body to implement a close approximation to a Kalman filter [Deneve et al., 2007].

The proposed neural implementation of the Kalman filter involved recurrent basis function

networks with attractor dynamics, a kind of architecture that can be readily mapped

onto cortical circuits. Taking advantage of a distributed representation and relatively

simple computations, the proposed model embedded additional information about the

input sensory streams and made use of their statistics when fusing the data.

Using experimental evidence suggesting that the brain is capable of approximating
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Bayesian inference in the face of noisy input stimuli, [Wilson et al., 2009] proposed a neural

network whose dynamics mapped directly to a Kalman filter. For small prediction errors

the model was able to precisely behave as a Kalman filter but switched to an optimal

Bayesian model as soon as the prediction error was large. The model supported the way

in which sensory data probability distributions are encoded and used in the brain.

In line with the goal of extracting the computational principles and design principles

of state-of-the-art approaches we also consider the distributed version of the Kalman filter

(Distributed Kalman Filter, DKF). Extending the basic model by using different unsyn-

chronized sensory data sources, the DKF needs additional time synchronization mecha-

nisms to ensure consistent prediction-correction. Synchronization for subsequent sensory

observations ensures that the model attains global consensus. Using these principles the

DKF computes local state estimates using global sensor models, which are usually not

optimal given local sensory observations. In order to avoid this problem and make it prac-

tical to implement [Chong et al., 2014] developed a method for de-biasing the covariance

in DKF making tractable for real world applications [Olfati-Saber et al., 2011]. Here, in a

distributed estimation and motion control scenario, mobile sensor networks employed DKF

for collaborative target tracking. The algorithm optimized a Fisher mutual information

metric to ensure that sensing agents seek to improve the information value of their sensed

data, while maintaining a safe-distance from other neighbouring agents. Dealing with dis-

tributed information processing in sensor networks [Reinhardt et al., 2012] used recursive

local estimates for consensus and reached optimality when assumptions about the global

measurement uncertainty were met.

Particle Filters

Efficiently coping with non-Gaussian noise and nonlinear sensor dynamics, Monte Carlo

simulation based techniques are employed in multisensory fusion as an alternative to

Kalman filters. Either used as Sequential Monte Carlo (SMC) or Markov Chain Monte

Carlo (MCMC), this technique is amongst the most powerful and popular methods for

approximating probabilities associated with sensory data. Particle filters are a powerful

method, in fact a recursive version of the SMC, able to represent probability distributions

in a distributed manner. This method builds the posterior probability distribution using a

weighted ensemble of randomly drawn samples (particles) as an approximation of the prob-

ability density of interest. The extracted probability distribution is obtained as a weighted

sum of random samples resulting from the combination of sampling (i.e. Sequential Impor-

tance Sampling, SIS) and resampling (i.e. Sequential Importance Resampling, SIR) during

particle propagation in time. In the standard algorithm the first phase (i.e. prediction)

is responsible with modifying each particle with respect to the sensor model and simulate

the noise effect on the estimate. The second phase (i.e. update) the weight of each particle

is updated using the last sensory observation, and particles with low weights are removed.

A schematic depiction of the particle filter functionality is given in Figure 2.8. Due to its

attractive capabilities the particle filter was used in various robotics multisensory fusion

applications. Being able to extract a multi-modal probability distribution over the target

state space, a particle filter was used for precise event-based robot simultaneous localization

and mapping (SLAM) [Weikersdorfer et al., 2012]. Extending the standard algorithm to

use single measurements from a neuromorphic embedded dynamic vision sensor (eDVS) the
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Fig. 2.8: Generic Particle Filter processing scheme. Given sensory observations, start with
initial state value following data distribution. Draw samples to represent (minimal
prediction error) the current state given the motion model. Define the weights for
the particles using resampling after diffusion. Re-weight the new particles.

need for complete measurements and re-sampling steps in fixed intervals was alleviated, en-

hancing real-time processing capabilities. The developed algorithm was able to surpass the

Kalman filter by handling occlusions and measurement ambiguities. In a robot assembly

scenario [Thomas et al., 2007] a particle filter based multisensory fusion mechanism was

developed for integrating force, torque and vision in order to ensure precise chaining plan

execution in the assembly. Furthermore, in an attempt to organise initially disconnected

sets of sub-maps in a complex environment, the particle filter model in [Fallon et al., 2012]

achieved rapid multi-floor indoor map building using a human body-worn sensor system

fusing information from RGB-D cameras, LIDAR, inertial, and barometric sensors.

Despite its good results in various applications, the particle filter has some disadvan-

tages. One such disadvantage resides in the fact that the particle filter needs a large

number of particles to obtain a small variance in the probability density estimate, and

a large number of particles increases the computational costs significantly. Furthermore,

in multisensory fusion problems involving a high-dimensional state space the number of

particles increases exponentially with the dimensionality which makes it intractable.

In order to take advantage of the distributed representation of the estimated probabil-

ity densities, the basic particle filter model has been extended to a distributed processing

scheme [Bashi et al., 2003, Hlinka et al., 2013]. The emphasis was on distributed imple-

mentations on multiprocessor systems using three schemes for distributing the computa-

tions of generic particle filters, including re-sampling and, optionally, a Metropolis-Hastings

algorithm (MHA) step (responsible to obtain a sequence of random samples from multi-
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dimensional distributions). Results obtained in target tracking scenarios supported the

distribution of computation to provide a solution to the use of a large number of particles.

In another real-time robotic scenario, for laser tag game playing, a distributed particle

filter was implemented to perform decentralized sensor fusion [Rosencrantz et al., 2003].

The employed particle filter model considered that each particle can be viewed as an en-

tire history or trajectory, and the set of all particles represents an approximation of the

posterior probability distribution over trajectories. This consideration made the model

well-suited for the type of posteriors required by the constrained decentralized selective

communication scheme in the proposed scenario. Using a similar extension of the particle

filter [Montemerlo et al., 2002] provided a fast SLAM algorithm that recursively estimated

the full posterior distribution over robot pose and landmark locations, scaling with the

number of landmarks in the map. This approach made use of a factored implementation

of the particle filter for managing the number of landmarks and incorporating each sensory

observation in the re-sampling step.

2.3.2 Data association

In many real-world scenarios the sensory data available to the system, be it biological

or artificial, must be coherently extracted from the noisy, and sometimes partially ob-

servable environment. Data association is crucial for providing a precise environment or

self-state interpretation. Formally, data association is defined as the process of assign-

ing and computing the weights that relate sensory observations (or their temporal evolu-

tion) from one sensor to sensory observations of another sensor (or its temporal evolution)

[Hall et al., 1997].

In a typical scenario, data association takes place before state estimation, due to the

impact data associations, their coherence and accuracy have on the performance of the state

estimation. Although an exhaustive search of data associations for a given scenario grows

exponentially with the number of considered sensory modalities, various methods to extract

data association have been developed. These techniques span from classical clustering

algorithms, to probabilistic methods, statistical learning, and neural networks. At the

same time, various neurally inspired processing models for learning data association were

proposed, following experimental data and with different degrees of biological plausibility.

In this section we will introduce the main design stages of such systems, emphasizing

the main principles governing data association extraction in both technical and biological

models. In some multisensory fusion applications sensory data is complementary. The goal

is to exploit this feature in order to use the different detection / discrimination capabilities

of each sensor, to extract a precise estimate in a timely manner. Sensors are coupled

through their observations stemming from the same object, feature, or motion at a certain

moment in time. The different detection / discrimination capabilities lead to ambiguities

when trying to match observations from multiple sources. In order to counteract this

problem the system needs to take into account and exploit the diversity in the data and

extract spatio-temporal associations from the sensory data. As previously mentioned,

various methods were developed for extracting data associations (ranging from probabilistic

inference, to clustering, machine learning, and graphical models). Closest to the proposed

approach in the thesis, neurally inspired methods were also proposed and will provide a
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view on how the brain might solve the data association problem for efficient multisensory

fusion.

Probabilistic Data Association

Data association techniques using probability theory encode the problem of extracting

the correlation of multiple sensory streams in probability distributions. The basic prob-

abilistic data association (PDA) algorithm [Bar-Shalom et al., 1975] associated probabil-

ity distributions to hypotheses based on valid sensory observations. The algorithm, also

termed probabilistic data association filter, is suboptimal, and uses the association prob-

abilities for the latest sensory observations. The key idea of PDA is that a weighted

average of all validated observations, where probabilities are used as weights, provides in-

put for the fusion algorithm [Kirubarajan et al., 2004]. The basic assumption is that the

state is normally distributed according to the latest state estimate and covariance matrix

[Abolmaesumi et al., 2004].

In a typical scenario, valid sensory observations, Z(k), at time k, were extracted from

those samples falling in a validation window (gate), γ, given their covariance gain, S(k),

using

γ ≥ (Z(k)− ẑ(k|k − 1))TS−1(k)(z(k)− ẑ(k|k − 1)) (2.12)

In the basic formulation, PDA comprises a prediction and an update step, similar to the

Kalman filter. For the prediction step, given the sensor model F (k − 1) at moment k − 1,

the state is computed as

x̂(k|k − 1) = F (k − 1)x̂(k − 1|k − 1). (2.13)

Linearising the measurement matrix, H(k), the measurement prediction is given by

ẑ(k|k − 1) = H(k)x̂(k|k − 1), (2.14)

and contributes to the computation of the innovation of the i− th sensory observation,

vi(k) = zi(k)− ẑ(k|k − 1). (2.15)

Following the same update scheme as in the Kalman filter, the total update of the covari-

ance is given by

v(k) =

mk∑
i=1

βi(k)vi(k), (2.16)

P (k) = K(k)(

mk∑
i=1

βi(k)vi(k)vTi (k)− v(k)vT (k))KT (k), (2.17)

where mk is the number of valid observations at time k, βi(k) is a weighting factor and K(k)

is a gain factor. Finally, the association probability of i − th measurement is computed
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using,

pi(k) =


(2π)

M
2 λ
√
|Si(k)|(1−PdPg)

Pd
, if i=0

e−0.5vT (k)S−1(k)v(k), if i 6= 0

0, otherwise

where

βi(k) =
pi(k)

mk∑
i=0

pi(k)

, (2.18)

and M is the size of the input sensory observations vector, λ is the clutter density in

the environment, Pd is the detection probability of the correct observation, and Pg is the

validation probability of a detected value.

In PDA the association detection process is based on computing the association prob-

abilities which are subsequently used as weights for each sensory source. Although this

method provides good results in scenarios in which the estimated feature doesn’t make

abrupt changes, it will encounter problems in the case in which the observed features

suddenly change.

One such scenario is mobile robot 3D visual SLAM [Gil et al., 2010]. While the robot

moved in the environment, images from the two cameras were acquired and combined

such that the algorithm needed to decide whether new observations come from an already

seen landmark in the map or it is a new landmark that should be initialized. The PDA

scheme for this problem starts with making observations from the two sensors. Using prior

observations, the algorithm predicts the two time evolutions of the sensory observations

(i.e. tracks) and uses them to predict incoming observations. This step allows the definition

of an area in sensory space where to expect an observation. This expectation window (i.e.

validation gate) narrows the search space, making the algorithm tractable. Subsequent

sensory observations are then checked against the validation gate and validated if they are

consistent matching / pairing candidates. A synthetic depiction of the algorithm is given

in Figure 2.9.

Given that each landmark (e.g. L1, L2) is described by a visual descriptor (i.e. motion

trajectory descriptor), for each new observation o(k) composed of a distance measurement,

ztarget and a visual descriptor dtarget, the algorithm must decide whether the observation

corresponds to one of the known landmarks or is a new landmark. The decision is based

on a distance metric which must be minimized taking into account the current map layout

(i.e. current landmark configuration). The PDA framework received a lot of attention

due to its uncertainty representation capabilities and many variants were developed for

various multisensory fusion scenarios. In [Gil et al., 2006] an improved PDA algorithm

was proposed for mobile robot visual SLAM in a typical office environment. Using scale

invariant feature transform (SIFT) output as features and applying a filtering technique

to concentrate on a reduced set of distinguishable, stable features from different views of

the stereo vision system, precise position estimates were extracted. Whenever a feature

was selected, the algorithm computed a representative feature given the previous sensory

observations, using a squared Euclidian descriptors distance, improving data association

and reducing the number of landmarks that needed to be maintained in the map.
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Fig. 2.9: Data association process for visual landmarks during SLAM. Each landmark is de-
scribed by a descriptor (i.e. its temporal evolution) and given incoming observations
the algorithm decides if the observations correspond to existing / new landmark based
on a topological metric.

Joint Probabilistic Data Association

In order to provide a global and more consistent representation of the perceived scene using

the available sensory streams, the standard PDA was extended to the Joint Probabilistic

Data Association (JPDA). In JPDA the association probabilities are computed using all the

observations coming from all the sensors. This extension allows the algorithm to consider

various hypotheses and combine them.

Computing the probability that an observation comes from a certain sensor is based on

the fact that this hypothesis excludes the others, in a mutually exclusive manner. The

method uses the available observations (i.e. the most recent set) for a known number

of sensors to evaluate the hypotheses and extract the associations. The method uses all

available measurements in a vicinity of the sensor expected value to update the estimated

value by using a weighted sum of measurement innovations.

Providing attractive capabilities in terms of handling high densities of false observations

[Tchango et al., 2014] developed a computationally efficient multimodal tracking scenario

using JPDA. The basic method was improved in terms of extracting an approximate in-

teraction graph between the available sensory modalities on the fly, such that a function

modelling the sensors’ evolution and their mutual interactions was available. In a more

complex scenario [Yangming et al., 2014] used an extended JPDA approach for fast and

robust data association for mobile robot SLAM. Using a posterior-based joint compatibility

test scheme, which alleviates known problems in typical methods (i.e. high computational

cost, sensitivity to linearisation errors, prior knowledge of the full covariance matrix of

state variables) the approach was able to outperform some classical algorithms, such as se-
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quential compatibility nearest neighbour (SCNN), random sample consensus (RANSAC),

and joint compatibility branch and bound (JCBB), in terms of precision, efficiency, and

robustness. Without prior information regarding the initial relative pose in a team of

collaborating robots [Indelman et al., 2014] used Expectation Maximization (EM) to ef-

ficiently infer individual robot pose and solve the multi-robot data association problem

defined in the PDA framework. For any pair of robots in the team, the data association

problem was defined as a constraint identification strategy for inlying and outlying position

estimates extracted from the posterior probability distribution of robot trajectories. In a

slightly different application scenario, [Jianqin et al., 2014] developed an efficient localiza-

tion and tracking algorithm for robot sensor fusion in an intelligent house. Using JPDA

to fuse data from static laser range finders and cameras, the algorithm enhanced detection

and localization in an intelligent space extending the perceptive ability of the robot and

its computing power to the environment itself.

Although explicitly treated in dedicated applications [Indelman et al., 2014], the basic

JPDA algorithm cannot initialize new sensory modalities or remove their contributions.

Furthermore, when applied to scenarios in which there is a high number of different sensory

modalities and consequently a high number of hypotheses, JPDA proves to be intractable

due to high computational costs. To alleviate this drawback [Gorji et al., 2007] provided

a modified JPDA filter to combine multiple sensors for efficiently tracking multiple mo-

bile robots during object manoeuvring movements. Extending [Gorji et al., 2007] work in

[Schultz et al., 2003] designed a sampled version of the JPDA for flexible people motion

tracking using mobile robots, but only considering Gaussian sensory data distributions

and linear sensor dynamics. Extending the capability of the JPDA to multiple sensors

and arbitrary sensory data distributions [Vermaak et al., 2005] proposed the Monte Carlo

JPDA filter, but only tested in a synthetic tracking scenario.

In order to surpass computational costs for sequential execution of the algorithm, and

taking into account the constantly increasing capabilities of multiprocessor and networked

systems, distributed versions of the JPDA were developed.

Starting from a distributed sensor network with peer-to-peer communication protocol

and distributed processors, [Battistelli et al., 2014] developed a JPDA association for mul-

tisensory fusion by processing local sensor measurements, exchanging data with the neigh-

bours, and fusing local information with information from the neighbours. The approach

proposed a Cheap Joint Probabilistic Data Association (CJPDA) filter by devising suitable

distributed consensus-based procedures for sensor fusion for surveillance applications. Due

to its concurrent implementation capabilities this approach depends on the correlation be-

tween individual hypotheses and reflects the influence of current observations in the joint

hypotheses. Furthermore, to make this approach feasible, real-world implementations need

to make sure that node communication exists after every sensory observation, and there

are acceptable approximations when communication is sporadic or when there is a high

amount of noise in the sensory contributions.

Multiple Hypothesis Test

Using more than two consecutive sensory observations, unlike the PDA and JPDA, the

Multiple Hypothesis Test (MHT) minimizes the probability to generate an error and ex-

tracts associations more precisely. This method evaluates all hypotheses and maintains
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new hypotheses in each iteration.

In its initial formulations [Reid, 1979, Morefield, 1977] the MHT was developed as an

iterative algorithm which, starting from a set of correspondence hypotheses given as a

collection of sensory observations windows, computed predictions. Subsequently, the pre-

dictions were compared with incoming observations given a certain metric. The base to

create new hypotheses in each iteration is given by the set of extracted associations in the

current iteration. For each incoming sensory sample MHT maintains various correspon-

dence hypotheses for each sensory modality.

For a given hypothesis H(k) at time k, H(k) = [hl(k)], k = 1, ..., n, the probability of

the hypothesis hl(k) is given by

P (hl(k)|Z(k)) = P (hg(k − 1), ai(k)|Z(k)), (2.19)

where hg(k−1) is the hypothesis of the complete set of sensory observations until time k−1;

ai(k) is the i− th possible sensory association; and Z(k) is the set of sensory observations.

The MHT can also detect new sensory modalities used in the fusion process, while

maintaining the hypotheses tree structure, using a Bayesian decision model techniques for

data association and fusion

P (λ|Z) =
P (Z|λ)P (λ)

P (Z)
, (2.20)

where P (Z|λ) is the probability of acquiring the set of sensory observations Z given the

new signal λ, P (λ) is the prior probability distribution of the new sensory modality, and

P (Z) is the probability of obtaining the set of observations Z.

MHT is an exhaustive approach, as it considers all hypotheses, and computes the pos-

sibility of association after each acquired sensory sample without assuming a fixed number

of sensory modalities. The main disadvantage of this data association method is the com-

putational cost, which has been shown to grow exponentially with the number of sensors

and observations. An interesting approach using MHT to extract associations in large

heterogeneous datasets was proposed in [Rahnavard et al., 2013]. The model was able to

handle datasets of mixed data types: categorical, binary, continuous. Rather than check-

ing all possible associations, the model prioritized computation such that only statistically

promising candidate variables are tested in detail. Finally, this approach was able to limit

false associations and loss of statistical power attributed to multiple hypothesis testing.

An illustrative overview of the model is depicted in Figure 2.10. Practical implementations

usually extend the basic formulation to judiciously exploit processing and storage capabil-

ities of today’s computing platforms. Trying to take advantage of the MHT capabilities

[Joo et al., 2007] proposed a mechanism which associated sensory measurements and sen-

sory cues in a many-to-many fashion. Using combinatorial optimization the algorithm tried

to extract the best set of association hypotheses, outperforming other methods providing

only approximations. Using a similar principle [Coraluppi et al., 2011] used a recursive hy-

potheses processing algorithm over a class of associated hypotheses instead of on a single

hypothesis. Building a robust hierarchical multiple hypothesis tracker for tracking multiple

objects in videos [Zulkifley et al., 2012] dealt with the problems of merging, splitting frag-

ments and occlusions, combining camera measurements from foreground segmentation and
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clustered optical flow. The method used two levels of association. The first level focused

on obtaining stable velocity values while multiple associations are utilized for better ob-

servation assignment, whereas the second, the occlusion predictor was used to distinguish

merge, occlusion and brief interference. In a slightly different scenario, [Tsokas et al., 2012]

presented an adaptation to the MHT method, which unlike classic MHT, allowed for one-

to-many associations between sensory cues and observations in each hypothesis production

cycle. The method provided good results in a multi-robot tracking scenario involving mul-

tiple sensors. Finally, [Brekke et al., 2015] proposed a multi-hypothesis solution to the

simplified problem of simultaneous localization and mapping (SLAM) that arises when

only two measurement frames are available. The model provided a Gaussian mixture ap-

proximation of the posterior density of pose displacement. Data association using MHT

has been incorporated in the model in order to make this approximation as reliable and

efficient as possible.

Similar to JPDA, the MHT method has been extended towards a distributed repre-

sentation, the Distributed Multiple Hypothesis Test (MHT-D). In the first stage of the

algorithm (i.e. the hypothesis formation) for each hypothesis to be fused a new association

is created, based on observations coming from all distributed sensory nodes. Subsequently,

in the second stage (i.e. hypothesis evaluation) the likelihood of the possible associations

and the obtained estimation at each association are calculated. Although the main disad-

vantage of MHT-D is the relatively high computational cost when facing a high number of

associations and a high number of sensory variables to be estimated, generic improvements

were developed [Lawson et al., 2015]. Given a visually guided robot manipulation task, the

developed model used clustering-based extension to MHT data association, providing more
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efficient and precise approximations compared to existing approaches and using a fraction

of the computation time.

The MHT framework was also found to describe processes of perceptual organisation

known to occur in the brain [Feldman, 2013]. This study postulated that a single proximal

stimulus is consistent with an infinity of possible scenes of which only one is perceived.

Following a Bayesian framework, the model proposed that our brain is able to fast and

robustly build an internal representation of the external stimulus using the available infor-

mation from the sensors and a process defined as unconscious inference. This concept was

first defined by the German physicist and polymath Hermann von Helmholtz to describe

an involuntary, pre-rational and reflex-like mechanism which is part of the formation of

visual impressions. Bayesian formalism was used to infer the most plausible interpretation

of the sensory data.

Given sensory data, D, which has a variety of hypothetical causes, H1, H2, ..., Hn, then

the algorithm checks if a hypothesis Hi is plausible. The considered hypothesis must be

plausible in proportion to the product between the probability that for different hypotheses

Hi in the environment being true we can recover the sensory data D. Furthermore, the

model recovers the prior knowledge about the hypothesis Hi (its statistics) and how likely

the hypotheses can be found in the environment. This quantity is then divided by the

prior probability distribution of the sensory data D, given as

P (D) =
n∑
i=1

P (D|Hi)P (Hi). (2.21)

In this formalism, the posterior distribution, reflecting the belief that the hypotheses are

true given the data, is continuously refined using the incoming sensory data,

P (Hi|D) =
P (D|Hi)P (Hi)
n∑
i=1

P (D|Hi)P (Hi)
. (2.22)

The ”likelihood swamps the prior” such that the influence of the likelihood over the prior

distribution increases, limiting prior’s contribution to the posterior given incoming obser-

vations.

This Bayesian approach for perception is a mean of quantifying the degree, the strength

of belief in any hypothesis (if at all), under the presence of uncertainty. The problem that

usually occurs when using Bayes’ rule to describe how plausible some hypotheses are given

the data, is defining the prior, as sometimes this information is not accessible at all.

Graphical Models

Graphical models define a series of techniques, built upon graph-theoretic representations,

for describing intrinsic relations between the states in large probabilistic models. Moreover,

these models are useful for providing efficient data representations for inference, prediction,

and fusion. In its basic formulation a graphical model represents the conditional decom-

position of a joint probability distribution into a product of factors. Each factor depends
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on only a subset of variables.

Two major classes of graphical models were developed. One is capable to encode causal

relations hidden between random variables (i.e. directed graphical models: Bayesian net-

works) and the second one is able to encode soft constraints between random variables (i.e

undirected graphical models: Markov random fields). The powerful representation and

processing capabilities of graphical models, given sensory uncertainty, were efficiently used

in solving data association problems arising in multiple target tracking with distributed

sensor networks [Chen et al., 2005, Chen et al., 2006]. After considering the problem in

terms of statistical dependencies between random variables encoding sensory contribu-

tions, the data association problem resumed to an inference problem solved efficiently by

belief propagation through local message-passing algorithms.

This technique solves optimization problems in a distributed manner by exchanging

information among neighbouring nodes on the graph. Furthermore, a re-weighted ver-

sion of the max-product algorithm [Weiss et al., 2001], was able to solve the inference

problem, yielding provably optimal data association. In a more complex scenario, for

rapid multi-floor indoor map building, using a body-worn sensor system fusing information

from RGB-D cameras, LIDAR, inertial, and barometric sensors, [Fallon et al., 2012] used

a graphical model to handle and to organise initially disconnected sets of sub-maps in the

environment. Using an extended Factor Graph (FG) formulation to encode sensor measure-

ments with different frequencies, latencies, and noise distributions [Han-Pang et al., 2014]

proposed a real-time navigation approach that is able to integrate many sensor types

while fulfilling performance needs and system constraints. In a visual tracking scenario

[Castaldo et al., 2014] developed a system based on graphical models (i.e. Bayesian Fac-

tor Graph) which fused real-time data coming from sensors, along with estimates coming

from the tracked object models. Sensory information was merged within environmental

constraints in order to provide the best estimate of the state of a moving object. Fac-

tor graphs allowed the information to flow bidirectionally, to predict future values, and

to strengthen the knowledge of the past in a challenging automatic localization of mov-

ing objects. Using factor graphs, [Indelman et al., 2013] developed a new sensory data

association and fusion mechanism for high-rate information fusion in inertial navigation

systems, that usually have a variety of sensors operating at different frequencies. The

flexibility of the model was provided by the fact that the joint probability of all states was

represented using a factor graph. This approach fully exploited the system sparsity and

provided a plug-and-play capability to easily accommodate the addition and removal of

measurement sources. The model presented a generic approach for using graphical models

in data association, exploiting the underlying correlation structure of the sensory sources,

as shown in Figure 2.11. The model was validated using real IMU and vision data that was

recorded by a ground vehicle. In their model a factor represented the general concept of an

error function that should be minimized. This approach to design a measurement model

that predicts a sensor measurement given a state estimate is common in robot navigation

literature. The factor captured the error between the predicted measurement and actual

measurement and was able to register and un-register sensors based upon their availability.

Using the intrinsic capabilities of distributing computation, various distributed schemes

for data association using graphical models were developed. By exchanging messages be-

tween sensory source nodes (e.g. n nodes) in parallel, each sensory source has n possible
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Fig. 2.11: Data association process using Factor Graphs for inertial, geolocation (GPS),
and vision data fusion for ground vehicle navigation. a) Sample travelled path
and navigation states; b) Factor graph for data association and fusion. Factors
fGPS, fIMU , fCAMS connect navigation nodes xi (i.e. states comprising position,
velocity and orientation of the robot at time t) and bias/calibration nodes ci. Fac-
tors have formulations for different measurement model, specific to each sensor.

combinations of associations. If there are M variables to estimate the complexity is just

O(n2M), which is lower than the typical MHT-D approach (i.e. O(nM)). Furthermore,

linking parallelisation capabilities of graphical models to previously introduced architec-

tures for multisensory fusion, [Makarenko et al., 2009] provided an in-depth analysis of

graphical models approach to decentralised data fusion. The analysis provided a graphical

model description for decentralized data fusion systems in large networks of sensors subject

to rapidly varying topology changes and to issues of data delay. Interestingly, the work

proposed an implementation that assembled the network using a decentralised spanning

tree algorithm to enlarge the types of sensory models to hybrid distributions. The model

also accommodated sparse feature descriptions, non-linear relationships, and supported

generic applications such as SLAM.

Canonical Correlation Analysis

Another technique combining statistical analysis and data space properties of the in-

put sensory data is Correlation Analysis. Using Canonical Correlation Analysis (CCA)

[Mandal et al., 2013] proposed a model capable to extract out the relationship between
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two sets of multi-dimensional random variables, focusing on the correlation between a lin-

ear combination of the variables in one set and another linear combination of the variables

in the other set. In the simplest scenario the method considered two variables encoding

sensory data. From observations of the two random variables the method found the two

weight vector directions such that the distance metric (i.e. the alpha-beta divergence)

between the joint distribution of each variable times weight and the product of marginal

probabilities of variables is maximized. The algorithm’s goal was to find the weight vectors

from the observed variables as a result of an optimization process, such that each variable

times the corresponding weight vector are as much dependent as possible, maximizing the

divergence. Finally, the method was able to reconstruct both hidden linear and non-linear

relationships between the weighted variables, even in the presence of moderate amounts of

noise. Trying to extend the capabilities of the CCA adaptive learning rules were proposed

[Becker et al., 1996]. Moreover, combining the optimization process with gradient descent,

to ensure convergence, various neurally inspired [Lai et al., 1999] and machine learning

[Lai et al., 2000, Pezeshki et al., 2003] algorithms were developed.

Probabilistic and Possibilistic frameworks

In order to combine uncertainty representation capabilities of probabilistic models and ev-

idence representation of possibilistic models, hybrid approaches were developed. Providing

a generic view over data association for sensor fusion [Appriou, 2014] investigated the use

of a hybrid probabilistic and fuzzy logic model to represent and infer matching sensory

observations originating from different streams while considering uncertainty and efficient

knowledge propagation. The perceived domain of each sensor was described as a resolution

cell (i.e. highest probability density of meaningful observations in the given range of the

perceived feature). In order to extract the association pattern, the model proposed to find

the most likely singleton (i.e. probability mass) in the set of distributions given by the

intersections of resolutions cells from all sensory modalities. The conceptual framework is

depicted in Figure 2.12 for a simple object detection task.

In this scheme, sensory complementarity enriches the information content in terms of

similarity information. Moreover, it exploits the dependency which might exist between

sensory sources when they perceive the same feature or react to the same event. This

procedure assumes extracting the probability mass function (i.e. singleton in the set of

distributions) and use it simultaneously to handle spatial and temporal associations. If

signals resemble each other, in the sense of a relation characterized previously on the basis

of the physics at play, the sensory observations describe the same object or feature, so they

can be associated in the current frame of discernment. The dependency will typically take

the form of a belief function built upon a joint probability distribution and a fuzzy relation.

Although the method proposed specific procedures in processing all possible intersections

in the sensory space, the core idea is to compute the likelihood relating to the presence

of a sensory observation at the intersection of the data distribution ranges (i.e. resolution

cells) and a reliability score associated with that. For the scenario depicted in Figure 2.12b,

for each of the two modalities (i.e. stereo vision and laser range finder) resolution cells,

xn1 and xm2 are encoding the data distribution which determine the likelihood Cnm and a

reliability score qnm, relating the presence of a target at their intersection xnm, as shown

in Figure 2.12a.
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Given the current frame of discernment, Enm

Enm = {Hnm
0 , Hnm

1 } , (2.23)

where Hnm
0 = no target in xnm and Hnm

1 = one target in xnm. The mass function, µnm(.)

on Enm for each intersection xnm of resolution cells is given by:

µnm(Hnm
1 ) = 0, (2.24)

µnm(Hnm
0 ) = qnm(1− Cnm), (2.25)

µnm(Enm) = 1− qnm + qnmCnm. (2.26)
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Fig. 2.12: Data association process in a probabilistic-possibilistic framework: an object de-
tection scenario. Vision data acquired from a stereo camera is represented in the
frame of discernment by a n-dimensional resolution cell. Range data coming form
the laser is encoded in an m-dimensional resolution cell. In order to extract the
position of the target, the algorithm decodes the overlap of the two resolution cells
in the frame of discernment.

This approach ensured that the probability mass function can be used directly to handle

spatio-temporal associations in the frame of discernment.

Clustering mechanisms

Cluster analysis and clustering mechanisms provide a powerful tool to explore intrinsic

relationships in sensory data. Due to their heuristic approach, their application in real-
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world scenarios is fraught with potential biases. In a more broad view, data scaling, the

selection of similarity metrics, choice of clustering algorithm, and even the order used in

presenting the sensory observations, might considerably influence the extracted clusters.

A typical processing flow for cluster analysis is depicted in Figure 2.13. The simplest

se
n

so
r 

1

Sensory
data

se
n

so
r 

2
se

n
so

r 
3

Tagged
dataset:

Sensory 
observations
associated 

with 
specific 
features

Selection
and 

calculation
of

resemblance 
coefficients

Selection
and 

calculation
of

clustering
method

Clustering 
threshold
selection

Cluster
definition

Feature

F
ea

tu
re

R
e sem

b
lan

ce  
co

e ffic ie n
ts

F
ea

tu
re

 i

Feature j

Observations
Cluster j

t

t

tSensory
data

Sensory
data

Fig. 2.13: Processing flow of cluster analysis mechanism for data association (adapted from
[Hall et al., 2004]).

data clustering technique is the nearest neighbours (NN) method. This algorithm provides

a simple way to select or group similar values according to how close is a measurement

to another given a certain distance metric. Usually, the type of metric is provided by

the designer and is specific to the problem (e.g. absolute distance, Euclidian distance,

statistical function of the distance). A big advantage of the NN method is that it can

provide a solution or an approximation, in a timely manner. Sometimes, in the case

of noisy observations and of complex cluttered environments it could provide erroneous

results (i.e. false associations) which will determine the propagation of the error. In

order to overcome the drawbacks in the NN algorithm, K-Means (Lloyd’s) algorithm was

developed. Basically, the K-Means algorithm finds the correct position of each of the K

clusters centroids through an iterative process:

1. Get sensory observations and number of clusters;

2. Randomly assign the position of the centroid for each cluster;

3. Compare each observation with the centroid of each cluster;

4. Move the cluster centres to the centroid (mean) of the cluster;

5. If the centres still move (changes are bigger than a threshold), go to step 3.
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The algorithm can be also seen as composed of two main steps: assignment (steps 1, 2,

3 in the process) and update (steps 4, 5 in the process). The assignment step is also re-

ferred to as expectation step, whereas the update step as maximization step, making this

algorithm a variant of the generalized expectation-maximization (EM) algorithm. Since

both assignment and update optimize a within-cluster sum of squares objective function,

and there only exists a finite number of such partitions, the algorithm must converge to

a (local) optimum. There is no guarantee that the global optimum is found using this

algorithm, and the fact the number of clusters must be known a priori, limits its capabili-

ties. Furthermore, even if improving the basic algorithm (e.g. modify the initial number of

clusters, using fuzzy clustering assignments, or Bayesian techniques) most versions need to

iterate through the dataset of observations in order to converge to a reasonable solution.

This is a major disadvantage in real-world applications.

In order to cope with limitations in the NN algorithm [Shindler et al., 2011] proposed

a fast and precise algorithm to simultaneously extract the structure of the input data

while reducing the dimensionality of the input space. Extending K-Means algorithms to

converge towards clusters with smaller number of centroids for any density of sensor net-

works , [Park et al., 2007] proposed an advanced optimization algorithm for sensor network

clustering. Using the proposed clustering algorithm, redundant cluster centres are elimi-

nated, and unnecessarily overlapping clusters are merged. The algorithm handled dynamic

changes like node addition or die-out, while the network was in working state.

In some cases the number of clusters is not known. For data fusion the association algo-

rithm should extract by itself the number of clusters and subsequently perform clustering.

For such scenarios an already established neurally inspired algorithm was proposed, namely

Self-Organizing-Maps (SOM). Providing a relatively simple dimensionality reduction tech-

nique, the SOM is able to extract the probability distribution of the input space while

keeping its topological representation. Using this algorithm [Wan et al., 2000] provided

a model to explore discrimination information from the data itself. The model had the

capability to extract and represent high-order statistics of high-dimensional data from dis-

parate sources in a non-parametric, vector-quantized fashion. The model targeted remote

sensing applications under various sensory data sources providing good data clustering

and joint spatio-temporal classification capabilities. Using relatively similar principles

[Leivas et al., 2010] proposed a model for sensor fusion based on multi-Self-Organizing

Maps for SLAM, while in a biologically inspired model of sensor fusion [Bauer et al., 2012]

proposed an algorithm that learned sensors’ reliabilities for different points in space, and

used their associations and reliabilities to perform fusion.

Going away from engineered approaches for data association, but still using the same

mathematical apparatus for clustering, [Mayor et al., 2010, Althaus et al., 2013] analysed

and proposed models of cross-modal interactions in early word learning in human infants.

Using relatively similar clustering mechanisms (i.e SOM) for categorization and labelling,

the models proposed candidates for categorical perception from early audio-visual inter-

actions that could play a role in the facilitation of infants’ categorization through verbal

labelling. Both models offered efficient generalisation of word-object associations such that

the association between the paired object and its corresponding sound pattern was gener-

alised, automatically building associations between all objects in its category to all sound

patterns of the appropriate type.
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Neurally inspired data association

Multisensory fusion influences many aspects of human perception, cognition and behaviour.

Data association plays an important role in current models of multisensory fusion and

determined two parallel research directions. The first direction is based on the idea that

one sense ”educates” another and provided the ground for sensory dominance research. A

second approach focused on the low-level neurophysiological evidence of sensory association

and combination at the neuron level following principles of temporal synchrony, spatial

congruency and inverse effectiveness (i.e. as the responsiveness to individual sensory stimuli

decreases, the strength of multisensory integration increases) [Spence, 2012].

Bringing together and evaluating evidence concerning how the brain attempts to organ-

ise the perceptual scene across sensory modalities [Spence et al., 2012], we will highlight

some studies that have investigated how perceptual organisation in one sensory modality

is used to organise the information that is simultaneously perceived in another sensory

modality. This overview aims at extracting the principles behind data association and

correlation learning in neural systems as a base for multisensory integration.

Using biologically plausible mechanisms [Cook, Jug et al., 2010] proposed a model of

unsupervised learning of functional relationships from sensory data. After learning, the

model inferred missing quantities, given the learned association relations and available

sensors. Moreover, due to recurrent connectivity, the sensory representations were contin-

uously refined, de-noising the encoded real-world variable. Finally, due to the constraints

imposed by the learned relations, the model was able to combine consistent and correlated

data and discriminate and penalise inconsistent data contributions. In a slightly different

scenario [Weber et al., 2007] proposed a model for extracting coordinate transformations in

a robot navigation task. Inspired by sensorimotor transformations in the prefrontal cortex,

the algorithm produced invariant representations and a topographic map representation of

the scene, guiding robot’s behaviour. Finally, in an attempt to counteract the drawbacks

in probabilistic data association techniques based on canonical correlation analysis (CCA)

and principle components analysis (PCA) for clustering, [Hsieh, 2000] proposed a neural

network model able to implement nonlinear canonical correlation analysis. The model was

able to extract the underlying nonlinear structures between two sets of variables under

moderate noise conditions. The proposed model treated the input variables evenly, in that

they are both inputs, and no causality is assumed. This approach offered the capability to

perform inference in the case one variable is missing by using the learned data association.

Extending the problem of extracting sensory data associations to the extraction of in-

variant features of temporally varying signals [Stone et al., 1995] proposed an invariance

extraction learning algorithm based on a linear combination of Hebbian and anti-Hebbian

synaptic changes, operating simultaneously upon the same connection weights but at dif-

ferent time scales. The model was inspired by the fact that inputs to retinal photoreceptors

tend to change rapidly over time, whereas physical parameters underlying these changes

vary more slowly. Accordingly, if a neuron codes for a physical parameter then its output

should also change slowly, despite its rapidly fluctuating inputs. This model has been

shown to be sufficient for unsupervised learning of simple spatio-temporal invariances.

Guided by similar principles, more recent work [Wiskott et al., 2002] proposed the slow

feature analysis (SFA) method to learn invariant or slowly varying features from vectorial

input signals. The method was based on a nonlinear expansion of the input signal and the
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application of PCA to this expanded signal and its time derivative. In order to extract

relations between sensory streams the method was applied hierarchically to process high-

dimensional input signals and extract complex features. Presented as a simple model of

the visual system, the algorithm learned translation, size, rotation, contrast, and, to a

lesser degree, illumination invariance for one-dimensional objects, depending on only the

training stimulus.

Using a different neurally inspired substrate, [Taylor et al., 2010] proposed a model for

learning consistent features from understanding video data. The model learned latent

representations of image sequences from pairs of successive images. The convolutional

architecture of the network model allowed it to scale to realistic image sizes whilst using

a compact parameterization and providing an extension to another unsupervised learning

algorithm, the Restricted Boltzmann Machine (RBM). Extracting the underlying spatio-

temporal features in the sensory streams, the model learned to represent optical flow and

performed image analogies being able to perform human activity recognition.

Going into more detailed neural analysis and psychophysical studies, [Tonia et al., 2001]

provided insight in the temporal dynamics of functional segregation at the basis of visuo-

motor associative learning in humans, isolating specific learning-related changes in neu-

rovascular activity across the whole brain. The findings proposed by this study suggest

that specific cortical areas are critical for integrating perceptual information with executive

processes given learned visuomotor associations.

Coming back to neural computational models for sensory correlations and association

learning [Seung et al., 2000] proposed a change in paradigm in terms of perceptual repre-

sentation such that computational power is leveraged: the manifold ways of perception.

The paradigm proposed reducing dimensionality of the perceptual problem by finding low-

dimensional structure in it using measures of local geometry of a manifold. Using this

principled description and representation [Saul et al., 2003] introduced the locally linear

embedding (LLE), an unsupervised learning algorithm that computed low dimensional,

neighbourhood preserving embeddings of high dimensional sensory data. In this context,

high-dimensional sensory data was mapped into a single global coordinate system of lower

dimensionality in which computation was simpler. The model was successfully used in

extracting primitives from images of faces, lips, and handwritten digits.

Finally, in a more recent study, [Law et al., 2008], focusing on perceptual learning in

a visual discrimination task, it has been shown that perceptual learning does not appear

to involve improvements in sensory representation, but rather how sensory representations

are interpreted to form the decision that guides behaviour.

2.4 Summary

Handling the wealth of available sensory modalities yields an adaptive and robust substrate

for representing, extracting, and processing the underlying information encoded in the

perceived streams. Either for estimating certain (salient) features in the environment given

sensory observations, or for extracting associations among available sensory cues to guide

behaviour, multisensory fusion unravels as a complex process. Furthermore, it requires

a suitable architectural substrate and processing paradigm. This section introduced the

basic types of processing architectures, along with their algorithmic substrate, and various
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sample implementations to clearly emphasize the rich design space.

Starting by exploring the underlying relations between input sensory sources, we anal-

ysed multisensory fusion mechanisms exploiting complementarity, redundancy, and coop-

eration to fuse data from various sources at the signal level. Going away from the low-level

signal representation of sensory data, we further analysed architectures employing various

abstraction levels, such that the informative content of the sensory data was extracted and

propagated to higher representation levels for decision-making. Finally, we investigated

how these high-level (feature) representations, subsequently combined with low-level rep-

resentations in complex architectures, provide a nexus platform for multisensory fusion

capable of inference, discrimination, and decision-making.

The initial overview over sensory data representations provided the framework to intro-

duce and evaluate the capabilities of the various architectures typically used in multisensory

fusion applications. Alternating between centralised, pipelined processing architectures

and fully distributed architectures, we introduced relevant sample applications in which

various sensory modalities were combined using local and global operations applied on per-

ceived low-level signals or high-level features. Balancing the advantages and disadvantages

of every scheme, we extracted important aspects valuable at the design stage. Moreover,

we identified those core principles that fully exploit the architectural, processing, and data

representations for robust and adaptive multisensory fusion.

The introductory section was completed with a formal analysis of the computational

substrate in state-of-the-art multisensory integration algorithms. Starting with the investi-

gation of standard algorithms for state estimation, we focused on extracting those driving

principles in current designs and provided a putative view of the underlying formalism.

Utilising Bayesian theory as a unifying framework to represent uncertainty and process

probabilities, we analysed the basic MLE, MAP models, as well as the Kalman filter, and

the powerful Particle Filters in various scenarios, emphasising their main strengths and

advantages in real-world real-time implementations. Likewise ”engineering highlights”,

we extended our evaluation towards neurally inspired approaches and implementations,

focusing on their applicability and advantages in real-world scenarios.

The overview on the algorithmic substrate was complemented by a formal introduction

and analysis of representative approaches for data association. Providing a comparative

formal description of both engineered and neural approaches, we focused on emphasizing

the need for an adaptive substrate capable to learn the underlying regularities in concurrent

sensory streams and exploit this highly informative cue to improve the quality and preci-

sion of the integration process. From methods like PDA and MHT, to graphical models

and from CCA to SOM and PCA, we delineated those fundamental principles underly-

ing the detection, extraction, and interpretation of underlying inter-sensory correlations

supporting the fusion process.

After providing an overview of state-of-the-art approaches, we now turn towards for-

malising and analysing the capabilities of our novel approach to multisensory fusion.

37





3 Formalising a model for multisensory fusion

The current chapter introduces the motivation and the functional details behind the pro-

posed framework. Starting from the new computational paradigm employed in the frame-

work, its (neuro-)biological inspiration and advantages, we will further introduce all those

principles which differentiate it from traditional approaches to computation.

Nowadays we experience the ubiquitous power and success in problem solving of the

”traditional” approach to computation, as pioneered by von Neumann. Using precise

mathematical descriptions of the input-output transformations, these systems provide ex-

cellent solutions to a large range of problems. However, trying to extract and interpret

useful information from the noisy real-world data has been resistant to straightforward so-

lutions. In order to cope with this limitation, elaborate theoretical reasoning, algorithmic

complexity, and significant processing resources are required.

In our work, we propose an alternative computational architecture, inspired by the

high-level architecture of the mammalian cortex, where computation is performed in a

widespread network of interconnected units, each representing a different type of informa-

tion about a feature or quantity of a system, or the state of the environment in which the

system operates. The connectivity between the units describes known formalized relations

(e.g. equations) and computation takes place by each unit trying to be consistent with the

other units it is connected to. This system is able to generate a coherent, but distributed,

representation of the current feature or state of interest, given the noisy and uncertain

percept.

In contrast to traditional computational architectures where a central processor executes

precise instructions over data available in memory, we propose a paradigm in which pro-

cessing and storage is local, distributed, and intermeshed. This blending of information

with local dedicated processing is inspired by the brain and provides the core principle

of our approach. We show that this new computational architecture enables real-time

multisensory fusion and interpretation capabilities, while being fast, robust, and scalable

compared to traditional approaches.

The difference between traditional information processing systems and our approach

lies largely in the completely different architectures they employ, specifically in differences

at representation level, storage, and processing of information. Computers use repro-

grammable, high performance CPUs to process data fetched from and stored to memory,

whereas in brains neural processing and synaptic data storage are completely intermeshed,

with each cortical area being responsible for both memory and processing.

3.1 Probing neurally inspired processing mechanisms

Where do sensory relations come from? We previously emphasized that in our model

each sensory modality is individually represented in a network unit, whose dynamics uses

formalized relations to achieve consensus given sensory contributions. This process assumes
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that each unit tries to be consistent with the other units it is connected to. Relational

knowledge and representations which describe associations amongst sensory signals, is a

hallmark of human cognition [Christie et al., 2010]. Yet, how this high-level associations

are represented in the neural substrate is still unknown. There are many aspects and

models known to describe cortical architecture and processing and even more unknown

aspects. In our work we have abstracted a set of principles known to describe cortical

processing to yield a new style of computation.

Core principles of a new style of processing

Distributing representation and processing

One of the main architectural principles validated in neuroscience is that the cortex can

be divided into areas. Each area deals with a particular form of sensory information,

and areas dealing with related forms of information are reciprocally connected. Provid-

ing an interesting perspective on understanding cognition through large-scale cortical

networks [Bressler, 2002] proposes that characteristic adaptability of cognitive functions

seems to derive from large-scale networks in the cortex. These networks are able to

repeatedly change the state of coordination amongst their constituent areas on a fast

timescale. The interdependence between interacting cortical areas is balanced between

integrating and segregating activities. From a high-level point of view, cortical areas,

through their coordination dynamics, are thought to rapidly resolve a large number of

mutually imposed constraints, leading to consistent local states and a globally coherent

cognition. Although specific operations reside in individual cortical areas, complex

cognitive functions require the joint operation of multiple distributed areas acting in

concert [Wang et al., 2014]. Starting from these cognitive implications, it is generally

believed that cortical areas, because of their unique topological positions in the overall

connectional structure of the cortex, process information in specialized cognitive domains.

The specification of these domains may be general (e.g.: visual, auditory, tactile, motor)

as well as more specific (e.g.: speech sound subdivisions, inter-aural time difference

(ITD), inter-aural level difference (ILD) processors), but mark a clear classification of

areas in coarse specialization areas and fine specialization areas. Supporting this view,

a more formal study carried out in [Bressler, 1995] showed that inherent in the concept

of the large-scale networks models is the premise that neurons in different areas become

functionally connected supporting the complex operation of the network. Attributes like

co-incidence, co-localization and synchronization are defining the correlated activity in

the interconnected cortical areas. Furthermore, the control of the large-scale networks is

based on parallel processing and achieved through efficient coordination of information

transactions. Summing up, according to this study, elementary functions (i.e. encoding,

representation, de-noising) are localized in discrete cortical areas, whereas complex func-

tions (i.e. association learning, integration) are processed in parallel in widespread cortical

networks. Control processes operating at cortical and sub-cortical levels dynamically

organize and regulate activity in the large-scale cortical networks. Cortical areas in

the network become functionally connected through direct recursive interaction. In an

attempt to provide a unified framework describing cortical coordination dynamics and

cognition, [Bressler et al., 2001] proposed an approach to understanding operational

laws in cognition based on principles of coordination dynamics derived from simple and
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experimentally verified theoretical models. When applied to the dynamical properties of

cortical areas and their coordination, these principles support a mechanism of adaptive

inter-area pattern constraint that, the authors postulate, underlies cognitive operations in

general. In the introduced framework, the cortical area is conceived as an organized set

of locally interacting neuronal populations that receives synaptic inputs and sends axonal

projections as a functional unit. The goal of the study was to address the question of how

the interactions among the large number of anatomically distinct cortical areas give rise

to the emergence of cognitive function in real-time, or concisely, what are the large-scale

coordination dynamics of the cortex corresponding to cognitive dynamics. Finally, in

supporting our first architectural principle, [Reggia et al., 2001] provided a high-level,

hemispherical specialization and interactions model focusing on features like robustness

and modularity. To support this high level description of inter-areal specialization and

interactions, the model pointed towards hemispheric asymmetries and interactions. The

model postulated that brain plasticity is a strong factor, and that the excitatory and

inhibitory influences are modulating the activity in each hemisphere.

Connectivity induced functionality and mild external sensory influence

Another main architectural principle, fundamental in our framework is that, at cortical

area level, the input from other areas provides only a small fraction of the input to

the target area. Furthermore, most of the input to any area is internal and local,

while incoming sensory information mildly influences processing, as supported by neu-

rophysiological data (only 10% of sensory projections from thalamus project to cortex,

[da Costa et al., 2011]). Finally, each local representation is structured, typically following

a topographical layout (e.g. topographical visual field representation, somatotopic sensory

representations). Supporting this design principle, [Passingham et al., 2002] proposed

that the functions of a cortical area are determined by its extrinsic and intrinsic properties

and showed that each cortical area has an unique pattern of cortico-cortical connections

(the connectional fingerprint). The described approach proposes that each area has a

unique set of extrinsic inputs and outputs and that this is crucial in determining which

functions that area can perform. Introducing a new model for information processing

in the cortex, [Knudsen et al., 1987] identified a potential hierarchical processing archi-

tecture using two types of processing units, serial and parallel maps. Depending on the

dimension of a map, one can have computational maps (active uni-dimensional maps)

and non-computational maps (derived multi-dimensional maps). The model is completed

by the defined relationships between the maps at a functional level. In the proposed

model, map generation is synonymous with a parameter evaluation process which is

parametrized using the number of simultaneous mapped parameters and the parallel

array of processors. Providing a detailed study on the influence of sensory exposure and

structural arrangement in cortex, [Ringach, 2007] addressed visual maps formation and

interactions. The basic structure of receptive fields and functional maps in the primary

visual cortex is established without exposure to normal sensory experience (rather encoded

in the expressed genes during development). But how the brain wires these circuits in

the early developmental stages is still unknown. The proposed model is based on the

idea that the blueprint of receptive fields, feature maps, and their inter-relationships may

reside in the layout of the neural substrate along with the statistical connectivity scheme
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dictating the wiring between thalamus and cortex. The cortical map creation is focused

on replying to two main questions regarding how the initial map establishment occurred

and how can the activity dependent map plasticity and persistence be preserved. Focusing

on visual cortex, [Thomas et al., 2004] introduced a formal analysis over the connectivity

and the coupling of cortical feature maps in the visual system. Starting from the idea

that topographic maps of activities of individual neurons signal the retinal location and

angle of oriented elements in the visual field, the study introduced the development model

of such maps.

Extending basic neuroscience principles

Finally, although neuroscience has not yet established a generic cortical processing model,

we extended the aforementioned principles set, with two more additional principles which

allow us to formulate a working framework. The first principle assumes that the specificity

of the inter-areal connections represent the relation between the meanings encoded in

the areas. The second principle states that the computation performed by each area

tries to bring the encoded representation towards a state compatible with related areas.

Achieving consensus ensures that the distributed representation is coherent although built

upon local contributions.

Processing as constraint satisfaction towards consensus

In order to link principles previously validated by neuroscience to our additional design

principles, we introduce some studies motivating the link between cortical area coordi-

nation dynamics and information processing. The study in [Bressler et al., 2001] found

that in order to be effective in ongoing dynamic computation the cortex must resolve

the large number of competing constraints acting on its component areas in a rapid

manner. It was suggested that the cortex achieves this through a relaxation process in

which it settles into a globally consistent state that satisfies the multiple constraints on

its interacting component areas. A relaxation process describes the network in which the

units have access to each other’s responses and adjust their own responses accordingly. In

this context a problem may appear. More explicitly, falling and settling in a stable state

(e.g. local minima) where the dynamics is trapped into a fixed point. The cortex seems

to avoid that because the cortical areas can reconcile their competing constraints through

increased relative coordination. This is done without the need of explicit relaxation,

rather by using an adaptive response to the current constraints on its component areas.

Processing driven by functional relations

Regarding the specificity of the inter-areal connections and the capability to encode the

relation between the meanings encoded in the areas, [Knudsen et al., 1987] proposed a

model of visual processing for which the interaction between the maps can be hard-wired

(i.e. defined relationships) or non pre-wired interactions (activation based). Following this

specific representation of inter-areal connections, [Reilly, 2001] introduced a new model for

cortical computation based on collaborative cell assemblies. In the proposed model each

region was ”bound” to a different sensory modality and defined its representation. This

representation was considered a mapping from the environment to the cell assemblies state

space and contained mapped information (sensor input - motor outputs). The defined
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representation was context independent, composable and followed a dispositional form,

supporting different levels of complexity in defining the dynamics. Furthermore, binding

was introduced in the model as a collaborative interaction in which additional sources

of information (e.g. features of stimulus) will constrain the identity of the represented

environment.

Comparative survey on existing cortical architectures

In order to extend the discussion on cortical architectures and emphasize the relevance of

the proposed approach, we survey and compare against other, neurobiologically plausible,

models of cortex.

In the work of [Barbas, 2015] the emphasis falls on a structural model that relates

connections to laminar differences between linked cortical areas. The core principle is

that the pattern, strength, and topography of connections among cortical and subcortical

structures enable a variety of functions to be realized in both excitatory and inhibitory

neurons. These findings support the proposed model in terms of the functional substrate

of computation with interacting maps, similar to cortical maps, implementing various

functions with excitatory / inhibitory connections.

Looking directly at thalamocortical interactions and their non-homogeneous informa-

tion processing pathways, [Sherman, 2012] proposed a model comprised of two main classes

of processing pathways, one carrying information processing and a second one playing a

modulatory role. The model describes parallel processing in cortex as modulated by tha-

lamic inputs through relay areas responsible with both modulation and processing. This

observation enforces the idea followed in the design of our model, where connectivity pat-

terns among different representations of sensory quantities are modulated by intermediate

maps responsible with relaying or enforcing the local estimate through a different relation

(i.e. pathway).

Going away from the functional aspects, [Grossberg, 2007] proposed a unified theory ca-

pable to link brain mechanisms to behavioural functions. Using complementary computing

and laminar computing as main ingredients, the LAMINART architecture describes how

constraints can influence multiple cortical regions, and how sensory cues can work together

to learn invariant categories (i.e. instantiated for visual development, learning, perceptual

grouping, attention, and 3D vision).

Using a similar, high-level, description of cortical processing [Hawkins et al., 2006] pro-

posed the Hierarchical Temporal Memory (HTM) as a machine learning technology that

aims to capture the structural and algorithmic properties of the neocortex. Similar to

our model, the HTM is based on different processing regions wired together in a network.

Some regions receiving input directly from the senses and other regions receiving input

only after it has passed through several other intermediate processing regions. Time plays

a crucial role in adaptation, inference, and prediction. Both HTM and our model can

infer missing quantities given the existing connectivity (e.g. relations / previously learned

associations); can adapt to unforeseen changes in the input streams and keep the processes

representation consistent; and finally can predict the likely values for future inputs based

upon current input and immediately past inputs.

Supporting the idea of functional coupling among different processing maps in cortex,

[Edelman et al., 2013] proposed reentry as a key mechanism for integration of brain func-
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tions. This mechanism describes the ongoing bidirectional exchange of signals linking two

or more brain areas. The main hypothesis is that reentrant signalling serves as a general

mechanism to couple the functioning of multiple areas of the cerebral cortex and thala-

mus and integrate functionality. Consistent with this paradigm, our model implements

reentry as a process that facilitates the coordination of functionally segregated computa-

tional areas. By these means this process binds cross-modal sensory features similar to

synchronized and integrated patterns of neural activity in different brain regions.

Finally, addressing the role of uncertainty in neural coding and computation,

[Rao et al., 1999] proposed predictive coding as a neurobiologically plausible scheme for

inferring the causes of sensory input based on minimizing prediction error. The core hy-

potheses supporting this perspective are: a) feedback connections among cortical areas are

carrying predictions of expected neural activity in the target area while the feed-forward

connections carry the differences between the predictions and the actual neural activity;

b) recurrent connections are used to store and predict temporal sequences of input neural

activity. The two fundamental principles are also considered in our framework through

the mixed connectivity which, using local dynamics and storage, ensure global consensus,

when predictions are identical with the actual local estimates. Moreover, due to the in-

trinsic constraints (i.e. relations) among the different maps (i.e. areas) encoding different

inputs, the network is able to infer and predict missing quantities.

Based upon the comparative analysis and the core principles of this new style of pro-

cessing, we now introduce the basic model of our computational framework.

3.2 From neural models to formal implementation

Supported by known neural, cognitive processing mechanisms, as well as formal problem

solver implementations (e.g. CSP), our model builds upon fundamental distributed pro-

cessing principles. The underlying principles make it a promising approach for multisensory

fusion and support the paradigm shift toward flexible and robust processing.

As previously described, multisensory fusion assumes interactions between percepts in

order to extract globally coherent representations given modalities’ local interpretations.

Typically, local sensory interpretations are correlated and obey constraints imposed by the

physics of the sensors. Combining all these constraints in a network of possibly conflict-

ing local interpretations and using a relaxation method to solve the inherent constraints,

ensures convergence to plausible and possible global interpretations.

The brain resolves conflicting low-level visual hypotheses to obtain globally best

representations from wide-spread networks of interacting local sensory interpretations

[Hinton, 1976]. Usually, the difficulty derives from the fact that the local ambiguities (in-

herent in perception) must be resolved by finding the best global interpretation. Instead of

extensive searches through the space of all combinations of locally possible interpretations,

relaxation methods can be used. Easily parallelisable, this approach attains the best global

interpretation, not just a good one as in a heuristic search.

Extending this view, with focus on computational aspects, representing knowledge and

constraints between percepts can be viewed as a network of relations. A network of re-

lations can, in principle, provide a deductive style of distributed computation capable

of representation, learning, and generalization close to neural mechanisms for associative
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memory [Cook et al., 2004]. Each relation involves a given number of variables repre-

senting sensory inputs, such that any overall relationship amongst the variables treated

in the network is distributed across the network. Furthermore, each relation encodes a

configuration of values corresponding to the variables it relates.

Employing similar mechanisms in multisensory fusion, where some variables may repre-

sent understandable aspects of the modelled situation and some might not, ensures that all

contributions and intrinsic correlation between sensory data are exploited. Handling mul-

tiple contributions and processing them in such a network is inherently distributed. This

allows the network to converge to a solution by narrowing down the space of possibilities

as much as possible given the input data streams. Hence, the outcome of the relaxation

process is a stable global representation of the perceived scene. Formalising multisensory

integration using this relational paradigm ensures quick and uniform convergence for any

network topology, allowing networks to be as interconnected as the relationships warrant,

with no independence assumptions required.

Supporting the formal basis imposed by relational networks, insight from cortical com-

putation [Buneo et al., 2006] strengthens the view that global knowledge representations

can be extracted from local interpretations and interactions. Models of cortical process-

ing have shown that cortical neural structures, such as gain fields, appear to implement

relationships between a small numbers of variables. One example is the three-way relation

between two successive joint angles and the resulting composite angle, important for an

animal using its body. Given any two of the values, this three-way relationship can be used

to deduce the third value. Relational knowledge is definitely a hallmark of human cognition

and the subject of a vast body of research [Halford et al., 1998] with an interesting focus

on the processing of associations versus the processing of relations [Phillips et al., 1995].

Formalising two computational paradigms, association and relational processing, various

neural net architectures were developed, with feed-forward networks implementing asso-

ciative processing, while tensor product networks implemented relational processing. Rela-

tional processing has been shown to have the essential properties of symbolic processing in

humans and higher animals. This supports the view that information processing capacity

is not defined in terms of the number of items but in terms of the complexity of relations

that can be processed in parallel.

From a formalised point of view, relation networks can be regarded as constraint satis-

faction problems (CSPs). CSP provide a generic framework used for modelling and solv-

ing combinatorial problems, employing efficient algorithms to prune search spaces using

a distributed paradigm. This framework can accommodate and characterize symmetries

among problem entities, facilitating local changes to the solutions (interchangeability) to-

wards reaching global consensus [Neagu, 2005]. Typical consensus networks are composed

of integrating nodes (i.e. simple transfer functions, usually integrators) and static weights

(which are fixed, without dynamics). In order to realize relational processing, consensus

networks can be extended, such that each node contains a variable, representing its current

belief of the consensus variable of the overall graph. Moreover, each node is implementing

a transfer function that produces the current variable stored inside from the incoming and

the outgoing flows. Node level dynamics in this framework takes steps towards minimis-

ing the mismatch between the incoming and the outgoing flows (conservation criterion of

equilibrium). In order to reach consensus, incoming streams are penalised or enhanced by
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Fig. 3.1: Consensus networks: dynamical vs. static consensus protocol. Topology changes
yield dynamic adaptation of the global consensus protocol, to accommodate the
new connectivity pattern. For each configuration in the network’s evolution, local
consensus protocol is ensuring convergence.

corresponding correction or cross-correction weights responsible to increase convergence in

the consensus protocol (i.e. fulfil the relations in the network). Such an approach models

how global complex features can emerge from purely local rules, and how starting from

initial random conditions and without any global supervision the system settles through

a relaxation process, leading to the emergence of a global consensus [Kozma et al., 2008].

Finally, bringing the analysis to a higher level of generality, studying consensus over ran-

dom information networks can be formulated as a quest for proving that the existence of

information channel between a pair of units at each time instance is probabilistic and inde-

pendent of other channels [Hatano et al., 2005]. In such a setting, the agreement protocol

(i.e. configuration of relations) provides a means of coordinating the network elements

towards achieving agreement on some particular parameter of interest represented in the

network. Depending if the agreement protocol is fixed, and defines a state in which all

elements in the network should agree on a certain value or there are probabilities on edges

describing the communication channels between units, one can formulate the problem as

dynamic or static. Figure 3.1 depicts the temporal dynamics of such a system which,

given the locally stored quantities and the connectivity pattern, drives the global belief to

consensus, such that all quantities are agreeing. Structural changes determine a change in

the agreement protocol reflecting a change in the settling values of each quantity.

This analysis is relevant in the design of our model such that we need to make sure that

the network connectivity exploits the relevant underlying relations in the data and uses

that to achieve consensus and a global coherent representation, given incoming data and
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exclusively local processing.

3.2.1 Introducing the basic model

Humans can perform perceptual inference effortlessly, spontaneously, and with remarkable

efficiency, given all the complex incoming sensory streams, as though these inferences are

a reflex response of their cognitive apparatus [Shastri et al., 1993]. It has been postulated

that the processing capacity is limited not by amount of information or number of items per

se, but by the number of independent dimensions that can be related in parallel through

relations [Phillips et al., 1995]. This enforces the idea that relational complexity, defined as

the number of independent sources of variation (information) that are related, constitutes

a major factor underlying the flexibility of higher cognitive processes.

We propose a distributed processing model which, given different input streams and the

relations between them, settles in a stable state providing a coherent representation of the

acquired quantities or derive new quantities.

Obeying constraints imposed by relations, each unit processes, stores, and communicates

only local information, to the extent that each unit builds and refines its local belief

about the represented quantity (e.g. sensory modality). Furthermore, both feed-forward

and feedback processing pathways connect the units such that the mutual exchange of

information is kept to a consistent state (i.e. fulfilled relations).

Each unit in our network contains a map based representation of a certain real-world

quantity (i.e. perceived feature). The maps are inspired by the topographic organisation

in cortical and midbrain structures for multisensory fusion [Carreira-Perpinan et al., 2005,

?, Stein et al., 2004, Graziano et al., 2004, Swindale, 2005], and share the same functional

role of mapping the sensory stimuli distribution to an internal representation. This map

representation refers to a 2-dimensional topological arrangement (i.e. matrix configura-

tion), such that adjacent values in the map encode adjacent values of the input space it

represents.

In our framework the content of an individual map entry is determined by the fea-

ture space the map represents (e.g. 1D angular velocity scalar, 2D optic flow vector, 3D

rotation vector). To get an idea about the map based representation and the way re-

lationships are linking maps, we provide a toy example in Figure 3.2. Each map (i.e.

a 2D structure with matrix like layout) is the basic template to encode n-dimensional

features in each map cell. Cells in each map encode a multi-dimensional feature, depend-

ing on the sensory data type. As processing happens locally, the operations applied to

each map are cell-wise, such that each update of the local estimate is performed indepen-

dently at the cell level. The encoded quantity in each cell of a map can be represented

by point estimates or using a sparse representation, encoded in neural population activity

[Cook, Gugelmann et al., 2010, Pouget et al., 2004]. In a more general view, a map en-

codes the representation of a continuous stimulus parameter by a place-coded population

response, whose peak reflects the mapped parameter [?]. Independent of representation

(i.e. point estimate / population code) the core of the model is implementing relations

that describe the connectivity of the network. Figure 3.3 introduces a canonical network

that implements the identity relation between two units. Network dynamics is based on

a random update process, using gradient descent. Values in each unit’s map take small
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Fig. 3.2: Generic map based representation used in our model. Each map is a matrix-like struc-
ture in which each element encoding a certain sensory feature can be n-dimensional.
Dimension is determined by the size of feature space a map represents. Sample
implementation of an algebraic relation between two 2D maps: B” = 5B’ + 1.

m
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m
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= =

a b

Fig. 3.3: Canonical network for identity. a) Mutual influence between two units, mi and mj,
obeying update rules to minimise the mismatch between the values stored in each
unit’s map; b) Starting from initial random values the maps converge towards fulfilling
the identity relation.
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steps towards minimising the mismatch with the relations in which the unit is involved.

In the case of absence of external sensory input (as shown in Figure 3.3), given the ran-

dom initialisation of each unit’s map, the network will converge to a solution in which the

identity relations are fulfilled. Each unit follows update rules given by

∆mi(t) = −ηi,j(t)
∂Emi,mj(t)

∂mi(t)
(3.1)

Emi,mj(t) = (mi(t)−mj(t))
2 (3.2)

Equation 3.1 provides the update rule for map mi. To minimise the mismatch with respect

to mj, given by Emi,mj(t), the map takes a step proportional to the mismatch, modulated

by a factor ηi,j(t). The mismatch (error signal) computation in Equation 3.2, is based on

the squared error between the two units.

Applying relatively simple operations upon the locally stored estimate, each unit bal-

ances the influence from all the other units. Units can be linked using generic algebraic

relations (e.g. summation, division, difference, or product), which can be employed to

implement diverse and more complex relations. These ”atomic” operations are simple,

keeping local processing fast enough to support fast network dynamics.

3.2.2 Analysis of the basic model

In this section we analyse the dynamics of the basic model. We provide an overview on

convergence, precision, and adaptation capabilities in the presence external sensory input.

As model systems, we consider two networks, one implementing relatively simple algebraic

relations, and a second following a more complex scenario, coupling network units through

highly nonlinear relations. The task the networks have to solve is to bring all quantities

encoded in the network to agreement given dynamically changing external input and using

only local processing and communication.

The first implementation of the model is depicted in Figure 3.4. Each unit in the

network follows a connectivity pattern set by the embedded relation, such that the relation

constrains the space of possible values a unit can take, given the values in the other units

involved in the same relation and (eventually) the external input. External input only

mildly influences the network dynamics, such that each unit balances external contributions

and internal network belief, which is distributed across agreeing local estimates in each unit.

Starting from a random initialisation of the units and no external input, the network

rapidly settles in a stable state. This state corresponds to a solution of each of the embed-

ded relations. In order to converge to a solution each unit processes the values received

from the other units (through bidirectional connections imposed by relations) along with

its stored estimate, through mutual exchange, while exclusively processing local data.

We analyse the behaviour of the network in the case of unconstrained convergence, from

initially random conditions (i.e. each unit is randomly initialized in the [0,1] interval) in

Figure 3.5. Each unit updates its own local estimate such that it agrees to the units it

is connected to. For units involved in more than one relation (i.e. unit m2 and m4) the

update rules consider contributions from all related sources. We notice that convergence is
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Fig. 3.4: Simple network model. Units (circles) encode a 1-dimensional quantity as a point
estimate representation. Units are connected through functions (rectangles) which
represent the constraints imposed on each unit estimate. External (sensory) data can
be fed into the network as additional inputs to each unit (squares).

fast and each unit settles in a solution lying on the corresponding manifold in the relation

space of m1 and m2 (Figure 3.5 lower-left panel). The convergence speed towards the

constraint manifold is modulated by the relation, such that, in our scenario, m1 is 0.3333

times slower than m2.

Considering the same setup, now with external input, the network is constrained, such

that it has less degrees of freedom (i.e. some solutions are imposed due to constraints).

External input can be connected (i.e. clamped) to the network by enabling the connection

between a map and an external source which continuously feeds the map with a constant

value. To mark the moments at which the network is fed with external input we use

appropriate labels: SiON corresponding to the moment when the external input is clamped

to the network, and SiOFF corresponding to the moment when the external influence

ceases. In all the test scenarios the external clamp is constantly feeding unit input. If we

connect sensory inputs to units m1 and m2, network dynamics will try to reach consensus

given that sensory inputs of respective units are clamped to a certain value, as shown

in Figure 3.6. Figure 3.6 low-left panel shows that starting from initial conditions, the

network autonomously evolves towards reaching a stable state. When the first sensory

input is connected to the network (S1ON) the network state changes such that the external
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Fig. 3.5: Network analysis: first scenario. Starting from initial random conditions the network
converges to a solution in which all embedded relations are fulfilled. The network is
unconstrained by external input.

constraint is accommodated. The value stored by unit m1 is now ”pulled” towards the

sensory input while still contributing to the overall network belief. Similarly, when m2

starts to receive input from the sensor, it updates its state towards that value. The other

maps in the network receive changing contributions from m1 and m2, such that constrained

by the relations, they update their values accordingly. When sensory influence ends (i.e.

S1OFF , S2OFF ), the network evolves only under the influence of the internal relations,

rapidly reaching consensus.

In this simple scenario, the sensors connected to m1 and m2 feed in 1.0 and -1.0 re-

spectively, in the corresponding unit. We can see that once the sensors are connected,

local values stored in the network units are shifting towards accommodating the external

input while still obeying to the internal constraints (i.e. relations) in the network. Sensory

contributions are propagated in the network through the relations such that the value con-
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Fig. 3.6: Network analysis: second scenario. Starting from initial random conditions the net-
work receives external input through m1 and m2. The maps are connected to external
input at S1ON (t=0.1s), S2ON (t=0.6s) and disconnected at S1OFF (t=1.7s),
S2OFF (t=2.4s) respectively. Due to the external input the network balances the
contributions and accommodates new data updating its internal belief. New values
are propagated through the network which updates its state towards fulfilling the
relations.

tained in each unit map is taking steps towards minimising the mismatch with the relations

in which it is involved. In this scenario the network is still underconstrained, such that

units m3, m4, m5 and m6 are still free to settle in less restricted solutions, given that they

have no external inputs. Moreover, we can see that the network reacts to exceptional cases
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(e.g. division-by-zero) in the case of the product relation between m2, m3, and m4. Due

to the fast internal dynamics, the system handles the exceptions and recovers, settling to

a stable and correct value in the maps, without external constraints.

In order to analyse the mechanisms underlying the adaptation capabilities of the net-

work, we consider the case in which we progressively connect external input to the network

through each unit. By feeding different inputs to the sensors (at different rates and am-

plitudes) the network will do ”its best” to combine the local belief of the network with all

incoming sensory contributions and settle in a stable state. Moreover, the network is able

to react to changes in the input space (i.e. removing an input), and using the available

degree of freedom to settle in a stable solution as we can see in Figure 3.7. In order to fully

constrain the network all units are now connected to their sensory inputs while still obey-

ing the internal network constraints imposed by the relations. Figure 3.7 a (before t=1s)

denotes how the network evolves rapidly to a stable state while no external input is con-

nected, and starts to balance external contributions and internal belief towards consensus

(between t=1s and t=3s), finally converging to a stable state (i.e. no more jitter in local

estimates) once there are no more external constraints. Due to its internal dynamics the

network will oscillate, such that each local unit estimate will jitter between sensory contri-

bution and value imposed by the relations, Figure 3.7 b. The oscillations are determined

by the network dynamics, as units are randomly updated, taking incremental steps towards

minimising mismatch between local value and their input sources. Following a relaxation

process the network continuously iterates, such that its internal belief is propagated across

its units which locally update their state. This assumes a uniform random update process

in which each unit takes steps towards minimising the mismatch to a certain incoming

stream of information connected to it, be it another unit or sensor. The update process is

assuming that in one network iteration all units are updated from all possible sources.

Notwithstanding its good performance in the aforementioned scenario (i.e. fast conver-

gence to the underlying solutions of the relations), the network is also able to handle more

complex, highly nonlinear relations. We explore further the capabilities of the proposed

model with a network of same size but more complex and constrained functional dependen-

cies between units. The network is depicted in Figure 3.8. In the following experiment we

analyse the behaviour of the network for a temporary fully constrained context, in which it

evolves freely from initial conditions, subsequently handles multiple synchronised sensory

inputs, and then relaxes in a solution once external input is removed, Figure 3.9 a. In this

context the network is still able to converge to a stable state fulfilling all the embedded

relations. The oscillations present in each unit’s evolution are given by the fact the values

each unit is allowed to take values in the interval determined by the sensory input and

the network estimate. Due to the mathematical constraints of the relations embedded in

the network (i.e. inverse trigonometric function) we observe large jumps in the mismatch

signals corresponding to zero crossings in maps values which assume illegal computation

in the update rules (i.e. division by zero) or changes in sign, Figure 3.9 b, second row

(Em2,m1 , Em2,m3,m4). Although these cases are rare in real-world scenarios, we investigated

the capability of the network to react to spurious illegal values and the how fast it can

handle the changes.

An interesting investigation we performed focuses on the network’s capability to handle

temporal relations between units. We extended the simple network architecture in Fig-
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Fig. 3.7: Network analysis: third scenario. Starting from initial random conditions the network
receives external input through all units starting t=1s up to t=3s. Due to the full
external input the network balances the contributions and accommodates new data
updating its internal belief in a fully constrained context. This is visible in the
oscillations each unit’s estimate has with respect to the relations it is involved in.
a) Units dynamics for a fully constrained network; b) Units mismatches with respect
the relations.

ure 3.4 by replacing the simple linear relations between units m1 and m2 with temporal

integration, such that m2 is the temporally integrated version of m1, Figure 3.10. We

analysed the network’s behaviour by connecting a switching sensory input signal to m1,

such that the signal was oscillating between -1 and 1 for around 3s. Once the sensory input
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Fig. 3.8: Complex nonlinear network. Embedding highly nonlinear relations, with mathemati-
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was removed, the network evolved independently towards a stable state, Figure 3.10 a.

Given the single external input entering the network through m1, unit m2 accumulates

(i.e. integrates) the value such that each unit in the network subsequently settles in new

solutions of the embedded equations. This analysis is important as it provides insight

in the speed the network can accommodate continuous changing sensory inputs, typical

for real-world scenarios characterised by sensors sampled at different frequencies. In this

case the network propagates incoming samples from the external source throughout the

units which adapt their local estimate to be consistent with the external contribution.

In the last analysis scenario, we turn our attention to the adaptation mechanism (i.e.

confidence factor) that each unit uses to weight the incoming contributions from other

units or external sources. We designed a simplified version of the network introduced

in Figure 3.4, so that given similar relaxation dynamics, we can analyse the adaptation

mechanism on a per unit basis, and see how, through local processes, each unit is able to

enhance consistent contributions and penalise inconsistent ones. The network structure

we consider for this experiment is depicted in Figure 3.11. The structure used in this

scenario is underconstrained, such that only two units receive external input, m1 and

m3. Incoming sensory data is continuous, values changing in a given profile (e.g. ramp

signal), and the input sequences do not overlap, such that the system can evolve towards

a solution easily, as shown in Figure 3.12 a. The mismatch is rapidly compensated for due

to the multiple degrees of freedom the network has in this scenario (i.e. only two external

inputs connected), as depicted in Figure 3.12 b. As previously mentioned, the network

benefits from an internal adaptation mechanism allowing it, at the unit level, to enhance

contributions from external sources, when they are consistent with the global network
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Fig. 3.9: Network analysis: fourth scenario. Starting from initial random conditions the net-
work converges to a solution given the mathematically constrained functions in the
relations. When all sensory connections are enabled (tON = 1.5s to tOFF = 2.5s)
the network oscillates for t > 2.5s due to network random update dynamics for
the fully constrained space of values its units can take. Once freely evolving driven
by internal dynamics, the network settles in a stable state. a)Units’ dynamics for
the complex network in constrained scenario; b)Units’ mismatches with respect the
complex relations.
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Fig. 3.11: Network model for analysing adaptation capabilities given external input.

belief, and penalise inconsistent contributions. This mechanism allows the network to

detect and compensate for faulty input data and still keep stable and correct estimates in

the network. Confidence factors are associated with each incoming source of information

of a unit. Balancing contributions and locally computed mismatches, the network infers
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weights for each individual source, as shown in Figure 3.12 c, such that it rapidly converges

to a consistent global estimate.

3.3 Summary

We conclude our analysis with some concepts and features of our model which will be

exploited in the upcoming chapters where we will focus on real-world instantiations of our

framework. Figure 3.13 offers a synthetic view on how we derived our model, emphasizing

the most important representation and processing mechanisms. The first aspect is exten-

sibility. As we observed in our analysis we believe that the network can take arbitrarily

large sizes due to its distributed structure, can implement arbitrarily complex relations due

to simple ”atomic” implemented operations, and can have arbitrarily defined connectivity

patterns reflecting its dynamics. Given the generality of the update rules, the network can

be flexibly extended, as local dynamics ensure global consistency between implemented

constraints (relations) in the network.

A second important aspect for real-time implementations, especially when facing real-

world sensory data and sensor models, is fault tolerance. We previously analysed the

intrinsic confidence factor adaptation as a means to detect and weight incoming contribu-

58



Formalizing a model of multisensory fusion
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Fig. 3.13: Deriving the model: From neural substrate to multisensory representation and com-
putation in real-world systems.

tions at the unit level. The local adaptation generates global network consistency.

In the implemented networks, units relax together. Therefore, if a sensor provides noisy

data, the collective computation will analyse and weight its input in their context and

will bring outlying values towards values that are consistent with the rest of the data in

the network. In order to avoid problems of local minima, we also explored extra noise

injections into the network using simulated annealing, to achieve better global results

and faster convergence towards consensus. The noise injections assumes small amplitude

increments at local level to help the network state leave the local optimum. Sensor failures

are recognised as such by the equality relation that connects the sensor to its corresponding

part of the network. This relation pulls the network towards the values reported by that

sensor, unless the reported sensor values are so far off as to be effectively inconsistent with

the rest of the network for an extended period of time (as compared with the amount of

time typically required for the network to converge to a consistent state). In this situation,

the confidence factor allows the sensor input to sit at its inconsistent value without further

perturbing the rest of the network. If the sensor were to come back online, then the

confidence adaptation mechanism automatically resumes usage of the sensor input due

to the second opinion coming from the rest of the network. The mechanism is able to

determine in a natural way whether the sensor is operating correctly or not.

In the upcoming chapter we will focus on specific instantiations of the developed frame-

work in a real-world scenario, namely egomotion estimation for mobile robots. Because

processing in the model is inherently parallel and asynchronous, we will also provide a

thorough analysis on how the model can be distributed and executed on standard PCs

taking advantage of software parallelism, or on massively parallel neuromorphic hardware

architectures.
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4 Instantiating the multisensory fusion model

As shown in Chapter 3, our work probes high-level processing and organization princi-

ples of multisensory fusion known to take place in the brain, and targets instantiations in

robotic systems. Inspired by psychophysical and computational neuroscience models for

multisensory fusion, we identified the use of an adaptive neural substrate as a support for

flexible operations in adaptive sensory integration. Due to its anatomical organization, the

brain allows processing of different incoming signals from sensory modalities in anatomi-

cally separate regions of the cortex. Moreover, this distributed scheme globally resembles

processing at cortical level where multisensory events elicit responses from different sensors

and are subsequently integrated into a unified and coherent perceptual representation of

those events. Integrating multisensory events relies not only on anatomical convergence

from sensory-specific cortices to multisensory brain areas, but also on reciprocal influences

between cortical regions that are traditionally considered as sensory specific. We can then

assume that multisensory processing is a framework designed to account for a wide vari-

ety of integrative processes that the brain constantly performs. This flexible framework

yields some general principles which can be easily transferred to technical systems as an

alternative to existing approaches.

The type of information processing that we propose allows seamless multisensory fusion

capabilities. As we saw in Chapter 2, there is no generic framework to describe sensory in-

tegration processes, especially when supporting different sensory modalities. Our approach

provides the means to develop a general solution to this problem, since each unit of the

model is able to represent a different sensory modality, and extended networks can embed

various types of sensory information. The capability to combine different modalities comes

as a side-effect in the processing paradigm we propose, due to the mild influence sensory

contributions have on different representations in the network.

Brains and computers work in very different ways, and they are good at different things.

For some tasks, such as performing intense numerical calculations, memorising large lists,

or precisely following predefined instructions, computers overcome human capabilities. But

in other areas, such as environment interpretation, interaction, and decision making in the

face of uncertainty based on whatever information is available, brains are many orders of

magnitude better than computers. Humans are typically much more robust to noise in the

sensory data, inhomogeneities of computational substrate, or environmental changes than

current engineered systems. Using a similar processing scheme like the one employed by

the brain, the proposed framework provides a solution to multisensory fusion showing that

the proposed distributed processing scheme is more robust to noise, sensory failures, and

uncertainty.

Finally, the proposed information processing scheme can be extended to represent and

process various types of information content. As the core dynamics are based on the

physics of the sensors (eventually spatio-temporal relations among physical quantities),

the designer can interconnect multiple networks into a single large network, allowing it to
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internally represent many aspects of the environment or the estimated feature, and thus

being able to incorporate many more types of sensory inputs, giving a sensible solution to

the problem of multisensory fusion.

Using a distributed processing scheme based on localized intelligence that ensures asyn-

chronous information exchange and adaptation based on external real-world sensory stim-

uli, the framework ensures the design of fast, robust and scalable computational architec-

tures appropriate for real-time real-world technical applications.

4.1 Multisensory fusion network for mobile robot

egomotion estimation

An essential component in motor planning and navigation, for both real and artifi-

cial organisms, is egomotion estimation. Egomotion or self-motion refers to the com-

bined rotational and translational displacement of a perceiver with respect to the en-

vironment. During motion, organisms build their spatial knowledge and behaviours

by continuously refining their internal belief about the environment and own state

[Arleo et al., 2007, Heed et al., 2012, Mitchel, 2010]. Our approach is motivated by three

main aspects consistent with recent results in spatial processing for navigation and per-

ception [Mast et al., 2007], which are described in the following paragraphs.

The first aspect addresses the importance of maintaining a precise position of the self.

Building an internal representation of the environment and own state implies the coherent

alignment of the acquired sensory cues. As sensory cues are conveyed from both dynamic

egomotion related signals such as odometry and inertial signals, and static external envi-

ronmental signals, such as visual or auditory, the precise position of the self is responsible

to link and keep the representation coherent. In this context a coherent representation

provides the ability to recognise and define ”action possibilities” from all available sen-

sory cues (e.g. distance to objects). Subsequently, egomotion defines the space of possible

actions that impacts behaviour [Heed et al., 2012, Mitchel, 2010, Sheets-Johnstone, 2010].

A second aspect refers to the capability of a real or artificial organism to understand

space itself from its own state (in space). Egomotion estimation contributes to the un-

derstanding of high-level features of the environment, like structure and layout, such that

the organism can direct actions and control its movement. Typically, with respect to

position, the primary question is related to distances to key objects in the environment.

In order to infer correct distances, the organism must traverse the environment and dis-

tinguish between its dynamic and static features as they lead to different consequences

[Warren, 1990].

The third aspect points directly to the solution offered by our model, namely how can

robust egomotion perception be obtained given the complex multisensory environment. In

order to handle environmental variability and complexity, continuous and simultaneous

incoming sensory data streams from different sensors must be combined into a robust

representation. However, sensory cues are usually complementary and redundant and

is not clear how they describe the spatio-temporal properties of the environment. To

disambiguate the complex scenario the global representation should combine all cues in

an informative and plausible way. This sensory combination process is not trivial, as
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current implementations show [Ferreira et al., 2014] . The primary objective is aligning

reference systems of the different, congruent, and redundant sensory cues. After alignment,

depending on inferred spatio-temporal correlations, interference and conflicts between the

cues need to be minimised [Heed et al., 2012, Mitchel, 2010, Lackner et al., 2004]. Finally,

the multisensory fusion system should not propagate biases or errors in the final (fused)

estimate, but compensate for them.

This section is organised as follows. Starting from the general neurally inspired process-

ing model described in Section 4.1.1, we present the architecture and the specific instan-

tiation for the mobile robot egomotion estimation in Section 4.1.2. Section 4.1.3 provides

the analysis and evaluation of our model and a comparison with state-of-the-art methods,

whereas Section 4.1.4 provides a thorough discussion of the obtained experimental results

as well as future extensions.

4.1.1 A cortically inspired network for egomotion estimation

The model uses a distributed network in which independent neural computing nodes ob-

tain and represent sensory information, while processing and exchanging exclusively local

data, to infer an estimate of robot orientation. The scenario in [Axenie et al., 2013] is

now extended to full egomotion estimation. As previously shown, our generic processing

framework is inspired by the neural processing paradigm introduced in Chapter 3, where

cortical areas involved in sensory processing assume rapid resolution of a large number of

mutually imposed constraints (i.e. coherence / incoherence relations), leading to a globally

coherent estimate of the percept. Following similar high-level cortical organization and in-

teraction principles with our model the work in [Ferreira et al., 2013, Ferreira et al., 2011]

introduces and evaluates the capabilities of a neuromimetic Bayesian framework for mul-

timodal sensory fusion for motion estimation and 3D structure extraction, motivating the

advantages of the paradigm shift towards biological inspiration.

General processing model

The proposed model is a network of processing units whose connectivity is provided by

relations defined between the units (e.g. given by physics of the sensors or inter-sensory

interactions). The relations between the units can be explicitly encoded in the network

or obtained as a result of a learning process (as we will show in Chapter 5). A more

detailed description of this computational paradigm is given in Chapter 3. Even though

in the current stage relations are embedded in the network at design time, the dynam-

ics and integration capabilities of the network are the same for both hand-crafted and

learned relations. Hence, our model separates relaxation dynamics (convergence towards

a solution) from learning (connectivity set-up). A similar principle was successfully used

for fast visual interpretation in [Cook, Gugelmann et al., 2010]. The system proposed in

this work interpreted input from a neuromorphic vision sensor by means of recurrently

interconnected areas, each of which encodes a different aspect of the visual interpretation,

such as light intensity, optic flow and camera calibration. This network of interacting maps

is able to maintain its interpretation of the visual scene in real time. A similar approach

has been also used in [Ferreira et al., 2013, Ferreira et al., 2011] modelling midbrain and

cortical sensory integration sites, and employing iterative Bayesian programming to refine
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spatial maps (i.e. probability distributions). Following the computational map based rep-
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Fig. 4.1: Network for generic algebraic relations. Implementing summation, division, or dif-
ference using the proposed model is straightforward. Particular implementation of
offset computation network.

resentation described in Chapter 3, a sample network to implement sensory averaging is

introduced in Figure 4.1. This network is used extensively in our model as a core mech-

anism to quantify the relative mismatch (offset) between the quantities inferred in the

network. The network computes the average activity of all other connected units, mj, in

the network, stores it in net, and isolates the contribution of a certain unit, mi, to compute

its relative offset, mioff. The offset is inferred in the network, in a separate unit, and each

main unit has an associated offset node following the next generic update rules:

net(t) =

n∑
k=0

mj+k(t)

n+ 1
(4.1)

∆mioff (t) = −ηmi,net(t)
∂Emioff ,net(t)

∂mioff (t)
(4.2)

Emioff ,net(t) = (mioff (t)− (net(t)−mi(t)))
2 (4.3)

The offset nodes quantify the relative mismatch among units depending on the type of

unit, and have an impact on different time-scales (e.g. faster for integrating sensors, slower

for absolute sensors). This type of information can be used to define reliability regions in
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the space such that the system judiciously modulates the weighting of each contributing

cue. Defined as prior information, this quantity can further enhance local estimates of

angle and position. During operation, the network brings all quantities in agreement by

satisfying all relations. The amplitude of the update step that each unit takes towards the

correct value is computed on-line, on a per map basis, and modulated by the confidence

factor, η. This factor accounts as a measure of reliability of a certain source of incoming

information into a unit. Using this mechanism, the network is able to penalise strongly

conflicting sources of information (a mechanism that improves fault tolerance) and enhance

the contribution of consistent sources. Each contribution to a unit, mi from another unit,

for example mj, in a network with n units, is modulated by the confidence factor, adapted

using

∆ηmi,mj(t) = ηmi,mj(0)
Ēmi,mk

(n− 1)Emi,mj(t)
, Ēmi,mk =

n∑
k=1,k 6=j

Emi,mk(t)

(n− 1)
(4.4)

Assuming that all n units in a network should contain the same value, Equation 4.4,

computes the confidence factor, η, for map mi when receiving influence from map mj, by

comparing the expected mismatch (i.e. average error of mi with respect to the network)

Ēmi,mk , with the error between mi and mj, Emi,mj(t).

Although many possible relations can be implemented using only the basic algebraic

operations, in order to handle sensory data we also need relations which encode temporal

dependencies. One example is temporal integration and temporal differentiation. As the

network should combine contributions from different sources, they should be aligned and

represent the same type of values (i.e. rate of change or absolute values). Our model imple-

ments temporal integration, locally, using two units, one which maintains the (persistent)

absolute value, and one which provides the rate update. This persistence mechanism is

necessary to keep a coherent absolute value in the presence of inputs from other units. A

sample integration network used in our model is depicted in Figure 4.2. The preprocessing

unit, mpp, which maintains a persistent value in unit mi, obeys the same update rules with

other units, the only difference is just its limited connectivity. The update rules for mi in

the canonical integration network depicted in Figure 4.2 are given by

∆mi(t) = −ηmi,mpp(t)
∂Emi,mpp(t)

∂mi(t)
(4.5)

Emi,mpp(t) = (mi(t)−
∫ t

0

mpp(t)dt)2 (4.6)

Following the generic update rule for units in the network, Equation 4.5 computes the new

value of mi by using the mismatch from the relation with mpp (Equation 4.6). One can

also use an error signal given by Emi,mpp(t) = mi(t) −
∫ t

0
mpp(t)dt with differences in the

magnitude of the update. The value in mi converges to the accumulated absolute value

of the sensory input si. As mi is connected to mj, there is an influence towards mi from

mj unit, and the amplitude of the update, given in Equation 4.7 is equal to the mismatch
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Fig. 4.2: Canonical network for temporal integration. The local integration network maintains
a persistent accumulated value of sensor data in mi. In the absence of sensory data,
the preprocessing unit, mpp ensures the proper rate update, avoiding large updates
induced by other connected units, mj.

between the value in mi and the value in mj, as shown in Equation 4.8.

∆mi(t) = −ηmi,mj(t)
∂Emi,mj(t)

∂mi(t)
(4.7)

Emi,mj(t) = (mi(t)−mj(t))
2 (4.8)

The differentiation map, mpp, is updated using a single set of update rules (Equations

4.9, 4.10) due to the unique connection to mi. The mpp map converges to the rate of

change of si, given by d
dt
mi(t), and provides a persistent contribution to mi.

∆mpp(t) = −ηmpp,mi(t)
∂Empp,mi(t)

∂mpp(t)
(4.9)

Empp,mi(t) = (mpp(t)− d

dt
mi(t))

2 (4.10)

As previously mentioned, one main feature of the neural substrate for multisensory

fusion is robustness. Our model exhibits robustness at the unit level through the confidence

factor. The confidence factor provides a fault tolerance mechanism which detects errors in
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incoming noisy raw sensory streams. By adapting the confidence factor according to the

measured mismatch (from the expected value and the current value) the network penalises

conflicting sources and enhances congruent sources.

Using these canonical circuits as building blocks we instantiate our model for egomo-

tion estimation. Taking advantage of relatively simple processing stages at unit level the

network can rapidly relax in a solution, fulfilling all relations between the fused quantities.

4.1.2 Mobile robot egomotion estimation

We instantiated our framework in a real environment using an omnidirectional mobile

robot depicted in Figure 4.3. In the basic scenario the robot moves in an uncluttered

environment while an overhead camera tracking system keeps track of its position and

orientation. The robot is equipped with an inertial measurement unit, consisting of a 3-axis

gyroscope and a 3-axis magnetometer which acts as vestibular input; wheel encoders acting

as proprioceptive input; motor driver providing an efferent copy of the PWM signal; and a

camera for visual input. Raw sensor data is fed to the network which updates its internal

belief and infers an estimate of robot’s position and orientation. The main architecture of

0.04 m

Robot sensors

Inertial sensors:
3-axis Gyroscope
3-axis Magnetometer

Odometry:
Wheel encoders

Proprioception:
PWM controller

Ceiling tracker:
Vision sensor

a c

b

Y(m)

X(m)

0.5 m

Fig. 4.3: Robot architecture and experimental setup: mobile robot and test trajectory. a)
Overhead tracker trajectory; b) Robot reference trajectory; c) Mobile robot sensors.

our network for egomotion estimation is depicted in Figure 4.4. There is no explicit input

or output in/from the network and sensor data just mildly influences the activity in the

network. Based on the embedded relations, the network is able, in the absence of one or

more sensors, to infer the missing quantities.
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In order to properly visualise the network connectivity we split the embedded functional-

ity with respect to the task, namely position and orientation estimation. Most connections

within the network are bidirectional and elicit mutual influence between the units linked

by relations. The only unidirectional connections are the ones coming from the sensors,

as the network cannot influence sensory readings. In order to quantify the performance

of our model, we also added two readout units which provide an average of the estimated

quantities. These units obey the same update rules and dynamics as all other inferred

quantities in the network.
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Fig. 4.4: Network architecture for egomotion estimation. Distributed fully-connected network
composed of interconnected sub-networks for heading and position estimation. All
connections are bidirectional except those coming from the sensors.

Experimental setup

The egomotion network consists of two main interacting components, one for orientation

estimation, and the other for position estimation. Functionally the sensory input fed to
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the network is clamped to the corresponding maps encoding a certain sensory quantity. As

mentioned, the network dynamics pulls all quantities towards agreement given the inter-

sensory relations and external input. Based upon the basic gradient mechanism described

in Chapter 3, each map takes steps towards minimising the mismatch with the other maps

it is connected to. Gradient descent steps are proportional with the relative mismatch of

a map with respect to all its input sources. Practically, each input sample coming from

the sensors is presented to the network, which asynchronously iterates all the quantities

towards consensus. Due to the fact that the network adapts for each incoming sample,

updating only simple algebraic relations, it is suitable for real-time implementations. In the

current instantiation, sensory data was sampled at 25 Hz, and each sample was presented

to the network for 100 iterations, the time the network needed to converge (i.e. no more

changes in the maps’ values).

Heading estimation network

We first introduce the heading estimation network, depicted in Figure 4.5. This network

is comprised of:

• 4 main units (G, C, Wh, Vh) encoding representations of modalities’ heading an-

gle estimates (gyroscope, compass (magnetometer), wheels encoders, and camera)

functionally similar to neural visual-somatosensory-vestibular integration models in

[Mergner et al., 1990, Wertheim, 1990, DeAngelis et al., 2012];

• 4 preprocessing (pp) units (Gpp, Cpp, Wh
pp, Vh

pp) which transform raw sensor data

performing offset compensation (for vision and magnetometer) or temporal integra-

tion (for gyroscope and encoders odometry);

• 4 heading angle offset (ho) units (Go, Co, Who, Vho) which quantify sensors bias

or drift and act upon the absolute estimate on different time-scales (e.g. faster for

integrating sensors and slower for absolute sensors);

• 1 global readout unit, H, which provides an average of the inferred quantities (ac-

cumulates and propagates a snapshot of instantaneous angle estimates for updating

integration processes in the position network).

After internally preprocessing raw sensory data, each main unit stores an estimate of ab-

solute heading angle and tries to be consistent with the values in the other units. The

main units in the network internally represent an internal model the system has about the

sensed quantity (i.e. heading angle) and how to extract it from the transducer (i.e. angle

from angular velocity, angle from wheel encoders). Moreover, sensory observations are ac-

quired by the preprocessing units. The global process governing network’s dynamics is to

integrate predictions (provided by the internal model the designer encodes in the network)

and sensory observations, to infer a belief about the perceived motion component. As the

network infers multiple estimates of heading angle from different sources, it ensures that all

yield the same value. In fact the fusion process assumes that all complementary modalities

are combined, yielding a more precise estimate than individual estimates. As each modal-

ity provides its own estimate of absolute angle, the network combines all contributions

judiciously. Mutual influence between units is modulated by the confidence factor. Each
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Fig. 4.5: Heading estimation network. Sensory data from gyroscope (SG), compass (SC),
wheels encoders (SW) and camera (SV), flows in the network mildly influencing its
activity. Local networks implement preprocessing, using Gpp, Cpp, Wh

pp, Vh
pp units,

while all-to-all connections between main units determine interactions yielding a fused
estimate.

interaction pathway of a unit has an associated confidence factor which adapts according

to the level of trustworthiness of a source of information to which the unit is connected.

Hence, the network benefits of a mechanism to detect and compensate for faults and abrupt

changes in sensor data. The distributed local representations inferred in the network nodes

are integrated in the readout node, which provides an average of network inferred quanti-

ties, and can be used to quantify performance. The readout node contribution to each of

the main units is proportional to the contribution of that specific unit in the global esti-

mate, modulated by the confidence factor. The processing steps behind the global readout

node are depicted in the lower right panel of Figure 4.5.

Position estimation network

The other component of the egomotion network, dedicated to position estimation, com-

putes a global estimate of robot position in the 2D plane as well as the travelled

path. Using an integration scheme functionally similar to mechanisms presented in

[Sheets-Johnstone, 2010, Wiener et al., 2011], the network, shown in Figure 4.6, is com-

posed of:

• 3 main units encoding representations of different modalities’ 2D position (p) esti-

mates (Vp - camera estimate, Wp - encoders estimate, M - position from efferent
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copy of motor command estimate);

• 3 position offset (po) units (Mo, Wpo, Vpo) encoding the mutual mismatch between

the inferred quantities;

• 3 sensory preprocessing (pp) units (Mpp, Wp
pp, Vp

pp) which are tightly coupled with

the main units and perform temporal integration or simple transformations from

robot reference frame to world reference frame;

• 1 global readout node, P, providing an average of the network belief about robot’s

position (x, y) (accumulates a snapshot of instantaneous position estimates);

• 1 global readout node, Pi, providing the travelled path, by accumulating changes in

the P unit.
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Fig. 4.6: Position and travelled distance estimation network. Sensors provide raw data to the
network. Local circuits preprocess raw data by using algebraic or temporal (differen-
tiation) relations to maintain a position estimate in each main unit.

The position estimation network in Figure 4.6 infers a 2-dimensional estimate of position,

given as (x, y) coordinates, and a 1-dimensional estimate of travelled path, using sensor

data, the heading network estimate, and inter-sensory relations. Moreover, the efferent

motor copy is used to propagate in the network the reference signal responsible to generate

motion. The use of this copy of the motor command is motivated by the fact that it provides

an additional fault tolerance mechanism (e.g. if odometry sensors are broken).
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The internal link between the two sub-networks is based on the transformation between

robot reference system and world reference system. Computing the rotation matrix nec-

essary to perform the coordinate transformation assumes that the absolute heading angle

is known. Hence, the heading angle estimate from the heading network is fed into pre-

processing units (of integrating sensors: odometry, efferent motor copy) of the position

estimation network, such that the quantities are re-encoded in the world reference frame.

This coordinate transformation is necessary to evaluate the performance of the proposed

model in the world centred reference system representation. An important aspect is that

the position estimate is not computed separately for incremental updates in x and y, rather

we use the coupled vector (x, y) such that the position describes the continuous trajectory

of the robot. At the current stage we performed our experiments in a relatively simple,

uncluttered environment. Yet imagining a more complex scenario is straightforward as

long as there are additional cues to measure and (if needed) internally build a map of oc-

cupancy. As a concrete idea, depth or ultrasonic sensors can be added to provide distance

to objects. In this scenario the distance to objects will be computed in the egocentric

reference frame of the robot, and will provide another cue which the network will fuse with

the computed travelled distance (i.e. from the odometry, vision, and efferent motor copy).

This way the network can infer a more precise travelled distance given also the occupancy

information of the environment.

4.1.3 Experimental results

Heading angle estimation analysis

We analysed the behaviour of the heading estimation network for the complex trajectory

depicted in Figure 4.7 a. After being randomly initialized in a stable state in which all

relations are fulfilled, the heading estimation network receives raw sensory data samples

from gyroscope, compass, wheel encoders and camera. In order to align the sensory data,

the network preprocesses the raw samples to obtain an absolute heading angle, depicted in

Figure 4.7 b. We observe that the inferred absolute angle values are not perfectly matching.

Sensory data 
(preprocessing output)

Gyroscope
Compass
Odometry
Vision

Robot trajectory

Time (s)

a b

X (m)

Y (m) Φ (deg)

Fig. 4.7: Heading estimation network. a) Robot trajectory; b) Measured heading angle from
sensors (preprocessing output).

This is due to the measurement noise and errors that are typical for angle measurements.
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The gyroscope is affected by drift which accumulates over time, the magnetometer is af-

fected by strong magnetic fields in the environment or the robot motors; odometry is

affected by systematic errors like wheel slippage or imprecise sizes of the wheels; and the

camera tracking is affected by changing illumination, strong dependency on the robot’s ve-

locity and is, in general, of low accuracy. The heading angle estimates do not wrap-around

at a top value as sensors react differently to changes, and a wrap-around would determine

a large mismatch (e.g. 360 degrees for a 2π radians wrap-around), compromising the net-

work estimate. Figure 4.8 d shows the mismatch between the computed heading angle
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Fig. 4.8: Heading estimation network dynamics. a) Robot trajectory; b),c) Measured heading
angle from sensors (preprocessing output); e),f) Inferred network quantities; d) In-
ferred offset values. When the network relaxes, inferred quantities fulfill the relations
given external sensory data.

from sensory data along with sensory data and ground truth, emphasizing the network

capability to improve, by fusion, the global estimate. When sensory data is continuously

fed in, the network accommodates new observations by updating its own belief about the

current state. At the low level, each unit modulates the influence from the units and sen-

sors is connected with, such that only consistent data is used for updating its state. The

network combines all contributions and enforces that all the quantities are close to the

same value, Figure 4.8 e, f.
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The confidence factor adaptation is presented in Figure 4.9 b-e, on a per map basis. For

each inferred main map (G, C, Wh, Vh) the confidence factor is computed as previously

shown in Equation 4.4, such that each source of information contributing to a unit’s update

is compared against the other sources. Depending on the mismatch, the confidence factor

is adjusted proportionally. In order to get a better intuition on the confidence factor

adaptation we briefly analyse the sample update rule behaviour for a short time window

of 10ms during operation in Figure 4.10. As previously mentioned this adaptation process

defines the belief of the system on how consistent one contribution is to the overall network

estimate. In this simple example we analyse the impact the magnetometer sensor has upon

the network belief, in terms of it’s contribution impact. Given the relative mismatch the

sensor has with respect to the other sensors estimates in the network (i.e. G, Wh, Vh units)

and it’s own belief (i.e. C unit) the confidence value ηC,SC will be lover than for example

the contribution of the wheel encoders estimate (i.e. W contribution) given by ηC,SC and

higher than the contribution from the gyroscope estimate (i.e. G contribution). In order
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Fig. 4.10: Confidence factor analysis for the impact of the magnetometer upon network belief.

to ensure convergence in the real-time scenario, we set a lower limit on the confidence

factor such that the network accommodates incoming sensory samples and settles in a

solution. Moreover, in order to avoid uncontrolled increases of the confidence factor in

extreme cases (e.g. high values of mismatch among a source and network belief), we clamp

the confidence values to a maximum preset value. Figure 4.8 e,f depicts the inferred values

for the G, C, Wh, Vh. The network brings these quantities into agreement with respect

to the respective relations (imposed by the internal model). Changes in confidence factor

support that. For example, if we consider unit G between t1 = 60s and t2 = 64s, one

can see that the confidence factor with respect to Vh is high (saturated to a maximum

imposed value) and all the others are low. This behaviour is supported by the graph

in Figure 4.8 c, where we see that between t1 and t2, G and Vh values are overlapping

while after t2 maps store slightly different values. In order to assess the importance of

an adaptive confidence factor we also performed experiments with fixed values of the

confidence factor. Previous experiments have shown that the adaptive confidence factor

is suitable for such a scenario considering dynamically changing contributions. Moreover,

other variants of adaptation rules were explored (e.g. using the direction and amplitude

of the relative error of a unit with respect to all other; using a fixed increment/decrement

taking into account the amplitude of contributions mismatch). As expected, using a fixed

weighting scheme (i.e. confidence values are identical) each unit was ”pulled” with the

same amount towards consensus. Yet, the global estimate proved to be less precise than

the adaptive scheme, due to uniform trust level which allocated the same weight to all

sensors even if their contribution was not consistent with the others. When using the fixed
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weighting mechanism, the weight (i.e. confidence factor) each input source gets is identical

and based on an average standard deviation of each source estimate, measured prior to the

experiment. In the adaptive scheme the weights are adjusted depending on the statistics of

individual sources, such that higher deviations determine lower values and small deviations

determine higher values of the weight, as shown in Figure 4.9 b-e.

An additional quantity inferred by the network, useful in detecting and compensating

sensor errors or biases, is the offset, depicted in Figure 4.8 d. Each main map in the

network has an associated offset node, which will store a relative mismatch with respect

to the other units. The offset node update depends on the type of its respective unit, a

faster update for integrating sensors and a slower update for absolute sensors. Moreover,

this quantity is used to provide an additional source of consistent data, that will use only

knowledge inferred internally in the network and contribute to a unit’s update. Given the

sensory data the network finds a solution which fulfils all the embedded relations, and

keeps all inferred quantities in agreement, as shown in Figure 4.8 e.

Extended analysis on special cases

In order to further extend the analysis of the network capabilities in the 2D egomotion

scenario we revisit offset node computation and confidence adaptation in a simple

(one-loop) scenario and a complex (multi-loop) scenario, respectively. As also shown in

the initial experiment the robot moved on a predefined trajectory (i.e. a square) and

sensory data was acquired and fed to the network for heading and position estimation.

As on-board sensors react differently to the robot’s motion (i.e. different transducing

techniques) there’s a clear final misalignment in the sensory estimates of the motion

components, Figure 4.11 a, f. In these extended experiments we follow the same methods

and procedures, and we feed the data in the network such that each sample is presented to

the network until the network converges to a solution given all cross-sensory constraints.

Offset nodes are connected to each map and estimate the global offset (mismatch) to the

other maps in the network. An offset node receives input from its corresponding map

and all the other maps in the network and feeds back to the unit, such that the unit can

compensate for it (i.e. minimise another global source of mismatch between it and the

other maps). The offset nodes have an impact on the long-term effects of sensory anomalies

(e.g. gyro drift, odometry offset) by providing a new source of information at the map

level. This will also impose a constraint, forcing the local estimate to minimize the offset

to the other maps. If we analyse the dynamics of the offset nodes we see that they obey

same dynamics as all the other maps in the network, Figure 4.11 b,c, towards ensuring

that there’s no mismatch between their corresponding maps Figure 4.11 e. As soon as the

network maps converge to a value, given sensory input and mutual influence, the offset

maps will have decreasing values, Figure 4.11 c around t=1s. Overall, if we analyse the

network behaviour, we see that the offsets, visible in Figure 4.11 f, are minimised through

the network dynamics, Figure 4.11 g, such that network estimates are closer to each other,

Figure 4.11 h. Offset values are signed such that they provide also the direction to take

towards minimising the mismatch. For each input sample presented to the network, there

are a number of update rules to fire, each rule corresponding to the update of a map from

an input source. Each rule ensures that each map in the network receives updates from all

its sources, and after one iteration the input sample was propagated through the network.
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Fig. 4.11: Single loop scenario: Network analysis. a) Input data; b) Offset nodes; c) Offset
nodes dynamics; d) Network data; e) Network data dynamics; f) Input data at
end of trajectory; g) Offset nodes at end of trajectory; h) Network data at end of
trajectory.

This process is performed until all relations between the units are fulfilled ( 100 network

iterations). The sudden changes in the maps values, Figure 4.11 h, are present due to

the impact of an input source upon the local map estimate (i.e. a source consistent with

the current value will be enhanced). Moreover, we see that all values are pulled towards

agreement. The global trend is consistent (Figure 4.11 h, underestimating maps are pulled

upper and overestimating ones lover), such that given the most trustworthy source at each

iteration the maps moves towards it. Another special case we investigate is the operation

in a multi-loop scenario. In this experiment, the robot followed the prescribed trajectory

for around five times, accumulating up to 1900 degrees in heading angle, as shown in

Figure 4.12 a. We observe that all sensory cues agree and at some moment (t=140s)

there’s a glitch in the data acquisition such that the odometry overestimates the heading

angle while all the other cues follow consistently the motion profile. This analysis is

focusing on investigating the fault tolerance capabilities of the network and adaptation for

efficient integration. As previously mentioned, each source of information that a certain

map in the network receives is modulated by a confidence factor. This factor is just a

quantification of how similar one source is with respect to the local map estimate, and is

based on a comparison with all the other contributing inputs. If we analyse the confidence

76



Instantiating the multisensory fusion framework

Fig. 4.12: Multi loop scenario: Network analysis. a) Confidence factor analysis for map G; b)
Confidence factor analysis for map M; c) Confidence factor analysis for map W; d)
Confidence factor analysis for map V; e),f) Input data; g),h) Network data; i)Input
data at end of trajectory; j) Network data at end of trajectory.

factor adaptation at each map level (Figure 4.12 a to d) we see that each source, be it the

sensor (Figure 4.12 e) or the other maps (Figure 4.12 g) contribute to the local estimate

proportionally to the level they agree / disagree. For example, if we consider the G map

confidence factor adaptation, in Figure 4.12 a, and analyse it’s behaviour between t1 =

0.5s and t2 = 1.0s, we see that there’s a high confidence in the magnetometer map (M)

supported by the close estimates in Figure 4.12 g; the confidence values with respect to

the odometry map (W) and vision (V) are low, and proportional to the distance to the

local G estimate; finally the confidence in the G map sensor (the gyroscope) is minimised

due to the mismatch between the current value (at t=0s maps are randomly initialised,

G 0.8 deg) and the 0 input from the sensor. This effect is explained by the confidence

adaptation rule, which is based on a voting scheme. If one source is far from the mean

mismatch to all the other sources of information it is penalised (low confidence factor),

and if consistent it is enhanced. Confidence factor adaptation is a process which acts

upon network dynamics on short a short timescale allowing the network to converge

towards a globally consistent value. In order to analyse network’s convergence behaviour

in the presence of inconsistent sensory data and using all the underlying processes (i.e.

confidence adaptation, network dynamics with offset compensation) we analyse the settled
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state at the end of the robot operation, as depicted in Figure 4.12 i, j. We can see that

the network pulls the W map value towards a global consistent value dictated by all the

agreeing maps (G, M, V maps), Figure 4.12 j, given inconsistent sensory input (mismatch

50 deg), as shown in Figure 4.12 i.

Position estimation analysis

In the current section we analyse the behaviour of the second component of our model, the

position estimation network. Similar to the heading estimation network, raw data from

wheel encoders, a copy of the PWM signal and vision data, are presented to the network.

Subsequently, the network preprocesses raw data to obtain an estimate of 2D position. The

position network operation is depicted in Figure 4.13. As one can observe in Figure 4.13
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Fig. 4.13: Position estimation network dynamics. a) Comparison between measured position
from sensors and ground truth data; b) Network inferred quantities and ground
truth data; c), d), e) Inferred offsets for each map.
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a, no modality estimate is able to provide a precise position estimate. Despite strongly

conflicting estimates, the network brings all quantities in agreement, such that a more

precise global estimate is inferred. Figure 4.13 b depicts the network data. Following the

same principle with the heading angle estimation network, each map penalises contradic-

tory sources of information (providing a low confidence factor) and enhances contributions

from consistent sources (high value of confidence factor). In order to assess how each

modality main map (Vp, Wp, M) is updated under the influence of the sensory data and

local network belief, we can analyse the inferred offsets in Figure 4.13 c-e as they quantify

a relative mismatch between the units. One can observe a mismatch in the inferred quan-

tities which emerges due to the fact that each sensor has a different response time and the

network cannot influence (by prediction and correction) the sensory readings explicitly.

In order to measure the performance of our model we compare it with two state-of-the-

art methods: the Kalman filter and the Maximum Likelihood Estimator (MLE). State-

of-the-art methods need already preprocessed data (i.e. absolute angle values) due to the

fact that they lack explicit mechanisms to handle raw data. Hence, for heading estima-

tion both Kalman filter and MLE receive four sources of absolute angle. Using sensory

observations, each model updates the modelled system state representation such that we

can directly read out an estimate of heading angle, similar to typical implementations

[Durrant-Whyte et al., 2008, Thrun et al., 2005]. Figure 4.14 compares the results of the
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network response with the other algorithms. We observe that the network response is slower

than both Kalman filter and MLE approaches. This is due to the additional operations

to preprocess the data internally. This internal preprocessing stage (temporal integration

and offset compensation) is performed in the network while new sensory observations are

received and it takes place at the same time with the estimation, obeying same dynamics.

This effect is not present when implementing the network on parallel hardware in Section

4.2. In Figure 4.14c it can be noticed that the network overestimates or underestimates the

values from the other estimators when significant changes in orientation take place. This

is motivated by the fact that in the considered scenario the robot often changed direction

with different angles and the network needed time to accommodate the changes and bal-

ance different sensor contributions. As sensors react differently to changes, the network

identifies which contributions are consistent and accommodates them as new observations

are available. Albeit the network does its best in balancing the represented quantities

autonomously, it can also accommodate externally imposed constraints (i.e. user can set a

preferred value) to exhibit slower responses with higher accuracy or faster responses with

lower accuracy. In order to quantify the network performance, the RMSE was calculated

against Kalman filter and MLE estimates with respect to ground truth data. In our sce-

nario a smaller RMSE value describes a better estimation. Given available sensory data,

our network estimate is comparable with state-of-the-art estimators with <10% RMSE, as

shown in Figure 4.14 c,d. For position estimation, both Kalman filter and MLE receive

three sources of (x, y) position, inferred from a copy of pulse width modulated (PWM) mo-

tor command, wheel encoders data and vision data. The network infers a global estimate

comparable with state-of-the-art estimators given the available sensory data, as shown in

Figure 4.15 a,b. Figure 4.15 c,e show that our network is comparable to both Kalman

filter and MLE as the measured RMSE values for position estimation are smaller than

1%. Furthermore, one can see in the decoupled analysis on each axis shown in Figure 4.15

d,f that the network is close to estimates of the two state-of-the-art methods. Another

quantity inferred by the network is the travelled path, Pi, computed as an accumulation of

all intermediate position estimates, P. The Pi unit integrates the average position provided

by the global position estimate, P. Furthermore, to quantify the precision of the main

maps in the network (Vp, Wp, M) we computed the corresponding travelled path values,

as given by the integration of the successive position estimates in each of the maps, and

the individual modality path deviation from ground truth. The computed values are given

in Table 4.1 and one can see that the values are globally consistent (with an error smaller

than 3 cm).

Network unit Inferred travelled path (m) Path deviation (m)
Vision, Vp 4.212 0.052
Odometry, Wp 4.160 0.030
Motor efference, M 4.177 0.041
Global average, Pi 4.183 0.040
Ground truth 4.190 -

Tab. 4.1: Inferred travelled distances and path deviations from individual modalities.
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Fig. 4.15: Position estimation evaluation. a) Comparison between network estimate, Kalman
filter estimate, MLE estimate, and ground truth data. c),d) X axis position esti-
mation errors for each estimator and relative RMSE values; e),f) Y axis position
estimation errors for each estimator and relative RMSE values.

In order to assess the fault tolerance capabilities of our network we performed an addi-

tional set of experiments in which we tested the network in the presence of faulty sensors.

We clamped the sensor (i.e. magnetometer) readings to 0 for a certain amount of time

during operation. After some time we re-activated the readings simulating just a tem-

porary failure. Figure 4.16 a illustrates the sensory data and the faulty transient for the

magnetometer. Moreover, in Figure 4.16 b we can see that even if the sensor is not usable,

the network does its best to infer its representation from the other available sensors. This

is fully supported by the dynamics of the confidence factor of map C (encoding the mag-

netometer representation for heading angle) with respect to the incoming sensory data.

The confidence factor decreases immediately as the sensor is faulty at t1 = 50s and is

restored to a high value once the readings are consistent with the network belief at t2 =

150s. One interesting aspect to mention is that during the faulty transient the confidence

factor changes dramatically (around t3 = 65s) when, as one can see in Figure 4.16 b, the

sensor is consistent with the other sensors and network belief. This experiment was meant

to quantify the robustness against faulty sensors of our network and provide an insight on

the simple and efficient mechanism behind it.

The current subsection presented results supporting the capability of our network to
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Fig. 4.16: Fault tolerance analysis. a) Heading angle values from sensors. The magnetometer
is faulty between t1 = 50s and t2 = 150s. b) Inferred heading angle values in the
network. Even if the sensor (i.e. magnetometer) is faulty the network compensates
for that, and infers its representation from the other modalities. c) Confidence
factor adaptation w.r.t magnetometer.

infer a position estimate from each modality, and subsequently combine them into a global

estimate more precise than individual modalities.

4.1.4 Discussion

In the previous sections we introduced a sample instantiation of our cortically inspired

framework for multisensory fusion, which uses principles of neural processing to combine

contributions from different sensors and infer an estimate of both position and orientation

of a mobile robot. It is unanimously accepted that an organism’s possible actions and

movements are conditioned by the environment. Egomotion estimation contributes actively

in shaping this space of possibilities.

While moving, both real and artificial organisms receive a constant flow of information

from parallel sensory channels, bind and compare the stimuli with previous experience and

goals, and produce motor outputs to match the current circumstances. Yet, combining

sensory contributions is not a trivial task, sensory contributions must be aligned in a

common reference frame depending on their spatio-temporal properties, and the resulting

representation should be plausible and informative to disambiguate the scenario.

State-of-the-art methods for multisensory fusion provide good results for dedicated sce-

narios but lack the generality, failing to accommodate different contexts from the ones

82



Instantiating the multisensory fusion framework

considered at design time. The complexity of real-world scenarios goes over the prepared

environment of the lab, and the impact of complex environments on multisensory fu-

sion is likely to become a major issue, as models become more and more sophisticated

[Khalengi et al., 2013].

Alternatively, there is evidence that our brain is able to combine different information

streams from available senses and use the combined representation in a flexible manner to

robustly orient behaviour. Albeit a large number of putative models which were developed,

it seems that biological systems tend to combine not only exteroceptive, and interoceptive

cues, but also psychological and cognitive cues when integrating senses [Rowland, 2012].

In order to build and maintain a precise representation of the self in the environment,

sensory cues conveyed from egomotion must be combined to precisely guide actions. Psy-

chophysical studies in human spatial cognition hypothesize that behaviour can arise from

perception. A unifying theory introduced in [Mitchel, 2010] provides a possible mechanism

that recognizes and/or creates spatial identity or similarity between various sensory expe-

riences (e.g. kinesthetic, visual) to enhance cognition about the environment. Following

this hypothesis, our model combines contributions from different sensors for estimating

robot’s position and orientation. For heading angle estimation the model enforces iden-

tity between the individual absolute angle estimates computed from the raw gyroscope,

magnetic compass, wheel encoders and vision sensor data depicted in Figure 4.7 b. Fusing

the different sensors’ contributions enhances the global estimate over individual estimates,

because the integration process compensates for sensor errors and noise in individual mea-

surements, as shown in Figure 4.8 e, f. In order to estimate position, the model receives

wheel velocities from the wheel encoders, 2D position from vision and a motor command

copy. The raw data is preprocessed by the network which infers three different sources of

robot absolute position as shown in Figure 4.13 a. These individual estimates are kept in

agreement by the network which computes also an average estimate from all contributions

as shown in Figure 4.13 b. The global average is a quantification of network’s belief and

can be used in planning more precise motor commands.

Egomotion estimation provides the organism the capability to understand the en-

vironment from its own state. Evidence in motion psychophysics and kinesthesis

[Sheets-Johnstone, 2010] enforce the hypothesis that humans build their perceptions and

conceptions of space when they learn their bodies and move based on some innate kinetic

dynamics. Furthermore, they develop more complex notions of space (e.g. connectivity,

distances to objects, occlusions, objectification, [Sheets-Johnstone, 2010]) useful in con-

ceiving themselves to spatial bounds and layout. The current instantiation of our model

is able to estimate both egomotion components, position and orientation, from available

sensory data. Derived quantities (i.e. do not have an associated sensor) can be also in-

ferred by combining other quantities in the network. For example, each position estimate

provided by the network is accumulated in a global travelled distance unit (i.e. Pi) and can

be used to compute distances to objects in the environment. In a sample use case, the first

step is to combine global (P) and camera (Vp) positions estimates, such that the network

determines which areas of the environment were already traversed by simply matching the

positions from the two sources. In the second step, the travelled distance (Pi) provides

the absolute distance to occupied areas of the environment detected in the first step. To

support higher level representations or derived quantities, the network accommodates new
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sensors by simply defining additional connections. This is beneficial as the network can

be easily extended such that complementary sensors can be fused to yield an occupancy

map, which along with the self-motion cues can provide a complete description of the

environment (e.g. SLAM).

The perception of the environment and body orientation are influenced by multiple

sensory and motor systems [Lackner et al., 2004]. In order to handle the variability and

complexity of the environment, available sensory are combined such that interference and

conflicts between the individual measurements are minimized and a more precise estimate

is obtained. For technical systems, in order to build such a representation the system

designer must precisely describe a) the system model, b) the prior information about

the sensory observations and the system, and c) the preprocessing steps, as shown in

[Durrant-Whyte et al., 2008, Thrun et al., 2005]. In order to relieve the system designer

from the difficult task of describing the aforementioned aspects, our model simplifies the

representation and fusion mechanism by using a different processing paradigm inspired

by cortical computation principles. Basic mathematical relations link different processing

units which use feed-forward and feedback connections to exchange information, as shown

in Figure 4.4. The network tries to keep all quantities stored in the units in agreement

given noisy sensory data, Figure 4.8 b, c. Despite the fact that each source of information

is affected by noise or systematic errors, the network is able to detect abnormal changes

in sensory data, such that there is a small impact over its internal belief. Preprocessing

is performed inside the network, such that sensory contributions are aligned to a common

representation, without increasing the network complexity. The preprocessed data flows

into the network and each unit balances contributions from all its connections. An adaptive

mechanism (i.e. confidence factor) modulates the influence of external information sources,

to penalize strongly conflicting estimates and enhance consistent values, as shown in Fig-

ure 4.9 b-e. Moreover, the network uses relatively simple dynamics for unit update such

that it converges rapidly to a solution, shown in Figure 4.8 e, f and Figure 4.13 b, given the

constraints imposed by the embedded relations and sensory data. As sensory data mildly

influences the network activity, in the absence of one sensory modality the network can

recover the missing quantity based on the other modalities and the connectivity. Relevant

experimental results are illustrated in Figure 4.16 b. This inference capability accounts

for a fault tolerance mechanism. Assuming that temporarily a sensor doesn’t provide any

measurements, its value will be continuously inferred by the network such that when it

will become online it’s impact will be modulated by the network belief and progressively

accommodated in the network, as shown in Figure 4.16 c. Continuously refining its own

belief given available sensory data, the network provides an estimate which is comparable

with state-of-the-art methods, as shown in Figure 4.14 c,d and Figure 4.15 c-f. Although

for the current scenario the network relations were hard-coded by the designer, we expect

to extend this model such that relations emerge from learned correlations in sensory data.

The network will no longer need a predefined structure as the incoming stream of sensory

data will shape it’s connectivity given the cross-modal interaction patterns. These exten-

sions are inspired by the underlying neural circuits for multisensory fusion in cortex and

their experience based development and plasticity. Another intuitive extension focuses

on self-organising-maps learning and specialisation principles, through competition and

cooperation. This extension can be accommodated in the existing structure as representa-
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tion and processing capabilities of the units can be modified without altering the network

level dynamics. The proposed processing scheme provides many advantages, in terms of

implementation and complexity, being able to distribute computation, evaluate and bal-

ance contributions of the fused sensory data, while using only relatively simple operations

representing cross-sensory relations. Chapters 5 and 6 provide insight in the extension

capabilities of the network using a formal model supported by application scenarios.

Given noisy and sometimes conflicting sensory data, multisensory fusion, is crucial for

precise egomotion estimation. Our model introduces a new approach for multisensory fu-

sion. Using a cortically inspired processing paradigm our model provides results compara-

ble with optimal state-of-the-art methods. Without precise modelling and parametrisation

of the system model, our network is able to combine information from multiple sensors into

a global estimate, more precise than individual estimates. Balancing external sensory con-

tributions with its internal belief, the network is able to detect and compensate for sensor

inconsistencies. By distributing computation, such that each unit processes and stores only

local information using only basic mathematical relations, complexity is reduced. The cur-

rent instantiation of the model for egomotion estimation provides comparable results with

state-of-the-art methods in terms of estimate accuracy, but with less design challenges.

Finally, our network is highly parallelisable, making it suitable for implementations on

massively parallel hardware architectures for real-time robotics applications. Given its

generality, computational efficacy, and ease of implementation our model is a promising

candidate for multisensory fusion in robotic applications.

4.2 Probing model parallelization: Multisensory fusion

network for mobile robot egomotion estimation on

massively parallel hardware

In the previous section and in Chapter 3, we described our model as a distributed network

in which independent neural computing nodes obtain and represent sensory information,

while processing and exchanging exclusively local data, to infer an estimate of robot ori-

entation and position. In order to take advantage of the parallel processing capabilities

of the network, we explored the implementation [Simlinger et al., 2015] on a massively-

parallel computing platform SpiNNaker [Furber et al., 2013]. Inspired by the fundamental

structure and function of the human brain, which itself is composed of billions of sim-

ple computing elements, in SpiNNaker computing cores communicate and process only

locally available data. Given various sensory inputs, and simple relations defining inter-

sensory dependencies, the model takes advantage of the inherent hardware parallelism of

the SpiNNaker platform to ensure convergence into a consistent interpretation of the per-

ceived motion. In order to evaluate the performance of our approach we also implemented

a standard version of the Kalman filter as well as a distributed Kalman filter. Next section

introduces our choice of the computing platform, describes the network allocation and

partitioning techniques on the hardware, as well as an evaluation against other computing

platforms (i.e. standard PC, multi-core PC).
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4.2.1 Massively parallel neuromorphic hardware

SpiNNaker is a novel massively parallel computer architecture, inspired by the fundamental

structure and function of the human brain. This novel hardware architecture provides a

platform for high-performance computation suitable for simulating neural models in real-

time, and provides a great research tool for both neuroscience and robotics. Due to its

distributed, asynchronous, and low-power embedded processing capabilities, SpiNNaker

was chosen as a suitable candidate for probing the parallelization capabilities of our model.

The experiments were conducted on the SpiNN-3 model of the SpiNNaker family, Fig-

ure 4.17 a, which features four chips with 18 ARM968 cores per chip (16 core usable, 1 core

for management, 1 spare core) as displayed in Figure 4.17 b. The ARM cores clock at 200

a b

Fig. 4.17: Massively parallel hardware platform used in experiments: a) SpiNN-3 board; b)
Hardware layout.

Mhz such that the board requires a 5V at 1A power supply, and everything is packaged in

a 9x8cm form-factor embedded board. The internal architecture of each chip and core is

depicted in Figure 4.18 a and Figure 4.18 b respectively.

4.2.2 Mapping the neural model to hardware

As shown in previous sections, in our framework, maps represent a uni-/multi-dimensional

representation of a sensory quantity (e.g. scalar, vector, field, matrix). Different sensor

modalities are encoded using maps and the network dynamics tries to settle in an agree-

ment state by exchanging exclusively local information. Based on this asynchronous and

continuous data exchange, the maps update their local belief in a gradient descent fashion

until the network converges to a relaxed state (i.e. global consensus).

In order to take advantage of the asynchronous address-event-representation (AER)

of the SpiNNaker architecture, we partitioned the network on the hardware such that

we exploited the intrinsic capabilities of the model. Using a similar mapping strategy

for the heading as well as the position estimation network, we evaluated the network

performance in terms of full egomotion estimation precision, as shown in Figure 4.20. We
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observe that the precision of the network is high for both heading angle, Figure 4.20 a,

and position, Figure 4.20 b, and that the partitioning and resource allocation preserves the
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core functionality of the network. In this experiment, instead of using a sequential update

of all sensory quantities in the network (results in previous section, using an embedded

microcontroller or a desktop PC) the network obeys an asynchronous message passing

protocol provided by the hardware platform. This update scheme makes inference more

robust and flexible while ensuring precise results.
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4.2.3 Mapping the Kalman filter to hardware

One state-of-the-art mechanisms widely employed in sensor fusion is the Kalman filter.

The basic formulation as well as its variants were introduced in Chapter 2. Even though

the theoretical background is rather complex, due to its straight-forward application, the

Kalman filter has quickly become one of the most widely applied state estimation algo-

rithms. But the Kalman filter obeys special assumptions and special care must be taken in

scenarios where these are not fulfilled. In order to compare the approach with our model,

an extension of the Kalman filter for distributed computation, called Covariance Intersec-

tion [Julier et al., 1997], is introduced. This model alleviates some of the limitations of the

distributed Kalman filter in practical applications.

Assume we have a system equipped with two sensors, both measuring the same physical

quantity. Because technical characteristics of the two sensors will in reality never be equal,

the accuracy of the first sensor will differ from the other. This can easily be expressed

through their respective means (a, b) and covariances (A, B). If the two measurements

are statistically independent, the signals can be fused through a convex combination, i.e.

maximum likelihood estimation (MLE) [Chong et al., 2001]:

C = (A−1 +B−1)−1 (4.11)

c = C(A−1a+B−1b) (4.12)

Equation 4.11 represents the covariance of the two fused estimates, while equation 4.12

represents the fused mean. This result is only optimal, if the cross-covariance between the

two sensor signals is zero. If the cross-covariance is exactly known, the signals can be fused

with the BLUE algorithm [Chong et al., 2001], which in case of Gaussian signals provides

the maximum a posteriori estimate (MAP). In our experiments we assume that the cross-

covariance amongst the signals of our system is unknown. The assumption of unknown

cross-covariance is mainly motivated by the fact that the correlation of multiple sensors,

induced by changes in temperature and especially by vibrations of the robot, is usually

very hard to acquire. Another motivation is the need for a consistent fusion algorithm that

can be used in a distributed fusion architecture. This yielded the use of a more robust

method, namely the Covariance Intersection method.

As shown in Chapter 2, various configurations of architectures for sensor fusion were

developed, spanning from centralized, to decentralised, and distributed architectures. In

order to cope with the drawbacks brought by standard centralised and decentralised de-

signs, Covariance Intersection (CI) brings a relatively compact representation and compu-

tation mechanisms making it a suitable candidate for implementation on massively parallel

hardware.

In the aforementioned scenario, the joint covariance of two sensor signals, represented

by their respective mean and covariance (a,A) and (b, B), is given by:

C =

[
A X

XT B

]
(4.13)

The requirement to have precise knowledge of the cross-covariance X can be avoided by
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finding a covariance matrix M , whose diagonal blocks MA > A and MB > B, such that

M ≥
[
A X

XT B

]
(4.14)

C =

[
A X

XT B

]
(4.15)

for any possible instantiation of the unknown cross-covariance X.

This is illustrated in Figure 4.21a on the basis of the two sensor signal covariances (blue

and red traces) and multiple results of MLEs, with different cross-covariances. As we can

a MLE estimates Covariance intersectionb

Fig. 4.21: Geometrical interpretation of the CI algorithm for a setup with two sensors with sig-
nal covariances (blue and red traces) 0.5 confidence ellipsoids of Gaussian distribu-
tions. a) MLE estimates (always lie in the intersection); b) Covariance intersection.

see, the MLE estimates always lie in the intersection of the two covariance ellipsoids. The

CI algorithm finds the matrix M through the following equations:

M−1 = ωA−1 + (1− ω)B−1 (4.16)

m = M(ωA−1a+ (1− ω)B−1b) (4.17)

Comparing the above equations with 4.11 and 4.12 reveals the fact that CI performs a

weighted maximum likelihood estimation. The parameter ω in 4.16 and 4.17 serves as a

weighting between the two measurements and can be found with respect to some perfor-

mance criterion on M , i.e. the minimization of the trace or determinant of M . Figure 4.21

b illustrates the function of CI (adapted from [Sequeira et al., 2009], the ellipsoids corre-

spond to 0.5 confidence level of a Gaussian normal distribution). The covariances of the

two sensors are:

A =

[
0.8 −0.7

−0.7 0.8

]2

, B =

[
0.3 1.2

1.2 1

]2

Sensor A (blue) is highly accurate along the measurement direction but has a wide de-

tection aperture, while Sensor B (red) has poor accuracy. The fused covariance (green)

is calculated from Equation 4.16, with a minimal trace of M as a performance measure
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(resulting ω = 0.1557). As can be seen in Figure 4.21b, the CI algorithm locks onto the

more accurate sensor A, if the two signals are highly uncorrelated. This behaviour is very

useful in the decentralized fusion network, where the estimates from other nodes should

be fused weighted by their accuracy. Comparing CI to the MLE reveals how CI covari-

ance encloses any MLE estimate and therefore serves as a conservative and robust fusion

technique. This covariance can then be consistently used in the Kalman filter equations

and distributed on the SpiNNaker hardware as shown in Figure 4.22. The CI algorithm

Fig. 4.22: Mapping the Kalman filter on hardware: Sample dispatching for egomotion esti-
mation network. Covariance Intersection heading/position: CI-h/CI-p ; Kalman
filter heading/position: KF-h/KF-p ; Preprocessor heading/position: PP-h/PP-p ;
Communication lines: Fast (System-BUS, plain lines) / Multicast (Router, dashed
lines).

finds the weight ω in Equation 4.16 by minimizing the trace of M . The minimizer chosen
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for the implementation on SpiNNaker is Brent’s method [Brent, 2013], which can optimize

a function without using derivatives. The overall infrastructure of the implementation is

illustrated in Figure 4.22. In this setup each Kalman filter unit receives a state estimate

from its preprocessor and fuses it with the current belief from the covariance intersection

unit. The fused quantity is then sent to one of the other CI units, which fuses this esti-

mate obeying the CI equations. The communication among the cores is implemented via

the System-BUS where possible, to ensure fast transfer of local estimates. The inter-chip

communication on SpiNNaker is possible solely via multicast packages (broadcast among

all cores via the router). Figure 4.23 shows the heading simulation results for the different

a

b

Inferred from gyro Inferred from magneto Inferred from odometry Inferred from vision

H
e

a
d

in
g

 e
s

ti
m

a
t e

 (
d

e
g

)

H
e

a
d

in
g

 e
s

ti
m

a
t e

 (
d

e
g

)

H
e

a
d

in
g

 e
st

im
a

t e
 (

d
e

g
)

H
e

a
d

in
g

 e
s

ti
m

a
t e

 (
d

e
g

)

Y
 p

o
si

ti
o

n
 e

s
ti

m
a

te
 (

m
)

Y
 p

o
si

ti
o

n
 e

s
ti

m
a

te
 (

m
)

Samples Samples Samples Samples

X position estimate (m) X position estimate (m)

– Sensory data
-- Kalman filter
– Covariance Int.

Inferred from odometry Inferred from vision

– Sensory data
-- Kalman filter
– Covariance Int.

Fig. 4.23: Evaluating the SpiNNaker implementation of the CI Kalman filter model: a) Heading
estimation; b) Position estimation.

units (Preprocessor heading: PP-h blue; Kalman filter heading: KF-h red dashed; Co-

variance Intersection heading: CI-h green). The odometry CI unit is obviously averaging

the signal, while the other units alternate between preferring their own signal and the

estimates received from the other nodes. It can be seen how all CI nodes tend to level

onto a global heading estimate. The odometry heading estimation is in fact accumulating

errors due to uncertainty (i.e. slipping wheels). Additionally, both odometry and gyro-

scope preprocessors are integrating their sensor signals which introduces another source

of errors. This can be seen in Figure 4.23 a through the heading difference between the

odometry/gyroscope preprocessors and the other nodes. This error accumulation becomes

quite severe in the global position estimation.

Figure 4.23b shows the position estimation results of the vision and odometry node.

The vision node position estimate can be expected to be very accurate, because it is
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Net M(PC) Net C++(PC) Net C(PC64) Net C(SP) KF C(SP) CI C(SP)
F 3 GHz 3 GHz 1.8GHz 0.2 GHz 0.2 GHz 0.2 Ghz
N 1 1 64 30 4 18
M 4GB 4GB 16GB 128 MB 128 MB 128 MB
R 930 s 31 s 40s 49 s 19 ms 15 s
C 1796 6056 2500 1301 884 1070
E No No Yes Yes Yes Yes

Tab. 4.2: Runtime analysis (F - CPU frequency, N - number of cores, M - memory, R - run
time, C - lines of code, E - extensible) for different implementations (i.e. MATLAB
(M), C++, C) of the fusion mechanisms (i.e. Net-our model, KF-Kalman filter(part
of CI processing), CI-covariance intersection computation) on different hardware
architectures (i.e. PC-standard desktop, PC64-64core PC, SP-SpiNNaker).

calculated from a camera mounted on the moving robot and pointing at the ceiling. The

odometry heading data already suffers from the aforementioned error accumulation. In

addition, the errors introduced by the body-fixed to global position transformation cause

further inaccuracy. Overall, the odometry position estimation can be expected to be quite

inaccurate. This can be expressed by an increased measurement noise, which causes the

fusion network to reject the odometry contributions continuously. The global position

estimation is clearly dominated by the vision estimate, clearly visible in Figure 4.23b.

4.2.4 Evaluation and discussion

The parallelization experiments with both approaches (the neurally inspired model and

distributed Kalman filter) considered sensory data acquired at 25 Hz over 198 s of robot

operation. In order to evaluate the implementation and emphasize the advantage of paral-

lelization, we considered various other sequential and parallel implementations on standard

microcontroller and PC platforms.

There are several implementations of the proposed architecture. In order to benchmark

the approaches, we recorded the data and fed it offline, although the numbers would hold

in real-time operation. The first implementation is written in MATLAB. It served as

reference code and server as early proof of concept and visualization purposes. Second, a

C++ implementation, which worked as drop in for the MATLAB implementation through

MATLAB’s MEX interface, was considered. A C implementation was also tested on a

64-core server with the OpenMP API for parallelization tests. Finally, the architecture

was implemented in C on the SpiNNaker hardware, leveraging the intrinsic parallelization

capabilities of the network.

The reference MATLAB implementation requires 930 seconds to process the test data

set. The drop in C++ implementation reduced the net runtime to 31 seconds. Tests of the

C implementation on a 64-core server with OpenMP resulted in inferior results (40s) which

is explained by the additional overhead of the multiprocessor structure and parallelization

library. A global runtime evaluation is given in Table 4.2. In this section we analysed

the parallelisation capabilities of our proposed model for multisensory fusion. In order to

evaluate the performance of the model we also considered a distributed implementation

of a state-of-art methods (i.e. DKF - distributed Kalman filter). The DKF was based on
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a zeroth-order Kalman filter combined with Covariance Intersection to fuse the heading

and global position estimates from four different sensors available on-board the robot.

The implementation exploits given hardware features, such as the asynchronous multicast

communication among the cores and chips. The heading sensor fusion takes around 6s for

5000 samples acquired at 25 Hz, while the sensor fusion of position data takes around 15s.

The whole experiment took the robot approximately 198 s, such that real-time sensor fusion

is possible. A possible extension of this implementation, to allow it to detect inconsistencies

in sensory data, is to use Covariance Union [Uhlmann, 2003].

Finally, our network’s implementation on SpiNNaker hardware uses only half of the

cores available which in turn allows for doubling the number of sensor inputs without any

noticeable penalty in hardware requirements or runtime. The runtime depends on the

slowest map type. In the current implementation base maps are the slowest map type, be-

cause they have the highest number of inter-map connections which results in an increased

number of value update calculations. Focusing on the SpiNNaker implementation analysis,

it is interesting to notice that our network is considerably slow, around 50s compared with

both the standard Kalman filter (20ms) and the CI Kalman filter (15s). This is due to

the fact that our network uses all available modalities, whereas the other state-of-the-art

only use one (KF) or two (CI) modalities at once, having no explicit way to parallelize

their processing. Another important aspect is the fact that the network is distributed

among 30 cores, whereas in the KF there are only 4 cores used to sequentially execute

the prediction and update steps for the recursive filtering. The distribution introduces a

relatively high communication throughput which, for a high number of individually asyn-

chronously updated sensory maps, slows down the overall system. This phenomena is also

visible in the more complex CI KF implementation on SpiNNaker, where the execution

time is comparable with our network, in the order of seconds for the 198s of robot oper-

ation. Finally, in order to conclude the analysis, we notice that the parallel SpiNNaker

implementation of the network is slower than the PC implementations, for both standard

desktop and multi-core platforms. This is mainly due to the fact the the PCs are equipped

with high-frequency processors and considerable amount of memory but do not exploit the

parallelization and extensibility capabilities of the network.

The parallel hardware which mirrors our network’s architecture in combination with

event-based programming form a viable solution for real-time application. Additionally,

the low power consumption and form factor make it suitable for mobile applications.

4.3 Summary

Providing an instantiation of our framework introduced in Chapter 3, the current chapter

focused on the core design aspects and advantages of the proposed approach for multisen-

sory integration and its results in various real-world scenarios.

In a first scenario we investigated how our distributed network of units can be employed

in a 2D motion estimation scenario for an omnidirectional wheeled mobile robot. After pro-

viding a review of state-of-the art approached for egomotion estimation we introduced the

design stages and the rationale behind our approach. Distributing computation in a fully-

connected network of units acquiring, representing, and processing sensory information

through mutual exchange of information, the proposed model was able to combine avail-
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able sensory cues into a global position and heading angle estimate. The dynamics of the

model is based on the known physics of the sensors and cross-modal relations defining an

internal model. Moreover, this internal model provides a prediction of the possible values a

sensor can provide, which subsequently combined with sensory observations construct the

system’s belief of the perceived motion component. The inferred estimate is more precise

that individual estimates and provided comparable results with state-of-the-art methods

but with less parameterization effort.

Intrinsically distributable, our model proved a significant performance increase when

executed on parallel hardware. We implemented the same model for 2D egomotion esti-

mation on massively parallel hardware platforms (i.e. neuromorphic hardware and multi-

core PCs) and analysed the computational advantages and its capabilities in real-time

scenarios against ”traditionally sequential” approaches (e.g. Kalman filter). With simple

partitioning and resource allocation, the network mapped easily on the available hardware

providing great results, comparable with the state-of-the-art approaches (which required

special treatment for the hardware mapping), on a variety of platforms with hardware and

software enabled parallelism.
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5 Formalizing a model for perceptual learning in

multisensory fusion

Learning processes which take place during the development of a biological nervous system

enable it to extract mappings between external stimuli and its internal state. Although

the neural substrate is not well understood and formalised, the learning and development

component can enhance adaptation and flexibility capabilities of today’s technical sys-

tems. By alleviating the need for tedious design and parametrisation, the systems would

learn the sensory data statistics and distribution. This subsequently allows for efficient

representation and fast computation for environment understanding and interaction.

5.1 Probing neural models of perceptual learning and

development

In this section we propose an extension of our framework, towards including biologically

plausible learning mechanisms, for autonomous synthesis based on available sensory in-

put. Rather than focusing on biologically precise descriptions of neural circuitry, we use

relatively simple computational blocks, known to be widespread in the brain, and which

are well formalised and understood. This approach is in line with our goal to keep the

computational substrate simple enough, yet powerful and distributed, such that real-time

operation, required by real-world scenarios, is still achieved.

Maintaining the generality and robustness shown previously by our model, we now

redefine the problem. Without for prior analysis, and subsequent encoding the sensory

relations in the model, our system is extended to learn them directly from the incoming

sensory data streams. This capability leverages the applicability of the framework for those

multisensory scenarios in which cross-sensory relations are complex, if at all possible to be

expressed mathematically. Indeed, in some cases inter-sensory relations can be intrinsic in

the data (e.g. temporal dependencies) and cannot be easily mathematically formalised in

our relational framework.

In the current chapter we will focus on how can real-world sensory data be represented

in neural substrate, and how a system with relatively limited initial knowledge can learn

and synthesize an appropriate processing infrastructure efficiently, using only the available

sensory streams. Moreover, we show that this kind of system is able, by using relatively

simple computational mechanisms, to learn efficient (and sufficient) representations and

make use of them for subsequent inference. Before delving into the implementation details

of our model, we go back to neuroscience and provide an overview on current models of

perceptual learning and development. This overview supports and motivates our approach,

and at the same time, provides the framework in which we formulate our approach.

An interesting question to start with is, how cortical sensory maps emerge as functions
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of the parameters of the feature space or sensory modality they represent? This question

marks the transition from our basic computational framework introduced in Chapter 3. As

previously mentioned, local processing influences the state of the sensory representation,

which influences back the processing due to the mutual interaction of the communicating

areas encoding a specific sensory modality. In this context, [Cimponeriu et al., 2000] devel-

oped a dynamic model of the visual cortex based on experimental data for extracting the

spatial structure of orientation and ocular dominance cortical maps. Their results showed

that the ordering, and subsequently the connectivity, of cortical maps (during develop-

ment) is controlled by the parameters of the feature space they represent. These results

are consistent with one of our design principles, according to which each area tries to bring

the encoded representation towards a state compatible with related areas connected with

it.

Trying to provide a more generic view on the processes underlying perceptual learning

and interpretation, [von der Malsburg, 1999] addressed three fundamental questions: how

are the brain states interpreted as representations of actual situations; what are the or-

ganisation mechanisms of these states; what permanent information storage mechanism

is used by the brain; and what are the mechanisms of learning? Trying to answer these

questions, the study provided an analysis on sensory cue binding, focusing on the temporal

scales, and time influence over the representation formation dynamics. The core observa-

tion refers to the way the correlations in the temporal signal structure arise and their

influence in sensory binding. Ultimately, the purpose of temporal binding is to express

significant relationships between data items, for example of causal or spatial nature, and

the physical interactions establishing such relations (represented by signal correlations).

In a more recent study, [Michler et al., 2009] proposed that spatial and temporal stimuli

correlations can be exploited for learning invariant representations. Spatiotemporal sen-

sory correlations in the sensory streams were mapped from different views of objects onto

a topographic representation, showing that cortical topographic maps have a functional

relevance. The working hypothesis, of interest also for our design, is that correlations in

input sequences can shape the neighbourhood relationships in the learned representation.

In a more broad perspective, detached from the low-level local representations,

[Quiton et al., 2011] provided a new framework considering competition within the brain

and interactions between assemblies of neurons. The proposed model adopted a distributed

approach to cognition, and focused on a mesoscopic description scale in which the cortex

is decomposed in cortical maps, themselves made of cortical columns. Using a sparse

modelling scheme, contrary to traditional matrix implementations, there are no more de-

pendencies on the number of dimensions. Hence the high performance for direct handling

of high dimensional input spaces typically describing multisensory processing scenarios.

Furthermore, the model predicted that sensory features and relationships defining multi-

modal representations may be highly dependent on the considered concept and the sensory

context. This aspect is relevant in our framework as it is defining the constraints the model

extracts from the incoming streams and subsequently uses to attain consistent distributed

representations.

Each sensory contribution brings inherent constraints in the global representation. Due

to their intrinsic coupling (e.g. through the motion of the system/body) sensory cues

are correlated such that these constraints quantify how this correlation is realised. As
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previously mentioned, correlation is marked either by an explicit mathematical formulation

or lives hidden in the data. In this context, correlation can be considered as a mathematical

basis for learning and formulated as an optimization problem [Chen et al., 2007]. The

learning system should have an appropriate objective criterion (e.g. function) upon which

an optimisation (i.e. minimisation / maximisation) procedure is applied to compute good

parameters that constitute the minimum (or maximum) of the objective criterion. Indeed,

viewed in this light, our framework is basically enforcing consensus by finding solutions

to the constraints imposed by contributing sensors. The optimisation procedure relies

on dynamically ”pulling” each local representation to a coherent representation, which

is locally stable (given the sensory input) and globally coherent (given the cross-sensory

correlations). In neurobiological systems, this learning process is described by the synaptic

adaptation process, towards obtaining optimal synaptic weights describing the connectivity

pattern encoding a stable representation. We abstract from this principle and develop a

computationally efficient model directly transferable to technical implementations.

5.2 From neural models to implementation

In the current section we introduce our synthesis model for learning sensory correlations.

Learned correlations are used for subsequent multisensory fusion. Given relatively sim-

ple and well understood neurally inspired computational mechanisms, we design a model

for sensory correlation extraction. Consistent with our designed paradigm, of distributing

computation and representation amongst a network of computing units, we extend the sen-

sory data representation and the cross-sensory relation encoding. Instead of using single

point estimates (i.e. scalar values) to represent real-world sensory readings, we switch to a

sparse representation, encoding sensory values into an activity profile of a number of topo-

logically organised neural processing units (i.e. neurons). This representation contributes

to creating more precise ”local knowledge” and simplifies computation, as all sensory cues

will be ”re-coded” in the same representation space. Local processing upon local represen-

tations of the sensory quantities ensures that consistent local states (i.e. representations)

converge to coherent global representations. This perspective is consistent with models and

experimental evidence from human developmental science, and provides the new perspec-

tive on the synthesis of adaptive and autonomous technical systems brought by our work.

The following subsections provide a formal description of our approach and a detailed

analysis of its capabilities and scalability.

5.2.1 Introducing the basic model

Starting from Hebb’s original postulate of learning in neurobiogical systems, various learn-

ing models were developed, spanning a wide range of sensory, motor, perceptual, and cog-

nitive functions, including associative memory, coincidence detection, sound localization

and segregation in the auditory system, topographic map formation in the visual system,

feature binding for sensory perception, as well as sensorimotor control in the cerebellum.

All these models went far beyond the Hebbian postulate, included all of the three major

machine learning paradigms: unsupervised, supervised and reinforcement learning, and

were widely used in artificial adaptive systems capable to imitate adaptive functions of the
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brain.

Much attention was given to unsupervised Hebb-type learning rules, especially compet-

itive learning, BCM learning, PCA learning, and Boltzmann learning [Chen et al., 2007],

due to their innate capability to extract knowledge from the data without a ”teacher” or an

error signal. Furthermore, in order to take into account the intimate information structure

of the data and its statistics, unsupervised information-theoretic learning methods were

developed: Linsker’s rule, Imax rule, BSS, ICA, and SFA [Chen et al., 2007].

For the cases in which a quantification (e.g. error criteria) of how good the learning

process is, supervised learning mechanisms were developed, such as the perceptron learning

rule and the LMS. These widely employed methods sometimes link to or root in traditional

signal processing mechanisms.

Finally, reinforcement learning, with its variants, temporal Hebbian learning, TD learn-

ing, or even models which combine reinforcement learning and Hebbian learning, provided

more insight in reward driven or reward modulated processing in the brain, marking the

transition to new computational paradigms.

All of the above mentioned methods are linked to Hebbian plasticity rule and share com-

mon roots with correlation-based learning principles, having also an underlying biological

motivation.

As mentioned earlier, we propose to use a sparse representation of the sensory streams in

order to extract the underlying statistics and probability distribution of the sensory data.

More explicitly, we use a competitive learning rule. As an important ingredient of self-

organising systems, competitive learning’s goal is to tune a certain number of parameter

vectors (i.e. synaptic weights) in a possibly high-dimensional space. The distribution of

these vectors should reflect the probability distribution of the input data. Depending on

the type of activation function they use in their dynamics, competitive learning methods

can be categorised as either ”hard competition” (or WTA, Winner-Take-All), where each

input data sample determines the adaptation of only one winning representation (i.e. the

closest to the input data), or ”soft competition”, for which each data sample is represented

with a certain probability in the system, and the local adaptation will be proportional with

this probability.

The adaptive development and shaping of functional organisation in cortical areas seems

to depend strongly on the available sensory inputs, which gradually sharpen their response,

given the constraints imposed by the cross-sensory relations. Following this principle, we

use one of the most popular forms of competitive learning, namely the Self-Organising-

Maps (or Kohonen network). The underlying self-organization mechanism can be viewed

as a form of Hebbian learning, in a network with competitive interactions with a decay

term guaranteeing normalization. In its basic formulation the SOM is composed of a lat-

tice (1D or 2D) of neural processing units (i.e. neurons), and each neuron has a preferred

representation (e.g. 1D, 2D, ..., nD synaptic weight vector) of a 1D, 2D, ..., nD sensory

feature. In order to learn, the SOM is fed with sensory data samples such that for each

sample the unit with the closest representation to the input is chosen as winner. Subse-

quently, the winner (in ”hard competition”) or the winner and a predefined vicinity (in

”soft competition”) are ”pulled” towards the input sample. This process assumes that the

weight vector of the winner (and vicinity, if any) is adapted towards better representing

the input sample. Iterating through available input data, the algorithm is able to sep-
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arately represent features in different parts of the network and still keep the topological

organisation. Close features in the input sensory space will be closely represented in the

network after a sufficient number of presentations of the input dataset.

In our model samples from each input sensory modality are fed into a SOM. These net-

works are responsible for locally extracting the statistics of the incoming data, depicted in

the simple example in Figure 5.1a, and encoding sensory samples in a distributed activity

pattern, as shown in Figure 5.1b. This activity pattern is generated such that the closest

preferred value of a neuron to the input sample will be strongly activated and will decay,

proportionally with distance, for neighbouring units. Figure 5.2 provides a detailed depic-

tion of processing stages which take place when sensory input samples are presented to the

network. Using the SOM distributed representation, the model learns the boundaries of
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nonlinear relation (3rd order power-law) and input data distributions; b) Basic model
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the input data, such that, after relaxation, the SOMs provide a topological representation

of the input space. We extend the basic SOM in such a way that each neuron not only

specialises in representing a certain (preferred) value in the input space, but also learns

its own sensitivity (i.e. tuning curve shape). Given an input sample, sp(k) at time step k,

the network follows the processing stages depicted in Figure 5.1d and explicitly presented

in Figure 5.2. For each i − th neuron in the p − th input SOM, with the preferred value

wpin,i and ξpi (k) tuning curve size, the sensory elicited activation is given by

api (k) =
1√

2πξpi (k)
e

−(sp(k)−wp
in,i

(k))2

2ξ
p
i
(k)

2

. (5.1)

The winner neuron of the p − th population, bp(k), is the one which elicits the highest
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activation given the sensory input at time k

bp(k) = argmax
i

ap(k). (5.2)

During self-organisation, at the input level, competition for highest activation is followed

by cooperation in representing the input space (second and third step in Figure 5.1d).

Given the winner neuron, bp(k), the interaction kernel,

hpb,i(k) = e
−||ri−rb||

2

2σ(k)2 . (5.3)

allows neighbouring cells (found at position ri in the network) to precisely represent the

sensory input sample given their location in the neighbourhood σ(k). The interaction

kernel in Equation 5.3, ensures that specific neurons in the network specialise on different

areas in the sensory space, such that the input weights (i.e. preferred values) of the neurons

are pulled closer to the input sample,

∆wpin,i(k) = α(k)hpb,i(k)(sp(k)− wpin,i(k)). (5.4)

102



Formalizing a model of perceptual learning for multisensory fusion

This corresponds to the adaptation stage in Figure 5.1d and ends with updating the tuning

curves. Each neuron’s tuning curve is modulated by the spatial location of the neuron,

the distance to the input sample, the interaction kernel size, and a decaying learning rate

α(k),

∆ξpi (k) = α(k)hpb,i(k)((sp(k)− wpin,i(k))2 − ξpi (k)2). (5.5)

If we consider learned tuning curves shapes for 5 neurons in the input SOMs (i.e. neurons

1, 6, 13, 40, 45), depicted in Figure 5.3, we notice that higher input probability distri-

butions are represented by dense and sharp tuning curves. Whereas lower or uniform

probability distributions are represented by more sparse and wide tuning curves. Using

Fig. 5.3: Extracted sensory relation and data statistics using the proposed model

this mechanism, the network optimally allocates resources (i.e. neurons): a higher amount

to areas in the input space, which need a finer representation; and a lower amount for

more coarsely represented areas. This feature, emerging from the model, is consistent with

recent work on optimal sensory encoding in neural populations [Ganguli et al., 2014]. This

claims that, in order to maximise the information extracted from the sensory streams, the

prior distribution of sensory data must be embedded in the neural representation.

In order to link the two representation constructed in the two SOMs, we use a variant of

the Hebbian learning rule. This rule is consistent with Hebb’s postulate that the strength

of the synaptic connection between two neurons, A and B, should increase in proportion
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to the degree to which neuron A repeatedly takes part in the firing of neuron B. However,

this rule only allows for synaptic strengthening. In order to satisfy biological constraints,

there must also be some mechanism for synaptic weakening. We decided to use a balancing

learning rule, namely the covariance rule.

As previously mentioned, we have to couple the sensory representations in the two SOMs

such that we can extract the correlation amongst them. In order to achieve that we use a

Hebbian linkage, which consists of a fully connected matrix of synaptic connections between

neurons in each input SOM. The Hebbian learning process is responsible for extracting the

co-activation pattern between the input layers (i.e. SOMs), as shown in Figure 5.1b, and

for eventually encoding the learned relation between the sensors. Hebbian connection

weights, wpcross,i,j, between neurons i, j in each of the input SOM populations are updated

using

∆wpcross,i,j(k) = η(k)(api (k)− api (k))(aqj(k)− aqj(k)), (5.6)

where

api (k) = (1− β(k))api (k − 1) + β(k)api (k). (5.7)

In order to prevent unlimited weight growth, we use a modified Hebbian learning rule

(i.e. covariance rule, Equation 5.6) to allow for weight decreases when neurons fire asyn-

chronously. The proposed mechanism uses a time average of pre- and postsynaptic ac-

tivities, api (k), defined in Equation 5.7, such that when neurons fire synchronously in a

correlated manner their connection strengths increase, whereas if their firing patterns are

anticorrelated the weights decrease.

Self-organisation and correlation learning processes evolve simultaneously, such that

both representation and correlation pattern are continuously refined. Moreover, the

timescales of the two processes align, such that once the representations are learned in

the SOMs the correlation pattern in the Hebbian connection matrix becomes sharper.

In the initial example we consider a set of values drawn from a uniform random distribu-

tion (i.e. sensor 1), Figure 5.1a, to which we apply a power-law, and we compute a second

input (i.e. sensor 2) drawn from a Gaussian distribution. The network is fed with random

pairs from the two datasets. After learning, the Hebbian connectivity matrix encodes the

input data relation, as shown in Figure 5.3. Moreover, the tuning curves encode the input

data distribution: narrower spaced for higher probability distributions and widely spaced

for lower (or uniform) distributions of the input data. Learning and allocating overlapping

tuning curves shapes allows the network to tile the input space representing more highly

probable sensory data by a higher tuning curve density for highest probability distribution

and low density for low probability distribution. The tiling properties are maintained as

the tuning curves cover the entire representation space.

This learning scheme extends [Axenie et al., 2014], in which given various sensory in-

puts and simple relations defining inter-sensory dependencies, the model infers a precise

estimate of the perceived motion. Now, by alleviating the need to explicitly encode sensory

relations in the network dynamics, we introduce a model providing flexible and robust mul-

tisensory fusion, without prior modelling assumptions, and using only the intrinsic sensory

correlation pattern. In this framework we see the learning and development process as a

sharpening process, during which sensory projections and correlations are refined by expe-

rience. Using a sparse, population encoded representation of sensory data instead of point
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estimates, the model is able to embed sensory statistics and reliability such that the model

is able to extract the underlying data correlations. The learning mechanisms use relatively

simple cooperative and competitive circuitry, which are well explained and understood

and provide an effective mechanism to learn patterns of co-activation in distributed rep-

resentations of sensory data. Our model finds itself at the border between engineering

and neuroscience, providing a basic structure for learning from real-world sensory data

using relatively simple biologically plausible mechanisms. Various methods, ranging from

neural circuitry implementations to statistical correlation analysis, have been developed

to extract correlational structure in sensory data. In order to frame our work, as well as

defining its advantages, we provide an overview on some selected approaches close to our

work.

Other approaches for learning sensory relations

Related work in [Cook, Jug et al., 2010] used a combination of simple biologically plausible

mechanisms, like WTA circuitry, Hebbian learning, and homeostatic activity regulation, to

extract relations in artificially generated sensory data. The model is depicted in Figure 5.4,

while the network dynamics and its evolution, for 1000 training epochs, is depicted in Fig-

ure 5.5, where the model extracted the nonlinear (i.e. power-law) relation. The structure

could easily accommodate new tasks using the same substrate (i.e same network, only

input differed). Real-world values presented to the network were encoded in population
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t

population A population B
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W
BA

Hebbian 
connections

Homeostatic
activity

regulation
WTA

Network components
within-population

processing
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Fig. 5.4: Other approaches for learning sensory relations: [Cook, Jug et al., 2010]

code representations. Each input to the network had an associated population coded rep-

resentation and dynamics was provided by a continuous WTA circuit with hard-coded

connectivity, Figure 5.5a. This approach is similar to our approach in terms of the sparse

representation used to encode sensory values. The difference resides in the fact that in our
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model the input population (i.e. SOM) connectivity is learned. Using this capability, our

model is capable of learning the input data bounds and distribution directly from the in-

put data, without any prior information or fixed connectivity. Furthermore, the dynamics

between each population coded input was performed through plastic Hebbian connections.

Starting from a random connectivity pattern, the matrix finally encoded the functional

relation between the variables which it connected, Figure 5.5b. The Hebbian linkage used

between populations is the correlation detection mechanism used also in our model, al-

though in our formulation we adjusted the learning rule to accommodate both the increase

and decrease of the connection weights. Finally, the model also considered neuron level
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Fig. 5.5: Analysis of other approaches for learning sensory relations: [Cook, Jug et al., 2010].
a) Network operation; b) Learned sensory relation.

dynamics, represented through a homeostatic activity regulation process. This mechanism

is responsible to ensure that all neurons in each population are used and that each neu-

ron is used in moderation. In our model, due to the local competition and cooperation
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(i.e. SOM mechanisms), each neuron in the model is able to provide a contribution which

will not saturate the overall activity pattern in the network while keeping a topological

organisation.

Interestingly, the proposed model was able to exhibit different behaviours depending

on the input type. After learning, the model was able to infer missing quantities given

the learned relations and available sensors (i.e. inference task). Moreover, due to recur-

rent connectivity, the sensory representations were continuously refined and cleaned-up

to precisely extract the real-world encoded variable (i.e. de-noising task). Given that

the network had an all-to-all connectivity between the population encoding the inputs,

the dynamics allowed the adjustment of the population codes to be consistent with each

other (i.e. cue integration task). Finally, the network was able to discriminate and choose

between alternative population codes when facing with consistent data.

Using a different neurally inspired substrate, [Weber et al., 2007] combined competi-

tion and cooperation in a self-organizing network of processing units to extract coordinate

transformations in a robotic visual object localization scenario. More precisely, the model

used simple, biologically motivated operations, in which co-activated units from popula-

tion coded representations self-organized after learning in a topological map, solving the

reference frame transformation between the inputs (mapping function). The basic network

architecture is depicted in Figure 5.6. The representation used a n-uple based population

code representation of the functional relationship encoding the reference system mapping

with Hebbian links between connected populations. Similar to our model the proposed ap-

proach extended the SOM network by using sigma-pi units (i.e. weighted sum of products).

The connection weight between this type of processing units is effective, if unit i of one

input population is coactivated with unit j of the other input population, implementing a

logical AND relation. Inspired by sensorimotor transformations in the prefrontal cortex,

the algorithm produced invariant representations and a topographic map representation of

the visual scene guiding a robot’s behaviour.

Going away from biological inspiration, [Mandal et al., 2013] used a nonlinear canonical

correlation analysis method, termed alpha-beta divergence correlation analysis (ABCA),

to extract relations between sets of multidimensional random variables. The main idea in

canonical correlation analysis is to first determine linear combinations of the two random

variables (called canonical variables/variants) such that the correlation between the canon-

ical variables is the highest amongst all such linear combinations. As traditional CCA is

only able to extract linear relations between two sets of multi-dimensional random variable,

the proposed model comes as an extension to extract nonlinear relations, with the require-

ment that relations are expressed as smooth functions and can have a moderate amount of

additive random noise on the mapping. The model employed a probabilistic method based

on nonlinear correlation analysis using a more flexible metric (i.e. divergence / distance)

than typical canonical correlation analysis. A simple diagram describing the model’s func-

tionality is given in Figure 5.8. From observations of two random variables, x and y the

method was able to extract the two vector directions (i.e. weight vectors wx and wy) such

that the divergence (i.e. distance metric) between the joint distribution (wtxx,w
t
yy) and

the product of marginal probabilities of the variables is maximized. Assuming that there
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is a hidden linear or nonlinear functional relation ψ of the following type:

wtyy = ψ(wtxx) + ε, (5.8)

the model finds wx and wy from observed x and y such that the canonical correlation

coefficient

p∗ = maxCorr(wyy, ψ(wtxx)), (5.9)

provides the maximum possible correlation between wy and any function of wx.

In order to illustrate the capabilities of the model we implemented a two-dimensional

scenario in which each component of the input variables (i.e. x and y) obeys a hidden

nonlinear relation given by y
1

= x2
1 and y

2
= x3

2 as shown in Figure 5.9a. Using 500 pairs

of randomly generated values for each variable, the algorithm provided high correlation

values, 0.997 for the first dimension, and 0.996 for second dimension of the input variables.

In Figure 5.9 we observe that ABCA extracts the relations quite accurately although the
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scale and the sign of the canonical vectors cannot be recovered. The standard CCA failed

to extract them, due to a nonlinear relationship within the variables. Basically, the model

implemented a change of representation from the variables input space to a new space of

canonical variants, u = wtyy and v = wtxx. Subsequently, the model mapped the repre-
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sentations back to the initial space minimising the relative mismatch between the original

data and the mapping. The extracted relation was encoded in the weights configuration

maximising the correlation between the canonical variants as shown in Figure 5.9b. The

algorithm provided good results in extracting sensory relations in moderate noise condi-

tions, for relatively small datasets, but with a cautious parametrisation of the divergence

metric (i.e. taking into account prior information on the dataset densities). Furthermore,

due to its iterative nature, the algorithm is prone to stop in local maxima, so it is needed

to run the algorithm multiple times to obtain acceptable results.

Using a neurally inspired computing substrate for implementing canonical correlation

analysis [Hsieh, 2000] proposed a model able to extract the underlying structures between

two sets of variables under moderate noise conditions. The motivation behind this model

was to counteract the limitations in the PCA to extract features or patterns in only a

set of variables by looking only for modes of maximum variance. Furthermore, the model

aimed at overcoming the CCA limitation to extract linear relations between two sets of

(correlated) variables looking for modes of maximum variance. The proposed Nonlinear
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CCA (NLCCA) extended the CCA to be able to handle nonlinear mappings using an

artificial neural network (ANN), more precisely mappings from input sets to canonical

variants are realized by a feed-forward ANN (hyperbolic and linear transfer functions).

In order to find the optimal values for the weight vectors in the CCA combinations, the

network optimized (minimized) a cost function of the difference between the input variables

and the mapped values (the output of the network). An interesting feature of the model is

that it treats the input variables evenly, in that no causality is assumed. The model has the

capability to perform inference in case one variable is missing (by using the learned relation)

similar to [Cook, Jug et al., 2010]. A synthetic description of the processing stages in the

model are provided in Figure 5.10. In order to test the NLCCA model the author used a

variety of nonlinear functions with arguments randomly chosen from [-1, 1] interval. We

implemented the model to extract the first correlated mode in the data, given that the

input space is 3D. A small amount of Gaussian random noise, with standard deviation

equal to 10% was added and the variables were then standardised (i.e. mean was removed,

and values normalised by standard deviation). The input dataset contained 500 pairs of

(x, y) values such that:

x1(t) = t;x2(t) = t2;x3(t) = t3; (5.10)

y1(t) = t; y2(t) = 3t; y3(t) = t+ t2; (5.11)

The model provided good results in the proposed scenario such that correlation between

u and v is 0.996 in NLCCA and 0.993 in CCA. The more notable difference between
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NLCCA and CCA lied in the MSE in learning of x, the MSE was 0.028 for NLCCA

(versus 1.165 for CCA); and for learning y, the MSE was 0.124 (versus 0.166). Although

the model was able to handle high levels of noise applied to the data (up to 50% standard

deviation) the precision decreased, as new neural networks structures were needed for more

strong de-noising capabilities. A very interesting feature of the Hsieh model is that it is

able, to some extent, to predict missing values given inferred correlation (i.e. variants

correlation). Let’s assume that the model has been built, and the standard deviations

std(u) and std(v), of the canonical variates, are known, and have zero mean. If new x

data becomes available, then u can be calculated, and v estimated by ustd(v)/std(u),

which can then be used to predict y. Similarly, x can be predicted using new y data.

Providing a generalization of canonical correlation analysis through the use of feed-forward

112



Formalizing a model of perceptual learning for multisensory fusion

  

x3= x1
3

x2=x1
2

x3=x1 x2
y3= y1+ y1

2

y3=
y2

3
y1

2

y2=3y1

Learned cross-sensory relations

Input data
Learned 
relations

Input data
Learned 
relations

x1(t)=t

x2(t)=t 2

x3(t )=t 3

y1(t )=t
y2(t )=3t

y3( t)=t+t 2

Sensory data x Sensory data y

Fig. 5.11: Analysis of other approaches for learning sensory relations: [Hsieh, 2000]. Learned
functional relations between the two datasets on a per dimension basis (N = 3,
noisy input data - green, learned functional relation within x - red, learned functional
relation within y - blue)

neural networks the NLCCA provides an interesting candidate for extracting nonlinear

sensory data correlations. Although based on relatively precise correlation metrics and

using optimisation to extract the best parameters to represent data statistics the model has

some drawbacks which might prove to be unacceptable in real-time operation scenarios.

In it’s basic formulation, NLCCA cannot model curves which intersect themselves (e.g.

a circle), it cannot model discontinuous functions (e.g. a step discontinuity can only

be modelled by a continuous curve with a steep gradient at the step), and with noisy

data, over-fitting (i.e. fitting to the noise in the data) can occur, resulting in wiggly

solutions. Another problem is that with noisy data, the surface of the cost function may

have many local minima, rendering most optimization searches to end at shallow local

minima. Furthermore, the choice on the number of neurons should be minimal, as using

excessive number of hidden neurons greatly aggravates the over-fitting problem.

Before switching to the more detailed description of the proposed model we summarize

the most important features of the other models capable to extract sensory correlations.

One initial aspect is the design and functionality. Either using distributed (neural) rep-

resentations [Cook, Jug et al., 2010, Weber et al., 2007] or compact mathematical forms

[Mandal et al., 2013, Hsieh, 2000], all methods encoded the input variables in a new rep-

resentation to facilitate computation. At this level, employing neurally plausible dynamics

[Cook, Jug et al., 2010, Weber et al., 2007, Hsieh, 2000] or pure mathematical multivari-

ate optimisation [Mandal et al., 2013] the functionality was given by iterative processes

converging to consistent representations of the sensory streams.

A second aspect refers to the amount of prior information set by the designer in the

system. It is typical that, depending on the instantiation, a new set of parameters is

needed, making the models less flexible. Although less intuitive, the pure mathematical
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approaches [Mandal et al., 2013] (i.e. using canonical correlation analysis) need less tun-

ing effort as the parameters are the result of an optimisation procedure. On the other

side, the neurally inspired approaches [Cook, Jug et al., 2010, Weber et al., 2007] or the

hybrid approaches [Hsieh, 2000] (i.e. combining neural networks and correlation analysis)

need a more judicious parameter tuning, as their dynamics are more sensitive, and can

either reach instability (e.g. recurrent networks) or local minima. Except parametrisation,

prior information about inputs is generally needed when instantiating the system for a

certain scenario. Sensory values bounds and probability distributions must be explicitly

encoded in the models through explicit tiling of tuning values over a population of neu-

rons [Cook, Jug et al., 2010, Weber et al., 2007], linear coefficients in vector combinations

[Mandal et al., 2013], or standardisation routines of input variables [Hsieh, 2000].

A third aspect relevant to the analysis is the stability and robustness of the obtained rep-

resentation. The representation of the hidden relation can be encoded in a weight matrix

[Cook, Jug et al., 2010, Weber et al., 2007] such that, after learning, given new input, the

representation is continuously refined to accommodate new inputs; can be fixed in vector di-

rections of random variables requiring a new iterative algorithm run from initial conditions

to accommodate new input [Mandal et al., 2013]; or can be obtained as an optimisation

process given the new available input signals [Hsieh, 2000]. Given initial conditions, prior

knowledge and an optimisation criteria [Mandal et al., 2013, Hsieh, 2000] or a recurrent

relaxation process towards a point attractor [Cook, Jug et al., 2010, Weber et al., 2007],

the obtained representations are stable, optimising a cost function or reaching a desired

tolerance.

The capability to handle noisy data, is an important aspect concerning the appli-

cability in real-world scenarios. Using either computational mechanisms for de-noising

[Cook, Jug et al., 2010, Weber et al., 2007], iterative updates to minimise a distance met-

ric [Mandal et al., 2013], or optimisation [Hsieh, 2000], each method is capable to cope

with moderate amounts of noise and becomes unusable when the signal-to-noise ratio is

too low. Despite this, some methods have intrinsic methods to cope with noisy data intrin-

sicly, through their dynamics, by recurrently propagating correct estimates and balancing

new samples [Cook, Jug et al., 2010].

Another relevant feature is the capability to infer (i.e. predict / anticipate) missing

quantities once the relation is learned. The capability to use the learned functional

relations to determine missing quantities is not available in all presented models like

[Mandal et al., 2013] due to the fact that the divergence and correlation coefficient ex-

pressions might be non-invertible functions, to support a simple pass through of available

values to extract missing ones. On the other side, using either the learned co-activation

weight matrix [Cook, Jug et al., 2010, Weber et al., 2007], or the known standard devia-

tions of the canonical variants [Hsieh, 2000] the model is able to predict missing quantities.

Finally, due to the fact that all methods re-encode the real-world values in new repre-

sentation, it is important to study the capability to decode the learned representation and

subsequently measure the precision of the learned representation. Although not explicitly

treated in the presented models, decoding the extracted representations is not trivial. Using

a tiled mapping of the input values along the neural representations [Cook, Jug et al., 2010]

decoded the encoded value in activity patterns by simply computing the distribution of

the input space over the neural population units, while [Weber et al., 2007] used a simple
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winner-take-all readout given that the representation was constrained to have a uniquely

defined mapping (i.e. in the scenario the assumption is made that the object to be tracked

by the robot is always at the same elevation from the floor). Given that the model learns

the relations in data space through optimisation processes [Hsieh, 2000] can use learned

curves to simply project available sensory values through the learned function to get the

second value, as the scale is preserved. Albeit its capability to precisely extract nonlinear

relations from high-dimensional random datasets [Mandal et al., 2013] cannot provide any

readout mechanisms to support a proper decoded representation of the extracted relations.

This is due to the fact that the method cannot recover the sign and scale of the relations.

5.2.2 Analysis of the basic model

In the following section we introduce the features of the basic sensory relation learning

model. The model acquires samples from the two sensory streams, encodes them in dis-

tributed populations of neurons (i.e. activation pattern), and then learns the correlation

patterns between the two distributed representations (i.e. co-activation).

For the basic scenario we consider a bimodal relation learning problem. Each input sen-

sory stream is encoded by a SOM composed of 100 neurons distributed in a one-dimensional

lattice. We use a one-dimensional representation to encode single subsequent samples from

the input stream and provides a sufficient substrate to extract and represent the input data

distribution (i.e. through the shape and density of neurons’ tuning curves). Each input

sample elicits a distributed activation pattern across the network such that each neuron

responds proportionally to the distance between his preferred value and the input sample

value. If the activation patterns in each of the input SOMs are correlated, the Hebbian

linkage between the two networks will enhance the links between highly activated neurons.

Subsequent samples will determine the enhancement for correlated structure in the two

input signals and depression for un-correlated modes.

As previously mentioned the correlation learning rule enhances correlated neural ac-

tivities by strengthening synaptic weights following the original Hebbian postulate. This

formulation only allows for an increase in synaptic weight between synchronously firing

neurons. To prevent unlimited growth, it is necessary to extend the Hebb’s rule to allow

for weight decreases when neurons fire asynchronously using a covariance learning rule. In

our experiments we used two rules for extracting the sensory relation, namely covariance

learning and Oja’s local PCA learning [Chen et al., 2007], both providing relatively sim-

ilar results, with insignificant differences in computational implementations, but similar

impact on the precision of the representation. In the case of the covariance learning rule,

the synaptic strength between neurons i and j in populations p and q, respectively, is given

by

∆wpcross,i,j(k) = η(k)(api (k)− api (k))(aqj(k)− aqj(k)), (5.12)

where if we take a time average of the change in synaptic weight,

wpcross,i,j(k) = η(k)(api (k)aqj(k)− api (k)aqj(k)), (5.13)

the first term on the right-hand side denotes the Hebbian synapse and the second term

may be viewed as an activity-dependent threshold that changes with the product of time-
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averaged pre- and postsynaptic activity levels. If, on average, the presynaptic activity api (k)

is independent on the postsynaptic activity aqj(k) , namely api (k)aqj(k)−api (k)aqj(k), then no

change in synaptic weight should occur. As a special case of the covariance learning rule,

Oja’s local PCA learning, is a local and computationally efficient learning rule, keeping

the Euclidean norm of a neuron’s incoming synaptic weight vector at unity. The online

version of Oja’s rule used in our work assumes the weight update is given by

wpcross,i,j(k + 1) =
wpcross,i,j(k) + η(k)api (k)apj(k)√∑N
l=1 (wpcross,l,j(k) + η(k)apl (k)apj(k))2

, (5.14)

In order to test the functionality of the basic model we fed the network with corre-

lated artificial sensory datasets. Each sensory dataset contained 1500 samples and fol-

lowed different data distributions. As the proposed model comprises multiple learning and

adaptation processes we often varied the input data distribution, such that we were able

to analyse the behaviour and performance of the network by feeding data with uniform,

nonuniform, or mixed probability distributions. An overview of some notable experiments

is given in Figure 5.12. In the first experiment we feed sensory data with a hidden linear

sensory relation with nonuniform data distribution (e.g. convex probability distribution),

Figure 5.12 a left panel. The network extracts the relation and encodes it in the strength

of the Hebbian links and in the tuning curves of each input SOM neuron. Higher density

areas in the input space are characterised by narrower tuning curves and wider areas by

broader ones. Consistent with the learned sensory data distribution, the network allocates

more neurons to represent areas with a higher density (i.e. narrow tuning curve), and less

neurons for coarser represented areas in the input space. The capability to encode the

density of the data distribution can be used to define reliability maps of the sensors, and

subsequently used in fault detection and accommodation.

In a second experiment we feed sensory data with a hidden nonlinear sensory relation

(i.e. second order power-law) following a nonuniform data distribution (e.g. convex and

powerlaw probability distributions), Figure 5.12 b left panel. Similar to the first scenario

we observe that the network extracts the hidden relation, sensory data distribution, and

judiciously allocates neurons for a consistent representation. Furthermore, we observe that

the learned tuning curves’ shapes and densities are uneven (heterogeneous), providing a

non-equidistant tiling of the input space, and representing the irregularities and variability

describing real-world data. In the current and all the other experiments we performed

the representation method produced comparable results with [Ganguli et al., 2014]. We

consider that the proposed approach in the thesis provides an alternative formulation of

the efficient coding hypothesis for a neural population encoding a scalar stimulus vari-

able drawn from an unknown prior distribution. In [Ganguli et al., 2014] the information-

maximizing solution provided precise and intuitive predictions of the relationship between

sensory prior, physiology, and perception: more frequently occurring stimuli should be en-

coded with a proportionally higher number of cells and a proportionally higher perceptual

sensitivity for the frequently occurring stimuli. Our model was able to unsupervisedly

obtain representations consistent with the predictions.

In the third third experiment we fed uniformly distributed data in the [-1, 1] interval

implementing a nonlinear periodic function (i.e. sine wave). Tiling evenly the entire input
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Fig. 5.12: Analysis of the basic model in a bimodal scenario. Different hidden relations and
data distributions: input data and its probability distribution (left); learned relation
and allocated resources (i.e. neurons) according to input distributions (right). a)
Linear sensory relation with nonuniform data distribution; b) Nonlinear sensory re-
lation with nonuniform data distribution; c) Nonlinear sensory relation with uniform
data distribution.

117



Formalizing a model of perceptual learning for multisensory fusion

space, the network allocates neurons uniformly, such that that each region of the input

space is equally represented.

Given incoming streams of correlated sensory data, each input SOM uses cooperation,

competition, and adaptation (plasticity) to learn and represent the input data statistics

in a heterogeneous population code. The representation process is jointly evolving with

the relation extraction process, such that, through Hebbian learning, the network learns

the underlying relation between the data, given that the input are efficiently represented

in the SOM. Subsequently, the network uses the stable state (the learned relation) for

cue integration, such that the learned relation (weight matrix) imposes the constraint on

the possible values a sensory stream can have. At this stage, during cue integration each

sensory modality representation will do its best to keep consistency with all the relations

it is involved in, subject to the constraint imposed by the relation encoded by the weight

vector.

An important aspect is that the network models synaptogenesis, such that initially

the SOM projection weights are 0, and it doesn’t need any prior information about the

span of the input data distribution. This aspect, as well as the fact that the two con-

current processes evolve simultaneously, is consistent with the processes known to explain

development in cortical circuitry. Featuring biologically plausible mechanisms the network

increases its robustness capabilities (i.e. adapt to incoming streams of sensory data by

enhancing / penalizing contributions) as on the longer timescale the input representation

process adapts the structure for the faster sensor fusion process. After relaxing in a stable

state the network contains a fully informative representation of the input data and the

learned sensory relation. In order to make use of the learned relation we developed a

simple readout mechanism. Given the ordered representation of the input data space onto

the SOM lattices, one can find the corresponding real-world values by finding the best

(optimal) solution of a cost function of maximal sensory elicited activation given input

patterns. Bounding the value of the cost function with learned preferred values, a simple

optimization method decodes the corresponding sensor value.

5.2.3 Inference and fault tolerance capabilities

After the learning process, the network stores a stable representation of the hidden relation

between the two sensory inputs considered during training. By considering only one input

sensory source, the network can infer the corresponding quantity for the missing source by

using the learned co-activation pattern stored in the Hebbian linkage.

Given one input sample from the input sensory stream, the network computes the

elicited activity in the input SOM population (pre-synaptic neurons). The resulting activ-

ity pattern is projected through the Hebbian linkage to compute the post-synaptic acti-

vation pattern in the output SOM population. Due to the all-to-all connectivity pattern,

the activity of a single neuron in the output population is given by the sum of (Hebbian)

weighted activity values in the input population. The resulting output activation pattern

will peak at the most active (post-synaptic) neuron given the pre-synaptic input pattern.

The position in the SOM lattice and the corresponding activation value are subsequently

used for decoding the population activation pattern and recover the real-world sensory

value.
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We developed two methods for decoding the activity pattern and extract the corre-

sponding real-world value. The first method is a näıve decoder, which simply computes

a term to finely tune the preferred value of the most active (winning) neuron towards a

more precise estimate. Given samples from the input stream x(t) the most active neuron

neuron has index i in the output SOM, a preferred value wpin,i and ξpi (k) tuning curve size,

the corresponding increment term is given by

dpfi(k) =

√
2ξpi (k)2log(

√
2πapi (k)ξpi (k)2). (5.15)

Depending on the position of the winning neuron in the N-dimensional lattice the recovered

value y(t) is computed as

y(t) =

{
wpin,i + dpfi, if i > N

2

wpin,i − d
p
fi, if i < N

2

A second, more precise, decoding mechanism is based on an optimisation method to recover

the real-world value given known bounds in the input space. The bounds are obtained as

minimum and maximum of a cost function of the distance between the current preferred

value of the winner neuron and the input sample. The optimiser is based on Brent’s method

[Brent, 2013] which uses a recursive method to find the global optimum of a function for

which the analytical form of its derivative is not available or too complex. Using this

approach, after applying the input sensory stream and finding the winner in the input

SOM population, the decoding decision is based on the position of the winner. Two

bounds (i.e. left and right) are defined with respect to the winner’s position such that the

recovered value is obtained by running the algorithm between the preferred values of the

neurons with indices given by the bounds. The method is not guaranteed to converge to

global minima (of the cost function) and it’s not immune to boundary effects, if winners

are placed at the extremes of the SOM population.

In order to emphasize the capabilities of the two decoding mechanisms we provide in

Figure 5.13 a brief analysis for some of the sensory learning scenarios previously used in

the chapter. As one can see the decoding performance is satisfactory, yet the recovered

values lie around the correct input pattern. By analysing the learned representation stored

in the Hebbian matrix we noticed that, due to the asymmetric neighbourhood function in

the input SOMs, the activity will saturate at the edges of the latent representation space.

This behaviour is also visible in the co-activation pattern, such that the higher activity

values characterise the bounds of the Hebbian representation towards the edges. Both

decoding mechanisms assume that by applying one input to the network and projecting

the sensory elicited activity pattern on the Hebbian matrix we can extract a plausible

activation pattern for the missing sensory modality.

When decoding the activity pattern both approaches provided a relatively similar re-

covered probability distribution shape. This interesting behaviour relates the boundary

effects in the SOM representation and Hebbian co-activation pattern with the extracted

sensory data distribution learned from the data. Inspecting both decoders’ probability dis-

tributions we observed that if the input data is uniformly distributed decoders’ output is

biased. The resulting distributions have a convex profile, concentrating a large number of
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Naïve decoder deviation  Optimiser decoder deviation

Given a learned relation, we apply samples from the input space on one input, 
project it through the Hebbian matrix and get an activity pattern to decode. 
The peak of the Gaussian activity pattern corresponds to one value in the output 
space.
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Fig. 5.13: Analysis of decoder performance for various types of sensory data relations. Per-
formance of the näıve decoder for: a) Linear input, b) Nonlinear input symmetric
input, c) Nonlinear periodic input; Performance of the optimised decoder: a) Linear
input, b) Nonlinear input symmetric input, c) Nonlinear periodic input.

samples towards the edges of the histogram with a large variance, while precisely decoded

areas follow a relatively uniform distribution. We notice that the optimiser based decoder,

although more complex, provides better recovery results (smaller RMSE is better), such

that the deviation is relatively small for linear relations (RMSE: 0.0613) in comparison

with the näıve approach, which provides really imprecise recovery values (RMSE: 0.3247).

For nolinear relations the optimiser decoder is performing relatively well (RMSE: 0.0912),

overtaking the näıve decoder, which surprisingly performs better than in the linear case,
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due to less prominent boundary effects (RMSE: 0.1671). Finally, for symmetric nonlinear

relations, both decoders have a hard job to recover values due to the irregularities of the

learned representation, such that the optimiser decoder lies in 12% from the mean of the

input signal, while the näıve decoder is far off (38%).

5.2.4 Extensibility: from dual modality to multimodal processing

Following the analysis performed in previous sections, we now investigate the extensibil-

ity capabilities of the model for multimodal processing. When studying the scalability

capabilities of the network we focused on two possible network architectures.

In the first approach we consider one sensory modality as providing an estimate of a

desired quantity for which we need to have a precise estimate. All the other sensory modal-

ities contribute to the network belief by being internally coupled within their own estimate

of the desired feature. The coupling is reflected by the hidden relation in the data coming

from individual sensory modalities. To exemplify, we propose a simple 4-dimensional sce-

nario depicted in Figure 5.14. This scenario is not bound to a 4-dimensional architecture,
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Fig. 5.14: Analysis of the extensibility capabilities of the network. Sample scenario with a
4-dimensional network with a tree shaped correlation structure. a) Input data and
decoded learned representation; b) Learned relations.

rather it can accommodate an arbitrary number of modalities able to contribute to the

estimation of the feature of interest. While analysing the learned representation in the net-

work we observed that, locally, each Hebbian matrix encoding the representation is sharp

and can be properly decoded, while the sensory modality encoding the initial cue to be

estimated contains an interfering pattern of activations, Figure 5.14 b. As the 4 modalities

are linked through a tree structure correlation there is no internal constraint explicitly
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defined in the network, such that the incoming contributions adapt on each branch the

locally learned representation. We can see that the representations can be decoded eas-

ily, as there is no interference due to the open structure, Figure 5.14 a, such that each

contribution is combined in the overall network belief.

In a second approach, we use a 3-dimensional network to investigate the use of explicit

connectivity and representation in a fully-connected network. The difference between the

first scenario and this one, is that the intrinsic correlation between modalities is now ex-

plicitly extracted in a dedicated (separate) Hebbian linkage. This approach imposes an

additional constraint, such that the co-activation pattern in the Hebbian matrix back-

projects an influence on the local representation, which subsequently propagates in the

network representations. Interestingly enough, this mechanism supports the representa-

tions and dynamics introduced in Chapter 3, where all constraints narrowed the space of

possible values a node (or population) can take. This mechanism ensures a more sharp

representation, no interference, and a more precise decoding, as boundary effects are slowly

compensated during the network operation.

To illustrate the proposed approach we considered a simple 3-dimensional network em-

ploying a mixture of linear and nonlinear relations and the representation of the intrinsic

relation between the implicitly connected modalities, depicted in Figure 5.15. During our
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experiments we noticed that the network dynamics can get even more sharper representa-

tions of the underlying relations, Figure 5.15 b, in a circular structure due to the additional

explicit constraint and back-projections of the Hebbian matrices. We also locally decou-

pled the network between m2 and m3 such that the network had learned the relations
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separately. After learning we fed sensory data through m2 and m3 and using an additional

co-activation matrix we noticed the emergence of the intrinsic relation between the two,

initially unconnected units.

5.3 Summary

In order to extract mappings between external stimuli and the internal state of the sys-

tem, we investigated perceptual learning mechanisms and their capability to learn the

dependencies between the different incoming streams of sensory data.

Typical engineering models provide just an approximation of the sensory models (i.e.

simplified, constrained models) such that there is no explicit handling of uncertainty and

real noise conditions. The intrinsic dynamics of the sensors are important to be extracted,

such that the intimate structure of the data is exploited for more precise representation

and computation. Extracting and making sense of the underlying relations in the sensory

streams turns multisensory fusion more powerful and the outcome more precise.

Various tools to extract sensory correlations were developed [Mandal et al., 2013,

Cook, Jug et al., 2010, Weber et al., 2007, Hsieh, 2000] employing different methodologies

to extract the underlying relational structure, spanning from canonical correlation anal-

ysis, to biologically plausible networks and artificial neural networks. All these methods

provide good results in dedicated scenarios, but lack the capability to be employed in novel

contexts. We provide a thorough analysis of all these methods and how they compare with

our approach with respect to: design challenges and functionality; the amount of prior

information needed during design; the stability and robustness of the obtained representa-

tions; the capability to infer (i.e. predict / anticipate) missing quantities after extracting

the relation; and the capability to decode the learned representation and subsequently

measure the precision of the learned representation.

Turning towards biologically inspired mechanisms for models of representation and

learning from sensory data, we propose a model which, rather than focusing on biologically

precise descriptions of neural circuitry, employs simple computational blocks, known to be

widespread in the brain, and which are well formalised and understood. Following models

known to explain sensory processing in cortex, with respect to local processing and its

influence upon the state of the formed features representations, [Cimponeriu et al., 2000,

von der Malsburg, 1999, Michler et al., 2009, Quiton et al., 2011] provided different mech-

anisms to exploit sensory data structures for organising representation on various timescales

and reference systems. Furthermore, one important aspect was the analysis of the recipro-

cal influence representations have on processing mechanisms, due to the mutual interaction

of the communicating areas encoding a specific sensory modality.

Experience acquired through sensory exposure supports the learning mechanisms re-

sponsible to extract the correlational structures in the percept, and can be viewed as an

outcome of a development process. Consistent with our goal, to keep the computational

substrate simple and flexible enough, suitable real-time operation, the proposed model uses

competition, cooperation, and correlation as mechanisms to unsupervisedly extract hidden

relations between sensory streams.

Changing data representation and subsequently the computation paradigm, the model

re-encodes single real-world values into a distributed activity pattern over a network of
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processing units (i.e. neurons). This representation allows the system to extract the un-

derlying probability distribution of the sensory data, such that there is no need to explicitly

embed it in the model at design time (and so, constraining the system). Competition and

cooperation between the units ensure that the input space is faithfully represented: finer

resolution representation to more relevant areas in the input space and coarser resolution

to irrelevant areas and outliers.

Combining the timing and shape of activation patterns (i.e. the distributed response

of the units), associated with different input streams allows the model to extract the co-

activation, in fact their correlational structure. After learning, the underlying relation the

model can be used to infer missing quantities or to detect anomalous or erroneous input

signals, given that a correct relation was previously learned. Furthermore, the extracted

relation can be decoded such that the real-world value can be recovered from the distributed

activation pattern. This is useful when the systems is used in a real-world scenario, to

provide feedback to a motor controller acting upon the perceived environment.

The proposed model relieves the system designer from the intense and cumbersome

parametrisation routines, as the underlying learning processes take advantage of the in-

timate structure of the sensory data. This supports an efficient representation and sub-

sequent fast computation for flexible and robust multisensory fusion sought in real-world

technical systems.
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6 Instantiating the model for perceptual

learning in multisensory fusion

In order to develop and test the perceptual learning and sensory processing hypotheses

introduced in Chapter 4, robotic systems provide a great experimentation and validation

platform. Embedding principles of neural systems processing and development, is a key

approach to leveraging robustness and adaptation capabilities in autonomous robotic sys-

tems.

Neuroscience lessons thought us that learning processes which take place during the de-

velopment of a biological nervous system enable it to extract mappings between external

stimuli and its internal state. Precise egomotion estimation is essential to keep these exter-

nal and internal cues coherent given the rich multisensory environment. In this chapter we

analyse sample instantiations of our learning model which, given various sensory inputs,

converges to a state providing a coherent representation of the sensory space and the cross-

sensory relations. Moreover, exploiting the intrinsic structure in the sensory streams, the

system autonomously extracts cross-sensory regularities to form associations subsequently

used for sensory fusion. Before analysing the specific instantiation, we provide some insight

on the synthesis mechanisms of the learning multisensory fusion network. As mentioned

in Chapter 5, given pairs of sensory stream the network is able to learn the underlying

relation. The questions now, is how can the system learn itself which structure is providing

an advantageous setting for combining sensory modalities?

6.1 Constructing a network for sensory representation

and processing: from graph theory to developmental

neurobiology

Before evaluating the capability of our model to learn sensory correlations for 3D motion

estimation, we review some relevant concepts in networks theory for growth and develop-

ment, spanning from graph theory to developmental neurobiology, relevant to the process

of constructing the learning multisensory fusion network. In order to frame our work and

motivate our model’s characteristics, we analyse some relevant formal models of network

growth processes at the base of topology and spatial patterning. This analysis is needed

to emphasize that the network should intrinsicly reconcile the opposing demands of segre-

gation and integration of functionally specialized sensory representations.

Deeply rooted in graph theory, the seminal work of Erdos [Erdos et al., 1960] focused

on structural growth and evolution processes in random graphs. In this model, following

only local rules, adding new connections determined the emergence of a patterned struc-

ture. Structural modifications influence the dynamics of local nodes following a reactive

mechanism (i.e. force-spring growth process). In the context of sensory data combination
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and integration, the network could support realistic hypotheses or rules (e.g. physical

constraints between nodes) and replace the initially equiprobable connections.

Extending the mathematical formalism [Albert et al., 2002] introduced the scale-free

networks architectures, for which the probability distribution of the number of connections

one node has to other nodes was a power-law. The growth process (i.e. adding nodes

and connections) was given by a ”preferential attachment”, as a means of quantifying a

correlation coefficient or cost function to optimise. Identifying a similar growth process

known to describe cortical networks development, [Kaiser et al., 2004] proposed a model

which started with a minimal number of nodes and added more nodes and connections with

a probability that decreases exponentially with the Euclidian distance between the nodes.

This principle was consistent with previous studies on minimal wiring theorem in cortical

map formation processes [Mitchison, 1995], interpreting sensory representations (i.e. maps)

as the solution of a minimisation problem, where the goal is to keep the ”wiring” between

neurons with similar receptive fields as short as possible. In a sensory learning context,

using this kind of scale-free network growth as a solution of a minimization problem, could

exploit the fact that the connection probability can be modulated by measuring coupling

correlation provided by some metric (mimicking cellular and gene expression influence).

Theoretically examining the interdependence between structure and dynamics in the

brain, [Rubinov et al., 2009] provided biophysical justification for the structural and func-

tional dependencies in large networks of neurons. An important aspect in the study was the

analysis of time scale dependent differences between structure and function, such that on

fast time scales structure enables the emergence of complex dynamics, while on slow time

scale structural connectivity is gradually adjusted towards the resulting functional pat-

terns via an unsupervised, activity-dependent rewiring rule. Initially random, the struc-

ture converged towards asymptotic states characterized by globally invariant structural

and functional clustering.

In-line with our idea of extracting sensory correlations in a network of distributed rep-

resentations, [van Ooyen et al., 2003] proposed a functional model of the low-level interac-

tions in developing neural circuitry. An important aspect is that the representations are

tightly coupled through co-activation patterns of learning. Some interesting and highly

relevant concepts were introduced and supported by experimental data. The first concept

was the fact that the activity patterns generated by a developing neural network can mod-

ify the organization of the network and the functionality of its neurons, leading to altered

activity patterns, which in turn can further modify structure and function.

The underling process shown that when the activity of a neuron is high, neuronal con-

nectivity and excitability are modified by activity-dependent processes so as to decrease

activity. Conversely, when the activity of a neuron is low, on the other hand, neuronal

connectivity and excitability will be modified so as to increase activity. These phenomena

emerge without assuming predetermined, time-scheduled mechanisms. The core idea is

that each neuron attempts to keep a certain level of activity (i.e. homeostasis) and regu-

lates its fan-in and fan-out connectivity pattern such as to maintain activity at a critical

level. These concepts provide an interesting new insight in how a network able to extract

correlations between different representations (of sensory streams) can be built. Yet, there

is no precise information on where the critical homeostatic activity regulation threshold is,

and how can this be used in a practical implementation scenarios to build a network able
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to shape its structure according to incoming sensory streams. Embedding the ”coevolu-

tionary” impact on structure and function, [Westermann et al., 2007] designed a network

combining topological changes with internal dynamics. Each computing node embedded

complex dynamics and supported robust topological self-organization based on simple lo-

cal rules. An important observation was that, for many applications it is not necessary to

capture the exact topology of a given network in a model, rather the process of interest

depends on certain topological properties. The proposed adaptive ”coevolutionary” net-

work model proposed an interesting separation of dynamics, namely dynamics of network

and dynamics on networks. In the first case, of the dynamics of the network, topology is

regarded as a dynamical system itself, such that it changes in time according to specific

rules. Dynamics on networks, focuses on the perspective that each node of the network

represents a dynamical system and individual nodes are coupled according to the network

topology which remains static while the states of the nodes change dynamically. An open

question of the presented study was, which topological properties are affected by a given

set of temporal changes in state or topology, so that they can act on topological degrees

of freedom? This questions is highly relevant for multisensory integration, providing an

understanding on how the combination rules can limit the overall capacity of the network

to store a complex representation of the state or environment.

Providing a unifying view on development of sensory representations and processing,

[Parise et al., 2012] framed experience dependent learning of internal representations as a

trajectory emerging from the interplay of multiple constraints. The framework advocated

that changes to the brain hardware change the nature of the representations and their

processing (i.e. the algorithm) which leads to new experiences and further changes to the

neural systems. Narrowing the generic perspective of the neuroconstructivist framework,

we emphasize the contact points with our research. The focus falls now on experience

dependent elaboration of small-scale canonical computing structures and the ”interactive

specialization” view of cortical development, which stresses the role of interactions be-

tween different brain regions in functional development. Targeting real-world scenarios,

the model used robotic systems to test the proposed hypotheses of the multiple interacting

biological and environmental constraints, neural development, and the development of cog-

nitive representations. Finally, inferring which signals have a common underlying cause,

and hence should be integrated, represents a primary challenge for a perceptual system

dealing with multiple sensory inputs [Parise et al., 2012]. The outcome of this study was

that humans use the similarity in the temporal structure of multisensory signals to solve

the correspondence problem, hence inferring causation from correlation. This principle is

also at the core of our model, and was verified through the analysis carried on the results

of our robotic experimentation scenario. Summing up, after reviewing this relatively wide

range of mechanisms, emerging from pure formal mathematical theories to neurobiolog-

ically plausible processes to create a processing structure able to extract the underlying

structure of incoming streams, we can extract some important design principles. Using

distributed representations of sensory data yields for a distributed processing substrate.

Using global and local dynamics, the model should be able to quantify the correlational

structure in the input streams. As we found out in all the analysed studies, correlation

extraction can be seen as an optimisation problem such that the model should find optimal

parameters to represent the input space structure. Furthermore, given a stable represen-
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tation of the input space, the model should be able to react to new input and adapt its

structure to properly represent the new configuration of the input space. Of course, this

process is bound to a different time scale than local representation dynamics, such that the

model must keep consistency between the multiple scales to ensure consistency. Finally,

another important aspect refers to the type and the dimensionality of the input streams,

such that the model should solve a correspondence problem given multiple spatial and

temporal sensory dimensions. All these concepts allowed us to build a model capable of

extracting the underlying correlational structure in various input streams, as shown in

Chapter 5. Despite its learning capabilities, our model, in its basic formulation, is not

able to infer its own structure, rather uses a predefined configuration of sensory streams

to learn the correlations. We extend our model in Section 5.3 such that it is able to build

a network capable of performing multisensory fusion using information theoretic measures

of correlational structure between all available sensory modalities.

6.2 Multisensory fusion for quadrotor 3D egomotion

estimation

The initial scenario we consider is 3D egomotion estimation on a quadrotor, for which our

model provides precise estimates for roll, pitch, and yaw angles, given available sensory

data onboard. The data acquisition and control infrastructure was previously developed

in our lab [Bergner et al., 2014]. The setup is depicted in Figure 6.1. For the basic testing

scenario, the quadrotor hovers in an uncluttered environment, while an overhead camera

system keeps track of its position and orientation. In this section we instantiate our
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Fig. 6.1: Experimental setup: a) Quadrotor platform; b) Reference system alignment and
ground truth camera tracking system.

multisensory fusion architecture for the quadrotor scenario. We provide an analysis of the

sensory data, the network implementation, and finally a performance evaluation against

ground truth (i.e. the camera tracking system) as well as the on-board EKF estimator.

Next, an analysis of the available sensory cues is provided to motivate the need for an

adaptive learning and computational substrate for sensory fusion. The accelerometer on

the quadrotor measures accelerations with respect to the quadrotor reference frame. As we
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generally cannot neglect linear accelerations, the accelerometer always measures a combi-

nation of linear accelerations and rotated gravitational accelerations, usually termed net

linear acceleration. The net linear acceleration cannot be easily separated into its linear

and rotational components, yet typical approaches in modelling and control of quadrotors

impose a null linear contribution assumption which doesn’t hold (while hovering). We sum

up that, the accelerometer measures net linear accelerations, that linear accelerations can-

not be neglected, that the accelerometer measures accelerations in x and y direction with

sufficient accuracy and that the z component of the measured acceleration is erroneous.

This is due to the fact that the z-axis of the accelerometer is always parallel to the thrust

axis of the quadrotor so one might assume that thrust changes influence accelerometer

measurements in that axis in a negative way. The accelerometer contributions are used

in estimating roll and pitch, Figure 6.2b and Figure 6.3b. The gyroscope on-board the

quadrotor measures angular velocities. We can integrate these angular velocities and get

the roll, pitch and yaw (RPY) angles. The gyroscope is the best sensor to measure RPY

angles as it measures angular velocities with high precision and reliability in a direct way.

Nevertheless due to the RPY angles integration, the gyroscope tends to drift over time.

The drift is partially caused by the properties of the gyroscope sensor and partially caused

by the integration of noise and measurement errors. Gyroscope provides good contributions

for all three degrees of freedom, Figure 6.2a, Figure 6.3a, and Figure 6.4a. Another sen-

sory source on-board the quadrotor is the magnetometer. It measures the earth magnetic

field which can be used to estimate yaw angles. High currents, characterising the rotors

when manoeuvring the quadrotor, influence the magnetic field around the quadrotor such

that the magnetic field measurements have errors. The magnetometer provides relatively

stable estimates contributing to yaw angle estimation, Figure 6.4b. The quadrotor used in

our experiments is also equipped with an optic flow sensor module. This sensor measures

RPY compensated ground speeds and the height above ground, and uses a CMOS camera

to recognize the flow of detected feature points on the ground and with that the ground

speed of the quadrotor. A sonar is used to compute the height above ground. This optic

flow sensor delivers reasonable measurements while being consistent to ground truth, but

the data of the optic flow module is not reliable enough to use it without any additional

feedback.

In our scenario (hover control) the quadrotor had fast and small amplitude changes in

angles on the three axes, so that simple integration of the optic flow velocity output was

not usable. In order to cope with this drawback and still use the flow contribution we used

a multilayer perceptron to extract the nonlinear mapping from x and y direction velocities

to RPY estimates [Requena-Witzig et al., 2015]. The optic flow contributes with estimates

for full 3D egomotion estimation, Figure 6.2c, Figure 6.3c, and Figure 6.4c.

Using the available sensory streams, we instantiated our framework and implemented a

model to extract motion components estimates in 3D space. Following similar relaxation

dynamics as in the basic models in Chapter 3, as well as similar dynamics interpretation

as in the 2D motion estimation (Chapter 4), we now introduce the architecture for the

quadrotor scenario in Figure 6.5. We decouple the three motion components and consider

different sensory contributions for estimating each degree of freedom. Given sensory data

that mildly influences the activity in the network, gyroscope, optic flow, and accelerome-

ter units, containing roll and pitch angle estimates, are mutually exchanging information
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Fig. 6.2: Sensory data analysis for roll estimation: a) Gyroscope estimate; b) Accelerometer
estimate; c) Optic flow estimate.

converging to a more precise estimate. This process is realised by taking steps towards

minimising the mismatch among their local belief. Similarly, yaw estimates are continu-

ously refined given new sensory samples (from gyroscope, optic flow, and magnetometer)

and network’s belief. In order to evaluate the performance of our network in terms of

motion estimates precision, we compared it against the estimates provided by the ground

truth system (3D camera tracking system), and against the on-board EKF attitude esti-

mator. Using similar sensory contributions as the EKF on-board the drone, our model

provides good results against ground truth. For roll estimation, the EKF tracks precisely

the motion (RMSE: 1%) while our network underestimates on the negative angles due to
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Fig. 6.3: Sensory data analysis for pitch estimation: a) Gyroscope estimate; b) Accelerometer
estimate; c) Optic flow estimate.

the accelerometer and optic flow contributions (RMSE: 5%) which react with lower am-

plitude to the fast changes, Figure 6.6a. For pitch estimation the network overestimates

(RMSE: 6%) on the positive angle values due to the gyroscope (drifting) contribution,

yet balanced by a baseline provided by accelerometer and optic flow contributions, while

EKF is relatively precise (RMSE: 2%) visible Figure 6.6b. Finally, for yaw estimation,

optic flow information is noisy but provides a good trend, reacting to quadrotor’s motion,

Figure 6.6c. The network penalizes its contribution and enhances gyroscope’s contribu-

tion, which is also supported by a stable magnetometer estimate (even if with an offset)

such that overall the network performance (RMSE: 8%) is superior to the underestimating

EKF (RMSE: 20%). The cause for the EKF performance penalty is given by the fact that,

for yaw estimation, it heavily relies on the magnetometer. After demonstrating, through
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Fig. 6.4: Sensory data analysis for yaw estimation: a) Gyroscope estimate; b) Magnetometer
estimate; c) Optic flow estimate.

the current instantiation of our framework, that our approach can provide precise state

estimation, we next focus on probing learning mechanisms for extracting sensory correla-

tions. Using the same scenario, we now do not consider embedding sensory relations in the

network, rather we let the network learn them from the incoming streams of sensory data.

We explore the capabilities of our approach and analyse its performance in the considered

real-world scenario.
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Fig. 6.5: Multisensory fusion network instantiation for quadrotor 3D egomotion estimation.

6.3 Learning sensory correlations for quadrotor 3D

egomotion estimation

After analysing and providing insight on our framework capabilities to provide precise ego-

motion estimation in the case in which we complementary combine all available sensory

data on-board, we now investigate the capability to learn the underlying sensory corre-

lations. Learning the underlying correlations between the sensors alleviates the need for

tedious modelling, parametrisation, and constraining assumptions. Due to its intrinsic

learning capabilities, the network extracts sensory correlations which subsequently define

multisensory fusion rules that the system uses to precisely represent its state and its envi-

ronment.
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Fig. 6.6: Network performance analysis for 3D motion estimation: a) Roll angle estimate; b)
Pitch angle estimate; c) Yaw angle estimate.

6.3.1 Network architecture and setup

After the quadrotor flight, preprocessed data from the available sensors (i.e. gyroscope,

accelerometer, and a magnetic sensor, Figure 6.9 a) is fed to the model to extract the

relations between the sensors for each of the three degrees of freedom (i.e. roll, pitch and

yaw).

As initially discussed at the beginning of this chapter, and following principles of network

creation and growth common in both graph theory and neurobiology, we extend our model,

such that it is able to create its own structure given intrinsic structure of the input sensory
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streams. As a prior step to learning the sensor fusion rules, the system must learn which

sensors can be associated for coherent estimates of each motion component. The basic idea

is to determine which regularities in the different sensory streams are more informative to

provide a good substrate for integration and enforce the connections between correlated

sensors.

The model should make use of all available sensory information on-board the robot to

build a model capable to learn and enforce sensory integration rules for precise egomotion

estimation.

As previously postulated, physical systems are continuously and dynamically coupled

to their environment. This coupling offers the system the capability to explicitly structure

its sensory input and generate statistical regularities in it [Lungarella et al., 2005]. Such

regularities in the structure of the incoming multisensory streams are crucial to enabling

adaptation, learning, and development.

In our view, in order to use sensory correlations for integration, the system must extract

the underlying regularities to determine an informative and valid combination. An inter-

esting question is how to identify the origin of such regularities in the incoming sensory

data streams. Self-generated motor activity brings an important contribution in shaping

the informational structure and the quality of sensory information streams.

Sensory streams are not just optimised for efficient encoding and processing but are

also well adapted to the structure of the environment or motion within it. Following

this arguments, we identify the need for a quantitative characterization between the input

sensory streams regularities and the processing mechanisms, such that the system can fully

exploit available information.

Providing a practical approach to measure statistical regularities, dependencies, or rela-

tionships between sensory streams, information theoretic measures can be used to quantify

statistical structure in real-world sensorimotor streams. This mathematical apparatus pro-

vides a generic and flexible analysis tool, as it can be applied to various levels (e.g. sensory

signal, neural, behavioural) and at multiple time scales (e.g. learning, development, evolu-

tionary). Taking advantage of its capability to provide a measure of uncertainty (or infor-

mation), or in multivariate case, identify a nonlinear relation between multiple variables,

entropy can be used to describe sensorimotor informational structure for our multimodal

scenario.

Various methods for inferring the links among statistically coupled variables were de-

veloped, all founding their approach on statistical properties of observed variables: mutual

information distance and entropy reduction [Villaverde et al., 2014], context likelihood of

relatedness [Madar et al., 2010], or maximum relevance/minimum redundancy feature se-

lectors [Meyer et al., 2014]. Providing a rigorous framework to address this issue, a large-

number of the aforementioned methods use the information theoretic apparatus, but most

of them focus on a particular type of problem, introducing various assumptions limiting

their versatility.

In our approach we address the problem of recovering the structure of a network from

available sensory data in its most general form, namely time-series streams of sensory

data. No assumptions about the underlying structure of the sensory data are made and

no prior knowledge about the system is taken into account. Furthermore, interactions

between the various sensory streams are deduced from the statistical features of the data
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using information theory tools. This approach extends the generality of our framework for

learning sensory correlations for multisensory fusion.

Let X denote a random sensory variable (e.g. sensory quantity) consisting of the set of

possible samples xi, i = 1, ..., n with associated probability mass functions p(xi), i = 1, ..., n.

In order to transform sensory signals (given as time-series) into a set of discrete signals we

partition the observation space into bins. The average amount of information gained from

an observation that specifies X is defined by the entropy:

H(X) = −
∑

i
p(xi)logp(xi). (6.1)

Given sensory data as time-series we can estimate the probabilities, and hence the entropy,

by binning the data. Unfortunately entropy estimates are dependent on the partitioning.

As we focus on extracting the structure from multiple streams of sensory information

we can consider, in the simplest case, extracting the relative information between each

two variables, without worrying about partitioning sensitivity. The joint entropy is a first

measure which, based on Equation 6.1, can be defined for a pair of sensory variables (X, Y )

as:

H(X, Y ) = −
∑

i

∑
j
p(xi, yj)logp(xi, yj). (6.2)

Furthermore, given that P (A|B) = P (A∩B)
P (B)

, and X is measured and found to be xi we can

write the conditional entropy as,

H(Y |X = xi) = −
∑

j

p(xi, yj)

p(xi)
log

p(xi, yj)

p(xi)
. (6.3)

The average uncertainty of Y given xi is provided by averaging H(Y |X = xi) from Equa-

tion 6.3 over xi:

H(Y |X) =
∑

i
p(xi)H(Y |X = xi) = −

∑
i

∑
j
p(xi, yj)logp(yj|xi) = H(X, Y )−H(X).

(6.4)

As in our case we consider pairwise associations extraction, a good measure of the distance

between two distributions, for example p and q, is the relative entropy (Kullback - Leibler

divergence / information gain), defined as:

D(p||q) =
∑

i
p(xi)log

p(xi)

q(xi)
. (6.5)

An important metric in our problem is the relative entropy (Equation 6.5) between the

joint distribution p(xi, yj) and the product distribution p(xi)p(yj), which defines in fact

the mutual information:

I(X, Y ) =
∑

i

∑
j
p(xi, yj)log

p(xi, yj)

p(xi)p(yj)
. (6.6)

Intuitively, mutual information is high if both sensory quantities have high variance (i.e.

high entropy) and are highly correlated (i.e. high covariance). This metric provides the

average amount by which a measurement of X reduces the uncertainty of Y , such that
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given Equation 6.4 we have:

I(X, Y ) = H(H)−H(X|Y ) = H(X) +H(Y )−H(X, Y ) = I(Y,X). (6.7)

Mutual information is symmetric and measures the amount of information one sensory

variable contains about another. It does not assume any property of the dependence

between variables, such that it is more general that linear measures (e.g. correlation

coefficient) and is able to handle nonlinear interactions typically found in multisensory

scenarios. Moreover, if two components of the network (i.e. sensory variables) interact

closely (correlated statistical regularities) their mutual information will be large, whereas

if they are not related their mutual information will be theoretically zero. The case in which

the variables are statistically independent (i.e. mutual information is zero) is discarded

in the considered scenario. This is due to the fact that all sensory streams on-board the

quadrotor react to its 3-dimensional motion (readings are intrinsically coupled by motion).

In our framework, the main idea is to infer the network (of sensory variables) structure

using a distance metric among variables. This metric is based on entropic measures of

mutual information between time-series of sensory observations.

The core algorithm is relatively straightforward and is synthetically depicted in Fig-

ure 6.7. Initially, uni-dimensional, multi-dimensional (joint / conditional variables) en-

tropies, and mutual information measures are estimated from sensory data, as shown in

Figure 6.7 a. The estimates are subsequently used for calculating distances between vari-

ables and build a distance matrix.

In order to discriminate between direct and indirect (implicit) connections an entropy

reduction (i.e. minimisation) step is applied [Samoilov et al., 2001], on conditional en-

tropies, acting as a map refinement technique. The distance metric used for construct-

ing the distance matrix is the Entropy Metric Construction (EMC) [Arkin et al., 1995,

Samoilov et al., 1997], providing a minimum regardless of the possible time delays τ in the

sensory data time-series:

d(X, Y )EMC = minτe
−I(X(t+τ),Y (t)). (6.8)

It is easy to see that high values of mutual information between variables determine a

smaller distance value in the statistical relatedness space of variables’ network, Figure 6.7

b, lowest-panel. Due to the fact that we need to infer network’s structure from sensory data,

knowledge about the underlying system cannot be used, so we need to estimate mutual

information from the datasets instead of using the analytical form. Hence, taking advantage

of the large number of sensory samples we binned the data in equally sized intervals and a

function Θi,j counted the number of data points in each bin. Then, the needed probabilities

are estimated from the relative frequencies of occurrence [Steuer et al., 1995],

p̂(ai, bj) =
1

N

∑
Θi,j(xk, yk). (6.9)

As previously mentioned, we detect sensory variables interactions through an entropy re-

duction process, Figure 6.7 a. More precisely, we use an entropy minimisation mechanism,

that seeks to determine variation in one sensory variable given variation in another sensory

variable. The mechanism states that if a sensory variable X∗ is connected to Y (which has
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Fig. 6.7: Network inference algorithm: a) Algorithm pipeline: feed time-series sensory input;
compute statistics for individual and pairs of sensors (entropy and mutual infor-
mation); compute statistical distance and conditional entropies to extract statisti-
cal relatedness; create connectivity array using entropy reduction (minimisation); b)
Network structure evolution: Initial connectivity; Intermediate statistically clustered
variables; Final structure and inferred connectivity.

already been predicted to be connected to a subset X∗s of X∗), its inclusion in the network

structure must reduce the entropy by a proportion at least equal to a threshold T . The

threshold T is computed as a function of overall entropy values. Hence, a link between X∗
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and Y is predicted if and only if the entropy reduction ER(Y,X∗),

ER(Y,X∗) =
H(Y |X∗s )−H(Y |X∗s , X∗)

H(Y )
> T. (6.10)

In order to obtain reliable estimates of joint entropies of the many sensory variables, the

large amount of data observations provides an advantage. Furthermore, exploiting the rich

input space, the proposed algorithm is able to exploit the intrinsic statistical regularities

of the sensory data to generate a plausible network configuration, Figure 6.7 b. Analysing

individual statistics, from the perspective of each variable with respect to all the others,

we notice that the network configuration generated by the algorithm, Figure 6.8 a, is

supported by estimates of mutual information, Figure 6.8 b. Although initially the network
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Fig. 6.8: Network inference analysis: a) Sensory data, inferred network structure, and asso-
ciations for each motion component; b) Individual estimates of mutual information,
on a per sensory variable basis, motivating the established network connections for
sensory associations.

considers all sensory contributions for the estimation of all motion components, as shown

in Figure 6.7 b, it will enforce only those connections providing a coherent correlation for

each degree of freedom, as shown in Figure 6.8 b, based on the resulting configuration

from the network inference algorithm. Using only the underlying statistical regularities

and information content in incoming sensory streams, the algorithm is able to detect,

to subsequently connect sensory contributions which are informative for estimating the

same degree of freedom, and to, finally, combine them into motion estimates through our

fusion mechanism, as depicted in Figure 6.9 c. For roll and pitch angles (i.e. rotation

around the x and y reference frame axes), the network learns the relation between the

roll and pitch angle estimates from integrated gyroscope data and rotational acceleration

components (i.e. orthogonal x and y with respect to z reference frame axes). Similarly,

the yaw angle is extracted by learning the relation between the yaw angle estimate from

integrated gyroscope data (i.e. absolute angle) and aligned magnetic field components

from the magnetic sensor (i.e. projected magnetic field vectors on orthogonal x and y
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Fig. 6.9: Network instantiation for 3D egomotion estimation: inferred network structure and
sensory associations for learning. a) Sensory configuration of the robot; b) Inferred
network connectivity; c) Sensory associations for learning.

reference frame axes). The learned sensory associations are not arbitrary, but rather

represent the dynamics of the system and are consistent with recently developed modelling

and control approaches for quadrotors [Hyon et al., 2012, Lee et al., 2012]. To make use

of the learned relations we decode the Hebbian connectivity matrix using a relatively

simple optimisation method [Brent, 2013]. After learning, we apply sensory data from

one source and compute the sensory elicited activation in its corresponding (presynaptic)

SOM neural population. Furthermore, using the learned cross-modal Hebbian weights and

the presynaptic activation, we can compute the postsynaptic activation. Given that the

neural populations encoding the sensory data are topologically organised (i.e. adjacent

values coding for similar places in the input space), we can precisely extract (through

optimisation) the sensory value for the second sensor given the postsynaptic activation

pattern. Without using an explicit function to optimise, but rather the correlation in

activation patterns in the input SOMs, the network can extract the relation between the

sensors.

6.3.2 Experimental results

In order to validate the extracted relations, we use the aforementioned mechanism to ex-

tract the roll, pitch, and yaw estimates for the quadrotor scenario. Figure 6.10 presents a

decoupled view for each degree of freedom, depicting the learned relations and estimation

accuracy. We observe in Figure 6.10 a that the learned relations resemble the nonlinear

functions (i.e. arctangent) used in typical modelling approaches, although preserving irreg-

ularities in the cross-sensory relations. The learned cross-sensory relations, encoded in the

Hebbian matrix, provide the intrinsic constraints between the sensory cues contributing to

the estimate of each degree of freedom.

For roll estimation, Figure 6.10 b upper panel, the network learns the relation between

net rotational acceleration provided by the accelerometer and the absolute roll angle es-
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Fig. 6.10: Network instantiation for 3D egomotion estimation: a decoupled view analysis. a)
Learned relations; b) Estimation quality using learned relations.

timate provided by the gyroscope. Given that accelerometer data is noisy and gyroscope

data drifts, as a consequence of integration process, the network is able to ”pull” the val-

ues of the two cues towards the ”correct” value of the roll angle as given by ground truth

(accelerometer RMSE: < 2%, gyroscope RMSE:< 3%).

For pitch estimation the network extracts the nonlinear dependency between the ac-

celerometer data and the gyroscope data. Although both cues follow the trend of change

in angle, as shown in Figure 6.10 b middle panel, the accelerometer is overestimating, due

to the noisy signal and the overall limited motion of the drone on this axis. The gyroscope

contribution was able to modulate the accelerometer contribution such that the overall

estimates are acceptable (accelerometer RMSE: < 7%, gyroscope RMSE: < 3%).

Finally, for yaw estimation the network uses the gyroscope absolute angle and the

magnetometer contribution, based on magnetic field readings on the other two axes. In-

terestingly, albeit the fact that the yaw estimate of the magnetometer follows the trend,

Figure 6.10 b lower panel, there is an intrinsic offset (RMSE:∼ 15%) visible from t = 5s.

Investigating during many test flights, we noticed that the current change generated when

arming the rotors introduced a significant modification in magnetic field distribution, sub-

sequently reflected in the magnetometer readings. In the current setup, the inferred net-
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work is not able to explicitly compensate for the offset, as one can see in Figure 6.10 a

lower panel, where co-activation pattern is not sharp like for roll and pitch.

As our results show, the model is able to extract the underlying data statistics without

any prior information, as shown in Chapter 5, where the sensory data distribution was

learned directly from the input data. Moreover, following the statistics of the data, the

network allocates more neurons to represent areas in the sensory space with a higher

density such that the cross-sensory relations are sharpened, visible in Figure 6.10a.

As also shown in Chapter 5, there is no specific parameter tuning routine to handle

different kinds of input data for different scenarios. The generic processing elements (i.e.

SOM, Hebbian learning) and their extensions (i.e. tuning curve adaptation, covariance

update) ensure that the network first learns (in an unsupervised manner) the structure of

the data, and then uses this representation to sharpen its correlational structure. Moreover,

given the learned relations, the network is able to infer missing quantities in the case of

sensor failures. As the relation is encoded as a synaptic weight, after learning, it is enough

to provide samples from one sensor, encode them in the SOM, and project the activity

pattern through the Hebbian matrix. The resulting activity pattern, subsequently decoded,

will provide the missing real-world sensory value.

6.4 Summary

Given relatively complex and multimodal scenarios in which robotic systems operate, with

noisy and partially observable environment features, the capability to precisely and rapidly

extract estimates of egomotion critically influences the set of possible actions. Utilising

simple and computationally effective mechanisms, the proposed model is able to learn the

intrinsic correlational structure of sensory data and provide more precise estimates of ego-

motion. Initially, the model extracts the sensory associations from sensory streams, by ex-

ploiting the statistical regularities underlying time-series data, using information theoretic

metrics. The learned associations determine a network structure connecting all sensory

variables such that consistent associations between variables are realised for each motion

component estimate. Furthermore, in order to combine sensory contributions, given ex-

tracted associations, the model uses competition, cooperation, and sensory data to extract

correlations and encode them in a distributed pattern of neural activity. These correla-

tions are subsequently decoded and provide the multisensory fusion constraints (rules),

such that each sensor is pulled toward ”plausible” values, ensuring that the network con-

verges to consensus. Settled in a stable state, the network provides precise individual

motion estimates, as perceived from each contribution sensory modality.

Being able to learn sensory data statistics and distribution, the model judiciously allo-

cates resources for efficient representation and computation without any prior assumptions

and simplifications. This ensures that all the individual components of the framework inter-

act to increase its generality. Alleviating the need for tedious design and parametrisation,

it provides a flexible and robust approach to multisensory fusion, making it a promising

candidate for robust robotics applications.
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Natural organisms and technical systems alike are continuously and dynamically coupled to

their environments, with incoming sensory streams determining motor actions, and motor

activity selecting and modulating the statistics of the sensory input. Despite environ-

ment’s influence upon the system, the later itself ”structures” sensorimotor information

by coordinated and dynamic interaction with the environment.

By providing a global overview over the problem of multisensory fusion in Chapter 2,

we are able to capture those relevant design aspects driving robust and flexible imple-

mentations in both natural and engineered systems. As our aim is to provide a generic

framework in which a system can autonomously learn its sensorimotor capabilities and

use them for precise interpretation of the environment, we identify those principles able

to offer a representation and processing framework, simple enough to be generalised and

robust enough to cope with real-world data.

It has been postulated that both biological and artificial systems refine their adaptation

capabilities and are able to robustly represent, and interact with, their environment. In

order to disambiguate their perception, they use a complex pattern of interactions to

act upon the environment, which reciprocally influences their state. Furthermore, these

interactions underline the need for an adaptive processing substrate to handle incoming

perceptual streams, usually unfolding as a rich and noisy multisensory percept.

Maintaining a coherent internal representation of the environment and own state, given

complementary percepts of the environment, is by far a non-trivial trivial task and certainly

expects considerable adaptive capabilities from the system. Multisensory fusion defines the

process responsible of combining information from the variety of sources of information

available to the system, in order to provide a robust and complete description of the

environment and/or own state.

Identified as a long sought goal in all engineering implementations aiming at autonomy,

multisensory fusion techniques met various design approaches. Using various architectures,

sensory data representations, mathematical apparatus, and aiming at different perceptual

or decision outcome, these methods generated a wealth of design strategies and possibilities.

Despite the broad range of methodologies and mechanisms, a generic recipe to identify,

understand, and exploit available sensory streams is not yet defined.

Indeed, as we saw in Chapter 2, state-of-the-art methods employ different strategies

to solve the problem of making sense of available sources of information to plan actions.

More precisely, the two tasks that we address are state estimation and data association.

In order to disambiguate the scene and perform precise state estimation, the system must

combine all available sources of information in an advantageous way. Furthermore, in

order to maximise the contribution of each source of sensory information, the system must

capture the underlying sensory correlations. Using only informative contributions enhances

estimates subsequently supporting reliable decision making.

In order to address the aforementioned aspects, current multisensory fusion systems
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approach the problem from different levels, so as to (potentially) provide a generic solution.

Considering different relations between input data sources, as shown in Figure 2.2, a

multisensory fusion system is able to obtain more precise estimates by exploiting comple-

mentarity, redundancy, or cooperation between sensory contributions. Other approaches,

exploiting sensory contributions at different abstraction levels, use low-level sensory fea-

tures to build high-level inference used for fusing contributions, Figure 2.3. Given different

type and nature of the input data, some state-of-the-art systems detach from the low-level

signal noisy domain, build associations and high level representations to disambiguate the

percept, and even infer missing or new quantities, as shown in Figure 2.4. Finally, all

state-of-the-art build their approach on relatively different processing schemes, some to

exploit data representation, whereas others to obey the physical (spatial and / or tem-

poral) constraints of the system. Providing solutions for particular systems, centralised

and decentralised processing architectures, Figure 2.5 a, b, are overtaken by more robust

approaches using distributed schemes, Figure 2.5 c, capable of more robust, flexible, and

still advantageous processing.

The in-depth analysis of state-of-the-art approaches to multisensory fusion as well as

the known mechanisms in computation neuroscience, allow us to capture important design

principles. Supported by real-world implementations and a thorough comparison with

state-of-the-art approaches, we validate our approach as an alternative to existing methods

for state estimation and data association.

Our perspective and motivation comes from analysing common approaches for multisen-

sory fusion methods, their limitations and advantages on one side, and the superior nervous

system’s performance on the other side. We are interested in the capability of robustly

combining available senses, given the noisy and uncertain environment. Both biological

and technical systems need the capability to disambiguate perception by using different

sources of sensory data. In our view this yields a coordinated interplay of available senses

such that, given sensory observations, the system compensates for uncertainty and noise,

and exploits the redundancy of sensory measurements.

Despite the capability to disambiguate their state, systems have to infer new quantities

from existing sensory observations, given underlying causal relations. Another important

aspect refers to the capability to optimise efficient processing of incoming sensory streams,

such that the systems should constantly generate predictions about future events, or an-

ticipate them. This allows the system to infer temporary degraded or missing information

in sensory modalities.

Of major importance is the capability of the multisensory fusion scheme to handle in-

consistencies and imperfections, assigning judicious confidence levels to contributing quan-

tities. Usually, this is performed prior to system’s design allowing it to provide good

results for the considered (dedicated) scenario. If during operation system’s parameters

change, the scheme is not able to properly judge the validity of incoming streams. This

yields a generic adaptive substrate which alleviates the need for considering constraining

assumptions at the design stage, and turn the system overall more robust.

Although the goal is to exploit the multisensory structure of the environment and / or

own state, the different available sensors bring heterogeneous streams, yielding the need for

a system able to align multiple scales and representations to improve precision of the esti-

mated features. From a computational point of view, most approaches aiming at real-time
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solutions approach multisensory fusion need to follow a distributed perspective. Distribut-

ing processing and representation provides a powerful paradigm for multisensory fusion,

such that fragmented, locally coherent representations from different sensory contributions,

enable a global consistent representation of the scene. Thus, combining local preprocessing,

alignment, association, and estimation of individual modalities allows a distributed scheme

to split global processing in relatively simple local processes which mutually interact to

keep representations coherent, Figure 2.5 c.

Our model follows a similar structure, in which different sensory modalities are repre-

sented in a distributed network of interacting processing units capable of exchanging local

information, such that a global, more precise, representation is obtained. Using relatively

simple computation, given by the physics of the sensors (e.g. simple algebraic functions),

our model combines individual sensory contributions, described by different reliabilities,

noise patterns and uncertainty.

Finally, another core aspect assumes that, a multisensory fusion system needs to take

into account and exploit the diversity in the sensory data, and extract spatio-temporal

associations from it. Indeed, in order to exploit sensory contributions towards obtaining

a precise representation, most informative sensors must be combined such that the result

is a more precise estimate than individual sensors considered in isolation. Our model is

capable of detecting regularities in available sensory streams, combine those which are

highly correlated, extract their correlation pattern, and finally use the learned correlation

to fuse them.

Proposing a new computational paradigm, our model finds its inspiration and advan-

tages in (neuro-)biological substrate, following processing principles which differentiate it

from traditional approaches to computation. We propose an alternative computational

architecture, inspired by the high-level architecture of the mammalian cortex, where com-

putation is performed in a widespread network of interconnected units, each representing

a different type of sensory information measuring a feature of its environment or own

state. In the basic model formulation, connectivity between the processing units imple-

ment known formalized relations (in fact equations) and computation takes place by each

unit trying keep consistency with the other units it is connected to. This novel approach

to computation ensures that the dynamics of the network follows the constraints, imposed

by the sensors and / or the perceived environment, to reach consensus. A stable state is

reached when the system settles in a solution providing a consistent representation of all

the sensed quantities.

In our framework processing and storage are both local and intermeshed, such that each

processing unit in the network has a local understanding of the perceived quantity. The

local belief of a unit builds upon its corresponding sensory contribution and the constrain-

ing contributions from other units in the network. Each sensory modality available to the

system is individually represented in the network, as either a point estimate (i.e. scalar)

or a sparse representation (i.e. population coded), yet obeying same local dynamics.

As postulated by various studies ranging from computational neuroscience to neuropsy-

chology, relational knowledge and representation, which describe associations amongst sen-

sory signals, is a hallmark of human cognition. We base our design on a framework consid-

ering relations as the main driver for the dynamics and connectivity of a system, capable

of providing a robust representation of the sensory space through the combination of all
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available sensory streams. Supported by knowledge from both computational and exper-

imental neuroscience, we extract those principles known to explain sensory processing in

cortex, and use them in our design.

The core formulation of our proposed style of processing starts with the idea that large-

scale networks processing sensory information are based on parallel processing, and coher-

ent representations are achieved through efficient coordination of information transactions.

Locally, each sensory variable is represented through an area responsible to represent and

process its incoming information streams. The input from other areas provides only a small

fraction of the input to a target area. Furthermore, due to the highly interconnected net-

works and ongoing dynamic computation, a large number of competing constraints acting

on their component areas must be solved rapidly. This process is described by a relax-

ation mechanism, which is able to avoid falling and settling in local minima, by reconciling

competing constraints through increased relative coordination of the interacting areas.

Our work abstracts from neural models to a practical implementation. We propose a

framework for multisensory fusion which assumes interactions between percepts in order

to extract globally coherent representations given modalities’ local interpretations. More

precisely, we build a network of possibly conflicting local interpretations, which by using

relaxation to solve the inherent constraints, ensures convergence to plausible and possible

global interpretations. The model represents knowledge and constraints between percepts

as a network of relations in which each one involves a given number variables representing

sensory inputs, such that any overall relationship amongst the variables treated in the

network is distributed across the network. This approach ensures that global knowledge

representations can be extracted from local interpretations and interactions.

In order to test the capabilities of our model, we instantiate it for two simple scenar-

ios, using two networks embedding simple algebraic relations, Figure 3.4, and more com-

plex highly nonlinear trigonometric relations, Figure 3.8, respectively. Relaxing towards

a stable state in which all relations are fulfilled, the network dynamics is able to rapidly

compensate the initial mismatch (given by random initialisation) without external sensory

contributions, Figure 3.5. Each of the network units encodes a 1-dimensional (scalar) rep-

resentation of a real-world value. Using a relatively simple gradient update rule, each unit

takes steps towards minimising the local mismatch between its estimate and the estimates

of the units connected to it. In a slightly constrained scenario, shown in Figure 3.6, the

network is coupled to external input such that each unit has an additional constraint,

and the overall network has less degrees of freedom. Due to external inputs, the network

balances the contributions and accommodates new data updating its internal belief. New

values are propagated through the network which updates its state towards fulfilling the

embedded relations. Although each unit receives an additional source of information, the

update dynamics for each source obeys same rules.

Testing fully constrained scenarios, allows us to analyse the robustness of the network

in the presence of conflicting external inputs with respect to the internal network belief,

Figure 3.7. Using the same network structure as in Figure 3.4, we connected external inputs

simultaneously to all units in the network. Due to the fully connected external inputs, the

network balances the contributions against its own stable belief in a rather oscillatory

pattern. As mentioned, the network follows a relaxation process (allowing each unit to

update) which explains the visible oscillations each unit’s estimate has with respect to the
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relations it is involved in. The oscillations amplitudes are proportional to the mismatch

between subsequent updates from different sources.

The second testing scenario,depicted in Figure 3.8, brought more interesting insight in

the network capabilities. Using a mixture of power-law and trigonometric functions, we

explore network’s robustness and stability given highly nonlinear dynamics imposed by

the relations. Starting from initial random conditions, the complex network converges to a

solution given the mathematically constrained functions in the relations. When all sensory

connections are enabled, the network oscillates due to fully constrained space of values its

units can take. We observe high jumps in the mismatches values mainly related to the

nature of the functions, and the fact that units’ values are updated continuously, effect

visible in Figure 3.9. Once freely evolving driven by internal dynamics, the network settles

again in a stable state.

Coming closer to real-world sensory data regularities, we investigate network’s dynamics

when we also have temporal relations embedded in the network, as shown in Figure 3.10.

Typically encountered in sensory data, temporal integration provides the means to extract

absolute changes of a quantity given raw sensory data. This process is not perfect, as

integration propagates errors and leads to drift. Due to network’s internal coupling and

interactions, this behaviour is avoided. Moreover, we observe that in the presence of

external input (e.g. rate of change) the integration unit accumulates incoming samples

without drifting, as shown in Figure 3.10 a. This capability is provided by the other

relations in the network, which constrain the possible values a unit can take, thus providing

a baseline for the integration unit to cancel out drift.

In a another experiment we thoroughly analyse the underlying adaptation capabilities

of the network to handle conflicting incoming streams of information. As a main feature of

our model, at the unit level all incoming contribution (sensory / other units) are weighted,

such that consistent contributions are enhanced, whereas inconsistent contributions are

penalised. The weighting mechanism (i.e. confidence factor) is local, and it quantifies the

mismatch of a source of information with respect to all the others.

Although we limited ourselves in providing rather small scale systems for analysis, we

also investigated other features like scalability and fault tolerance. These features are really

important in real-world applications. As shown in our initial instantiations, the network

can take an arbitrarily large size, encoding arbitrarily complex relations, and arbitrary

connectivity patterns between units. Using simple and general update rules, the network

can be flexibly extended, as local dynamics ensure global consistency between the relations

in the network. Accounting as a flexible constraint satisfaction framework, the network’s

unit level processing and storage ensure seamless extensibility capabilities.

A second powerful feature of the network is fault-tolerance. As mentioned earlier, the

network employs an adaptive mechanism (confidence factor) to weight incoming contribu-

tions. This mechanism provides also a substrate for fault tolerance. As an outcome of the

network dynamics, all units relax together, so that if a sensor provides conflicting data

the collective computation (network belief) will locally analyse and weight its contribution

such that its value is considered only when consistent with the rest of the data in the

network.

In order to test and validate these principles in real-world scenarios, we instantiated our

framework for various robotic scenarios, from 2-dimensional egomotion estimation for a
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omnidirectional robot, to 3-dimensional orientation and attitude estimation for quadrotors.

Investigation was also extended with an analysis on the parallelisation capabilities of the

model on traditional PCs, MCUs, to massively parallel neurmorphic hardware.

Probing high-level processing and organization principles of multisensory fusion known

to take place in cortex, our work proposes a flexible framework validated in multiple

instantiations targeting technical systems. Our approach develops a general solution for

the problem, since each unit of the model is able to represent a different sensory modality,

and extended networks can embed even more types of sensory information, for a rich

environment representation. As shown in the in-depth analysis carried out in Chapter 3,

the proposed framework provides a solution to multisensory fusion, employing a new style of

information processing that is more robust to noise, sensory failures, and uncertainty. Using

a distributed processing scheme based on localized intelligence that ensures asynchronous

information exchange and adaptation based on external real-world sensory stimuli, the

framework ensures the design of fast, robust, and scalable computational architectures

appropriate for real-time real-world robotic applications.

An initial instantiation of our framework targeted the design of a multisensory fusion

network for an omidirectional wheeled mobile robot egomotion estimation in 2D space. The

system’s goal was to provide precise estimates of mobile robot 2D egomotion, a combined

rotational and translational displacement of the robot with respect to the environment.

Our approach used a distributed network in which independent neural computing nodes

obtained and represented sensory information, while processing and exchanging exclusively

local data, to infer an estimate of robot orientation and position in 2D space. This was

achieved by rapidly solving a large number of mutually imposed (physical) sensory con-

straints which led to globally coherent estimates. Sensory constraints define an internal

model providing a prediction of possible sensor values. This prediction is subsequently in-

tegrated with acquired sensory observations within the network which is inferring a belief

about the perceived motion components. In order to compute motion estimates, the model

used all available sensors on-board the robot: an inertial measurement unit, consisting of

3-axis gyroscope, 3-axis magnetometer which acts as vestibular input; wheel encoders act-

ing as proprioceptive input; motor driver providing an efferent copy of the motors’ PWM

signal; and a camera for visual input.

Raw sensory data was fed to the network, which updated its internal belief and inferred

an estimate of robot’s position and orientation locally, as seen from each sensor perspec-

tive, Figure 4.4. For inferring a heading estimate, the network was fed with data from

gyroscope, magnetometer (compass), wheels encoders, and camera, whereas for position

estimation it used data from wheels encoders, camera, and a motor PWM signal copy.

Basic mathematical relations link different processing units representing different sensors,

and enable feed-forward and feedback connections for information exchange. Given noisy

input sensory data, the network kept all local units’ estimates in agreement, as shown in

Figure 4.8 e, f and Figure 4.13 b. In order to increase flexibility, sensory data prepro-

cessing (e.g. integration, offset subtraction) was performed inside the network, such that

sensory contributions are aligned to a common representation (i.e. absolute heading angle

or Cartesian position). Mutual influence between units encoding an estimate of heading

angle was modulated by the confidence factor such that each interaction pathway of an

unit had an associated confidence factor adapting according to the level of trustworthiness
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of a source of information to which the unit was connected, as shown in Figure 4.9 b-e.

In order to assess the fault tolerance capabilities of our network we performed a set of

experiments in which we tested the network in the presence of faulty sensors. As sensory

data mildly influences ongoing network activity, in the absence of one sensory contribution

the network can recover it based on the other modalities and its connectivity, as shown

in Figure 4.16 b for magnetometer failure. This fault tolerance mechanism allowed the

network to provide good estimates, Figure 4.16 b, c, given that temporarily the sensor

didn’t provide any measurements, such that its value was continuously inferred by the

network given available other modalities.

In order to measure the performance of our model we compared it with two state-of-

the-art methods: the Kalman filter and the Maximum Likelihood Estimator. Our model

provided precise estimates of heading angle, position, and travelled distance comparable

with state-of-the-art methods, Figure 4.14 c, d and Figure 4.15 c-f, but with less design

assumptions and constraints. The RMSE was used as a metric to calculate the perfor-

mance of our model against Kalman filter and MLE estimates with respect to ground

truth data. The network was able to provide estimates for both heading angle (RMSE

Heading: ∼ 10% , Figure 4.14) and position (RMSE Position: ∼ 1%, Figure 4.15) close

to KF and MLE. Despite the fact that each source of information was affected by noise

or systematic errors, the network was able to detect abnormal changes in sensory data,

such that there was a small impact over its internal belief. Our analysis, using the mobile

robot egomotion estimation scenario, was extended towards investigating network’s par-

allelisation capabilities. In order to take advantage of the distributed processing scheme

of the network, we explored the implementation on a series of computing platforms, from

traditional PCs, to embedded MCUs, and finally, a massively-parallel computing platform,

the SpiNNaker.

The overall results showed that due to its intrinsic parallelism, the network can take ad-

vantage of hardware parallelism, so that asynchronous exchange of local estimates between

network units running on different cores is the most advantageous approach, as shown in

Table 4.2. To quantify the performance, our experiments shown that the heading multi-

sensory fusion (sub-network) takes around 6s for 5000 samples acquired at 25 Hz, while the

multisensory fusion (sub-network) for position data estimation takes around 15s. Overall,

the whole experiment took the robot approximately 198s, such that real-time multisensory

fusion is possible. Furthermore, in order to evaluate the implementation of the proposed

model, we also implemented a distributed version of a state-of-art method (i.e. DKF - dis-

tributed Kalman filter) combined with Covariance Intersection to infer heading and global

position estimates from the different sensors available on-board the robot.

The parallel hardware implementation leveraged the capabilities of our network’s ar-

chitecture such that, in combination with the platform’s event-based programming model,

it provides a viable solution for real-time applications. Additionally, the low power con-

sumption and form factor make it suitable for mobile applications. In another instantiation

of our framework, we considered a more complex scenario, 3D egomotion estimation on

a quadrotor, synthetically depicted in Figure 6.1. In this scenario, our model was able

to provide precise estimates for roll, pitch, and yaw angles, given available sensory data

on-board. Separating the three degrees of freedom, contributions from gyroscope, mag-

netometer, accelerometer, and optical flow were used to extract precise absolute angle
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estimates, using the network structure shown in Figure 6.5.

Using the process formally described in Chapter 3 and given sensory data that modulates

the activity in the network, the gyroscope, optic flow, and accelerometer units, containing

roll and pitch angle estimates, were mutually exchanging information to refine the local

angle estimates. Similarly, yaw angle estimates were continuously refined given new sensory

observations (from gyroscope, optic flow, and magnetometer) and current network’s belief.

The performance of our network in terms of motion estimates precision, is quantified

by the deviation from estimates provided by the ground truth system (3D camera tracking

system), and evaluated against the on-board EKF attitude estimator. With good estimates

for roll, pitch and yaw angles (RMSE Roll:∼ 5%, RMSE Pitch:∼ 6%, RMSE Yaw:∼ 8%)

the network provided comparable performance with state-of-the-art methods given that no

external source of absolute position was fed into the network, as results in Figure 6.6 show.

In order to extend the flexibility of our framework and alleviate the need for precise

modelling and hand-crafting of the dynamics, we investigated learning processes which take

place during the development of a biological nervous system. These processes enable it to

extract mappings between external stimuli and its internal state. Employing such learning

and development mechanisms can enhance adaptation and flexibility of our framework and

its practical implementations.

Probing neural models of perceptual learning and development, we addressed the ques-

tion of how can real-world sensory data be represented in a distributed neural substrate,

such that its underlying structure and statistics can be exploited. Moreover, we were in-

terested in how a system with relatively limited initial knowledge can learn and synthesize

an appropriate processing infrastructure efficiently using the available sensory streams.

This kind of system is able, by using relatively simple computational mechanisms, to learn

efficient representations and make use of them for subsequent computation, aiming at

coherently describing the environment and its own state given its sensory inputs.

As shown in previous implementations, sensory cues are correlated, and the underlying

relations hidden in the data streams quantify their correlation level. Indeed, correlation

is marked either by an explicit mathematical formulation or is just hidden in the data.

In its more generic form, our framework is basically enforcing consensus by autonomously

finding solutions to the constraints imposed by contributing sensors. Using a well studied

and simple neural computation substrate, we extended the generic model in Chapter 3 by

considering a distributed representation of the sensory space (instead of a point estimate)

and replacing hard-coded relations through learned patterns of neural activity encoding

the correlations.

In its basic formulation, our perceptual learning model extends the formulation intro-

duced in Chapter 3 and instantiated in Chapter 4, as depicted in Figure 5.1. Samples

from each input sensory modality are converted into a sparse representation (i.e. a SOM

lattice of neurons) responsible for locally extracting the statistics of the incoming data

and encoding sensory samples in a distributed activity pattern of component neurons, de-

scribed in Figure 5.2. Each input SOM activity pattern is generated such that the closest

preferred value of a neuron to the input sample will be strongly activated and will decay,

proportional with distance, for neighbouring units.

To link the representations constructed in the input SOMs, we use a variant of Hebbian

learning rule, such that our model is able to learn the underlying relation and encode it in
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a distributed pattern for easy readout. The correlation learning process is responsible for

extracting the co-activation pattern between the input layers and eventually describe the

hidden relation, as shown in Figure 5.2. Aiming at providing a solution for real-world im-

plementations, self-organisation and correlation learning processes evolve simultaneously,

such that both sensory representations and correlation pattern sharpening are continuously

refined given incoming sensory observations.

Although our approach tries to extend the relational framework by adding learning

capabilities, we address the general problem of extracting the underlying structure and

correlations in various sensory streams. This problem is of high interest in real-world

systems assuming robust environment interaction, as it is providing the means to obtain

a more precise interaction with the environment. Various other methods for extracting

sensory correlations were developed, spanning from probability theory to neurally plausible

models. In order to evaluate our approach we provided a detailed investigation over: design

and functionality; amount of prior information set by the designer in the system; stability

and robustness of the obtained representation; capability to handle noisy data, capability

to infer (i.e. predict / anticipate) missing quantities once the relation is learned; and

capability to decode the learned representation and subsequently measure the precision

of the learned representation. Our model is able to provide suitable solutions for all the

considered aspects making it a good candidate for real-world implementations.

Initially focusing on the formal substrate and the integration within the computational

framework introduced in Chapter 3, we thoroughly analysed the capabilities of our percep-

tual learning model using simulated data for various linear or nonlinear functions (relations)

and input data distributions. Given incoming streams of correlated sensory data, each in-

put SOM uses cooperation, competition, and adaptation to learn and represent input data

statistics in a heterogeneous population code (visible in the number of allocated neurons

and size of the tuning curves of neurons in Figure 5.12). Interestingly enough, after relax-

ing in a stable state, the network contains a fully informative representation of the input

data and the learned sensory relation.

After learning has ended, given the ordered representation of the input data space onto

the SOMs, one can find (decode) the corresponding real-world values given input patterns,

comparatively described in Figure 5.13. Following this, obvious inference and fault tol-

erance capabilities are provided by the model without additional design considerations.

After learning, the network stores a stable representation of the hidden relation between

the sensory inputs considered during training. Furthermore, given one input sample from

the input sensory stream, the network computes the elicited activity in the input SOM

population. Finally, in order to extract the real-world value, a decoding mechanism based

on an optimisation method is used to recover the corresponding value.

Another interesting feature is the capability of the mode to extend from dual modality

to multimodal processing. This is highly relevant for real-world scenarios where more

sensory cues can provide, through their combination, a more precise estimate than separate

contributions. In a first approach we considered a 4-dimensional network with a tree

shaped correlation structure. In this scenario our network was able to extract relatively

sharp representations of the underlying relations between pairs of units in the network,

as shown in Figure 5.14. In a second scenario we used a 3-dimensional network with a

circular correlation structure, such that the network is fully constrained internally. Using

151



Discussion and conclusions

similar dynamics with all our experiments performed in Chapter 5, the network was able to

extract a sharp representation, with relatively no interference (even if a circular connection

pattern was used) and, more interestingly, with the capability to compensate for boundary

effects during network operation, as depicted in the sample network in Figure 5.15.

Our perceptual learning model for multisensory fusion is combining the timing and shape

of activation patterns associated with different inputs in order to extract the correlational

structure of the available sensory streams. After learning, the extracted relation is used

to infer missing quantities or to detect anomalous or erroneous input signals given that

the correct relation was previously learned. Finally, the learned relation can be decoded

such that the real-world value can be recovered from the distributed activation pattern, to

subsequently provide feedback to a motor controller.

In order to test the capabilities of our extended framework for perceptual learning

for multisensory fusion introduced in Chapter 5, we instantiated it for a real-world 3D

egomotion estimation on a quadrotor.

Given incoming streams of sensory data, our model extracts coherent sensory asso-

ciations from provided time-series. Exploiting statistical regularities underlying sensory

streams the model captured statistical relatedness such that sensory variables were cou-

pled in a network structure offering a plausible interpretation. Using information theoretic

approaches we propose an algorithm capable of inferring a network in which the distance

among nodes indicates their statistical closeness and existing links are refined to distinguish

between direct / indirect sensory interactions. Without using a priori knowledge about

the underlying structure of the data, the network used a processing pipeline of information

theoretic analysis, defined in Figure 6.7, to infer the most suitable network structure for

the 3D egomotion estimation.

Each step of the algorithm, depicted in Figure 6.7 a, provided a more refined descrip-

tion of the network structure, from all-to-all connectivity to statistically determined, fully

informative links between sensory variables,as shown in Figure 6.7 b. Using relatively

basic metrics like entropy, mutual information, and relatively simple entropy reduction

mechanisms, the system builds a map of distances which reflects informational content

each sensory variable contains and determines the association affinity to other variables,

depicted explicitly in Figure 6.8 b. Capturing a measure of the amount of information that

one sensory variable contains about the others, plausible and consistent sensory associa-

tions are extracted as we can see in Figure 6.9 b.

After a preliminary analysis of the data and the instantiation of the basic relational

model for 3D egomotion estimation on a quadrotor, we explored the capability to learn

sensory correlations for the quadrotor scenario. In our experiments, preprocessed data

from the available sensors (i.e. gyroscope, accelerometer and a magnetic sensor) was fed

to the model in order to extract relations between the inferred network of sensors for each

of the three degrees of freedom (i.e. roll, pitch and yaw), Figure 6.9 a. Initially, all-to-all

connections between sensors were considered, but the system, Figure 6.7, inferred only the

connection configuration encoding plausible relations (i.e. contributions to same degree of

freedom estimate), considered for subsequent fusion, synthetically described in Figure 6.9

b. The underlying structure estimating the three degrees of freedom is consistent to the

generic model we introduced in Chapter 3, as associations in Figure 6.9 c show.

In order to extract the relations for roll and pitch estimation, the network combined
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contributions from accelerometer and gyro, whereas for yaw estimation the network fused

magnetometer and gyroscope observations. Experimental results shown that the network

was able to infer relatively precise roll and pitch estimates (relative to ground truth) for

individual sensors (accelerometer RMSE Roll:< 2%, accelerometer RMSE Pitch: < 7%,

gyroscope RMSE Roll:< 3%, gyroscope RMSE Pitch:< 3%) despite the noisy accelerom-

eter and drifting gyroscope, Figure 6.10 b. Although yaw estimates followed the motion

trend, the error was considerably large due to the intrinsic offset that the network didn’t

explicitly compensate (magnetometer RMSE Yaw:∼ 15%). Furthermore, the learned

relations resemble the nonlinear functions (i.e. arctangent) used in typical modelling ap-

proaches, although preserving the inherent irregularities in cross-sensory relations, visible

in Figure 6.10 a.

Using generic neurally inspired processing elements (i.e. SOM, Hebbian learning) en-

sures that the network first learns the structure of the data, and then uses this repre-

sentation to sharpen its correlational structure. Approaching perceptual learning from

a biological perspective by using a flexible computational substrate, our framework for

perceptual learning for multisensory fusion provides superior learning capabilities, given

noisy sensory contributions, useful in leveraging adaptation capabilities of today’s technical

systems.

Final remarks

Since there is no single ”Cartesian theatre” where all sensory input meets together for

simultaneous processing, human multisensory processing works ”by synchronizing sets of

neural activity in separate brain regions” involving ”time binding of images” occurring in

different places but ”within approximately the same window of time”. This requires ”main-

taining focused activity at different sites for as long as necessary for meaningful combina-

tions to be made and for reasoning and decision making to take place” [Damasio, 2012].

The central focus of the proposed research agenda was to understand multisensory

information processing in neural systems, to develop novel algorithms inspired by brain

functionality, and to transfer these into technical systems. Approaching the problem of de-

signing adaptive and robust multisensory fusion systems inspired by neural systems drove a

translational approach. The crux of this approach focused on understanding the core pro-

cessing principles and computational substrate in order to design artificial self-constructing

systems capable of autonomously associate sensory streams, learn underlying sensory cor-

relations, and subsequently integrate available streams into more precise representations

of the perceived quantities.

The pillars the proposed work is built on follow a reductionist intuition. Advocating

the use of a distributed paradigm, the proposed work proposes a computational framework

employing a network of relatively simple units with limited local processing and storage

capabilities. Given different acquired sensory streams the extracted representation is not

global but rather fragmented among units which mutually interact obeying simple dynam-

ics towards consensus. This stable state ensures that all local representations are consistent

and the global network-wide representation is coherent.

Heterogeneous sensory data carries informative content, hidden in its statistics, which

needs to be extracted in order to improve the outcome of the integration process. Albeit

the inherent difficulty in extracting meaningful information, there is a greater challenge in
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detecting which sensory cues react to the same events in the percept. Following this line, we

propose a mechanism exploiting the underlying informational content in sensory time series

for synthesizing an interacting network of units, given only underlying data regularities

and associations. These associations might not be obvious in real-world scenarios, but

robust extraction of underlying sensory associations drive the autonomous learning and

representation of inter-sensory correlations from incoming sensory streams.

Finally, we showed that our system learns correlations to integrate sensory contribu-

tions for more precise representations and subsequently decoded real-world estimates over

an adaptive sensory association layer. This robust design avoids painstaking parameteri-

zation routines by dynamically adapting to changes in the perceived quantities. Moreover,

this approach provides an integrated perspective over multisensory fusion in real-world sce-

narios making localized intelligence a true computational framework for such dynamical

scenarios.

As outlook, we envision more challenging scenarios to instantiate the framework. A first

direction will be hardware implementations, such that simple operations executed locally

in hardware, allow real-time instantiation for efficient belief propagation. Our approach

provides a technique to represent complex relations between maps as computationally sim-

ple distributed systems. Such maps can represent e.g. sensory readings or desired motor

outputs of robotic systems. In some of our previous instantiations we performed compu-

tation on sequential digital hardware, which often resulted in long settling times of the

network. Here, we are envisioning massively parallel hardware systems to compute equi-

libriums of large scale networks quickly (such as FPGAs) or even instantaneously (analog

hardware systems). This direction might provide new insight in high speed sensorimotor

control problems in robotics.

A second focus will be on mobile multisensory fusion, contributing to the current effort

to achieve contextual awareness in embedded sensor technology. The technology enabling

context awareness in mobile devices includes wireless, ambient intelligence, user interfaces,

powerful search engine capabilities, power management, software, mobile computing, and

myriad perceiving and data-collecting sensors. Added to this list are such human factor

enablers as emotional state, biophysiological condition, goals and social interaction that,

when combined with the technological factors, provide the potential for a meaningful and

individualized experience. Multisensory fusion can enable context awareness, which has

huge potential within the mobile devices community. This direction supports the idea that,

given its learning and adaptation capabilities, our multisensory fusion framework, context

awareness, and mobile computing combined, can support a viable practical approach where

a large number of different and distributed sensors are used to predict a context description

and subsequently guide intelligent environment interaction.
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Birkhäuser Basel, Springer, 2005.

[Novak et al., 2014] D. Novak, R. Riener, A survey of sensor fusion methods in wearable

robotics, Robotics and Autonomous Systems, 2014.

[Ohshiro et al., 2011] T. Ohshiro, D.E. Angleaki, G.C. DeAngelis, A Normalization Model

of Multisensory Integration, Nature Neuroscience 14, pp. 775-782, 2011.

[Olfati-Saber et al., 2011] R. Olfati-Saber, P. Jalalkamali, Collaborative target tracking

using distributed Kalman filtering on mobile sensor networks, Proc. of American Control

Conference (ACC), pp. 1100-1105, 2011.

165



Bibliography

[Oxenham, 2008] M. Oxenham, The effect of finite set representations on the evaluation

of Dempster’s rule of combination, in: Proc. of the Intl. Conf. on Information Fusion,

pp. 1-8, 2008.

[Parise et al., 2012] C. V. Parise, C. Spence, M. O. Ernst, When Correlation Implies Cau-

sation in Multisensory Integration, Current Biology 22, pp. 46-49, 2012.

[Park et al., 2007] S. Park, K. Shin, A. Abraham, S. Han, Optimized Self Organized Sensor

Networks, Sensors, pp. 730-742, 2007.

[Passingham et al., 2002] R. E. Passingham, E. K. Stephan, Rolf Koetter, The anatomical

basis of functional localization in the cortex, Nature Reviews Neuroscience 3, pp. 606-

616, 2002.

[Passino, 2005] K. M. Passino, Biomimicry for Optimization, Control, and Automation,

Springer, 2005.

[Pennisi et al., 2014] A. Pennisi, F. Previtali, F. Ficarola, D.D. Bloisi, L. Iocchi, A. Vi-

taletti, Distributed Sensor Network for Multi-robot Surveillance, Procedia Computer

Science, Volume 32, 2014.

[Pezeshki et al., 2003] A. Pezeshki, M. R. Azimi-Sadjadi, L. L. Scharf, A network for re-

cursive extraction of canonical coordinates, Neural Networks, pp. 801-808, 2003.

[Phillips et al., 1995] S. Phillips, G. S. Halford, W. H. Wilson, The Processing of Associa-

tions versus the Processing of Relations and Symbols: A Systematic Comparison, Proc.

of Seventh Annual Conf. Cog. Sci. Society, 1995.

[Polastre et al., 2004] J. Polastre, J. Hill, D. Culler, Versatile low power media access for

wireless sensor networks, SenSys’04, 2004.

[Pouget et al., 2004] A. Pouget, S. Deneve, J-R. Duhamel, A computational neural theory

of multisensory spatial representations, in C. Spence, J. Driver (Eds.), Crossmodal space

and crossmodal attention, Oxford University Press, New York, pp. 123-140, 2004.

[Pouget et al., 2013] A. Pouget, J. M. Beck, W. J. Ma, P. E. Latham, Probabilistic brains:

knowns and unknowns, Nature Neuroscience 9, pp. 1170-1178, 2013.

[Quiton et al., 2011] J. Quiton, B. Girau, M. Lefort, Competition in high dimensional

spaces using a sparse approximation of neural fields, From Brains to Systems Advances

in Experimental Medicine and Biology Vol. 718, pp. 123-137, 2011.

[Rahnavard et al., 2013] G. Rahnavard, Y. S. Moon, L. McIver, E. F. Franzosa, L. Wal-

dron, C Huttenhower, HAllA: Hierarchical All-against-All for Blocked Variable Selection

and Association Discovery Among Large-Scale Heterogeneous Datasets, 2013.

[Rajesh et al., 2014] M. Rajesh, R. Joseph, T. S. B. Sudarshan, Fully distributed and

decentralized map building for multi-robot exploration, Embedded Systems (ICES),

2014 International Conference on , pp.220-224, 2014.

166



Bibliography

[Rao et al., 1999] R. P. N. Rao, D. H. Ballard, Predictive coding in the visual cortex: a

functional interpretation of some extra-classical receptive-field effects, Nature Neuro-

science 2, pp. 79-87, 1999.

[Reggia et al., 2001] J. A. Reggia, Y. Shkuro, N. Shevtsova, Computational Investigation

of Hemispheric Specialization and Interactions, Emergent Neural Computational Archi-

tectures Based on Neuroscience LNCS 2036, pp. 68-82, 2001.

[Reid, 1979] D. B. Reid, An algorithm for tracking multiple targets, IEEE Transactions

on Automatic Control, vol. 24, no. 6, pp. 843-854, 1979.

[Reilly, 2001] R. G. Reilly, Collaborative Cell Assemblies: Building Blocks of Cortical

Computation, Emergent Neural Computational Architectures Based on Neuroscience

LNCS 2036, pp. 161-173, 2001.

[Reinhardt et al., 2012] M. Reinhardt, B. Noack, U. D. Hanebeck, The Hypothesizing Dis-

tributed Kalman Filter, Proc. of IEEE Conference on Multisensor Fusion and Integration

for Intelligent Systems (MFI), pp. 305-312, 2012.

[Requena-Witzig et al., 2015] S. Requena-Witzig, C. Axenie, Cortically Inspired Quadro-

tor 3D Motion Estimation, TUM Bachelor Thesis Report, 2015.

[Ringach, 2007] D. L. Ringach, On the Origin of the Functional Architecture of the Cortex,

PLoS ONE 2, 2007.

[Rosencrantz et al., 2003] M. Rosencrantz, G. Gordon, S. Thrun, Decentralized Sensor

Fusion With Distributed Particle Filters, Proc. of the Nineteenth Conference on Uncer-

tainty in Artificial Intelligence, 2003.

[Rowland, 2012] B. Rowland, Computational Models of Multisensory Integration, in B.

Stein (Ed.), The New Handbook of Multisensory Processing, MIT Press, Cambridge,

pp. 511-514, 2012.

[Rubinov et al., 2009] M. Rubinov, O. Sporns, C. van Leeuwen, M. Breakspear, Symbiotic

relationship between brain structure and dynamics, BMC Neuroscience, 2009.

[Samoilov et al., 1997] M. Samoilov, Reconstruction and functional analysis of general

chemical reactions and reaction networks, Ph.D. thesis, Stanford University, 1997.

[Samoilov et al., 2001] M. Samoilov, A. Arkin, J. Ross, On the deduction of chemical

reaction pathways from measurements of time series of concentrations, Chaos 11, pp.

108-114, 2001.

[Santos et al., 2015] J. M. Santos, M. S. Couceiro, D. Portugal, R. P. Rocha, A Sensor

Fusion Layer to Cope with Reduced Visibility in SLAM, J. of Intelligent and Robotic

Systems, 2015.

[Saul et al., 2003] L. K. Saul, S. T. Roweis, Think globally, fit locally: unsupervised learn-

ing of low dimensional manifolds, Journal of Machine Learning Research, pp. 119-155,

2003.

167



Bibliography

[Scherba et al., 2005] D. J. Scherba, P. Bajcsy, Depth map calibration by stereo and wire-

less sensor network fusion, Information Fusion, 8th International Conference on, vol.2,

pp.25-28, 2005.

[Schultz et al., 2003] D. Schultz, W. Burgard, D. Fox, A. B. Cremers, People Tracking

with Mobile Robots Using Sample-based Joint Probabilistic Data Association Filters,

Int. J. of Robotics Research, pp. 99-116, 2003.

[Sequeira et al., 2009] J. Sequeira, A. Tsourdos, S. Lazarus. Robust covariance estimation

in sensor data fusion, Proc. of IEEE International Workshop on Safety, Security and

Rescue Robotics (SSRR), 2009.

[Seung et al., 2000] H. S. Seung, D. D. Lee, The Manifold Ways of Perception, Science 22,

pp. 2268-2269, 2000.

[Shastri et al., 1993] L. Shastri, V. Ajjanagadde, From Simple Associations to Systematic

Reasoning: a Connectionist Representation of Rules, Variables and Dynamic Bindings

Using Temporal Synchrony, Behavioral and Brain Sciences 16, pp. 417-494, 1993.

[Sheets-Johnstone, 2010] M. Sheets-Johnstone, Movement: the generative source of spatial

perception and cognition, in F. L. Dolins, R. W. Mitchell (Eds.), Spatial Cognition, Spa-

tial Perception: Mapping the Self and Space, Cambridge University Press, Cambridge,

pp. 323-340, 2010.

[Sherman, 2012] S. Muray Sherman, Thalamocortical Interactions, Current Opinion in

Neurobiology 22, pp. 575-579, 2012.

[Shindler et al., 2011] M. Shindler, A. Wong, A. Meyerson, Fast and accurate K-means for

large datasets, Proc. of the 25th Annual Conference on Neural Information Processing

Systems (NIPS), pp. 2375-2383, 2011.

[Siagian et al., 2014] C. Siagian, C. K. Chang, L. Itti, Autonomous Mobile Robot Local-

ization and Navigation Using a Hierarchical Map Representation Primarily Guided by

Vision, J. Field Robotics, 2014.

[Simlinger et al., 2015] B. Simlinger, S. Trendel, C. Axenie, Sensor fusion on SpiNNaker

(Kalman filters vs. Neurally inspired models), TUM Interdisciplinary Project Report,

2015.

[Singh et al., 2006] A. Singh, R. Novak, P. Rmanathan, Active learning for adaptive mobile

sensing networks, In Proc. of the 5th Intl. Conf. on Information Processing in Sensor

Networks (IPSN’06), 2006.

[Smets, 2007] P. Smets, Analyzing the combination of conflicting belief functions, Infor-

mation Fusion, Volume 8, Issue 4, 2007.

[Soumalya et al., 2014] S. Soumalya, S. Soumik, V. Nurali, R. Asok, Y. Murat, Sensor

fusion for fault detection and classification in distributed physical processes, Frontiers

in Robotics and AI, vol. 1, 2014.

168



Bibliography

[Spence, 2012] C. Spence, Multisensory perception, cognition and behaviour: Evaluating

the factors modulating multisensory integration, The New Handbook of Multisensory

Processing, B. Stein (Ed.), MIT Press, pp. 241-264, 2012.

[Spence et al., 2012] C. Spence, Y. Chen, Intramodal and cross-modal perceptual group-

ing, The New Handbook of Multisensory Processing, B. Stein (Ed.), MIT Press, pp.

265-282, 2012.

[Sporns, 2011] O. Sporns, Networks of the Brain, MIT Press, Cambridge, MA, 2011.

[Stein et al., 2004] B. E. Stein, T. R. Stanford, M. T. Wallace, J. W. Vaughan, W. Jiang,

Crossmodal Spatial Interactions in Subcortical and Cortical Circuits, in C. Spence, J.

Driver (Eds.), Crossmodal space and crossmodal attention, Oxford University Press,

New York, pp. 25-50, 2004.

[Steuer et al., 1995] R. Steuer, J. Kurths, C. Daub, J. Weise, J. Selbig, The mutual in-

formation: detecting and evaluating dependencies between variables, Bioinformatics 18,

pp. 231-240, 2002.

[Stone et al., 1995] J. Stone, A Bray, A Learning Rule for Extracting Spatio-Temporal

Invariances, Network: Computation in Neural Systems, 1995.

[Swindale, 2005] N. V. Swindale, How different Feature Spaces may be Represented in

Cortical Maps, Network: Computation in Neural Systems 5, pp. 217-242, 2005.

[Taylor et al., 2010] G W. Taylor, R. Fergus, Y. LeCun, C. Bregler, Convolutional Learn-

ing of Spatio-temporal Features, Proc. of Computer Vision Conference ECCV, pp. 140-

153, 2010.

[Tchango et al., 2014] A.F. Tchango, V. Thomas, O. Buffet,A. Dutech, F. Flacher, Track-

ing multiple interacting targets using a joint probabilistic Data Association filter, Proc.

of 17th International Conference on Information Fusion (FUSION), pp. 1-8, 2014.

[Thomas et al., 2004] P. J. Thomas, J. D. Cowan, Symmetry Induced Coupling of Cortical

Feature Maps, Physical Reviews Letters 92, 2004.

[Thomas et al., 2007] U. Thomas, S. Molkenstruck, R. Iser, F. M. Wahl, Multi Sensor

Fusion in Robot Assembly Using Particle Filters, Proc. of IEEE International Conference

on Robotics and Automation, pp. 3837-3843, 2007.

[Thrun et al., 2005] S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics, MIT Press,

Cambridge, MA, 2005.

[Tonia et al., 2001] I. Tonia, N. Ramnania, O Josephsa, J Ashburnera, R. E. Passingham,

Learning Arbitrary Visuomotor Associations: Temporal Dynamic of Brain Activity,

NeuroImage, pp. 1048-1057, 2001.

[Tsokas et al., 2012] N. A. Tsokas, K. J. Kyriakopoulos, Multi-robot multiple hypothesis

tracking for pedestrian tracking, Autonomous Robots, Volume 32, pp 63-79, 2012.

169



Bibliography

[Uhlmann, 2003] J. Uhlmann, Covariance consistency methods for fault-tolerant dis-

tributed data fusion, Information Fusion 4, pp. 201-215, 2003.

[Vaccarella et al., 2013] A. Vaccarella, E. De Momi, A. Enquobahrie, G. Ferrigno, Un-

scented Kalman Filter Based Sensor Fusion for Robust Optical and Electromagnetic

Tracking in Surgical Navigation, IEEE Transactions on Instrumentation and Measure-

ment 62, pp. 2067-2081, 2013.

[van Atteveldt et al., 2014] N. van Atteveldt, M. M. Murray, G. Thut, C. E. Schroeder,

Multisensory integration: flexible use of general operations, Neuron 19, pp. 1240-1253,

2014.

[van Ooyen et al., 2003] A. van Ooyen, J. van Pelt, M. A. Corner, S. B. Kater, Activity-

dependent neurite outgrowth: Implications for network development and neuronal mor-

phology, in Modeling Neural Development, Arjen van Ooyen (Ed.), pp. 111-132, 2003.

[Vermaak et al., 2005] J. Vermaak, S. J. Godsill, P. Perez, Monte Carlo Filtering for Multi-

Target Tracking and Data Association, IEEE Transactions on Aerospace and Electronic

Systems, pp. 309-332, 2005.

[Villaverde et al., 2014] A. F. Villaverde, J. Ross, F. Moran, J. R. Banga, MIDER: Net-

work Inference with Mutual Information Distance and Entropy Reduction, PLoS One

9(5), 2014.

[von der Malsburg, 1999] C. von der Malsburg, The What and Why of Binding: The Mod-

eler’s Perspective, Neuron 24, pp. 95-104, 1999.

[Wan et al., 2000] W. Wan, D. Fraser, A Multiple Self-Organizing Map Scheme for Remote

Sensing Classification, Lecture Notes in Computer Science: Multiple Classifier Systems,

pp. 300-309, 2000.

[Wang et al., 2014] Z. Wang, Z. Dai, G. Gong, C. Zhou, Y. He, Understanding Structural-

Functional Relationships in the Human Brain: A Large-Scale Network Perspective, Neu-

roscientist, 2014.

[Warren, 1990] T. Warren, Preliminary questions for the study of egomotion, in R. Warren,

A. H. Wertheim (Eds.), Perception & Control of Self-motion, Hillsdale, pp. 3-33, 1990.

[Weber et al., 2007] C. Weber, S. Wermter, A self-organizing map of sigma-pi units, Neu-

rocomputing, pp. 2552-2560, 2007.

[Weikersdorfer et al., 2012] D. Weikersdorfer, J. Conradt, Event-based Particle Filtering

for Robot Self-Localization, Proc. of the IEEE International Conference on Robotics

and Biomimetics (IEEE-ROBIO), pp. 866-870, 2012.

[Weiss et al., 2001] Y. Weiss, W. T. Freeman, On the optimality of solutions of the max-

product belief-propagation algorithm in arbitrary graphs, IEEE Transactions on Infor-

mation Theory, vol. 47, pp. 736-744, 2001.

170



Bibliography

[Wertheim, 1990] A. W. Wertheim, Visual, vestibular, and oculomotor interactions in the

perception of object motion during egomotion, in R. Warren, A. H. Wertheim (Eds.),

Perception & Control of Self-motion, Hillsdale, pp. 171-210, 1990.

[Westermann et al., 2007] G. Westermann, D. Mareschal, M. H. Johnson, S. Sirois, M. W.

Spratling, M. S. Thomas, Neuroconstructivism, Dev. Sci. 10, pp. 75-83, 2007.

[White, 1991] F.E. White, Data Fusion Lexicon. Technical Panel For C3, San Diego, USA,

Code 420, 1991.

[Wiener et al., 2011] J. M. Wiener, A. Berthoz, T. Wolbers, Dissociable cognitive mecha-

nisms underlying human path integration, J. Exp. Brain Research 208, pp. 61-71, 2011.

[Wilson et al., 2009] R. Wilson, L. Finkel, A Neural Implementation of the Kalman Filter,

Advances in Neural Information Processing Systems 22, pp. 2062-2070, 2009.

[Wiskott et al., 2002] L. Wiskott, T. J. Sejnowski, Slow Feature Analysis: Unsupervised

Learning of Invariances, Neural Computation 14, pp. 715-770, 2002.

[Yangming et al., 2014] L. Yangming, L. Shuai, S. Quanjun, L. Hai, M.Q.-H. Meng, Fast

and Robust Data Association Using Posterior Based Approximate Joint Compatibility

Test, IEEE Transactions on Industrial Informatics, pp. 331-339, 2014.

[Zhang, 2001] J. Zhang, Dynamics and Formation of Self-Organizing Maps, in K. Ober-

mayer, T. J. Sejnowski (Eds.), Self-Organizing Map Formation, Foundations of Neural

Computation, MIT Press, Massachusetts, pp. 55-68, 2001.

[Zhang et al., 2008] T. Zhang et al., An FPGA implementation of insect-inspired motion

detector for high-speed vision systems, Proc. of Intl. Conf. on Robotics and Automation,

pp. 335-340, 2008.

[Zhou et al., 2014] G. Zhou, A. Liu, K. Yang, T. Wang, Z. Li, An Embedded Solution

to Visual Mapping for Consumer Drones, Computer Vision and Pattern Recognition

Workshops (CVPRW), 2014 IEEE Conference on, pp.670-675, 2014.

[Zhu et al., 2006] H. Zhu, O. Basir, A novel fuzzy evidential reasoning paradigm for data

fusion with applications in image processing, J. of Soft Computing 10, pp. 1169-1180,

2006.

[Zulkifley et al., 2012] M. A. Zulkifley, B. Moran, Robust hierarchical multiple hypothesis

tracker for multiple-object tracking, Expert Systems with Applications, Volume 39, Issue

16, pp. 12319-12331, 2012.

171


