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5.4.5 Ã2E ′ band of the photoelectron spectrum . . . . . . . . 62
5.4.6 Electronic population dynamics . . . . . . . . . . . . . 66

6 Application to NH+

3 73
6.1 Ab initio electronic-structure calculations . . . . . . . . . . . . 74
6.2 A six-dimensional three-sheeted potential-energy surface of NH+

3 75
6.2.1 Hierarchical expansion of the PE surface . . . . . . . . 75
6.2.2 Fitted potential-energy surface . . . . . . . . . . . . . . 76

6.3 Simulation of the photoelectron spectrum and the ultrafast
radiationless decay dynamics of NH+

3 . . . . . . . . . . . . . . 82
6.3.1 Nuclear kinetic-energy operator . . . . . . . . . . . . . 82
6.3.2 Preparation of the initial wave packet . . . . . . . . . . 82
6.3.3 X̃2A′′

2 photoelectron band of NH3 . . . . . . . . . . . . 83
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Chapter 1

Introduction

The Jahn-Teller (JT) effect, since its emergence in 1937 [1], has remained a
key concept in explaining structural instabilities in molecules, complexes and
crystals. The JT theorem in its original form, as described by H. A. Jahn
and E. Teller [1, 2], reads

“A configuration of a polyatomic molecule for an electronic state having

orbital degeneracy cannot be stable with respect to all displacements of the

nuclei unless in the original configuration the nuclei all lie on a straight

line.”

One exception to the above is the so-called Kramers degeneracy [3] which
cannot be broken by any nuclear displacement since it is enforced by the
time-reversal invariance of the Hamiltonian. The original proof of the JT
theorem is based on the concepts of perturbation theory and group theoretical
symmetry-selection rules. JT effect typically involves strongly interacting
electronic states and the Born-Oppenheimer (BO) approximation [4] loses
its validity. Different JT coupling mechanisms are often explained in the
light of the theory of vibronic coupling and are considered as a special case
of the latter.

The so-called conical intersections (CI) [5, 6] are a central concept of
vibronic coupling theory which have been employed frequently to explain
the ultrafast dynamical processes in photophysics and photochemistry. While
the existence of a CI is not, in general, restricted by the fulfilment of any a

priori symmetry-selection rule, the JT-intersections constitute a special class
of CIs where the intersections are symmetry-required and the relative sizes
and signs of the JT-coupling constants are determined by symmetry as well.

The idea of the JT effect has also been extended to the more general
concept of the so-called pseudo-JT (PJT) effect [7, 8], defined as the inter-
action of a degenerate electronic state with another energetically close (non-
degenerate or degenerate) electronic state through a non-totally symmetric
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1. Introduction

vibrational mode, which essentially includes a vast majority of vibronic cou-
pling problems [9] and can explain many chemical phenomena arising from
the structural instabilities of high-symmetry molecular configurations.

Despite the venerable history of almost 80 years, the JT effect is still
an active field of research in chemistry and physics [1, 10–17]. Remarkable
developments have been made [18, 19] and are applied successfully to the
fields of spectroscopy, stereochemistry and structural phase transitions. Once
major inspiration from the JT effect was the discovery of high temperature
superconductivity [20], which is recognised by the Nobel Prize in Physics in
1987. Among many other important applications, the JT effect has been
found to be instrumental in explaining the properties of fullerenes and the
colossal magnetoresistance [21] is also explained in the light of it.

The simplest and the most well-studied JT problem is the so-called E×e
JT effect [9, 18], where the two-fold electronic degeneracy is lifted in first
order in displacements along vibrational modes of e symmetry. Tradition-
ally, the Hamiltonian represented in a two-dimensional diabatic electronic
basis has been expanded in a Taylor series up to quadratic terms in the vi-
brational normal modes and has been applied successfully to a number of
systems to analyze their spectroscopic properties. However, with the signifi-
cant advancement of ab initio electronic structure methods, the insufficiency
of the standard model has gradually been realized. Viel and Eisfeld were the
first to treat the E × e JT [22] and the (E + A) × e PJT coupling [23] in
trigonal systems systematically up to 6th order. However, their procedure,
being tedious, becomes essentially impractical for applications in larger point
groups. To overcome this difficulty, Opalka and Domcke have applied invari-
ant theory of homogeneous polynomials to construct high-order expansions
of the T2 × t2 and T2 × e JT Hamiltonians in tetrahedral systems [24, 25].

The E × e JT Hamiltonian has been revisited in the present work to
obtain a high-order expansion scheme by employing the invariant theory of
homogeneous polynomials [26]. The (E +A)× (e+ a) JT/PJT Hamiltonian
in trigonal symmetry serves as a generic JT/PJT problem. Appreciating the
fact that the (E + A) × (e + a) JT/PJT problem in D3h can be considered
as a low symmetry analog of the T2 × t2 problem in Td, an arbitrarily high-
order expansion has been obtained for the former in the present work [27].
These developed JT/PJT Hamiltonians are then applied to a series of radical
cations to construct highly accurate PE surfaces and the effects of the high-
order coupling terms have been assessed in the simulated vibronic spectra
[28].

As a result of many investigations in the past two to three decades, the
concept of CIs has now become a natural language for the description of the
non-adiabatic dynamics in the excited molecular electronic states [5, 6]. They
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are often found indispensable for the microscopic explanation of, for example,
internal conversion, photostability, photoisomerization and photodissociation
processes. Quenching of fluorescence from the excited state is explained,
in many cases, by the existence of an ultrafast internal conversion process
through an energetically accessible CI. This non-radiative decay of the excited
state, typically occurring in a femtosecond timescale, is much faster than the
radiative process (fluorescence) and the quantum yield of the latter often
drops below the detection threshold (≈ 10−4).

The earliest study of the dynamics at CIs goes back to 1932, where the
Landau-Zener-Stückelberg approach [29–31] provided a recipe to understand
the one-dimensional avoided crossing situations. However, its extension to
multi-dimensional cases was not straightforward. Full-dimension quantum
dynamical studies reach a bottleneck quite quickly with increasing system
size. Fortunately, from several decades of research, it has been understood
that in most cases a reduction in the dimensionality, consisting of a few
strongly coupled vibrational modes, is sufficient in explaining an efficient ul-
trafast electronic-population transfer through CIs [9, 32]. However, as an
artifact of reduced dimensional calculations, the system is left with a large
excess vibrational energy at the end of the initial fast dynamics, which can
only be dissipated if there exists a coupling mechanism between the active
and the less-active modes (or with an environment). The system-bath formu-
lation employing the reduced density matrix formalism has been used very
successfully to incorporate the effect of a dissipative environment on the dy-
namics through CIs, especially when the system-bath interaction time is con-
siderably larger than the fast internal conversion dynamics [33, 34]. Another
possibility is the employment of numerical techniques specially designed for
the solution of the TDSE for the high-dimensional quantum systems. The
multiconfiguration time dependent Hartree (MCTDH) method is a major
breakthrough in this area [35, 36].

The exploitation of the high symmetry often simplifies the understand-
ing of the complex excited-state dynamics of JT-active systems. This does
not always apply to larger bio-organic chromophores typically having lower
symmetry. Therefore, small representative JT systems, with rich dynamic
properties, serve as ideal test-beds for different dynamical approximations
and may help achieve a better microscopic understanding of the ultrafast
vibronic dynamics in general. Several studies on the JT-induced excited-
state dynamics have frequently demonstrated ultrafast deactivations typi-
cally falling in the fs timescale. To mention a few examples, Mahapatra and
co-workers have thoroughly studied the dynamics of the cyclopropane radical
cation in its excited electronic states and an internal conversion rate of ≈ 10
fs has been reported [37]. The complex multi-state multi-mode dynamics of
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1. Introduction

benzene radical cation and its mono and poly-fluorinated derivatives have
been investigated by Köppel and co-workers employing the MCTDH method
[38]. Along with accurately simulating the photoelectron spectra and mass
analyzed threshold ionization (MATI) spectra, they have also calculated the
electronic population dynamics of the ground and excited states and it has
been shown that different non-radiative transitions occur, ranging from 20 fs
to 200 fs [39]. Another particularly interesting and well-studied example is
the H3 system, where the electronic population of the JT-split upper com-
ponent of the X̃E ′ state decays to the lower one within the extremely short
timescale of only ≈ 3 − 6 fs, which is possibly the fastest known internal
conversion process [40]. Quantum dynamical calculations performed in the
present work demonstrate that the seam of JT/PJT-induced CIs induce a
series of truly ultrafast electronic transitions from the excited states to the
ground state in the NH+

3 and PH+
3 cations, which occur within the range of

5-20 fs [41, 42].
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Chapter 2

Theoretical background

2.1 Born-Oppenheimer approximation and adi-

abatic and diabatic representations

The Born-Oppenheimer (BO) approximation [4, 43], since its advent in 1927,
has played the central role in molecular physics and chemistry. Its elegance
lies in the fact that it allows an approximate separation of the nuclear and
electronic motions in molecular systems. The validity of this idea arises
from the large difference between the mass of a typical nucleus and that
of an electron. The BO picture is in general accurate, especially when the
molecule moves on a single energetically isolated potential-energy (PE) sur-
face, where the faster electrons can instantaneously follow any change in the
configuration of the slower nuclei. There exist mainly three variations of the
approximation in the literature which are slightly different from one another.
Following the nomenclature of Ballhausen and Hansen [44, 45], we call them
(1) Born-Oppenheimer adiabatic approximation, (2) Born-Huang adiabatic

approximation and (3) crude adiabatic approximation.
The molecular Schrödinger equation reads

HΨ(r,R) = EΨ(r,R) (2.1)

where Ψ(r,R) and E are the eigenfunctions and the eigenvalues, respectively,
of the molecular HamiltonianH which is written (at the non-relativistic level)
as

H = Tn + Te + U(r,R)

= Tn +He

(2.2)

where Tn and Te are the kinetic energy operators of the nuclei and the elec-
trons, respectively. U(r,R) is the combined PE of all the electrons and the
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2. Theoretical background

nuclei. The vectors R and r represent, respectively, the set of electronic and
the nuclear coordinates. He is the electronic Hamiltonian which describes the
motion of electrons in a molecule with fixed nuclei. The eigenvalues Vi(R)
and the eigenfunctions Φi(r,R) of He depend parametrically on R which
satisfy the electronic Schrödinger equation

HeΦi(r,R) = Vi(R)Φi(r,R). (2.3)

The set {Φi(r,R)} forms a complete basis in the electronic Hilbert space for
any value of R, i. e.,

∑

i

|Φi(r,R)〉〈Φi(r,R)| = 1 (2.4)

where 1 is the identity operator. The completeness of the electronic basis
enables one to expand the total molecular wavefunction Ψ(r,R) in terms of
the electronic eigenfuntions as

Ψ(r,R) =
∑

i

Φi(r,R)χi(R). (2.5)

Eq. (2.5) is known as the Born-Oppenheimer expansion [43].
Inserting ansatz (2.5) into Eq. (2.1), multiplying from the left by Φ∗

j(r,R)
and integrating over r one obtains the coupled equations for the expansion
coefficients χi(R)

[Tn + Vj(R)− E]χj(R) =
∑

i

Λjiχi(R) (2.6)

where the so-called non-adiabatic couplings (NAC) Λji are given by

Λji = δjiTn −
∫

drΦ∗
j(r,R)TnΦi(r,R). (2.7)

If the nuclear kinetic-energy operator is taken to be of the general form
[46]

Tn = −
M
∑

m,n=1

∂

∂Rm

αmn(R)
∂

∂Rn

, (2.8)

each of the NAC decomposes into a differential operator and a c-number in
R space

Λji = Fji ·∇+Gji (2.9)
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2.1. Born-Oppenheimer approximation

The elements of the derivative coupling vector are given by

F
(m)
ji (R) = 2

M
∑

n=1

∫

drΦ∗
j(r,R)αmn

∂

∂Rn

Φi(r,R) (2.10)

and the scalar couplings take the form

Gji(R) =

∫

drΦ∗
j(r,R)(TnΦi(r,R)). (2.11)

Neglecting all the elements of the non-adiabatic coupling matrix Λ, one
obtains the well-known Born-Oppenheimer adiabatic approximation. Under
this approximation, it is possible to separate electronic and nuclear coordi-
nates completely and the total wavefunction can be expressed as a product
of the nuclear and the electronic wavefunctions

Ψ(r,R) = χi(R)Φi(r). (2.12)

A similar but slightly improved representation is obtained by retaining only
the diagonal terms of Λ, where the electronic wavefunctions remain un-
changed but PE surfaces are slightly refined in energy by the additional
Gii(R) term. Notice here that by virtue of being an anti-hermitian matrix
(F † = −F ), the diagonal elements of F are all zero if the electronic wave-
functions are assumed to be real. This is known as Born-Huang adiabatic

approximation.
The third alternative approximation is obtained by solving the electronic

Schrödinger equation for nuclei fixed at some suitably chosen reference con-
figuration (R0)

H0
eΦ

0
i (r,R0) = V 0

i (R0)Φ
0
i (r,R0). (2.13)

where

H0
e = He −∆U(r,R). (2.14)

The molecular wavefunction, when expressed in terms of {Φ0
i (r,R0)}, takes

the form

Ψ(r,R) =
∑

i

Φ0
i (r,R0)χ

0
i (R) (2.15)

where the expansion coefficients, χ0
i (R), are of course different than those in

Eq. (2.5). The coupled equations for χ0
i (R) reads

[Tn + V 0
j (R0) + ∆Ujj(R)− E]χ0

j(R) +
∑

i 6=j

∆Uji(R)χ0
i (R) = 0 (2.16)
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2. Theoretical background

where

∆Uji(R) = 〈Φ0
j(r,R0)|∆U(r,R)|Φ0

i (r,R0)〉. (2.17)

As long as {Φ0
i (r,R0)} is a complete set in electronic space, Eq. (2.16) is

totally equivalent to ansatz (2.5). However, if we assume that the off-diagonal
elements, ∆Uji(j 6= i) are negligible, then the total wavefunction becomes

Ψ(r,R) = Φ0
i (r,R0)χ

0
i (R) (2.18)

and the corresponding potential-energy surface is given by

V ′
i (R) = V 0

i (R0) + ∆Uii(R) (2.19)

This approximation is known as crude adiabatic approximation. The crude
adiabatic approximation is connected to the Born-Oppenheimer adiabatic
approximation through the Herzberg-Teller expansion [47] which incorpo-
rates theR-dependence of the electronic wavefunction through a perturbative
treatment of ∆U . Despite its limitations, the crude adiabatic approximation

is historically important for being employed to interpret various phenomena,
including intensity borrowing [48], Jahn-Teller effect [49], vibronic coupling
[45] and resonance Raman spectra [50].

While the above approximations are proved to be good in many cases,
there exist ample situations, which have become standard examples in the
past two to three decades, where the adiabatic approximations cannot give
the correct picture [5, 9, 32]. The situation can be explained by considering
the off-diagonal elements of the derivative coupling matrix which can be
expressed (after some straightforward algebra) as an off-diagonal analogue

of the Hellmann-Feynman theorem:

Fji(R) =
〈Φj(r,R)|∇He|Φi(r,R)〉

Vi(R)− Vj(R)
. (2.20)

Eq. (2.20) clearly shows that when the denominator becomes smaller than
a vibrational quantum, the non-adiabatic couplings (Λji) no longer remain
negligible and play a significant role in Eq. (2.6). Of special interest are the
situations where two PE surfaces become exactly degenerate, the so-called
conical intersections, where the right hand side of Eq. (2.20) becomes a sin-
gular function of nuclear coordinates and the adiabatic approximation breaks
down completely [9]. At CIs, the adiabatic electronic wavefunctions become
discontinuous, making it very cumbersome to study the quantum dynamics
of the nuclei in the adiabatic representation. However, for practical purposes,
one usually deals with a rather small subset of electronic states which are
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2.1. Born-Oppenheimer approximation

vibronically coupled strongly to each other when the members of the comple-
mentary set of electronic states is energetically sufficiently apart. Within this
manifold of interacting electronic states there is always a freedom of choice
for the electronic basis. A unitary transformation, applied simultaneously to
the adiabatic electronic basis and the nuclear basis vectors, which leaves the
total wavefunction invariant

Ψ = χ†Φ = χ†U †UΦ = (Uχ)†(UΦ) = χ̃†Φ̃ (2.21)

can provide the so-called diabatic basis which are weakly dependent functions
of the nuclear coordinates and in which the derivative coupling (ideally) van-
ishes [51–54]. In the diabatic basis, the derivative coupling matrix undergoes
a transformation known as local gauge transformation [55]

F̃ = U †FU +U †(∇U ). (2.22)

If we restrict ourselves to a two-state problem, the coordinate-dependent
adiabatic-to-diabatic transformation matrix can be written as

U (R) =

(

cosα(R) sinα(R)
− sinα(R) cosα(R)

)

. (2.23)

Using this definition of U (R), it is easy to show that the single non-zero
element of the F matrix (F12 = −F21) is represented in the diabatic basis as

F̃12 = ∇α(R) + F12 (2.24)

The vanishing of the derivative couplings in the diabatic representation leads
to the equation

∇α(R) = −F12. (2.25)

In order to achieve a well-defined solution of the above equation, one must
fulfill the curl condition

∇× F12 = 0. (2.26)

As has been pointed out by Mead and Truhlar, apart from the trivial case of
diatomics, there is no solution to the above equation in general for polyatomic
molecules [56].

However, a number of schemes has been constructed with an aim to min-
imize the derivative couplings which gives rise to the so-called quasidiabatic

states. A criterion for quasidiabaticity, as has been proposed by Cederbaum
and co-workers [55], is given by

∇ · F̃12 = 0. (2.27)
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2. Theoretical background

In an optimally diabatic basis, the nuclear kinetic energy is (nearly) diagonal
and the PE matrix has off-diagonal coupling terms

Ṽ = U †V U (2.28)

which in the case of two electronic states takes the form

Ṽ =
V1 + V2

2
1+

V1 − V2
2

(

cos(2α) sin(2α)
sin(2α) − cos(2α)

)

. (2.29)

2.2 Jahn-Teller and pseudo-Jahn-Teller effects:

conventional approach

The JT theorem states that a non-linear molecule in a symmetry-induced
orbitally degenerate electronic state is unstable with respect to spontaneous
distortions along certain non-totally symmetric vibrational modes, Kramers
degeneracy being an exception [1, 2]. While it may be considered a special
case of general vibronic coupling theory, the JT effect was discovered long
before the development of vibronic coupling theory and actually many as-
pects of vibronic coupling had already been introduced by JT theory [9].
The conventional formulation of the various JT Hamiltonians relies on the
availability of a (sufficiently) diabatic electronic basis and can be split into
the following steps

1. Representation of the Hamiltonian operator in the diabatic electronic
basis.

2. Expansion of the PE operator in a Taylor series at the reference geom-
etry of high symmetry.

3. Use of symmetry selection rules to determine the non-vanishing matrix
elements.

Following the above recipe, the JT Hamiltonian matrix elements take the
general form

Hαβ = H0δαβ +
∑

i

(

∂Vαβ
∂Qi

)

0

Qi +
∑

i,j

(

∂2Vαβ
∂Qi∂Qj

)

0

QiQj + · · · (2.30)

where

Vαβ = 〈Φ̃α|V |Φ̃β〉 (2.31)

12



2.2. Jahn-Teller and pseudo-Jahn-Teller effects

are the matrix elements of the PE operator in the diabatic electronic basis,
Qi(i = 1, . . . , n) are the normal modes of vibration and H0 is the zero-
order term of the Taylor series and often approximated by an n-dimensional
isotropic harmonic oscillator. In the standard model of JT theory the Taylor
expansion is truncated, in most of the cases, after the linear or the quadratic
terms [17–19].

While the above prescription is essentially identical to the construction
of vibronic coupling Hamiltonians in its general form, the relative sizes and
signs of the JT coupling constants are strictly determined by symmetry.
The proof of the JT theorem rests on group theory. The symmetries of
the JT-active vibrational modes are determined by the requirement that the
irreducible representation of the vibrational mode (Γvib) must be included in
the symmetrized direct product of the irreducible representation (Γel) of the
degenerate electronic manifold

[Γel]
2 ⊃ Γvib. (2.32)

The so-called E × e JT effect is the most well-studied JT problem in
the literature [9, 10, 18]. This JT model demonstrates that the two-fold
electronic degeneracy (E) is lifted in first order in displacements along the
vibrational modes of e symmetry if the molecule contains at least one three-
fold principal axis of rotation. The E × e JT Hamiltonian in the liner-
plus-quadratic approximation may conveniently be expressed in the complex
electronic basis and complex vibrational coordinates as

H = [− ~ω

2ρ2

(

ρ
∂

∂ρ
ρ
∂

∂ρ
+

∂2

∂ϕ2

)

+
1

2
~ωρ2]1+ [κρeiϕ − 1

2
gρ2e−2iϕ]σx (2.33)

where 1 is the two-dimensional identity matrix and σx is one of the Pauli
matrices. The new complex bases of the electronic states and the vibrational
modes are related to the old ones as

|Φ̃±〉 =
1√
2

(

|Φ̃x〉 ± i|Φ̃y〉
)

Q± = Qx ± iQy = ρe±iϕ.

(2.34)

Diagonalization of the PE part gives the adiabatic PE surfaces. For vanishing
quadratic coupling (g = 0), this yields

V± =
1

2
~ωρ2 ± κρ. (2.35)

The shape of V± as functions of the nuclear coordinates Q± is often referred
to as mexican hat, see Fig. 2.1. The azimuthal symmetry of the adiabatic
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2. Theoretical background

V

Qx

Qy

Figure 2.1: TheMexican hat shape of the E×e JT PE surfaces which includes
only linear JT coupling terms: a perspective drawing.

potentials reflects the existence of an additional constant of motion, the so-
called vibronic angular momentum

J = ~

(−1
2
+ 1

i
∂
∂ϕ

0

0 1
2
+ 1

i
∂
∂ϕ

)

(2.36)

which commutes with the linear E × e JT Hamiltonian. However, the rota-
tional symmetry is broken upon addition of the quadratic JT coupling terms
and the lower sheet of the adiabatic PE surface exhibits three equivalent
minima separated by three equivalent saddle points which reflects the three-
fold rotational symmetry of the system. The vibronic angular momentum
quantum number is no longer a good quantum number.

For real molecular systems, there are often other electronic states suffi-
ciently close in energy to the E state which can vibronically interact with the
latter, leading to the so-called pseudo-Jahn-Teller effect [9, 18]. For exam-
ple, in trigonal systems, a close lying non-degereate A state can couple to an
E state through the same JT-active e vibrational mode, giving the so-called
(A+E)×e PJT effect, which is the simplest of its kind. In a similar notation
as above, the linear (A+ E)× e PJT coupling Hamiltonian, which includes
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2.3. Theory of invariant polynomials

the JT interaction within the E state as a part of it, is given by

H = H01+





EA λQx λQy

λQx EE + κQx κQy

λQy κQy EE − κQx



 , (2.37)

where λ is the linear PJT coupling constant, EA and EE are the energies
of the A and the E states at the reference geometry, respectively and 1 is
the 3-dimensional unit matrix. For the limiting case of vanishing linear JT
coupling (κ = 0), the PE surfaces exhibit rotational symmetry and two of
three eigenvectors of the Hamiltonian exhibit a glancing intersection where
the degeneracy is lifted in second order. However, for κ 6= 0, the linear
JT+PJT model shares many features with the quadratic E × e JT model.
In presence of both types of interaction, the cylindrical symmetry of the PE
surface is replaced by a three-fold rotational symmetry and in addition to the
JT CI, three additional CIs occur within the electronic manifold, which has
also been observed in pure E× e JT problems for sufficiently large quadratic
JT coupling constant. While the low-energy vibronic dynamics does not show
geometric phase effects (unlike JT situation) in pure PJT case, the situation
becomes complicated if both types of couplings are important and the final
outcome depends on the competition between them. Finally, the existence
of a totally symmetric mode, which modulates the E − A energy gap, may
lead to a triple CI at the reference geometry [17].

2.3 Theory of invariant polynomials and Jahn-

Teller potential-energy surfaces

The exploitation of symmetry in quantum mechanics is carried out with the
help of the powerful tools of group theory [57]. The symmetry of molecules
and clusters has been classified by the 32 different molecular point groups.
However, there exist instances where multiple molecular point groups are
isomorphic to one more general abstract algebraic group. This isomorphism
indicates the existence of redundancies in the construction of molecular point
groups. Ascher and Gay have pointed out that there exist only 17 different
molecular point groups and the number of different matrix groups of the irre-
ducible representations can be further reduced to only 14 [58, 59]. Naturally,
the exploitation of the algebraic properties of the abstract groups underlying
the regular molecular point symmetry groups facilitates the construction of
symmetry-adapted molecular PE surfaces.

The established description of the JT effect relies on the symmetry of
the irreducible representations of the molecular point group defined at the
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configuration of highest symmetry. It will be shown below that in many
cases of interest the irreducible representations of the molecular point groups
(matrix groups) are isomorphic to those of the permutation symmetry groups.
Therefore, the methods of invariant algebra can be employed for the efficient
derivation of JT Hamiltonians.

The potential-energy (PE) surfaces of polyatomic molecules containing
N identical nuclei are subject to permutational invariance of like nuclei. The
permutations of the identical nuclei in a molecule form a group, the so-
called Complete Nuclear Permutation (CNP) group which is nothing but the
symmetry group of N identical nuclei (SN) [60]. Being a proper subgroup of
the full symmetry group of the molecular system, the elements of the CNP
group commute with the Hamiltonian. In case of several sets of identical
nuclei in the same molecule, the CNP group of the molecule is given by the
direct product of the symmetry groups of the different smaller sets

SN = SN1
× SN2

× SN3
× · · · (2.38)

Sometimes, it becomes necessary to include another group of order 2, known
commonly as the inversion group, to the above construction and the resulting
symmetry group is then called the Complete Nuclear Permutation Inversion

(CNPI) group of the molecule [60]. The molecular point group, on the other
hand, is defined (locally) if a well-defined equilibrium geometry exists in a
certain region of the PE surface. In recent years, the exploitation of per-
mutation symmetry has been of increasing interest in the construction of
analytic representations of global PE surfaces. Polynomials, invariant in the
CNP group, have been employed to form a set of invariant functions which
provide an approximation space for analytic PE surfaces.

To proceed further we need to define a linear representation (Γ) of a finite
abstract group (G) on an n-dimensional vector space (V ) over the field of
real numbers, which can be expressed mathematically as Γ : G→ GL(n,R).
We are interested in the set of homogeneous polynomials which are invariant
under the action of the group G. All such polynomials form the ring of
invariants and is denoted as R[V ]G. The invariance of a polynomial p(v)
under G is defined as

σ ◦ p(v) = p(σ−1v) = p(v) (2.39)

where σ represents the matrices (in the representation Γ) corresponding to
the elements of the group G and v is an element of the underlying vector
space V . From Eq. (2.39), it is clear that the evaluation of the group action
on the polynomials requires the matrix representations of the elements of
the group. The generating set of polynomials invariant under the action of a

16



2.3. Theory of invariant polynomials

finite linear groupG can be efficiently calculated by the successive application
of the Reynolds operator [61] (which is a G-invariant projection) to all terms
of a general polynomial expansion

R(p) =
1

|G|
∑

σ∈G
σ ◦ p, (2.40)

where |G| represents the order of the group G. It is interesting to note that
the Reynolds operator is essentially the well-known projection operator in
molecular group theory [57]. It should be emphasized that, inspite of its
simplicity, the application of the Reynolds operator is limited to groups of
low orders. The computational cost for the symmetric group SN scales with
the factorial of the identical nuclei (N) and the number of monomials that
have to be included for an expansion of degree d in n coordinates is given by

(

d+ n

d

)

=
1

d!
(n+ 1)d−1 (2.41)

which also indicates an exponential scaling with respect to the degree of
expansion.

Hilbert has given the proof that the ring of invariant polynomials R[V ]G

under the group G is finitely generated by the generating set of homogeneous
invariant polynomials (p1, · · · , pr ) which is a subset of R[V ]G (Hilbert’s finite-
ness theorem) [62], i. e.,

R[V ]G = R[p1, · · · , pr]. (2.42)

The generating set of polynomials refer to a set polynomials that generates
all the other members of the invariant ring. Another important theorem of
classical invariant theory states that the generating set of invariants has an a

priori upper bound of their degree which is given by the order of the group,
|G| (Noether degree bound) [63]. However, for many of the groups, which are
relevant in Physics and Chemistry, the degree-bound is considerably lower
than |G|. There exist several computer algebra systems which are special-
ized for the computation of the generating set of invariants. The Singular

software-suite have been employed throughout this work [64, 65].
The linearly independent elements of K[p1, · · · , pr] form a vector space

and the adiabatic PE surface can be approximated by restricting the expan-
sion up to a certain order [66]. In the case of a single PE surface, defined
by 〈Φ|Hel|Φ〉, where |Φ〉 is an adiabatic electronic state, the Hamiltonian
Hel is a totally symmetric function of nuclear coordinates and the electronic
potential energy is invariant under symmetry operations. For a single (non-
degenerate) PE surface, the adiabatic electronic energy can be represented
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2. Theoretical background

in terms of invariant polynomials of nuclear coordinates. Multi-sheeted in-
tersecting adiabatic PE surfaces, on the other hand, cannot be approximated
by polynomial expansions due to the presence of cusps at CIs. Therefore, a
representation of the multi-sheeted PE surface in a diabatic basis must be
found to express the elements of the diabatic PE matrix as smooth functions
of the nuclear coordinates.

The adiabatic electronic wave functions of a manifold of m intersect-
ing electronic PE surfaces can be represented as superpositions in an m-
dimensional diabatic basis, which forms an electronic Hilbert sub-space. As-
suming that all other electronic states are sufficiently far apart in energy, the
wave function is written as

|Φ〉 =
m
∑

i=1

ci|Φ̃i〉 (2.43)

where the |Φ̃i〉 are diabatic electronic states. The expectation value of the
electronic Hamiltonian in the adiabatic representation, which must be invari-
ant under the group G, can be expressed as a function of nuclear coordinates
and coefficients in terms of the diabatic electronic basis as

〈Hel〉 = 〈Φ|Hel|Φ〉
=

∑

i,j

ci〈Φ̃i|Hel|Φ̃j〉cj

=
∑

i,j

ci(Hel)ijcj.

(2.44)

Thus the energy expectation value is quadratic in the electronic coeffi-
cients and (Hel)ij, which are the matrix elements of the electronic Hamil-
tonian in the diabatic electronic basis and thus smooth functions of nuclear
coordinates, can be expanded in terms of polynomials in symmetry-adapted
nuclear coordinates. To compute the symmetry-adapted matrices for the
expansion of the electronic Hamiltonian, one has to find the invariant poly-
nomials of the group representation in the combined vector space of the elec-
tronic coefficients and the nuclear coordinates (V el ⊕ V nu). In other words,
the problem reduces to finding the second-order invariants in the vector space
V el and the invariant polynomials of arbitrary order in the vector space V nu

of the symmetry-adapted nuclear coordinates. Once the generators of the in-
variant ring (R[V el ⊕ V nu]Γ

el⊕Γnu

) are known, it is straightforward to obtain
all invariant polynomials of degree two in the electronic space and determin-
ing the corresponding matrix elements. The PE matrices of arbitrarily high
orders can then be conveniently obtained by multiplying these second order
matrices with an element of R[V nu]Γ

nu

which is of appropriate order.
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2.4. Non-adiabatic quantum dynamics

The most transparent case arises when the nuclear and electronic basis
functions transform according to the same irreducible representation, such as
in the E× e and T2 × t2 JT effects. In this case, the nuclear coordinates and
electronic states form identical vector spaces and their matrix group repre-
sentations are also identical in both coordinate spaces (Γel = Γnu). Weyl’s
polarization method can then be used to obtain the generating polynomials
from the generators of the invariant ring of a single copy of these [58, 59, 67].
As Weyl’s polarization operator is a linear differential operator, it can be
easily shown that the formulation JT vibronic matrices reduces to the com-
putation of the Hessian (with respect to the electronic degrees of freedom)
of the invariant polynomials [24, 25]. This feature is further elucidated in
Appendix 1.

2.4 Non-adiabatic quantum dynamics and

simulation of photoelectron spectra

2.4.1 Photoelectron spectra, autocorrelation function
and electronic population probabilities

The quantal motion of the nuclei in a molecule can most conveniently be
described by solving the time-dependent Schrödinger equation (TDSE) [68].
However, it must be kept in mind that for a time-independent Hamilto-
nian, the knowledge of the wave-packet at all times and the knowledge of
all the eigenstates of the Hamiltonian are completely equivalent. The pref-
erence of the time-dependent method over the time-independent one or the
opposite depends on the particular problem being solved. The JT PE sur-
faces employed in the dynamical calculations carried out in the present work
typically involve multiple intersecting electronic PE surfaces and high-order
expansions of the PE function with respect to the vibrational modes, which
makes the solution of the time-independent Schrödinger equation (TISE)
extremely computationally demanding and time-dependent methods appear
to be the obvious choice. Moreover, if one is interested in the observables
which depend on the short time dynamics of the system, as is the case for
the low-resolution photoelectron spectra, time-dependent approach is cer-
tainly preferable. Throughout, we have relied on the so-called pseudospectral

representation where the PE matrix is diagonal and is evaluated only on a
finite set of discrete grid points making the representation of the Hamiltonian
particularly simple for JT systems.

In the time-dependent formalism of molecular spectroscopy, the spectral
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intensity distribution function is defined as the Fourier transform of the au-

tocorrelation function [68, 69]

P (ω) =
1

2π

∫ ∞

−∞
C(t)eiωtdt, (2.45)

where the autocorrelation function C(t) is given by

C(t) = 〈Ψ(x, 0)|Ψ(x, t)〉. (2.46)

In Eq. 2.46, |Ψ(0)〉 is the initial wave packet and |Ψ(t)〉 is obtained by solving
the TDSE

i~
∂

∂t
|Ψ(x, t)〉 = Ĥ|Ψ(x, t)〉. (2.47)

Since last three decades a number of methods have been proposed to obtain
the |Ψ(x, t)〉 by efficiently solving the TDSE and thus to calculate the auto-
correlation function. Two of them, which have been employed in the present
work, are discussed below.

Considering the fact that the property of interest in this work is the pho-
toelectron spectrum, the efficiency of the calculation can be improved con-
siderably if the initial wave packet is real and the Hamiltonian is symmetric,
as then

C(t) = 〈Ψ(S, 0)|Ψ(S, t)〉
= 〈Ψ∗(S, t/2)|Ψ(S, t/2)〉. (2.48)

This means that the autocorrelation function is obtained over twice the time
of propagation which in turn increases the resolution of the spectrum by a
factor of two without any additional computational expanse. This has also
indirect effects, as shorter propagations reach convergence easily and the ini-
tial wave packet does not need to be stored. However, finite propagation time
introduces spurious oscillations in the Fourier spectrum. To remove this, a
time-dependent damping function g(t) must be multiplied to the autocorre-
lation function which ensures that the integrand goes smoothly to zero at
the end of propagation. We choose the time-dependent damping function

g(t) = cos

(

πt

2T

)

Θ

(

1− |t|
T

)

; (2.49)

where T is the total propagation time and Θ is the Heaviside step function. In
order to compare the simulated spectrum with the experimental one, it may
also be necessary to multiply the autocorrelation function with an additional
exponential damping factor

f(t) = exp(−t/τ) (2.50)
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2.4. Non-adiabatic quantum dynamics

where τ is a time constant describing a phenomenological broadening of the
spectrum due to finite experimental resolution which is equivalent to convo-
luting the spectrum with a Lorentzian function of full width at half-maximum
(FWHM) of Γ[eV] ∼ 1.31/τ [fs]. Hence, using the Hermitian property of C(t),
in practice, one solves the integral

P (ω) ∝ Re

∫ T

0

g(t)f(t)C(t)eiωtdt. (2.51)

The other quantities of interest are the time-dependent populations of
the electronic states [70]. As the wave packet propagation is performed in
diabatic representation, it is quite straightforward to calculate the diabatic
populations. The population of the diabatic electronic state |α〉 at time t,

denotes as P
(d)
α (t), is given by

P (d)
α (t) = 〈Ψ(Q, t)||α〉〈α||Ψ(Q, t)〉. (2.52)

The time-dependent population of the ith adiabatic state, |i〉, is given by

P
(a)
i (t) = 〈Ψ(Q, t)||i〉〈i||Ψ(Q, t). (2.53)

The calculation of adiabatic populations is computationally demanding as
they need either the transformation of the electronic wave function (diabatic
to adiabatic) for every grid point and for each time step or a matrix repre-
sentation of the projection operator in the adiabatic basis [71]. The form of
the projection operator for the adiabatic state |α〉 is [72]

P̂ (a)
α =

∑

β,γ

|β〉U †
βαUαγ〈γ|, (2.54)

where, Uαγ is an elements of the coordinate-dependent adiabatic-to-diabatic
transformation matrix.

2.4.2 Non-adiabatic dynamics with the Chebyshev wave-
packet propagation method

For a time-independent Hamiltonian, the analytic solution of TDSE reads

|Ψ(x, t)〉 = e−iHt/~|Ψ(x, 0)〉 = U(0, t)|Ψ(x, 0)〉. (2.55)

In Eq. (2.55) U(t) is the unitary time-evolution operator.
Historically, U(t) used to be expanded in a Taylor series, which had se-

rious drawbacks of numerical instability due to lack of conservation of uni-
tarity. The well-known second-order differentiating (SOD) approximation
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[73] and fourth-order differentiating (FOD) scheme of Manthe and Köppel
[74] overcame this difficulty and conserved the norm and the energy, how-
ever, SOD suffered from lack of accuracy for long-time propagations due to
the error accumulation in the phase. Tal-Ezer and Kosloff have shown that
these problems could be solved by expanding the time-evolution operator in
Chebyshev polynomials [75]

e−iHt/~ ≈
N
∑

n=0

anQn(−iHt/~) (2.56)

where an are the expansion coefficients and Qn are the complex Chebyshev
polynomials. The exponential time-evolution, when expressed as a Cheby-
shev series expansion, takes the form

e−iHt/~ = e−i(∆E/2+Vmin)t/~

N
∑

n=0

(2− δn0)Jn

(

∆Et

2~

)

Qn(−iHs) (2.57)

where Jn is the nth order Bessel function of the first kind, Qn obey recursion
relation

Qn+1 = −2iHsQn +Qn+1 (2.58)

and Hs is the shifted and scaled Hamiltonian

Hs =
H − (∆E

2
+ Vmin)

∆E
2

. (2.59)

In the definition of Hs, Vmin ≤ Emin (the lowest eigenvalue of H) and ∆E =
Emax−Emin, Emax being the largest eigenvalue of H. The shifting is required
to make the mapping single valued and the eigenvalues to be monotonically
increasing [76]. The scaling makes the eigenvalues of Hs to lie in the interval
[-1,+1] which is a necessary requirement for the argument of the Chebyshev
polynomials.

One particular simplification for the time-propagation of the wave packet
has been achieved by the real wave packet method of Gray et al [77, 78].
Consideration of a simultaneous forward and backward propagation in time
leads to an iterative equation which is completely equivalent to the TDSE :

|Ψ(x, t)〉 = 2 cos(Ht/~)|Ψ(x, 0)〉 − |Ψ(x,−t)〉. (2.60)

The above relation makes it possible, for a real and symmetric Hamiltonian
and for a real initial wave packet, to perform the entire propagation in the
real number space which leads to a saving of computation time and memory.
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2.4. Non-adiabatic quantum dynamics

However, the operation of the cosine of H on the wave packet is still difficult
to perform. A suitable modification of the time-dependent Schrödinger equa-
tion by a proper functional mapping simplifies the equation of propagation.
In particular, a cos−1 functional mapping, originally introduced by Chen and
Guo [79], has been adapted here

Hs 7→ −~

τ
cos−1(Hs). (2.61)

The use of this mapping leads to a modified TDSE

i~
∂

∂t
|Ψf (x, t)〉 = f(Hs)|Ψf (x, t)〉 (2.62)

However, the time-independent properties remain intact asH and f(H) share
the same set of eigenstates under the mapping f which is reflected in the
corresponding mapped TISE

f(Hs)|ψi(x)〉 = f(Es
i )|ψi(x)〉, (2.63)

where the eigenvalues f(Es
i ) are related to the eigenvalues of Hs through the

relation

f(Es
i ) = −~

τ
cos−1(Es

i ). (2.64)

As f is a one-to-one mapping, it is straight forward to retrieve the eigenvalues
of the original Hamiltonian whenever required.

Under this mapping, after proper discretization of time t = nτ , the time-
evolution (cosine) operator is equivalent to the definition of the series of
Chebyshev polynomials

cos

(

Hst

~

)

7→ cos(n cos−1(Hs)) = Tn(Hs). (2.65)

By the virtue of the above results, time evolution of the wave packet reduces
to

Ψn = Tn(Hs)|Ψ0〉. (2.66)

The wave packet can now be propagated by using the recursion relation of
the Chebyshev polynomials, which reads

Ψn = 2HsΨn−1 −Ψn−2, n ∈ N|n > 1. (2.67)

Therefore, the iterative propagation of the wave packet involves only matrix-
vector multiplications of the Hamiltonian matrix Hs with the vector Ψn.
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In every iteration, the autocorrelation function was calculated using the
relations

C2n = 〈Ψ(0)|T2n(Hs)|Ψ(0)〉 = 〈Ψn|Ψn〉 − C0

C2n+1 = 2〈Ψn+1|Ψn〉 − C1.
(2.68)

Performing n iterations thus yields 2n points of the Chebyshev autocorrela-
tion function.

The time-dependent autocorrelation function can be calculated from Cn

by

C(t) = e−i H̄
2
t

N
∑

n=1

(2− δno)(−i)nJn
(

H̄t

2

)

Cn, (2.69)

where H̄ = (Emin +Emax)/2. While it is possible, in principle, to obtain the
spectrum from the Fourier transform of the autocorrelation function C(t),
a numerical conversion has been used for practical purposes which directly
gives the spectral distribution from the Chebyshev autocorrelation function

σ(E) ∝
N
∑

n=1

(2− δn0)
cos(nφ)

sin(φ)
Cn, (2.70)

where

φ = arccos

(

E − H̄

∆E/2

)

. (2.71)

2.4.3 The Multiconfiguration time-dependent Hartree
method

Despite the high numerical accuracy and simplicity for the implementation,
the straightforward numerical solution of the TDSE, which may be called
the standard method, suffers from an exponential scaling of the computa-
tional effort with the number of degrees of freedoms (DOFs). An alterna-
tive to the standard method is the time-dependent Hartree (TDH) method
which expresses the wave function as a Hartree product of time-dependent
single-particle-functions (SPFs) or orbitals and the time-dependent expan-
sion coefficients are determined by variationally solving the TDSE using the
Dirac-Frenkel variational principle [80, 81]

〈δΨ|H − i
∂

∂t
|Ψ〉 = 0. (2.72)

Being a single-reference method, TDH often performs rather poorly and
misses a large part of the correlation between different DOFs [82]. The
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2.4. Non-adiabatic quantum dynamics

Multiconfiguration time-dependent Hartree (MCTDH) method has been de-
veloped as a trade-off between the accuracy of the numerically exact method
and the efficiency of the TDH method [83–85]. The flexibility in the number
of DOFs and in choosing the number of SPFs allows MCTDH to cover a full
range of approximations between TDH (single reference) to numerically exact
(analogous to the full CI treatment in electronic structure theory). Impor-
tantly, due the variational character, small sets of SPFs are usually sufficient
in many cases to yield good results which makes the MCTDH method ap-
pealing especially when the number of DOFs is large.

The MCTDH wave function is defined by the following ansatz [83–85]

Ψ(Q, t) =

n1
∑

j1=1

· · ·
nf
∑

jf=1

Aj1···jf (t)

f
∏

k=1

ϕ
(k)
jk
(Qk, t) (2.73)

=
∑

J

AJΦJ (2.74)

where f denotes the number of degrees of freedom, Q is the vector containing
the set of nuclear coordinates, the Aj1···jf denote the MCTDH expansion co-

efficients, and the ϕ
(k)
jk

are the nk time-dependent expansion functions (SPFs)
for each DOF k. ΦJ is the f -dimensional Hartree product of the SPFs rep-
resented by the composite index J = (j1, · · · , jf ). For practical purposes,
the SPFs have to be represented in terms of an underlying time-independent
primitive basis set

ϕ
(k)
jk
(Qk, t) =

Nk
∑

l=1

c
(k)
ljk
(t)χ

(k)
l (Qk). (2.75)

The primitive basis functions are often replaced by a discrete variable repre-

sentation (DVR) grid. MCTDH is of advantage in comparison to the numer-
ically exact method only if nk < Nk(k = 1, · · · , f). The MCTDH equations
of motion (EOM) can be derived by applying Dirac-Frenkel variational prin-
ciple to Eq. (2.73). After some algebra, one obtains two coupled differential
equations for the SPFs and the expansion coefficients

iȦJ =
∑

L

〈ΦJ |H|ΦL〉AL, (2.76)

iϕ̇
(k)
j =

∑

l,m

(

1− P (k)
)

(

ρ(k)
−1
)

jl
〈H〉(k)lmϕ

(k)
m (2.77)

where

P (k) =

nk
∑

j=1

|ϕ(k)
j 〉〈ϕ(k)

j | (2.78)
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denotes the projection operator on the space spanned by the SPFs for the
kth DOF, and

ρ
(k)
jl = 〈Φ(k)

j |Ψ(k)
l 〉 (2.79)

denotes a density matrix and

〈H〉(k)jl = 〈Φ(k)
j |H|Ψ(k)

l 〉 (2.80)

is a matrix of mean-fields. Here

Ψ
(k)
l = 〈ϕ(k)

l |Ψ〉k (2.81)

represents a so-called single-hole function.
To solve the MCTDH EOM, one requires the evaluations of the Hamilto-

nian matrix 〈ΦJ |H|ΦL〉 and the mean-fields 〈H〉 at each time step. If these
integrals are done by multi-dimensional quadrature over the primitive grid,
then the performance of the MCTDH method would not be significantly bet-
ter than the standard one. This problem of multi-dimensional integrals can
be circumvented if the Hamiltonian can be written as a sum of products of
single particle operators [72]

H =
s

∑

r=1

cr

f
∏

k=1

h(k)r . (2.82)

The sum-of-products structure of the Hamiltonian, which is also known as
the “MCTDH form”, enables one to evaluate the Hamiltonian matrix ele-
ments and the mean-fields only by the one-dimensional integrals. While PE
operators are generally not of this special form, fortunately, vibronic coupling
models fall within the exceptions and this makes MCTDH well adapeted for
solving vibronic dynamics. Despite the above simplifications, the evalua-
tion of the mean fields is still the most computationally expensive part of
MCTDH. To reduce the effort, the mean fields are kept constant for some
time during the calculation, that is they are not evaluated at every time step
of the integrator but at larger so-called update time steps. The use of this
constant mean field (CMF) integration scheme has been shown to speed up
the calculation typically by a factor of 10. In comparison with the N f num-
bers required to describe the standard wave packet, the memory requirement
of the MCTDH wave function becomes

memory ∼ nf + fnN, (2.83)

which leads to huge saving in memory when the dimensionality of the problem
is high [72].
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Vibronic coupling systems are characterized by the motion of the nuclei on
multiple coupled PE surfaces and the MCTDH ansatz needs to be extended
to deal with more than one electronic states. A particularly convenient way
is to use the so-called multi-set formulation which employs different sets
of SPFs for different electronic states. The multi-set formulation is almost
always the method of choice for the vibronically coupled systems as the
motion of the nuclei on the different electronic states can be very different.
In this formulation, the wave function of the system is expanded in the set
{|α〉} of diabatic electronic states [86]

Ψ(Q, t) =
σ

∑

α=1

Ψ(α)(Q, t)|α〉, (2.84)

where the component Ψ(α) is the nuclear wave packet for the electronic state
|α〉 and is represented in the usual MCTDH form as in Eq. (2.73).

In the multi-set formalism, the diabatic population (see Eq. (2.52)) of the
state |α〉 is simply given by the norm of the component of the wave function
for state |α〉

P (d)
α = ||Ψ(α)||2. (2.85)
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Chapter 3

Construction of high-order
Jahn-Teller Hamiltonians

In the “standard model” of JT theory, which is described in numerous re-
views, monographs and edited volumes on the JT effect [11–18], the Hamil-
tonian is expanded up to second order in normal-mode displacements. While
situations had long been encountered, mainly through extensive ab initio

calculations, where the JT/PJT coupling strengths were too strong to be
described by the quadratic coupling model, extensions of the JT Hamilto-
nian beyond the standard model were considered only occasionally and for
specific systems. For example, the third-order and fourth-order terms in the
E × e Hamiltonian for trigonal systems have been included in some investi-
gations of static and dynamic JT effects in clusters and solids [87–90]. The
systematic expansion of the E × e JT Hamiltonian for trigonal systems up
to sixth order has first been given by Viel and Eisfeld [22]. It was discovered
by ab initio calculations that “intramolecular collisions” of the ligand atoms
at large amplitudes of the JT-active bending mode result in a pronounced
positive anharmonicity of the ab initio bending potentials, which requires a
JT expansion up to at least sixth-order in the bending mode [91, 92]. Opalka
and Domcke have shown recently that with the help of invariant theory of
homogeneous polynomials, it is straightforward to obtain the arbitrarily high-
order expansions of JT Hamiltonians [24, 25]. Three generic problems, E×e,
T2 × t2 and (A+ E)× (a+ e) JT/PJT effects, are discussed below.

3.1 The E × e Jahn-Teller effect

Molecules of C3v symmetry possess degenerate electronic states of E symme-
try and degenerate vibrational modes of e symmetry, which transform like
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3. High-order Jahn-Teller Hamiltonians

x, y in the C3v point group. The polynomial invariants of the E represen-
tation in C3v form a ring and are finitely generated by two polynomials of
degree 2 and 3 respectively, which form the so-called generating set of the
invariant ring. These are [58, 59]

f1 = x2 + y2

f2 = x3 − 3xy2.
(3.1)

All the elements of the ring R[x, y]C3v can be constructed in terms of these
generators

R[x, y]C3v = R[f1, f2]. (3.2)

The ring of the C3v-invariant polynomials in the direct sum of two vector
spaces of E symmetry (electrons) and e symmetry (nuclei), R[V E ⊕ V e]C3v

can be computed from R[V e]C3v = R[f1, f2] by Weyl’s polarization method
[67]. After eliminating the redundant terms, it is straightforward to represent
the E × e JT expansion of any order as a sum of the trace and a traceless
matrix [22]

H(n)
es [E × e] =

(

V (n) 0
0 V (n)

)

+

(

W (n) Z(n)

Z(n) −W (n)

)

. (3.3)

The well-known first-order and second-order JT Hamiltonians are the Hes-
sians of f2 and f 2

1 respectively.
The expansion of the E× e JT Hamiltonian up to sixth order is given by

V (1) = 0

V (2) = a
(2)
1 (x2 + y2)

V (3) = a
(3)
1 (x3 − 3xy2)

V (4) = a
(4)
1 (x4 + 2x2y2 + y4)

V (5) = a
(5)
1 (x5 − 2x3y2 − 3xy4)

V (6) = a
(6)
1 (x6 + 3x4y2 + 3x2y4 + y6) + a

(6)
2 (x6 − 6x4y2 + 9x2y4)

(3.4)

W (1) = λ
(1)
1 x

W (2) = λ
(2)
1 (x2 − y2)

W (3) = λ
(3)
1 (x3 + xy2)

W (4) = λ
(4)
1 (x4 − y4) + λ

(4)
2 (x4 − 6x2y2 + y4)

W (5) = λ
(5)
1 (x5 + 2x3y2 + xy4) + λ

(5)
2 (x5 − 4x3y2 + 3xy4)

W (6) = λ
(6)
1 (x6 + x4y2 − x2y4 − y6) + λ

(6)
2 (x6 − 5x4y2 − 5x2y4 + y6)

(3.5)
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3.1. The E × e Jahn-Teller Effect

Z(1) = λ
(1)
1 y

Z(2) = λ
(2)
1 (−2xy)

Z(3) = λ
(3)
1 (x2y + y3)

Z(4) = λ
(4)
1 (−2x3y − 2xy3) + λ

(4)
2 (4x3y − 4xy3)

Z(5) = λ
(5)
1 (x4y + 2x2y3 + y5) + λ

(5)
2 (−2x4y + 6x2y3)

Z(6) = λ
(6)
1 (−2x5y − 4x3y3 − 2xy5) + λ

(6)
2 (4x5y − 4xy5)

(3.6)

where V (n) is the nth order of the trace and W (n) and Z(n) are the nth
order diagonal and off-diagonal elements, respectively, of the traceless JT
Hamiltonian. It should be emphasized here that, though this expansion is
achieved with the consideration of C3v reference geometry, this is the most
general expansion of the E × e JT effect in trigonal, tetrahedral and cubic
symmetries and can be applied to any system in these symmetries without
any alteration. This result is a consequence of the presence of redundancies
in the irreducible representations of molecular point groups. The polynomial
expansions presented here differ, at the first look, from those of Viel and Eis-
feld [22]. However, they are inter-convertible by taking linear combinations.

As an illustration, the number of free parameters to be optimized for
an 8th order expansion is given in tabular form in Table 3.1. Note that
the number of independent optimization parameters grows very slowly with
the order of the expansion, which reflects the high inherent symmetry of the
E×e JT Hamiltonian. As an example, the sixth order E×e JT Hamiltonian

order 1 2 3 4 5 6 7 8
parameters W ,Z 1 1 1 2 2 2 3 3
parameters V 0 1 1 1 1 2 1 2

total 1 2 2 3 3 4 4 5

Table 3.1: Number of parameters in the trace and the diagonal and off-
diagonal terms in the E × e JT expansion in each order.

matrix is given explicitly in Eq. (3.7). It can be seen that the sixth-order JT
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3. High-order Jahn-Teller Hamiltonians

Hamiltonian contains only 4 independent optimization parameters.

H(6) = [a
(6)
1 (x6 + 3x4y2 + 3x2y4 + y6) + a

(6)
2 (x6 − 6x4y2 + 9x2y4)] 1

+

















λ
(6)
1 (x6 + x4y2 − x2y4 − y6) λ

(6)
1 (−2x5y − 4x3y3 − 2xy5)

+λ
(6)
2 (x6 − 5x4y2 − 5x2y4 + y6) +λ

(6)
2 (4x5y − 4xy5)

λ
(6)
1 (−2x5y − 4x3y3 − 2xy5) −λ(6)1 (x6 + x4y2 − x2y4 − y6)

+λ
(6)
2 (4x5y − 4xy5) −λ(6)2 (x6 − 5x4y2 − 5x2y4 + y6)

















.

(3.7)

3.2 The T2 × t2 Jahn-Teller Effect

A general symmetry-adapted polynomial expansion of electrostatic T × t
and T × e JT Hamiltonians in tetrahedral systems has been developed by
Opalka and Domcke [24, 25]. Combining JT theory with the theory of in-
variant polynomials [61], symmetry-adapted polynomials up to high orders
were obtained and a combinatorial scheme was developed to express terms
of arbitrary order as products of a small number of invariant polynomials.

The three-sheeted T2 × t2 PE surface is represented by three diabatic
electronic states of T2 symmetry, denoted conveniently as x, y, z. The nuclear
coordinates of t2 symmetry are also denoted by x, y, z to reveal the high
inherent symmetry of the T2 × t2 JT Hamiltonian. The ring of invariant
polynomials of the t2 representation in Td is finitely generated by a set of
three polynomials of degree 2, 3 and 4 in the coordinates x, y, z [24, 59]

f1 = x2 + y2 + z2

f2 = xyz

f3 = x4 + y4 + z4.

(3.8)

Any member of the ring R[x, y, z]Td can be represented in terms of these
generating polynomials, that is

R[x, y, z]Td = R[f1, f2, f3]. (3.9)

The JT vibronic matrix is given by the doubly polarized invariant poly-
nomials in the combined vector spaces of the electronic coefficients and the
nuclear coordinates, which transform identically under the group Td ≃ S4.
Any term of the Hamiltonian matrix expansion is just the Hessian of an in-
variant polynomial of the ring R[x, y, z]Td up to multiplication with a constant
factor.
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3.2. The T2 × t2 Jahn-Teller Effect

An elegant combinatorial scheme has been developed to represent the
T2 × t2 JT PE matrix in terms of the generating polynomials in Ref. [24].
The JT vibronic matrix has the highly symmetric structure

Hel =





W(x, y, z) Z(z, x, y) Z(y, x, z)
Z(z, x, y) W(y, x, z) Z(x, y, z)
Z(y, x, z) Z(x, y, z) W(z, x, y)



 (3.10)

where W and Z are the diagonal and off-diagonal elements of the JT matrix,
respectively. Their expansion up to sixth order reads

W (1)(x, y, z) = 0

W (2)(x, y, z) = a
(2)
1 x2 + a

(2)
2 (y2 + z2)

W (3)(x, y, z) = a
(3)
1 xyz

W (4)(x, y, z) = a
(4)
1 x4 + a

(4)
2 (y4 + z4)

+ a
(4)
3 (x2y2 + x2z2 + y2z2)

W (5)(x, y, z) = a
(5)
1 x3yz + a

(5)
2 (xy3z + xyz3)

W (6)(x, y, z) = a
(6)
1 (y6 + z6) + a

(6)
2 x6 + a

(6)
3 (x4y2 + x4z2)

+ a
(6)
4 (x2y4 + x2z4) + a

(6)
5 (y4z2 + y2z4) + a

(6)
6 x2y2z2

Z(1)(x, y, z) = b
(1)
1 x

Z(2)(x, y, z) = b
(2)
1 yz

Z(3)(x, y, z) = b
(3)
1 x3 + b

(3)
2 (xy2 + xz2)

Z(4)(x, y, z) = b
(4)
1 x2yz + b

(4)
2 (y3z + yz3)

Z(5)(x, y, z) = b
(5)
1 x5 + b

(5)
2 (x3y2 + x3z2)

+ b
(5)
3 (xy4 + xz4) + b

(5)
4 (xy2z2)

Z(6)(x, y, z) = b
(6)
1 y3z3 + b

(6)
2 (y4z2 + y2z4)

+ b
(6)
3 x4yz + b

(6)
4 (x2y3z + x2yz3).

(3.11)

The expansion terms up to 12th order can be found in Ref. [24]. The beauty
of this representation is that the elements of the 3 × 3 JT matrix consist of
just two functions, whose position in the matrix is determined by the first
argument. There are only two kinds of parameters, a

(n)
i and b

(n)
i which are

to be determined by a least-squares fitting of ab initio data. The number
of parameters to be optimized for an 8th-order expansion of the T2 × t2 PE
matrix is summarized in Table 3.2. The 8th order PE matrix, for example,
contains 53 parameters.
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3. High-order Jahn-Teller Hamiltonians

order 1 2 3 4 5 6 7 8
parameters W 0 2 1 3 2 6 4 9
parameters Z 1 1 2 2 4 4 6 6

total 1 3 3 5 6 10 10 15 =53

Table 3.2: Number of parameters in the diagonal and off-diagonal terms in
the T2 × t2 JT matrix in each order.

3.3 The (E+A)×(e+a) Jahn-Teller/pseudo-

Jahn-Teller effect in trigonal systems

In trigonal systems, the degenerate electronic state typically arises from con-
figurations with an electron or a hole in 2px, 2py (or 3px, 3py) orbitals. The
corresponding 2pz (or 3pz) orbital transforms according to the A representa-
tion. The 2E and 2A states arising from an electron or a hole in the p-shell
of a trigonally coordinated atom are often close in energy and can inter-
act in first order via normal modes of e symmetry, which gives rise to the
(2E+2A)×e PJT effect. Although many trigonal systems are of C3v symme-
try, the description in the D3h point group becomes essential whenever the
inversion of pyramidal structures is possible upon excitation or ionization.
In the D3h group, the (E +A)× (e+ a) vibronic-coupling problem becomes
the (E ′ + A′′

2)× (e′ + a′′2) vibronic-coupling problem.

The JT and PJT effects arising from a partially occupied p-shell are mech-
anistically not independent. It is therefore generally preferable to consider
the vibronic coupling effects within the 2E ′+2A′′

2 three-state manifold, rather
than the vibronic coupling within the isolated 2E state. Along with the strong
JT activity of the e′-type bending vibrational mode, so-called umbrella mode
of a′′2 symmetry is usually strongly coupled to electronic transitions in trig-
onal systems, CH3O, NH+

3 and CH3F
+ being prominent examples [93–95].

The bending mode of e′ symmetry and the umbrella mode of a′′2 symmetry
therefore form a triplet of strongly vibronically active normal modes. These
observations suggest that the (E ′ + A′′

2) × (e′ + a′′2) three-state three-mode
vibronic-coupling problem should be considered as the generic JT/PJT prob-
lem in trigonal systems.

In tetrahedral and octahedral systems, an electron (or a hole) in a p-shell
gives rise to T2×t2 JT effect which has been discussed in the previous section
in some details. Again the triply degenerate t2 bending mode is strongly JT-
active. When the symmetry is reduced from tetrahedral or octahedral to
trigonal, the T2 state splits into E +A states and the t2 normal mode splits
into e + a normal modes. The (E + A) × (e + a) JT/PJT effect in trigonal
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3.3. The (E + A)× (e+ a) JT/PJT effect

systems thus is a reduced-symmetry exemplar of the T2 × t2 JT effect in
tetrahedral systems. This is another argument why the (E + A) × (e + a)
JT/PJT effect should be considered as the generic vibronic-coupling problem
in trigonal systems.

Eisfeld and Viel derived the expansion of the (E +A)× e PJT Hamilto-
nian up to sixth order in the JT-active bending mode [23]. Considering the
umbrella mode up to second order, this model was applied to construct the
PE surfaces of the (E +A)× (e+ a) PJT effect in NH+

3 [41]. In the present
work, we extend the existing description of (E+A)×(e+a) vibronic coupling
by treating the umbrella mode consistently with the JT-active bending mode
to all orders, making use of polynomial invariant theory [61].

Let us consider trigonal open-shell four-atomic systems (e.g. CH3, NH
+
3 ).

The hole in the p-shell of the central atom gives rise to a degenerate elec-
tronic state of E ′ symmetry with wave functions ψx, ψy and a nondegenerate
electronic state ψz of A′′

2 symmetry in D3h. The ψx, ψy, ψz form a diabatic
electronic basis for the (E ′ + A′′

2) × (e′ + a′′2) JT/PJT Hamiltonian. Since
large-amplitude motion in the umbrella coordinate may lead to inversion, it
is natural to choose the planar conformation (D3h symmetry) as the reference
geometry. The umbrella coordinate changes sign at the planar configuration
and thus is antisymmetric with respect to the molecular plane of the D3h

configuration.
Denoting the symmetry-adapted nuclear coordinates as x, y (e′ symme-

try) and z (a′′2 symmetry), the JT/PJT matrix in the electronic basis ψx, ψy,
ψz is written as

Hes(x, y, z) =





Hxx(x, y, z) Hxy(x, y, z) Hxz(x, y, z)
Hyx(x, y, z) Hyy(x, y, z) Hyz(x, y, z)
Hzx(x, y, z) Hzy(x, y, z) Hzz(x, y, z)



 (3.12)

The eigenvalues of the matrix Hes(x, y, z) are the adiabatic PE surfaces,
which we denote as V1(x, y, z), V2(x, y, z), V3(x, y, z).

Following the strategy described in the previous section for the T2× t2 JT
Hamiltonian, we expand the matrix elements Hkl(x, y, z), (k, l = x, y, z), in
polynomials of the symmetry-adapted nuclear displacement coordinates. The
three electronic basis functions as well as the three nuclear coordinates form
the basis of the E ⊕ A representation of the C3v point group. The invariant
polynomials of the E ⊕ A representation are generated by [24, 59, 96]

f1 = z2 (3.13a)

f2 = x2 + y2 (3.13b)

f3 = x3 − 3xy2. (3.13c)
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3. High-order Jahn-Teller Hamiltonians

The polynomials of the invariant ring R[x, y, z]E⊕A can be expressed in
terms of these generators. Importantly, theorems of Hilbert and Noether
provide the proof that the generators of Eq. (3.13) are complete [61]. All
symmetry-adapted homogeneous polynomials up to arbitrary order can thus
be expressed as linear combinations of products of the three invariants of
Eq. (3.13).

The most convenient approach to obtain the expansion of the matrix
elements Hkl(x, y, z) in x, y, z is to make use of Weyl’s polarization method
[67]. The Hkl(x, y, z) can be viewed as polynomials in the electronic variables
x, y, z up to second order and as polynomials in the nuclear coordinates x,
y, z up to a certain arbitrary order. Weyl’s polarization method generates
the invariant polynomials in the joint vector spaces of electronic and nuclear
variables from the generators given in Eq. (3.13). The expansion of the
vibronic matrix (3.12) up to any order n in the nuclear coordinates in found
by computing the Hessian (with respect to the electronic variables) of all
possible products of the generators of order (n + 2). After the elimination
of the linearly dependent terms, the Hkl(x, y, z) are obtained as polynomial
expansions up to order n [24].

Up to second order, we obtain the well-known (E+A)× (e+ a) JT/PJT
Hamiltonian [11, 12, 14, 16–18, 97, 98]

H(0−2)
es (x, y, z) =H(2)

0 (x, y, z)

+







EE + a
(1)
1 x+ a

(2)
2 (x2 − y2) −a(1)1 y + 2a

(2)
2 xy c

(2)
1 xz

−a(1)1 y + 2a
(2)
2 xy EE − a

(1)
1 x− a

(2)
2 (x2 − y2) c

(2)
1 yz

c
(2)
1 xz c

(2)
1 yz EA







(3.14a)

where

H(2)
0 (x, y, z) =







a
(2)
1 (x2 + y2) + a

(2)
3 z2 0 0

0 a
(2)
1 (x2 + y2) + a

(2)
3 z2 0

0 0 b
(2)
1 (x2 + y2) + b

(2)
2 z2







(3.14b)
represents the unperturbed part of the PE surface up to second order. The
Hamiltonian (3.14) reduces to the standard linear-plus-quadratic E × e JT
Hamiltonian if the electronic state ψz and the umbrella coordinate z are
ignored. a

(1)
1 and a

(2)
2 are the linear and quadratic JT coupling constants,

respectively. Note that the E − A PJT coupling, given by the parameter
c
(2)
1 , vanishes for z = 0 (D3h symmetry). The E − A PJT coupling is thus a
bilinear coupling term when the D3h reference geometry is chosen. For a C3v
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3.3. The (E + A)× (e+ a) JT/PJT effect

reference geometry, where z = z0 6= 0, the E − A PJT coupling is linear in
the coordinates x, y of e symmetry.

The expansion of Hkl(x, y, z) up to arbitrary order can be readily gener-

ated. The matrix elementsH(n)
kl (x, y, z) for n = 3−8 are given in Appendix 2.

It can be seen the PJT coupling elements Hxz(x, y, z) and Hyz(x, y, z) vanish
for z = 0 in all orders. The expansion of Hkl(x, y, z) up to n-th order in all
three coordinates x, y, z generalizes the JT/PJT Hamiltonian of Eisfeld and
Viel [23], in which the umbrella mode was consistently included up to second
order only.

The number of independent parameters a
(n)
i , b

(n)
i , c

(n)
i of the (E + A) ×

(e + a) vibronic matrix in each order n, which are fitting parameters to be
determined by a least-squares fit of the eigenvalues of the vibronic matrix
to ab initio adiabatic PE data, is given in Table 3.3 up to 8th order and it
is instructive to compare it with the corresponding number of independent
parameters for the T2 × t2 vibronic matrix in Td symmetry given in the
previous section (see Table 3.2). While the (E + A) × (e + a) Hamiltonian
has more independent parameters than the T2 × t2 JT Hamiltonian due to
the reduced symmetry, the number of parameters is much lower than for a
Taylor expansion of the corresponding order.

order 0 1 2 3 4 5 6 7 8
Parameters H11, H22, H12 1 1 3 3 6 6 11 10 17
Parameters H33, H13, H23 1 0 3 2 5 5 9 6 14

Total 2 1 6 5 11 11 20 16 31 =103

Table 3.3: Number of parameters in the diagonal and off-diagonal elements
in the (A′′

2 + E ′)× (a′′2 + e′) PE matrix in each order.
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Chapter 4

Application to P+
4

The E × e JT effect is the most well-studied JT problem and a wide range
of the literature has documented the exploration of different aspects of it
[12, 14, 16–18]. While the JT Hamiltonian matrix is expanded up to second
order in normal-mode displacements in the standard model of the JT effect
[12, 14, 16–18], the inclusion of JT coupling terms beyond second order has
been suggested only in recent years [22, 87–89] and a few applications to a
series of JT-active systems have been reported [41, 91, 92, 99, 100]. The
particularly strong E × e JT effect in the electronic ground state of the P+

4

cation is the subject of study of the present work. Our goal is to explore the
relevance of JT coupling terms beyond second order for the dynamical E× e
JT effect in P+

4 .
The ground electronic state of the tetrahedral P4 cluster is of 1A1 sym-

metry. The ejection of an electron from the highest-occupied 1e molecular
orbital (MO) of P4 creates the doubly degenerate (2E) ground state in the
P+
4 cation. Due to the JT effect, the P+

4 cation is unstable with respect
to distortions along the doubly degenerate vibrational mode of e symmetry.
The large value of the dimensionless linear 2E × e JT coupling parameter of
P+
4 reported by several theoretical and experimental studies (> 5.0) indicates

the existence of one of the strongest JT couplings in nature [101–103].
Several recordings of the photoelectron spectrum of P4 have been re-

ported [101, 104–106]. The photoelectron spectrum recorded by Wang et

al. exhibits the highest resolution [101]. The clear double-hump structure
of the first band of the photoelectron spectrum indicates the presence of a
very strong 2E × e JT coupling within the 2E state. The overlap of the first
two bands in the experimental spectrum indicates, in addition, the possibil-
ity of pseudo-JT (PJT) coupling of the 2E ground state and the 2T2 first
excited state through the vibrational mode of t2 symmetry. Meiswinkel and
Köppel investigated the (E + T2)× (e+ t2) JT/PJT effect in P+

4 employing
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4

the linear vibronic coupling model and demonstrated the effect of the PJT
coupling on the vibronic structure of the 2T2 band [102]. While the 2E–2T2
PJT coupling may affect the vibronic spectrum of the 2E state, its effects
are weak compared with the very strong E × e JT coupling in the 2E state.
The objective of the present work is to construct an ab initio two-sheeted
two-dimensional 2E × e JT potential-energy (PE) surface for P+

4 which ac-
counts for the strong anharmonicity at large displacements of the JT-active e
mode. As is well-known, spin-orbit (SO) coupling is quenched in 2E states in
tetrahedral systems [12] and therefore does not need to be considered here.

4.1 Symmetry-adapted coordinates

The six internuclear distances of a tetrahedral X4 system form a basis of a
six-dimensional reducible representation (Γ) of the group Td, which reduces
to three irreducible representations

Γ = A1 ⊕ E ⊕ T2. (4.1)

The symmetry-adapted linear combinations (SALCs) of atom-atom distances
which transform according to the E representation are well-known and are

sa =
1

2
√
3
(2∆r12 + 2∆r43 −∆r13 −∆r24 −∆r14 −∆r23)

sb =
1

2
(∆r13 +∆r24 −∆r14 −∆r23)

(4.2)

where the ∆rij are displacements of the internuclear distances.
The position vectors of the four nuclei in 3D space are computed from

displacements along the internal coordinates of e symmetry through the re-
lation

r = r(0) +As, (4.3)

A =











1
2
(r14 − r13)

1
2
√
3
(−2r12 + r13 + r14)

1
2
(r23 − r24)

1
2
√
3
(2r12 + r23 + r24)

1
2
(r13 − r23)

1
2
√
3
(−2r34 − r13 − r23)

1
2
(r24 − r14)

1
2
√
3
(2r34 − r14 − r24)











(4.4a)

s =

(

sa
sb

)

(4.4b)

r(0)T = (r
(0)
1 , r

(0)
2 , r

(0)
3 , r

(0)
4 ) (4.4c)

rT = (r1, r2, r3, r4). (4.4d)
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Here r(0) and r represent the position vectors of the four nuclei at the refer-
ence geometry and at the displaced geometry, respectively. The rij in matrix
A are unit vectors in the direction from atom i to atom j, which form the
primitive basis of the SALCs. The ith row of matrix A defines the position
of nucleus i under unit displacements of the internal coordinates of e symme-
try. This formulation of symmetry coordinates is particularly advantageous
in the sense that the set of mass-weighted normal modes, which is used in
our quantum dynamical calculations, is actually proportional to the symme-
try coordinates si of corresponding symmetry. From now on, the nuclear
coordinates sa and sb will be denoted as x and y respectively.

4.2 Electronic-structure calculations and the

fitted potential-energy surface

Ab initio electronic structure calculations have been carried out to compute
the energies of the 2E ground electronic state as a function of nuclear displace-
ment coordinates of e symmetry. The state-averaged complete-active-space
self-consistent-field (SA-CASSCF) method was employed. The active space
consisted of the twelve 3p orbitals on the P atoms of P+

4 . The 3s and core
orbitals were fully optimized, but were constrained to be doubly occupied
in all configuration state functions (CSFs). Dunning’s correlation-consistent
polarised valence double-ζ (cc-pVDZ) basis set has been employed through-
out [107]. The five lowest electronic states have been state averaged in the
CASSCF optimizations to obtain a balanced description of the wavefunction
in the full range of nuclear coordinate space. No symmetry constraints were
imposed in the ab initio calculations. All electronic-structure calculations
were performed with the MOLPRO quantum chemistry package [108].

Energy data points have been calculated at ≈ 1100 geometries which span
the two-dimensional nuclear configuration space. The origin of the energy
scale is chosen as the energy of the tetrahedral reference geometry of the 2E
ground state of the cation. Data points having energy up to 2.0 eV with
respect to the origin have been considered for the fitting procedure. The
polynomial expansion coefficients were optimized by fitting the eigenvalues
of the diabatic PE matrix to the ab initio data. A non-linear least squares
optimization scheme based on the Marquardt-Levenberg algorithm has been
implemented for this purpose. The fitting procedure has been initialized with
the second-order model. A reduced set of data points, −0.2 Å ≤ x, y ≤ 0.2 Å,
has been considered for this purpose. While the second-order fitted surface
was in good agreement with the ab initio data close to the reference geometry,
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it shows large deviations at large-amplitude displacements (see Fig. 4.1).
In order to obtain an accurate PE surface up to 2 eV, the order of the

expansion of the JT model potential has been gradually increased with a
consistent increase of the range of data points considered in the fitting. The
fourth-order fitting has been performed in the interval −0.5 Å ≤ x, y ≤ 0.5 Å,
which reproduced the energy data points quite accurately in the full range of
the calculated configuration space. To demonstrate the convergence of the
fitting procedure, a sixth-order fitting was finally performed for the same set
of ab initio data points. While the difference between the fourth-order and
the sixth-order surfaces is within drawing accuracy, the inclusion of fifth-
order and sixth-order coupling terms improves the agreement with the ab

initio data for large displacements (e. g. when x ≥ 0.8 Å in Fig. 1(a)). The
rms residuals for the sixth-order fitting are estimated to be ≈ 0.02 eV. The
asymmetry in the potential with respect to x = 0 in Fig. 1(a) is due to the
warping of the lower adiabatic PE surface arising from the contributions of
second-order and higher-order coupling terms.

The diagonal elements of the 2nd-order and the 4th-order diabatic PE
matrices are compared in figure 4.2. The diabatic off-diagonal elements of
the 2nd-order and the 4th-order fitting are compared in figure 4.3. The results
of the 6th-order fitting are not shown, as they are marginally different from
those of the 4th-order fitting. Figure 2(b) exhibits the pronounced positive
anharmonicity of the diagonal elements for large displacements in x and y.
Figures 3(a) and 3(b) illustrate the tilting of the diabatic coupling surface,
which is a plane in first order, by the higher-order terms.

4.3 Simulation of the 2E band of the

photoelectron spectrum of P4

The spectral intensity distribution function has been calculated by the Fourier
trans form of the time-dependent autocorrelation function. The initial wave
packet has been propagated in time under the influence of the time-independent
Hamiltonian of the system defined as

H = T + V(x, y) = −1

2

(

Gxx
∂2

∂x2
+Gyy

∂2

∂y2

)

+ V(x, y) (4.5)

where V(x, y) is the diabatic PE matrix defined in Eq. (3.3) and G is the
kinematic matrix.

The Hamiltonian and the wave packet have been represented on a direct-
product discrete variable representation (DVR) grid [109]. The x coordinate
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Figure 4.1: (a) Cross sections of the 2nd order (dotted-dashed green line),
4th order (dashed blue line) and the 6th order (full red line) PE surfaces of
the ground electronic state of P+

4 along the nuclear coordinate x, compared
with the ab initio data (black circles). (b) Cross sections of the 2nd order
(dotted-dashed green line), 4th order (dashed blue line) and the 6th order
(full red line) PESs of the ground electronic state of P+

4 along the nuclear
coordinate y, compared with the ab initio data (black circles).

43



4. Application to P+

4

(a)

(b)

Figure 4.2: Diagonal elements of the diabatic PE matrix of P+
4 fitted up to

2nd-order (a) and up to 4th-order (b) as functions of x and y. Note the
different ordinate scales in (a) and (b).
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(a)

(b)

Figure 4.3: Off-diagonal element of the diabatic PE matrix of P+
4 fitted up

to 2nd-order (a) and up to 4th-order (b) as functions of x and y. Note the
different ordinate scales in (a) and (b).

45



4. Application to P+

4

has been sampled by 101 equidistant grid points in the range -400.0 au to
500.0 au. The same number of grid points has been employed along the y
coordinate in the range -400.0 au to 400.0 au. Whittaker’s cardinal (sinc(x))
function has been employed as primitive interpolating basis function. The
DVR was constructed in the form of a tensor grid of considered degrees of
freedom. In this representation, the kinetic-energy operator has a particu-
larly simple ans sparse structure. The matrix elements of the kinetic-energy
operator is given by

T (i)
j,j+k =







−1
6

(

π
∆qi

)2

k = 0

− (−1)k

(k∆qi)2
k 6= 0

(4.6)

where qi is either x or y in this case and ∆qi is the respective grid spacing.
A 101× 101 matrix is obtained for each degree of freedom. The contraction
scheme of Harris, Engerholm and Gwinn (HEG) was used to optimise the
equidistant grid along each normal coordinate [110]. Due to the special
structure of the matrix T , only the non-zero elements of it are calculated
on the fly during the Chebyshev iterations. The PE matrix was constructed
as a (101×101)×2(2+1) matrix (2 electronic states were taken into account)
as the LAPACK packed storage format.

The initial wave packet was prepared in the electronic ground state of P4,
assuming zero vibrational temperature and a harmonic vibrational frequency
of 366.1 cm−1 (computed from ab initio data). The initial wave packet was
vertically excited to the 2E state of the cation and propagated with the
Chebyshev method. We computed the vertical ionization energy as 9.55
eV using RCCSD(T) ab initio calculations. The high-resolution spectrum
was obtained by convoluting the autocorrelation function with a Gaussian
function of 1.17 meV full width at half maximum (FWHM). For the low-
resolution spectral envelope, the FWHM has been increased by a factor of
30 (35 meV).

Fig. 4(a) shows the first band of the photoelectron spectrum of P4 cal-
culated with the quadratic JT model. Compared to the results obtained
with the linear JT model, reported by Wang et al. [101] and Opalka et al.

[103], the vibronic line density is increased dramatically and the equidis-
tant structure of the progression in the e mode is lost by the inclusion of
the second-order JT coupling terms. This result is in agreement with the
calculations of Meiswinkel and Köppel [102]. Wang et al. [101] analyzed
the influence of increasing dimensionless quadratic JT coupling constant g
within the range of 0 to 0.1 along with a fixed dimensionless linear JT cou-
pling constant k = 5.75 on the simulated spectra. The spectra presented
in this work with ab initio calculated k = 5.1 and g = 0.027 correspond
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closely to Fig. 8(f) of Ref. 17, where g was taken to be 0.05. The pronounced
double-hump structure of the low-resolution envelope and the narrower sec-
ond hump, representing a Slonczewski resonance [111], are the signatures of
a very strong E × e JT effect.

The photoelectron spectrum computed with the 6th-order potential is
shown in Fig. 4(b). The low-resolution envelope becomes more irregular
in comparison with the 2nd-order spectrum. More conspicuously, the high-
resolution spectrum shows a significant decrease in the line density. This
reduction in the line density is a consequence of the significant positive an-
harmonicity of the PE surface. For more detailed insight, the onsets of
both the spectral envelopes are plotted on an enlarged scale in the insets in
Figs. 4(a) and 4(b). It can be seen that the onset of the 6th-order spectrum is
≈ 0.1 eV lower than that of the 2nd-order spectrum, which is a consequence
of the fact that the very large JT stabilization energy in the 2E state of P+

4

is not accurately recovered by the 2nd-order model. As a consequence of
the steeper increase of the 6th-order PE surface with x and y, the intensity
distribution of the 6th-order spectrum terminates at lower energy (≈ 10.4
eV) than the 2nd-order spectrum (≈ 10.6 eV).
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Figure 4.4: E × e JT spectrum of P+
4 (red line) obtained with the quadratic

JT Hamiltonian (a) and with the 6th-order JT Hamiltonian (b). The blue
line represents the corresponding low-resolution spectral envelopes.
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Chapter 5

Application to PH+
3

A unified theoretical description of the potential-energy (PE) surfaces of the
ground and the excited electronic states of molecular systems undergoing
large distortions upon photo-ionization remains a challenging task. Group-
V trihydrides are typical exemplars exhibiting large amplitude vibrational
motions owing to the different equilibrium structures in the ground and the
excited electronic states of the cation and the molecule. In this work, the
complex non-adiabatic dynamics of PH+

3 has been investigated upon ioniza-
tion to the ground state and first-excited state of the cation.

The ejection of an electron from the 2e molecular orbital (MO) of PH3

results in the doubly degenerate 2E ′ excited state of the cation which is
subject to strong 2E ′ × e′ Jahn-Teller (JT) couplings [18] via the two doubly
degenerate stretching and bending vibration modes (e′). Moreover, the 2E ′

excited state interacts with the ground state (2A′′
2) state through pseudo-

JT (PJT) coupling via the JT-active e′ modes. The umbrella mode plays a
twofold role: (i) it tunes the energy gap between the 2E ′ and 2A′′

2 states and
thus induces a CI between them and (ii) it switches on the PJT coupling
between the 2E ′ state and the 2A′′

2 state in first order in displacements from
the planar geometry.

Several recordings of the phototelectron spectrum of PH3 have been re-
ported in the literature [112–115]. Recently, a rotationally resolved zero-
kinetic-energy (ZEKE) photoelectron spectrum of the 2A′′

2 state has been
reported by Mo and coworkers [116]. They have measured, for the first time,
the tunneling splittings of the lowest vibrational levels of PH+

3 in the X̃2A′′
2

state. For this work, we refer to the HeI photoelectron spectrum recorded
by Maripuu et. al. [114] as the experimental reference.
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5.1 Symmetry-adapted nuclear coordinates and

hierarchical expansion of the PE surface

It is well known that proper choice of the nuclear coordinates is as impor-
tant for the accurate analytic representations of the PE surfaces as it is for
the nuclear quantum dynamics. The six vibrational modes of PH+

3 , which
comprise of one symmetric stretching mode (a′1), one symmetric bending
mode (a′′2) and two doubly-degenerate stretching and bending modes (e′),
have been described by six symmetry-adapted linear combinations (SALCs)
of displacements in internal coordinates from the D3h reference geometry as

S1(a
′
1) =

1√
3
(∆r1 +∆r2 +∆r3)

S2(a
′′
2) = ∆θ

S3(e
′
x) =

1√
6
(2∆r1 −∆r2 −∆r3)

S4(e
′
y) =

1√
2
(∆r2 −∆r3)

S5(e
′
x) =

1√
6
(2∆α1 −∆α2 −∆α3)

S6(e
′
y) =

1√
2
(∆α2 −∆α3).

(5.1)

The ∆ri, ∆αi and ∆θ, in Eq. (5.1), are the displacements in primitive inter-
nal coordinates which are illustrated in Fig. 5.1. The hydrogens, in Fig. 5.1
are numbered in an anti-clockwise fashion and their distances from the cen-
tral P atom is denoted by r1, r2 and r3 respectively. The angles α1, α2 and
α3 are defined as the angles between two adjacent P−H bonds projected on
a plane parallel to the plane of the molecule at the D3h symmetry and per-
pendicular to the trisector (black solid vertical line going through P). This
definition ensures a correct description of the large amplitude bending mo-
tions of PH+

3 . The umbrella coordinate is defined as the displacement in the
pyramidalization angle θ with a shift of π/2. Thus the planar reference geom-
etry (θ = π/2) corresponds to a zero displacement in the S2 coordinate. By
construction, all the three P−H bonds make the same angle with the trisec-
tor. In this definition, the umbrella coordinate exhibits the correct symmetry
property by changing sign with respect to reflection on the molecular plane.

The kinetic-energy and the PE operators are represented in a three di-
mensional diabatic electronic basis, representing the px, py and pz orbitals on
the P atom. The elements of the 3×3 PE matrix are expanded in symmetry
coordinates as described below.
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5.1. Symmetry coordinates and hierarchical expansion

Figure 5.1: Definition of the primitive internal coordinates of PH+
3 in terms

of inter-atomic distances (ri), projected bond angles (αi) and the trisector
angle θ

The three-state six-mode diabatic PE matrix employed here extends the
three-state three-mode (E+A)×(e+a) JT/PJT PE matrix, developed during
this work (see Chapter 2), by the inclusion of the three stretching modes. The
six-mode PE matrix is approximated as a hierarchical expansion in terms of
lower dimensional potentials as

V (S) = V (0) + V (S1) + V (S2, S3, S4) + V (S2, S5, S6)− V (S2), (5.2)

where S is the vector containing displacements along the six symmetry co-
ordinates. The matrix V (0) is

V (0) = EA1+





0 0 0
0 ∆ 0
0 0 ∆



 , (5.3)

where EA is the first vertical ionization energy, ∆ is the energy difference
between the ground and the excited electronic states of PH+

3 at the D3h

reference geometry and 1 is the three-dimensional unit matrix. The PE
matrix as a function of the S1 coordinate (V (S1)) is taken from Ref. and is
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written as

V (S1) =





VA 0 0
0 VE 0
0 0 VE



 , (5.4)

where the matrix elements VA and VE are represented as modified Morse
functions

Vj =D
(2)
j

{

1− eαj(rj−S1)
}2

+D
(3)
j

{

1− eαj(rj−S1)
}3

−D
(2)
j {1− eαjrj}2

−D
(3)
j {1− eαjrj}3 (j = A,E).

(5.5)

V (S2, S3, S4) and V (S2, S5, S6) are the two (
2E ′+2A′′

2)×(e′+a′′2) JT/PJT sub-
problems involving the umbrella coordinate and the stretching and bending
JT-active coordinates, respectively. The influences of the mixed expansion
terms involving the breathing mode (S1) and the umbrella mode (S2) or the
JT-active modes as well as mixed expansion terms involving the JT-active
stretching and bending modes are assumed to be negligible.

5.2 Ab initio electronic-structure calculations

The PH+
3 radical cation contains 17 electrons in 12 orbitals. Complete-active-

space self-consistent-field (CASSCF) calculations have been performed with
a full-valence active space consisting of 7 orbitals (the 3s and 3p orbitals
on P and the 1s orbitals on the H atoms). The multireference configura-
tion interaction (MRCI) method has been employed to account for dynamic
electron correlation. The three lowest electronic states have been state-
averaged in the CASSCF/MRCI calculations. The 5 core orbitals (1s, 2s
and 2p orbitals on P) are treated as doubly occupied frozen orbitals in the
MRCI calculations. The correlation-consistent polarized valence triple-ζ (cc-
pVTZ) basis of Woon and Dunning [107] has been employed throughout.
No symmetry constraints were imposed in the electronic-structure calcula-
tions. The energy-data have been calculated mainly along one, two and
three-dimensional radial cuts. The spin-restricted coupled-cluster singles-
doubles with perturbative triples [RCCSD(T)] method has been employed to
compute the first vertical ionization potential (EA) of PH3 at the D3h geom-
etry. All ab initio calculations were performed with the MOLPRO quantum
chemistry package [108].
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3

5.3 Construction of the six-dimensional three-

sheeted potential-energy surface of PH+
3

The 3 × 3 diabatic PE matrix, given by Eqs. (5.2) to (5.5) and expanded
up to 8th order in S2, S3, S4 and S2, S5, S6, respectively, contains 208 un-
known coefficients. The eigenvalues of the PE matrix are fitted to the ab

initio data to determine these coefficients. As the eigenvalues depend non-
linearly on the parameters, the fitting is a non-linear optimization problem.
The Marquardt-Levenberg algorithm has been employed to solve the high-
dimensional nonlinear optimization problem. The fitting has been performed
in steps to maximize the efficiency and stability of the optimization process.
The fitting problem has been divided into three smaller ones as suggested
by the chosen hierarchical expansion of the PE surface (Eq. (5.2)). Approx-
imately 6000 data points with energies up to 7.0 eV with respect to the
ground-state energy of PH+

3 at the planar (D3h) reference geometry have
been included in the fitting procedure. Details of the fitting procedure and
an analysis of the accuracy of the fit are given below.

In accordance with the hierarchical expansion of the PE operator, we
started the fitting procedure with the (E ′ + A′′

2) × (e′ + a′′2) JT/PJT sub-
problem. The fitting procedure has been initiated with a JT/PJT Hamilto-
nian expanded up to 4th order. The order of expansion has then been in-
creased in steps to achieve improved agreement with the ab initio data. It has
been observed that an 8th order expansion in the three bending modes was
necessary to reproduce the ab initio data with reasonable accuracy (see be-
low). 101 unknown parameters have been optimized in this sub-problem. The
three-dimensional nuclear coordinate space has been sampled with ≈ 4000
points. The root-mean-square deviation of the resulting fit is 0.04 eV. It is
worth mentioning here that a third (excited) electronic state of 2A′

1 sym-
metry comes energetically below the 2E ′ state close to the planar geometry
(−0.2 ≤ S2 ≤ 0.2) and can interact with the ground state (2A′′

2) through the
umbrella mode (a′′2). In this interval, the 2A′

1 state also interacts strongly
with the 2E ′ state through the e′ mode. Therefore, the data points corre-
sponding to the 2E ′ state are removed from the fitting procedure for the
nuclear geometries −0.2 ≤ S2 ≤ 0.2.

To illustrate the strong coupling between the electronic and the nuclear
motions along the bending vibrational modes, we discuss a few representative
PE cuts in the three-dimensional space of the bending coordinates. The fitted
energies of the three adiabatic electronic states (red, green and blue lines,
respectively) of PH+

3 as functions of S2 are compared with the ab initio data
(circles) in Fig. 5.2. The low-energy region of the ground state is depicted in
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Figure 5.2: The PE functions of the ground state (red line) and the first
excited state (blue line) of PH+

3 expanded up to 8th-order in comparison
with the ab initio data (circles). The lower energy part of the ground state
is shown in the inset on an enlarged scale.

the inset on an enlarged scale. The shallow energy barrier between the two
minima in the ground electronic state along S2 has been estimated to be 0.099
eV, which is somewhat lower than those found in the previous calculations
[114, 116–118]. As Fig. 5.2 shows, there exist two symmetry-allowed three-
state CIs near S2 = ±0.9 radian. These two triple intersection points are
connected by a hyperline of two-state CIs when displacements in all three
bending modes are considered.

Fig. 5.3 shows three selected cuts of the fitted PE surface as functions of
S5 and S6 when S2 is 0.55 rad. This value of S2 is very close value of S2 at
the equilibrium geometry of neutral PH3. Fig. 5.3(a) and (b) show two PE
surface cuts perpendicular to each other, one along S5 when S6 = 0.0 rad
and the other along S6 when S5 = 0.0 rad, respectively. In addition to the
JT CI at S5 = 0.0 rad, another two-state intersection is seen between the
lower component of the 2E ′ state and the 2A′′

2 state at S5 ≈ −1.4 rad (see
Fig. 5.3(a)). On the positive side of the S5 axis, these two states are seen
to have a strongly avoided crossing in the interval 1.0 ≤ S5/rad≤ 2.0. As
is seen in Fig. 5.3(b), the PE functions are symmetric in S6. Two strongly
avoided crossings among the lowest two adiabatic electronic states appear
symmetrically with respect to the S6 = 0.0 line. Fig. 5.3(c) shows the third
representative cut of the PE surface as a function of S6 when S5 is 0.7 rad
and S2 = 0.55 rad. This slice of the PE surface is parallel to the one shown
in Fig. 5.3(b), but displaced in S5. Fig. 5.3(c) exhibits two CIs between
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the ground state and the first excited state at S6 = ±1.2 rad. These two
CIs also appear symmetrically due to the reflection symmetry of the PE
surface about the S5 axis. Hence, in addition to the JT intersection, there
are three more two-state CIs in the S5-S6 coordinate space at a fixed non-
zero umbrella angle, as is seen in Fig. 5.3(a) and (c), due to the tree-fold
rotational symmetry of the system.

Fig. 5.4 shows a second set of three cuts of the fitted PE surface as
functions of S5 and S6 when S2 is 0.9 rad. This value of S2 is chosen because
it is close to the point of three-state intersection (see Fig. 5.2). Fig. 5.4(a)
and (b) show two PE surface cuts orthogonal to each other, one along S5

when S6 = 0.0 rad and the other along S6 when S5 = 0.0 rad, respectively.
Fig. 5.4(c) shows the energies of the three adiabatic electronic states along the
S5 = S6 line in the JT-active bending coordinate space when S2 = 0.9 rad.
As is seen in all three cuts in Fig. 5.4, the 2A′′

2 state lies energetically above
the 2E ′ state at S2 = 0.9 rad (see Fig. 5.2 as well) and in this region of the
configuration space the upper component of the 2E ′ state interacts with the
2A′′

2 state. Moreover, as S2 = 0.9 rad is close to the point of triple intersection,
the two-state intersections and avoided crossings have come closer to the JT
intersection. This demonstrates the strong dependence of the PJT interaction
on the umbrella angle. The strong asymmetry of the PE functions in S5 and
the extreme steepness at large-amplitude displacements in any of the three
bending coordinates, as are seen in Fig. 1, 2 and 3, explain the necessity of
the inclusion of JT/PJT coupling terms up to 8th order.

To demonstrate the necessity to include JT/PJT coupling terms up to
8th order, comparisons between the results of the 8th-order fittings and those
of the 6th-order fittings are presented for the two separate 3-state 3-mode
JT/PJT subproblems. Fig. 5.6 compares the error of the 6th-order fitting
(red points) to that of the 8th-order fitting (green points) as functions of the
ab initio energies in the 3-dimensional bending-coordinate space. Fig. 5.5
shows the in the 3-dimensional space of the umbrella coordinate and the JT-
active stretching coordinates. Fig. 5.6 and Fig. 5.5 clearly demonstrate that
the 8th-order fittings are consistently giving a significantly better represen-
tation of the ab initio data than the 6th-order fittings in both 3-dimensional
spaces. A sudden rise of errors is observed in the energy range 2–3 eV in the
fitting results of bending coordinates (see Fig. 5.6), which can be explained
by the fact that a major part of the seam of CIs falls in this energy range,
making the fitting particularly challenging.
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Figure 5.3: Cuts of the PE surfaces of PH+
3 as functions of S5 at S6 = 0.0

rad (a), S6 at S5 = 0.0 rad (b) and S6 at S5 = 0.7 rad (c). S2 = 0.55 rad in
all three figures.
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Figure 5.4: Cuts of the PE surfaces of PH+
3 as functions of S5 at S6 = 0.0

rad (a), S6 at S5 = 0.0 rad (b) and S5 = S6 (c). S2 = 0.9 rad in all three
figures.
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Figure 5.5: Residuals of the fit for the simultaneous fitting as function of
S2, S3 and S4. Red symbols represent the 6th-order fitting results and green
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Figure 5.6: Residuals of the fit for the simultaneous fitting as function of
S2, S5 and S6. Red symbols represent the 6th-order fitting results and green
symbols represent the results of the 8th-order fitting.
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5.4. Ultrafast radiationless decay dynamics

5.4 Simulation of the photoelectron spectrum

and the ultrafast radiationless decay dy-

namics of PH+
3

5.4.1 Nuclear kinetic-energy operator

The photoelectron spectrum and the time-dependent electronic population
probabilities have been computed with the time-dependent wave-packet prop-
agation approach. The wave packets have been propagated in time under the
action of the Hamiltonian operator

Ĥ =
1

2
P TGP + V̂ (S) (5.6)

where G is Wilson’s kinematic matrix [46] and P is the momentum vector
conjugated to S. The analytic forms of the elements of the G matrix have
been taken from Ref. 20. The elements of the G matrix have been approx-
imated by their numerical values at the D3h reference geometry which are
given in Table 5.1.
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P
H

+3

G ∂
∂S1

∂
∂S2

∂
∂S3

∂
∂S4

∂
∂S5

∂
∂S6

∂
∂S1

5.443× 10−4 0.0 0.0 0.0 0.0 0.0
∂

∂S2

0.0 2.928× 10−5 0.0 0.0 0.0 0.0
∂

∂S3

0.0 0.0 5.532× 10−4 0.0 1.764× 10−5 0.0
∂

∂S4

0.0 0.0 0.0 5.532× 10−4 0.0 1.764× 10−5

∂
∂S5

0.0 0.0 1.764× 10−5 0.0 2.518× 10−4 0.0
∂

∂S6

0.0 0.0 0.0 1.764× 10−5 0.0 2.518× 10−4

Table 5.1: Numerical values of elements of the G matrix evaluated at D3h reference geometry (in atomic units).
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5.4.2 Definition of the DVR grid

To propagate the wave packets, the time-dependent Schrödinger equation
has been solved variationally with the multi-configuration time-dependent
Hartree (MCTDH) method [72, 86]. The MCTDH equations of motion are
solved with a constant mean-field (CMF) integration scheme The PE ma-
trix and the nuclear wave packet have been represented in a direct-product
discrete variable representation (DVR) with equidistant grid points. The
details of the DVR grids used are given in Table 5.2. All the vibrational
modes, except the umbrella mode, have been represented by the harmonic
oscillator (HO) DVR. The umbrella mode, being highly anharmonic in na-
ture, can only poorly be approximated by the HO DVR and the employment
of the so-called sin DVR may lead to a more accurate description of the dy-
namics along this mode. The MCTDH calculations were performed with the
Heidelberg MCTDH package [119].

DOF DVR Range N nA nEx
nEy

S1 HO [-1.0 – 1.8] 30 10 5 5
S2 sin [-1.2 – 1.2] 75 20 15 15
S3 HO [-0.5 – 0.6] 20 8 5 5
S4 HO [-0.5 – 0.5] 20 8 5 5
S5 HO [-2.1 – 3.9] 65 15 10 10
S6 HO [-2.5 – 2.5] 65 15 12 12

Table 5.2: Details of the MCTDH calculations. Type of DVR, range (in au)
and number (N) of grid points employed for each degree of freedom. nA,
nEx

and nEy
columns represent the numbers of SPFs used for each degree of

freedom.

5.4.3 preparation of the initial wave packet

To generate the initial vibrational wave function in the electronic ground
state of PH3, a six-dimensional PE surface has been constructed for the
electronic ground state (X1A1) of PH3. The ab initio energies have been
computed employing the CCSD(T) method with the correlation consistent
triple-ζ basis set. Approximately 2500 data points having energies up to 1.5
eV from the energy of the molecule at D3h reference geometry were taken into
consideration in the construction of the PE surface. An 8th order expansion
was necessary to accurately represent the energy barrier in the umbrella
coordinate (1.44 eV).
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Due to the large PE barrier between the two minima along the inver-
sion coordinate, the initial wave packet has been localized in one of the two
equivalent potential wells. The initial guess for the wave function was repre-
sented in the form of a direct product DVR grid (see Table 5.2) and has been
propagated in imaginary time (relaxation method) to generate the localized
vibrational ground state of neutral PH3. A propagation of 20 fs was suffi-
cient to reach convergence with respect to position and energy of the wave
function. The wave function thus obtained was chosen as the initial wave
packet in the cationic states (Condon approximation).

5.4.4 X̃2A′′
2
band of the photoelectron spectrum

To have similar resolution as in the experimental spectrum, an exponential
damping (see Eq. (2.50)) of 70 fs has been applied to the autocorrelation
function of the X̃2A′′

2 state. The theoretical spectrum thus obtained is com-
pared with the experimental spectrum [114] in Fig. 5.7. The vibrational
structure of both of the theoretical and the experimental spectra consist
mainly of an single extended progression which reflects the strong excita-
tion of the umbrella mode upon ionization. The experimental 0-0 transition,
which corresponds to the first adiabatic ionization energy, has been reported
to be at 9.868 eV [114]. In the theoretical spectrum the 0-0 peak appears at
≈ 9.878 eV. We emphasize that no empirical adjustments have been made to
match the theoretical spectrum with the experiment spectrum. The excellent
agreement of the two reflects (i) the high accuracy of the vertical ionization
energy (≈ 8.53 eV) of planar PH3 computed at the RHF/RCCSD(T)/aug-
cc-pVQZ level and (ii) the high accuracy of the PE surface of the X̃2A′′

2

state of PH+
3 . The first few peaks of the band carry indications of tunnel-

ing splittings of the vibrational levels of the cation. While the agreement of
the intensity distribution pattern of the theoretical spectrum with the ex-
perimental spectrum is impressive, the peak-spacings in the higher-energy
part of the theoretical spectrum are somewhat too low. This indicates an
underestimation of the pronounced positive anharnomicity of the potential
in the umbrella mode. Some additional shoulders of the vibrational peaks
are observed in the high-energy tail of the theoretical and the experimental
spectra, which may represent weak (nν2 + ν1) combination bands.

5.4.5 Ã2E′ band of the photoelectron spectrum

Ionization to the 2E state of the PH+
3 cation leads to the second (Ã2E ′)

band of the photolectron spectrum. The same exponential damping of the
autocorrelation function as for the 2A′′

2 state (70 fs) has been applied to
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Figure 5.7: Theoretical (a) and experimental (b) X̃2A′′
2 photoelectron band

of PH3.
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account for finite experimental resolution [114]. The large overall width of
the band and the diffuseness and irregularity of the vibronic structure, both
in the theoretical and in the experimental spectrum, are the consequence
of strong JT and PJT coupling involving five of the six vibrational modes
of PH+

3 . The typical double-hump band shape, expected for a strong Exe
JT effect, is suppressed by the strong PJT coupling. The totally symmetric
breathing mode is significantly excited in the Ã2E ′ state. It increases the
width of the band and blurs the vibronic structures present in the spectra
of lower dimensionality (see below). The unusually long tail of the spectrum
is caused by an extended vibrational progression in the ν1 mode due to a
considerable increase in the P−H bond length up on ionization to the Ã2E ′

state of the cation. The low-energy flank of the theoretical spectrum exhibits
irregular partly resolved vibronic structures which match quite well with the
structures of the experimental spectrum.
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Figure 5.8: Experimental (a) and theoretical (b) Ã2E ′ photoelectrom band
of PH3.
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To clarify the contributions of the different vibronic coupling mechanisms
to the detailed vibronic structures as well as to the overall band shape, a series
of theoretical spectra have been computed employing reduced dimensional
Hamiltonians. Fig. 5.9(a) shows a 3-mode spectrum involving the inversion
mode (S2) and the JT-bending modes (S5 and S6). Inspite of being a bit
narrower than the corresponding experimental band, the theoretical 3-mode
spectrum already gives a good representation of the former. This result
demonstrates that the three bending modes account to a large extent for the
band shape of the Ã2E ′ state.

Inclusion of the JT-active stretching mode (S3 and S4) as additional mode
does not change the band shape significantly, as can be seen in Fig. 5.9(b).
This result reflects the weak JT activity of the degenerate stretching mode.
However, the overall band is slightly broader than the 3-mode spectrum and
the individual peaks also are slightly broader than in Fig. 5.9(a).

5.4.6 Electronic population dynamics

The time-dependent populations of the adiabatic electronic states up to 100
fs, assuming initial preparation of the Ã2E ′ state, are shown in Fig. 5.10.
Starting with equal population (50% each) of the two components of the di-
abatic Ã2E ′ state, the electronic population is quickly redistributed from the
upper to the lower adiabatic surface of the Ã2E ′ state. The lower component
of the 2E ′ state (green line) carries 80% of the total population within 4 fs.
The population of the upper component (blue line) has a minimum (1%) at
≈ 11.5 fs. The ultrafast population transfer within the components of the
2E ′ electronic manifold is the signature of very strong JT coupling in the
Ã2E ′ state, primarily by the degenerate bending mode. On the other hand,
the ground state (red line) becomes populated at ≈ 5 fs, which demonstrates
the efficiency of the PJT coupling in facilitating the fast internal conver-
sion. From 5 to 10 fs, the dynamics is dominated by a two-step population
relaxation, from the highest adiabatic state to the intermediate state and
from the intermediate state to the ground state. After 10 fs, the transfer of
population occurs mainly between the first excited adiabatic state and the
ground state. The nonadiabatic electronic population dynamics is essentially
finished within 20 fs, see Fig. 5.10. After 20 fs, the system is in a state of
dynamic equilibrium between the three adiabatic states. At 100 fs, the pop-
ulations of the three adiabatic states are approximately 81%, 14% and 3.5%
respectively.

To investigate the impact of the three bending modes on the non-adiabatic
dynamics of PH+

3 , the time-dependent populations of the three adiabatic elec-
tronic states were calculated as well with the three-dimensional Hamiltonian
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Figure 5.9: Theoretical Ã2E ′ photoelectrom band of PH3 using the 3-mode
Hamiltonian including the bending coordinates only (a) and the 5-mode
Hamiltonian including the bending modes and the JT-stretching mode (b).
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Figure 5.10: Evolution of the populations of the adiabatic ground state (red
line), the first excited state (green line), and the second excited state (blue
line) of PH+

3 with time, computed with the full six-mode Hamiltonian.

including the umbrella mode and the JT-active bending modes and are shown
in Fig. 5.11. The JT dynamics among the components of the 2E ′ state occurs
within 5 fs. The PJT dynamics is also ultrafast with a timescale of ≈ 10 fs.
The ground electronic state gains almost 50% population within 10 fs. After
10 fs the transfer of electronic population slows down slightly and a recur-
rence to the excited state is observed at 20 fs. The population of the ground
electronic state reaches a maximum at 45 fs. After this, the nonadiabatic
electronic dynamics reaches a dynamic equilibrium. The final populations of
the three adiabatic electronic states, at 100 fs, are approximately 78%, 19%
and 4% respectively.

To illustrate the complexities of the non-adiabatic dynamics, time-dependent
single-mode densities have also been calculated. Probability densities of the
wave packet for single vibrational modes were computed by integrating out
the other vibrational modes and summing over the three electronic states.
The contours of these probability densities are shown in Figs. 9 and 10.
Fig. 9(a) shows the probability density of the wave packet along the breath-
ing mode (S1). Figs. 9(b) and (c) show the same as functions of the JT-active
stretching coordinates (S3 and S4) respectively. While the wave packet shows
pronounced coherent motion along S1 for more than 100 fs (Fig. 9(a)), the JT-
active stretching modes are weakly excited and their coherence is destroyed
within about 50 fs. (Figs. 9(b) and (c)). Fig. 10(a) shows the probability
density of the wave packet as a function of the umbrella (S2) coordinate and
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Figure 5.11: Evolution of the populations of the adiabatic ground state (red
line), the first excited state (green line), and the second excited state (blue
line) of PH+

3 with time, computed with the three-mode Hamiltonian.

time. The time-dependent probability densities along S5 and S6 are shown in
Figs. 10(b) and (c). The combined picture of the motion of the wave packet
in the bending coordinates (Fig. 5.13) illustrates the complexity of the non-
adiabatic dynamics of PH+

3 . The wave packet bifurcates and spreads in S2

within 10 fs, i. e., before it reaches its classical turning point for the first
time (see Fig. 5.13(a)). A look at the wave-packet dynamics in the other two
bending coordinates (S5 and S6) reveals that the wave packet spreads along
S5 and S6 within 10 fs (see Fig. 5.13(b) and (c)). This indicates that the
wave packet get access to the seam of CIs between the Ã2E ′ state and the
X̃2A′′

2 state in the 3-dimensional bending coordinate space within first 10 fs.
It can be seen clearly from Fig. 5.13 that the structure of the wave packet is
mostly destroyed in all three bending coordinates within 20 fs.
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Figure 5.12: Density contour plots of the wave packet as functions of the
stretching coordinates and time.
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Figure 5.13: Density contour plots of the wave packet as functions of the
bending coordinates and time.
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Chapter 6

Application to NH+
3

The photoionization induced excited-state dynamics of NH+
3 and the photo-

electron spectrum of ammonia have been of considerable theoretical and ex-
perimental interest over decades. It is well known that the ammonia molecule
is pyramidal (C3v) in its ground electronic state (X̃1A1) with electronic
configuration (1a1)

2(2a1)
2(1e)4(3a1)

2. The outer-valence photoelectron spec-
trum of ammonia consists of two bands which corresponds to the ionization
from the 3a1 and the 1eMO, respectively. Photoelectron spectra of ammonia
have been recorded a number of times with HeI, HeII, X-ray radiation as well
as synchroton radiation [113, 120–122].The most recent study by Edvardsson
is considered as one with considerably higher energy resolution [123].

The first band (X̃2A′
2′) of the photoelectron spectrum of ammonia con-

sists mainly of a well-resolved long progression which has been assigned un-
ambiguously to the umbrella (ν2) mode which is significantly excited due
to the large change of equilibrium geometries (from pyramidal to planar)
upon ionization. However, the assignment of the second weak ν2 progres-
sion, found in the first photoelectron band of ammonia, has been discussed
controversially in the literature. While Edvardsson et al. have assigned it to
(ν4 + nν2), the more recent theoretical investigation of Viel et al. suggests it
to be assigned as ν1 [41]. Therefore, a complete investigation of the ground
state nuclear dynamics in its full dimensionality is required to arrive at a firm
conclusion of the origin of this secondary progression form first principles.

The second (Ã2E ′) photoelectron band of ammonia, in contrast to the
first band, is broad and exhibits only weak diffuse and irregular vibronic
structure [123]. It has been speculated for a long time that the diffuseness
of this band is a consequence of strong JT and PJT couplings. Haller et

al. [124] showed by a two-mode JT calculation that the overall band shape
depends strongly on the multi-mode JT activity of the cation in its excited
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3

electronic state. Woywod et al. performed a full-dimensional calculation em-
ploying the linear vibronic coupling model an showed that the photoelectron
spectrum and the electronic population dynamics depend not only on the
strong JT effects but also on the PJT coupling of the 2E ′ state with the 2A′′

2

state [93]. The most recent theoretical investigation, carried out by Viel and
co-workers [41], has achieved several improvements of the understanding of
the excited-state dynamics of NH+

3 . One of the challenges in the theoretical
investigation of the excited-state dynamics of NH+

3 is to explain the absence
of any detectable signal in the fluorescence spectrum from the Ã2E ′ state
[125], which has been conjectured to be quenched due to the presence of an
ultrafast radiationless decay channel. While the investigations of Viel et al.
have confirmed the presence of multiple CIs, they could only show an incom-
plete transfer of electronic population to the ground state after ionization
to the excited state [41]. Therefore, the first-principles descriptions of the
ultrafast electronic population dynamics of NH+

3 still remains a theoretical
challenge. A three-sheeted six-dimensional PE surface of the ammonia cation
has been constructed in this work. However, we could not yet perform a full
dimensional quantum dynamical calculation due to the huge computational
expense. While a six-dimensional dynamical investigation is necessary for a
complete comparison of the theoretical results with the experimental findings,
it is shown below that a three-dimensional calculation including the bending
modes is able to reproduce the gross dynamical features of this system.

6.1 Ab initio electronic-structure calculations

Ab initio energies of the ground and the excited electronic states of NH+
3

cation have been computed as functions of the six symmetry coordinates.
The definitions of the symmetry coordinates have been taken to be the same
as for PH+

3 . Complete-active-space self-consistent-field (CASSCF) calcula-
tions have been performed with an active space consisting of 7 orbitals (the
2s and 2p orbitals on N and the 1s orbitals on the H atoms). Six states have
been state averaged to obtain a balanced description of the electronic wave-
function over the full range of the configuration space. The multireference
configuration interaction (MRCI) method has been employed to account for
dynamic electron correlation. The four lowest electronic states have been
included in the MRCI calculations. Only the 1s orbital on N is considered
as the core orbital and remained as doubly occupied frozen orbitals in all
the MRCI calculations. The correlation-consistent polarized valence triple-ζ
(cc-pVTZ) basis of Woon and Dunning [107] has been employed throughout.
No symmetry constraints were imposed in the electronic-structure calcula-
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3

tions. All ab initio calculations were performed with the MOLPRO quantum
chemistry package [108].

6.2 A six-dimensional three-sheeted potential-

energy surface of NH+
3

6.2.1 Hierarchical expansion of the PE surface

The three-state three-mode (E + A) × (e + a) JT/PJT Hamiltonian (see
Chapter 2), developed in this work is at the core of the three-state six-mode
diabatic Hamiltonian of NH+

3 . The latter is approximated as a hierarchical
expansion in terms of lower dimensional potentials. The hierarchical expan-
sion employed here reads

V (S) = V (0) + V (S1) + V (S2, S3, S4) + V (S2, S5, S6)

+ V (S3, S4, S5, S6)− V (S2),
(6.1)

where V (S3, S4, S5, S6) represents the stretch-bend mixed coupling terms of
JT origin which has been expanded in terms of symmetry-adapted polynomi-
als of JT-active nuclear displacement coordinates. All the other terms have
the same meaning as in Eq. (5.2). The nth order expansion of the elements
V (S3, S4, S5, S6) can conveniently be expressed as the sum of a diagonal and
a traceless matrix as

V (n)(S3, S4, S5, S6) =







ν
(n)
A 0 0

0 ν
(n)
E 0

0 0 ν
(n)
E






+





0 0 0
0 W (n) Z(n)

0 Z(n) −W (n)



 . (6.2)

The expansion terms are given below explicitly correlate the JT-active stretch-
ing coordinates (S3, S4) with the JT-active bending coordinates (S5, S6) and
are new here. Because the 4th-order terms are rather lengthy, we give these
terms up to third order :

ν
(1)
A = 0

ν
(2)
A = ã

(2)
1 (x1x2 + y1y2)

ν
(3)
A = ã

(3)
1 (x21x2 − y21x2 − 2x1y1y2)

+ ã
(3)
2 (x1x

2
2 − x1y

2
2 − 2y1x2y2)

(6.3)
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ν
(1)
E = 0

ν
(2)
E = b̃

(2)
1 (x1x2 + y1y2)

ν
(3)
E = b̃

(3)
1 (x21x2 − y21x2 − 2x1y1y2)

+ b̃
(3)
2 (x1x

2
2 − x1y

2
2 − 2y1x2y2)

(6.4)

W (1) = 0

W (2) = λ̃
(2)
1 (x1x2 − y1y2)

W (3) = λ̃
(3)
1 x2(x

2
1 + y21) + λ̃

(3)
2 x1(x

2
2 + y22)

+ λ̃
(3)
3 x1(x1x2 + y1y2) + λ̃

(3)
4 x2(x1x2 + y1y2)

(6.5)

Z(1) = 0

Z(2) = λ̃
(2)
1 (−x1y2 − x2y1)

Z(3) = λ̃
(3)
1 y2(x

2
1 + y21) + λ̃

(3)
2 y1(x

2
2 + y22)

+ λ̃
(3)
3 y1(x1x2 + y1y2) + λ̃

(3)
4 y2(x1x2 + y1y2).

(6.6)

The 4-mode terms given above are necessary to improve the accuracy of
the PE surface of NH+

3 . All the other members of the hierarchical expansion
are functions of at most three coordinates and therefore cannot explain a
simultaneous displacements in all the four JT-active coordinates. In other
words, none of the expansion terms of V (S3, S4, S5, S6) can be found in any
of the other expansions.

6.2.2 Fitted potential-energy surface

The unknown coefficients of the polynomial expansions are determined by
fitting the eigenvalues of the 3× 3 diabatic PE matrix to the ab initio data.
In accordance with the hierarchical expansion of the PE operator (Eq. (6.1)),
we started the fitting procedure with the (E ′ +A′′

2)× (e′ + a′′2) JT/PJT sub-
problem. The fitting procedure has been initiated with a JT/PJT Hamil-
tonian expanded up to 4th order. The order of expansion has then been
increased in steps to achieve improved agreement with the ab initio data. It
has been observed that an 8th order expansion in the three bending modes
was necessary to reproduce the ab initio data with reasonable accuracy (see
below). 101 unknown parameters have been optimized in this sub-problem.
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To illustrate the strong coupling between the electronic and nuclear mo-
tions along the bending vibrational modes, we discuss a few representative
PE cuts in the three-dimensional space of the bending coordinates. The fitted
energies of the three adiabatic electronic states (red and blue lines, respec-
tively) of PH+

3 as functions of S2 are compared with the ab initio data (circles)
in Fig. 6.1. Unlike PH+

3 , the equilibrium geometry of NH+
3 is planar in its

ground electronic state. As Fig. 5.2 shows, there exist two symmetry-allowed
three-state crossings near S2 = ±1.0 radian. These two triple intersection
points are connected by a hyperline of two-state CIs when displacements in
all three bending modes are considered.
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Figure 6.1: The PE functions of the ground state (red line) and the first
excited state (blue line) of NH+

3 expanded up to 8th-order in comparison
with the ab initio data (circles).

Fig. 6.2 shows two selected cuts of the fitted PE surface as functions
of S5 and S6 when S2 is zero. This value of S2 corresponds to the planar
configuration and PJT coupling is completely switched off there. Fig. 6.2
show two PE surface cuts perpendicular to each other, one along S5 when
S6 is zero and the other along S6 when S5 is zero, respectively. As is seen in
Fig. 6.2, the PE functions are asymmetric in S5, which is a consequence of
large quadratic and higher-order JT couplings.

Fig. 6.3 shows a second set of two cuts of the fitted PE surface as functions
of S5 and S6 when S2 is 0.6 rad. This value of S2 corresponds to the minimum
of energy of the 2E ′ state as a function of S2. Fig. 6.3 shows two PE surface
cuts perpendicular to each other, one along S5 when S6 is zero and the other
along S6 when S5 is zero, respectively. In addition to the JT CI at S5 = 0,
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Figure 6.2: Cuts of the PE surfaces of NH+
3 as functions of S5 at S6 = 0.0

rad (upper panel), S6 at S5 = 0.0 rad (lower panel). S2 = 0.0 rad in both
figures.

78



6.2. A six-dimensional three-sheeted potential-energy surface of NH+

3

another two-state intersection is seen between the lower component of the
2E ′ state and the 2A′′

2 state at S5 ≈ −1.4 rad. On the positive side of the
S5 axis, these two states are seen to have a strongly avoided crossing in the
interval 0.6 ≤ S5/rad≤ 2.0. As is seen in Fig. 6.3 (lower panel), the PE
functions are symmetric in S6.
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Figure 6.3: Cuts of the PE surfaces of NH+
3 as functions of S5 at S6 = 0.0

rad (upper panel), S6 at S5 = 0.0 rad (lower panel). S2 = 0.6 rad in both
figures.

The difference between the hierarchical expansion used for PH+
3 and that

used here is the inclusion of mixed stretch-bend JT coupling terms. Ab

initio data, computed as functions simultaneous displacements of the JT-
active stretching and bending coordinates, have been employed to determine
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these coupling terms. We present here the results for the PE surfaces fitted
with the JT Hamiltonian with stretch-bend coupling terms included up to
third order. Fig. 6.4 represents two diagonal cuts, one along S3 = S5 and the
other along S3 = −S5. It is worthwhile to note the pronounced difference of
the JT stabilization energies of these two cuts, which cannot be reproduced
without the inclusion of the explicit 4-mode JT coupling terms.
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Figure 6.4: Two diagonal cuts of the PE surfaces of NH+
3 along S3 = S5

(upper panel), and S3 = −S5 (lower panel). All the other coodinates are
zero in both figures.
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6.3 Simulation of the photoelectron spectrum

and the ultrafast radiationless decay dy-

namics of NH+
3

6.3.1 Nuclear kinetic-energy operator

The photoelectron spectrum and the time-dependent electronic population
probabilities have been calculated by propagating time-dependent wave-packets
under the action of the 3-dimensional Hamiltonian operator including the
bending modes of vibration

Ĥ =
1

2
P TGP + V̂ (S) (6.7)

where G is Wilson’s kinematic matrix [46], S = (S2, S5, S6)
T and P is the

momentum vector conjugated to S. The elements of the G matrix have been
approximated by their numerical values at the D3h reference geometry which
are given in Table 6.1.

G ∂
∂S2

∂
∂S5

∂
∂S6

∂
∂S2

5.904× 10−5 0.0 0.0
∂

∂S5

0.0 4.841× 10−4 0.0
∂

∂S6

0.0 0.0 4.841× 10−4

Table 6.1: Numerical values of elements of the G matrix evaluated at D3h

reference geometry (in atomic units).

6.3.2 Preparation of the initial wave packet

The initial wave packet has been prepared in the electronic ground state of
NH3. For this reason, a three-dimensional PE surface has been constructed
for the electronic ground state (X1A1) of NH3. The ab initio energies have
been computed employing the CCSD(T) method with the correlation con-
sistent triple-ζ basis set. Approximately 800 data points having energies up
to 1.5 eV from the energy of the molecule at D3h reference geometry were
taken into consideration in the construction of the PE surface.

Due to the large PE barrier between the two minima along the inversion
coordinate, the initial wave packet has been localized in one of the two equiv-
alent potential wells. The initial guess for the wave function was represented
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6.3. Ultrafast radiationless decay dynamics

in the form of a direct product DVR grid (see Table 6.2) and has been prop-
agated in imaginary time (also known as relaxation method) to generate the
localized vibrational ground state of neutral NH3. A propagation of 25 fs was
sufficient to reach convergence. The wave function thus obtained was chosen
as the initial wave packet in the cationic states (Condon approximation).

DOF DVR Range N nA nEx
nEy

S2 sin [-1.1 – 1.1] 100 35 25 25
S5 HO [-2.0 – 3.0] 75 35 20 20
S6 HO [-2.5 – 2.5] 75 35 20 20

Table 6.2: Details of the MCTDH calculations. Type of DVR, range (in au)
and number (N) of grid points employed for each degree of freedom. nA,
nEx

and nEy
columns represent the numbers of SPFs used for each degree of

freedom.

6.3.3 X̃2A′′
2
photoelectron band of NH

3

The three-dimensional initial wave packet in the ground state of PH3 has been
evolved in time on the ground-state PE surface of PH+

3 with the MCTDH
method [72, 119]. The X̃2A′′

2 band of the photoelectron spectrum has been
obtained by Fourier transformation of the autocorrelation function. To have
similar resolution as in the experimental spectrum, a Gaussian damping of
200 fs has been applied to the autocorrelation function of the X̃2A′′

2 state.
The theoretical spectrum thus obtained is given in Fig. 6.5. The vibrational
structure of the theoretical spectrum consists mainly of an single extended
progression which reflects the change of equilibrium geometry, from pyrami-
dal to planar, upon ionization. The most intense transition corresponds to
the 0-6 vibrational line both in theoretical and in experimental spectrum.
An additional very weak vibrational progression has been observed in the
experimental spectrum. The origin of this progression has been discussed
controversially in the literature. However, the most recent theoretical study
has assigned it to the excitation of the totally symmetric stretching (ν1)
vibration peaks.

6.3.4 Ã2E′ photoelectron band of NH
3

Ionization to the 2E state of the NH+
3 cation leads to the second (Ã2E ′)

band of the photolectron spectrum. The Ã2E ′ band has been simulated
in a reduced dimensional calculation involving the three bending modes of
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Figure 6.5: X̃2A′′
2 band of the photoelectron spectrum of NH3 calculated with

a 3-mode Hamiltonian.

vibration (see Fig. 6.6). An exponential damping of 50 fs has been applied
to the autocorrelation function to account for finite experimental resolution.
The large overall width of the band and the diffuseness and irregularity of
the vibronic structure, in the experimental spectrum are the consequence of
strong JT and PJT coupling involving five of the six vibrational modes of
PH+

3 . The 3-mode spectrum presented here may be considered as a very
crude approximation of the experimental spectrum. The clear double-hump
band shape present in Fig. 6.6 reveals the presence of a strong E×e JT effect.
The existence of a regular vibronic structure is as expected for a 3D model.
However, we emphasize that the results are too preliminary. 6D calculations
are presently in progress and we hope to obtain more complete results in the
near future.

6.3.5 Electronic population dynamics

The time-dependent populations of the adiabatic electronic states have been
calculated up to 100 fs after the initial preparation of the Ã2E ′ state, em-
ploying the 3-dimensional Hamiltonian. The results are shown in Fig. 6.7.
Starting with equal population (50% each) of the two components of the di-
abatic Ã2E ′ state, the electronic population undergoes a rapid redistribution
from the upper to the lower adiabatic surface of the Ã2E ′ state. The lower
component of the 2E ′ state (green line) receives 95% of the total population
within 5 fs and the population of the upper component (blue line) reaches
its minimum at ≈ 12fs. The fast initial (first 5 fs) transfer of electronic
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Figure 6.6: Ã2E ′ band of the photoelectron spectrum of NH3 calculated with
a 3-mode Hamiltonian.

population within the 2E manifold reflects the extremely strong E × e JT
effect involving the e bending mode. On the other hand, the ground state
(red line) becomes populated at ≈ 10 fs, which demonstrates the efficiency
of the PJT coupling in facilitating the fast internal conversion. At 10 fs,
the ground state is almost 45% populated. However, after 10 fs transfer of
electronic population slows down considerably. A small recurrence in the
second excited adiabatic state is seen at about 18 fs. The excited state pop-
ulation starts to decay again after 20 fs and continues until 100 fs. At the
end of the propagation, 68% of the total population has been transfered to
the ground electronic state with ≈ 32% population still remaining on the
excited electronic state. The total population (magenta line), as is seen in
in Fig. 6.7, remains essentially constant throughout the propagation, which
reflects the numerical accuracy of the integrations carried out in this cal-
culation. The results of the present 3-mode electronic population dynamics
calculation clearly illustrate the effects of the three bending modes in the
strong JT/PJT-induced internal-conversion dynamics of NH+

3 . While the
present results already agree qualitatively with those obtained by the other
workers with a full-mode Hamiltonian [41], it is still far from being complete.
We hope to obtain a complete 6-dimensional population dynamics calcula-
tion with our improved PE surface in recent future, which will explain the
absence of excited state fluorescence of NH+

3 in a more satisfactory way.

To illustrate the complexities of the non-adiabatic dynamics, time-dependent
single-mode densities have also been calculated. Probability densities of the
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Figure 6.7: Evolution of the populations of the adiabatic ground state (red
line), the first excited state (green line), and the second excited state (blue
line) of NH+

3 with time, computed with the full 3-mode Hamiltonian.

wave packet for single vibrational modes were computed by integrating out
the other vibrational modes and summing over the three electronic states.
The contours of these probability densities are shown in Fig. 6.8. The com-
bined picture of the motion of the wave packet in the bending coordinates
illustrates the complexity of the non-adiabatic dynamics of NH+

3 in bending
coordinate space. The wave packet spreads in S2 within 10 fs, i. e., as soon
as it reaches its classical turning point for the first time. A comparison with
the PE surfaces along S2 (see Fig. 6.1) demonstrates that most of the wave
packet cannot access the point of triple intersection, at least within the first
vibrational period. A look at the wave-packet dynamics in the other two
bending coordinates (S5 and S6) reveals that the wave packet spreads along
S5 and S6 within 10 fs. As a result, the wave packet gets access to the seam
of CIs between the Ã2E ′ state and the X̃2A′′

2 state in the 3-dimensional bend-
ing coordinate space within a very short time. It can be seen from Fig. 6.8
that the structure of the wave packet is mostly destroyed in all three bending
coordinates within 40 fs. To obtain additional insight into the microscopic
picture of the 3-mode dynamics, single-mode densities have also been ob-
tained for three diabatic electronic states separately and the contour plots
are shown in Appendix C. Fig. C.1 for example, illustrates that the wave
packet cannot cross the energy barrier in the 2E state up to 50 fs.
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Figure 6.8: Density contour plots of the wave packet as functions of the
bending coordinates and time.
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Chapter 7

Summary and outlook

The systematic extension of JT theory beyond the so-called standard model
is at the core of this thesis. The standard JT model has been the paradigm for
the analysis of static and dynamic JT effects in Physics and Chemistry since
many decades. The motivation for a substantial extension of JT theory arises
from modern computational electronic-structure theory, which can provide
an essentially unlimited amount of PE data for JT systems. The traditional
expansions of the electrostatic PE surfaces up to second order are, in many
cases, insufficient for an accurate modeling of the ab initio data.

The E × e JT Hamiltonian in trigonal and tetrahedral systems has been
expanded up to 8th-order in nuclear displacement coordinates, replacing the
Taylor expansion of the electronic Hamiltonian by an expansion in invariant
polynomials, using the powerful tools of invariant theory [61, 67]. Invariant
theory allows extension of JT expansions up to arbitrary orders in a straight-
forward way. Since C3v is a subgroup of C6h, D3h, Td and Oh, the E×emaster
JT Hamiltonian is also valid for these groups.

The theory of (E + A) × (e + a) JT/PJT coupling, which represents a
generic problem in the JT theory of trigonal systems, has been developed
beyond the quadratic approximation. All matrix elements of the Hamilto-
nian, expanded up to 8th order, have been given explicitly which can be used
without any alteration to describe the strong JT/PJT couplings exhibited by
many trigonal (XY3) systems. Analogous to the high-order expansion of the
T2 × t2 JT Hamiltonian, use of the invariant theory of homogeneous polyno-
mials ensures the most general expansion of the (E + A)× (e + a) JT/PJT
Hamiltonian up to any order, while keeping the parameter space minimal.
This model Hamiltonian extends the previous (E + A) × (e + a) JT/PJT
model by treating all three large-amplitude bending modes in a consistent
manner, while the previous model included the umbrella coordinate up to
second order only [41].
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The three applications of JT theory reported in this work are the P+
4 ,

PH+
3 and NH+

3 cations. While it has been known for a long time that the
P+
4 cation shows a very strong E × e JT effect in its electronic ground state,

the best calculations performed so far included the JT coupling up to second
order only [101–103]. The high-order expansion of the E×e JT Hamiltonian
constructed during the present work has been employed to explore the influ-
ence of the higher-order JT coupling terms on the PE surfaces and on the
vibronic dynamics of P+

4 . It has been shown that a 6th-order JT expansion
is necessary for an accurate representation of the ab initio PE surface of the
X̃2E state of P+

4 .
A comparison of the vibronic structures of the photoelectron spectra cal-

culated with the 2nd-order and the 6th-order models reveals the effect of
higher-order terms. The high-resolution vibronic spectra reveal a significant
decrease in the spectral line density from the 2nd to the 6th-order expan-
sion. This can be explained by the fact that at large displacements along the
e vibrational mode some of the P atoms come close to each other and the re-
pulsion between the electron densities of the atoms leads to a strong positive
anharmonicity in the potential. The low-resolution envelope of the 6th-order
spectrum exhibits a lower onset as well as a lower cut-off than the 2nd-order
spectrum. In the experimental photoelectron spectrum [101], the E and the
T2 bands are overlapping. Moreover, the totally symmetric breathing mode is
significantly excited and its progression conceals the structures arising from
the JT effect [101]. For these reasons, the theoretical JT spectra presented
here cannot be compared with the available experimental spectra.

A three-sheeted six-dimensional PE surface has been developed for the
ground state and the first excited electronic state of the PH+

3 cation. For the
JT and PJT active vibrational modes, an 8th-order polynomial expansion of
the (2E ′+2A′′

2)×(e′+a′′2) JT/PJ Hamiltonian, developed in the present work,
was employed. This model Hamiltonian extends the previous (E+A)×(e+a)
JT/PJT model by treating all three large-amplitude bending modes in a
consistent manner. The symmetry-adapted expansion reduces the cost of
the ab initio calculations substantially by eliminating thousands of redundant
nuclear configurations.

The non-adiabatic nuclear dynamics initiated by photoionization of PH3

has been explored by performing time-dependent wave-packet propagations,
employing the MCTDH method [85]. The calculations have been carried
out in symmetry-adapted internal coordinates, employing an approximate
kinetic-energy operator. The vibronic structure of the first two photoelec-
tron bands of PH3, which correspond to the ionization of the system to the
ground and the first excited states of the cation respectively, has been com-
puted. The X̃2A′′

2 band shows an extended single progression which reflects
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the large change of the umbrella angle upon ionization. The overall band-
shape of the nearly structureless second photoelectron band agrees well with
the experimental spectrum. Exceptionally strong JT and PJT coupling is
primarily responsible for the diffuse and irregular vibronic structure of the
band.

The calculation of time-dependent populations of the three adiabatic elec-
tronic states reveals the timescales of several ultrafast decay mechanisms.
The JT dynamics within the components of the 2E state takes place within
first the 5 fs. The deactivation of the excited state to the ground state, which
is controlled by the strong PJT coupling, occurs on a timescale of 10 fs. More
than 80% of the population of the excited electronic state decay within 20
fs. The adiabatic populations calculated employing a 3-dimensional Hamil-
tonian reveal the importance of the three bending modes in the ultrafast
non-adiabatic dynamics of PH+

3 . Up to 10 fs, the calculation including the
three bending modes shows the same timescales of the JT/PJT dynamics as
does the six-mode calculation. Overall, we have shown that the Ã2E ′ state
of PH+

3 decays to the electronic ground state within less than 20 fs, which is
truly ultrafast and may be one of the fastest internal conversion processes in
nature.

In comparison to the PH+
3 cation, the dynamics in the NH+

3 cation has
been more extensively studied both in the ground and in the excited elec-
tronic states. In spite of the success of the previous studies, we have revisited
this system to explain its complex non-adiabatic dynamics in the light of an
improved JT/PJT Hamiltonian. While the diffuse shape of the Ã2E ′ pho-
toelectron band of NH3 is relatively insensitive to the accuracy of the PE
surfaces, the adiabatic electronic populations are more sensitive to detailed
properties of the PE surfaces. A six-dimensional three-sheeted diabatic PE
surface has been constructed for the NH+

3 cation which is an improved version
of the same reported by Viel and Eisfeld. Preliminary quantum dynamical
calculations including three bending modes exhibit a qualitative agreement
of the theoretical photoelectron bands with the experimental ones. The time-
dependent electronic populations of the three adiabatic electronic states also
match quite well with the previous full-mode calculations, which illustrate
the predominance of the considered vibrational modes on the non-adiabatic
dynamics. Work is currently in progress to obtain complete six-dimensional
quantum dynamical results which include several coupling mechanisms which
were not considered before for NH+

3 .
Despite the extensive research on JT theory over several decades, not

everything is yet fully understood from first principles. This work illustrates
some aspects of the state of the art of current research in this area which
may potentially open up several directions to pursue further investigations.
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7. Summary and outlook

The (E + T2) × (e + t2) JT/PJT problem may be considered as the generic
problem in JT theory in tetrahedral and octahedral systems. While Köppel
and coworkers have investigated this problem long ago within the framework
of linear vibronic coupling theory [102], a systematic high-order expansion
involving all five vibrational modes in a consistent way does not yet exist.
Being symmetric in the electronic and the nuclear vector spaces, the (E +
T2)× (e+ t2) JT/PJT Hamiltonian may be expanded up to arbitrarily high
orders by the use of Weyl’s polarization method and other tools of invariant
algebra. The availability of such an expansion would be beneficial to describe
the JT/PJT activities in many strongly JT-active tetrahedral and octahedral
systems. Moreover, this five-state five-mode vibronic problem includes the
E × e and T2 × t2 JT and the (E + T2)× t2 PJT effects as its subproblems.

As is well known, the JT effect in E electronic states in tetragonal (D2d,
C4v, D4h) symmetry is fundamentally different from those in trigonal, tetra-
hedral or octahedral symmetry [18]. In tetragonal groups, b1 and b2 vibra-
tional modes are JT active in first order, giving rise to the E × (b1 + b2) JT
effect. On the other hand, the e vibrational mode exhibits PJT activity in
first order by mixing the E state with energetically close B2 states, which is
known as the (E + B2) × e PJT effect [126]. These JT/PJT Hamiltonians
have been discussed and applied extensively in the literature considering up
to quadratic coupling terms [18, 126–130]. The availability of a high-order
expansion of the (E+B1+B2)× (e+b1+b2) JT/PJT Hamiltonian in tetrag-
onal symmetry would be very helpful for the further theoretical studies of
the spectra of tetragonal systems.
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Appendix A

Weyl’s polarization method

Polarization is a very useful tool in invariant theory and representation the-
ory of abstract mathematics. The name, Weyl’s polarization, refers to the
pioneering work by the famous mathematician Hermann Weyl on this topic.
Here, we would try to closely follow the original formulation of Weyl.

The derivative of a polynomial f(x), designated as f ′(x), may be defined
as the coefficient of t in the expansion of f(x+ t) as a polynomial in t:

f(x+ t) = f(x) + t · f ′(x) + · · · (A.1)

The above definition may be generalized for the case of multiple variables as:

f(x+ ty) = f(x) + t · f1(x,y) + · · · (A.2)

where x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn). The coefficient of t,
f1(x,y), in the above expression (Eq. (A.2)) is called the polarized polyno-
mial of f . The polarization is performed by applying the so-called polariza-
tion operator (Dyx) on the homogeneous polynomial f as

Dyx ◦ (f) =
∂x

∂x1
y1 + · · ·+ ∂f

∂xn
yn (A.3)

It is interesting to note that, by identifying yi with dxi, the polarized form
of f actually provides the total differential of f . Being a differential opera-
tor by definition, the polarization operator acts linearly and obeys all other
properties of differentiation. Polarization, in other words, may be defined as
a mapping of a homogeneous polynomial to a multilinear form, from which
it is straightforward to retrieve the original one.
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Appendix B

Matrix elements of the
(E +A)× (e+ a) JT/PJT
Hamiltonian up to 8th order

The polynomials representing the elements of the Hamiltonian matrix are
given below. H(n)

ij represents the nth order element in the ith row and jth
column, where i, j = x, y, z. Only the elements of the upper triangle of the
real-symmetric matrices are given.

H(0)
zz = EA

H(1)
zz = 0

H(2)
zz = b

(2)
1 z2 + b

(2)
2 (x2 + y2)

H(3)
zz = b

(3)
1 (x3 − 3xy2)

H(4)
zz = b

(4)
1 z4 + b

(4)
2 z2(x2 + y2) + b

(4)
3 (x2 + y2)2

H(5)
zz = b

(5)
1 z2(x3 − 3xy2) + b

(5)
2 (x5 − 2x3y2 − 3xy4)

H(6)
zz = b

(6)
1 z6 + b

(6)
2 z4(x2 + y2) + b

(6)
3 z2(x2 + y2)2

+ b
(6)
4 (x2 + y2)3 + b

(6)
5 (x3 − 3xy2)2

H(7)
zz = b

(7)
1 z4(x3 − 3xy2) + b

(7)
2 z2(x2 + y2)(x3 − 3xy2)

+ b
(7)
3 (x4 + 2x2y2 + y4)(x3 − 3xy2)

H(8)
zz = b

(8)
1 z8 + b

(8)
2 z6(x2 + y2) + b

(8)
3 z4(x4 + 2x2y2 + y4)

+ b
(8)
4 z2(x2 + y2)3 + b

(8)
5 z2(x3 − 3xy2)2

+ b
(8)
6 (x2 + y2)4 + b

(8)
7 (x2 + y2)(x3 − 3xy2)2

(B.1)
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B. Matrix elements of the (E +A)× (e+ a) JT/PJT Hamiltonian

H(0)
xz = 0

H(1)
xz = 0

H(2)
xz = c

(2)
1 zx

H(3)
xz = c

(3)
1 z(x2 − y2)

H(4)
xz = c

(4)
1 z2(zx) + c

(4)
2 zx(x2 + y2)

H(5)
xz = c

(5)
1 z3(x2 − y2) + c

(5)
2 zx(x3 − 3xy2) + c

(5)
3 z(x4 − y4)

H(6)
xz = c

(6)
1 xz5 + c

(6)
2 xz3(x2 + y2) + c

(6)
3 zx(x2 + y2)2

+ c
(6)
4 z(x2 − y2)(x3 − 3xy2)

H(7)
xz = c

(7)
1 z5(x2 − y2) + c

(7)
2 xz3(x3 − 3xy2)

+ c
(7)
3 z(x2 − y2)(x4 + 2x2y2 + y4)

H(8)
xz = c

(8)
1 xz7 + c

(8)
2 xz5(x2 + y2) + c

(8)
3 xz3(x4 + 2x2y2 + y4)

+ c
(8)
4 xz(x2 + y2)3 + c

(8)
5 xz(x3 − 3xy2)2

+ c
(8)
6 z3(x2 − y2)(x3 − 3xy2)

+ c
(8)
7 z(x2 − y2)(x2 + y2)(x3 − 3xy2)

(B.2)

H(0)
yz = 0

H(1)
yz = 0

H(2)
yz = c

(2)
1 zy

H(3)
yz = c

(3)
1 (−2xy)z

H(4)
yz = c

(4)
1 yz3 + c

(4)
2 zy(x2 + y2)

H(5)
yz = c

(5)
1 z3(−2xy) + c

(5)
2 zy(x3 − 3xy2) + c

(5)
3 z(−2xy)(x2 + y2)

H(6)
yz = c

(6)
1 yz5 + c

(6)
2 yz3(x2 + y2) + c

(6)
3 yz(x2 + y2)2

+ c
(6)
4 z(−2xy)(x3 − 3xy2)

H(7)
yz = c

(7)
1 z5(−2xy) + c

(7)
2 yz3(x3 − 3xy2)

+ c
(7)
3 z(−2xy)(x4 + 2x2y2 + y4)

H(8)
yz = c

(8)
1 yz7 + c

(8)
2 yz5(x2 + y2) + c

(8)
3 yz3(x4 + 2x2y2 + y4)

+ c
(8)
4 yz(x2 + y2)3 + c

(8)
5 yz(x3 − 3xy2)2

+ c
(8)
6 z3(−2xy)(x3 − 3xy2) + c

(8)
7 z(−2xy)(x2 + y2)(x3 − 3xy2)

(B.3)
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H(0)
xx = EE

H(1)
xx = a

(1)
1 x

H(2)
xx = a

(2)
1 z2 + a

(2)
2 (x2 + y2) + a

(2)
3 (x2 − y2)

H(3)
xx = a

(3)
1 (x3 − 3xy2) + a

(3)
2 x(x2 + y2) + a

(3)
3 z2x

H(4)
xx = a

(4)
1 z4 + a

(4)
2 (x2 + y2)2 + a

(4)
3 z2(x2 + y2)

+ a
(4)
4 (x4 − 6x2y2 + y4) + a

(4)
5 (x4 − y4) + a

(4)
6 z2(x2 − y2)

H(5)
xx = a

(5)
1 z2(x3 − 3xy2) + a

(5)
2 (x2 + y2)(x3 − 3xy2)

+ a
(5)
3 z4x+ a

(5)
4 z2x(x2 + y2) + a

(5)
5 x(x2 + y2)2

+ a
(5)
6 (x3 − 3xy2)(x2 − y2)

H(6)
xx = a

(6)
1 z6 + a

(6)
2 z4(x2 + y2) + a

(6)
3 z2(x2 + y2)2 + a

(6)
4 (x2 + y2)3

+ a
(6)
5 (x3 − 3xy2)2 + a

(6)
6 z4(x2 − y2) + a

(6)
7 z2(x4 − y4)

+ a
(6)
8 xz2(x3 − 3xy2) + a

(6)
9 z2(x4 − 6x2y2 + y4)

+ a
(6)
10 (x

2 + y2)2(x2 − y2) + a
(6)
11 (x

2 + y2)(x4 − 6x2y2 + y4)

H(7)
xx = a

(7)
1 z4(x3 − 3xy2) + a

(7)
2 z2(x2 + y2)(x3 − 3xy2)

+ a
(7)
3 (x4 + 2x2y2 + y4)(x3 − 3xy2) + a

(7)
4 xz6 + a

(7)
5 xz4(x2 + y2)

+ a
(7)
6 xz2(x4 + 2x2y2 + y4) + a

(7)
7 (x2 − y2)(z2)(x3 − 3xy2)

+ a
(7)
8 x(x3 − 3xy2)2 + a

(7)
9 (x4 − 6x2y2 + y4)(x3 − 3xy2)

+ a
(7)
10 x(x

2 + y2)3

H(8)
xx = a

(8)
1 z8 + a

(8)
2 z6(x2 + y2) + a

(8)
3 z4(x4 + 2x2y2 + y4)

+ a
(8)
4 z2(x2 + y2)3 + a

(8)
5 z2(x3 − 3xy2)2 + a

(8)
6 (x2 + y2)4

+ a
(8)
7 (x2 + y2)(x3 − 3xy2)2 + a

(8)
8 z6(x2 − y2)

+ a
(8)
9 z4(x2 + y2)(x2 − y2)

+ a
(8)
10 z

2(x4 + 2x2y2 + y4)(x2 − y2) + a
(8)
11 xz

4(x3 − 3xy2)

+ a
(8)
12 xz

2(x2 + y2)(x3 − 3xy2) + a
(8)
13 z

4(x4 − 6x2y2 + y4)

+ a
(8)
14 z

2(x2 + y2)(x4 − 6x2y2 + y4)

+ a
(8)
15 (x

8 + 2x6y2 − 2x2y6 − y8)

+ a
(8)
16 (x

8 − 7x6y2 + 15x4y4 − 9x2y6)

+ a
(8)
17 (x

8 − 4x6y2 − 10x4y4 − 4x2y6 + y8)

(B.4)
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H(0)
xy = 0

H(1)
xy = −a(1)1 y

H(2)
xy = a

(2)
3 (2xy)

H(3)
xy = −a(3)2 y(x2 + y2)− a

(3)
3 z2y

H(4)
xy = −2a

(4)
4 (2xy)(x2 − y2) + a

(4)
5 (2xy)(x2 + y2) + a

(4)
6 z2(2xy)

H(5)
xy = −a(5)3 z4y − a

(5)
4 z2y(x2 + y2)− a

(5)
5 y(x2 + y2)2

+ a
(5)
6 (2xy)(x3 − 3xy2)

H(6)
xy = a

(6)
6 z4(2xy) + a

(6)
7 z2(2xy)(x2 + y2)− a

(6)
8 z2y(x3 − 3xy2)

− 2a
(6)
9 z2(2xy)(x2 − y2) + a

(6)
10 (2xy)(x

2 + y2)2

− 2a
(6)
11 (2xy)(x

4 − y4)

H(7)
xy = −a(7)4 yz6 − a75yz

4(x2 + y2)− a
(7)
6 y(z2)(x4 + 2x2y2 + y4)

+ a
(7)
7 (2xy)(z2)(x3 − 3xy2) + a

(7)
8 y(x3 − 3xy2)2

+ 4a
(7)
9 xy(x2 − y2)(x3 − 3xy2) + a

(7)
10 y(x

2 + y2)3

H(8)
xy = a

(8)
8 (2xy)z6 + a

(8)
9 z4(x2 + y2)(2xy)

+ a
(8)
10 z

2(x4 + 2x2y2 + y4)(2xy)

− a
(8)
11 yz

4(x3 − 3xy2)− a
(8)
12 yz

2(x2 + y2)(x3 − 3xy2)

− 4a
(8)
13 xyz

4(x2 − y2)− 4a
(8)
14 xyz

2(x2 + y2)(x2 − y2)

+ 2a
(8)
15 (x

7y + 3x5y3 + 3x3y5 + xy7)

+ 2a
(8)
16 (x

7y − 6x5y3 + 9x3y5)

− 4a
(8)
17 (x

7y + x5y3 − x3y5 − xy7)

(B.5)
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H(0)
yy = a

(0)
1

H(1)
yy = −a(1)1 x

H(2)
yy = a

(2)
1 z2 + a

(2)
2 (x2 + y2)− a

(2)
3 (x2 − y2)

H(3)
yy = a

(3)
1 (x3 − 3xy2)− a

(3)
2 x(x2 + y2)− a

(3)
3 z2x

H(4)
yy = a

(4)
1 z4 + a

(4)
2 (x2 + y2)2 + a

(4)
3 z2(x2 + y2)

− a
(4)
4 (x4 − 6x2y2 + y4)− a

(4)
5 (x4 − y4)− a

(4)
6 z2(x2 − y2)

H(5)
yy = a

(5)
1 z2(x3 − 3xy2) + a

(5)
2 (x2 + y2)(x3 − 3xy2)

− a
(5)
3 z4x− a

(5)
4 z2x(x2 + y2)− a

(5)
5 x(x2 + y2)2

− a
(5)
6 (x3 − 3xy2)(x2 − y2)

H(6)
yy = a

(6)
1 z6 + a

(6)
2 z4(x2 + y2) + a

(6)
3 z2(x2 + y2)2 + a

(6)
4 (x2 + y2)3

+ a
(6)
5 (x3 − 3xy2)2 − a

(6)
6 z4(x2 − y2)− a

(6)
7 z2(x4 − y4)

− a
(6)
8 xz2(x3 − 3xy2)− a

(6)
9 z2(x4 − 6x2y2 + y4)

− a
(6)
10 (x

2 + y2)2(x2 − y2)− a
(6)
11 (x

2 + y2)(x4 − 6x2y2 + y4)

H(7)
yy = a

(7)
1 z4(x3 − 3xy2) + a

(7)
2 z2(x2 + y2)(x3 − 3xy2)

+ a
(7)
3 (x4 + 2x2y2 + y4)(x3 − 3xy2)− a

(7)
4 xz6

− a
(7)
5 xz4(x2 + y2)− a

(7)
6 xz2(x4 + 2x2y2 + y4)

− a
(7)
7 (x2 − y2)(z2)(x3 − 3xy2)− a

(7)
8 x(x3 − 3xy2)2

− a
(7)
9 (x4 − 6x2y2 + y4)(x3 − 3xy2)− a

(7)
10 x(x

2 + y2)3

H(8)
yy = a

(8)
1 z8 + a

(8)
2 z6(x2 + y2) + a

(8)
3 z4(x4 + 2x2y2 + y4)

+ a
(8)
4 z2(x2 + y2)3 + a

(8)
5 z2(x3 − 3xy2)2

+ a
(8)
6 (x2 + y2)4 + a

(8)
7 (x2 + y2)(x3 − 3xy2)2

− a
(8)
8 z6(x2 − y2)− a

(8)
9 z4(x2 + y2)(x2 − y2)

− a
(8)
10 z

2(x4 + 2x2y2 + y4)(x2 − y2)− a
(8)
11 xz

4(x3 − 3xy2)

− a
(8)
12 xz

2(x2 + y2)(x3 − 3xy2)− a
(8)
13 z

4(x4 − 6x2y2 + y4)

− a
(8)
14 z

2(x2 + y2)(x4 − 6x2y2 + y4)

− a
(8)
15 (x

8 + 2x6y2 − 2x2y6 − y8)

− a
(8)
16 (x

8 − 7x6y2 + 15x4y4 − 9x2y6)

− a
(8)
17 (x

8 − 4x6y2 − 10x4y4 − 4x2y6 + y8)

(B.6)
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Appendix C

State-resolved density contour
plots of the 3D wavepacket of
NH+

3

Single-mode density contour plots have already been shown in Chapter 6,
which represents as summed over the three diabatic electronic states. Here,
we present the density contour plots along the three bending modes of NH+

3

separately for each of the three diabatic electronic states.
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C. State-resolved density contour plots of NH+
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Figure C.1: Density contour plots of the wave packet for three lowest elec-
tronic states of NH+

3 as functions of the S2 coordinates and time.
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Figure C.2: Density contour plots of the wave packet for three lowest elec-
tronic states of NH+

3 as functions of the S5 coordinates and time.
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C. State-resolved density contour plots of NH+
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Figure C.3: Density contour plots of the wave packet for three lowest elec-
tronic states of NH+

3 as functions of the S6 coordinates and time.
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[74] U. Manthe and H. Köppel, J. Chem. Phys. 93, 345 (1990).

[75] H. Tal-Ezer and R. Kosloff, J. Chem. Phys. 81, 3967 (1984).

[76] G. G. Balint-Kurti, Int. Rev. Phys. Chem. 27, 507 (2008).

[77] S. K. Gray, J. Chem. Phys. 96, 6543 (1992).

[78] S. K. Gray and G. G. Balint-Kurti, J. Chem. Phys. 108, 950 (1998).

[79] R. Chen and H. Guo, J. Chem. Phys. 105, 3569 (1996).

[80] P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 376 (1930).

[81] J. Frenkel, Wave Mechanics: Advanced General Principles (Clarendon
Press, Oxford, 1934).

[82] J. Kucar, H.-D. Meyer, and L. Cederbaum, Chem. Phys. Lett. 140,
525 (1987).

[83] H.-D. Meyer, U. Manthe, and L. S. Cederbaum, Chem. Phys. Lett.
165, 73 (1990).

[84] U. Manthe, H.-D. Meyer, and L. Cederbaum, J. Chem. Phys. 97, 9062
(1992).

111



BIBLIOGRAPHY
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[114] R. Maripuu, I. Reineck, H. Ågren, W. Nian-Zu, J. M. Rong, H. Veen-
huizen, S. Al-Shamma, L. Karlsson, and K. Siegbahn, Mol. Phys. 48,
1255 (1983).

[115] R. G. Cavell and K. H. Tan, Chem. Phys. Lett. 197, 161 (1992).

[116] J. Yang, J. Li, Y. Hao, C. Zhou, and Y. Mo, J. Chem. Phys. 125,
054311 (2006).

[117] D. S. Marynick, J. Chem. Phys. 74, 5186 (1981).

113



BIBLIOGRAPHY

[118] S. Creve and M. T. Nguyen, J. Phys. Chem. A 102, 6549 (1998).

[119] G. A. Worth, M. H. Beck, A. Jäckle, and H.-D. Meyer, The MCTDH
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