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Abstract

Recent developments in experimental techniques have opened the door to stud-

ies of the spatial organisation of genomes at an unprecedented level of detail.

For a long time, a gap in knowledge existed between genome structure at sub-

kilobase resolution and at length scales accessible to optical microscopy. This

gap is now filled with Chromosome Conformation Capture (3C)-based tech-

niques, in which contact frequencies between loci are measured.

The 3D structure of the genome is of obvious biological interest, as it has

been known to be closely linked to its function. This is in complete analogy

to the three-dimensional structure of other biological macromolecules such as

proteins and RNA. Obtaining a three-dimensional structure from experimental

data is a difficult task in structural biology: experimental data is noisy and

the exact physical processes which lead from structure to data are unknown.

An elegant framework is Inferential Structure Determination (ISD), in which

structure determination is seen as a problem of statistical inference. The cen-

tral object in ISD is a complicated posterior probability distribution, which

incorporates both data and prior information about the structure. Sampling

structures and other parameters from it is the ultimate and computationally

expensive step of structural modeling using ISD and results in statistically

well-defined structural ensembles and modeling parameter estimates.

The purpose of this work is two-fold: investigating algorithms to enhance

sampling from difficult probability distributions such as the ISD posterior and

extending the scope of ISD to chromatin structure determination from high-

throughput 3C (HiC) data.

I apply a recently proposed method for sampling from difficult probability dis-



tributions, Replica Exchange with Non-equilibirum switches (RENS), on pro-

tein models of different complexity. The goal is to assess the computational

efficiency of RENS in complex, realistic applications such as ISD. Currently,

ISD implementations employ a related, wide-spread technique called Replica

Exchange (RE). While I am able to show that RENS indeed improves sam-

pling compared to RE, the main result is that the large amount of additional

computational time required by RENS renders it much less efficient.

RE and related algorithms simulate not only the target probability distribu-

tion, but also a sequence of copies of it, which are easier to sample and, by ex-

changing configurations, thus enhance sampling of the target distribution. An

idea of an iterative scheme to optimize the choice of this sequence is presented.

I test a preliminary implementation of this approach on a simple system and

find that, at least in our example, sampling quality is not improved and even

inferior to a simple, heuristic sequence of distributions.

Turning to applications of ISD, I demonstrate that ISD also is a suitable

method to infer 3D structures of a single chromosome from both sparse sin-

gle single-cell and, by using simulated contact frequencies, probably also from

rich, population-based HiC data.



Zusammenfassung

In letzter Zeit haben Fortschritte in der Entwicklung experimenteller Tech-

niken die Tür zur Erforschung der räumlichen Struktur von Genomen in bisher

unerreichtem Detail weit aufgestoßen. Lange Zeit war wenig über die Strukur

von Genomen zwischen Auflösungen von unter einigen kb und mit optischer

Mikroskopie zugänglichen Längenskalen bekannt. Diese Lücke wird nun von

Chromosome Conformation Capture (3C)-basierten Methoden geschlossen, mit

Hilfe derer Kontaktfrequenzen zwischen Loki gemessen werden.

Die dreidimensionale Struktur eines Genoms ist von offensichtlichem Interesse

für die Biologie, da bekannt ist, dass sie eng mit der Funktion des Genoms

zusammenhängt. Dies ist analog zur räumlichen Struktur von Proteinen,

RNA und anderen biologischen Makromolekülen. Die Bestimmung einer drei-

dimensionalen Struktur anhand von experimentellen Daten ist ein schwieriges

Problem der Strukturbiologie: experimentelle Daten sind zwangsläufig ver-

rauscht, meist unvollständig und die genauen physikalischen Prozesse, durch

die ein Rückschluss von den Daten auf die Struktur ermöglicht wird, sind

nicht bekannt. Ein eleganter Ansatz, dieses Problem zu lösen, ist das Prinzip

der Inferentiellen Strukturbestimmung (ISD, Inferential Structure Determina-

tion). In dieser Methode wird Strukturbestimmung als ein Inferenzproblem

betrachtet. Der wichtigste Bestandteil dieses Ansatzes ist eine komplizierte a

posteriori -Wahrscheinlichkeitsverteilung, die Informationen aus den Daten und

Vorwissen über die Struktur verbindet. Aus ihr werden sowohl Strukturen als

auch weitere unbekannte Parameter, die zur Strukturbestimmung nötig sind,

gezogen. Dies ist der letzte und rechentechnisch aufwändigste Schritt einer

Strukturbestimmung mittels ISD und mündet in statistisch wohldefinierten



Struktur-Ensembles und Schätzungen der weiteren Modellparameter.

Die vorliegende Arbeit hat zwei Dinge zum Ziel: zum einen sollen Algorith-

men zum effizienteren Ziehen von Stichproben aus komplexen Wahrschein-

lichkeitsverteilungen erforscht werden und zum anderen der Anwendungsbereich

von ISD auf die Bestimmung der Struktur von Chromatin auf der Basis von

genomweiten 3C (HiC)-Daten erweitert werden.

Ich wende eine vor relativ kurzer Zeit vorgeschlagene Methode namens Replica

Exchange with Non-equilibrium Switches (RENS) zum Ziehen von Strich-

proben aus Wahrscheinlichkeitsverteilungen auf Proteinmodelle verschiedener

Komplexität an. Ziel ist es, die Effizienz von RENS hinsichtlich der Rechen-

zeit in realistischen Anwendungen wie ISD zu beurteilen. ISD-Implementa-

tionen benutzen derzeit Replica Exchange (RE), eine weitverbreitete, ver-

wandte Methode. Zwar kann ich zeigen, dass RENS im Vergleich zu RE

repräsentativere Stichproben zieht, dazu allerdings unverhältnismäßig viel Rech-

enzeit benötigt und somit deutlich ineffizienter als RE ist.

RE und verwandte Algorithmen simulieren nicht nur eine Zielwahrscheinlich-

keitsverteilung, sondern auch eine Reihe von Kopien, aus denen das Ziehen

von Stichproben einfacher ist. Das gelegentliche Austauschen von Konfigu-

rationen beschleunigt dann das Ziehen von repräsentativen Stichproben aus

der Zielverteilung. Ich stelle einen Ansatz für ein iteratives Schema zum Bes-

timmen einer optimalen Sequenz von interpolierenden Verteilungen vor und

teste ihn an einem einfachen System. Für dieses Beispiel stellt sich allerdings

heraus, dass die Qualität der gezogenen Stichproben geringer ist als wenn eine

einfache, heuristische Reihe von interpolierenden Wahrscheinlichkeitsverteilun-

gen benutzt wird.

Schließlich wende ich mich einer neuen Anwendung von ISD zu und zeige, dass

ISD auch eine gut geeignete Methode zur Inferenz von 3D-Strukturen einzelner

Chromosomen anhand von spärlichen HiC-Daten einzelner Zellen ist. Mittels

simulierter Kontaktfrequenzen demonstriere ich weiterhin, dass ISD prinzip-

iell auch die Bestimmung von Strukturen anhand von wesentlich ergiebigeren

populationsbasierten HiC-Daten ermöglichen sollte.
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Introduction

Amajority of the efforts in structure determination of biological macromolecules

has, in the past decades, mainly been spent on finding native conformations

of proteins: biophysical methods like nuclear magnetic resonance (NMR, see

Wüthrich [2001] for a historical perspective), X-ray crystallography (starting

with the structures of myoglobin [Kendrew et al., 1958] and hemoglobin [Perutz

et al., 1960], see, e.g., Shi [2015] for a review) and electron microscopy (EM,

Adrian et al. [1984]; Kühlbrandt [2014]; Unwin and Henderson [1975]; now

reaching atomic resolution [Bartesaghi et al., 2015]), to name the three most

important ones, have yielded over 100000 structures of proteins and complexes

with other proteins and / or nucleic acids deposited in the Protein Data Bank

[Berman et al., 2000]. These fuel our understanding of biological processes at

an atomistic scale. The knowledge of how proteins function on a near-atomic

level has not only brought great advances in numerous fields of biology, but

also forms the basis of structure-based drug design.

Until recently, the genome, on the other hand, did not enjoy the same attention

of structural biology, and the three-dimensional structure of chromosomes, let

alone whole genomes, has eluded our knowledge. While coarse-grained struc-

tural information is available through a range of techniques like FISH imaging

[Bauman et al., 1980; Hulspas and Bauman, 1992] or molecular biology meth-

ods to measure interaction of DNA with other cell constituents, no method

offering a sufficient resolution to determine the fold of chromosomes was avail-

able. A major advance thus came from recently introduced chromosome confor-

mation capture (3C) based techniques [Dekker et al., 2002; Dostie et al., 2006;

Lieberman-Aiden et al., 2009; Simonis et al., 2006; Zhao et al., 2006], which
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rely on crosslinking chromatin and subsequent next-generation sequencing of

crosslinked DNA fragments to determine contact frequencies between a great

number of loci. Depending on the exact method and the sequencing depth,

these methods can reach resolutions of up to 1 kb [Rao et al., 2014], which al-

lows, for example, to probe the spatial interaction of regulatory elements and

thus opens the door to a microscopic view of the genome as a highly organized

set of polymers for whose function (or malfunction) the three-dimensional fold

and arrangement of chromosomes is of paramount importance [Hughes et al.,

2014; Lupiáñez et al., 2015; Pombo and Dillon, 2015].

Recent genome-wide 3C experiments on single cells [Nagano et al., 2013] showed

that, although conserved structural domains exist on larger scales, genome ar-

chitecture is highly variable from cell to cell. This has important implications

for the interpretation of data of 3C experiments performed on a cell popula-

tion, which results in average contact frequencies not of one molecule for each

chromosome, but of millions. The high cell-to-cell variability and, in the case

of single cell HiC data, the sparseness of the data, make it clear that any unjus-

tified assumption about parameters of the process leading from measurement

to final 3D structures is likely to have a strong influence on the result. This is

analogous to the determination of protein structures: the physics by which we

describe a chain of amino acids and the theory we have about, for example, the

relation between interatomic distances and the intensity of peaks in a NMR

spectrum, is only approximate and also the experimental noise is not known.

Robust and objective methods are thus required to find meaningful and hon-

est estimates of the actual biological structure and to quantify its uncertainty,

be it a protein or a chromosome. To this end, Rieping, Habeck, and Nilges

[2005a] developed a probabilistic approach to structure determination termed

Inferential Structure Determination (ISD; discussed in Sec. 1.2) to eliminate

heuristics and other biases in previous approaches. In ISD, macromolecular

structure determination is viewed as a problem of statistical inference from

noisy and incomplete data. Prior knowledge about the structure (from, e.g.,

physics) and unknown modeling parameters is encoded in a prior probability

and, after measuring the data, updated by incorporating the new information
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by means of the likelihood, another probability. Prior and likelihood are multi-

plied using Bayes’ theorem P (A|B) ∝ P (B|A)P (A) to yield a joint probability

for all unknown parameters called the posterior.

As one is usually concerned with a continuum of possible structures and un-

known modeling (nuisance) parameters, all probabilities turn into probability

distributions and in order to not only find the most likely structure, but also

to get an estimate of its uncertainty, the practicioner needs to sample from

the posterior distribution. It is in general high-dimensional and the random

variables it describes are highly correlated. For these reasons, sampling from

it is very difficult and requires advanced Markov Chain Monte Carlo (MCMC)

techniques, to which an introduction is given in Sec. 1.3.

In light of these considerations, the work presented here is centered on testing

and improving methods for sampling difficult probability distributions and on

the extension of the scope of the ISD framework from protein structure deter-

mination to a more objective estimation of chromosome structures from single

cell and population HiC data.

To enhance MCMC sampling it is advisable to employ Replica Exchange (RE;

Geyer [1991]; Swendsen and Wang [1986]) methods which not only simulate

the posterior distribution of interest, but also by some transformation “flat-

tened” versions of it, which, by exchanging configurations, prevent the sim-

ulation of the target distribution from getting stuck in modes. In Sec. 2,

we test Replica Exchange with Non-equilibrium Switches (RENS; Ballard and

Jarzynski [2009, 2012]), a recently proposed variant of RE. It relies on making

exchange candidate states more likely in transformed distributions by means

of non-equilibrium trajectories. We test RENS, which has so far only been

tested on systems of low dimensionality, on complex protein systems.

Sec. 3 presents an idea and first tests of an iterative method to automatically

determine optimally interpolating distributions for RE-based MCMC schemes.

It relies on calculation of the density of states of the system of interest and,

as a side effect, thus may prove useful for a wide range of applications relying

on approximative knowledge of this important quantity such as free energy or

evidence calculations.
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Turning to applications of ISD to HiC data, we propose a Bayesian determi-

nation of chromatin structures from single cell data to improve on previous,

minimization-based approaches and a possible extension of the ISD approach

to explicit ensemble-based modeling from population HiC data in Sec. 4.

Finally, Sec. 5 summarizes the present work and discusses perspectives and

open questions.

All parts of this work are, in one sense or another, intertwined. Advanced RE

sampling schemes enhance the sampling of complex posterior distributions,

which is of great importance, as dimensionality of the structure determination

problem is likely to increase with future applications of ISD to population HiC

data (Sec. 4.4) and practical applicability of ISD thus requires an efficient use

of computational resources. By means of histogram reweighting techniques

[Chodera et al., 2007; Ferrenberg and Swendsen, 1988; Habeck, 2012a], opti-

mized RE(NS) simulations can prove useful for efficient Bayesian model com-

parision; a method allowing to compare different models in light of the data.

Since RENS, as will be discussed later, is effective, but not very efficient, it is

in dire need of optimized schedules in order to calculate as few non-equilibrium

trajectories as possible.
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1 Computational methods for

structure determination

The acquisiton of three-dimensional genomic structures from 3C-based data

greatly profited from computational modeling methods already known from

protein structure determination. This step is crucial, as neither the biophys-

ical experiments performed to determine protein structures nor the contact

frequency maps obtained from genome-wide 3C (HiC, Lieberman-Aiden et al.

[2009]) directly result in a three-dimensional model of the macromolecule un-

der consideration. Instead, one has to resort to computational methods to

find (possibly coarse-grained) structures fitting the observed data. This re-

quires a method to judge whether a structure agrees with the data and thus,

knowledge about the physical processes leading from the real structure to the

data is essential. Often, though, the data does not give sufficient information

to determine a structure to a reasonable degree. For this reason, one usually

demands a candidate structure to not only fit the data, but also prior informa-

tion already known before performing the experiment. Prior information can

be gleaned from the physics or chemistry of the biomolecule. We know, for ex-

ample, that bond lengths in a protein are, to a reasonable approximation, fixed

[Leach, 2001] and we can estimate electrostatic interactions between residues.

Information of course may also come from biology. The mere fact that the

genome is contained in either the nucleus of a eukaryotic cell or in prokaryotic

cell may sound trivial, but is actually valuable information for whole genome

modeling, as done, for example, in [Kalhor et al., 2012]. Furthermore, we know

from FISH imaging experiments that eukaryotic interphase chromosomes do
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not intermingle much, but instead occupy distinct territories [Cremer and Cre-

mer, 2010]. These are only a few examples of prior information available for

computational modeling of genome structures. A candidate structure could

also be asked to be reasonably similar to a homologuous molecule. The com-

plexity and heterogeneity of both data and prior information thus make finding

structures which fulfill both the restraints given by the data and comply with

the prior knowledge a difficult problem of computational biology.

We want to formalize the process of structure determination and thus in-

troduce some terminology. We denote a candidate structure by a vector x,

containing the positions of atoms or distinct units of coarse-graining in some

coordinate system. For proteins, one often chooses internal coordinates, in

which the polymer chain is described in terms of bond lengths, bond angles

and dihedral angles (internal coordinates, Leach [2001]). This coordinate sys-

tem is more adapted to the geometry of a polymer chain and allows to decouple

fast-changing degrees of freedom (bond lengths) from slow ones. Furthermore,

computation time can be saved by keeping bond lengths and bond angles fixed

and thus reducing the number of degrees of freedom. On the other hand, it is

more complicated to calculate distances between distant units, which involves

transforming internal to cartesian coordinates.

A function f(x;α) = D̂ back-calculating mock data D̂ from the candidate

structure coordinates possibly parametrized by other modeling parameters α

is called a forward model. Because of our limited knowledge of the physical

processes leading to an experimental outcome, the forward model is usually

only an approximation to physical reality.

For this reason and because of unevitable measurement errors and possibly

incomplete data, we allow deviations of the mock data from the experimen-

tally measured values. Physical or non-physical prior information about the

sought-for structure is encoded in a (possibly effective) potential energy func-

tion Eprior(x). This prior information scoring function will attain an extremum

for a structure fitting the prior constraints best.

We now introduce two very different approaches to structure determination,

namely the idea of conventional scoring function optimization and ISD [Rieping,
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Habeck, and Nilges, 2005a], an alternative based on Bayesian inference.

1.1 Minimization-based approaches

One approach to finding a three-dimensional structure x from data D and

prior information encoded in the energy Eprior(x) is to set up a data scoring

function and to combine it with the prior scoring function in a total score given

by

Etot(x;wdata, α) = wdataEdata(x;α) + Eprior(x) (1.1)

with Edata the data scoring function attaining its minimum at the back-calculating

data matching the experimental data best, but allowing some degree of devi-

ation by, e.g. a harmonic restraint. wdata is a weighting factor which weighs

the data term against the prior information. If we believe the data to be of

bad quality, we should pick a low value for wdata.

It is common practice to set wdata and α to values determined by heuristics

or cross-validation [Brunger et al., 1993; Brunger, 1992]. We can then nu-

merically minimize this function using optimization algorithms. Simulated

annealing (SA, Kirkpatrick et al. [1983]; Černý [1985]) is especially popular in

protein structure determination software like ARIA [Linge et al., 2003; Rieping

et al., 2007], CNS [Brünger, 2007; Brünger et al., 1998] and CYANA [Güntert

et al., 1997; Güntert, 2004; Güntert et al., 1991; Herrmann et al., 2002; López-

Méndez and Güntert, 2006], but is also often employed in chromatin structure

determination from chromosome conformation capture data, for example in

[Kalhor et al., 2012; Nagano et al., 2013]. Inspired by the slow annealing of

a melt to form crystals with as few defects as possible, the system consisting

of the structural coordinates changing under the influence of a potential en-

ergy given by total scoring function is first optimized at a high (non-physical)

“temperature” and then slowly cooled until the system “freezes” in the global

minimum. Optimization at a certain temperature is done either by Molecular

Dynamics (MD) or MCMC algorithms (Sec. 1.3), which makes sure the sys-

tem does not get stuck in local minima by also allowing it to move to a certain
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extent in regions with unfavorable scoring function values.

Minimization by SA, given sufficiently slow cooling, is guaranteed to locate

the global minima of the scoring function [Robert and Casella, 2011] and thus

results in structures fitting both the data and the prior constraints. But the

inverse problem we solved numerically is underdetermined: the data will in

general be not sufficient to uniquely determine an optimal structure. While

the prior energy adds additional constraints, the relative weight between the

prior energy and the data energy is unknown. There might be several, equally

optimal structures, but the setup of the minimization algorithm might cause it

to find not all of them. Repeating the optmiziation several times from different

initial values for the coordinates will, depending on the amount of data and

prior information, give different structures with comparably good scores. But

the resulting set of structures is not statistically well-defined and will in gen-

eral depend on parameters of the minimization procedure. By setting forward

model parameters and the weight a priori and minimizing the resulting scoring

function, we thus obtain biased structures without any meaningful measure of

uncertainty.

1.2 Inferential Structure Determination

Both the problem of determining uncertainty and the choice of weights and

forward model parameters, which is cumbersome at best, and at worst, when

cross-validation is too time-consuming or instable, highly subjective, can be

avoided elegantly.

In the Inferential Structure Determination (ISD; Rieping, Habeck, and Nilges

[2005a]) framework, determination of macromolecular structures is instead

viewed as a problem of statistical inference. We would like to consistently

quantify our knowledge about a structure x given in general incomplete and

noisy data D and any information I we already have about the structure in

question. Cox [1946] proved that probability theory is the only way to consis-

tently quantify uncertainty. Before having measured the data D, the belief in
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the proposition “in the experimental conditions, the molecule’s structure was

x” is given by prior knowledge I and thus quantified by the prior probability

P (x|I). After having measured D, we possess more information about x and

we have to update our belief using the new information. The updated belief is

then quantified through the probability P (x|D, I). Bayes’ theorem now allows

us to decompose this posterior (to measuring the data) probability by writing

P (x|D, I) =
P (D|x, I)P (x|I)

P (D)
,

posterior =
likelihood× prior

evidence
,

where we recognize the prior probability P (x|I) and introduce two new prob-

abilities. P (D|x, I) is the likelihood of the data D given the structure x, that

is, the quantification of our belief in the proposition “if, at the time of mea-

surement, the structure had been x, we would have obtained the data D”. The

probability P (D|I) normalizes the posterior distribution and, as the expecta-

tion value of the likelihood under the prior distribution, quantifies the belief in

being able to obtain the data D given the prior information I and our choice

of the likelihood. This is called evidence.

The likelihood P (D|x, I) is usually a composition of the aforementioned for-

ward model, which back-calculates “mock” data D̂ from a candidate structure

x, and a probability g(D̂, σ|D), which turns the discrepancy between D̂ and D

into a number ∈ [0, 1]. The latter is called error model and is parameterized

by errors σ that specify the total error, which includes both experimental noise

and the error we neccessarily introduce by imperfectly back-calculating data

from a structure by means of an approximate forward model.

But, as mentioned before, the structure x is not the only unknown in a struc-

ture determination problem. The forward model possibly depends on unknown

parameters α and we are not sure about the errors σ. This means that, for a

fully probabilistic treatment of the structure determination problem, we have

to expand the hypothesis space and, although they are of secondary interest

and thus termed nuisance parameters, also regard α, σ as unknown modeling

parameters; giving them the same importance as the structure x and estimat-

ing them from the data and prior information. Taken together; the likelihood
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thus has to be written as

L(D|x, α, σ, I) = g [f(x;α);σ]

and is for our purposes often regarded as a function L(x, α, σ) of the model

parameters, in which case it is called the likelihood function.

Even the prior probability distribution might not be completely specified and

depend on hyper parameters γ. We take this fact into account by adding γ to

the set of parameters which need to be estimated along with the structure, so

that finally we are quantifying not only our uncertainty about the structure,

but about all unknown parameters in a joint posterior probability

P (x, α, σ, γ|D, I) =
P (D|x, α, σ, I)P (x, α, σ, γ|I)

P (D|I)
.

Under the assumption that structure and nuisance parameters are independent

from each other, the prior factorizes. It is important to note that this is not

always the case in structure determination. If we were, for example, to infer a

protein structure from X-ray data, the unknown phase information might play

into the forward model and, while being a nuisance parameter, depends on the

structure. In the following, we will also be concerned not with a discrete set

of structures and nuisance parameters our belief in we test, but a continuum

and thus introduce probability densities instead of probabilities. The posterior

distribution then becomes

p(x, α, σ, γ|D, I) =
p(D|x, α, σ, I)p(x|I)p(α|I)p(σ|I)p(γ|I)

P (D|I)
. (1.2)

While specifying prior distributions and error models, in order to remain ob-

jective, we have to watch out not to make unjustified assumptions. For this

reason, we assume minimally informative prior distributions which reflect only

the information we actually possess. This can be rigorously implemented by
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following the Maximum Entropy (ME) principle [Jaynes, 1957]. In this frame-

work, the information a probability distribution p(x) contains about a random

variable x is measured by the Shannon entropy I = −
∫

dx p(x) log p(x) and

we seek the probability distribution maximizing the Shannon entropy under

the constraint of being true to the prior knowledge I. One trivial constraint

is that any probability distribution should be normalized,
∫

dx p(x) = 1. An

example for this construction is the prior distribution for the structure x. Sup-

pose we have only physical prior information. If we knew the exact potential

energy function E(x) of the molecule under consideration and neglect other

interactions with, for example, other cell constituents or a solvent, then, for

a measurement performed at a fixed temperature T , ME yields the canoncial

ensemble

p(x|I) =
1

Z(β)
e−βE(x) (1.3)

with the inverse temperature β = 1/kBT as the minimally informative prior

distribution under the constraints 〈E(x)〉 =
∫

dx p(x)E(x) and
∫

dx p(x) = 1.

In reality, though, molecular force fields are always approximative and the

inverse temperature β should rather be regarded as a weight for the information

encoded in the potential energy. Thus β will not exactly correspond to the

experimental inverse temperature, but can be estimated from the data by

model comparison [Mechelke and Habeck, 2012].

We also need unbiased nuisance parameter prior distributions. If we limit

ourselves to error models of the form

g(D̂, σ|D) =
1

Z(σ)N
e−

1
2σ2

χ2(D̂;D) , (1.4)

with N denoting the total number of data points and χ2 the total deviation

of the back-calculated from the experimental data, we do not need to invoke

the Maximum Entropy principle if we notice that the error σ does not have an

absolute meaning: its value can only be interpreted in conjunction with χ2, as

any rescaling of the former can be compensated by rescaling the latter. The
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error σ and other parameters with the same behaviour are thus called scale

parameters. If we know that a random variable x is a scale parameter, its

probability distribution p(x) must be invariant under a scale transformation;

that is, we ask

p(x) dx = p(τx) d(τx) .

This condition is, by the substitution rule for probability densities, sufficient

to find

p(x) ∝ 1

x
. Jeffreys prior (1.5)

Note that the Jeffreys prior is an improper prior, that is, it is not normalizable.

But this normally does not pose a problem, as the posterior distribution will

usually nevertheless be well-behaved. In ab-initio structure determination the

prior information comes from physics. If we are looking for a protein structure,

we already know the sequence of amino acids and thus have prior information

about van der Waals- and electrostatic interactions. For any polymer, by defi-

nition the distance between one monomer and its neighbor is limited and it is

also reasonable to assume that monomers do not overlap. But other kinds of

prior information can be imagined. When looking for a protein structure, one

might already have information about the structure of a homologuous protein

and homology modeling could complement the measured data. Other prior

information could, for example, come from evolutionary contacts (see, e.g.,

Hopf et al. [2014] for evolutionary contacts applied to protein complexes). In

any case, it is not obvious how to weight prior information. Mechelke and

Habeck [2014] have developed a method to include statistical knowledge-based

potentials as prior information in NMR protein structure determination and

determine their weight from the experimental data.

After specifying the prior distributions and the likelihood, the problem of in-

ferring unknown structures and nuisance parameters is formally solved. The

maximum of the posterior distribution (Eq. 1.2) are the most likely struc-

ture and nuisance parameters given the data and the prior information, so a

maximum a-posteriori (MAP) estimate would give the sought answer to the
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structure determination problem, but no information about the uncertainty of

the estimate. A “structural error bar” can only be obtained by sampling from

the posterior distribution, which is in general difficult. By drawing samples

from the posterior distribution, we can obtain an ensemble of structures and

nuisance parameters in which each ensemble member has its own associated

posterior probability weight. In practice, though, it is difficult to sample from

this distribution and one has to resort to Markov Chain Monte Carlo (MCMC)

methods discussed below, which allow to approximate the posterior distribu-

tion by samples drawn using a random process.

It should be noted that it is not neccessary to stick with the full posterior distri-

bution. Nuisance parameters can be integrated out (marginalized), reducing

the dimensionality of the posterior distribution. Given a joint distribution

p(x, y) for two random variables, the the marginal distribution for x is given

by

p(x) =

∫
dy p(x, y) =

∫
dy p(x|y)p(y) ,

and contains all information about y encoded in p(x, y). This is very differ-

ent from setting y to a fixed value y0, which would correspond to assigning

p(y) = δ(y−y0) and thus p′(x) =
∫

dy p(x|y)δ(y−y0). Marginalization can be

done analytically for the errors σ of several error models, such as a Gaussian

or log-normal distribution.

As already mentioned, the MAP estimate of the ISD posterior distribution

yields an objective estimate of the unknown structure. This fact can be ex-

ploited to replace the heuristic, biased scoring function in conventional minimization-

based approaches by a Bayesian one given by the negative logarithm of the

posterior distribution [Nilges et al., 2008]. If we assume a posterior with an

error model of the form described in Eq. 1.4, and, other than the error σ,

no further nuisance parameters, the negative logarithm of the posterior is (ne-

glecting constant terms) given by

− log p(x, σ|D, I) =
1

σ2

χ2(x;D)

2
+ βEprior(x) +N logZ(σ)− log p(σ)

= wdataEdata(x) + wpriorEprior(x) +N logZ(σ)− log p(σ) ,
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with the correspondences

wdata =
1

σ2
,

wprior = β ,

Edata(x) =
χ2(x;D)

2
.

In practice, one can absorb wprior in wdata and the other factors. While these

terms have equivalents in scoring functions for conventional approaches (Eq.

1.1), the factors involving σ do not, which demonstrates that scoring functions

lacking these terms are not complete if one aims for an unbiased estimate.

1.3 Markov Chain Monte Carlo sampling

Sampling from joint posterior distributions is a difficult task and can, in gen-

eral, not be done using standard random number generators available in many

programming languages. But approximative, iterative techniques are available

to solve this problem. A major class of methods is called Markov Chain Monte

Carlo, which we use extensively in this work and thus give a thorough intro-

duction to.

Often, we want to calculate quantities which can be expressed as an average

with respect to a probability distribution p(x). Take, for example, the integral

of a function f(x) over a domain Ω ⊆ Rn;

I =

∫
Ω

dx f(x) . (1.6)

Introducing an arbitrary probability distribution with support Ω, we can also

write

I =

∫
Ω

dx
f(x)

p(x)
p(x) =

〈
f

p

〉
p(x)

(1.7)

and have thus interpreted I as an average of a different function with respect

to the probability density p. In the most naive approach to numerical inter-

pretation we would discretize Ω in uniform hypercubes as supporting points
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and approximate I by a finite sum, but this not only becomes quickly infeasi-

ble in higher dimensions but is also a waste of resources, as, depending on f ,

many of the supporting points may not contribute significantly to the total,

approximative value of I.

The main idea of Monte Carlo methods now is to approximate an integral given

by Eq. 1.7 by drawing N representative samples x1, . . . , xN from the distri-

bution p(x) and thus avoid evaluating unneccessarily many supporting points.

But the problem lies in actually obtaining samples from p(x) with significant

statistical weight, which is in general a challenging task due to high dimen-

sionality and correlation between variables. Techniques like rejection sampling

(which was already used by von Neumann [1951]) or importance sampling

(Kahn and Harris [1951], Andrieu et al. [2003] or Robert and Casella [2004])

use an approximating distribution q(x), in order not to have to draw samples

directly from p(x), but finding an appropiate q(x) that is easy to sample from

is basically impossible for complex and high-dimensional target distributions

p(x) with unknown modes. Just drawing N samples from a uniform distribu-

tion over Ω will not be efficient, because for a sufficiently complex p(x), most

of the xi will have very little statistical weight and thus contribute little to the

average. In an extreme case, one might hit not even a single mode of p(x).

In their seminal paper, Metropolis et al. [1953] achieved sampling p(x) by sim-

ulating a Markov chain which prefentially explores regions of high probability

and whose samples approach the target distribution p(x). For details on the

theory of Markov chains, see Robert and Casella [2004]. Here we sketch only

the most important points, sacrificing technical and mathematical detail. A

Markov chain is a random process over a (discrete or continuous) state space,

which, in the case of biomolecular simulation, is given by all possible confor-

mations. This process needs to fulfill

p(xt|xt−1 · · ·x0) = p(xt|xt−1) . (Markov condition)

In other words, it is memory-less, and the t-th state xt of the chain only

depends on the state xt−1 at “time” t−1. The Markov chain is then completely

specified by the probability p(x0) for the first state x0 and transition kernel
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T (xt+1|xt). In algorithms discussed later, the transition kernel is not constant,

but depends on the time t and the Markov chain is thus time-heterogeneous.

For now, we only discuss time-homogeneous chains. The transition kernel gives

the probability of obtaining xt+1 given that the current state of the chain is xt.

In order to have a unique limiting distribution f(x), the Markov chain needs

to be irreducible, aperiodic and positive recurrent. Irreducibility means that

every state is accessible from every other state and aperiodicity guarantees

that the chain does not get stuck in cycles. A Markov chain is recurrent if

the chain returns to every state infinitely often, and positive recurrent, if the

expected recurrence times are finite. A chain fulfilling these three conditions

is called ergodic and will, after a burn-in period, eventually loose the memory

of its initial state x0. In practice, though, one enforces a sufficient but not

neccessary condition for the limiting distribution to be the target distribution

we wish to sample from, called detailed balance:

p(x)T (y|x) = p(y)T (x|y) ∀x, y,∀t . (1.9)

Most MCMC algorithms are constructed in a way that this condition holds,

although we stress that algorithms obeying the weaker condition of global bal-

ance, p(x)
∫

dy T (y|x) =
∫

dy p(y)T (x|y), are also correct, e.g. Convective

Replica Exchange [Spill et al., 2013].

In the following, we shortly review the algorithms we use for sampling from

the ISD posterior distribution.

1.3.1 Metropolis-Hastings algorithm

Different MCMC algorithms only differ in the transition kernel T (xt+1|xt) and
in the construction of the target distribution p(x). In all MCMC algorithms

relevant in the context of ISD, the transition kernel T (xt+1|xt) is decomposed

into a proposal density q, from which a new proposal xt∗ state is drawn given

the current state xt, and a probability pacc to accept the proposal xt∗ as the

next state in the Markov chain;

T (xt+1|xt) = q(xt∗|xt)pacc(x
t+1 = xt∗|xt, xt∗) .

16



In practice, one designs q under an application-dependent rationale to give

good proposal states and then finds a pacc such that T (xt+1|xt) obeys at least

the balance condition.

If one chooses a symmetric proposal distribution, that is, q(xt∗|xt) = q(xt|xt∗),
a convenient and valid choice for pacc is

ptacc(x
t+1 = xt∗|xt, xt∗) = min

{
1,
p(xt∗)

p(xt)

}
. (1.10)

This acceptance probability and the symmetric proposal distribution q(xt∗|xt) ∝
θ(xt + ε)θ(xt + ε), with θ(x) being the Heaviside function equaling 1 for x ≥ 0

and 0 otherwise, was chosen by Metropolis et al. [1953]. They used the very

first MCMC algorithm to calculate expectation values with respect to the

Boltzmann distribution of a system of N particles interacting via a potential

depending on pairwise distances only. Their algorithm was later generalized

to its current form by Hastings [1970]. Fig. 1.1 illustrates the process of

transitioning from one state to the next in the Markov chain constructed by

the Metropolis-Hastings algorithm. All subsequently described MCMC algo-

rithms are derived from the Metropolis-Hastings algorithm and differ only in

the proposal distribution and the acceptance rule.

1.3.2 Gibbs sampling

The ISD posterior distribution is a probability distribution for a set of quite

different variables containing the structure x and the nuisance parameters α

and σ.

In theory, we could apply the previously described Metropolis-Hastings sam-

pling method with a simple (e.g., uniform) proposal density, thus changing

all three variables by some stepsize and then accepting / rejecting the move.

But very small stepsizes or, more generally, proposal distributions q peaked

close to the current state would be necessary to attain a reasonably acceptance

probability. The reason for this is that all variables are highly correlated and

thus the variable on which the posterior distribution at a current step in the

Markov chain most strongly depends would set an upper limit on the width
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Figure 1.1: Illustration of possible outcomes of a Metropolis-Hastings move

xt → xt+1. The current state is xt (left), then a proposal state

x∗ is drawn from the proposal distribution q(x∗|xt) (middle) and

finally accepted or rejected according the Metropolis acceptance

rule (right) to obtain the next state xt+1 in the Markov chain.

A: proposing a state with a lower energy than the current state

leads to certain acceptance.

B, C : a state with an increased energy is accepted (B) with prob-

ability exp{−[E(x∗)− E(xt)]} =: exp(−∆E), else rejected (C ).
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of the proposal distribution. This leads to insignificant changes in the other

variables and thus produces a highly correlated Markov chain, whose states

will take an unfeasible amount of time to converge to the posterior distribu-

tion. It is thus useful to decouple the variables and instead sample from the

posterior distribution by “taking turns”. Furthermore, for some variables, the

conditional distributions might be of standard form and decoupling the vari-

ables for sampling would allow to take advantage of random number generators

already implemented in popular programming languages or, more general, to

use appropriate and easier-to-implement samplers for each variable.

Gibbs sampling [Geman and Geman, 1984] achieves exactly this decoupling of

variables. The idea is to sample from the conditional probability distribution

of one variable while keeping all others fixed, then sample from the distribution

of the next variable conditioned on the recently sampled value for the previous

variable and the previous values for the other variables. This is repeated until

samples have been drawn from all conditional posterior distributions. The set

of the freshly-drawn samples then is a new sample from the joint distribution.

Thus, its transition kernel T (xt+1|xt) is given by the iteration

xt+1
0 ∼ p(x0|xt1, . . . , xtN) ,

xt+1
1 ∼ p(x1|xt+1

0 , xt2, . . . , x
t
N) ,

...

xt+1
N ∼ p(xN |xt+1

0 , . . . , xt+1
N−1) .

It is interesting to note that, formally, the Gibbs sampler is a special case of the

Metropolis-Hastings algorithm and it is astonishing that the conditional dis-

tributions contain enough information to recover the joint distribution [Robert

and Casella, 2004]. With Gibbs sampling, we thus can dissect the challeng-

ing task of sampling from the full posterior distribution into sampling from

conditional posterior distributions. For each of the variables, we employ an

appropiate sampling method. While for the nuisance parameters the condi-

tional distributions are often standard distributions like the normal-, Gamma-

or log-normal distribution for which samplers are readily available in many

programming languages, the structural coordinates usually do not follow any
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standard distribution.

1.3.3 Hamiltonian Monte Carlo

By far the most challenging conditional posterior distribution to sample from

is the one for the structural model parameters. The coordinates describing

the three-dimensional fold of the polymer are still highly correlated: a dis-

placement of one monomer not only affects other monomers restrained to it

through the likelihood, but all other monomers due to the prior information.

In a dense system, a single displacement could lead to overlap with several

other monomers, but independent of the density, each monomer is coupled to

all others through the fact that the polymer is a connected chain. For this

reason, again, a Metropolis-Hasting scheme with a naive proposal distribution

is inefficient. We thus need a method giving distant proposals with high ac-

ceptance rate. This can be achieved by taking into account the gradient of the

negative log-probability, which is the central idea of Hybrid (or Hamiltonian)

Monte Carlo (HMC, [Duane et al., 1987]).

First, an auxiliary variable v is introduced, whose sampling distribution must

be symmetric and is usually taken to be the Normal distribution; v ∼ N (0, 1).

Thus, HMC samples from the joint distribution

g(x, v) ∝ p(x)×N (0, 1) = exp

{
−
[
− log p(x) +

v2

2

]}
.

From a physics point of view, this is nothing but the Boltzmann distribution

of a system at inverse temperature β = 1 with Hamiltonian

H(x, v) = − log p(x) +
v2

2
, (1.11)

x taking the role of particle positions and v being their momenta. To obtain

samples from p(x), one then has to simulate from p(x, v) and marginalize over

v, which is trivial, because the two variables are independent.

In practice, HMC is implemented by making use of Gibbs sampling (Sec. 1.3.2):

first, momenta v are drawn, then Hamilton’s equations of motion are solved
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with (xt, vt) as initial conditions, resulting in a state (qt∗, vt∗) at some pseudo-

time τ . As the Hamiltonian flow φτ : (xt, vt) 7→ (xt∗, vt∗) is volume-preserving

and reversible, this procedure constitutes a valid transition kernel. In general,

though, Hamilton’s equations cannot be solved exactly and one has to resort

to a volume-perserving and reversible numerical integration scheme. The most

common choice is the leap frog integrator (see, e.g., [Hairer et al., 2003]) or

related algorithms, as they require only one gradient evaluation per time step

while maintaining second order accuracy. Other symplectic and reversible

integrators can be chosen, such as RESPA [Tuckerman et al., 1992], which

relies on a Trotter factorization of the Liouville propagator to decouple the

motion of degrees of freedom with different timescales. But all methods for

numerical integration have in common that they neccessarily introduce an

error, which makes the trajectory deviate from the actual ensemble. In HMC,

it is accounted for by an acceptance / rejection step. The most common choice

is

pHMC
acc (qt+1 = qt∗, vt+1 = vt∗|qt, vt) = min

{
1, e−∆H

}
(1.12)

with ∆H = H(qt∗, vt∗)−H(qt, vt) being the difference in total energy.

The transition kernel is thus a product of three components: the probability to

draw a certain momentum, a Dirac delta distribution reflecting the fact that

evolution under the flow defined by the integration scheme is deterministic,

and the acceptance probability. It can be shown to fulfill detailed balance,

guaranteeing that HMC indeed samples from the target distribution p(x).

Recent work by Sohl-Dickstein et al. [2014] interprets a HMC step (up to mo-

mentum randomization) as a sequence of operators acting on a discrete state

space. This view of HMC is very intuitive and also leads them to propose a

detailed balance-violating variant of HMC, termed “Look Ahead HMC”, which

is able to reduce random-walk behaviour and results in performance gains.

The performance of HMC critically depends on choosing appropiate timesteps

∆t and number of integration steps τ/∆t. Too large timesteps give distant and,

as such, less correlated proposals, but the numerical error increases and pro-

posals are most likely rejected. Similarily, a small number of integration steps
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with appropiate timestep gives high acceptance rate, but subsequent states in

the Markov chain are closer to each other. While in the above description the

mass matrix of the artificial system was set to unity, this is another impor-

tant parameter to tune. Recently, the fact that probability distributions are a

Riemannian manifold led to the exploitation of differential geometric concepts

to automatically tune the mass matrix [Girolami and Calderhead, 2011; Lan

et al., 2012].

In the context of ISD, the part of the log-posterior gradient stemming from

the likelihood can, depending on the number of data points and the forward

model, be quite cheap to compute. The gradient of the force field E(x), on the

other hand, is usually way more complicated and expensive to calculate. The

reason for this is the usually employed volume exclusion, which, for N atoms,

in a naive implementation, requires N2 distance calculations. These neces-

sarily involve square roots and are thus responsible for a significant part of

computation time spent calculating the intermolecular forces. Luckily, Verlet-

[Verlet, 1967] and cell [Boris, 1986; Mattson and Rice, 1999] lists reduce the

amount of distances to be calculated.

It is important to note that the Hamiltonian (Eq. 1.11) generating the dy-

namics is a convenient, but not neccessary choice. Any Hamiltonian dynamics

can be chosen, as long as it gives reasonable proposal states and thus good

acceptance rates. This is a possibility to save computation time for gradient

evaluations by fixing some degrees of freedom, or, in large data sets, disre-

garding some data points. It is important, though, to perform the acceptance

criterion using the “real” Hamiltonian.

1.3.4 Replica Exchange

While for small systems with simple likelihoods and prior distributions, Gibbs

sampling in conjunction with appropriate subsamplers is sufficient, in larger

system sizes and for highly multimodal posterior distributions, the respective

samplers can easily get stuck in local minima, thus increasing correlation times

and slowing down convergence. This problem can be alleviated by so-called
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extended-ensemble algorithms, in which the (pseudo-physical) system is not

only simulated at the target (pseudo-) temperature, but also at higher tem-

peratures, which effectively flatten out its energy landscape and by some means

give the low-temperature Markov subchain access to distant states from the

high-temperature ensemble. While several methods exist (see Iba [2001] for

a review), we focus on Replica Exchange (RE, Geyer [1991]; Swendsen and

Wang [1986]).

In RE and modifications of it, one simulates not only the target distribution,

but also variants of it which are easier to sample. The typical choice to generate

the family of distributions is to simulate Boltzmann distributions at different

temperatures, but one can as well, as proposed by [Sugita et al., 2000], modify

the energy function, which, in the following, we often do, or vary other ther-

modynamic parameters.

For simplicity, we assume that we are interested in simulating the Boltzmann

distribution p(x) = exp[−βE(x)]/Z(β) of a system with potential energy E(x)

and that the only replica parameter is the inverse temperature β. Then, at

randomly chosen or fixed intervals, one tries to exchange configurations be-

tween different simulations (i.e., temperatures) and after that continues with

normal equilibrium MCMC or MD sampling. These exchanges are constructed

in a way that at least the balance condition is fulfilled. This scheme allows the

low-temperature simulations to get access to conformations sampled by the

high-temperature simulations through a random walk in temperature space.

Fig. 1.2 illustrates the method and shows the trace of two states in a simula-

tion with 5 replicas as they traverse the temperature ladder. Describing RE

in a more formal way, one samples not from the target density p(x), but from

the joint distribution

p(x) = p0(x0) . . . pN(xN). (1.13)

If one is interested in a specific distribution pk(xk), one can just use all sam-

pled xk and ignore the remaining components of x, because all components

of x are mutually independent. RE and related algorithms in fact simulate a

time-heterogenous Markov chain: the regular sampling using regular MCMC
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algorithms or MD constitute one transition kernel and the exchange moves an-

other one. Not all exchange moves are accepted, since this would disturb the

respective equilibrium distributions of the single chains. Instead, an exchange

move (xti, x
t
j)→ (xt+1

i , xt+1
j ) = (xtj, x

t
i) between simulations i and j is accepted

with a probability

pREacc (xt+1
i = xj, x

t+1
j = xi) = min

{
1,
pi(x

t
j)pj(x

t
i)

pi(xti)pj(x
t
j)

}
. (1.14)

This acceptance probability is again designed to make the exchange transition

kernel obey the detailed balance condition, but, as always, it is not the only

possible acceptance probability to do so. If we again take a physics perspective

and introduce pseudo-energies Ei(xi) := − log pi(xi) and further assume that

Ei(xi) = βiE(xi), we are simulating the Boltzmann ensembles of a system with

potential energy E(x) at N different inverse temperatures βi. The acceptance

probability then takes the form

pRE
acc(x

t+1
i = xtj, x

t+1
j = xti) = min

{
1, e∆β∆E

}
(1.15)

with ∆β = βi− βj and ∆E = E(xti)−E(xtj). From Eq. 1.15 it is clear that in

order to get reasonable exchange acceptance rates, the inverse temperatures

βi, βj must not be too different. This is why usually only exchanges between

neighbouring simulations are attempted. Nevertheless, one might need many

intermediate distributions to allow efficient sampling. This obviously increases

computational cost and it is difficult to choose an efficient schedule. Addition-

ally, by construction, RE performs a random walk in temperature space and too

many intermediate distributions slow down the diffusion of “high-temperature

states” to the target distribution; the average time a state needs to cross the

whole temperature ladder scales with
√
N [Hukushima and Nemoto, 1996].

Much effort has been put into finding systematic methods to optimize RE

schedules; a subject we revisit in Sec. 3. In structure calculations using ISD

we make massive use of RE to sample from conditional posterior distribu-

tions of structures, which often vary in not only one, but two temperature-like

parameters [Habeck et al., 2005]. A great advantage of RE is that the sam-

ples drawn in the high-temperature simulations can be used to estimate very
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Figure 1.2: Left : schematic depiction of Replica Exchange (RE): two chains

i, j sample different distributions pi(x), pj(x). The step t→ t+1 is

performed in both chains with some MCMC or MD method. The

transition t + 1 → t + 2 then consists in proposing state xt+1
i to

chain j and, vice-versa, xt+1
j to chain i. The swap is then accepted

with a probability pacc and local sampling continued.

Right : trace of two states in a RE simulation with five different

ensembles. Exchanges were attempted every five steps. Longer

horizontal lines mean rejected swap attempts.
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accurate averages with respect to the target distribution p0(x0) by means of

reweighting techniques like the Multistate Bennett Acceptance Ratio method

(MBAR, [Shirts and Chodera, 2008]) and the Weighted Histogram Analysis

Method (WHAM, Sec. 1.4). In the context of Bayesian analyses like ISD, this

is very convenient to estimate model evidences, as done in, e.g., [Mechelke and

Habeck, 2012].

1.4 Weighted Histogram Analysis Method

(WHAM)

When running multicanonical algorithms like RE, the primary goal is to en-

hance sampling of the target distribution. But instead of discarding them as

an (expensive) by-product, we would like to use samples from all interpolating

distributions to improve the estimate of an average quantity or the target dis-

tribution it self. This is non-trivial, as samples from one ensemble will not have

the same weight in another ensemble and it is not obvious how to reweigh them

to accomodate for this fact. The solution is found in the multiple histogram

reweighting method (WHAM, Ferrenberg and Swendsen [1989]; Kumar et al.

[1992]), the idea of which we will briefly sketch.

Assume, for simplicity, that we are dealing with a system in a canonical en-

semble at different inverse temperatures β. The probability to find the system

in the infinitesimal configuration space interval [x, x + dx] is given by the

Boltzmann ensemble p(x|β) = exp[−βE(x)]/Z(β). A central quantity charac-

terizing a physical system is the density of states (DOS)

Ω(E) =

∫
dx δ[E − E(x)] , (1.16)

which can also be multi-dimensional,

Ω(E0, . . . , En) =

∫
dx

∏
i

δ [E − Ei(x)] , (1.17)

if the total system energy is split up in several components E0, . . . , En. The

DOS allows the calculation of ensemble averages such as the partition function
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Z(βk) or, more generally, the average over any function of the energy E, at

arbitrary β. Using Ω, we can write

〈f(E)〉β =

∫
dx f [E(x)]e−βE(x)∫

dx e−βE(x)
=

∫
dE Ω(E)f(E)e−βE∫

dE Ω(E)e−βE

and thus transform the possibly high-dimensional integral over x in a one-

dimensional integral over E, which can be easily approximated numerically.

We now follow closely [Chodera et al., 2007] to establish the connection to

simulations. Assume we are given discrete, independent samples from all en-

sembles. Noting that Ω(Em) is the multiplicity of energy Em, using the Boltz-

mann ensemble, we can now estimate the probability to find the system with

energy Em at temperature βk as

p(Em|βk) =
Ωmke

−βkEm

Z(βk)
(1.18)

with Ωmk an approximation of the DOS Ω(Em) calculated from samples at

temperature βk. Furthermore, we approximate the partition function as

Z(βk) =
∑
m

∆EΩme−βkEm .

Here, we assume that we discretized the energies in a histogram Hmk with

bin width ∆E, which counts the number of states x with energy E(x) ∈
[Em − ∆E/2, Em + ∆E/2] sampled at temperature βk.

An alternative estimation of p(Em|βk), based on the histogram Hmk, is

p(Em|βk) =
Hmk

Nk∆E
,

where we introduced the total numbers of samples Nk sampled at temperature

βk. If we equate this expression with Eq. 1.18, we can solve for Ωmk and find

Ωmk =
HmkZ(βk)

Nk∆Ee−βkEm
.

We realize that Z(βk) depends on Ωmk and this equation thus has to be solved

self-consistently.

WHAM in this form relies on the assumption of independently drawn samples.

To account for correlation between samples, we can introduce a statistical

inefficiency factor gmk, which is the number of configurations after which we
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obtain an uncorrelated sample. In general, it will depend both on the energy

bin index m as well as on the temperature βk. The different estimates for

Ωmk now have to be combined in a statistically optimal way to yield a final

estimate Ωm, which will be given by a weighted sum of all Ωmk with the

condition that the weights sum up to one. The statistically optimal weights

can be found either by minimizing the variance of the estimator Ω̂mk , as done

by Ferrenberg and Swendsen [1989]; Kumar et al. [1992], or by maximizing the

likelihood of Ωk given the single estimates [Bartels and Karplus, 1997]. Either

way, the result is a statistically optimal estimator given by the iteration

Ω̂m =

∑
k g
−1
mkHmk∑

k g
−1
mkNk∆Eefk−βkEm

, (1.19)

where the free energies

fk = − log
∑
m

Ω̂m∆Ee−βkEm (1.20)

have been introduced.

Chodera et al. [2007] perform a careful analysis of the WHAM equations (1.19,

1.20) for samples drawn using multicanonical algorithms by taking into account

the correlation between different ensembles. Furthermore, it is important to

note that WHAM is applicable not only to samples from Boltzmann ensembles

at different temperature, but directly generalizes to arbitrary ensembles p(E),

which map the system energy to a probability, and to several temperature-like

replica parameters. In the latter case, the DOS is multi-dimensional.

In fact, the ensemble under consideration does not have to be physical at

all: for any (not necessarily normalized) probability distribution p(x) we can,

as mentioned before in the context of MCMC sampling methods (Sec. 1.3),

introduce a pseudo-energy E(x) = − log p(x). Interpreting the probability dis-

tribution q(x) = exp[−E(x)] as a Boltzmann distribution at β = 1, we can

now proceed as described before and calculate the DOS Ω(E) and the normal-

ization constant.

In a Bayesian context, we consider the posterior distribution p(x). The just de-

scribed procedure then allows the calculation of the evidence, because it is the

normalization constant of p(x). WHAM is thus a powerful tool for Bayesian
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model comparison of which we take advantage in Sec. 4.3.6.

It is also interesting to see that WHAM is very closely related to the Multi-

state Benett Acceptance Ratio (MBAR; Shirts and Chodera [2008]) method,

as shown by a Bayesian analysis of Habeck [2012b]. Further work by Habeck

[2012a] shows that the need for discrete energy histograms Hkm can be avoided

and thus a truly non-parametric estimate of the density of states can be ob-

tained.
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2 Testing Replica Exchange

with Non-equilibrium

Switches (RENS) on complex

protein systems

Despite its usefulness and popularity, RE suffers from several drawbacks. Be-

cause RE is only effective when the overlap of energy distributions of neigh-

boring replicas is sufficiently high [Kofke, 2002], many replicas are typically

needed to bridge between the target and high-temperature ensemble. Further-

more, given the high-temperature ensemble and the destination ensemble, the

number of intermediate replicas required for a state to be able to traverse the

whole temperature range scales with the dimensionality or system size d as
√
d

[Hukushima and Nemoto, 1996].

To alleviate these problems, Ballard and Jarzynski [2009] have proposed replica

exchange with non-equilibrium switches (RENS), which uses non-equilibrium

trajectories to increase the phase space overlap between neighboring replicas.

This is achieved by “dragging” the states to be exchanged into the other en-

semble by virtue of a time-dependent, interpolating Hamiltonian. During the

switching dynamics the system thus adapts to the changes in the Hamiltonian.

Therefore the resulting proposal states tend to have a higher statistical weight

in the respective ensembles. For a toy model (a one-dimensional particle in

a rugged potential energy landscape), this method was shown to increase the

swap rate and computational efficiency significantly, provided the switching
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process was performed slowly. In a more recent article [Ballard and Jarzynski,

2012], the authors apply their algorithm to sample conformations of dialanine

in implicit solvent and find not only large efficiency gains at low temperature,

but also less correlated samples.

Because both the toy model as well as the dialanine are fairly small systems, it

remains unclear whether RENS also holds its promises when simulating more

complex, high-dimensional systems. In particular, due to the increased number

of replicas needed to simulate large systems with rugged energy landscapes,

it is important to assess the efficiency of RENS in problems with higher di-

mensionality and complexity. In this section, we study the use of RENS for a

protein network model and we show an application of RENS in ISD applied to

protein structure determination [Habeck et al., 2005]. We investigate various

ways of generating non-equilibrium trajectories. We indeed see an increase in

the swap rate but find that it is not clear if the additional computational costs

introduced by the non-equilibrium switches really pay off.

2.1 An introduction to recent results in

non-equilibrium statistical mechanics

The topic of non-equilibrium statistical mechanics is usually not found in un-

dergraduate textbooks, although our world is inherently not in thermodynamic

equilibrium. Closed systems only exist in theory and any thermodynamical or

statistical treatment of a realistic system as such can only be an approxima-

tion. Systems which we can reasonably assume as closed might nevertheless

not be in equilibrium. An example is the packing of DNA in eukaryotic nu-

clei: while the duration of a cell cycle is in the order of days, the time for

not-intermingling chains of the length of human chromosomes to relax to an

equilibrium state with maximal entropy is much longer, in the order of 500 yr

[Rosa and Everaers, 2008]. While this clearly shows the need for high topoi-

somerase activity, it also demonstrates that non-equilibrium effects certainly

play a large role in nuclear organization.
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RENS depends strongly on recent results in non-equilibrium statistical me-

chanics and while perhaps not necessary for a qualitative understanding of the

method, in light of the previous paragraph we feel that a short introduction

to recent results of this exciting field is in order.

Until the late 90’s, non-equilibrium statistical mechanics consisted mainly in

the treatment of systems not too far from equilibrium by linear response the-

ory (for an introduction see, e.g., the excellent lecture notes by Tong [2012]).

Few relations are valid arbitrarily far from equilibrium were known, among

them Evans and Searles’ transient fluctuation theorem [Crooks, 1999a; Evans

and Searles, 1994], until Jarzynski [1997a] discovered an equality between the

work exerted in repeated non-equilibrium experiments and the free energy dif-

ference ∆F between initial and final states valid for systems driven arbitrarily

far away from equilibrium. More exactly, the relation

〈e−βW [γA→B ]〉γA→B = e−β∆F (Jarzynski equality)

equates the average of the exponential of the negative work W over infinitely

many repetitions of a non-equilibrium trajectory γA→B starting from canoni-

cally distributed initial conditions x0 = (q0, p0) with the free energy ∆F , that

is, the minimum amount of work required to drive a system from state A to

state B. This is obviously a stronger statement than the theorem of maximum

work, 〈W 〉 ≥ ∆F , where the equality holds for a quasistatic process. This

result was proved in Jarzynski [1997a] for a system weakly coupled to a heat

bath by considering the fully deterministic evolution of the extended system

including the heat bath. Not long after, in [Jarzynski, 1997b], the Jarzynski

equality was re-derived considering a thermostatted system evolving accord-

ing to stochastic, Markovian dynamics satisfying detailed balance. We are

mainly interested in yet another derivation found by Crooks [1998, 1999a,b],

where Crooks proves a more general result implying Eq. Jarzynski equality,

several other results in non-equilibrium statistical mechanics and also a result

important to RENS. In the following we briefly sketch the so-called fluctuation

theorem and its derivation. We will limit ourselves to the case of dynamics
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in discrete time and space and follow closely Crooks [1998, 1999b]. The same

reference gives the generalization to continuous time and space dynamics.

A system is called microscopically reversible, if the probability of a particular

trajectory γ of the system in phase space is related to the probability of the

time-reversed trajectory γ̂ by

P [γ|γ(0), T ]

P̂ [γ̂|γ̂(0), T̂ ]
= e−βQ[γ] . (microscopic reversibility)

The probabilities on the l.h.s. depend on a trajectory (or path) γ, not only

on its start and end points. Here and in the following we denote functions

with this property path functions and put their arguments in square brackets

to distinguish them from state functions. A hat over a quantitiy denotes their

time-reversed twins, for example, for a trajectory γ = (x0, . . . , xN) the time-

reversed trajectory is γ̂ = (xN , . . . , x1). T denotes the transition kernel (see

Sec. 1.3) for γ and Q[γ] the heat produced during the trajectory γ.

A sufficient condition for a system in contact with a heat bath to be micro-

scopically reversible is that the dynamics are Markovian, that is, memory-less

in the sense of Markov chains (Sec. 1.3) and that they preserve the equilib-

rium distribution of the unperturbed system. This means that if a system is

in equilibrium at a certain value of an external “switching parameter” λ and it

is not perturbed, that is, λ is kept fixed, the system samples a canonical dis-

tribution specified by λ. Furthermore, the energy of the system always has to

stay finite. The proof that microscopic reversibility indeed follows from those

assumptions is very insightful and we quickly sketch it.

It is always possible to split up one transition in a time-inhomogenous Markov

chain into two distinct substeps. First, a stochastic transition xt → xt+1 oc-

curs with the probability T t(xt+1|xt) and then we update the transition kernel

T t → T t+1, with which the next transition xt+1 → xt+2 is performed. In our

physical setting of a non-equilibrium trajectory γ with substeps x = (x0, x1),

the stochastic transition corresponds to an exchange of heat with the heat bath

and the transition kernel update represents a change in the switching parame-

ter λ. In the time-reversed non-equilibrium trajectory, it is important to note

that the order of stochastic transition and perturbation is flipped. Thus we
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start with xt+1, then perform the kernel update T t+1 → T t and the system

performs a stochastic transition xt+1 → xt. The path probability ratio for this

one-step trajectory is thus

P [x|x0, T ]

P̂ [x̂|x̂0, T̂ ]
=
π1 (x1) π2 (x2)

π2 (x1) π1 (x0)

=
π1 (x1)

π1 (x0)

π2 (x2)

π2 (x1)

= exp{−β
[
H1
(
x1
)
−H1

(
x0
)]
}

= e−βQ[x] ,

where we made use of the conditions that at a given timestep t, the system

samples the canonical distribution πt(xt) ∝ exp[−βH t(xt)]. The expression in

the exponent can be identified with the heat Q[γ] produced during the one-

step trajectory because it is an energy difference not caused by an external

change, otherwise it would have to be associated with work performed on the

system. Generalization to trajectories with multiple steps is trivial and just

adds more energy difference terms to the expression for the heat Q. The work

has a similar microscopic definition. Both will be relevant in Sec. 2.2, which

is why we give their definitions explicitly:

Q[γ] =
∑
t

[
H t
(
xt
)
−H t

(
xt−1

)]
(microscopic definition of heat)

W [γ] =
∑
t

[
H t
(
xt−1

)
−H t−1

(
xt−1

)]
(microscopic definition of work)

By using the chain rule when calculating

∆H =

τ∫
0

dt
dH(x; t)

dt

=

τ∫
0

dt ẋ · ∇xH︸ ︷︷ ︸
heat

+

τ∫
0

dt
∂H

∂t︸ ︷︷ ︸
work

= Q+W

for the total energy difference ∆H after driving a system during the time in-

terval [0, τ ], we can also give a definition for the microscopic heat for continous
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time and space [Crooks, 1999b; Schöll-Paschinger and Dellago, 2006].

The just-proven macroscopic reversibility property is essential in the proof Bal-

lard and Jarzynski [2012] give for RENS fulfilling detailed balance.

Given microscopic reversibility, it is easy to prove Crooks’ main result, namely,

〈F 〉F = 〈F̂ e−βWd〉R . (Crooks’ theorem)

F [γ] denotes any path function of a trajectory γ and F̂ its time-reversed twin.

Wd[γ] = W [γ]−∆F is the dissipative work defined as the difference between

the total work done during the trajectory γ and the free energy difference, the

latter being the minimum amount of work needed to drive a system from state

A to B. The averages on the l.h.s. are taken over a set of forward trajectories

F starting from canonically distributed initial states and the average on the

r.h.s. is over the corresponding set of time-reversed trajectories.

Setting F = 1 and substituting the definition of the dissipative work, one im-

mediately recovers the Jarzynski equality. By setting F to different functions,

one can easily derive [Crooks, 2000] an entropy fluctuation theorem related

to Evans and Searles’ transient fluctuation theorem [Crooks, 1999a; Evans

and Searles, 1994], a generalization of the Kawasaki response [Yamada and

Kawasaki, 1967] and the probability distribution of a non-equilibrium ensem-

ble. It is important to realize that all these results hold arbitrarily far from

equilibrium.

2.2 The RENS method: increasing replica

phase-space overlap by non-equilibrium

simulations

We first describe RENS as introduced in Ballard and Jarzynski [2009, 2012].

Let A,B denote a pair of replicas with Hamiltonians HA, HB and states xxxA,xxxB.

While RE tries to directly exchange states by proposing new states xxx∗A = xxxB

and xxx∗B = xxxA for replica A and replica B, RENS generates the proposal states
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by calculating non-equilibrium trajectories γA→B, γB→A of length τ starting

from xxxA and xxxB, respectively, and ending in states xxx∗B,xxx∗A. During these tra-

jectories, the dynamics are governed by a Hamiltonian Hλ that depends on

time-dependent “switching protocols” λ, λ : [0, τ ]→ [0, 1], λ(t) = λ(τ − t) such

that

Hλ(0)=0 = HA; Hλ(τ)=1 = HB (2.1)

Hλ(0)=1 = HB; Hλ(τ)=0= HA . (2.2)

The initial state γA→B(0) = xxxA is highly probable in ensemble A and “dragged”

into ensemble B by virtue of the time-dependent Hamiltonian. The final state

xxx∗B tends to be more likely in ensemble B than xxxA itself. The same reasoning

applies to γB→A.

The probability of accepting this exchange depends on the total work generated

during the switching processes:

pacc = Pr{(xxxA,xxxB) 7→ (xxx∗B,xxx
∗
A)} = min{1, e−WA→B−WB→A} (2.3)

where WA→B, WB→A is the work required during the switching. For a properly

thermostatted system, WA→B → ∆F and WB→A → −∆F in the limit of

τ →∞ and thus pacc → 1. Thus, the longer the switching time, the less work

is expended during the switching trajectories and the higher is the probability

of accepting the proposal states. RE can be viewed as the other extreme where

states are swapped instantaneously such thatWA→B = HB(xxxA)−HA(xxxA). Fig.

2.1 demonstrates the favorable effect of RENS on proposed swap states.

2.2.1 An illustrative, analytical example

We illustrate the switching time dependence of the acceptance rate for a non-

thermostatted system in an analytically tractable example.

We consider a single particle with unit mass in a one-dimensional harmonic

potential; the Hamiltonian is then given by H(q, p) = p2/2 + q2/2. Let two

thermodynamic states of the system be defined by different temperatures TA,
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Figure 2.1: Configuration space overlap of swap proposal states for RE (top)

and RENS (bottom). Two normal distributions with means x0 = 0

(left) and x0 = 5 (right) were simulated with HMC and swaps per-

formed with both RE (pacc ≈ 0.003)and Langevin-thermostatted

RENS (LMDRENS, pacc ≈ 0.04). Histograms show the positions

proposed for a swap in each replica and dotted lines the probability

distribution the states were proposed to. It seems counter-intuitive

that the RENS acceptance rate is pretty low in spite of the large

configuration space overlap, but acceptance rates critically depend

on the work performed and considerable phase space overlap thus

is not anymore an indicator for high acceptance rates.
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TB. We want to evolve the system according to the dynamics

q̇ = p (2.4)

ṗ = −∂qH +
1

2Tλ
λ̇

dT

dλ
p

with Tλ = T (λ(t)) interpolating between TA and TB and a switching protocol

λ : [0, τ ] → [0, 1], λ(0) = 0 and λ(τ) = 1. The momentum scaling term was

proposed in Ballard and Jarzynski [2009] in order to heat up the system under

consideration while TA is being switched parametrically to TB and to cool the

system down for the reverse direction.

Taking λ(t) = t/τ, we look for a temperature parametrization Tλ such that

1/2Tλλ̇dT/dλ = const and the above equation system corresponds to the (ana-

lytically solvable) equations of motion of an time-independently damped har-

monic oscillator.

This can be achieved by

Tλ = T λBT
1−λ
A .

By this choice,

1

2Tλ
λ̇

dT

dλ
=

1

2τ
ln

(
TB

TA

)
=: β(τ) .

We consider the case of a harmonic oscillation. This requires ω :=
√

1− β2/4

to be real and not zero, thus 4 > β(τ)2 > 0. Fixing the temperatures TA, TB,

this yields a minimum value for the switching time:

τ >
1

4
ln

(
TB

TA

)
.

The solution of (2.4) given β is

q(t) = [A cos(ωt) +B sin(ωt)] e
1
2
βt

p(t) = [−ωA sin(ωt) + ωB cos(ωt)] e
1
2
βt +

1

2
βq(t) .

We want to calculate the work necessary for evolving the system under the

given dynamics. For deterministic, time-reversible dynamics, Ballard and

Jarzynski [2009] define the reduced work switching a system parametrically

from TA to TB as

wAB(τ) = hB [q(τ), p(τ)]− hA(q0, p0)− ln JAB
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with the reduced Hamiltonian hi(q, p) = 1/TiH(q, p), initial state q0, p0 and

JAB the Jacobi determinant of the underlying dynamics. In our case, JAB =

1/2 ln (TB/TA).

As our dynamics (2.4) without the momentum scaling term are deterministic

and time-reversible, we use this definition and calculate

wAB(τ) =
1

2TB

√
TB

TA

[(
p̃(τ)− 1

2
β(τ)q̃(τ)

)2

+ q̃(τ)2

]
− 1

2TA

(
p2

0 + q2
0

)
−1

2
ln

(
TB

TA

)
(2.5)

with q̃, p̃ the position and momentum of the undamped, unit-mass free oscil-

lator with angular frequency ω.

Considering that β(τ) ∝ τ−1 and the fact that both q̃(τ) and p̃(τ) have an

upper bound, we find

wAB(τ →∞) =
1

2

(
p2

0 + q2
0

)( 1

TB

√
TB

TA

− 1

TA

)
− 1

2
ln

(
TB

TA

)
=

√
TB

TA

hB(q0, p0)− hA(q0, p0)− 1

2
ln

(
TB

TA

)
. (2.6)

This result shows that for our setup the reduced work does not drop to zero

but to a constant depending on initial values and the temperatures as the

switching time is increased.

Now we calculate the minimum total work, which is w∞ = wAB(τ → ∞) +

wBA(τ → ∞). Provided that for both trajectories γAB and γBA the initial

values q0, p0 are drawn from the equilibrium distributions corresponding to TA

and TB, respectively, we can take the ensemble averages of Eq. (2.6) and find

w∞ = 〈wAB〉A + 〈wBA〉B

=

√
TA

TB

+

√
TB

TA

− 2 . (2.7)

This corresponds to a maximum acceptance rate of

pacc
∞ = e−w∞ < 1 . (2.8)
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2.2.2 Three different kinds of non-equilibrium dynamics

RENS crucially depends on the dynamics used in the switching protocol λ.

The optimal design of switching protocols for non-equilibrium processes has

recently received much attention, for example, by Nilmeier et al. [2011], Then

and Engel [2008] and Sivak and Crooks [2012]. We study a continuous protocol

proposed by Ballard and Jarzynski [2009] (note that we do not use an addi-

tional momentum scaling term in the equations of motion) as well as a scheme

with a piecewise constant protocol as described by Opps and Schofield [2001]

and Nilmeier et al. [2011]. We set kBT = 1 and parametrize the Hamiltonian

by

Hλ(ppp,qqq) =
ppp2

2
+ Uλ(qqq) . (2.9)

The Hamiltonian is switched from Hλ(t=0) to Hλ(t=τ) using three different

schemes for the non-equilibrium dynamics for generating the non-equilibrium

trajectories γA→B and γB→A. In AMDRENS and LMDRENS, we calculate

molecular dynamics (MD) trajectories employing the Andersen thermostat and

Langevin dynamics, respectively. Thermostatting is neccessary to obtain the

desirable scaling behaviour of RENS, that is, pacc → 1 for τ → ∞. In HM-

CRENS, we employ a Markov chain Monte Carlo (MCMC) algorithm to relax

the system after each perturbation. For this kind of dynamics, the thermostat

is already implied in the acceptance step of the MCMC algorithm. In the

following, we describe these three dynamics in greater detail.

AMDRENS: Andersen-thermostatted molecular dynamics

To generate a continously varying Hamiltonian, we choose a protocol that

depends linearly on the time t, λ(t) = t/τ. We use the velocity Verlet scheme

to integrate Hamilton’s equations of motion:

q̇qq = ∇pppH = ppp

ṗpp = −∇qqqH = −∇qqqU(qqq;λ(t)) ,
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from t = 0 to t = τ . We thermostat the system using the Andersen thermostat

[Andersen, 1980]. In our implementation, new momenta are drawn from the

Maxwell-Boltzmann distribution, ppp ∼ exp{−ppp2/2}, with a certain probability

pupdate at every timestep. For Hamiltonian dynamics in combination with the

Anderson thermostat, Ballard and Jarzynski [2009] define the work as

W = H(xxxτ ;λτ )−H(xxx0;λ0)−
∑
i

Qi (2.10)

where Qi = H(xxx′ti ;λi)−H(xxxti ;λi) = ppp′
2

ti/2−ppp2ti/2 is the heat generated by the An-

dersen update at time ti; here, xxx′ and ppp′ denote the state xxx and its momentum

ppp after the momentum update. The potential energy U does not appear in this

expression, as only the momentum is changed, while the positions remain the

same. For this reason, the potential energy after and before the momentum

update are identical and cancel out.

LMDRENS: Langevin-thermostatted molecular dynamics

In LMDRENS, we use Langevin dynamics [Langevin, 1908] to thermostat the

system during the non-equilibrium trajectories. The equations of motion for

Langevin dynamics are [Sivak et al., 2013]

dqqq = ppp dt (2.11)

dppp = −∇qqqU(qqq;λ(t)) dt− γppp dt+
√

2γ dW (t) (2.12)

with the friction coefficient γ and W (t) a delta-correlated Gaussian process

with zero mean, where we chose temperature units such that β = 1/kBT = 1

and unit masses for each degree of freedom.

To integrate these equations of motion, we use the integration scheme proposed

by Bussi and Parrinello [2007] in the form described in Sivak et al. [2013]. This

method employs the velocity Verlet integration scheme for the deterministic

substeps and allows the clear separation of heat, protocol work and shadow

work, that is, numerical error in the energy. We obtain the work as introduced

by Sivak et al. [2013]:

WA→B = HB(xxxτ )−HA(xxx0)−Q , (2.13)
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Figure 2.2: Switching protocol λ(t) for HMCRENS. The protocol are N =

τ/L∆t successive steps of an instantaneous perturbation, followed

by a HMC propagation consisting of L MD steps with timestep

∆T and a Metropolis acceptance step

taking advantage of the (integrator-specific) easy on-the-fly calculation of the

dissipated heat Q during integration. Note that the dynamics is not Hamilto-

nian and that H simply measures the instantaneous total energy of the system.

HMCRENS: stepwise perturbations with HMC relaxation

Following Nilmeier et al. [2011], we choose a non-equilibrium protocol that

alternates between thermodynamic perturbation and MCMC relaxation steps.

The Hamiltonian is the same as for AMDRENS, but the protocol varies step-

wise according to

λ(t) =
N∑
n=1

n

N
Θ

(
t− n− 1

N
τ

)
Θ
( n
N
τ − t

)
. (2.14)

Here, Θ(x) denotes the Heaviside function and N the number of equally sized

steps in the protocol. A single step consists of increasing λ instantaneously by a

constant value ∆λ = 1/N (perturbation), followed by Hamiltonian Monte Carlo

(HMC) [Duane et al., 1987] with a trajectory of length L = τ/N∆t (propagation).

Fig. 2.2 illustrates this protocol. The work for such a trajectory is [Nilmeier

et al., 2011]:

W =
N∑
n=1

[Un(qqqn−1)− Un−1(qqqn−1)] . (2.15)

Note that contributions from the kinetic energy do not appear in this expres-

sion. They cancel out because we are perturbing the system by instantaneously
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changing the potential energy while leaving both temperature and the actual

system state unchanged.

An early version of HMCRENS, called annealed swapping, has been intro-

duced by Opps and Schofield [2001]. A sequential variant similar to simulated

annealing as well as the estimator of the work (2.15) also form the basis of

annealed importance sampling (AIS) introduced by Neal [2001].

2.3 Efficacy and scaling behavior of RENS for

a coarse-grained protein model

The difficulty of conformational sampling depends on the dimensionality of

the system as well as on the degree of multimodality and correlation between

conformational degrees of freedom. We test RENS on various systems arising

in computational biology which differ in these properties and compare it to RE.

To study the performance of RENS and RE in problems with increasing di-

mensionality, we consider the Gaussian network model (GNM) (see, e.g., the

review by Rader et al. [2006]) for 16 proteins whose length varies between 25

and 500 amino acids. The conformational degrees of freedom are the Cartesian

coordinates of the Cα atoms. Therefore, the dimensionality d of configuration

space ranges between 75 and 1500. The resulting probability distribution is a

multivariate Gaussian distribution and thus unimodal. In general, the degrees

of freedom are coupled, because the covariance matrix of this distribution (the

connectivity matrix of the GNM) is non-diagonal.

For every protein, we perform simulations with two replicas at two different

force constants k0 = 0.3 and k1 = 1.0 as well as k0 = 0.85 and k1 = 1.0,

respectively. The λ-dependent potential Uλ is parametrized as

Uλ(qqq) = kλUGNM(qqq); kλ = λ k2 + (1− λ) k0 . (2.16)
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where

Uλ(qqq) =
∑
ij

[ΓΓΓ−1]ij(qqqi − qqq0
i ) · (qqqj − qqq0

j)

and Γij is the Kirchhoff matrix based on the native structure qqq0
i and a cutoff

distance of 7.5Å.

To assess the performance of the RENS variants, it is necessary to first min-

imize the impact of insufficient equilibrium sampling between the exchange

attempts. This is achieved by realizing that under the GNM the Cartesian

coordinates qqqi follow a multivariate Normal distribution with covariance ma-

trix ΓΓΓ. Uncorrelated equilibrium samples can therefore be generated between

exchange attempts by using random number generators for the multivariate

Normal distribution.

To compare the three switching protocols, we set up the length of the non-

equilibrium trajectories such that it amounts to a fixed number of integration

steps. In AMDRENS, we run 150/3000 integration steps for k0 = 0.85/k0 = 0.3

using the Andersen thermostat and a linear switching protocol λ(t) = t/τ. In

case of LMDRENS, we chose the same linear switching protocol and integrate

the stochastic Langevin equation by running the integrator described in [Bussi

and Parrinello, 2007; Sivak et al., 2013] for the same number of steps. For HM-

CRENS, we have to choose the number of intermediate steps during the switch-

ing process. Test simulations show that the highest acceptance rate is reached

when we divide the non-equilibrium trajectories into Nk0=0.3 = Lk0=0.3 = 3000

and Nk0=0.85 = Lk0=0.85 = 150 steps, respectively. That is, after each pertur-

bation step we relax the state by running HMC with a single leapfrog step.

That using as many intermediate steps as possible is advantageous has also

been empirically confirmed in the context of NCMC [Chodera, 2012; Nilmeier

et al., 2011]. We should note that HMC requires energy evaluations to cal-

culate the acceptance probability and the leap-frog scheme employed actually

takes two force evaluations when only taking one step. These additional energy

/ force evaluations were minimized in our implementation by re-using already

calculated values whenever possible but nonetheless, a N -steps HMCRENS
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trajectory is computationally more expensive than a N -steps AMDRENS or

LMDRENS trajectory.

Care has to be taken when choosing the integration timesteps used in the

non-equilibrium trajectories. While a small timestep results in little numerical

error, states also do not change much and thus don’t adapt to the ensemble

change, which leads to low acceptance rates. But also large timesteps are

problematic, because numerical error increases, and in the case of HMCRENS

additionally results in low acceptance rates of the relaxation steps. For this

reason, timesteps for all RENS variants were determined by running trial sim-

ulations for each protein spanning a range of values and choosing the timestep

yielding the highest acceptance rates. In general, this optimal timestep is dif-

ferent for each protein.

It is interesting to examine the work which determines the acceptance probabil-

ity for RENS. By averaging the total work performed on the system during the

non-equilibrium trajectory and dividing this value by the number of residues,

we can calculate a work per residue, which gives us a direct insight into the

scaling behavior of RENS. As RE can be regarded as the τ → 0 limit of RENS,

we also plot the RE “work” WRE = UB(xxxA)−UA(xxxA)+UA(xxxB)−UB(xxxB) of the

RE simulations. In Fig. 2.3, RE and both RENS variants show within stan-

dard deviation an approximately constant work per residue consistent with the

above analysis of the acceptance rates. The work per residue for HMCRENS

and AMDRENS are very similar and much lower than the work per residue

for RE. This is the reason for the generally higher HMCRENS / AMDRENS

swap acceptance rates in Fig. 2.3

The approximately constant work per residue for both all RENS variants and

RE reflects the fact that the work is an extensive quantity and that in both RE

and RENS we indeed have to expect acceptance rates to decrease exponentially

with increasing number of degrees of freedom.
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Figure 2.3: RENS behaviour for different system sizes and different phase space

overlaps: Gaussian Network Model (GNM) simulation of sixteen

proteins with different number of residues. Two replicas defined by

Uλ(q) = kλUGNM(q) have a different phase space overlap defined

by global force constants k0 = 0.3 (low phase space overlap, left),

k0 = 0.85 (higher phase space overlap, right) and k1 = 1.0.

Top: average acceptance rates. Bottom: average work per residue.

Due to the log-scale, error bars are not shown. Standard deviations

decrease with higher residue number and range from σmin ≈ 5 ×
10−3 to σmax ≈ 0.175, the latter attained for RE at k0 = 0.3 and

nres = 25. Approximately constant values show that the work as

defined in RENS is an extensive quantity.
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2.4 RENS in the context of a complex ISD

posterior distribution

The last test system is a posterior probability distribution arising in ISD (Sec.

1.2. Currently conformational samples are generated from the posterior dis-

tribution using replica exchange Monte Carlo with two control parameters

[Habeck et al., 2005]. The conformational degrees of freedom qi are the torsion

angles that parameterize rotations about covalent bonds.

The posterior probability distribution over all torsion angles is:

p(qqq|D, I) ∝ p(D|qqq, I) p(qqq|I)

where D denotes the experimental data and I the prior knowledge. The pos-

terior probability is proportional to the product of the likelihood function

(D|qqq, I) (the probability of observing the actual data if the conformation is

qqq) and the prior probability p(qqq|I). The prior probability is the Boltzmann

distribution p(qqq|I) ∝ exp{−E(qqq)} based on a simple non-bonded force field

E(qqq). Because we use ISD only to benchmark the RENS algorithm, we do not

take full advantage of its capability to determine statistically well-defined and

unbiased structure ensembles. That is, we fix additional model parameters

such as data weights to values obtained in previous simulations and sample

only the conformational degrees of freedom.

The posterior distribution p(qqq|D, I) is high-dimensional and multimodal; more-

over, the torsion angles are highly coupled. Therefore p(qqq|D, I) is a challenging

real-world application of RENS and RE. In contrast to the GNM for which

one could directly draw equilibrium samples, the ISD posterior can only be

sampled using Monte Carlo or MD simulations.

To implement RE and RENS for this problem, we use a replica schedule in

which two parameters, ν and α, control the weight of the data and of the

force field, respectively [Habeck et al., 2005].1 To calculate the trajectories

neccessary for a RENS swap attempt between two replicas A and B, defined
1Note that in Habeck et al. [2005] the control parameters ν and α are denoted λ and
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by parameters (νA, αA) and (νB, αB), the λ-dependent potential is then param-

eterized by

Uλ(qqq) = λU(qqq; νB, αB) + (1− λ)U(qqq; νA, αA) (2.17)

where

U(qqq; ν, α) = −ν log p(qqq|D, I) +
α

α− 1
log[1 + (α− 1)E(qqq)]

is the modified log posterior distribution based on the Tsallis ensemble [Tsallis,

1988] as prior probability.

In HMCRENS, we use a protocol that is comprised of 200 switching steps, each

of which consist of a perturbation step and a relaxation step. In the perturba-

tion step, the replica parameters ν, α are increased / decreased linearly. The

relaxation step consists of an HMC step using 100 leapfrog steps. AMDRENS

was implemented similarly as for the GNM simulations, that is, the replica

parameters were switched continuously during a thermostatted MD trajectory

comprising 2 × 104 steps. In both HMCRENS and AMDRENS, 2 × 104 inte-

gration steps are performed in total. Again, note that HMCRENS needs more

force / energy evaluations than AMDRENS.

To make the problem harder, we use only 7 replicas instead of the aforemen-

tioned 10–20 replicas. We expect the RE simulations to have difficulties relax-

ing to the native state of the protein reasonably fast due to low exchange rates,

but our results show that exchange rates of only a few percents are sufficient

and thus RE still performs reasonably well. Nevertheless we expect RENS to

achieve higher exchange rates because of increased phase space overlap.

In Fig. 2.4, we first look at the acceptance rates. All RENS variants beat RE

by accepting more swaps, with LMDRENS performing best, albeit with large

variations within the five equivalent simulations.

Fig. 2.6 shows the evolution of the total ensemble pseudo-energy E(xxx) =∑7
i=1 Ei(xxxi) = −∑7

i=1 log pi(xxxi) averaged over five independent simulation

q, respectively. However, to avoid confusion with the switching parameter λ(t) and

the conformational degrees of freedom qqq, we denote the data weight ν and the Tsallis

parameters α.
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Figure 2.4: Acceptance rates averaged over five simulations in which 1.5 ×
10−3 samples are drawn from the ISD posterior distribution for

1UBQ conditioned on all nuisance parameters. Errorbars show the

standard deviation.
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Figure 2.5: Blocked standard error of the total ensemble energy. Errors are

averaged over five simulations in which 1.5×10−3 samples are drawn

from the ISD posterior distribution for 1UBQ conditioned on all

nuisance parameters. The subset of errorbars shows the standard

deviation.
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Figure 2.6: Total ensemble pseudo-energy averaged over five independent runs.

Ensembles consist of 1.5 × 10−3 samples from the ISD posterior

for 1UBQ. In each RE(NS) simulation, 7 replicas were simulated.

Energies were plotted against the number of MC samples (Left) and

the (approximate) number of integration steps performed (Right).

The subset of errorbars shows the standard deviation between five

independent simulations.

runs. LMDRENS is able to relax significantly faster to the global minimum

with respect to the total number of MC samples. As the error bars show, this

effect is reproducible over several independent runs converging to the same

mean total energy, which gives us the confidence that the simulations are in-

deed converged. TMDRENS, HMCRENS and AMDRENS perform similar to

RE. This is in agreement with LMDRENS having the clearly higher acceptance

rates.

To assess the sampling quality achieved when sampling from a probabiltiy

distribution p(x), we employ block averaging [Flyvbjerg and Petersen, 1989;

Grossfield and Zuckerman, 2009]. This method makes use of the standard error

SE(A) =
σ(A)√

(N)
;

it is the standard deviation between estimates of A(x) based on independent

samples x divided by the total number on independent samples from which

the standard deviation is calculated. As such it is a measure of the accuracy

of method employed to obtain the samples.

Block averaging then works by calculating a running average of the standard
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error over blocks of different sizes. A trajectory is divided in equally-sized

blocks, within which the standard error SE(A) is calculated. This process is

repeated for systematically increasing block sizes. Once the block sizes are

large enough that samples within consecutive blocks are not correlated any-

more, the standard error will plateau at its real value. Block averaging thus

gives an estimate of correlation times. It is important to note that this pro-

cedure is valid only for a dynamical simulation, that is, for samples which are

indeed time-correlated. For this reason, it does not make sense to consider,

for example, the energy of the target ensemble in a replica exchange simula-

tion. But we can use the total ensemble energy as a quantity which we use to

measure convergence, as the super-Markov chain mentioned in Sec. 1.3.4 does

indeed consist of sequentially correlated samples.

Calculating the corresponding block standard errors for the total ensemble

energy shows that convergence is faster and correlation times smaller for all

RENS variants, with LMDRENS again leading the field. It is interesting to

see that according to this analysis, the other methods might actually fail to

produce completely decorrelated samples within blocks of 5×103 MCMC sam-

ples.

Yet, faster convergence and better sampling quality come at a high cost: we

choose the length of the non-equilibrium trajectories to be 200 steps consisting

of a perturbation and a 100 step HMC relaxation for HMCRENS, which makes

a total of 2×104 integration steps per trajectory. The same number of integra-

tion steps was performed for each of the TMDRENS and LMDRENS trajec-

tories. This means that for all RENS variants, the computational expense per

MC sample is much higher than for RE. We choose the (approximate) number

of leapfrog integration steps performed as a measure for computational effort

and plot the target ensemble energy as a function of the performed integration

steps in the right diagram of Fig. 2.6. RE is clearly more efficient than all of

the RENS variants, followed by LMDRENS, which performs much worse, but

much better than the other RENS variants. We suggest therefore LMDRENS

as the most promising candidate for trying to beat RE in larger systems by

optimizing the switching protocol λ(t) or by using other benefits of RENS like
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a possible “waste recycling” of the non-equilibrium trajectories to estimate free

energies by statistical reweighting [Hummer and Szabo, 2001].
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3 Outlook on an adaptive

Replica Exchange scheme

While the idea of Replica Exchange (RE; Sec. 1.3.4) is relatively simply, its

practical application often is not trivial. While a high-temperature distribu-

tions is easy to pick, it is neither clear how many intermediate distributions

have to be simulated nor how they should be related to the high- and low-

temperature distributions. Both factors affect the efficiency: more replicas

necessarily require more computation time and suboptimal schedules may will

exhibit drops in acceptance rate, hindering the quick diffusion of states from

the high-temperature replica to the target replica.

In this chapter, we borrow a result, which applies to optimal estimation of

normalization constants, to outline a fully automatic scheme to determine in-

termediate distributions, which possibly result in better sampling quality as

compared to simple schedules.

3.1 Previous approaches on optimizing Replica

Exchange schedules

Considering the wide-spread applications of RE, it is not surprising that many

efforts have been spent on finding general recipes for optimal schedules. Two

principal approaches exist: we could aim for uniform acceptance rates between

all replicas, making sure that ascending and descending on the temperature

ladder spend an equal amount of time in each replica. Kofke [2002] show that,
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wehen simulating Boltzmann ensembles, this can be achieved using a geometric

progression of temperatures. Their result rests on the strong assumption that

the constant volume heat capacity is constant across the whole temperature

range, which excludes system exhibiting phase transitions in the temperature

range of interest. There seems to be a consensus that an acceptance rate

of around 20 % yields optimal performance [Kone and Kofke, 2005; Rathore

et al., 2005]. General, iterative approaches to obtain a specific uniform accep-

tance rate have been developed [Rathore et al., 2005; Schug et al., 2004]. A

recently proposed, general framework [Habeck, 2015] is capable of constructing

optimal schedules based on minimizing the relative entropy (Kullback-Leibler

divergence) between neighbouring replicas and, at the same time, produces

samples and an estimate of the density of states. These schedules also result

in approximately uniform acceptance rates.

The second approach is to focus on the mixing between the lowest and the

highest-temperature replica and thus to maximize the number of round trips

between between them [Katzgraber et al., 2006]. While not an adaptive

scheme, a method described by Spill et al. [2013] tries to enforce round trips

by violating the detailed balance condition.

In the approach we describe in this chapter, we do not assume any knowledge

about the system / probabiltiy distribution under consideration and thus be-

lieve it may be suitable candidate for a general, adaptive scheme, which also

yields the density of states as a useful by-product.

3.2 Optimal interpolating distributions for free

energy estimation by thermodynamic

integration

In Bayesian analysis, the evidence of data D is the normalization constant

of the posterior distribution. Its sibling in statistical physics (in the canoni-

cal ensemble) is the partition function Z(β) =
∫

dx exp [−βE(x)] of a Boltz-
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mann distribution p(x) = 1/Z(β) exp [−βE(x)] at inverse temperature β. As

the knowledge of the partition function allows us to calculate every thermo-

dynamic quantity of interest such as free energies, heat capacities and so on,

it is of primary interest in computational physics. As such it comes as no

surprise that several methods have been devised to estimate partition func-

tions or rather their negative logarithms, namely, free energies, from MD or

MCMC simulations. In practice, though, one is only interested in the differ-

ence between free energies. Perhaps the most popular among these methods

is thermodynamic integration (TI, Smit and Frenkel [2002])), which is based

on the identity

∆F =

∫
dλ

〈
∂

∂λ
Eλ(q)

〉
. (TI identity)

Here, F denotes the free energy difference between two different canonical

ensembles defined at the same inverse temperature β and two different values

λ = 0, 1. This is reminiscent of the non-equilibrium processes discussed in Sec.

2.1 and indeed, the TI identity is the special case of the Jarzynski equality

for infinitely slow switching. Another popular method to approximate free

energy differences is thermodynamic perturbation, which can be seen to be the

opposite limit of instantaneous switching of the Jarzynski equality. In practice,

TI consists of simulating the system of interest at closely-spaced values of λ

and calculating the expectation value for all λ’s using the samples obtained.

Then, the integral in the TI identity can be approximated using quadrature

or the trapezoidal rule. TI has been known among physicists since the 70’s

[Gelman and Meng, 1998], but seems to have been independently rediscovered

by Ogata [1989] and was not known in the statistics community. Gelman and

Meng [1998] point out this lack of communication between different fields and

analyse TI from a statistical point of view. Of particular interest to us is

their discussion of the problem of optimal interpolating distributions qλ(x) =

pλ(x)Zλ, which immediately reminds us of the quest for optimal schedules in

RE(NS) methods. We now follow closely Gelman and Meng while adapting

their notation. Gelman and Meng’s interpolating distributions are optimal in
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the sense that they minimize the variance of the Monte Carlo estimator

∆̂F =
1

n

∑
i

∂λEλi(qi) ,

where a uniform distribution of λi is assumed. Any other distribution p(λi)

could be absorbed in the interpolating distributions qλi .

The variance of this unbiased estimator is

var
(

∆̂F
)

=
1

n

 1∫
0

∫
dλdq (∂λEλ(q) )2 −∆F 2

 . (3.1)

In the calculation to obtain this result covariances have to equal zero, so the as-

sumption of independent samples is indeed key to the following results. We are

now looking for the family of interpolating distributions qλ(q) = exp [−Eλ(q)]

which minimizes var
(

∆̂F
)
. This is equivalent to minimizing the integral in

Eq. 3.1, which we rewrite using the product rule as

1∫
0

∫
dλdq (∂λEλ(q) )2 =

1∫
0

dλ

[
d

dλ
logZ(λ)

]2

+

1∫
0

Eλ

[
d

dλ
log pλ(q)

]2

.

(3.2)

We can now minimize each term on the l.h.s seperately. For the first term, the

Cauchy-Schwarz inequality yields
1∫

0

dλ

[
d

dλ
logZλ

]2

≥ ∆F 2

with the equality for

Z∗λ ∝ exp(λ∆F ) . (3.3)

The integrand in the second term on the r.h.s. of Eq. 3.2 equals the Fisher

information I(λ) of the probability density pλ(q). Defining

αH = arctan

[
H(p0, p1)√

4−H2(p0, p1)

]

with the Hellinger distance H(p0, p1) =

[∫
dq
(√

p1(q)−
√
p0(q)

)2
]1/2

be-

tween the probability distributions p0/1(q), one can prove the inequality
1∫

0

dλ I(λ) ≥ 16α2
H . (3.4)
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The equality is given by a lengthy expression, which, combined with Eq. 3.3,

yields the optimal unnormalized interpolating densities

qλ(q) ∝ eλ∆F


√
q0(q)

Z0

[
a
(
Z0/1

)
− b
(
Z0/1

)]
+

√
q1(q)

Z1

[
a
(
Z0/1

)
+ b
(
Z0/1

)]
2

(3.5)

with

a
(
Z0/1

)
=

cos
[
αH
(
Z0/1

)
(2λ− 1)

]
2 cos

[
αH
(
Z0/1

)] ,

b
(
Z0/1

)
=

sin
[
αH
(
Z0/1

)
(2λ− 1)

]
2 sin

[
αH
(
Z0/1

)] .

In these equations the dependence of a, b, αH on the evidences Z0, Z1 is made

explicit, because it is important to see that this expression for the interpolating

distributions yielding a minimal variance of ∆̂F not only involves a difficult

integral

G =

∫
dq exp

{
−1

2
[E0(q) + E1(q)]

}
(3.6)

to calculate the Hellinger distance, but also already requires the knowledge

of the evidences, whose determination was the original goal of Gelman and

Meng’s analysis. They stop at this point and use the lower bound for the

variance as a reference to compare other estimators to.

3.3 Illustration of interpolating distributions for

an analytically tractable system

An easy toy system, for which free energies and Hellinger distances can be

calculated analytically, is a pair of normal distributions with different means

µ0/1 and standard deviations σ0/1. The partition functions are given by

Z0/1 =
√

2πσ2
0/1

59



−2 0 2 4 6 8

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p(
x

)
λ = 0.0

λ = 0.2

λ = 0.4

λ = 0.6

λ = 0.8

λ = 1.0

−2 0 2 4 6 8

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p(
x

)

λ = 0.0

λ = 0.2

λ = 0.4

λ = 0.6

λ = 0.8

λ = 1.0

Figure 3.1: Interpolating distributions between two normal distributions with

means µ0/1 = 0, 5 and standard deviations σ0/1 = 1, 1/
√

3.

Left: distributions minimizing the variance of the free energy esti-

mator. Right : linear interpolation.

and the integral defined in Eq. 3.6 is Gaussian;

G = c

∫
dq exp

[
− 1

2σ2
tot
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2

]
= c
√

2πσ2
tot .

The mean, standard deviation and constant are given by
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2
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2
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1

,
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,

log c = −1
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+
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]
+

1

2σ2
tot

µ2
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The resulting intermediate distributions are plotted in Fig. 3.1. On the one

hand, compared to a linear interpolation of the log-probabilities, the statis-

tically optimal distributions have a consistently higher overlap, which would

lead to higher acceptance rates in a RE. On the other hand, the interpolat-

ing distributions are bimodal and thus harder to sample from. This is due to

the mixture nature of the interpolating distributions: if the two target distri-

butions have very pronounced modes, we can expect them to persist in the

60



interpolations. One possibility to efficiently sample from such a mixture is

using a Gibbs sampling scheme (Sec. 1.3.2): first, we draw a component of the

three-component mixture with a probability given by the weights in Eq. 3.5

and then sample from the chosen component using any suitable MCMC sam-

pling scheme (Sec. 1.3), or, in this case, built-in random number generators.

Another way to sample from this mixture might be the use of non-equilibrium

MCMC methods such as NCMC [Nilmeier et al., 2011], in which a distant

proposal could be obtained by flattening the energy landscape to escape from

the current mode.

3.4 Exact free energy estimates as a criterion

for sampling quality?

While interpolating distributions derived above are proven to give, at least

in theory, the best estimates of free energy differences, it is not immediately

obvious that they constitute also an efficient RE schedule. But in our opinion,

there are good arguments that this is indeed the case.

Free energies are intimately connected with state populations. Only well pop-

ulated states have enough probability weight to contribute significantly to the

free energy of a system. So if we are able to estimate free energies correctly,

we can be optimistic to also get the state populations right.

Daniel Zuckerman and co-workers are looking for methods to reliably quan-

tify sampling quality, which is not an easy task, but nonetheless obviously

extremely important to measure progress in sampling methods. The usual

approch would be to calculate an effective sample sizes (ESS) by estimation

of a decorrelation time. But of what variable? This is a fundamental prob-

lem, as the variable needs to capture the slowest time scales in the system

lest it underestimate the correlation time. Furthermore, correlation time esti-

mation usually requires a dynamical trajectory, that is, a trajectory, in which

subsequent states are in fact time-correlated, as already pointed out in the dis-

cussion of block averaging in Sec. 2.4. To alleviate these issues, they suggest
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in [Zhang et al., 2010] to quantify the degree of sampling by analyzing the

variances of state populations, from which an objective ESS can be estimated.

This is justified as physical states are by definition representative of the slowest

timescales in a system. In their work, Zhang et al. discretize configuration

space in bins and, by a hierarchical method relying on transition rates, find

bins representing states. The ESS is then, following earlier work Lyman and

Zuckerman [2007], estimated by realizing that a variance of a state population

can be estimated from a known number of independent samples by means of

binomial statistics, but also the other way round. The success of this approach

described in [Zhang et al., 2010] gives us confidence that a scheme, which aims

to determine free energies, that is, log-ratios of partition functions to which

state populations contribute most, will also propose interpolating distributions

which assure good sampling. If then the number of intermediate distributions

is chosen such that exchange acceptance rates stay above a reasonable mini-

mum to ensure good mixing, we should be safe. But finally, the utility of such

a scheme can only be judged in an actual application.

3.5 Iterative determination of optimal mixture

weights

In many applications, such as ISD, we can neither easily normalize the prob-

ability distribution we wish to sample from nor can we calculate the Hellinger

distance to a different distribution analytically. To be able apply the possibly

optimal RE schedules in full generality, we thus need a way to approximate

both the normalization constants and the Hellinger distance. We now observe

that both quantities involve integrals, whose integrand only depends on the

random variable through the energy E(x) = − log p(x) and thus can be refor-

mulated as energy integrals using a (multidimensional) density of states (Eq.

62



1.16):

Z0/1 = − log

∫
dq e−E0(x) = − log

∫
dE0 e−E0 , (3.7)

G =

∫
dq e−

1
2

[E0(q)+E1(q)] =

∫ ∫
dE0 dE1 Ω(E0, E1)e−

1
2

(E0+E1) .

(3.8)

By using WHAM (Sec. 1.4) we should then be able to obtain estimates for

both quantities based on samples from all replicas.

These considerations immediately suggest to iteratively solve Eq. 3.5 by start-

ing a RE simulation with a fixed number of replicas and initial interpolating

distributions q0
λ, drawing samples from them and using these samples to get

a first estimate q1
λ of the interpolating distributions. The simulation is then

continued with the freshly calculated schedule to yield the next approximation

q2
λ using all previously drawn samples to estimate an updated, more accurates

DOS. We would then expect this iterative scheme to converge to the optimal

schedule, at which point the iterative procedure can be halted and the produc-

tive RE run can be started with the now optimized schedule. The advantages

of this scheme are obvious: as WHAM allows the inclusion of samples from

all iterations, we expect the weights to converge quickly and furthermore, if

the purpose of the RE simulation is a Bayesian analysis, a good DOS estimate

and thus the evidences and other high-dimensional integrals over the posterior

density come for free.

Unfortunately, at the moment, it is not clear if the WHAM equations (Eq. 1.19

and 1.20) can be modified to accomodate the fact that the mixed component

in Eq. 3.5 is only known up to a constant (the multiplication of two probabil-

ity densities will in general not again be a normalized density). This will be

key for an implementation of our method working under completely general

conditions. An important caveat is that the derivation just presented relies

on the strong assumption of having drawn independent samples. As samples

obtained by MCMC methods are, to a certain extent, always correlated, it will

not be possible to actually reach the lower bound given in Eq. 3.4. But we

can still hope for our iterative scheme to prove superior to heuristic methods.
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3.6 A first test on a one-dimensional toy

system

For a proof-of-concept that the discussed optimal interpolations are indeed

advantageous replica schedules, we consider a simple one-dimensional system.

We bypass the described technical hurdles in applying WHAM to unnormal-

ized densities and instead determine normalizations and the Hellinger distance

using quadrature.

We take as our target distribution a one-dimensional energy landscape E0(x)

adapted from Smit and Frenkel [2002]. Due to the four minima, this dis-

tribution is a challenge for simple MCMC algorithms like a Random Walk

Metropolis-Hastings scheme (Sec. 1.3.1). Its minima are at [0, π, 2π, 3π]. Using

RE, we try to enhance sampling by interpolating between p0(x) = exp[−E0(x)]

and a normal distribution with mean µ = 3π/2 and standard deviation σ = 5,

which is easy to sample. Local sampling is performed by a random walk

Metropolis-Hastings sampler; for each replica, stepsizes are adjusted to give

an acceptance rate of 50 % in a preliminary run. Fig. 3.2 shows the statisti-

cally optimal interpolations and a linear log-probability interpolation Eλ(x) =

λE1(x) + (1− λ)E0(x), which we note to be quite similar.

To assess sampling quality, we first use a block-averaging analysis (Fig. 3.3)

as discussed in Sec. 2.4. Unfortunately, the results disappoint our hopes of

better sampling quality by using optimized interpolations. We next run ten

independent simulations and calculate the average standard error for the mean

log-probability of the target distribution p0(x), that is, rough energy landscape.

As independent samples we take the mean log-probabilities calculated from the

single, independent simulations. Comparison of standard errors then should

tell us which interpolating distributions produce the more accurate estimate

of 〈log p0(x)〉. While the difference in standard errors is small (SE(log p0) ≈
2.49×10−3 for the linearily interpolating schedule and SE(log p0) ≈ 2.53×10−3

for the statistically optimal interpolation), this test, too, indicates a slightly
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Figure 3.2: Optimally (left) and linearily (right) interpolating distributions be-

tween a simple four-minima energy landscape and a normal distri-

bution for N = 6 replicas.
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better sampling quality for the linear log-probability interpolation.

This result is surprising; Gelman and Meng [1998] specifically state that the

linear log-probability interpolation cannot be optimal, but nevertheless seems

to be superior in sampling quality, at least in our simple example. It is also

interesting to consider the RE acceptance rates: they are consistently and

comparably high (between 87% and 93 %) for both interpolation schedules,

but the calculations with the statistically optimal schedule exhibit a somewhat

lower acceptance rate (77 %) between pλ=0.8 and p1. It could thus be that this

drop is mainly responsible for the measured difference in sampling quality.
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4 Bayesian structure

determination from HiC data

After having investigated methods to improve the sampling of difficult poste-

rior distributions, we now turn our attention to an application and extension

of the ISD framework on the problem of inferring probable structures of inter-

phase chromatin. While our approach does not neccessitate the advanced RE

methods discussed above because of very sparse data and limitation to a max-

imum number of two chromosomes, its application to data spanning the whole

genome would significantly increase the complexity of the structure determi-

nation problem and then likely profit from an optimized, efficient sampling

scheme.

Although the focus of this work is methodology, we briefly sketch a few rele-

vant facts about genome architecture in mammalian cells to set the scene and

put the following work in a biological context.

4.1 Genome architecture in the mammalian

nucleus

The total size of the human genome is around 3 Gbp. One basepair has a spatial

extension of roughly 3.4Å, thus the total length of the double-stranded DNA

in a human genome, accounting for diploidicity, is approximately two meters.

Yet, it is packed in a nucleus with a diameter of a few µm. Thus, DNA in the

nucleus is extremely compacted. Nature has adopted several mechanisms to
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Figure 4.1: Different levels of DNA compaction in the interphase nucleus.

Adapted from an image by Wikipedia user Zephyris (Richard

Wheeler); https://en.wikipedia.org/wiki/User:Zephyris

achieve this which are summarized in Fig. 4.1 and which we describe following

the corresponding section in the book by Hames and Hooper [2011]. The first

level of DNA compaction is the wrapping of double-stranded DNA around

an octamer of basic, evolutionarily very conserved proteins called histones.

140–150 bp of DNA are wrapped around one histone complex and form a nu-

cleosome. Nucleosomes are connected by stretches of linker DNA with lengths

between 50–70 bp and have a diameter of 11 nm. DNA at this level of com-

paction resembles very much beads (nucleosomes) on a string (linker DNA),

is relatively accessible for transcription and replication and is thus believed

to be the functional form of active euchromatin. The overall packing ratio is

about seven. These beads on a string then organize themselves in a 30 nm

fiber, whose exact structure is not clear. Mainly two models are discussed,

namely the assembly of a solenoid and a zig-zag structure. It is currently

under debate whether the formation of a 30 nm fiber is only possible due to

the highly artificial environment in in vitro experiments. The packing ratio of

the 30 nm fiber is approximately six. Including the compaction by nucleosome

formation, we end up with a DNA compaction of around 40 in the 30 nm fiber.

DNA in this highly compacted form is less accessible for transcription and is

thus associated with inactive chromatin (heterochromatin). For transcription,
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DNA can be made more accessible by histone tail modifications, which weaken

chemical attractions between histone tails and DNA.

In the following, we will be concerned with data from cells fixed in interphase,

in which chromosomes are mainly present as a 30 nm fiber. The next level

of compactification consists of folds of the 30 nm fiber, such that the final

compaction ratio in interphase is in the range of 102 – 103. In metaphase,

chromosomes become even more compacted, although the exact mechanism is

not clear.

The 30 nm fiber is positioned non-randomly in the nucleus. While this work

is mainly concerned with intra- and interchromosomal contacts, also other or-

ganizational elements exist.

Already before the advent of genome-wide 3C techniques, other large-scale

features have been known. We refer the reader to a review by Cremer and

Cremer [2010], from which we reproduce the most important facts.

Already in 70s experiments showed [Stack et al., 1977; Zorn et al., 1979] that

interphase chromosomes do not intermingle, but instead form distinct domains,

nowadays called chromosome territories, which existence was ultimately con-

firmed by fluorescence in-situ hybridization (FISH) chromosome paint [Hulspas

and Bauman, 1992]. Boyle et al. [2001] showed that gene content is an impor-

tant factor for the positioning of a chromosome territory with respect to the

nuclear periphery; gene-poor chromosomes are usually found situated close to

it, while gene-rich chromosomes are located more towards the center of the

nucleus. There is more evidence that the three-dimensional structure of the

genome is intimately related with gene regulation. Guelen et al. [2008] showed

that, in human interphase chromosomes, interactions between the genome

and the nuclear lamina occur through lamina-associated domains (LADs) of

0.1 Mbp – 10 Mbp in size, which typically show low gene expression levels.

Another obvious question is whether homologuous chromosomes associate or

not. This seems to be organism-specific; in human lymphoblast and fibrob-

last cells, for example, spatial association between two copies of chromosomes

seems to be rather infrequent or, for gene-rich chromosomes, more an effect of

being located in the nuclear interior. Furthermore, the distribution of chromo-
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somes in the nucleus is not homogenous, but there are chromatin-free regions

called interchromatin departments (ICD, Visser et al. [2000]) which appear to

have the functional role of accumulating nuclear components involved in tran-

scription.

Taken together, we can draw a picture of a highly organized nucleus, in which

the spatial arrangement of genomic domains or chromosomes is an important

factor for gene regulation. Investigation of the connection between transcrip-

tion control mechanisms and three-dimensional architecture of chromatin on

a genome-wide scale in a high resolution has recently become possible with

methods described in the following.

4.2 Chromosome Conformation Capture

techniques

A revolution allowing a more detailed view on nuclear architecture came with

a range of experiments, which give information about contact frequencies be-

tween different loci and which mainly differ in coverage. We briefly trace these

recent developments, but refer to, e.g., de Wit and de Laat [2012] for a thor-

ough review.

The first of these techniques was chromosome conformation capture (3C; Dekker

et al. [2002]), in which nuclei are isolated and fixed with formaldehyde, a chem-

ical that cross-links proteins to proteins and DNA. The crosslinked DNA is di-

gested by a restriction enzyme, which cuts DNA at specific, usually 6 bp-long

sequences. Examples for such 6-cutters are HindIII used by Dekker et al. or

BgIII [Tolhuis et al., 2002]. Then, the ends are ligated under diluted condi-

tions such that intra-molecular ligation events are more likely. Up to this step,

the protocol is, with the exception of HiC, identical for 3C and the methods

derived from it.

In the 3C experiment, cross-linking is reversed and the ligation product can

then be detected by (originally semi-)quantitative PCR using primers specific

to both parts of the ligation product. The amplification efficency of different
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primers then contains information about ligation frequencies. Using 3C, it is

possible to probe a few selected loci against the same set of loci.

In chromosome conformation capture on-chip / circular chromosome confor-

mation capture (4C; Simonis et al. [2006]; Zhao et al. [2006]), 3C is com-

bined with micro-array technology (or, nowadays, next-generation sequencing

(NGS)) and thus allows probing the interactions of one locus with many frag-

ments. 4C works by subjecting the 3C ligation products to a second round

of digestion with a different restriction enzyme and ligation. The result are

circular, chimeric molecules, on which inverse PCR with primers specific to

the outer restriction sites is applied. This way, only the sequences specific to

one contact partner (the “bait”) have to be known.

Coverage was increased even further with the development of carbon-copy chro-

mosome conformation capture (5C; Dostie et al. [2006]), which uses a mixture

of designed forward and reverse primers with universal PCR sequences on their

ends. The primers which anneal next to each other are then ligated and ampli-

fied. NGS or micro-array readout then results in an interaction frequency map

for the regions to which the 5C primers were designed. While 3C effectively

is a “one-vs-one” and 4C a “one-vs-many” method, 5C can be described as a

“many-vs-many” assay.

The final step in increasing coverage to “all-vs-all” was done by Lieberman-

Aiden et al. [2009] with the development of HiC, the protocol of which is

summarized in Fig. 4.2. In this method, the 3C protocol is slightly modi-

fied by filling sticky DNA ends resulting from restriction with biotin-labeled

nucleotides. These blunt ends are then ligated and after shearing a biotin

pull-down makes sure that only fragments containing a ligation junction un-

dergo further analysis. Amplification and sequencing then yields a list of all

detected chimeric sequences. Alignment to the reference genome finally results

in a genome-wide interaction frequency matrix.

Several high-throughput variants of the 3C protocol have been proposed since

then, among them Tethered Conformation Capture (TCC; Kalhor et al. [2012]),

which is essentially a HiC experiment in which ligation is performed on a

solid substrate, leading to fewer random ligations and thus increased signal-to-
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Figure 4.2: Schematic overview of the HiC experiment with experimental de-

tails omitted. Crosslinked chromatin is digested with a restriction

enzyme, which cuts at specific sites. Overhangs are filled, marked

with biotin and ligated. After ligation, crosslinking is reversed,

DNA purified and biotin is removed from unligated ends. DNA is

then sheared, the biotin-marked fragments are pulled down, sub-

sequently amplified and sequenced.
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noise ratio, and methods to map interactions between promoters and enhancers

[Hughes et al., 2014; Jäger et al., 2015]; genomic elements, which are required

to initiate transcription of a gene. In DNase HiC [Ma et al., 2015], the HiC

protocol is heavily modified to use DNase to digest crosslinked chromatin and

thus to circumvent a problem common to all previous HiC approaches, namely

the dependence on the local restrictiction site distribution. Resolution is thus

increased and such is the genome coverage, owing to little DNA loss. Most

relevant to this work, though, is the development of Single Cell HiC [Nagano

et al., 2013], in which genome-wide chromosome conformation capture is per-

formed in single nuclei. This method results in data which is very sparse but

contains information about the spatial organization of the genome in a single

cell. The main result is that genome architecture is highly variable from cell

to cell.

After sequencing readout, several steps of preprocessing and statistical analy-

sis have to be performed to account for various sources of experimental biases

identified by Yaffe and Tanay [2011].

A main source of noise is the ligation step. Several kinds of non-informative

read pairs will be present in raw reads and need to be filtered out. Among

them is PCR duplication bias, that is, pairs of reads who originate from am-

plification of the same molecule in the biological sample and thus can be easily

filtered out, as they align to identical positions on both ends [Kalhor et al.,

2012], although this effect seems to be minimal [Lieberman-Aiden et al., 2009].

Another type of uninformative read pairs stems from circular ligations, which

align closely to each other and can be filtered out based on their genomic dis-

tance, which would be smaller than the size of the largest restriction fragment.

While the majority of cleavage sites corresponds to restriction sites, also unspe-

cific cleavage occurs. Subsequent blunt-end fill up, biotin marking and ligation

is unspecific as to whether cleavage occured at a restriction site or not. For

this reason, unspecific ligation products contribute to noise in the HiC library.

The contacts corresponding to these ligation events can be filtered out by

calculating the sum of the distances from the ligation junction to the closest

downstream restriction sites and demanding that it should be smaller than a
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size selection parameter, because paired-end reads aligning too far away from

a restriction site are most likely non-specific ligation events. Yaffe and Tanay

showed using a size selection parameter of 500 bp that for the HindIII cutter,

22% of contacts in the Lieberman-Aiden et al. data are spurious ligations.

A further source of bias is the length of restriction fragments. Short and long

restriction fragments will have different ligation efficiencies and it is clear that

restriction fragments of different length might have different propensities for

trans (inter-chromosomal) and cis (intra-chromosomal) ligations. The results

by Yaffe and Tanay show that, indeed, cis ligations are enriched and trans

ligations are depleted for rather short fragment lengths, although the effects

are non-linear.

A third source of bias affects sequencing and PCR efficiency. DNA regions

with a high GC content are harder to amplify by PCR and underrepresented

in Illumina NGS readouts [Aird et al., 2011].

As HiC is a “all-vs-all” method, it requires alignment of the reads to the ref-

erence genome in order to determine to which loci reads correspond. For this

reason, it is clear that the sequence uniqueness has an effect on detected in-

teraction frequencies, as not uniquely mappable reads do not appear in the

contact catalogue and regions with low mappability are thus underrepresented

in a raw HiC matrix.

Several methods and software packages have been developed to correct for these

biases and to normalize HiC data. In the original HiC publication [Lieberman-

Aiden et al., 2009], the interaction frequency matrix is normalized by dividing

a given entry by the expected number of reads for the corresponding pair, but

more complete normalization procedures have been proposed.

Yaffe and Tanay [2011] use a probabilistic model to calculate prior probabil-

ities for cis and trans contacts given the above reviewed biasing factors. A

maximum likelihood estimate then gives fragment length and GC content cor-

rection factors for each combination of fragment ends.

In a method termed ICE, Imakaev et al. [2012] improve already on the align-

ment procedure by accumulating alignments over increasing truncation lengths,

which results in significantly more successfully aligned reads compared to a
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fixed truncation length. Further downstream in the pipeline, they assume and

prove that the (source-unspecific) total bias in detecting a contact between

two regions of a binned matrix factorizes in two seperate biases for each region

and iteratively determine the MLE for all biases. The ICE-corrected contact

maps then allow to directly proceed to an eigenvector analysis without the

need for transformation in a correlation matrix as done in [Lieberman-Aiden

et al., 2009].

A very recent software named HiFive [Sauria et al., 2015] first filters unin-

formative reads as described above, then iteratively filters out fragments with

too low numbers of interaction partners and the corresponding interactions.

As one of the few packages, HiFive calculates the signal in the interaction fre-

quency matrix which is due to the distance dependence. For normalization,

three different methods are implemented: one relying on matrix balancing,

that is, turning a symmetric matrix into a doubly stochastic matrix with row

and column sums equal to one, guaranteeing equal “visibility” of each bin; a

probabilistic one based on modeling HiC data with a binomial distribution and

a third one similar to the method used by Yaffe and Tanay [2011]. HiFive also

emphasizes speed and usability.

Hi-Corrector [Li et al., 2015] implements a parallelized version of the ICE

method with highly efficient memory usage. In HiCNorm [Hu et al., 2012],

a Poisson regression model is used to normalize binned contact maps. This

and the choice of a parametric over a non-parametric model leads to a fewer

number of parameters and significantly reduced computation time compared

to the approach of Yaffe and Tanay.

The development of high-throughput, genome-wide chromosome conformation

capture resulted in a number of important discoveries, of which we only men-

tion a few particularily striking ones. Lieberman-Aiden et al. [2009] analyzed

the genome of human lymphoblastoid cells and found that intrachromosomal

HiC heatmaps are partitioned into two types of compartments having a size

of several Mbp in an alternating manner. Within each compartment, con-

tacts are enriched, but contacts between the two different compartements are
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depleted. This transfers to interchromosomal contacts: given any two chro-

mosomes, labels A and B can be assigned to compartments on each chromo-

some so that trans contacts are enriched between compartments with equal

labels and depleted between differently labeled compartments. This suggests

a spatial partioning of the whole genome into two types of chromatin, termed

A/B compartments. Analysis of genetic and epigenetic features associates one

compartment with open, active euchromatin and the other one with closed,

inactive heterochromatin. This landmark of large-scale genome organization

is conserved across tissues.

By increasing sequencing depth, Dixon et al. [2012]; Nora et al. [2012] dis-

covered topologically associating domains (TADs) in mouse embryonic stem

(ES) cells, human stem cells and human IMR-90 cells. The locations of

these ≈ Mbp-sized domains are not tissue-specific and occur in both com-

partments. A subset of detected TAD boundaries coincides with boundaries

of other domain-like features of chromosomal organization, for example the al-

ready discussed A / B compartments and lamina-associated domains (LADs,

Guelen et al. [2008]; Peric-Hupkes et al. [2010]). Furthermore, TADs seem to

be evolutionarily mostly conserved and their boundary regions correlate with

insulators, which block the the interaction between promoters and enhancers,

and barrier insulators, which set heterochromatin boundaries. They might

thus be related to transcription control.

A TAD can be disrupted by deletion or inversion of its boundaries [Dixon

et al., 2012; Nora et al., 2012]. A very interesting, recent result is that disrup-

tion of a specific TAD with genes involved in limb development adjacent to

one of its borders causes new enhancer-promoter interactions and misexpres-

sion and leads to certain limb development disorders in mice [Lupiáñez et al.,

2015]. Moreover, 4C performed on fibroblasts of patients suffering from the

same types of limb malformation showed the same chromatin reorganization

and abnormal interactions.

But fine-scale structure of the human genome can be resolved even further.

[Rao et al., 2014] produced contact maps in kb resolution using a modification

of the orginal HiC protocol in which the ligation step is performed in intact
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nuclei, which reduces random ligation events and allows to use a 4-cutter in-

stead of the commonly used 6-cutters. They found a further level of domain

organization, so-called contact domains with a size of ≈ 185 kb, which again

line the diagonals of the contact matrix. These contact domains segregate in at

least six nuclear subcompartments, which all have distinct patterns of histone

modifications. Furthermore, in maps with 5 kb resolution, it is possible to to

distinguish between ordinary domains and loop domains with the latter being

demarcated by off-diagonal peaks indicating enriched contact frequencies rel-

ative to their neighbourhood, while not all peaks demarcate contact domains.

Contact domains are conserved across human cell lines and evolution (between

human and mouse) and often so are peak loci. This hints to conservation of

three-dimensional genome structure on a very fine scale across mammals and

tissues. Many loops are associated with gene regulation and a major part of

peak loci are bound by CTCF and two cohesin subunits. All three proteins

bind to a specific CTCF-binding motif, which is found at both loci in con-

tact and is convergently orientated. Furthermore, the analysis of the inactive

X chromosome revealed homolog-specific features such as compartementaliza-

tion of the paternal X chromosome in two super-domains and parent-of-origin

specific loops.

4.3 Bayesian structure determination from

Single Cell HiC data

We now proceed to the application of ISD on data from the aforementioned

single cell HiC experiment [Nagano et al., 2013]. Nagano et al. applied the

single cell HiC protocol to ten male mouse T helper cells. We infer structural

ensembles and nuisance parameters for the X chromosome of the best-quality

data set as determined by Nagano et al.. These contact data represent struc-

tural information about one single copy of a molecule and thus we do not have

to worry about how to assign contacts to different copies of the molecule. A key

property of single cell HiC data is that they are very sparse. In the already nor-
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Figure 4.3: X chromosome single cell HiC contact data used in this work.

malized and filtered data set made available to us by Stevens [2013], there are

in total 518 cis contacts for the X chromosome, which has a length of approxi-

mately 166 Mbp. It should be noted that the data deposited online (accessible

at NCBI GEO database [Nagano et al., 2013], accession GSE48262) contain a

few more contacts. The contact data we use are shown in Fig. 4.3. We note

two regions in which no contacts are detected: up to a genomic position of

5 Mbp and between 48–66 Mbp. In the reference genome, these correspond to

unknown sequences, to which obviously no reads can be aligned.

We describe every part of the application of the ISD structure determination

framework to this system. First, we introduce the coarse-grained structural

prior distribution and a simple model we represent a chromosome with. Then,

we discuss three different likelihoods and the nuisance parameter prior distri-

butions. We give details on how we draw samples from the resulting posterior

distribution and finally discuss the results of our approach and compare it

with the conformations calculated by Stevens using the methods described in

Nagano et al. [2013].
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Figure 4.4: Coarse-grained polymer model employed as structural prior infor-

mation. Bead overlaps are penalized quartically and backbone dis-

tance restraint violations quadratically.

4.3.1 Structural prior information: a beads-on-a-string

model as a coarse-grained representation of the

chromatin fiber

We represent a chromosome by a beads-on-a-string model made of N beads of

equal diameter dVE. Each bead corresponds to a bin of 500 kb in the binned

experimental HiC matrix. Rosa and Everaers [2008] give a nuclear density of

12 Mbp/µm3 for interphase chromosomes. We can thus calculate the diameter

of one bead to dVE = 430 nm. Calculations were run in arbitrary modeling

units and for the sake of clarity we come back to the biological meaningful dis-

tance unit only for analysis. The distance di,i+1 between two adjacent beads i,

i + 1 is restrained to an upper limit of d0 with deviations penalized quadrat-

ically with a force constant kbb. d0 and dVE are thus parameters determining

the length scale in model coordinates. Overlaps between two beads (exclud-

ing sequential neibghbours) are penalized quartically with a (unit-less) force

constant kve. We chose the force constants according to Nagano et al. [2013]

and summarize them, along with likelihood parameters, in Table 4.1. When

considering distance restraints derived from the contact data, we set dVE = d0

and regard d0 as a prior hyperparameter, which needs to be estimated from
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lower-upper

error model

log-normal

error model

contact-

based likeli-

hood

Nagano et al.

[2013]

basepairs /

bead

500 kb 500 kb 500 kb 500 kb

backbone

force con-

stant kbb

25.0 25.0 25.0 25.0

volume ex-

clusion force

constant kve

1.0 1.0 1.0 1.0

bead diame-

ter

d0 (inferred1) d0 (inferred1) dc = 430 nm const.2

backbone

bead dis-

tance

d0 (inferred1) d0 (inferred1) d0 (inferred1) const.2

target / con-

tact distance

n−2
ij n−2

ij 1.5dc n/a

distance re-

straint force

constant kdr

inferred inferred n / a 25.0

Table 4.1: Summary of the modeling parameters. 1: for analysis rescaled to

430 nm. 2: in accordance with Nagano et al., we rescale their models

at 500 kb resolution to the average size of their models calculated

at 50 kb resolution, which is 4.3 µm.
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the data. Our conformational prior distribution is then given by

pdistance(x|d0) =
1

Z(d0)
exp

{
−d−4

0 kVE

N∑
i 6=j

θ[d0 − dij(x)][d0 − dij(x)]4

}

× exp

{
−kbb

2
d−2

0

N−1∑
i=0

θ[di,i+1(x)− d0][di,i+1(x)− d0]2

}
.

(4.1)

During ISD simulations from a posterior incorporating this prior, the bead

diameter and thus the length of the molecule change constantly. For analysis,

we recover physical units by dividing distances within a structure by its d0

value.

When employing the contact-based likelihood, we keep the bead diameter fixed

to a value dVE and vary only the distance d0 between adjacent beads in the

polymer chain;

pcontact (x|d0) =
1

Z̃ (d0)
exp

{
− kVE

2d2
VE

N∑
i 6=j

θ[dVE − dij(x)][dVE − dij(x)]4

}

× exp

{
−kbb

2
d′
−2

0

N−1∑
i=0

θ [di,i+1(x)− d0] [di,i+1(x)− d0]2
}

.

(4.2)

The reason for this is the fact that estimating both the bead size and linear

bead distance allows the contact restraints to be always fulfilled. This can be

seen by regarding the bead diameter and the linear bead distance as parame-

ters determining the size of a structure. For sufficiently small bead diameters

and linear bead distances, beads will always be closer than the contact distance

dc.

Fig. 4.4 summarizes the coarse-grained representation of the chromatin poly-

mer and the two different types of restraints used in this work.
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Figure 4.5: Likelihoods implemented for chromosome structure determination

from HiC data.

4.3.2 Likelihoods: distance restraint- and contact-based

data back-calculation

We implemented three different likelihoods to measure the compatibility of a

structure with the data: a distance-restraint based likelihoods similar to the

data energy used in [Nagano et al., 2013] in order to compare the results of

the ISD approach to the structural ensemble obtained by Nagano et al. via

pseudo-energy minimization, a variation of this likelihood with a log-normal

error model, and a less ad-hoc, contact-based likelihood, in which models with

inter-bead distances lower than a global contact distance are preferred, but

weighted differently according to the contact count, similar in spirit to the

contact-based data energy term used in [Trieu and Cheng, 2014]. In all cases

we do not take into account sequential contacts, that is, contacts between

neighbouring beads, as their distances are already restrained by the polymer

model.

We split up the first two likelihoods in a forward and an error model as de-

scribed in Sec. 1.1. As done by Nagano et al., we convert the total number of

contacts nij between two bins i, j to a target distance dij ∝ 1/n2
ij. The forward

model then simply consists in back-calculating distances between restrained

beads from the structure or, in mathematical terms, fij(x) = |xi − xj|. We

first employ a flat-bottom error model, which allows the back-calculated dis-

tances to deviate from the target distances in a given range depending on them

and, if this range is exceeded, penalizes deviations quadratically with the same
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force constant for all distances. While this is easy to understand as a scoring

function, it is instructive to work out the interpretation of this combination of

forward and error model as a likelihood for the experimental distances (calcu-

lated from contacts).

Focusing on a single distance between two beads i, j, the forward model back-

calculates a theoretical, noise-free distance d̂ij(x). In the error model we

then assume that the experimental distance dij scatters in an interval Lij =

[d̂ij(x)−∆ij/2, d̂ij(x)+∆ij/2] =: [Lmin, Lmax] of width ∆ij = Lmax−Lmin centered

on the theoretical distance and thus, in this interval, has uniform, maximum

probability. As soon as the experimental distance exceeds the limits of Lij, its

probability is given by the left / right flank of a Gaussian distribution with

variance σ2 =: 1/kdr with its mean on the interval limits. The likelihood of the

experimental distance dij then is

L(dij|x, kdr) =
1√

2π
kdr

+ ∆ij

exp

{
−kdr

2
[Elower + Eupper + Einterval]

}
with the single contributions given by

Elower(x, dij) = θ
[
Lmindij − d̂ij(x)

] [
d̂ij(x)− Lmindij

]2

,

Eupper(x, dij) = θ
[
d̂ij(x)− Lmaxdij

] [
d̂ij(x)− Lmaxdij

]2

,

Einterval(x, dij) = 0 .

To generalize to several distances, we assume equal force constants and inde-

pendent measurements. We can then multiply all the single-distance likeli-

hoods and arrive at

L(D|x, kdr) =
1

Z(kdr)
exp

[
−kdr

2
χ2(x)

]
(4.3)

with

Z(kdr) =
∏

(i,j)∈D

(√
2π

kdr

+ ∆

)
=

(√
2π

kdr

+ ∆

)ndata

and

χ2(x) =
∑

(i,j)∈D

[Eupper(x, dij) + Elower(x, dij)] .
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In these equations, (i, j) ∈ D denotes a pair of restrained beads i and j. The

total number of distance restraints is ndata. We choose, in accordance with

Nagano et al., ∆ = 2/5. While the interval limits depend on the theoretical

distance d̂ij(x), the width ∆ does not. This means that the normalization

constant is independent of the structure x and thus does not need to be ac-

counted for when simulating from the conditional posterior distribution for the

structure.

The flat-bottom Gaussian error model for distances has the flaw of assigning

finite probabilities to negative distances. This is unwanted and we thus imple-

ment a log-normal distribution as a suitable replacement. It is a probability

distribution for a random variable whose logarithm is normally distributed and

thus has strictly positive support. Distances larger than the target distance

are less strongly penalized than shorter distances. The log-normal likelihood

then takes the form

L(D|,kdr) =
∏

(i,j)∈D

1√
2π
kdr
dij

exp

[
−kdr

2
log2

( |xi − xj|
dij

)]
. (4.4)

The log-normal distribution was proposed by Rieping et al. [2005b] to model

errors in nuclear Overhauser effect (NOE) data in the context of protein struc-

ture determination and shown to lead to structures of higher quality.

In estimating the length scale of the polymer model relative to the target dis-

tances, we effectively rescale the experimental distances, as in physical units,

the bead radius and thus polymer length is fixed. This scaling of experimental

distances can also be done directly in the likelihood: we can take the oppo-

site point of view and, keeping d0 at a fixed value, regard the experimental

crosslinking distances dij as unknowns which we can estimate from the data.

In this case, the data would just be the information between which regions a

crosslink has been measured.

In implementing these likelihoods we are mainly aiming for comparability

with the structure calculation by Nagano et al. [2013], but nevertheless con-

sider both of them as problematic for a number of reasons: first, the distance
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between two beads decreases quadratically with the number of measured con-

tacts, which is an unjustified assumption on the nature of the biological system.

In polymer physics, different models exist, predicting different dependences of

contact probabilities Pc(d) on distances d. Lieberman-Aiden et al. [2009] use

HiC to determine a fractal globule [Mirny, 2011] as the best fitting polymer

model for interphase chromatin. For a fractale globule, simulations by Mirny

showed Pc(d) ∝ d−1, which would fit Nagano et al.’s prescription for nij = 1,

but does not neccessarily need to interpolate to a general dij ∝ n−2
ij scaling.

These results from polymer physics hold for homopolymers, in which each

bead has identical properties. While one could model a 30 nm fiber in silico

as such a free homopolymer, due to non-random, functional interactions, this

approximation has to be questioned in vivo. Second, for more than one mea-

sured contact between two beads, the enforced distances are not compatible

with the conformational prior distribution (Eq. 4.1), as beads with a target

distance < d0 will necessarily overlap.

As an alternative to distance-restraint based modeling, modeling strategies

directly based on the contact information have been proposed in the literature

[Kalhor et al., 2012; Trieu and Cheng, 2014]. Instead of assuming a depen-

dence of the contact distance dc on the number of contacts measured between

two bins, we fix dc = 1.5d0. If two beads are closer than dc, they are consid-

ered to be in contact. To take the variable number of measured crosslinking

events between bins into account, we weigh each contact with the correspond-

ing number of counts nij in the binned contact matrix. Because we employ

a gradient-based method in our sampling approach (HMC, see Sec. 1.3.3),

we need to transform the binary contact restraint into a smooth and differen-

tiable function of the distance. To this end, we define a smoothing function

s(x, α) = [1 + exp(−αx)]−1, which depends on parameter α determining how

smeared out the contact is. We take α to be equal for all contacts. The

likelihood then is

L̂(D|x) =
∏
i,j

s(dc − |xi − xj| , α)nij (4.5)
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with nij the experimentally measured contact count between beads i and j. For

one single contact, the likelihood can be regarded as a Bernoulli distribution.

Let the random variable cij describe a single contact; cij = 1 if the contact is

established and cij = 0 if it is not. The probability of obtaining cij = 1 is given

by p = s(dc − |xi − xj| ;α), and the probability of obtaining cij = 0 by 1− p.
Here, we are not interested in the latter, but in general one could use it to

model anti-contact restraints. This is not sensible for single cell HiC data, as

the absence of a contact in the contact matrix is most likely due to the inefficacy

of the experimental procedure to read out higher number of contacts. It would

be possible, though, to introduce anti-contact restraints from ensemble HiC

data by regarding all interaction frequencies below a certain cut-off as noisy

experimental zero-counts.

In theory, we could regard α as a nuisance parameter and estimate it along

the structures, but ultimately we are interested in the limit α→∞ to recover

the forward model as a step function. For this reason we set α as a replica

parameter similar to a temperature: for small α, the contact restraints are very

soft and we are effectively simulating a freely moving polymer chain. For large

α, violations of the contact restraints significantly decrease to the posterior

probability. The only parameter in this likelihood then is the contact distance

dc. Estimating it would again be difficult, because a large dc would always lead

to perfect agreement with the experimental data. Note that we use a slightly

modified prior distribution (Eq. 4.2) with fixed volume exclusion distance,

because its estimation would lead to extremely compact structures trivially

fulfilling all contact restraints.

4.3.3 Nuisance parameter prior distributions

A posterior distribution over both structures and nuisance paramaters also

contains prior distributions for the nuisance parameters. As both the lower-

upper and the log-normal error models are of the form given by Eq. 1.4, the

force constant kdr is a scaling parameter and we thus choose, according to our
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discussion of prior distributions for scale parameters (Sec. 1.2),

p(kdr) ∝
1

kdr

.

For the distance scale d0 we also choose a Jeffreys prior, that is,

p(d0) ∝ 1

d0

.

4.3.4 Sampling from the Single Cell HiC posterior

distributions

As discussed in Sec. 1.2, implementing the ISD approach is not trivial, because

it is impossible to directly draw samples from the posterior distribution. We

rely on Gibbs sampling (Sec. 1.3.2) to decompose sampling from the posterior

distribution into consecutive sampling steps from conditional posterior distri-

butions for the structure and the nuisance parameters. Furthermore, we embed

Gibbs sampling in a Replica Exchange algorithm (Sec. 1.3.4). In the case of

distance-based likelihoods, the schedule is designed such that with increasing

replica index, the likelihood is more and more downweighted. For the contact-

based likelihood, we change the smoothing parameter from large to very small

values. In both cases, effectively, there is only a weak influence of the data

in the “high-temperature” replicas and the prior distributions dominate. This

prevents the sampling from getting trapped in high-probabilty regions, but

requires more computational resources. In our simulations, 31 replicas sample

posterior distributions with likelihood Lλ with decreasing λ such that suffi-

cient exchange acceptance rates are sufficiently high to ensure good mixing.

All sampling parameters are summarized in Table 4.2.

To draw representative samples from the posterior distribution for structures

conditioned on the nuisance parameters is very challenging, for reasons dis-

cussed in Sec. 1.3.3 and we employ the HMC sampler discussed there. HMC

usually takes three parameters: a mass matrix, the MD trajectory length and

the timestep for the numerical integration. We set the mass matrix equal to

the unity matrix. The timestep is automatically adapted in a preliminary run
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lower-upper

error model

log-normal error

model

contact-based

likelihood

structure x HMC HMC HMC

kdr RWMH Gamma distribu-

tion

n/a

d0 RWMH RWMH RWMH

Replica schedule

(31 replicas)

λ ∈
[1.0, . . . , 0.1];

exponentially

decreasing

λ ∈
[1.0, . . . , 0.1];

exponentially

decreasing

α ∈
[100, . . . 0.01],

exponentially

decreasing

Table 4.2: Summary of samplers / sampling distributions for all model param-

eters and the Replica Exchange scheme. RWMH denotes a random

walk Metropolis-Hastings scheme (Sec. 1.3) with a uniform pro-

posal distribution and stepsizes adapted in a preliminary run to

give acceptance rates of 50 %. HMC denotes Hamilonian Monte

Carlo (Sec. 1.3.3) with a MD trajectory length of 100 steps and, as

for RWMH, timesteps adapted in a preliminary run.
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to keep a constant acceptance rate of 0.5 and we use the resulting values to

set the timestep for the production run.

Drawing force constants from the conditional posterior distributions for the

force constants is a much easier task. For the log-normal error model, the

conditional distribution for the force constant kdr is a Gamma distribution for

which sampling routines are readily available in many programming languages,

while for the lower-upper error model, we use a simple Metropolis-Hastings

MCMC scheme (Sec. 1.3.1) to sample kdr.

Just like for the lower-upper error model force constant, the sampling distri-

butions for the distance scale d0 is a non-standard distributions and we again

resort to a random walk Metropolis-Hastings scheme. As the conditional pos-

terior distributions for the nuisance parameters are one-dimensional, this is

sufficient.

A little catch is that the normalization constants for the structural prior dis-

tribution depend on d0/d
′
0. Although they are unknown, because of q(dx|d) :=

p(dx|d) × Z(d) = q(x|1), we know their dependence on d, that is, Z(d) =

d3NZ(1). This argument holds for both Z(d0) and Z̃(d′0) and thus allows us

to use the Metropolis-Hastings algorithm, as the unknown Z(1) cancels out in

the acceptance criterion.

For all random walk Metropolis-Hastings samplers, we again adapt the stepsize

in advance and use the fixed, optimized values for the production run.

4.3.5 Structural ensemble and nuisance parameters

While we performed calculations for the six single cell HiC datasets of best

quality as indicated by Nagano et al. [2013], we illustrate our structure de-

termination approach on the data set of best quality, which also contains the

highest number of contacts.

Any ISD calculation results in not only one, but in an ensemble of structures

and so does ours. Fig. 4.6 shows a superimposed subset of ensemble members

for each likelihood. As expected, the sparsity of the data and the prior in-
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Figure 4.6: Structural ensembles calculated with ISD using the lower-upper

(left) error model, the log-normal (center) error model and the

contact-based likelihood (right). Shown is every 30th sample after

discarding 3000 samples. For clarity, larger regions with no data

(0 Mbp – 5 Mbp, 24 Mbp – 33 Mbp) are not shown. Color-coded is

the genomic position from red over grey to blue.

formation are reflected in a wide spread of the structural ensembles, although

it is interesting that the contact-based likelihood results in a better defined

ensemble. Nevertheless, one basic feature is (more or less) visible in all three

ensembles: the partition of the X chromosome in several super-domains, visible

in Fig. 4.6 as blobs of similar color, which form crescent-shaped models of the

chromosome. This partition is already evident in the data (Fig. 4.3) as large

blocks on the diagonal. The radii of gyration for conformations sampled from

the three different posterior distributions are 1175± 79 µm (lower-upper error

model), 1084±64 µm (log-normal error model) and 1408±63 µm (contact-based

likelihood). Although the radius of gyration is a conservative estimate of the

spatial extension of a molecule, this shows that the inferred structures have

sizes in the same order as the experimentally measured diameters of ≈ 3.7 µm

[Nagano et al., 2013].

Clustering of the ISD samples using self-organizing maps (SOMs, Bouvier et al.

[2014]; Kohonen [1982]) shows that, for the log-normal and the contact-based

likelihood, we have a continuum of structures without too distinct clusters.
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3

2

4

Figure 4.7: Self-organizing maps computed from a subset of the samples ob-

tained during an ISD run. Shown is the U-matrix, whose entries

are a measure for distance to neighbouring neurons. Each neuron

is represented by one pixel in the matrix.

Top left: ISD; lower-upper error model. Four different clusters are

annotated with numbers ranking the respective population. Top

right: ISD; log-normal error model. Bottom left: ISD; contact-

based likelihood. Bottom right: Structures obtained by Nagano

et al.

Figure 4.8: Superimposed structures of cluster 1 (left), 2 (center) and 3 (right)

of the ISD ensemble calculated with the lower-upper error model.
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Figure 4.9: Pairwise distance matrices computed from a subset of the samples

obtained during an ISD run. Left panel shows the average pairwise

distance 〈dij〉, right panel the standard deviation. Circles represent

entries in the Single Cell HiC contact matrix.

Top left: ISD; lower-upper error model. Top right: ISD; log-normal

error model. Bottom left: ISD; contact-based likelihood. Bottom

right: Structures obtained by Nagano et al.

The results for the lower-upper error model, on the other hand, are different:

we identify several clusters of similar structures denoted, sorted by popula-

tion, with numbers from 1 – 4 (Fig. 4.7). Cluster 3 contains several copies

of a structure and its mirror images, which demonstrates that, as in NMR

structure determination, also in our modeling approach mirror images can oc-

cur and have to be taken into account during analysis. The very well-aligning

structures in cluster 1, on the other hand, resemble the conformations obtained

by sampling from the posterior with a contact-based likelihood.

A qualitative validation of our structure determination approach can be per-

formed by analyzing the ensemble-averaged pairwise distance matrix computed

from the models obtained during sampling from the ISD posterior distribution.

Fig. 4.9 (left) shows the average distances matrices of both structures resulting

from both ISD and of structures obtained by Nagano et al. using an energy

minimization-based modeling approach. We immediately observe that regions

with a high number of contacts in the Single Cell HiC matrix correspond to
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Figure 4.10: Local Lindemann indices of structures obtained by ISD and

Nagano et al.

regions of low pairwise bead distances in the distance matrices. The ISD dis-

tance matrices and Nagano et al.’s distance matrices share this property, which

makes us expect qualitatively similar structures.

Considering the matrices of pairwise distance standard deviations (Fig. 4.9;

right), we confirm that both our ISD and the SA based modeling approach

indeed restrain beadwise distances supported by corresponding data points in

the contact matrix. Both the centromeric region (24 Mbp – 33 Mbp) without

any data points and the first few Mbp in which no contacts were measured

show significantly higher standard deviations in pairwise distances involving

beads representing them. Interestingly, we observe that the pairwise distances

are much more variable in the ISD ensembles as compared to the SA ensembles

with the exception of the distances between the two regions not supported by

data. This leads us to suspect that the minimization procedure employed by

Nagano et al., if repeated several times, results in very similar configurations

close to a pseudo-energy minimum, which appears to be located in a rather

broad energy basin more exhaustively sampled by the MCMC methods we

employ.

A more quantitative view on structural variation within a set of structures is
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given by the (local) Lindemann index [Zhang et al., 2007]. While it actually is

a measure of thermally driven disorder, but we divert it from its intended use

to replace root mean square fluctuations, which in our case are not sensible

because of the lack of a well-defined reference structure. The local Lindemann

index is defined by

Li =
1

N − 1

∑
j 6=i

√
〈|xi − xj|2〉 − 〈|xi − xj|〉2

〈|xi − xj|〉
.

Fig. 4.10 shows Li for all three sets of ISD simulations and the ensemble by

Nagano et al.. We find that the ensemble resulting from a minimization pro-

cedure has a consistently lower local Lindemann index, which confirms that

its structural variability is indeed lower than the ensembles resulting from

ISD posterior sampling. Furthermore, sampling from the posterior distribu-

tion involving the contact-based likelihood results in lower Lindemann indices

compared to the ensembles obtained by approximating the distance-restrained

based posteriors. This makes sense, as one can easily imagine bead distances

being trapped between the contact and the volume exclusion distance. In-

terestingly, the Lindemann index does not clearly distinguish between regions

with little data and well-restrained regions.

We can verify that the ISD approach is self-consistent by back-calculating

data from a structure and applying our method with these “fake” data as

input. To this end, we take the MAP estimate of the structures and nuisance

parameters from the contact-based ensemble and calculate the corresponding

distance matrix. By comparing its entries with the contact distance dc, we

obtain a back-calculated, binary contact map. We then run an ISD simulation

using the contact-based likelihood on this contact map and expect the resulting

structural ensemble to reproduce, on average, the reference structure. Fig.

4.11 confirms this and a more quantitative measure is given by the Mantel test

[Mantel, 1967], which gives a correlation of ≈ 0.81.

One of the main advantages of ISD is its capability to estimate nuisance pa-

rameters along with the structure. Fig. 4.12 shows the histograms of estimated

nuisance parameters for all three likelihoods. The force constant kdr takes sim-
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Figure 4.11: Distance matrix of the reference structure (upper triangle) and

average distance matrix of structural ensemble using data back-

calculated from it (lower triangle). Experimental single cell HiC

/ back-calculated contacts are shown as white dots in the lower /

upper triangle.
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Figure 4.12: Histograms of sampled values for the nuisance parameters kdr

(left) and d0 (middle) for simulation from the ISD posterior em-

ploying a lower-upper and a log-normal error model. Right : linear

bead distances d0 obtained by sampling from the ISD posterior

employing a contact-based likelihood.
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Figure 4.13: Histograms of restrained distances d(k)
ij (x) in structures obtained

by a simulation from the ISD posterior distribution. Bead dis-

tances were restrained with an lower-upper error model to target

distances ∝̂d(k)
ij ∈ {1/9, 1/4, 1} (top, middle, bottom) with lower /

upper bounds equal to d(k)
ij ± 1/5d

(k)
ij . Red vertical lines indicate

target distances, green vertical lines lower and upper bounds.
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Figure 4.14: Force constants inferred from the cell 1 data set by ISD using the

log-normal likelihood, but with the contact counts of two arbitrary

entries multiplied by a factor of ten, rendering these data points

barely compatible with the physical prior information. Force con-

stants are considerably lower as compared to Fig. 4.12 and ISD

thus downweights data inconsistent with the prior.

ilar values for both the log-normal and the lower-upper error model. The force

constants are quite large (≈ 120), which indicates that most restraints are well

satisfied, in agreement with the histogram of restrained distances (Fig. 4.13).

This statement has to be seen in light of the fact that the great majority of bins

in the experimental matrix contain only one contact and thus violations of dis-

tance restraints corresponding to two or three contacts are comparatively less

frequent. Note furthermore that, for the ensemble obtained using the contact-

based likelihood, we only show the histogram of distances for contacts with

weight nij = 1. For clarity, the other two contact classes are not shown, but

show a similar behaviour, that is, the contact restraints are basically always

fulfilled.

For comparison with Nagano et al. we note that they used a data force con-

stant equivalent to kdr = 25. Force constants estimated by ISD are thus an

order of magnitude higher.

If the data were of bad quality, e.g., by containing contacts either inconsistent

of with each other or with the prior information, ISD would mistrust the data

and assign a lower force constant. This effect is demonstrated in Fig. 4.14,
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Figure 4.15: Histograms of sampled values for the nuisance parameter kdr for

a simulation from the ISD posterior.

Left : lower-upper error model, right : log-normal error model.

where we, for the case of a log-normal likelihood, chose two arbitrary con-

tacts and multiplied their count by a factor of ten, thus leading to very small

experimental distances, which are incompatible with the prior information of

excluded volume.

As Nagano et al. sort the published data sets by quality (1: best, 10: worst),

it is interesting to check whether force constants inferred from the different

data sets reflect this change. Fig. 4.15 shows that this is indeed the case; we

recognize a general trend to lower force constants for both the lower-upper and

log-normal likelihood. ISD thus assigns a higher error to data of lower quality.

The bead size and thus the polymer length in model coordinates, on the other

hand, are different, but comparable in all three likelihoods. Employing the log-

normal error model leads to larger beads than the lowerupper error model. This

makes sense, because the log-normal error model allows for larger distances be-

tween restrained beads and thus, with respect to the volume exclusion, larger

beads are still compatible with both the force field and the distance restraints.

For the contact-based likelihood, Fig. 4.12 shows somewhat greater sequential

bead distances. This comes as no surprise, because we fix the bead diameter

and the contact distance to values which are larger than the estimated d0 val-

ues and the target distances in the distance-restraint based likelihood.
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4.3.6 Comparing likelihoods via Bayesian model

comparison

We may now ask which of the three described posterior distributions describe

the data best. Bayesian model comparison (see, e.g., Sivia and Skilling [2006])

can, in principle, give us the answer, as it allows to determine which of two

models M1,M2 is favored by the data. In this context we mean by “model”

our complete description of a modeling approach, encoded in the posterior

distribution. We can formulate the posterior probability of model Mi by using

Bayes’ theorem;

P (Mi|D) =
P (D|Mi)P (Mi)

P (D)
;

and recognize P (D|Mi) as the evidence already discussed in Sec. 1.2. If we do

not prefer any model a priori by assigning both models the prior probability

P (Mi) = 1/2, we see that the ration of the model posterior probabilities is given

by

P (M1|D)

P (M2|D)
=
P (D|M1)

P (D|M2)
=: K , (4.6)

that is, the ratio of the evidences of both models. K is called the Bayes fac-

tor and if greater (lesser) than one tells us how much more strongly the data

support M1 (M2). But calculating K is no easy task because the evidences

are the normalization constants of the corresponding posterior distributions

and as such usually are high-dimensional integrals over all model parameters.

But with histogram reweighting (WHAM, Sec. 1.4) we have a powerful tool at

hand to approximate evidences from MCMC samples from Replica Exchange

simulations. As we are doing Replica Exchange simulations anyways in order

to enhance sampling, WHAM gives us the evidences and thus the Bayes factor

without expending a significant amount of additional computing time.

WHAM can only compare models describing identical data. This limits the ap-

plication of WHAM to the comparison of the lower-upper and the log-normal

likelihood, as both use the same data, namely, the distances calculated from

contact counts. In the contact-based likelihood, on the other hand, we work
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Figure 4.16: “Free energies” for all likelihood weights λ. The very right

data points (λ = 1) correspond to the full posterior distribu-

tions of lower-upper and log-normal likelihood and show that, in

the framework of Bayesian model comparison, the distance data

strongly favor the lower-upper error model.

directly with the contact counts and thus, in the framework of Bayesian model

comparison, cannot compare it to the distance-restraint based likelihoods.

Applying WHAM to the samples calculated from all replicas, we find that

the distance data strongly favor the lower-upper error model (Fig. 4.16).

4.3.7 Inferring the structure of a diploid chromosome

In NMR structure calculation, crosspeaks often cannot be assigned unam-

bigously. Such a peak could stem from the interaction from a proton A with

another proton B or, equally likely, from an interaction between A and a third

proton C. If one then constructs a distance restraint by averaging arithmeti-

cally over the two possible target distances;

d =
1

2
(dAB + dAC) ;

only a structure in which both distances dAB, dAC fulfill the restraint will give

a favorable likelihood contribution. If one distance is close to the target dis-

tance, but the other one is very large, the average distance d would erroneously
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Figure 4.17: Two-copy mouse chromosome 1 contact map containing 1426 con-

tacts.

violate the distance restraint. Nilges [1995] solved this problem by replacing

the arithmetic average by an average in which large one distance does not con-

tribute significantly. More specifically, they introduce an r−6-average distance

by

d =
(
d−6

AB + d−6
AC

)− 1
6 . (4.7)

Although this is not done by Nilges, we divide this average distance by a factor

of 2−1/6 to recover the correct distance for the case of dAB = dAC. By virtue

of the strong decay of the −6 power, a large distance does not contribute and

the average will be closer to the small distance. If, on the other hand, both

distance are large, the r−6 average will also be large.

This average can be diverted from its intended use to infer the structure of a

two-copy chromosome from single cell HiC data. In a contact map (Fig. 4.17)

of a two-copy chromosome, say, chromosome 1 of the mouse genome, contacts

may have been formed either in one of the copies or in both of them. Using

the contact-based likelihood, we simulate two copies at the same time and ask

for the contact restraints to be fulfilled in either one or both structures. This
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amounts to demanding that the r−6-averaged distance d̂ij between two beads

i, j in the two structures be smaller than the contact distance dc. In a sense, we

now try to assign contacts in a logical or -operation instead of an exclusive or :

the likelihood for a given contact will be close to one if the contact restraint is

fulfilled in one or both structures. In the single-structure calculation we asked

the two restrained beads to be close in exactly one structure, which can be

incompatible with other restraints fulfilled in the second conformation.

We combine this two-copy likelihood with the structural prior given in Sec.

4.3.1 for each copy. Here, we assume that the two copies do not interact, but,

at the time of crosslinking, occupied distinct territories [Babu et al., 2008;

Khalil et al., 2007]. Under this assumption, the structural prior factorizes in

separate contributions for each structure. In the following calculations, we

kept the distance scale d0 fixed.

Sticking with the first mouse chromosome, use now apply ISD using this poste-

rior distribution on the single cell HiC contact map shown in Fig. 4.17, which

we obtained from the NCBI GEO database (accession GSE48262). The likeli-

hood based on the r−6 average is indeed able to assign contacts to either one

of the structures or both (Fig. 4.18): while some contacts are shared between

the two copys, a large part of the contacts is uniquely fulfilled either in the

model for copy one or copy two. Fig. 4.18 also shows superimposed structures

for each of the two copies. While structural variability is considerably high,

two features can be discerned. Chromosome 1, too, seems to be organized in

large super-domains. Furthermore, one copy shows a more compact structure.
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Figure 4.18: Modeling a two-copy chromosome using ambiguous distance re-

straints.

Left : restrained distances in copy one vs. the same distances in

copy two. Red lines mark the contact distance. Some contacts

are shared between the two copies (bottom left), while others are

fulfilled in only one copy.

Middle / right : 50 superimposed samples of the model for copy

one and two.

4.4 Modeling chromosomes from population

HiC data

Up to this point, we focused on inference of structures from Single Cell HiC

data. While interesting on their own because they allows to measure cell-to-cell

variability and give insight into the structure of single molecules, they are very

sparse and only allow for very coarse-grained modeling. Furthermore, to our

knowledge, no other Single Cell HiC data sets exist and interest in Single Cell

HiC experiments seems limited. Population HiC, on the other hand, owing to

the wealth of fine-scale information it offers and most certainly the fact that

it is less recent than its Single Cell HiC sibling, has become almost a routine

tool to investigate nuclear architecture.
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4.4.1 Existing approaches to structure determination

from population contact data

Many methods have been proposed to translate a contact matrix obtained by

a 5C or HiC experiment into three-dimensional structures. Several determin-

istic methods rely on minimization of a scoring function. Duan et al. [2010]

convert interaction frequencies of a 4C variant to distances and use the mini-

mization approach determine a consensus structure. In a similar fashion, work

by Baù et al. [2011] on 5C data relates target distances between beads to in-

verse log10 Z-scores and uses the Integrated Modeling Platform (IMP, Russel

et al. [2012]) to optimize a scoring function. A slightly different approach is

taken by Varoquaux et al. [2014], who assume that the contact counts follow a

Poisson distribution and relate the Poisson rate to the spatial distance between

beads. They optimize a parameter of this relation along with the structures.

Zhang et al. [2013] use semi-definite programming and also include the conver-

sion factor for constructing distance restraints from interaction frequencies in

the optimization procedure. Furthermore, they formulate a measure assessing

whether the input distance matrix can be fulfilled by a single 3D structure.

Distance geometry is used for genome structure reconstruction by Lesne et al.

[2014] after calculating missing distances using a shortest-path algorithm on a

graph whose nodes are the loci between ligation events where measured and

whose edges are the inverse contact frequencies. Acknowledging the difficul-

ties in converting interaction frequencies to distances, Trieu and Cheng [2014]

propose a contact-based scoring function in which all measured contacts are

assigned the same target distance, but weights according to the contact count.

By minimizing this scoring function, they determine consensus structures for

chromosomes of both healthy and cancerous human cells.

All these methods try to determine a single structure fitting both the data and,

in most cases, some basic assumptions from the polymer physics of chromatin.

But just as for Single Cell HiC structure reconstruction, these approaches fail

to give a statistically well-defined measure of confidence in the optimization

result. For this reason, several probabilistic methods have been proposed.
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Rousseau et al. [2011] again convert contact frequencies to distances and use

MCMC methods (among them Hamiltonian Monte Carlo discussed in Sec.

1.3.3) to sample from the posterior distribution for the unknown structure

using flat priors. While they acknowledge the possibility that different inter-

action frequencies might have been measured with different noise levels, they

do not sample the errors, but set them to interaction-frequency specific values.

In Hu et al. [2013], an attempt is made to more realistically model the relation-

ship between distance similar to [Varoquaux et al., 2014], but again sampling

from the structural posterior distribution using MCMC methods. In a more

general version of their method termed BACH-MIX, they assume a mixture

of models and are thus able to assess how justified calculation of a consensus

structure using their one-component method BACH is.

In one way or another, these methods focus on determining consensus struc-

tures from population HiC data, but it is highly unlikely that one physically

realistic structure is representative of a population of million of molecules. To

accomodate this, different population-based modeling approaches have been

developed. Using IMP, Kalhor et al. [2012] model a human genome based on

data from a modified HiC protocol with higher signal-to-noise ratio using a

population of structures, in which contact restraints are fulfilled only in the

fraction of structures corresponding to the interaction frequency. An ensemble

of structures without violations is determined by minimization of an ensemble

target function including these restraints and a basic polymer model. A Maxi-

mum Entropy approach is employed in [Zhang andWolynes, 2015] to determine

an optimized energy landscape for human chromosomes and, by simulation of

Langevin dynamics, obtain structural ensembles. Furthermore, the topology

of chromosomes is investigated with the result that their models are largely

free of knots thanks to TADs which locally increase chain rigidity. Finally,

Wang et al. [2015] construct chromosome ensembles by converting contact fre-

quencies into distance restraints and, via expectation-maximization (see, e.g.,

Dempster et al. [1977]), obtain MAP estimates of both a representative struc-

tural ensemble and errors as well as conversion factors, which are treated as

nuisance parameters. Their ensemble likelihood is a mixture of single-structure
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likelihoods.

We now outline a generalization of the ISD principle to infer ensembles of struc-

tures from population HiC data. While being preliminary work, we think our

idea has the potential to improve on the previous discussed population-based

modeling approaches by taking advantage of exhaustive MCMC sampling of

the conformational space and a unified treatment of structures and nuisance

parameters.

4.4.2 Extension of ISD to model structural ensembles

from population HiC data

In most applications, ISD was used to infer a consensus structure from var-

ious sources of averaged data. The heterogenity of the underlying ensemble

of molecules was not explicitly captured. While this is a reasonable approxi-

mation for well-folded proteins, for systems exhibiting greater conformational

flexibility, the ISD approach requires an extension. Olsson et al. [2013] propose

a joint posterior distribution p(x, f , e|d) for the atomistic model of a structure

x, back-calculated data f and the average e of the simulated data conditioned

on the noisy, averaged data d. ISD is recovered from this framework if f = e

is assumed. In a previously discussed approach, Wang et al. [2015] calculate

MAP estimates for structural ensembles from HiC data by using a likelihood

based on a mixture of single-structure likelihoods.

We propose a different approach. If in ISD we infer an ensemble from data

representing one molecule or a population of molecules with very similar con-

formations, then from data from a heterogenous population we can try to infer

a population of ensembles. Each population will be a possible approximation

of the real structural population and, as does each structure obtained in con-

ventional ISD, will have its own probability weight. Nuisance parameters are

treated in exactly the same manner as before, but we may introduce possible

weights of population members as new nuisance parameters. This approach is

limited to a fixed number of population members, which is not known a priori.
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Assuming that molecules in the experimental population do not interact, the

structural prior distribution of a candidate population factorizes in the mul-

tiplication of (identical) prior distributions for each population member. The

forward model F , on the other hand, has to be designed specifically for the

application in question. In general, it will back-calculate averaged data D̂ from

a population of structures X = (x1, . . . ,xN). We can introduce weights wk in

the forward model, such that, in the case of an arithmetic average,

D̂ = F (X;w, α) =
N∑
k=1

wkf(xk;α) , (4.8)

where f denotes the single-structure forward model andw the vector of weights

wk. α are nuisance parameters on which the forward model might additionally

depend. Introducing weights is useful for two reasons. First, we are unaware

of the number of distinct structures required to reproduce the averaged exper-

imental data and thus could expect that if a few ensemble members already

can reproduce the structure correctly, the remaining ensemble members will

be assigned a low weight. Also, we do not know the relative populations of

conformations represented by structures in our discrete ensemble, but weights

contain this information. In this forward model we could, for example, calcu-

late average distances dij = F (X) between atoms i, j from distances in single

structures by the single-structure forward model dkij = f
(
xk
)

= |xki − xkj |. As
before, the forward model F is combined with an error model g to yield a

likelihood for the population-averaged experimental data D:

L(D|X, σ,w, α) = g [f(X;w, α);σ] (4.9)

If we neglect interaction between copies of the molecule, the structural prior

distribution just factorizes into a product of prior distributions for the single

ensemble members, that is,

p(X) =
N∏
k=1

p(xk) . (4.10)

Construction of the joint posterior distribution for the ensemble X and weights

and other nuisance parameters then proceeds as described in Sec. 1.2.
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Applying this idea to population-based HiC data requires the back-calculation

of an interaction frequency matrix F̂ij from an ensemble of structures. This

is straightforward; we can just calculate binary contact matrices F̂ k
ij for each

structure and sum them up. Again we have to replace the step-function θ, by

which a contact is defined, by a smoothing function s in order to use HMC

(Sec. 1.3.3) to sample from the posterior distribution. We thus have

F̂ij =
N∑
k=1

wkF̂ k
ij =

N∑
k=1

wks(dc − |xki − xkj |;α) . (4.11)

4.4.3 Technical aspects of sampling from the population

HiC posterior distribution

In sampling from the single-cell HiC posteriors discussed in Sec. 4.3, low di-

mensionality and little data played to our advantage and sufficient sampling

was comparatively easily achieved. Population HiC data, on the other hand,

are more challenging. Dimensionality depends linearily on the number of en-

semble members, but quadratically on the number of beads. The reason for

the latter is the back-calculation of the single-structure contact matrices fkij:

as population HiC matrices, due to the large number of molecules in a sample,

have basically no entries equal to zero, N2 distances and (expensive) smoothing

functions have to be evaluated for each likelihood gradient evaluation. Several

measures can be taken to reduce the number of distance evaluations and thus

decrease the computational burden. Quite obviously, we can decrease the num-

ber of beads in our models at the cost of lowering model resolution. Second,

under the assumption that entries in the experimental interaction frequency

matrix with a very low value represent noise, we can introduce a cut-off and

thus effectively reduce the number of data points right in the beginning. A

third possibility to reduce the number of distance calculations lies in the details

of HMC: in calculation of the short MD trajectory, whose final state serves as

a proposal, we do not neccessarily need to use the gradient of the negative

log-posterior; bias introduced by a different gradient will be corrected in the
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Metropolis criterion. This allows us to not use the full interaction frequency

matrix, but only a subset of all contacts, thus reducing computation time. It

is also very intuitive: most entries in the interaction frequency matrix are usu-

ally highly correlated due to the fact that sequential beads are restrained to

be close to each other and thus do not neccessarily contain much information.

By randomly sampling the data points which play in the gradient evaluation

before calculating the short MD trajectory in HMC, we can make sure not to

systematically neglect datapoints.

Due to the great dimensionality of the problem, the use of RE (Sec. 1.3.4) or

another multicanonical algorithm is mandatory to explore the conformational

space. Difficult sampling problems require optimized RE schedules, a problem

we adressed in Sec. 3. This is especially the case if the system exhibits a

phase transition at a certain value for the replica parameter(s). As the adap-

tive Replica Exchange method outlined before is not yet functional for general

probability distributions, we heuristically determine a suitable schedule which

ensures good acceptance rates.

A non-trivial nuisance parameter are the weights wk. For a Gaussian error

model, the conditional posterior distribution of wk is a product of normal dis-

tributions, whose means depends on all other weights. The weights are thus

highly correlated random variables and, depending on the number of structures

chosen, will be hard to sample from using a simple random walk Metropolis-

Hastings scheme. For this reason we use HMC to not only sample the structural

ensemble, but also the weights. This is efficient, as expensive parts of the gra-

dient do not depend on the weights and thus have to be computed only once

per HMC sample.

4.4.4 Inferring chromosome ensembles from artificial data

We first apply the outlined method to artificial data obtained from single cell

HiC structural ensembles. For both the cell 1 and cell 4 data sets, we calculate

an ensemble of X chromosome models as described in Sec. 4.3. We then back-

calculate binary contact matrices from all models and sum them element-wise
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Figure 4.19: Back-calculated interaction frequency matrix used as fake data.

Lower triangular matrix: full interaction frequency matrix. Upper

triangular matrix: thinned interaction frequency matrix used in

the calculations. 50 % of interactions with lowest counts were

discarded and are shown in gray. Gray entries in the full data are

bins with zero interactions and have not been taken into accout

for the calcuations.
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and again sum element-wise the two resulting matrices. This way we obtain

a mock interaction frequency matrix: it contains contacts formed in models

of the mouse X chromosome calculated from two different cells. The result is

shown in Fig. 4.19. The rationale behind this is that we might be able to

reproduce structures, which are likely in the single cell HiC ensembles, in the

ensemble calculation.

As we only try to establish a proof-of-concept for our idea, we choose a low

resolution of 111 beads corresponding to 1.5 Mbp each. Again refering to the

nuclear density estimate of 12 Mbp/µm3 given by Rosa and Everaers [2008], the

diameter of one bead roughly corresponds to d0 = 620 nm. At this resolution,

our code runs sufficiently fast to test parameters and, most importantly, the

RE schedule. To save computation time, as discussed before, we discard some

of the low-frequency interactions. Only the 50 % of entries with the highest

contact counts are taken into account. While this may sound rather harsh, we

nevertheless retain 91 % of the total contact count; confirming that we indeed

only disregard low-frequency interactions. Furthermore, in each gradient eval-

uation, we only take into accout a randomly chosen 10 % of the data. It is not

exactly clear, whether this procedure in fact constitutes a valid MCMC sam-

pling algorithm, as the proposal is not deterministic anymore. Empirically, we

find that sampling converges faster and leads to the same results as choosing

a subset of the data for each HMC move and keeping it constant during the

MD trajectory.

Running ISD simulations with 159 replicas, we find that the sampled structural

ensembles are able to reproduce the interaction frequency matrix; a Mantel test

gives a Pearson’s correlation of 98 %. But the structures also mostly comply

with the structural prior distribution. Fig. 4.20 shows the reference interaction

matrix and the back-calculated interaction matrix of the last of 45000 samples

as well as histograms of i, i+ 1 and all other distances.

Visualization of the structural ensembles shows that during local sampling,
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Figure 4.20: Qualitative validation of inferred structural ensembles with M =

20 members from back-calculated ensembles.

Left : experimental (lower triangular matrix) and back-calculated

(upper triangular matrix) interaction frequency matrix. Middle:

pairwise distances for chain neighbours and all other beads (right).

These distances are restrained by the prior distribution; red lines

show the bead diameter of 620 nm, which is the lower limit for

distant interactions and the upper limit for nearest-neighbour dis-

tances.

Figure 4.21: Three out of 20 distinct conformations in an inferred structural

ensemble.
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Figure 4.22: Average distance matrices of structures assigned to components of

a two-component structural mixture model (top) and of reference

ensembles (bottom).

each structure “slot” is occupied by a specific conformation, which changes

only slightly. Fig. 4.21 shows three conformations of the same sample en-

semble. These distinct slot occupancies only change through accepted Replica

Exchange moves. We can now try to recover the original cell 1 and 4 X chro-

mosome ensembles from our ensembles. To this end, we use a method which

models structural ensembles as Gaussian mixtures [Hirsch and Habeck, 2008].

Its only parameter is the number of components, which we set to two. We find

that the sub-populations for each component are very heterogenous. Aver-

age distance matrices (Fig. 4.22) show correlations calculated by Mantel tests

[Mantel, 1967] between 40% and 65 %; in fact, the highest correlations are be-

tween the distance matrices of the reference ensembles and of the two clusters,

respectively. Our method is thus not able to clearly recover two subpopu-

lations corresponding to the reference ensembles, which is not too surprising

given that structural variability in the latter is very high.

Considering the sampled weights for each structure, we find that weights span

a broad range. Fig. 4.23 shows the histogram of all sampled weights and we

notice that a significant part of them is, in comparison the rest, very small.
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Figure 4.23: Histogram of sampled weights. Only a part of the population car-

ries significant weight and thus contributes most to the likelihood.

43 % of all sampled weights are smaller than 50, while only 22 % take values

greater than 400. Structures corresponding to the many small weights thus

might only contribute to low-frequency interactions or are possibly not required

at all.
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5 Summary and outlook

5.1 Replica Exchange with Non-equilibrium

Switches (RENS) tested on complex

protein systems

In Sec. 2, we applied RENS to coarse-grained protein systems with varying

number of degrees of freedom and to the problem of sampling from the ISD

posterior of Ubiquitin. We were able to confirm that RENS is indeed able to

increase acceptance rates for swaps between neighbouring replicas. This comes

at the cost of significantly increased computation time due to the calculation of

the non-equilibrium trajectories. For this reason, RENS is much less efficient

than ordinary, instantaneous Replica Exchange.

But the field of non-equilibrium statistical mechanics is young and several

avenues might lead to increased RENS efficiency. We tested three different

ways to calculate thermostatted non-equilibrium trajectories dragging states

from one ensemble into the other. These represent three classes of dynamics:

Markov Chain Monte Carlo (HMCRENS), molecular dynamics with simulated

friction and random collisions (LMDRENS) and molecular dynamics with only

random collisions, which reset momenta completely (AMDRENS). All three

classes rely on random processes. The Nosé-Hoover thermostat [Hoover, 1985;

Martyna et al., 1992; Nosé, 1984], on the other hand, is completely determin-

istic. An expression for work performed during a Nosé-Hoover thermostatted

trajectory is given in [Ballard, 2012]. These dynamics do not conserve phase

space volume [Smit and Frenkel, 2002] and the work hence includes a Jaco-
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bian, which in general will be difficult to evaluate analytically, but can be

easily accumulated during discrete timesteps. Deterministic dynamics might

avoid possible looping back of a trajectory due to MCMC move rejections or

momentum draws and could thus be beneficial for RENS.

Another open question is the optimal dependence of the switching parame-

ter λ(t) on the simulation time. In this work we assumed a linear protocol,

which most certainly is not an optimal choice in the sense that it minimizes

the work expended to drive the system from state A to state B. The distance

between two thermodynamic states in equilibrium can be measured by the

thermodynamic length both for macroscopic [Ruppeiner, 1979; Salamon and

Berry, 1983; Weinhold, 1975] and, as recently shown by Crooks, microscopic

systems. Thermodynamic length is not a state function, but explicitly dep-

pends on the path taken through the space of thermodynamic states. It forms

a Riemannian manifold, in which paths minimizing dissipation are geodesics

for slow, but finite-time switches [Crooks, 2007; Nulton et al., 1985; Salamon

and Berry, 1983]. The metric is given by the Fisher informations of the corre-

sponding equilibrium distributions [Burbea and Rao, 1982]. If thus in a RENS

non-equilibrium trajectory dissipation is minimized, a minimum amount of

work is expended and we can expect an optimal acceptance rate.

Sivak and Crooks [2012] generalize the notion of thermodynamic length and

derive it directly from linear response theory. They derive important prop-

erties of optimal paths. These trajectories of minimal work are, for example,

independent of the non-equilibrium trajectory duration, to which the expended

work is inversely proportional. Furthermore, excess work is accumulated at a

constant rate. In Zulkowski et al. [2012], this approach was explored further

by making use of results in Riemannian geometry to find, for the first time, a

closed expression for the optimal path of a particular simple, stochastic sys-

tem.

We can thus hope that, using these very recent results, approximative optimal

switching protocols can be found for realistic systems, which may be able to

unleash the full potential of RENS.

Finally, if finding optimal protocols using the thermodynamic length frame-
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work should prove unsuccessful, RENS would most likely also profit from an

optimized replica exchange schedule.

5.2 Outlook on an adaptive Replica Exchange

scheme

The class of Replica Exchange (RE) methods, to which RENS belongs, requires

setting a (temperature) schedule interpolating from the target temperature to

a high temperature, at which a systems’ probability distribution is more easy

to sample from. This choice is not trivial. In Sec. 3, we suggested a new idea to

solve this problem. Arguing that accurate estimates of normalization constants

result from good sampling, we borrowed a result about statistically optimal

interpolating distributions for thermodynamic integration [Gelman and Meng,

1998] and investigated whether these distributions improve sampling quality

compared to a simple linear log-probability interpolation with a preliminary

implementation.

To this end, we simulated a particle in a rough, one-dimensional energy land-

scape; which poses a problem for local sampling using a simple Metropolis-

Hastings scheme. As a “high-temperature” distribution we chose a relatively

flat normal distribution, from which sampling is easy. The statistically optimal

interpolation schedule turned out to be qualitatively similar to the linear inter-

polation. We then performed RE simulations using both interpolation meth-

ods and noticed that acceptance rates are indeed comparable, but somewhat

lower for the two lowest-temperature replicas; confirming that the schedules

are similar, but not identical. Using the standard error as a measure of sam-

pling quality, based on these RE simulations, we analyze both the accuracy

of estimates of the mean extended ensemble log-probability and of the mean

log-probability of the multimodal target distribution. Unfortunately, standard

errors for both quantities were higher when using the statistically optimal in-

terpolation schedule, indicating better log-probability estimates when using

the naive linear log-probability interpolation.
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A possible reasons for this result could be that the derivation of the statisti-

cally optimal schedule relies on independent samples drawn from all distribu-

tions, including the target distribution. This assumption is obviously violated

already by construction, because local sampling by Random Walk Metropolis-

Hastings is not able to cross the energy barriers and thus at least between

successful replica swap attempts, sample are strongly correlated. Gelman and

Meng already mention that the lower bound on the variance of the free energy

difference (Eq. 3.4) in practice cannot be reached for exactly this reason.

Furthermore, our assumption that optimizing free energy estimates obtained

by thermodynamic integration also means optimizing sampling quality might

have to be questioned and investigated seperately. Then Gelman and Meng’s

optimality result might indeed only be useful for thermodynamic integration,

which is at the heart of its derivation. In this case, we could divert our method

from its intended use and regard it as an efficient, automatic scheme for free

energy estimation.

The interpolating distributions presented here is not the only optimality result

discussed by Gelman and Meng. They also give a set of Euler-Lagrange equa-

tions for the general case of several switching parameters λ if a fixed family

pλ(x) of interpolating distributions is already given. This would translate to,

e.g., choosing an exponential decay in the inverse temperature β in RE sim-

ulations of a Boltzmann ensemble and determining an optimal temperature

spacing between adjacent replicas.

5.3 Bayesian structure determination from HiC

data

We were able to demonstrate in Sec. 4 that the ISD framework is also ap-

plicable to chromatin structure determination from single cell HiC data. All

advantages of ISD carry over to this new application: automatic estimation

of nuisance parameters, most notably the error or force constant, and exhaus-

tive sampling of the combined space of conformational degrees of freedom and
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nuisance parameters by powerful MCMC methods allowed us to objectively

determine an ensemble of conformations, which, under our chosen likelihoods

and prior information, truly represents the information available.

This information is very sparse. There are very little data points compared to

the size of the X chromosome; at our resolution we have only≈ 1.6 contacts/bead

restraining the structure. In comparison, in a typical NMR structure deter-

mination, data is much richer: at least 10, usually even more, restraints per

residue [Kwan et al., 2011] determine, along with a molecular forcefield, the

native conformation of a protein. This comparison is, of course, not fair, as

NMR structure determination relies on rich data from an ensemble of molecules

exhibiting similar folds.

But not only the data is sparse: at the extremely coarse resolution the sparse

data forces us to choose, little can be said about the polymer physics of chro-

matin and the large beads may introduce artificial volume exclusion. One

way to improve upon this is to choose a different representation of the dis-

crete bins of a HiC map. Zylindrical or ellyptical elements could replace the

spherical beads and so more accurately reproduce the actual proportions of the

30 nm fiber. This approach was taken in, e.g., [Wong et al., 2012]. The draw-

back is that it is harder to compute a soft volume exclusion for non-spherical

monomers. This results in increased computation time.

There is also further information we can take into account: Nagano et al. [2013]

performed FISH chromsome paint experiments to determine typical diameters

of of X chromosome territories. This information can be easily included in an

ISD calculation in the form of an additional likelihood. One can heuristically

establish a relation between the radius of gyration and the size of a molecule

and could then, by means of a Gaussian error model, ask a structure to have

a gyration radius corresponding to the average X chromosome territory diam-

eter. The corresponding error can be deduced from the experimental data,

as FISH measurements have been performed on several cells. Furthermore, it

might be worthwile to consider a forcefield with also attractive interactions,

which would lead to the sampling of more compact structures. This might be

especially useful for ISD calculations using a contact-based likelihood, as the
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attractive force between two beads is very small when they are far away from

each other.

We were also able to show that it is possible to infer structures of two-copy

chromosomes from single cell HiC data by borrowing a method to deal with am-

bigous restraints from NMR structure determination. The problem of demix-

ing a single cell HiC contact matrix is thus elegantly solved, at least for two

non-interacting copies of a chromosome.

Demixing a population HiC contact matrix, on the other hand, is much more

difficult, as data from millions of copies of the same molecule is contained in

a single contact matrix. We thus proposed an extension of ISD to ensemble-

based modeling from HiC data relying on sampling not single conformations,

but small, hopefully representative ensembles from a posterior distribution.

The result of this method is thus a “hyper-ensemble”; an ensemble consisting

of ensembles, each of which has its own probability weights and nuisance pa-

rameters assigned. These comparatively small populations of structures were

asked to reproduce the experimental interaction frequency matrix. The core

of this approach is a likelihood, in which a mock interaction frequency ma-

trix is back-calculated from some single structures by summing the respective

quasi-binary contact matrices. We assigned each ensemble member a weight,

which conveniently serves two purposes: first, it allows structures to influence

the data back-calculation with different strengths and thus can tell us, which

and how many structures in our test ensemble are essential to reproduce an

interaction frequency matrix. Second, the weights accomodate for the fact

that the size of the modeled ensembles is orders of magnitude smaller than

the experimental one, thus effectively scaling the back-calculated matrix and

so making it directly comparable to the experimental data.

We tested this approach on an interaction frequency matrix back-calculated

from X chromosome structural ensembles obtained from single cell HiC data

and found that already a few structures are sufficient to reproduce the input

data. The model ensembles also fulfilled the prior information. These results

make us optimistic that in real applications, too, our approach will produce

structural ensembles which are compatible with both prior information and
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data. Modeling of chromosomes from population HiC data will also give us a

much broader choice of data sets and results from the literature to compare

our results with. The fact that the computational cost for evaluating the likeli-

hood increases quadratically with the number of beads would suggest it might

be sensible to first validate this application of ISD on well-resolved population

HiC data of only a specific region of a chromosome of biological interest. This

would allow us to choose a modeling resolution adapted to the resolution of

the data, while keeping computation time reasonable.

An obvious question is the optimal number of ensemble members: if we sim-

ulate too little structures per ensemble, we will not correctly reproduce the

interaction frequency matrix. With a large number, on the other hand, re-

producing the data will be easier, but computation time increases and we risk

overfitting. We could use model comparison techniques such as the Akaike In-

formation Criterion (AIC; Akaike [1998]) or the Bayesian Information Criterion

(BIC; Schwarz [1978]), which include a penalty on the number of parameters

used to fit a model.

We also proposed several ways to save computation time, which need to be

investigated further. Instead of disregarding a fixed, arbitrary fraction of the

data in the first place, operating under the assumption that very low con-

tact counts are not as important to the structures as highly populated bins,

one should find a more objective way to set this cut-off. Furthermore, as we

showed that neglecting large parts of the data when calculating gradients in

HMC improves performance, a systematic investigation should be carried out

as to how many and which data points can be disregarded in this sampling

step. This might allow for increased efficiency and thus for higher resolutions

or the modeling of larger parts of the genome.

A further line of possible improvements of our method concerns the structural

prior distribution: population HiC data are much richer than single cell HiC

and, depending on the size of the genomic region modeled, we could incorporate

more detailed prior information about, e.g., persistence lengths (≈ 100 nm).

Similar as in the string-binder-switch model proposed in [Barbieri et al., 2012],

we could introduce binding sites on our model polymer which can bind to other
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regions of that type by means diffusing binind particles. These would mock

the behaviour of, e.g., CTCF-binding factors or transcription factories and ef-

fectively introduce attractive interactions independent of the data. Depending

on the resolution, these binding sites could be placed at positions in the beads-

on-a-string model corresponding to their genomic position.

It may also be worth reconsidering our approach of just multiplying the single

structural prior distributions: as soon as one ensemble member significantly

violates the structural prior, it will downweight the whole ensemble, even if the

other structures comply with the prior and the likelihood. We thus possibly

are rejecting a lot of reasonable ensembles with one outlier structure in the

MCMC moves, which might not only be a waste of computational resources,

but also a sign of a too strict or even misspecified structural prior. After all,

we are still coarse-graining and, e.g., the volume exclusion we introduce does

not necessarily need to hold strictly.

122



Acknowledgements

This thesis would not exist if it was not for the help of countless people.

I would like to thank Burkhard Rost for the uncomplicated collaboration and

for accepting me as an external PhD student in his lab.

During the last four and a half years, Michael Habeck was always available via

Skype or in person to supervise my projects. Thank you for all your input and

a lot of patience!

Michael Nilges kindly hosted me for three years in the Structural Bioinfor-

matics lab at Institut Pasteur. I had a great time under the best working

conditions imaginable and thank him for supervision and many valuable sug-

gestions.

My PhD time would not have been such a good experience without my col-

leagues, both in Tübingen and in Paris. I am particularly indebted to Nathan

Desdouits and Guillaume Bouvier for countless Python tips & tricks and to

Isidro Cortés Ciriano, Silke Wieninger and Yannick Spill for many discussions

on or off the topic of science. Tru Huynh was always willing to help and main-

tained the luxurious BIS computing infrastructure. Renée Communal and

Maya Um were an indispensable help for dealing with the Pasteur administra-

tion. Merci à toutes et tous mes collègues francophones, qui m’ont appris une

grande partie de mon français et qui m’ont aussi introduit aux mystères de la

langue familière.

Pasteur and non-Pasteur friends from all over the world made my time in- and

outside the labs in Paris and Tübingen very enjoyable. Special thanks to Eva

Boritsch and Anncharlott Berglar for showing me what real biologists do all

day.

By proof-reading almost all of it, Anna Howell prevented this document from

becoming one giant garden path sentence and Anna Gueiderikh made sure I

got the biology right.

Finally, I would like to thank my family and, most of all, my parents for

their unconditional support - not only over the last few years.





Bibliography

Marc Adrian, Jacques Dubochet, Jean Lepault, and Alasdair W. McDowall.

Cryo-electron microscopy of viruses. Nature, 308(5954):32–36, Mar 1984.

Daniel Aird, Michael Ross, Wei-Sheng Chen, Maxwell Danielsson, Timothy

Fennell, Carsten Russ, David Jaffe, Chad Nusbaum, and Andreas Gnirke.

Analyzing and minimizing PCR amplification bias in Illumina sequencing

libraries. Genome Biology, 12(2):R18, 2011.

Hirotogu Akaike. Information theory and an extension of the maximum like-

lihood principle. In Selected Papers of Hirotugu Akaike, pages 199–213.

Springer, 1998.

Hans C. Andersen. Molecular dynamics simulations at constant pressure

and/or temperature. The Journal of Chemical Physics, 72(4):2384–2393,

1980.

Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and MichaelI. Jordan.

An Introduction to MCMC for Machine Learning. Machine Learning, 50

(1-2):5–43, 2003.

M Madan Babu, Sarath Chandra Janga, Ines de Santiago, and Ana Pombo.

Eukaryotic gene regulation in three dimensions and its impact on genome

evolution. Current Opinion in Genetics & Development, 18(6):571 – 582,

2008.

Andrew J. Ballard. Exploring Equilibrium Systems with Nonequilibrium Sim-

ulations. PhD thesis, University of Maryland, College Park, 2012.

Andrew J. Ballard and Christopher Jarzynski. Replica exchange with nonequi-

125



librium switches. Proceedings of the National Academy of Sciences, 106(30):

12224–12229, 2009.

Andrew J. Ballard and Christopher Jarzynski. Replica exchange with nonequi-

librium switches: Enhancing equilibrium sampling by increasing replica over-

lap. The Journal of Chemical Physics, 136(19):194101, 2012.

Mariano Barbieri, Mita Chotalia, James Fraser, Liron-Mark Lavitas, Josée

Dostie, Ana Pombo, and Mario Nicodemi. Complexity of chromatin folding

is captured by the strings and binders switch model. Proceedings of the

National Academy of Sciences, 109(40):16173–16178, 2012.

Christian Bartels and Martin Karplus. Multidimensional adaptive umbrella

sampling: Applications to main chain and side chain peptide conformations.

Journal of Computational Chemistry, 18(12):1450–1462, 1997.

Alberto Bartesaghi, Alan Merk, Soojay Banerjee, Doreen Matthies, Xiongwu

Wu, Jacqueline L. S. Milne, and Sriram Subramaniam. 2.2 Å resolution cryo-

EM structure of β-galactosidase in complex with a cell-permeant inhibitor.

Science, 348(6239):1147–1151, 2015.

Davide Baù, Amartya Sanyal, Bryan R Lajoie, Emidio Capriotti, Meg Byron,

Jeanne B Lawrence, Job Dekker, and Marc A Marti-Renom. The three-

dimensional folding of the α-globin gene domain reveals formation of chro-

matin globules. Nature structural & molecular biology, 18(1):107–114, 2011.

JGJ Bauman, J Wiegant, P Borst, and P Van Duijn. A new method for

fluorescence microscopical localization of specific DNA sequences by in situ

hybridization of fluorochrome-labelled RNA. Experimental cell research, 128

(2):485–490, 1980.

Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat,

Helge Weissig, Ilya N. Shindyalov, and Philip E. Bourne. The Protein Data

Bank. Nucleic Acids Research, 28(1):235–242, 2000.

Jay Boris. A vectorized "near neighbors" algorithm of order N using a mono-

tonic logical grid. Journal of Computational Physics, 66(1):1 – 20, 1986.

126



Guillaume Bouvier, Nathan Desdouits, Mathias Ferber, Arnaud Blondel, and

Michael Nilges. An automatic tool to analyze and cluster macromolecular

conformations based on self-organizing maps. Bioinformatics, 2014.

Shelagh Boyle, Susan Gilchrist, Joanna M. Bridger, Nicola L. Mahy, Juliet A.

Ellis, and Wendy A. Bickmore. The spatial organization of human chromo-

somes within the nuclei of normal and emerin-mutant cells. Human Molec-

ular Genetics, 10(3):211–219, 2001.

AT Brunger, GM Clore, AM Gronenborn, R Saffrich, and M Nilges. Assessing

the quality of solution nuclear magnetic resonance structures by complete

cross-validation. Science, 261(5119):328–331, 1993.

Axel T. Brunger. Free R value: a novel statistical quantity for assessing the

accuracy of crystal structures. Nature, 355(6359):472–475, Jan 1992.

Axel T Brünger. Version 1.2 of the Crystallography and NMR system. Nature

protocols, 2(11):2728–2733, 2007.

Axel T Brünger, Paul D Adams, G Marius Clore, Warren L DeLano, Piet

Gros, Ralf W Grosse-Kunstleve, J-S Jiang, John Kuszewski, Michael Nilges,

Navraj S Pannu, et al. Crystallography & NMR system: A new software

suite for macromolecular structure determination. Acta Crystallographica

Section D: Biological Crystallography, 54(5):905–921, 1998.

Jacob Burbea and C.Radhakrishna Rao. Entropy differential metric, distance

and divergence measures in probability spaces: A unified approach. Journal

of Multivariate Analysis, 12(4):575 – 596, 1982.

Giovanni Bussi and Michele Parrinello. Accurate sampling using Langevin

dynamics. Phys. Rev. E, 75:056707, May 2007.

John Chodera. Private communication, 2012.

John D. Chodera, William C. Swope, Jed W. Pitera, Chaok Seok, and Ken A.

Dill. Use of the Weighted Histogram Analysis Method for the Analysis of

Simulated and Parallel Tempering Simulations. Journal of Chemical Theory

and Computation, 3(1):26–41, 2007.

127



R. T. Cox. Probability, Frequency and Reasonable Expectation. American

Journal of Physics, 14(1):1–13, 1946.

Thomas Cremer and Marion Cremer. Chromosome Territories. Cold Spring

Harbor Perspectives in Biology, 2(3), 2010.

Gavin E Crooks. Nonequilibrium measurements of free energy differences for

microscopically reversible Markovian systems. Journal of Statistical Physics,

90(5-6):1481–1487, 1998.

Gavin E Crooks. Entropy production fluctuation theorem and the nonequi-

librium work relation for free energy differences. Physical Review E, 60(3):

2721, 1999a.

Gavin E Crooks. Excursions in Statistical Dynamics. PhD thesis, University

of California at Berkely, 1999b.

Gavin E Crooks. Path-ensemble averages in systems driven far from equilib-

rium. Physical review E, 61(3):2361, 2000.

Gavin E. Crooks. Measuring Thermodynamic Length. Phys. Rev. Lett., 99:

100602, Sep 2007.

Elzo de Wit and Wouter de Laat. A decade of 3C technologies: insights into

nuclear organization. Genes & Development, 26(1):11–24, 2012.

Job Dekker, Karsten Rippe, Martijn Dekker, and Nancy Kleckner. Capturing

Chromosome Conformation. Science, 295(5558):1306–1311, 2002.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical

Society, series B (Statistical Methodology), 39(1):1–38, 1977.

Jesse R. Dixon, Siddarth Selvaraj, Feng Yue, Audrey Kim, Yan Li, Yin Shen,

Ming Hu, Jun S. Liu, and Bing Ren. Topological domains in mammalian

genomes identified by analysis of chromatin interactions. Nature, 485(7398):

376–380, May 2012.

Josée Dostie, Todd A. Richmond, Ramy A. Arnaout, Rebecca R. Selzer,

128



William L. Lee, Tracey A. Honan, Eric D. Rubio, Anton Krumm, Justin

Lamb, Chad Nusbaum, Roland D. Green, and Job Dekker. Chromosome

Conformation Capture Carbon Copy (5C): A massively parallel solution for

mapping interactions between genomic elements. Genome Research, 16(10):

1299–1309, 2006.

Zhijun Duan, Mirela Andronescu, Kevin Schutz, Sean McIlwain, Yoo Jung

Kim, Choli Lee, Jay Shendure, Stanley Fields, C Anthony Blau, and

William S Noble. A three-dimensional model of the yeast genome. Nature,

465(7296):363–367, 2010.

Simon Duane, A.D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid

Monte Carlo. Physics Letters B, 195(2):216 – 222, 1987.

Denis J. Evans and Debra J. Searles. Equilibrium microstates which generate

second law violating steady states. Phys. Rev. E, 50:1645–1648, Aug 1994.

Alan M Ferrenberg and Robert H Swendsen. New Monte Carlo technique for

studying phase transitions. Physical review letters, 61(23):2635, 1988.

Alan M Ferrenberg and Robert H Swendsen. Optimized Monte Carlo data

analysis. Physical Review Letters, 63(12):1195, 1989.

Henrik Flyvbjerg and Henrik Gordon Petersen. Error estimates on averages

of correlated data. The Journal of Chemical Physics, 91(1):461–466, 1989.

Andrew Gelman and Xiao-Li Meng. Simulating normalizing constants: From

importance sampling to bridge sampling to path sampling. Statistical sci-

ence, pages 163–185, 1998.

Stuart Geman and D. Geman. Stochastic Relaxation, Gibbs Distributions,

and the Bayesian Restoration of Images. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, PAMI-6(6):721–741, Nov 1984.

Charles J Geyer. Markov chain Monte Carlo maximum likelihood. In Com-

puting Science and Statistics: Proc. 23rd Symp. on the Interface. Interface

Foundation of North America, 1991.

129



Mark Girolami and Ben Calderhead. Riemann manifold Langevin and Hamil-

tonian Monte Carlo methods. Journal of the Royal Statistical Society: Series

B (Statistical Methodology), 73(2):123–214, 2011.

Alan Grossfield and Daniel M. Zuckerman. Chapter 2: Quantifying Uncer-

tainty and Sampling Quality in Biomolecular Simulations. In Ralph A.

Wheeler, editor, Annual Reports in Computational Chemistry, volume 5 of

Annual Reports in Computational Chemistry, pages 23 – 48. Elsevier, 2009.

Lars Guelen, Ludo Pagie, Emilie Brasset, Wouter Meuleman, Marius B. Faza,

Wendy Talhout, Bert H. Eussen, Annelies de Klein, Lodewyk Wessels,

Wouter de Laat, and Bas van Steensel. Domain organization of human

chromosomes revealed by mapping of nuclear lamina interactions. Nature,

453(7197):948–951, Jun 2008.

P. Güntert, C. Mumenthaler, and K. Wüthrich. Torsion angle dynamics for

NMR structure calculation with the new program Dyana1. Journal of Molec-

ular Biology, 273(1):283 – 298, 1997.

Peter Güntert. Automated NMR structure calculation with CYANA. In Pro-

tein NMR Techniques, pages 353–378. Springer, 2004.

Peter Güntert, Werner Braun, and Kurt Wüthrich. Efficient computation

of three-dimensional protein structures in solution from nuclear magnetic

resonance data using the program DIANA and the supporting programs

CALIBA, HABAS and GLOMSA. Journal of Molecular Biology, 217(3):517

– 530, 1991.

M. Habeck. Ensemble annealing of complex physical systems. ArXiv e-prints,

March 2015.

Michael Habeck. Evaluation of marginal likelihoods via the density of states.

In International Conference on Artificial Intelligence and Statistics, pages

486–494, 2012a.

Michael Habeck. Bayesian Estimation of Free Energies From Equilibrium Sim-

ulations. Phys. Rev. Lett., 109:100601, Sep 2012b.

130



Michael Habeck, Michael Nilges, and Wolfgang Rieping. Replica-Exchange

Monte Carlo Scheme for Bayesian Data Analysis. Phys. Rev. Lett., 94:

018105, Jan 2005.

Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical

integration illustrated by the Störmer-Verlet method. Acta Numerica, 12:

399–450, 5 2003.

David Hames and Nigel Hooper. BIOS Instant Notes in Biochemistry. Garland

Science, 4 edition, 2011.

W Keith Hastings. Monte Carlo sampling methods using Markov chains and

their applications. Biometrika, 57(1):97–109, 1970.

Torsten Herrmann, Peter Güntert, and Kurt Wüthrich. Protein NMR Struc-

ture Determination with Automated NOE Assignment Using the New Soft-

ware CANDID and the Torsion Angle Dynamics Algorithm DYANA. Jour-

nal of Molecular Biology, 319(1):209 – 227, 2002.

Michael Hirsch and Michael Habeck. Mixture models for protein structure

ensembles. Bioinformatics, 24(19):2184–2192, 2008.

William G. Hoover. Canonical dynamics: Equilibrium phase-space distribu-

tions. Phys. Rev. A, 31:1695–1697, Mar 1985.

Thomas A Hopf, Charlotta PI Schärfe, João PGLM Rodrigues, Anna G Green,

Oliver Kohlbacher, Chris Sander, Alexandre MJJ Bonvin, and Debora S

Marks. Sequence co-evolution gives 3D contacts and structures of protein

complexes. Elife, 3:e03430, 2014.

Ming Hu, Ke Deng, Siddarth Selvaraj, Zhaohui Qin, Bing Ren, and Jun S.

Liu. HiCNorm: removing biases in Hi-C data via Poisson regression. Bioin-

formatics, 28(23):3131–3133, 2012.

Ming Hu, Ke Deng, Zhaohui Qin, Jesse Dixon, Siddarth Selvaraj, Jennifer

Fang, Bing Ren, and Jun S. Liu. Bayesian Inference of Spatial Organizations

of Chromosomes. PLoS Comput Biol, 9(1):e1002893, 01 2013.

131



Jim R. Hughes, Nigel Roberts, Simon McGowan, Deborah Hay, Eleni Gi-

annoulatou, Magnus Lynch, Marco De Gobbi, Stephen Taylor, Richard

Gibbons, and Douglas R. Higgs. Analysis of hundreds of cis-regulatory

landscapes at high resolution in a single, high-throughput experiment. Nat

Genet, 46(2):205–212, Feb 2014.

Koji Hukushima and Koji Nemoto. Exchange Monte Carlo method and appli-

cation to spin glass simulations. Journal of the Physical Society of Japan,

65(6):1604–1608, 1996.

R. Hulspas and J.G.J. Bauman. The use of fluorescent in situ hybridization

for the analysis of nuclear architecture by confocal microscopy. Cell Biology

International Reports, 16(8):739 – 747, 1992.

Gerhard Hummer and Attila Szabo. Free energy reconstruction from nonequi-

librium single-molecule pulling experiments. Proceedings of the National

Academy of Sciences, 98(7):3658–3661, 2001.

Yukito Iba. Extended Ensemble Monte Carlo. International Journal of Modern

Physics C, 12(05):623–656, 2001.

Maxim Imakaev, Geoffrey Fudenberg, Rachel Patton McCord, Natalia Nau-

mova, Anton Goloborodko, Bryan R. Lajoie, Job Dekker, and Leonid A.

Mirny. Iterative correction of Hi-C data reveals hallmarks of chromosome

organization. Nat Meth, 9(10):999–1003, Oct 2012.

Roland Jäger, Gabriele Migliorini, Marc Henrion, Radhika Kandaswamy, He-

len E. Speedy, Andreas Heindl, Nicola Whiffin, Maria J. Carnicer, Laura

Broome, Nicola Dryden, Takashi Nagano, Stefan Schoenfelder, Martin Enge,

Yinyin Yuan, Jussi Taipale, Peter Fraser, Olivia Fletcher, and Richard S.

Houlston. Capture Hi-C identifies the chromatin interactome of colorectal

cancer risk loci. Nat Commun, 6, Feb 2015.

Christopher Jarzynski. Nonequilibrium equality for free energy differences.

Physical Review Letters, 78(14):2690, 1997a.

Christopher Jarzynski. Equilibrium free-energy differences from nonequilib-

132



rium measurements: A master-equation approach. Physical Review E, 56

(5):5018, 1997b.

Edwin T Jaynes. Information theory and statistical mechanics. Physical review,

106(4):620, 1957.

Herman Kahn and Ted Harris. Estimation of particle transmission by random

sampling. National Bureau of Standards Applied Math Series, 12:27–30,

1951.

Reza Kalhor, Harianto Tjong, Nimanthi Jayathilaka, Frank Alber, and Lin

Chen. Genome architectures revealed by tethered chromosome conformation

capture and population-based modeling. Nat Biotech, 30(1):90–98, Jan 2012.

Research.

Helmut G Katzgraber, Simon Trebst, David A Huse, and Matthias Troyer.

Feedback-optimized parallel tempering Monte Carlo. Journal of Statistical

Mechanics: Theory and Experiment, 2006(03):P03018, 2006.

J. C. Kendrew, G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff, and D. C.

Phillips. A Three-Dimensional Model of the Myoglobin Molecule Obtained

by X-Ray Analysis. Nature, 181(4610):662–666, Mar 1958.

A. Khalil, J.L. Grant, L.B. Caddle, E. Atzema, K.D. Mills, and A. Arneodo.

Chromosome territories have a highly nonspherical morphology and nonran-

dom positioning. Chromosome Research, 15(7):899–916, 2007.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated

Annealing. Science, 220(4598):671–680, 1983.

David A Kofke. On the acceptance probability of replica-exchange Monte Carlo

trials. The Journal of chemical physics, 117(15):6911–6914, 2002.

Teuvo Kohonen. Self-organized formation of topologically correct feature maps.

Biological Cybernetics, 43(1):59–69, 1982.

Aminata Kone and David A. Kofke. Selection of temperature intervals for

133



parallel-tempering simulations. The Journal of Chemical Physics, 122(20):

206101, 2005.

Werner Kühlbrandt. Cryo-EM enters a new era. eLife, 3, 2014.

Shankar Kumar, John M. Rosenberg, Djamal Bouzida, Robert H. Swendsen,

and Peter A. Kollman. The weighted histogram analysis method for free-

energy calculations on biomolecules. I. The method. Journal of Computa-

tional Chemistry, 13(8):1011–1021, 1992.

Ann H Kwan, Mehdi Mobli, Paul R Gooley, Glenn F King, and Joel P Mackay.

Macromolecular NMR spectroscopy for the non-spectroscopist. FEBS jour-

nal, 278(5):687–703, 2011.

S. Lan, V. Stathopoulos, B. Shahbaba, and M. Girolami. Lagrangian Dynam-

ical Monte Carlo. ArXiv e-prints, November 2012.

Paul Langevin. Sur la théorie du mouvement Brownien. C. R. Acad. Sci.

(Paris), 146, 1908. [English translation: On the theory of Brownian Motion,

Am. J. Phys. 65, 1079 (1997)].

Andrew R Leach. Molecular modelling: principles and applications. Pearson

education, 2001.

Annick Lesne, Julien Riposo, Paul Roger, Axel Cournac, and Julien Mozzi-

conacci. 3D genome reconstruction from chromosomal contacts. Nat Meth,

11(11):1141–1143, Nov 2014. Brief Communication.

Wenyuan Li, Ke Gong, Qingjiao Li, Frank Alber, and Xianghong Jasmine

Zhou. Hi-Corrector: a fast, scalable and memory-efficient package for nor-

malizing large-scale Hi-C data. Bioinformatics, 31(6):960–962, 2015.

Erez Lieberman-Aiden, Nynke L. van Berkum, Louise Williams, Maxim

Imakaev, Tobias Ragoczy, Agnes Telling, Ido Amit, Bryan R. Lajoie, Pe-

ter J. Sabo, Michael O. Dorschner, Richard Sandstrom, Bradley Bernstein,

M. A. Bender, Mark Groudine, Andreas Gnirke, John Stamatoyannopoulos,

Leonid A. Mirny, Eric S. Lander, and Job Dekker. Comprehensive Map-

134



ping of Long-Range Interactions Reveals Folding Principles of the Human

Genome. Science, 326(5950):289–293, 2009.

Jens P. Linge, Michael Habeck, Wolfgang Rieping, and Michael Nilges. ARIA:

automated NOE assignment and NMR structure calculation. Bioinformat-

ics, 19(2):315–316, 2003.

Blanca López-Méndez and Peter Güntert. Automated Protein Structure De-

termination from NMR Spectra. Journal of the American Chemical Society,

128(40):13112–13122, 2006. PMID: 17017791.

Darío G. Lupiáñez, Katerina Kraft, Verena Heinrich, Peter Krawitz, Francesco

Brancati, Eva Klopocki, Denise Horn, Hülya Kayserili, John M. Opitz, Re-

nata Laxova, Fernando Santos-Simarro, Brigitte Gilbert-Dussardier, Lars

Wittler, Marina Borschiwer, Stefan A. Haas, Marco Osterwalder, Martin

Franke, Bernd Timmermann, Jochen Hecht, Malte Spielmann, Axel Visel,

and Stefan Mundlos. Disruptions of Topological Chromatin Domains Cause

Pathogenic Rewiring of Gene-Enhancer Interactions. Cell, 161(5):1012 –

1025, 2015.

Edward Lyman and Daniel M Zuckerman. On the structural convergence of

biomolecular simulations by determination of the effective sample size. The

Journal of Physical Chemistry B, 111(44):12876–12882, 2007.

Wenxiu Ma, Ferhat Ay, Choli Lee, Gunhan Gulsoy, Xinxian Deng, Savan-

nah Cook, Jennifer Hesson, Christopher Cavanaugh, Carol B. Ware, An-

ton Krumm, Jay Shendure, Carl Anthony Blau, Christine M. Disteche,

William S. Noble, and Zhijun Duan. Fine-scale chromatin interaction maps

reveal the cis-regulatory landscape of human lincRNA genes. Nat Meth, 12

(1):71–78, Jan 2015.

Nathan Mantel. The Detection of Disease Clustering and a Generalized Re-

gression Approach. Cancer Research, 27(2 Part 1):209–220, 1967.

Glenn J Martyna, Michael L Klein, and Mark Tuckerman. Nosé–Hoover chains:

135



the canonical ensemble via continuous dynamics. The Journal of chemical

physics, 97(4):2635–2643, 1992.

William Mattson and Betsy M. Rice. Near-neighbor calculations using a

modified cell-linked list method. Computer Physics Communications, 119

(2âĂŞ3):135 – 148, 1999.

Martin Mechelke and Michael Habeck. Calibration of Boltzmann distribution

priors in Bayesian data analysis. Phys. Rev. E, 86:066705, Dec 2012.

Martin Mechelke and Michael Habeck. Bayesian Weighting of Statistical Po-

tentials in NMR Structure Calculation. PLoS ONE, 9(6):e100197, 06 2014.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and

E. Teller. Equation of State Calculations by Fast Computing Machines.

Journal of Chemical Physics, 21:1087–1092, June 1953.

Leonid A. Mirny. The fractal globule as a model of chromatin architecture in

the cell. Chromosome Research, 19(1):37–51, 2011.

Takashi Nagano, Yaniv Lubling, Tim J. Stevens, Stefan Schoenfelder, Eitan

Yaffe, Wendy Dean, Ernest D. Laue, Amos Tanay, and Peter Fraser. Single-

cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 502

(7469):59–64, Oct 2013. Article.

Radford M. Neal. Annealed Importance Sampling. Statistics and Computing,

11(2):125–139, 2001.

Michael Nilges. Calculation of Protein Structures with Ambiguous Distance

Restraints. Automated Assignment of Ambiguous NOE Crosspeaks and

Disulphide Connectivities. Journal of Molecular Biology, 245(5):645 – 660,

1995.

Michael Nilges, Aymeric Bernard, Benjamin Bardiaux, Thérèse Malliavin,

Michael Habeck, and Wolfgang Rieping. Accurate {NMR} Structures

Through Minimization of an Extended Hybrid Energy. Structure, 16(9):

1305 – 1312, 2008.

136



Jerome P. Nilmeier, Gavin E. Crooks, David D. L. Minh, and John D. Chodera.

Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium

simulation. Proceedings of the National Academy of Sciences, 108(45):

E1009–E1018, 2011.

Elphege P. Nora, Bryan R. Lajoie, Edda G. Schulz, Luca Giorgetti, Ikuhiro

Okamoto, Nicolas Servant, Tristan Piolot, Nynke L. van Berkum, Johannes

Meisig, John Sedat, Joost Gribnau, Emmanuel Barillot, Nils Bluthgen, Job

Dekker, and Edith Heard. Spatial partitioning of the regulatory landscape

of the X-inactivation centre. Nature, 485(7398):381–385, May 2012.
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