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In this contribution, we exploit the specific structure of index-1 differential-algebraic equations (DAEs) in semi-explicit form and
present two different methods for stability-preserving reduction. The first technique preserves strictly dissipativity of the
underlying dynamics, the second takes advantage of Hs-pseudo-optimal reduction and further allows for an adaptive
selection of reduction parameters such as reduced order and Krylov shifts.

Index-1 DAEs in semi-explicit form

Model reduction problem

Given a stable linear constant coefficient DAE
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Selection of reduction strategy

The selection of reduction strategy can

SE-DAE be based on the structure of the DAE.
strictly strictly
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For strictly proper SE-DAES,
CUREd SPARK can be
applied without changes.

For systems with implicit feedthrough term,
CUREd SPARK is applied on a SE-DAE
realization of the strictly proper part.

Conclusions

SE-DAEsSs, arising frequently in electrical systems and power
networks, can now be reduced without loss of stability by
Krylov subspace methods. By the extension of CUREd
SPARK to this class of systems, it Is possible to adaptively
choose reduced order and Krylov parameters.

This procedure currently works only for SISO systems.
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Index-1 semi-explicit DAEs (SE-DAE)

Reduction by Krylov-subspace methods

The special case of DAE considered takes the form Consider the input and output Krylov subspaces Im(V),
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and parametrized by the pairs (Sy,R) and (Sw,L).
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Stability-preserving reduction

Proposed reduction procedures

1) Stability-preserving reduction for strictly proper, strictly dissipative SE-DAEs by orthogonal projection

Note: Strictly dissipativity implies asymptotic stability
Ei=E/ =0, At +A] <0 = A(A4,,E,) CcC~

. The reduction strategy in (3) generally fails to
reduce the underlying ODE (2) for orthogonal projections!

. If Boo = 0 compute V as an input, if Cyy =0

and Is preserved by orthogonal projection compute W as an output Krylov subspace
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2) Stability preservation with adaptive choice of reduced order and Krylov parameters (CUREd SPARK)
rational Krylov (PORK) for SE-DAEs

Cumulative reduction (CURE) based on factorization
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2*) CUREd SPARK for SE-DAEs with implicit feedthrough Dy # 0

. The implicit feedthrough term makes the cost Example.: Power System BIPS/97 (N = 13250, n = 50)
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