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Transient Stability Analysis by Reachable Set
Computation

Matthias Althoff, Miloš Cvetković, and Marija Ilić

Abstract—We present a formal technique for verifying the
stability of transient responses of power systems. The procedure
uses reachability analysis to compute the complete set of possible
transient responses starting from a set of initial states, subject
to a dynamics specified by differential-algebraic equations. The
method is constructive and fully automatic, two propertiesthat
are often hard to achieve with direct Lyapunov methods when the
differential-algebraic equations are not simplified. Reachability
analysis is computationally expensive, but this work presents
new techniques that make it possible to verify the stabilityof a
transient response of the IEEE 14-bus benchmark power system
network.

Index Terms—Transient Stability, Reachability Analysis, Non-
linear Differential-Algebraic Equations, Power Systems

I. I NTRODUCTION

Transient stability analysis of power systems goes back
to the 1920s [10]. Since then, many approaches for tran-
sient stability analysis have been developed [21]. We group
the techniques into model-based and model-free approaches.
Model-free approaches predict the transient stability based
on machine learning techniques, where Neural Nets [9] and
pattern recognition [22] are most popular.

Since we propose a model-based technique, we focus the
literature review on this category. The most common model-
based technique is to simulate power system equations by
numerical integration. The main advantage of numerical in-
tegration is its versatility, meaning that all kinds of models
can be analyzed, while the main disadvantage is the limited
applicability in emergency situations, when the consequences
of a fault have to be known immediately. For this reason,
approaches for the parallelization of numerical integration are
researched [2], [25]. Alternatively, Monte-Carlo simulation
provides a probabilistic evaluation, where many scenarios
are deterministically computed and later evaluated by their
probability of occurrence. Aggregation of all results yields a
probability that the transient response is unstable [8].

In order to improve the online analysis during a fault-
on situation, direct methods based on the Lyapunov stability
theory have been developed [1], [12], [23]. The main ad-
vantage of Lyapunov techniques is that one can guarantee
that the transient response is stable when the post-fault state
is within a previously computed domain of attraction. The
main disadvantage is that the region of attraction is usually
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conservative, i.e. largely underapproximated when the system
is relatively large. For practical applications, Lyapunov-based
models are computationally infeasible, or one has to drastically
simplify the system dynamics, resulting in possibly incorrect
results [21].

Recently, reachability analysis as a new kind of analysis
technique has emerged. Reachability analysis combines ad-
vantages of numerical integration and Lyapunov-based tech-
niques. Reachability analysis computes the set of all possible
trajectories of a system, given a set of initial states, a set
of disturbances, and a set of uncertain parameters. Thus,
one obtains a set-based evolution of the system dynamics,
similar to a numerical integration, except that all possible
solutions are computed for each time interval at once. Due
to the set-based computation, the result is rigorous as for
Lyapunov-based analysis. One can prove transient stability
without constructing a Lyapunov function by showing that the
system returns to the set of initial states after a fault occurred.
The main disadvantage of reachability analysis so far was the
computational complexity for power system applications, so
that only small systems have been verified [13], [19], [26]. In
[19], transient stability analysis is performed using level-sets
for a single-machine-infinite-bus system modeled by ODEs
with only 2 state variables. A slightly larger double-machine-
infinite-bus system with2 buses described by ODEs with5
state variables is considered in [26]. In [13], an initial DAE
model is simplified to ODEs and further to linear ODEs,
without considering errors made during each conversion. A
3-bus system is considered in [13], and effects on wind
variability rather than transient stability are investigated.

In this work, we present a new approach for reachable
set computation, which is much more scalable than previ-
ous approaches and additionally guarantees that the result
is overapproximative. This property is important for prov-
ing transient stability. The approach works for any kind of
system with time-invariant, semi-explicit, index-1 differential-
algebraic equations (DAEs). We show the scalability by com-
puting the reachable set for the IEEE 14-bus benchmark power
system network to which we add5 generators, resulting in14
differential and28 algebraic variables, giving a total of42
continuous state variables.

The main reasons for the improved scalability is because we
(i) invented a new and efficient approach to tightly overapprox-
imate the complicated nonlinear DAEs by linear differential
inclusions, and (ii) apply zonotopes for the reachability com-
putation of the linear differential inclusions, which outperform
all previous approaches for this system class [15].
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II. PROBLEM STATEMENT

Power systems can be formalized as a set of semi-explicit,
nonlinear index-1 DAEs (see e.g. [24]). We assume that the
parameters of the power system are known and constant
over time, resulting in a set of time-invariant DAEs. We
introduce the vectors of differential variables asx ∈ Rnd ,
algebraic variables asy ∈ Rna , and inputs asu ∈ Rm,
wherend, na, andm are the number of differential, algebraic,
and input variables, respectively. Further, we introduce the
set of consistent initial statesR(0) and the set of possible
inputs/disturbancesU . The set of DAEs can now be written
as

ẋ = f(x(t), y(t), u(t))

0 = g(x(t), y(t), u(t)),

[xT (0), yT (0)]T ∈ R(0), u(t) ∈ U ,

(1)

The initial state is consistent wheng(x(0), y(0), u(0)) = 0 and
we assume that (1) has a unique solutionγ(t, x(0), y(0), u(·))
for all consistent initial statesx(0), y(0) and all piecewise
continuous input trajectoriesu(·), whereu(t) refers to an input
at a specific point in timet. We are interested in computing
the reachable set of (1) for a time interval[0, tf ], which is
defined as

Re([0, tf ]) =
{

γ(t, x(0), y(0), u(·))
∣
∣
∣[xT (0), yT (0)]T ∈ R(0),

{

u(t) ∈ U , t ∈ [0, tf ]
}

.

The superscripte on Re([0, tf ]) denotes the exact reachable
set, which cannot be computed for nonlinear DAE systems
[20]. For this reason, we aim to compute overapproximations
R([0, tf ]) ⊇ Re([0, tf ]), which are as accurate as possible,
while at the same time ensuring that the computations are ef-
ficient and scale well with the system dimensionn = nd+na.
For simplification we often usereachable setinstead of always
emphasizing the we computeoverapproximative reachable
sets. If the overapproximation shows transient stability, we
can conclude that the exact result is stable since all solutions
of the real system are included in the overapproximation. The
projection of the reachable set onto the differential variables
is denoted byRd([0, tf ]) and for the algebraic variables by
Ra([0, tf ]).

In this work, we continue to compute reachable sets until a
time tf for which R(tf ) ⊆ R(0), i.e. all solutions are within
the set of initial states such that we can conclude transient
stability of the system in the sense that all transient responses
return to the set of initial states. Using the same method,
one could also check if an arbitrarily small region around the
steady state can be reached. As a by-product, we obtain all
voltage and phase limits over time for further analysis.

III. M AIN ALGORITHM

The reachable set computation is performed by conser-
vatively simplifying the nonlinear DAEs to ordinary linear
differential inclusions

˙̃x ∈ Ãx̃⊕ Ũ , (2)

where the derivative is not exactly known, but bounded by a
set. In (2), we use a set-based addition (Minkowski addition),
which we introduce together with the set-based multiplication:

A⊕ B :={a+ b|a ∈ A, b ∈ B},

A⊗ B :={a b|a ∈ A, b ∈ B}.

The set of added inputs̃U in (2) is chosen such that it
includes all behaviors of the differential variables of the
original nonlinear DAE-system. The solution of the algebraic
variables will be obtained in a subsequent computation. We
construct different differential inclusions for fixed timeinter-
vals t ∈ τk := [tk, tk+1], wheretk = k r, k ∈ N is the time
step andr ∈ R+ is referred to as the time increment or step
size. An extension to variable step sizes is described in [14].

The reachable set computation itself is performed on the dif-
ferential inclusion overapproximation in (2) for which efficient
algorithms exist when using zonotopes [15], [17] or support
functions [16] as representations of the reachable set. We use
zonotopes since some operations required for the conversion
to linear differential inclusions, such as quadratic maps,can
be efficiently computed with them.

In the remainder of this section, we describe the main algo-
rithm in Fig. 1 in words. Details of the algorithm are described
in the subsequent sections. We first linearize the differential
and algebraic equations of (1) using a first order Taylor expan-
sion. Next, we heuristically obtain a set of linearization errors
L
d

andL
a

for the differential and algebraic equations, which
we believe to include the actual set of linearization errors.
The combination of linearized equations to which the set of
linearization errors is added, is referred to asconservatively
linearized equations. After inserting the conservatively lin-
earized algebraic equations into the conservatively linearized
differential equations, we obtain a differential inclusion of the
form in (2). The reachable set computation of (2) returns the
set R

d
(τk) = Rd

affine(τk) ⊕ R
d

p(r) for the kth time interval,
which is composed of the affine solutionRd

affine(τk) (no
uncertain inputs) and the solution due to uncertain inputsŨ .
This reachable set is then used to overapproximately determine
the linearization errorsLd and La of the differential and
algebraic equations, respectively. IfLd * L

d
or La * L

a
, one

or both of the assumed setsL
d

andL
a

have to be enlarged.
When Ld ⊆ Ld

max or La ⊆ La
max, whereLd

max and La
max

are user-defined bounds for linearization errors, the reachable
set has to be split to reduce the linearization error. As for all
subdivision methods, splitting leads to improved accuracy, but
increases the computational demand. Finally, we compute the
reachable set due to uncertain inputsRd

p(r) based onLd and

La (instead ofL
d

andL
a
), which tightens the reachable set

to Rd(τk) = Rd
affine(τk)⊕Rd

p(r). The computation continues
with the next time interval.

IV. CONSERVATIVE L INEARIZATION

In this section we describe how we overapproximate the
DAEs to linear differential inclusions. Thereto, we introduce
the vectorz = [xT , yT , uT ]T , the linearization pointz∗ =
[x∗T , y∗T , u∗T ]T , andRz = R(τk)× U .
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Initial setR(0), time stepk = 1, sets of allowed linearization errorL
d
, L

a

Obtain assumed sets of linearization errorL
d
, L

a

Transform (1) usingL
d
, L

a
to

differential inclusion ˙̃x ∈ Ãx̃(t) ⊕ Ũ ; see Sec. IV

Compute reachable setR
d
(τk) = Rd

affine(τk)⊕R
d
p(r)

of the differential inclusion; see Sec. V

Compute set of linearization errorsLd, La

based onR
d
(τk); see Sec. VI

Ld ⊆ L
d
,

La ⊆ L
a

?
EnlargeL

d
, L

a

Ld ⊆ Ld
max,

La ⊆ La
max? Split R(tk)

Calculate reachable set of inputsRd
p(r) considering

linearization errorsLd, La

ComputeRd(τk) = Rd
affine(τk)⊕Rd

p(r)

Next initial set:Rd(tk+1),
time stepk := k + 1

No

No

Yes

Yes

Fig. 1. Overview of reachable set computation.

Before we perform the linearization, we have to choose the
linearization pointz∗ (which varies for each time interval).
In order to reduce the linearization error, we usez∗ as the
center ofRz(τk) of the currently computed time intervalτk,
see [7]. We approximate the center of the yet unknown set
Rz(τk) by x∗(τk) = cd(tk) + 0.5f(cd, ca, cu)(tk+1 − tk),
wherecd, ca, cu are the volumetric centers of the setsRd(tk),
Ra(tk), andU . This procedure can be interpreted as a one-
step Euler integration. We further chooseu∗(τk) = cu and the
linearization point of the algebraic part is obtained by solving
0 = g(x∗, y∗, u∗) using a Newton-Raphson algorithm.

Using z∗, the linearization of (1) is performed by a first-
order Taylor expansion with Lagrangian remainder:

ẋi = fi(z(t)) ∈fi(z
∗) +

∂fi(z)

∂z

∣
∣
∣
z=z∗

(z(t)− z∗)⊕ Ld
i ,

0 = gj(z(t)) ∈gj(z
∗) +

∂gj(z)

∂z

∣
∣
∣
z=z∗

(z(t)− z∗)⊕ La
j ,

(3)

where

L
d
i =

{
1

2
(z(t)−z

∗)T
∂2fi(z)

∂z2

∣
∣
∣
z=ξ

(z(t)−z
∗)

∣
∣
∣ξ ∈ R

z
, z(t) ∈ R

z
}

(4)
andLa

j is computed analogously by replacingfi(z) with gj(z).
We writeLd

i for the projection ofLd onto theith coordinate.
The Lagrangian remaindersLd,La enclose all higher-order

terms if ξ can take any value of the linear combination ofz
and z∗, i.e. ξ ∈ {αz + (1 − α)z∗|α ∈ [0, 1]}, which follows
from the mean value theorem [11, p. 87]. Since (i)z(t) can
take any values fromRz in the time intervalτk, (ii) Rz is
represented by a convex zonotope, and (iii)z∗ is chosen as an
interior point of this set, it follows that forξ ∈ Rz the set of
Lagrangian remainders is captured.

For subsequent derivations, we introduce the Jacobians of
f(z(t)) with respect tox, y, u, which areA ∈ Rnd×nd , B ∈

Rnd×m, andC ∈ Rnd×na , where∂fi(z)
∂z

|z=z∗ =
[
A C B

]
.

The Jacobians forg(z(t)) are D ∈ Rna×nd , E ∈ Rna×m,
and F ∈ Rna×na , where ∂gj(z)

∂z
|z=z∗ =

[
D F E

]
. We

further introduce the HessiansHd,(i)(ξ) = ∂2fi(z)
∂z2 )

∣
∣
z=ξ

and

Ha,(j)(ξ) =
∂2gj(z)
∂z2 )

∣
∣
z=ξ

, as well as the following variables
with respect to the linearization point:∆x(t) = x(t) − x∗,
∆u(t) = u(t)−u∗, ∆y(t) = y(t)− y∗, ν(t) = z(t)− z∗, and
Rz

∆ = Rz⊕(−z∗). Using the previously introduced variables,
we have from (3) and (4) that

ẋ ∈f(z∗) +A∆x(t) +B∆u(t) + C∆y(t) (5)

⊕
{1

2
σ
∣
∣
∣σi = νTHd,(i)(ξ)ν, ξ ∈ Rz , ν ∈ Rz

∆

}

,

0 ∈g(z∗) +D∆x(t) + E∆u(t) + F∆y(t) (6)

⊕
{1

2
φ
∣
∣
∣φj = νTHa,(j)(ξ)ν, ξ ∈ Rz, ν ∈ Rz

∆

}

.

Next, we reformulate (6) to

∆y(t) ∈ −F−1
(

g(z∗) +D∆x(t) + E∆u(t)
)

(7)

⊕
{

−
1

2
F−1φ

∣
∣
∣φj = νTHa,(j)(ξ)ν, ξ ∈ Rz , ν ∈ Rz

∆

}

.

Note thatF is always invertible due to the index-1 property
of the DAEs. Inserting (7) into (5) results in a differential
inclusion

ẋ ∈f(z∗) +A∆x(t) +B∆u(t)

− CF−1
(
g(z∗) +D∆x(t) + E∆u(t)

)
⊕ L

=(k + Ã∆x(t) + B̃∆u(t))⊕ L,

(8)

where

k =f(z∗)− CF−1g(z∗)

Ã =A− CF−1D

B̃ =B − CF−1E.

and

L =
{1

2
(σ − CF−1φ)

∣
∣
∣σi = νTHd,(i)(ξ)ν,

φj = νTHa,(j)(ξ)ν, ξ ∈ Rz , ν ∈ Rz
∆

}

⊆Ld ⊕ (−CF−1 ⊗ La)

(9)

The set of linearization errorsL as proposed in (9) is a
subset ofLd⊕(−CF−1⊗La) since in the latter computation,
the dependency ofν is ignored when computingLd and
La separately. We can further simplify the reachable set
computation of (8) by solving

˙̃x ∈ Ãx̃(t)⊕ Ũ , (10)

x̃(t) = ∆x(t), Ũ := k ⊕ B̃(U ⊕ (−u∗))⊕ L.
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The problem of the above system is that the set of linearization
errorsL is not known in advance, sõU is unknown, too. For
this reason, we have to guess the overapproximationsL

d
⊇ Ld

andL
a
⊇ La. Using these two enclosures, it follows thatL ⊇

L for L = L
d
⊕(−CF−1⊗L

a
), see (9). As an initial guess we

enlarge the previous linearization error by user-defined scalar
factorsλd ∈ R+, λa ∈ R+, so that

L
d
(τk) =ĉd ⊕ λd(Ld(τk−1)⊕ (−ĉd)),

where ĉd is the volumetric center ofLd(τk−1), andL
a
(τk)

is obtained analogously. If it turns out that the enclosure
assumption is not correct, the factors have to be repeatedlyand
automatically enlarged until the linearization error assumption
holds. Further, if the setsL

d
andL

a
do not fulfill

L
d
⊆ Ld

max andL
a
⊆ La

max, (11)

whereLd
max andLa

max are set by the user, the reachable set
has to be split in order to reduce the linearization error until
(11) is fulfilled. Thus, we can guarantee that the linearization
error is bounded byLd

max andLa
max. Techniques to decide the

dividing hyperplane for the split can be found in [7].

V. REACHABLE SET COMPUTATION OF L INEAR SYSTEMS

We briefly describe how the reachable set of a linear differ-
ential inclusion˙̃x ∈ Ãx̃(t)⊕U (see (10)) with̃x(tk) ∈ R

d
(tk),

is computed for the time intervalτk. We restrict the set of
reachable setsR

d
(tk) and inputsU to zonotopes:

Definition 1 (Zonotope) Given a centerc ∈ Rn and so-
called generatorsg(i) ∈ Rn, a zonotope is defined as

Z =
{

c+

p
∑

i=1

βig
(i)
∣
∣
∣βi ∈ [−1, 1], c ∈ Rn, g(i) ∈ Rn

}

We write in shortZ = (c, g(1), . . . , g(p)). A zonotope can
be interpreted as the Minkowski addition of line segments
l(i) = [−1, 1]g(i), which is visualized step-by-step in a two-
dimensional vector space in Fig. 2. Zonotopes are a compact
way of representing sets in high dimensions. More importantly,
operations required for reachability analysis, such as linear
mapsM ⊗Z (M ∈ Rq×n) and Minkowski additionZ1 ⊕Z2

can be computed efficiently and exactly, and others such as
convex hull computation can be tightly overapproximated [15].

0 1 2

0

1

2

c

l(1)

(a) c⊕ l(1)
−1 0 1 2 3

−1

0

1

2

3

c

l(1) l(2)

(b) c⊕ l(1) ⊕ l(2)
−2 0 2 4

−1

0

1

2

3

c

l(1) l(2)

l(3)

(c) c⊕ . . .⊕ l(3)

Fig. 2. Step-by-step construction of a zonotope.

As a preparation for the reachable set computation, we split
the effect ofU into its centeruc and the translated setU∆ =
U ⊕ (−uc). This proposed reachable set computation takes

advantage of the superposition principle for linear dynamics,
as shown in Fig. 3:

1) Starting fromR
d
(tk), compute the set of all solutions

Rd
h(tk+1) for the affine dynamicṡ̃x = Ãx̃(t) + uc at

time tk+1.
2) Obtain the convex hull ofR

d
(tk) and Rd

h(tk+1) to
approximate the reachable set for the time intervalτk.

3) ComputeR
d
(τk) by enlarging the convex hull to first

bound all affine solutions withinτk and secondly ac-
count for the set of uncertain inputsU∆.

R
d
(tk)

Rd
h
(tk+1)

convex hull of

R
d
(tk),

Rd
h
(tk+1)

R
d
(τk)

➀ ➁ ➂

enlargement

Fig. 3. Steps for the computation of an overapproximation ofthe reachable
set for a linear differential inclusion.

Using r = tk+1 − tk, the solution ofRd
h(tk+1) is

Rd
h(tk+1) = eÃrR

d
(tk) +

∫ r

0

eÃ(r−t) dt uc

︸ ︷︷ ︸

=:xp(r)

.

If Ã is invertible,xp(r) can be computed as̃A−1(eÃr − I)uc,
whereI is the identity matrix. However, sincẽA is not always
invertible, we computexp(r) by integrating the Taylor series
of eÃr =

∑∞
i=0(Ãr)i/(i!):

xp(r) =
( η
∑

i=0

Ãiri+1

(i + 1)!
+

∞∑

i=η+1

Ãiri+1

(i+ 1)!
︸ ︷︷ ︸

=:Ep(r)

)

uc

∈
( η
∑

i=0

Ãiri+1

(i+ 1)!
⊕ Ep(r)

)

︸ ︷︷ ︸

=:Γ(r)

⊗uc,

The remainderEp(r) can be overapproximated by an interval
matrix Ep(r) ∈ Ep(r) := [−W (r) r,W (r) r], i.e., by a
matrix with lower and upper bounds on each element. Using
symmetric bounds onEp(r), these bounds can be obtained
from

|Ep(r)| =

∣
∣
∣
∣

∞∑

i=η+1

Ãi

(i + 1)!
ri+1

∣
∣
∣
∣
≤

∞∑

i=η+1

|Ã|iri+1

(i+ 1)!

≤

( ∞∑

i=η+1

|Ã|iri

i!

)

r =

(

e|Ã|r −

η
∑

i=0

|Ã|iri

i!

)

︸ ︷︷ ︸

=:W (r)

r.

The enlargement of the convex hull denoted byR
d

ǫ to contain
all affine solutions forτk is performed as in [3, Chap. 3.2].
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The reachable set due to the uncertain and convex inputU∆

is obtained as derived in [6]:

R
d

p(r) =

η
⊕

i=0

(

Ãi ri+1

(i+ 1)!
⊗ U∆

)

⊕
(
[−W (r) r,W (r) r]⊗|U∆|

)
,

(12)
where the absolute value of a set of matricesM is defined
elementwise as|M|ij := sup

{
|mij |

∣
∣m ∈ M

}
, which equiv-

alently applies to the vector setU∆.
The reachable set for the next point in time and time interval

is obtained by combining all previous results and using the
operatorCH(·) for the convex hull:

R
d
(tk+1) = eArR

d
(tk)⊕ Γ(r)uc

︸ ︷︷ ︸

=:Rd
affine(tk+1)

⊕R
d

p(r),

R
d
(τk) =CH

(
R

d
(tk), e

ArR
d
(tk)⊕Γ(r)uc

)
⊕R

d

ǫ
︸ ︷︷ ︸

=:Rd
affine(τk)

⊕R
d

p(r)

(13)

Note that it is sufficient to addR
d

p(r) for the time interval

solution sinceR
d

p(r) = R
d

p([0, r]) when U∆ contains the

origin, causing monotone growth ofR
d

p(r) [3].

VI. COMPUTATION OF THEL INEARIZATION ERROR

So far, we have computed an overapproximation of the
reachable set of the dynamic variablesR

d
(τk) under the

assumption that the sets used to approximate the linearization
error enclose the exact ones (L

d
⊇ Ld andL

a
⊇ La). In order

to overapproximate the set of linearization errors, we firsthave
to reconstruct the reachable set for all variablesR(τk) from
the reachable set of the differential variablesR

d
(τk).

A. Reachable Set of Differential and Algebraic Variables

For a concise notation of the combined reachable setR(τk),
we introduce the matrix of generatorsG =

[
g(1) . . . g(p)

]

and the alternative short form of a zonotopeZ asZ = (c,G),
with centerc and the matrix of generatorsG.

Proposition 1 (Differential-Algebraic Reachable Set)
SupposeR

d
(τk) = (cd, Gd), U = (cu, Gu), L

a
= (cl, Gl).

An overapproximation for the complete reachable set for the
differential and algebraic variables is

R(τk) =

([
cd

ca

]

,

[
Gd

0 0

−F−1DGd −F−1EGu −F−1Gl

])

,

whereca = y∗−F−1
(
g(z∗)+D(cd−x∗)+E(cu−u∗)+cl

)
,

and 0 is a matrix of zeros of proper dimension.

Proof: Using (7), the state of the differential-algebraic
system is bounded by

[
x(t)
y(t)

]

∈

[
x∗

y∗ − F−1g(z∗)

]

+

[
I

−F−1D

]

∆x(t)

+

[
0

−F−1E

]

∆u(t)⊕

[
0

−F−1

]

L
a
.

Inserting∆x(τk) ∈ (cd − x∗, Gd), ∆u(τk) ∈ (cu − u∗, Gu),
L
a
(τk) = (cl, Gl) into the above equation yields the proposed

computation ofR(τk) using the addition and multiplication
rule of zonotopesZ = (c,G): M ⊗ Z = (Mc,MG), Z1 ⊕
Z2 = (c1 + c2,

[
G1 G2

]
).

Note that Proposition 1 is tighter than the Cartesian product
R

d
(τk)×R

a
(τk) because the latter result hasp̃ more gener-

ators, wherẽp is the number of generators ofR
d
(τk). Next,

the set of all variablesR(τk) is used to overapproximate the
set of linearization errors.

B. Bounding the Lagrange Remainder

We first show the computation of the linearization errorLd

and then generalize toL. As described in (5),

Ld ⊆
1

2

{

σ
∣
∣
∣σi = νTHd,(i)(ξ)ν, ξ ∈ R

z
, ν ∈ R

z

∆

}

, (14)

where we replaced the yet unknown setsRz andRz
∆ by the

more conservative overapproximationsR
z

andR
z

∆.
In order to compute the set of linearization errors, we

first compute the possible values of the second derivative
Hd,(i) := {Hd,(i)(ξ)|ξ ∈ R

z
}. This is done by first computing

the enclosing boxI = box(R
z
), which is obtained as in [15].

Each element of the matricesHd,(i)(ξ) is evaluated forξ ∈ I
using interval arithmetic [18].

We present a new technique to compute the set of lineariza-
tion errors by overapproximating (14) with

Ld ⊆
1

2

{

σ
∣
∣
∣σi = νT ⊗Hd,(i) ⊗ ν, ν ∈ R

z

∆

}

, (15)

and introducing an overapproximation of a quadratic map:

Lemma 1 (Quadratic Map) Given a zonotopeZ = (c,
g(1), . . . , g(p)) and a discrete set of matricesQ(i) ∈ Rn×n,
i = 1 . . . n, the set

ZQ = {ϕ|ϕi = xTQ(i)x, x ∈ Z}

is overapproximated by a zonotope

quad(Q,Z) := (d, h(1), . . . , h(σ))

with σ =
(
p+2
2

)
− 1 generators, the centerdi = cTQ(i)c +

0.5
∑p

s=1 g
(s)TQ(i)g(s) and the generators

j =1 . . . p : h
(j)
i =cTQ(i)g(j) + g(j)

T
Q(i)c

j =1 . . . p : h
(p+j)
i =0.5g(j)

T
Q(i)g(j)

l =

p−1
∑

j=1

p
∑

k=j+1

1 : h
(2p+l)
i =g(j)

T
Q(i)g(k) + g(k)

T
Q(i)g(j)

The complexity of constructing this zonotope overapproxima-
tion with respect to the dimensionn is O(n5).

The proof of this Lemma can be found in [4]. The above
Lemma is used in the proof of the following Theorem to
overapproximateLd in (15):

Theorem 1 (Linearization Error) Let each Hd,(i) be
bounded by an interval matrix, which we separate to
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Hd = Hd
c ⊕ [−Hd

∆, H
d
∆], where Hd

c , H
d
∆ ∈ Rn×n. The

linearization error according to(15) is overapproximated by

Ld ⊆
1

2

{

zTHd,(i)z
∣
∣
∣z ∈ Rz

∆

}

⊆
1

2

(

quad(Hd
c ,R

z

∆)⊕ [−η, η]
)

,

η = |R
z

∆|
THd

∆|R
z

∆|, |R
z

∆| = |cz∆|+

p
∑

i=1

|g
z,(i)
∆ |.

The complexity with respect to the dimensionn is O(n5).

Proof: Negligence of dependencies results in overapprox-
imations such that we have

Ld ⊆
1

2

{

zTHd,(i)z
∣
∣
∣z ∈ Rz

∆

}

⊆
1

2

({

zTHd,(i)
c z

∣
∣
∣z ∈ Rz

∆

}

︸ ︷︷ ︸

=quad(Hd
c ,R

z

∆)

⊕
{

zT [−H
d,(i)
∆ , H

d,(i)
∆ ]z

∣
∣
∣z ∈ Rz

∆

}

︸ ︷︷ ︸

⊆(Rz
∆)T⊗[−H

d,(i)
∆ ,H

d,(i)
∆ ]⊗Rz

∆

)

Given N ∈ Rq×m and an interval matrixS = [−S, S]
with symmetric boundS ∈ Rl×q, we have thatSN =
[
− S|N |, S|N |

]
, see [3]. From this follows for a zonotope

Rz
∆ = {c⊕

⊕p
i=1[−1, 1]g

z,(i)
∆ } that

[−H
d,(i)
∆ , H

d,(i)
∆ ]⊗Rz

∆

⊆
(

[−H
d,(i)
∆ , H

d,(i)
∆ ]⊗ cz∆

)

⊕
( p
⊕

i=1

[−H
d,(i)
∆ , H

d,(i)
∆ ]⊗ g

z,(i)
∆

)

=
[

−H
d,(i)
∆ (|cz∆|+

p
∑

i=1

|g
z,(i)
∆ |)

︸ ︷︷ ︸

=|R
z

∆|

, H
d,(i)
∆ (|cz∆|+

p
∑

i=1

|g
z,(i)
∆ |)

︸ ︷︷ ︸

=|R
z

∆|

]

.

Thus,(Rz
∆)T ⊗ [−H

d,(i)
∆ , H

d,(i)
∆ ]⊗Rz

∆ ⊆ [−η, η], whereη is
as specified in the Theorem.

Since all other operations of the reachable set computation,
such as linear maps, Minkowski addition, convex hull, and
so on are at mostO(n3), the overall complexity of the
reachability analysis isO(n5) due to the complexity of the
linearization error computation in Theorem 1 (when splitting
is not required). It remains to compute the linearization error
L in (8) using the techniques presented above.

Corollary 1 (Linearization Error L) Given the zonotopes
Ld
c = quad(Hd

c ,R
z

∆) = (d,H) andLa
c = quad(Ha

c ,R
z

∆) =
(e, V ), the overapproximative set of linearization errors is
computed as

L =
1

2
(d− CF−1e,H − CF−1V )
︸ ︷︷ ︸

=:Lc

⊕
1

2

(
[−ζ, ζ]⊕ (−CF−1)[−̺, ̺]

)

︸ ︷︷ ︸

=:L∆

,

ζ = |Rz
∆|

THd
∆|R

z
∆|, ̺ = |Rz

∆|
THa

∆|R
z
∆|.

Due to space limitations we omit the proof.
The overapproximated linearization errorL is used to obtain

the final result by replacing the set of uncertain inputsU with
Ũ := k ⊕ B̃(U ⊕ (−u∗)) ⊕ L (see (10)), which is used to
computeRd

p(r) according to (12). We finally obtainRd(τk) =
Rd

affine(τk) ⊕Rd
p(r) and analogously the overapproximations

for the reachable set at points in time, whereRd
affine(τk) is

taken from (13). Based onRd(τk), the algebraic reachable
set Ra(τk) is computed by evaluating the algebraic part of
Prop. 1. The complete approach is applied to the power system
example in the next section.

VII. N UMERICAL RESULT

The considered verification task is to show that after a power
drop-out of a power plant and its subsequent reconnection
to the grid, the system state returns to its original operating
point. We show this for a set of initial states by computing the
reachable set of the differential variables until it is enclosed by
the initial set again. We first present the mathematical model of
the power system and then show the results of the reachability
analysis.

A. Mathematical Model

We use the IEEE 14-bus benchmark system enhanced by
generator dynamics, which is depicted in Fig. 4. In order to
obtain the correct equations for the relatively complex 14-
bus system, we auto-generate the equations using symbolic
computations in MATLAB. First, the power flow equations
are obtained according to [24] for each bus, where variable
indices refer to the bus number.

The absolute value of the voltage is denoted by|Vi| [p.u]
(p.u.: per unit), the angle of the voltage byδi [rad], the active
power by Pi [p.u.], and the reactive power byQi [p.u.],
where inflow of power is positive. The buses are connected via
admittancesYij , whose absolute value and angle are denoted
by |Yij | andΨij = ∠Yij . We denote the generator production
by Pg,i, Qg,i, the demand byPd,i, Qd,i, the generator voltage
by Ei [p.u.], the generator phase angle byδ̃i [rad], and the
admittance from the generator to theith generator bus by
Yg,i, whereΨg,i = ∠Yg,i [rad]. The generator phase angles
δi = δ̃i − δ̃1 and the bus phase anglesΘi = Θ̃i − δ̃1 are
relative toδ̃1 so that the generated power of the slack bus and
generator buses (i = 1 . . .Ng) are (see [24])

Pg,i = EiVi|Yg,i| cos(Ψg,i + δi −Θi)− V 2
i |Yg,i| cos(Ψg,i),

Qg,i = −EiVi|Yg,i| sin(Ψg,i + δi −Θi) + V 2
i |Yg,i| sin(Ψg,i).

The power flow equations as in [24, p.174] of each bus are

Pi = Pg,i + Pd,i =

Ng+Nl∑

j=1

ViVj |Yij | cos(Ψij +Θj −Θi),

Qi = Qg,i +Qd,i = −

Ng+Nl∑

j=1

ViVj |Yij | sin(Ψij +Θj −Θi).

(16)

The dynamic equations are described by a generator model
[13]. For simplicity, we use the same model for all generators
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and synchronous condensers. The variables of theith generator
are the voltage angleδi [rad], the angular velocityωi [rad/s],
and the torqueTm,i [p.u.], and the commanded powersPc,i

[p.u.]:

δ̇i = ωi − ω1

ω̇i = −
Di

Mi

(ωi − ω1) +
1

Mi

Tm,i −
1

Mi

Pg,i

Ṫm,i = −
1

TSV,iRD,iωs

(ωi − ωs)−
1

TSV,i

Tm,i +
1

TSV,i

Pc,i,

(17)

whereMi [MJ/Hz2] is the rotational inertia,Di [s/rad] the
damping coefficient,TSV,i [s] is the time constant of the
governor, and 1

RD,i
[-] is the proportional gain of the governor.

For i = 1, the dynamics is solely described byω andTm since
the phase angle is always0.

The power drop-out of theith power plant is modeled by
setting the active and reactive power in (16) and (17) to zero
(Pg,i = 0, Qg,i = 0). When theith power plant is not on
the grid, the variableEi is removed from (16), (17), and is
no longer an unknown variable. The generator parameters are
listed in Tab. I and the one of the IEEE 14-bus system in [27].

GG

G

G

G

1

2

3

7
6

4

12

13

14

11
10

9

58

Fig. 4. IEEE 14-bus benchmark system.

TABLE I
PARAMETERS OF THE GENERATORS.

∀i: Mi Di |Yg,i| Ψg,i TSV,i RD,i ωs
1

15π
0.04 5 −π

2
1 0.05 120π

B. Reachability Analysis

We investigate the transient stability by a power drop-out of
the largest power plant at bus1. The power system is in normal
operation for the first time intervalt = [0, 0.1] [s], which we
call pre-fault phase. In the time intervalt = [0.1, 0.13] [s],
the power plant at bus1 producing the most power is taken
off the grid, which we refer to as thefault-on phase. Att =

0.13 [s], the power plant is reconnected, which starts thepost-
fault phase. The reachable set computation is stopped when
the reachable set of differential variables is enclosed by the
initial set of states, proving that all differential state variables
return to the original operating point (steady state). We choose
the set of initial states for alli as: δi = δ0i ⊕ 0.01 · [−1, 1],
ωi = ω0

i ⊕ 0.1 · [−1, 1], Tm,i = T 0
m,i ⊕ 0.001 · [−1, 1], where

the superscripted zero refers to the steady state solution.
The reachable sets for different projections onto differential

and algebraic variables is shown in Fig. 5 and Fig. 6. The
simulations of system trajectories from randomly chosen initial
states are indicated by black lines. Note that the algebraic
values jump when the power plant is taken off the grid and
when it is reconnected to the grid. At timet = 4.32 [s], the
initial set is reached after540 iterations, which took3889 [s]
to compute in MATLAB on an i7 Processor and6GB memory.

We are not able to compare the obtained reachable sets with
other methods, since none of the previous work on systems
with DAEs would scale to the size of the problem presented
here.
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Fig. 5. Reachable set of selected projections of differential variables. Black
lines show random simulations, the gray area shows the reachable set, and
the white box the initial set.

VIII. C ONCLUSION

We present an approach for computing the set of all
(infinitely many) transient responses of power systems for a
set of initial states, which makes it possible to prove that
all responses returns to the set of initial states. The pre-
sented approach is versatile since it can handle any nonlinear
differential-algebraic equations with index-1 property.If not
all responses return to the set of initial states, one obtains
feedback for system corrections by investigating how the
reachable set evolved. When using Lyapunov methods one has
no such feedback since Lyapunov methods may fail because
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Fig. 6. Reachable set of selected projections of algebraic variables. Black
lines show random simulations, the dark gray area shows the reachable set
during pre-fault and post-fault operation, and the light gray area shows the
reachable set during fault-on operation.

one cannot find a proper Lyapunov function, or because the
system is indeed unstable.

Computing reachable sets of differential-algebraic systems
of practically relevant size was previously infeasible, but the
new computational techniques provided in this work with
complexity O(n5) with respect to the system dimensionn
(when splitting is not required), shows that reachability analy-
sis might become a useful tool for power system engineers. In
addition to the presented transient stability problem, thesame
approach can be readily used to compute the system response
to uncertainties in the power production, which is caused by
e.g. wind turbines. It is also possible to integrate parametric
uncertainties into the power system, which would require some
extensions to the current algorithm as presented in [5].
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