
Technische Universität München

Max-Planck-Institut für Quantenoptik

Resonance Fluorescence of an Atom Pair
in an Optical Resonator

Andreas Neuzner
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Abstract

In this thesis, scattering of light from two single atoms into the single light
mode of an optical resonator is studied experimentally. The atoms are spatially
confined to discrete positions by a two-dimensional optical lattice and their po-
sitions are detected by single-site resolved fluorescence imaging. The intensity
of the light emitted from the resonator and time-resolved correlations thereof
are investigated as a function of the optical phase difference with which the
atoms couple to the resonator and a perpendicular excitation laser field. Sat-
uration of fluorescence and emission of coherent light is found for constructive
interference and non-zero emission characterized by giant photon bunching is
found for destructive interference. The latter is explained as a consequence of
atomic saturation followed by photon-pair emission.

The described experiments require a high level of control over the internal
and external degrees of freedom of the atom. To this end, a series of exper-
iments was conducted to characterize the motional dynamics of the trapped
atoms and perturbations of the atoms internal energy eigenstates caused by the
presence of the strong dipole trapping light. As results, an avoided crossing
of eigenmotions in the trapping potential due to a small non-orthogonality of
the lattice with consequences for optical cooling was observed. Breakdown of
atomic hyperfine structure caused by the presence of the strong dipole trapping
light was predicted theoretically and found in the experiment and a technique
was developed to measure the population of individual mechanical eigenstates
of the trapping potential in a non-destructive way. This technique was then
applied to characterize different classical and non-classical motional states.
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1. Introduction

Quantum mechanics originated from Max Planck’s successful description of the
black-body spectrum [1]. Planck’s analysis hinges on the description of the
black body as a set of quantized emitters. The notion of replacing the concept
of energy as a continuous quantity with a description of energy as an integer
multiple of smallest quanta was later extended to electromagnetic radiation by
Albert Einstein [2] in his famous description of the photo effect. The interaction
of light and matter has remained at the forefront of scientific interest throughout
the development of quantum mechanics.

The laser [3] appeared in 1960 as a source of intense monochromatic radia-
tion that propelled experimental possibilities to a whole new level. Resonance
fluorescence of quantum emitters became an intensely studied subject in the
nascent field of quantum optics, and many of its counterintuitive properties
were initially described in theory [4–6] and later observed in the laboratory. The
demonstration of a Mollow triplet in the emission spectrum [7,8], anti-bunching
of photons [8, 9], and recently squeezing in single-emitter fluorescence [10] are
milestones in the development of experimental quantum optics.

A second technological breakthrough was marked by the development of tech-
niques to trap and spatially confine individual atoms. Single ions were prepared
and observed for the first time in a Paul trap in 1980 [11]. Keeping atoms
at rest enabled long observation times. New effects in resonance fluorescence
such as discrete quantum jumps [12–14] were observed that had previously gone
unnoticed in the atom beam apparatuses that were used thus far.

With the opportunity to isolate and study a single quantum emitter, the
addition of a second emitter while maintaining a high degree of control appears
as a consequent next step. Studying fluorescence that is emitted from two
stationary but spatially separated emitters is analogous to performing a classical
Young’s double slit experiment [15] in which the slits are replaced by atoms.
Atoms, in contrast to slits, are quantum emitters in that they are saturable
two-level systems rather than harmonic oscillators and novel interference effects
in collective atomic fluorescence have been predicted [16–26].

Yet the experimental challenges are greater than those of single-emitter physics.
The relative position of the two emitters appears as a new degree of freedom.
Since the observable effects are related to interference between the partial fields
that are emitted by both emitters, they are sensitive to this distance on a length
scale that is provided by the radiation’s wavelength. It was not until 1993 that
a seminal experiment, performed in David Wineland’s group [27] observed inter-
ference fringes in the far field of resonance fluorescence from two ions that were
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1. Introduction

held at a short distance within the same Paul trap. Three years later, another
publication reported the observation of super- and subradiance in a similar two-
ion system [28]. Although these two publications attracted a huge interest, no
related further experimental work was published in subsequent years.

Complementary to the free-space situation, a large body of theoretical work
exists on the collective radiation effects, which are expected from atom pairs that
are embedded in the tailored electromagnetic environment provided by optical
resonators [29–34]. In contrast to the intrinsically dissipative emission into free
space, the light emitted into an optical resonator can have a back-action on the
atoms. These effects are not only of fundamental interest but were predicted to
have a broad range of applications in quantum information processing [34–42].

The combination of a two-ion system with an optical resonator, as described in
[27], is complicated by unpredictable surface charges on the resonator’s mirrors
that tend to interfere with the electrodynamic trap. Still, in a proof-of-principle
experiment by Herbert Walther’s group, fluorescence light from a single ion
could be captured [43]. The authors conclude their paper with the statement

“An equally attractive goal in the area of cavity QED is the simultaneous
interaction of two or more ions with a single cavity mode.”

Until recently, few similar results were published [44, 45]. The experiments
reported in this thesis aim to pick up on the topic of interference phenomena in
collective resonance fluorescence in a modern experimental setting. Instead of
ions in Paul traps, pairs of neutral atoms in optical lattices are used as scatter-
ers. Thanks to the advent of optical cooling and trapping techniques [46–48],
neutral atoms are nowadays routinely levitated in ultrahigh vacuum and cooled
to their motional ground state by purely optical means. In contrast to ion traps,
optical dipole traps (ODT) enable the holding of atoms close to dielectric sur-
faces. Atoms as individual optical emitters can thus be coupled to the single
light mode of miniaturized Fabry-Perot type resonators. For sufficiently small
resonators, the so-called strong-coupling regime [49] of cavity quantum electro-
dynamics (CQED) is reached, in which the rate at which the emitter and the
quantized light field coherently exchange energy dominates all the other (dis-
sipative) rates. The atomic beam and fountain based setups of early cavity
QED experiments [50–54] were ultimately succeeded by apparatuses in which
single atoms were permanently trapped and strongly coupled to miniaturized
Fabry-Perot resonators [55,56].

As a technological result of this thesis, an existing cavity QED appara-
tus [57–59] was extended to permit deterministic loading and subwavelength
localization of atom pairs. The theoretical paradigm of a pair of identical two-
level emitters that are simultaneously coupled to a single cavity mode and a
transversal excitation laser with precisely known optical phases was realized.
To this end, a two-dimensional optical lattice in the cavity was combined with
single-site resolved fluorescence imaging to enable tight spatial confinement of
the atoms and exact detection of their (discretized) difference position.
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The system was then applied to study the collective scattering of light from
an excitation laser into the single cavity mode, as a function of the optical phase
difference between the two atoms. For the first time, it was possible to demon-
strate interference effects that manifest themselves not only in the observed
intensity, but in the photon statistics of the emitted field. A transition from
coherent light emission for constructive interference of the two atoms’ partial
fields to strong super-Poissonian light statistics for destructive interference was
found. The latter was explained as a non-linear effect that stems from atomic
saturation followed by photon-pair emission; quantitative agreement between a
theoretical model and the data was achieved.

The described optical interference experiment requires a high level of control
over the internal and external degrees of freedom of the atoms. A series of exper-
iments was conducted to characterize the motional dynamics of the atoms and
perturbations of the internal energy structure of the atoms inflicted by the pres-
ence of the strong dipole trapping light. AC Stark shifts of electronically excited
states were theoretically calculated. In quantitative agreement with theory, the
breakdown of atomic hyperfine structure caused by strong tensor polarizabilities
of the excited states was observed experimentally. A small non-orthogonality in
the two-dimensional optical lattice was observed in single-site resolved fluores-
cence imaging. The coupling between orthogonal eigenmotions within individual
trapping sites caused by this non-orthogonality was observed spectroscopically
and unexpected consequences for the dynamics of optical cooling were experi-
mentally observed. Further, a technique was developed that allows to measure
the atomic population of individual energy eigenstates of the trapping potential
in a non-destructive way. The technique was applied to characterize several
classical and non-classical motional states of a single atom. This latter result
transcends characterization measurements of the apparatus. While it has no
direct relevance for the two-atom experiments, which are the main result of this
thesis, the novelty of the results warrants discussion in a separate chapter.

This thesis is organized as follows: A general overview of the apparatus and
experimental techniques that were commonly used in all of the described ex-
periments is discussed in Chapter 2. The theory of AC Stark shifts is outlined
in Chapter 3 and spectroscopic results are presented and discussed. Chapter
4 describes the geometry of the trapping potential and discusses motional dy-
namics of the trapped atoms. A characterization of the eigenmotions via Raman
sideband transitions is carried out and the experimentally observed formation
of stable and unstable trapping regions is identified as a consequence of mo-
tional coupling. Chapter 5 discusses the technique used to measure the atomic
population of the trapping potential’s energy eigenstates. The topics covered
in this chapter are self-contained and an outlook for potential future research
possibilities enabled by these findings is discussed separately at the end of chap-
ter 5. Chapter 6 describes the two-atom interference experiments in theory and
experimentally. A summary of the main results together with an outlook for
future experimental opportunities conclude the manuscript.
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2. Experimental Apparatus and
Techniques

2.1. Overview

This chapter summarizes important experimental techniques and properties of
the experimental apparatus that are relevant to all subsequent chapters. Where
applicable, references to earlier theses are provided. Such topics are covered in
detail only when warranted by a significant gain in theoretical understanding or
achieved experimental performance.

Figure 2.1 shows the main building blocks of the apparatus. At the heart
of the setup is a Fabry-Perot-type high finesse resonator [60] that is built into
an ultra-high vacuum apparatus. A piezo-ceramic tube that is used to stabilize
the resonator length, a rubidium dispenser, and a mirror that is required to
generate a magneto-optical trap are the only additional elements in the vacuum
chamber [61]. Atoms are trapped in a two-dimensional optical lattice within
the resonator, which is formed by two intersecting standing wave beams. The
first standing-wave beam is a TEM00 mode of the cavity, with a wavelength of
772.37 nm. The second beam traverses the cavity along the x-axis and intersects
the intracavity trap close to the resonator’s center. After traversing the cavity
and the vacuum chamber, the beam is retroreflected with a cat-eye setup to
form a standing wave.

Additional beams are shone onto the trapped atoms at 45◦ in the xy-plane.
One of these beams (the −45◦ beam) is impinged in a running-wave configura-
tion and dumped into a beam block after it has traversed the vacuum chamber.
It is linearly polarized with its electric field oriented along the cavity axis (z-
axis). The −45◦ beam is used for manipulation and detection of the internal
atomic state (see Chapter 2.5). The second beam in this plane (the +45◦ beam)
is linearly polarized and retroreflected after transmission through a λ/4 wave
plate yielding a lin⊥lin polarization lattice. This beam is used for optical cool-
ing of the atoms with an optical molasses [61]. During optical cooling, atomic
fluorescence light is emitted into free space. A small fraction of this light is
collected through an objective with a high numerical aperture that looks down
on the atoms along the y-axis (see Chapter 2.4). The design of this objective re-
sulted from a Master’s thesis [62] and details of the design can be found therein.
A partly reflective beam sampler is used behind the objective to overlay light
with the imaging beam path that is focused downward into the plane of the
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Figure 2.1.: Experimental Setup (a) Sketch of the main parts of the
experimental setup. Not shown are the laser system, experimental control
system and the detection setup. (b) Photograph of the setup that covers the
parts shown in panel (a). All remaining parts sit on another optical table. (c)
Close-up of the vacuum chamber during assembly of the surrounding optics.
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atoms. An acousto-optical deflector allows stearing the generated spot along
the x-axis. By selectively removing excess atoms with resonant light from an
initial unsorted sample, a deterministic atom loading procedure was developed.
Details of this technique are provided in Chapter 2.3.

The light that is emitted from the cavity through the outcoupling mirror is
filtered to remove the intracavity trapping light at 772 nm. The remaining light
is coupled into a single-mode fibre with a coupling efficiency of 90 %. This
optical fibre is connected to a detection setup consisting of four single-photon
detection modules with a quantum efficiency of 55 %. In the detection setup, the
light is split by a non-polarizing beam splitter into two identical detection paths.
Each of the two paths consist of a motorized λ/4 and λ/2 wave plate in front of
polarizing beam splitter and two single-photon detection modules. Each path
forms a single-photon Stokes polarimeter. An additional beamsampler allows to
overlay an auxiliary lightfield propagating backwards from the detection setup
through the fibre towards the resonator. This field is used for spectroscopy of
the atom-resonator system in reflection [63]. Details of the detection setup can
be found in reference [59].

A total of five external-cavity diode lasers were used in combination with
acousto-optical modulators to provide all of the light fields used in the described
experiments. The lasers are referenced to a frequency comb thus eliminating the
need for transfer cavities [57]. The radio-frequency signals, which are needed as
local oscillators for the laser locks and to drive the acousto-optical modulators,
are derived from a versatile, direct digital synthesis generator that was designed
over the course of this thesis. All of the relevant frequencies covering the whole
spectrum from radio frequency to infrared light are thus related to each other
through digital counting. The laser system was set up on a separate table and
connected to the actual apparatus with polarization-maintaining1 single-mode
optical fibres.

2.2. The Resonator

The resonator consists of two super polished substrates that are made of fused
silica. A high-reflection coating is applied to one and an antireflection coating
with a residual reflectivity of approximately 0.02 % [60] is applied to the other
side. The substrates have a maximum diameter of 7.74 mm and are milled to
a conical shape that leaves a mirror facette with a diameter of 1.5 mm. The
curvature of the concave mirrors is 50 mm and the reflectivities of the mirrors
are intentionally chosen asymetrically. The high-reflective mirror on one side
is specified to have a residual transmission of THR = 4 ppm and the output-
coupling mirror is specified with TOC = 101 ppm. The asymmetric design causes

1The only non-PM fibre connects the cavity output and the detection setup, as this fibre
must preserve all polarization states in contrast to two guided linearly polarized modes in
pm fibres.
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Figure 2.2.: Spectroscopy of the empty resonator (a) Spectroscopy
of the stabilized resonator in transmission. The red line is a Lorentzian
fit to the data. (b) Interference of coupled and uncoupled partial fields in
a reflection measurement. (c) Measurement of the cavity reflectivity with
a single-mode fibre in the case of a well-aligned fibre (black dots) or an
intentionally misaligned fibre (red dots). The dotted lines are a fit of the
described model to the data. The dashed line marks the theoretical value
of R = 0.577 on resonance assuming κOC = 2π · 2.42 MHz and perfect mode
matching. (d) Range of output coupler transmission that could be explained
by the described model.

photons that are lost from the cavity mode to be emitted predominantly through
the outcoupling mirror, where they are fibre-coupled and guided to the detection
setup. The mirrors are built into a piezo tube such that the two mirrors enclose
a distance of 0.5 mm. Since the distance of the mirrors is small compared to the
curvature of the mirrors, the TEM00 cavity mode is almost cylindrical; its waist
(1/e2 intensity radius) is w0 = 29.6µm with a Rayleigh range of z0 = 3.5 mm.
The light that creates the repulsive intracavity trap is coupled into the resonator
through the high reflector. Sidebands modulated onto this beam are used to
generate an error signal for the length stabilization with the Pound-Drever-Hall
technique [64] which uses the piezo-ceramic tube as an actuator.

Characterization measurements of the resonator were carried out complemen-
tary to earlier measurements [60]. To this end, spectroscopy light was cou-
pled into the stabilized resonator through the high reflector. The frequency
of this light was resonant with a longitudinal mode that was different from
that used to stabilize the resonator length. Figure 2.2(a) shows the measured
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2.2. The Resonator

power of the transmitted light as a function of the laser’s frequency with a
Lorentzian fit to the data. The resonator length was stabilized to light with
a frequency of 388.14343365 THz and the frequency difference of the two lon-
gitudinal modes was 3.9152545 THz. From this value, a free spectral range of
FSR = c/2L = 301.173 GHz and a value for the length of L = 497.7µm was
calculated. Due to residual fluctuations of the length stabilization, the observed
linewidth is an upper limit for the intrinsic resonator linewidth; thus a lower
bound for the resonator finesse of F = FSR/FWHM = 55,059 was found. This
corresponds to total round-trip losses of Ltot = 2π/F = 114 ppm.

The field decay rate of the cavity κ = Ltot · FSR/2 = 2π · 2.75 MHz can be
expressed as a sum of contributions κ = κOC+κLoss, where κOC is the partial field
decay rate due to transmission through the outcoupling mirror; κLoss subsumes
scattering losses, absorption losses and transmission through the high reflector.
While transmission spectroscopy of the cavity only permits measurement of the
total κ, spectroscopy in reflection is sensitive to the contribution of κOC to κ [63].

In the following, a model of cavity reflectivity is described, which incorpo-
rates the effects of imperfect mode matching of the probe light to the resonator.
Figure 2.2(b) shows a sketch of the partial fields that are involved in a cav-
ity reflection measurement. The incident field is the sum of one partial field
that couples perfectly to the resonator mode and has a relative strength of η,
and a remaining field with a relative strength of 1 − η that does not interact
with the cavity mode and is reflected directly off of the output-coupling mirror.
The existence of two partial fields may be a consequence of the incident beam
being transversally displaced from the mode, as shown in Fig. 2.2(b). The com-
plex field reflectivity r(∆) as a function of the detuning ∆ of the coupled field
from the cavity resonance is calculated by finding self-consistent values for the
incident, reflected and circulating fields and is:

r(∆) = 1− 2κOC

κ+ i∆
. (2.1)

After the reflected light propagates through free space towards the detector, the
far field images of the two partial reflections will overlap and form a complex
interference pattern. A free-space detector with a large enough sensitive area will
integrate across the entire interference pattern and the effect of an uncoupled
partial field will be reduced to a constant background signal [63]. A single-
mode fibre will however pick a small part from the interference pattern and the
observed signal will thus be sensitive to the phase between the reflected coupled
and uncoupled fields. Normalized to the observed intensity for ∆ → ∞, the
following expression determines the generalized reflectivity:

R(∆) =
|η r(∆) + (1− η)eiφ|2

η2 + (1− η)2 + 2η(1− η) cos(φ)
(2.2)

The quantity φ describes a constant phase between the coupled and uncoupled
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field that exists even within the limit of ∆ → ∞2. Figure 2.2(c) shows a
measurement of the cavity reflectivity for a well-aligned fibre that picks up the
reflected signal (black dots) and an intentionally misaligned fibre (red dots). The
dashed line at R = 0.577 marks the theoretical value expected for probing on
resonance, assuming perfect coupling efficiency (η = 1) and κOC = 2π·2.42 MHz.
Both datasets drop significantly below this value. The effect of an uncoupled
field is most pronounced on resonance (∆ = 0), as the reflected coupled field
will be out of phase with the incident. By intentionally misaligning the fibre,
the ratio of the fields’ strength is changed. At equal field strength, perfect
extinction is observable at a suitable detuning. The dataset shown by the red
dots was collected close to this situation. The solid lines are calculated by
fitting equation 2.2 to the data, assuming κOC = 2π · 2.42 MHz, and fitting η
and φ to the data. All of the features that are present in the data, including
an asymmetric broadening of the observed line and shift of the line center,
are reproduced. Similar observations were recently reported in the context of
microscopic fibre cavities [65] and the same effect was proposed to be exploited
for cavity length stabilization [66].

Unfortunately, the described method cannot be used as a tool to measure
κOC due to a large covariance between the parameters κOC, η, and φ. Figure
2.2(d) shows the value of parameters η and φ, which were found by fitting the
model to a dataset with a well-aligned fibre as a function of the assumed κOC.
The quality of the achieved fits was equally good throughout the parameters
range shown in the figure. The total decay rate κ was kept constant, such that
a smaller κOC corresponds to increased scattering losses. A smaller value of κOC

yields a greater η, as the small observed minimum reflectivity is now explained
by the increased losses. On the other hand, φ rises to unrealistic values in order
to reproduce the asymmetry that is present in the data. The values found for
the theoretical value κOC = 2π · 2.42 MHz (corresponding to TOC = 101 ppm)
are η = 0.89 and φ = 0.173. These values appear reasonable and were used
for further application of the model presented in this Chapter in the context
of reflection spectroscopy of coupled single- and two-atom cavity systems (see
chapter 6.4).

The coherent light-matter coupling strength that is relevant to the cavity
QED experiments is given by:

g =

√
ωc

2ε0V ~
µge, (2.3)

where µge is the atomic transition dipole moment, ε0 is the vacuum permittivity,
ωc is the cavity frequency, and the mode volume of the cavity (V ) is πw2

0L/4 =

2In contrast to the phase which is imprinted onto the coupled part of the field by the
resonator, the phase φ does not vanish for infinite detuning. Its origin is probably mostly
geometric, as the paths that are taken by the two partial fields towards the pick-up fiber
differ.
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2.3. Atom Preparation

Cavity length L 497.708µm
Radius of curvature 50 mm

TEM00 mode waist w0 29.6µm
Rayleigh range z0 3.5 mm

Free spectral range 301.173 GHz
Finesse F 55059

Round-trip losses Ltot 114 ppm
Transmission of output coupler TOC 101 ppm

(κ, κOC, γ, g) 2π · (2.75, 2.42, 3.03, 7.62) MHz

Table 2.1.: Properties and important cavity QED properties. The value for
γ ist taken from [67] and the value for g is the experimentally found value
that deviates from the theoretical maximum value by only 3 %.

3.4249 ·10−13m3 (= 721000λ3). On the cycling transition |5S1/2,F=2,mF=2〉 ↔
|5P3/2,F=3,mF=3〉 of 87Rb, the transition dipole moment is µge = 2.53444(52) ·
10−29Cm. These values result in a maximum theoretical value of g = 2π ·
7.84 MHz. This value is only realized for an atom that is centered on the res-
onator axis and within a mode antinode. Different measures were taken to
ensure that this is the case (see Chapter 3). A measurement of g by means
of cavity reflection spectroscopy performed on the coupled atom-cavity system
(see Chapter 6.4) yielded a value of g = 2π · 7.62 MHz, which agrees by up to
3 % with the theory. Table 2.1 summarizes the parameters as they are used in
the remainder of this thesis.

2.3. Atom Preparation

Every experimental run is initiated by loading a magneto-optical trap (MOT)
that is located 13 mm away from the cavity center along the x-axis. The MOT
is loaded directly from the 87Rb background gas that is generated continuously
by the Rb dispenser. After a typical loading time of one second, a running-wave
dipole trap at a wavelength of 1064 nm is switched on. The trap beam is focused
half-way between the center of the atom cloud and the cavity. After switching
off the MOT magnetic fields and laser beams, some atoms remain trapped in the
optical trap and oscillate between their initial position and the cavity. Following
a transfer time of 100 ms, the coaligned standing-wave dipole trap along the
x-axis is switched on and the transfer trap is switched off. Some atoms are
transferred into individual trapping sites of this one-dimensional lattice within
the cavity region.

The loaded atoms can be translated along the x-axis by tilting a glass plate
that is mounted at 45◦ in the retroreflected trapping beam outside of the vac-
uum chamber. The orientation of this plate defines the optical path and thus the
interference condition, resulting in a translation of the entire standing wave pat-
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2. Experimental Apparatus and Techniques

tern. This initial part of the loading procedure and the translation mechanism
are described in greater detail in Stefan Nußmann’s thesis [61].

The ability to image the atoms is a great advantage [68] as it allows the
number of atoms that are loaded in a single attempt to be counted. In earlier
experiments, a single atom was loaded by adjusting the size of the MOT, such
that on average n̄ ≈ 1 atom would be loaded in a single attempt. The first
image exposed after loading the atoms was then used to identify successful
loading attempts and interrupt experimental runs in which more than a single
atom or no atoms were loaded. Since the trapping potential can be translated
along the x-axis, it was sufficient to load a single atom somewhere within the
traveling range of the translation mechanism.

The atoms that are loaded in a single shot are independent; thus, the num-
bers of trapped atoms per loading attempt are expected to follow a Poissonian
distribution. An average number of loaded atoms of n̄ = 1 maximizes the prob-
ability of loading a single atom to 37 %, such that a minimum average number of
almost three loading attempts were needed. As atom trapping times (1/e-time)
> 10 s were achieved in the experiment, which far outnumber the duration of a
single loading attempt, a high single-atom duty cycle of up to 85 % can still be
achieved.

This situation changes for two or more atoms. The probability of loading
precisely k atoms is maximized for an average loading rate of n̄ = k. However,
the attained maximum value Pk(k) = kk/k! e−k will quickly drop to small values
if k > 1. Furthermore, although the atom distribution can be translated along
the x-axis, interatomic distances cannot be changed. Loading an exact number
k ≥ 1 of atoms with additional boundary conditions on their mutual distances
thus complicates probabilistic loading to beyond applicability.

To tackle this problem, an active loading mechanism was implemented. A
beam sampler installed in the imaging path enables the launch of a collimated
beam from above into the objective. The beam is thus focused down into the
plane of the atoms and the angle of incidence onto the objective defines the
position of its focal point. An acousto-optical deflector allows to actively change
this angle along the x-axis. A sketch of the setup is shown in Fig. 2.1 and further
details about the optical setup can be found in reference [62]. By illuminating
an atom with resonant light, the random recoils of the scattered photons excite
motion in the trap. Since typical trap depths are in the order of 1 mK, the atom
is quickly lost from the trap.

Figure 2.3 shows a calibration measurement of the pushout system. By manu-
ally translating3 the red one-dimensional lattice along the z-axis and through au-
tomatized shuffling along the x-axis, atoms were scanned over a two-dimensional
region. For every position, the probability of an atom surviving a series of

3While the atoms can be positioned deterministically along the x-axis using the motorized
glass plate, the distribution of trapped atoms can be translated along the cavity axis
(z-axis) only by manually translating the whole 1064 nm standing-wave beam.
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Figure 2.3.: Deterministic removal of individual atoms Spatially re-
solved measurement of the probability with which an atom survives a series
of six pushout pulses at different addressing positions. The frequency of the
pushout light was close to the cycling transition of 87Rb and was impinged
for 1 ms. The resulting pushout patterns have a full width at half maximum
of 4.5µm.

pushout-attempts was recorded by comparing images taken prior to and after
the pushout sequence. In Fig. 2.3, six pulses with durations of 1 ms each were
fired consecutively with different frequencies applied to the acousto-optical mod-
ulator4. The resulting six well discriminable pushout regions have a full width
at half maximum of 4.5µm, in which the survival probability drops to zero. The
achieved size of a single pushout region was far above the theoretical optical res-
olution power of the objective (see Chapter 2.4) but it was sufficient to reliably
remove atoms from an initial sparsely filled trap.

The addressing system was planned and installed prior to the implementation
of a two-dimensional optical lattice and permits only one-dimensional addressing
along the x-axis. In order to hit atoms independent of their (typically small)
displacement along the z-axis, the addressing beam was later prolonged along
the z-axis by artificially restricting its numerical aperture along this direction.

In contrast to the direct resonant push-out used here, the authors of [69]
pursued a strategy based on imprinting AC Stark shifts on optically addressed
atoms that would then render these atoms off-resonant to a globally performed
microwave Landau-Zener sweep. Another approach to single-atom addressing
that can potentially be used for deterministic loading is based on magnetic field
gradients [70] that detune all but a single target atom.

In the final system, the experimental control system was programmed to
either load a single atom or a pair of atoms with an interatomic distance within
a predefined interval of typically 4−15µm. The average number of loaded atoms
was high enough to ensure that the initial atomic pattern contained a pair of
atoms with an accepted interatomic distance. On the other hand, it was set
low enough to prevent the average interatomic distance from being comparable

4The resulting shift in the deflected light’s frequency is compensated through an additional
double-pass AOM-track prior to the deflector
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to the resolution of the pushout system. The achieved efficiency of atom pair
preparation with the parameters used for the experiments in Chapter 6 was
approximately 75 %.

2.4. Single-Site-Resolved Imaging

The imaging and rudimentary image evaluation that is used for atom loading
(see references [68,71]) can reliably detect the number of the loaded atoms and
their position along the x-axis. For all of the experiments that were conducted
with a single atom this was fully sufficient, as the relevant parameters, such as
the intensity of the cavity mode and additional beams, varied on spatial scales
that far exceeded the achieved resolution.

The experiments that were conducted on atom pairs introduce a new degree a
freedom, namely the relative displacement of the two atoms. Since interference
effects occur in the two atoms’ individual emissions, these experiments are sen-
sitive to changes in the atoms’ relative displacements ∆x,∆z, which are small
compared to the wavelength of the excitation light λ = 780 nm. The atomic
fluorescence light that was used for imaging had the same wavelength; thus, it
was impossible to generate a diffraction-limited image of a single atom with a
diameter d < λ/2 on the required scale. Nevertheless, the center of mass of the
imaged light can be localized far beyond the diffraction limit. When the point-
spread function of the imaging system is symmetric around the origin, the found
center-of-mass position is identical to the emitters position. The achievable res-
olution is then limited only by the achievable signal-to-noise ratio of the images.
Measuring the atoms’ relative distance is further simplified by the fact that the
two-dimensional optical lattice provides only discrete trapping sites with well-
known geometry. Therefore, the image evaluation only needs to detect which
sites are occupied by the atoms and calculate their separation from the lattice
geometry. Neighbouring sites are separated by 512 nm along the x-axis and by
386 nm along the z-axis.

Figure 2.4(a) shows a sketch of mechanical apertures in the imaging beam
path that limit the achievable numerical aperture. The objective sits outside of
the vacuum chamber, directly above the 8 mm thick, fused silica glass windows.
The center of the resonator is 24.9 mm below the objective. The piezo tube,
which is used for length stabilization of the cavity, is indicated by the thick black
lines. A hole with a diameter of 5.3 mm is machined into its top. The entrance
aperture of the objective, with a diameter of 23.1 mm, limits the achievable
numerical aperture along the x-axis to NAx = 0.46 (including the refractive
effects of the glass window). Along the z-axis the numerical aperture is limited
by the presence of the cavity mirrors. The mirror substrates are milled conically
from an outer diameter of 7.74 mm to a minimum diameter of 1.5 mm. In
combination with the cavity length of 498µm, the numerical aperture along the
z-axis is thus NAz = 0.32. The achievable spot size in terms of the full width
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Figure 2.4.: Atom Imaging (a) Geometrical sketch (not to scale) of the
imaging beam path and the different apertures that limit the achievable spot
size. (b) Typical image of a single atom and column sum of the image. The
red bars indicate a ±3σ region around the average background signal. (c)
Histogram of the full widths at half maximum along the x- and z-axis of the
fitted Gaussian point-spread functions.

at half maximum of the image intensity is approximately 0.353 · λ/NA. For the
x-axis with its greater numerical aperture, a value of 599 nm is found and the
smaller numerical aperture on the z-axis results in a value of 860 nm.

A typical image of a single atom is shown in Fig. 2.4(b) with a plot of column
sums. An exposure time of 0.75 s yields a background signal of 425 counts per
pixel. The signal collected from a single atom rises to a maximum additional
pixel amplitude of 200 counts. The image is truncated to a region of interest
that extends 35 pixels along the z-axis. The red lines in the graph indicate a ±3σ
region around the average value of the column sum. The single atom appears
as a > 50σ signal and can be unambiguously identified. In the first step of
the image evaluation, a simple peak detection algorithm identifies well-isolated
peaks and two-dimensional Gaussian point-spread functions are then fitted to
the discerned peaks.

Figure 2.4(c) shows a histogram of the full-width at half maximum intensity
diameters along the x- and z-axis that were found by evaluating 84, 000 images of
single atoms. The data is well described by Gaussian distributions and a mean
diameter of 1.3µm (1.4µm) along the x-axis (z-axis) was found. In accordance
with the qualitative expectation, the atom images appear to be elongated along
the z-axis. Quantitatively, the images deviate strongly from the theoretical
expectation; the observed diameters were almost double the minimum possible
value and the ellipticity was smaller than expected. This discrepancy was likely
a consequence of the atoms being imperfectly localized in the focal plane. The
mechanical mount of the objective does not permit reproducible translations of
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Figure 2.5.: Single-site-resolved image evaluation (a) Single fluores-
cence image showing two well-separated atoms that are displaced along the x-
and z-axis. (b) Difference coordinates of the origins of Gaussian point-spread
functions that were fitted to 45.000 atom pairs together with projections of
the data onto the coordinate axes. (c) The widths of the discrete peaks found
in the projections onto the x- and z- axis as a function of a global rotation
about the y-axis by angle α.

the objective along the y-axis on the order of only a few micrometers. Also, the
atoms are only weakly confined along the y-axis (see Chapter 3); even at the
low temperatures realized in the experiments, they can travel by distances that
are comparable to the focal depth of the objective.

In experimental setups with more demanding imaging requirements, these
problems are addressed by populating only a single layer in a three-dimensional
lattice and recording an entire stack of images while translating the objective
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Figure 2.6.: Evaluation of the lattice geometry (a) Difference coordi-
nates of atom pairs after application of the geometric transformation 2.4. (b)
Fourier transformation of the projection of the data onto the coordinate axes,
which are shown at the edges of (a). The red lines are multiple Lorentzian
fits.

on an automatic piezo stage [72]. The focal position can then be found from
the image stack in each individual experiment. Because the achieved imaging
resolution was sufficient, no such measures were implemented in the apparatus
that was used in the experiments described in this thesis.

Figure 2.5(a) shows an example image of a pair of atoms that are displaced
along both axes of the two-dimensional optical lattice. A histogram of binned
single-atom coordinates shows a periodic structure along both axes. This struc-
ture disappears for long integration times, as the relative alignment of lattice,
objective, and camera slowly changes. However, the geometry of the lattice can
as well be observed in differential coordinates of atom pairs instead of absolute
single-atom coordinates [72, 73]. Figure 2.5(b) shows the two-dimensional dif-
ference coordinates of 45,000 atom pairs with the projections of the data onto
the x- and z-axis. The white space between 0 < ∆x < 5 px stems from the data
evaluation software that discards loading attempts that result in two atoms that
are so narrow that the individual atoms’ images start to overlap. Well separated
accumulation points that form a rectangular lattice are easily recognized. The
axes along which the accumulation points are aligned (red lines) appear to be
tilted with respect to the coordinate axes (black dashed lines). Figure 2.5(c)
shows the full width at half maximum of the discrete peaks observed in the
projections onto the two axes as a function of a global rotation α that is ap-
plied to the data. Two clear minima are observed at αx = 0.01100(2) for the
projection onto the x-axis, and αz = 0.0381(2) for the projection onto the z-
axis. The fact that the two minima are found at different values of α indicates
that the lattice is not perfectly orthogonal. The 1064 nm standing wave trap
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2. Experimental Apparatus and Techniques

along the x-axis intersects the intracavity trap at an angle that deviates from
orthogonality by β = αz − αx = 27.0(3) · 10−3 rad. As a consequence of this
non-orthogonality, motional coupling between the atomic motion along the x-
and z-axes is observed (see Chapter 4.4).

To account for the non-orthogonality and a global rotation αx of the camera’s
coordinate frame with respect to the lattice, the following transformation was
applied to the data:(

x′

z′

)
=

(
cos(β) − sin(β)

0 1

)(
cos(αx) sin(αx)
− sin(αx) cos(αx)

)(
x
z

)
(2.4)

Figure 2.6 shows the same data as in Fig. 2.5 after the application of this
transformation. The cluster points now clearly lie on an orthogonal lattice and
the width of the peaks in both projections are minimized.

The Fourier transform of the two distributions is shown in part (b) of the
figure. A periodicity of 0.906 trapping sites per image pixel was found for the
x-axis and a value of 1.267 trapping sites per image pixel for the z-axis. The
ratio of the two deviates by 1.5 % from the theoretical value given by the two
wavelengths of the traps (772.37 nm/1064 nm). Possible explanations include
the objective’s optical axis not being orthogonal to the plane of the atoms or
a geometrical distortion, as would be expected in the peripheral areas of the
objective’s field of view [62]. A pixel on the camera corresponds to 490 nm in
real space (calculated with the values found along the z-axis).

2.5. Detection and Manipulation of the Internal
State

Interaction of the electronic shell’s angular momentum J with the nuclear spin
I splits the 5S1/2 ground state of alkali atoms into two manifolds with different
hyperfine spins F=J+I. In the case of 87Rb with a nuclear spin I=3/2, two tuples
of states with hyperfine spins F=1 and F=2 are formed that enclose an energy
difference of 6.835 GHz [74]. Electronic dipole transitions between these two
states are forbidden and the radiative lifetime of the energetically higher F=2
state can be regarded as infinite for all of the experiments that are described in
this thesis. Interaction with external light or microwave fields can cause changes
in the population of these states. By observing these changes, the electronic
structure of trapped atoms (see Chapter 3.2.2), the geometry of the trapping
potential (see Chapter 4), and individual mechanical eigenstates (see Chapter
5) can be probed.
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2.5.1. Cavity-Assisted Hyperfine-State Detection

The natural linewidth of electronic transitions from the ground states to the elec-
tronically excited 5P states of 87Rb is 6 MHz. The two hyperfine ground states
can thus be spectroscopically resolved, as their splitting outnumbers the tran-
sition linewidth by three orders of magnitude. Different schemes for hyperfine
state detection were published recently. Two different types are distinguish-
able based on whether the employed physical mechanism is based on observing
fluorescence from the atom [75] or probing the transmission of a coupled atom-
cavity system [76]. A comparison of both schemes performed on the apparatus
described in this thesis can be found in [77]. In the following paragraph, a
fluorescence-based scheme is described:

The population of one ground state |1〉 can be probed by impinging a laser
with a frequency that resonantly couples this state to some excited state |e〉
for probing time T , and observing light that is scattered out of the laser’s
propagation direction. When picking up this light with a sensitive detector,
a rate Γ1 of detected photons is registered. The transition from the second
ground state |0〉 is far detuned, such that excitation is highly unlikely and no
fluorescence is detected. Ideally, the average number of detected photons T ·
Γ1 � 1 is high enough to clearly separate the number distribution of detected
photons for the atom in state |1〉 from the distribution recorded when the atom is
in state |0〉5. In this case, an unambiguous measurement result can be obtained
in a single shot.

In an experimental implementation, the radiative decay that leads to the
signal rate Γ1 typically competes with different decay channels that bring the
atom to the dark hyperfine state with rate Γ0. A single decay on such a transition
immediately terminates the generation of the signal, as the atom is removed from
the interaction with the light once it is in state |0〉.

Assuming signal photons are uncorrelated, the expected photon number dis-
tribution Pn(Γ1,Γ0, T ) for an atom in state |1〉, as a function of the two rates
and the probing duration, can be calculated:

Pn(Γ1,Γ0, T ) = e−Γ0T
(Γ1T )n

n!
e−Γ1T +

∫ T

0

Γ0e
−Γ0t

(Γ1t)
n

n!
e−Γ1tdt

= e−Γ0T
(Γ1T )n

n!
e−Γ1T +

Γ0T (Γ1T )n

((Γ0 + Γ1)T )n+1

Γ(1 + n)− Γ(1 + n, (Γ0 + Γ1)T )

n!

5In a typical experimental implementation of the described fluorescence based state-detection
scheme, the photon-number distribution of the dark state will be zero photons with unity
probability. Only unlikely far-off-resonant excitation and technical problems, such as de-
tector dark count can result in a detected signal although the atom was in the dark state
|0〉
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Here, Γ(a)(Γ(a, z)) is the (incomplete) Gamma function. For long probing
times the probability of not observing a single photon approaches P0(T →∞) =
Γ0/(Γ0 + Γ1). This defines an upper bound of discrimination efficiency. It is
thus beneficial to interrogate the system on a cycling transition that by definition
cannot decay to other states. A residual Γ0 can still be caused by off-resonant
excitation of other excited states or perturbations of the electronically excited
states by the presence of the dipole light that opens decay channels to other
states (see Chapter 3.2.2).

Achieving a great Γ1 in free-space is hampered by the technological challenge
of collecting atomic fluorescence light covering a large solid angle. An optical
resonator surrounding the atom opens up a way to solve this problem by en-
hancing the coupling of the atom to a single light mode, which can be efficiently
observed. Cavity-assisted hyperfine-state detection was already demonstrated
in the described setup [77] with a discrimination efficiency of > 99 % after a
probing time of T = 85µs. The atoms in this experiment were trapped in a
one-dimensional lattice along the x-axis only. The confinement along the z-axis
originated solely from the Gaussian envelope of the standing-wave beam and
permitted mechanical excursions exceeding a full period of the cavity mode.
The successful implementation of a two-dimensional trapping geometry that
confines the atoms constantly to antinodes of the cavity mode (see Chapter
3) makes it possible to achieve comparable discrimination efficiencies within a
shorter probing duration.

The state-detection scheme is sketched in Fig. 2.7(a), and Fig. 2.7(b) shows
experimental data that was collected with the |1〉 ↔ |e〉 transition being the cy-
cling transition on the D2-line. The photon number distributions were recorded
with a probing time of 15µs after initializing the atom (see Chapter 2.5.2)
in either F=1 or F=2 and are well separated. A discrimination threshold of
a single detected photon allows a discrimination efficiency of > 98 %. The
data is well reproduced by assuming Γ1=370 kHz and Γ0=1 kHz as shown in
Fig. 2.7(c). The large ratio Γ1/Γ0 results in a near Poissonian distribution. In
contrast, Fig. 2.7(d) shows the result of an attempt to perform state detec-
tion with |1〉 = |5S1/2,F=1〉 and |e〉 = |5P3/2,F=0〉. In this case, a larger Γ0

is expected as the detuning to other excited states is smaller. Furthermore, a
∆F=−1 transition necessarily has two dark Zeeman states for every given polar-
ization of the probing light. Decay to these contributes to Γ0. While the average
number of detected photons after a prolonged interrogation time of T = 75µs
is similar to case shown in (b), the number distribution is different with a high
residual probability of detecting zero photons. Panel (e) shows a fit of the the-
ory to the data that finds Γ1=100 kHz and Γ0=13 kHz. The theoretical limit of
P0 = Γ0/(Γ1 + Γ0) = 0.115 is already reached at the given probing duration and
the achieved discrimination efficiency is for these parameters physically limited
rather than by insufficient probing duration.

Motivated by the possibility of implementing a heralding signal for the hyper-
fine-state transfer in a quantum-memory protocol [78], different detunings and
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Figure 2.7.: Hyperfine state detection (a) Sketch of the scheme for
cavity-assisted hyperfine-state detection. (b) Measured photon number dis-
tribution for a probing time of T = 15µs in the case of |1〉 = |5S1/2, F = 2〉
and |e〉 = |5P3/2,F=3〉. The red (black) bars show data that was measured
after intializing the atom in the F=2 (F=1) ground state. (c) Theory values
calculated with Γ1=370 kHz and Γ0=1 kHz. The atom in this case is lost to
a dark state only after an average of 370 signal photons has been detected.
(d) Result of an attempt to perform state detection with |1〉 = |5S1/2,F=1〉
and |e〉 = |5P3/2,F=0〉. (e) Theory values calculated for Γ1=100 kHz and
Γ0=13 kHz.

polarization schemes for state detection with the F = 1 ground state as the
light state were tested, including schemes with changing polarization of the
excitation light. No scheme has been found that resulted in significantly better
performance than the data presented. Still, with regions of the large parameter
space left undiscovered, this can remain an interesting field of research in the
future.

The short discussion of cavity-assisted hyperfine-state detection provided in
this chapter spares some complications that are induced by the heating of the
atom during probing and the presence of multiple Zeeman states in the hyperfine
ground states. Furthermore, the detuning of the resonator, and the excitation
laser’s polarization and detuning provide experimental degrees of freedom to
influence the performance of the scheme. As cavity-enhanced state detection
is merely a tool for the experiments discussed in this thesis rather than a field
of research, no thorough characterization of these dependencies was performed.
For all experiments that make use of the described technique, parameter sets
that allow for high discrimination efficiencies (above 95 %) could be found ex-
perimentally.
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Figure 2.8.: Optical pumping of the hyperfine ground state (a) Op-
tical pumping scheme for preparation of the atom in 5S1/2,F=2. (b) Optical
pumping scheme for preparation of the atom in 5S1/2,F=1. (c) Residual pop-
ulation in the F=2 ground state when attempting to pump to F=1 as a func-
tion of optical pumping duration for different schemes: (1) A single, linearly
polarized field resonant with the 2 → 2′ transition. (2) The same resonant
field driving the 2→ 2′ transition together with a π-polarized field resonant
that drives transitions from the F=2 ground state to the F=1,mF= ± 1 ex-
cited states. (3) The same as the aforementioned scheme but with twice the
intensity of the 2→ 2′ field. (4) Same as before but with the frequency of the
2 → 1′-field reduced by 30 MHz to make it resonant with the excited mF=0
state. The lines are fitted double exponential decays (see text).

2.5.2. Optical Pumping of Hyperfine Ground States

Complementary to the faithful detection, the initialization of the hyperfine
ground state is of equally high importance. After optical molasses cooling that
typically precedes experiments described in this thesis, the atom is left in a sta-
tistical mixture of both hyperfine states and their Zeeman sub-states. Prepa-
ration is carried out by impinging light fields that selectively drive transitions
from one of the two hyperfine states to an electronically excited state that has a
finite decay probability to the other hyperfine ground state. Atomic population
will then be completely transferred to the other hyperfine state following a long
enough pumping duration.

Throughout the experiments that are described in this thesis, different pump-
ing schemes were employed based on the availability of frequencies and polariza-
tions of laser fields. This chapter provides a short overview over the problems
that typically arise and the timescales that have been achieved.

Figure 2.8(a) shows the optical pumping scheme for initialization of the atom
in the |5S1/2,F=2〉 ground state. A single, arbitrarily polarized laser field that
resonantly excites the atom from F=1 to the |5P3/2,F=2〉 state in this case suf-
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2.5. Detection and Manipulation of the Internal State

fices. The excited state can decay to the F=2 ground state and the ∆F=1
excitation does not have any dark states independent of the excitation laser’s
polarization. For the sake of simplicity, the polarization in Fig. 2.8(a) is linear
and oriented along the quantization axis, such that it drives π-polarized transi-
tions in the atomic coordinate frame. The lifetime of the excited state is 26 ns
and decay from the excited F=2 states branches in equal fractions into both hy-
perfine ground states. Saturation of the transition is therefore expected to lead
to a maximum possible population transfer rate of (108 ns)−1. In accordance
with theory, pumping durations on the order of 1µs were found to be sufficient
for emptying the F=1 ground state to a residual population < 1 %. The choice
of an excitation field that is π-polarized but resonant with the transition to the
excited F=1 rather than the F=2 state will render the F=1,mF=0 state dark.

In combination with the subsequently discussed repumping from the F=2
ground state, this can be used to pump atomic population into one of the two
hyperfine manifolds, and to a certain Zeeman state within one hyperfine mani-
fold [58]. The initialization of the atom in |5S1/2,F=1,mF=0〉 by pumping with
a π-polarized field on the F=1↔F’=1 transition was used for the experiments
reported in Chapters 4.3 and 5.

In the opposite case of transferring atomic population from the F=2 to the
F=1 hyperfine ground state, complications arise from the existence of uncou-
pled dark states. Figure 2.8(b) shows one of the coupling schemes that was
used in many experiments throughout this thesis. The red arrows indicate cou-
plings caused by a light field that is resonant with the transition to the excited
|5P3/2,F=2〉 state. The polarization of this field is linear and oriented per-
pendicular to the quantization axis (z-axis); in the atomic coordinate frame,
it therefore drives σ+ and σ− transitions with a well-defined phase relation.
The complex coupling pattern conceals a dark state, which is equivalent to the
F=2,mF=0 state in an alternative atomic coordinate frame that is aligned with
the light’s polarization. In the coordinate frame of Fig. 2.8 this state appears
as a superposition state of mF ∈ {−2, 0, 2} states. Thus, only four out of five
Zeeman states can be excited. Accumulation of population in the dark state,
due to decay from the excited state during probing, further limits the achievable
efficiency to over 20 %. Pumping of the population in the dark state can only be
caused by off-resonant excitation to other excited states or Larmor precession
out of the dark state due to an external magnetic field. Both mechanisms are
slow compared to the resonant excitation of the coupled states.

Figure 2.8(c) shows the dynamics of the pumping process by plotting the
residual population P2(t) in the F=2 state versus the duration of the pumping
pulse t. The data was obtained by emptying the F=1 ground state as described
above, attempting optical pumping back into F=1 for a time t and finally testing
for population in F=2 through cavity-assisted hyperfine-state detection (see
Chapter 2.5.1).

The discussed scheme of a single light field that is resonant with the 2 → 2′

transition is shown as black squares. The black line is a double exponential fit
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to the data P2(t) = A exp(−t/τ1) + (1 − A) exp(−t/τ2). A quick initial decay
of A = 64 % of the atomic population with a decay constant of τ1 = 490 ns is
followed by drastically slower decay of the remaining population with a decay
constant of τ2 = 12µs.

Additional light fields that couple the dark state to other excited states can be
used to increase the population transfer rate. The solid blue triangles (Scheme
2) in Fig. 2.8 show P2(t) after the addition of a linearly polarized field that
couples the F=2 ground state to the F=1 excited state. This field is shown as
green arrows in Fig. 2.8(b). As detailed in Chapter 3.2.2, a strong tensor light
shift caused by the presence of the 1064 nm dipole trap lifts the degeneracy
of the mF = 0 and mF = ±1 states in the excited F=1 manifold. Here, the
additional laser was tuned such that it could resonantly excite the mF = ±1
states. The hollow blue triangles (Scheme 3) show data that was collected for
the same coupling scheme with twice the intensity of the light field coupling the
2 → 2′ transition. Both datasets that were obtained with an additional field
show identical behaviour in that a large part of the initial population decays
rapidly.

While the introduction of the additional light field increased the decay con-
stant of the remaining population by a factor of four, the whole process still
appears to be limited by an insufficient transfer rate out of the dark state. The
red dots (Scheme 4) show data that was collected with the frequency of the addi-
tional field reduced by 30 MHz. The trap depth (U = h · 37 MHz = kB · 1.7 mK),
used in these experiments, renders the additional laser field at this reduced fre-
quency resonant with the excited F=1,mF=0 state (see chapter 3). Resonant
excitation of the F=2,mF=0 ground state is expected to lead to a significantly
higher transfer rate out of the dark state. In fact, the level of < 1 % residual
population in the F=2 ground state is reached after 3µs of optical pumping in
this scheme. While this value is still a factor of six above the theoretical limit
of 500 ns, it is sufficient for all of the experiments reported in this thesis.

Throughout the experiments covered in this thesis, different schemes for op-
tical pumping were used. Details of the implementation may differ, but the
underlying principles discussed in this chapter remain valid. It was easy to
faithfully empty the F=1 ground state with a single light field. In order to
empty the F=2 ground state, different combinations of additional fields with
the aim of exciting the otherwise dark state were used.

2.6. Stimulated Raman Transitions

The term Raman scattering subsumes many different light scattering mecha-
nisms in atoms, molecules, and solid-state systems that have in common that
they are inelastic and the energy of emitted radiation is different from the en-
ergy of the exciting radiation. In many Raman spectroscopy experiments, only
one excitation laser is used and the spectral properties of the emitted light are
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Figure 2.9.: Stimulated Raman transitions (a) Transitions between the
atom’s internal states coupled by the trapping light (light blue) and the
additional running-wave Raman laser (dark blue). The elliptical polarization
of the intracavity trap causes an imbalance in the σ+ vs σ− driving strength
of the trap. (b) Clebsch-Gordan coefficients (squared) between relevant states
on the D1 and D2 lines that define the transition matrix elements. The color
denotes the sign of the coefficient (green is negative, red is positive).

analyzed in order to extract properties of the scatterer’s energy eigenvalues. If
the scatterer’s internal structure is well known, two light fields that are impinged
simultaneously can drive stimulated Raman transitions between states in order
to perform controlled manipulations rather than spectroscopy. To this end, the
two fields must enclose a frequency difference that is compatible to the energy
difference of the states.

Stimulated Raman couplings are an established tool in ultracold atom exper-
iments and their theory is well understood and documented [79, 80]. In experi-
ments with individual atoms, these couplings are often used to perform coherent
rotations between pairs of states in the atom’s ground-state manifold [81,82] and
for cooling to the motional ground state of the trapping potential [81, 83–86].
In the experiments reported in this thesis, Raman transitions are used as a tool
to characterize eigenmotions of the trapping potential (Chapters 4.2 and 4.4),
for ground-state cooling of a single atom (Chapter 4.3) and for the controlled
preparation of mechanically excited states (Chapter 5.3.2).

In the experimental apparatus, Raman transitions can be driven using the
intracavity dipole trapping light in combination with light from a laser that is
phase-locked to the trapping light. The light from this laser is shone onto the
atom in a running-wave configuration along the x-axis. Figure 2.10(a) shows
the transitions that are driven by the two fields when the atom is initialized
in the |5S1/2,F=1,mF=0〉 state. The light blue arrows denote transitions that
are driven by the intracavity trap. For the majority of experiments that are
described in this thesis, the polarization of this light was elliptical (see Chapter
5.2). In the atomic coordinate frame, the σ+-polarized transition is therefore
driven with a greater Rabi frequency than the σ−-polarized transition. The
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running wave beam on the x-axis is tuned by the exact hyperfine splitting of
6.834682 GHz below the intracavity trapping light and is polarized linearly with
its electric field aligned perpendicular to the cavity axis. It thus drives σ+ and
σ− transitions with equal strength (and well-defined phase relation). The two
fields have a wavelength of 772 nm and thus a so-called one-photon detuning
∆ � Γ that exceeds the radiative lifetime of the excited states 1/Γ = 25 ns
by orders of magnitude. A total of eight possible transition paths is formed by
coupling the two ground states to the excited mF=± 1 states in the F ∈ {1, 2}
manifolds of the 5P1/2 and 5P3/2 states. These paths are shown in Fig. 2.9(b).

It was shown theoretically (e.g. [80]) that in the case of ∆� Γ and vanishing
two-photon detuning δ = 0, every single transition path causes an effective Rabi
frequency:

Ωeff =
Ω1Ω2

2∆
, (2.5)

where Ω1 and Ω2 are the Rabi frequencies of the two coupling fields and ∆ is
the one-photon detuning with respect to the considered excited state. The effec-
tive Rabi frequency Ωeff causes coherent Rabi flopping between the two ground
states with a negligible excitation probability of the excited state. The two Ωs
are given by the transition dipole matrix element of the respective transitions for
all of the eight mentioned paths. For identically oriented, linear polarization of
the two fields (i.e., the same phase between the σ+ and σ− components for both
fields), all partial transition amplitudes interfere destructively. The indicated
∆mF=0 transfer is therefore not possible.

The situation in the described apparatus deviates from this situation in two
ways, both of which are related to the polarization of the intracavity trap.
The principal axis of the electric field’s polarization ellipse is oriented almost
perfectly along the x-axis. Therefore, even if the trap’s polarization was linear,
the phases between the two circular components’ couplings would be opposite.
In combination with the transition matrix elements’ phases, all partial couplings
would interfere constructively and the transfer would be possible. The elliptical
polarization of the trap leads to an additional breaking of the symmetry, in that
it causes the σ+ components to be stronger than the σ− components. Perfect
destructive interference of the transition paths in this situation is impossible,
regardless of the orientation of the polarization.

The described relative orientation of the two polarizations and the resulting
∆mF=0 transfer was used for all of the experiments discussed in this thesis.
By rotating the linear polarization of the coupling laser towards the cavity
axis, π-polarized couplings are generated and a ∆mF= ± 1 transfer becomes
possible (while this as well was observed experimentally, it is not relevant to the
experiments discussed in this thesis).

Effects of coherent interference of different transition pathways are not only
present in the atom’s internal spin-degree of freedom. The effective Rabi fre-
quency given by equation 2.5 can always be chosen to be real without loss of
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Figure 2.10.: Raman geometry and mechanical selection rules (a)
The repulsive intracavity trap (light blue), which confines the atom (black
sphere) to light nodes is used as one of the two Raman fields. The phase of
the trapping light’s electric field alternates in neighbouring field antinodes.
The second field (dark blue) is shone in a running-wave configuration onto
the atom along the x-axis. (b) Due to the symmetry of the coupling and
the motional wave functions, combined spin-mechanical transitions are only
possible between mechanical states of opposite parity.

generality in case of a pointlike atom by application of a suitable gauge trans-
formation. But in the case of a coherently delocalized atom, relative phases
appear between the couplings at different positions. These couplings must be
added before their net effect on the atom is calculated, analogous to the interfer-
ence of different internal pathways discussed above. A related peculiarity of the
experimental setup is the geometry of the Raman coupling shown in more detail
in Fig. 2.10(a). The trapping light that confines the atoms to light nodes serves
as one of the Raman beams. As a consequence, the effective Raman coupling
(equation 2.5) that is proportional to the trapping light’s electric field rather
than its intensity will be spatially antisymmetric with respect to inversion of
the z-axis. The mechanical wavefunctions of the atom are localized around a
node of the blue-detuned trap’s standing wave and have well-defined spatial par-
ity. Mechanical states of identical parity will be left uncoupled by the Raman
lasers, as the corresponding spatial integral will always be antisymmetric and
will evaluate to zero.

This argument hinges on the fact that the intracavity trap is blue detuned
and thus creates a repulsive mechanical potential. For red-detuned dipole traps,
the opposite argument holds. The atoms are confined to intensity maxima,
the electric field, and correspondingly the Raman coupling, will be symmetric
around the potential’s minimum. In this scheme, only mechanical states of
identical parity are coupled. For a harmonic trap with eigenstates |n〉, the parity
is given by (−1)n and the resulting mechanical selection rules for motional states
along the z-axis6 can be summarized as:

6With the same argument, it becomes clear that the motional states along the x- and y-axis
cannot be addressed at all through this scheme. Exceptions are higher-order transitions
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∆n = ±1, ±3, ±5 . . . for a blue-detuned dipole trap

∆n = 0, ±2, ±4 . . . for a red-detuned dipole trap

Figure 2.10(c) summarizes the different transitions of an atom in a given
mechanical state of the |5S1/2,F=2,mF=0〉 spin state. The transition on two-
photon resonance (δ = 0) is forbidden due to the discussed parity-effects. Tran-
sitions to higher and lower mechanical states are possible. In the figure, only
the ∆n = ±1-transitions are shown; while the transition-matrix elements for
higher order transitions (∆n = ±3,±5..) do not vanish, they will generally be
small.

Stimulated Raman transitions were used in different ways in the experiments
that are described subsequently and much information about the motional states
could be extracted from experimentally recorded Raman spectra (see chapters
4.3 and 4.4).

[86] and the case in which the trapping potentials eigenmotions are not aligned with the
x- and z-axis (see chapter 4.4).
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3. AC Stark Shifts and Hyperfine
Breakdown

3.1. Introduction

The AC Stark effect describes a shift of atomic energy eigenstates that is caused
by interaction with far-off resonant light. The shift is proportional to the in-
tensity of the light and for an atom in a given internal state, a force along the
gradient of the light’s intensity will arise. Through a suitable choice of wave-
length, intensity, and geometry of the light, optical dipole traps (ODT) can be
generated that confine atoms in free space using only laser light [87]. Since their
first demonstration [88] in 1986, optical dipole traps have grown to become a
well-established tool in experimental quantum optics. Because the geometry of
the created potential is defined only by the light’s spatial intensity pattern, all
of the tools of conventional wave optics can be used to create almost arbitrary
potential landscapes [89].

The experiments reported in this thesis make use of dipole traps in order to
hold single neutral atoms at well-known positions and in close vicinity to the
dielectric surface of a Fabry-Perot cavity. In order to achieve a tight spatial
confinement of the atom, deep traps are used. Along the x-axis, the atoms
are held by a standing wave trap with a typical potential depth of U0 = h ·
35 MHz = kB ·1.7 mK. This corresponds to a light intensity of 1 MW/cm2 in the
trap. Because the light not only shifts the ground states, but as well perturbs
electronically excited states of the atom, transition frequencies of the atom are
changed by the presence of the trap. In order to resonantly excite the atom, it
is therefore crucial to have a quantitative understanding of the changes inflicted
by the presence of the trapping light onto the internal energy eigenstates of the
atom.

While doing spectroscopy on the electronically excited 5P3/2 state of 87Rb, it
was found that the tensor polarizability of this state can lead to a breakdown
of atomic hyperfine structure. This is similar to the transition from the Zeeman
into the Paschen-Back regime in the case of an applied magnetic field. Hyperfine
breakdown must be taken into account in order to predict AC Stark shifts quan-
titatively. Besides changes in the energy eigenvalues, also energy eigenstates are
changed. The latter has consequences for optical pumping schemes that rely on
dipole selection rules for hyperfine spin states, which are not energy eigenstates
any more in a deep dipole trap. A full account of the AC Stark shift including
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hyperfine breakdown is provided in the theory section of this chapter. In the
experimental section, a sequence to carry out spectroscopy on a single trapped
atom is described and data are presented. An AC Stark shift that is quadratic
in the applied intensity and violation of a hyperfine dipole selection rule are
observed as unambiguous signs of hyperfine breakdown.

3.2. Theory

The classical Stark effect describes a shift of an atomic energy eigenstate |i〉 that

is caused by an external electric field ~E [90]. Due to the spatial symmetry of an
atom’s nuclear electrostatic potential, all electronic energy eigenfunctions have
well-defined parity: Ψi(~r) = ±Ψi(−~r). In the absence of degeneracy among the

energy eigenstates, the expectation value of the perturbation 〈δE〉 = 〈i| ~E · e~r|i〉
caused by the field is therefore zero. A linear Stark effect is thus only present
in the case of degenerate energy eigenstates.

In second order perturbation theory, coupling to states of opposite parity can

give rise to a quadratic Stark effect ∆E(2) =
∑

f
|〈i| ~E·e~r|f〉|2
Ei−Ef

, where the sum runs

over all of the remaining states |f〉. The resulting shift can be mathemati-
cally phrased by attributing a polarizability α to each state, which quantifies
an atomic dipole ~p = α~E that is induced by an applied electric field. The inter-
action of this induced dipole with the inducing electric field leads to a potential
energy ∆E = −1

2
α|E|2 that is quadratic in the applied electric field. The quan-

tity α = −2
∑

f
|〈i|êze|f〉|2
Ei−Ej

is called the static electric polarizability. When the

applied electric field is oscillating rapidly compared to other dynamic processes,
its effect can be averaged over one optical period and the time-averaged energy
shift due to the quadratic Stark shift will be ∆E = −1

4
αE2. This energy shift

is typically referred to as a light shift or AC Stark shift.

For atoms with finite angular momentum, α will be dependent on the laser
polarization. Furthermore, optical resonances make α(ω) dependent on the
frequency ω of the applied laser. A full account of the topic can be found
in [91,92] and only the most important results are reproduced here.

For states |nJ mJ〉 where n is the principal quantum number, J is the total
angular momentum and mJ is its projection onto the quantization axis (z-axis),
the dynamic polarizability is expressed in terms of a scalar α(s)(ω), vector α(v)(ω)
and a tensor component α(t)(ω) which leads to a shift of energy levels that
is independent (scalar), linearly dependent (vector), or quadratically (tensor)
dependent on the Zeeman quantum number mJ . The applied electric field is
denoted as ~E(t) = 1

2
|E|ε̂eiωt + c.c. where |E| is the field amplitude and ε̂ is a

polarization vector of unit length. Note that ε̂ can be complex denoting elliptical
polarization components. The resulting AC Stark shift can then be expressed
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as [92]:

∆E = −|E|
2

4

[
α(s) − α(v)=(ε∗xεy)

mJ

J
− α(t) (1− 3|εz|2)

2

(3m2
J − J(J + 1))

J(2J − 1)

]
(3.1)

From this equation, if follows that linearly polarized light (=(ε∗xεy) = 0) does
not cause vector AC Stark shifts, even in case of a non-zero α(v). With the
remaining scalar and tensor terms, the energy shift then depends only on |mJ |1.
Furthermore, it is interesting to note that the factor (1 − 3|εz|) is zero when
the electric field of the light encloses an angle of arccos(1/

√
3) ≈ 54.7◦ with

the quantization axis. This solely means that the energies of all |J,mJ〉 states
that are defined with respect to this tricky choice of the quantization axis are
degenerate. However as they cease to be energy eigenstates, rates between
those states will appear; this is analogous to the Larmor precession caused
by a magnetic field that encloses a non-zero angle with the quantization axis.
Therefore, the vanishing of the tensor term must in this case not be confused
with vanishing differential light shifts between the actual energy eigenstates.

The dynamic polarizabilities α(s), α(v), and α(t) can be calculated by summing
the contributions of the couplings to different states. For state |nJ〉 they are
found to be

α
(s)
nJ =

1√
3(2J + 1)

α
(0)
nJ (3.2)

α
(v)
nJ = −

√
2J

(J + 1)(2J + 1)
α

(1)
nJ (3.3)

α
(t)
nJ = −

√
2J(2J − 1)

3(J + 1)(2J + 1)(2J + 3)
α

(2)
nJ (3.4)

where α
(K)
nJ is defined as:

α
(K)
nJ (ω) = (−1)K+J+1

√
2K + 1

∑
n′,J ′

(−1)J
′
{

1 K 1
J J ′ J

}
×(2J + 1)|〈nJ ||er||n′J ′〉|2 1

~

(
1

ωn′J ′nJ − ω
+

(−1)K

ωn′J ′nJ + ω

)
(3.5)

Here, ωn′J ′nJ = (En′J ′ − EnJ)/~ is the angular transition frequency between
states |nJ〉 and |n′ J ′〉, 〈n′J ′||d||nJ〉 denotes the reduced matrix element of the
transition between these two states, and the curly brackets denote the Wigner-
6j-symbol. The formula is approximated assuming ω − ωn′J ′nJ � γ, where

1This is a consequence of time-reversal invariance [93]
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Figure 3.1.: Dynamical polarizabilities for 87Rb (a) Scalar and vector
polarizability of the 5S1/2 ground state. The polarizability is dominated by
the D-line resonances. Towards greater wavelengths, the polarizabilities ap-
proach the static limit. (b) Scalar, vector and tensor polarizability of the
excited 5P3/2 state. Besides the two D-line resonances at 780 nm and 795 nm,
additional optical resonances appear at even greater wavelengths.

γ is the atomic polarization decay rate of any transition involved. As dipole
traps typically work far detuned from any transition to avoid scattering, this
assumption introduces a negligible error.

Looking up reduced matrix elements requires focus, as two different conven-
tions are typically found. The convention used here relates the reduced matrix
element of a given transition to the Einstein A coefficient as

|〈nJ ||d||n′J ′〉|2 =
3πε0~c3

ω3
n′J ′nJ

2J ′ + 1

2J + 1
An′J ′nJ (3.6)

Thus far, the discussion has only covered effects that stem from the valence
electron. As the remaining hull is tightly bound, its contribution to the atomic
polarizability in the considered wavelength range is small and to a good approx-
imation independent of the wavelength. The polarizability of the ionic core can
be found in the literature [94] and is 9.1 a.u.2.

3.2.1. Dynamic Polarizability

The result of calculations of the dynamic valence polarizabilities over a broad
range of wavelengths is shown in Fig. 3.1. The line data that entered this cal-
culation is summarized in appendix A. Panel (a) shows the scalar and vector
polarizability of the 5S1/2 ground state. The tensor polarizability of this J=1/2

finestructure state is zero. The polarizability within the shown range of wave-
lengths is governed by two optical resonances, namely to the 5P1/2 state (D1-line)

2The atomic unit for polarizability is 1 a.u. = a20e
2/Eh = 1.64878 · 10−41 J(m/V)

2
, where a0

is the Bohr radius, e is the elementary charge, and Eh is the Hartree energy
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λ = 1064 nm λ = 772.37 nm

α
(s)
5S1/2

686.8 a.u. (687.3 a.u. [96]) -11989 a.u.

α
(v)
5S1/2

-28.7 a.u. -6689 a.u.

α
(s)
5P1/2

-1274 a.u. (-1226(18) a.u. [97]) 1500 a.u.

α
(v)
5P1/2

-659.5 a.u. 3388 a.u.

α
(s)
5P3/2

-1129 a.u. (-1114 a.u. [97]) 3460 a.u.

α
(v)
5P3/2

-874 a.u. 12756 a.u.

α
(t)
5P3/2

555 a.u. (551 a.u. [97]) -4840 a.u.

Table 3.1.: Calculated dynamical polarizabilities for the states and wave-
lengths relevant for the experiments presented in this thesis. The values in
parentheses are theoretical calculations from other sources.

at 795 nm and to the 5P3/2 state (D2-line) at 780 nm. The next higher dipole-
allowed transition is at 422 nm (6P1/2). As the D-lines are energetically the
lowest transitions, the polarizabilities converge towards their static limit with
increasing wavelength. The static limit is calculated as α(s)(λ→∞) = 318 a.u.
in agreement with a published value [95] of 329(23) a.u.

The polarizabilities calculated for the 5P3/2 state shown in panel (b) strongly
deviate from the ground state polarizability, owing to additional optical reso-
nances to even higher excited states. In particular, coupling to the 4D3/2, 4D5/2

and 6S1/2 states at wavelengths around 1.5µm dominates the polarizabilities for
larger wavelengths.

The wavelengths that are relevant to all of the experiments documented in
this thesis are those of the two dipole traps at 1064 nm and 772.37 nm. Table
3.1 summarizes the calculated scalar, vector, and tensor polarizabilities. At a
wavelength of 1064 nm, which is red detuned with respect to the dominant D-line
transitions, the ground state has positive polarizability. Thus, intensity maxima
correspond to minima in the generated mechanical potential. The opposite
holds for the 772.37 nm trapping light, which is blue detuned to the D-lines and
creates a repulsive trap in which intensity maxima coincide with maxima of the
generated mechanical potential. In this case, atoms will be confined to nodes of
a standing-wave light field.

3.2.2. Decoupling of the Hyperfine Spin

The discussion has thus far focused on finestructure states |J,mJ〉. In general,
AC Stark shifts will lift the degeneracy of mJ states within a given J manifold.
In an alkali atom, hyperfine interaction of the valence electron with the nuclear
magnetic dipole and electric quadrupole moment will occur. In the absence
of magnetic fields and AC Stark shifts, eigenstates of a coupled hyperfine spin
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3. AC Stark Shifts and Hyperfine Breakdown

|F,mF 〉 will be energy eigenstates instead of the |J,mJ〉 states of the electronic
hull and |I,mI〉 states of the nucleus. The application of an AC Stark-shifting
light field in the presence of hyperfine interaction then leads to a situation that
is similar to the Paschen-Back effect in the case of a magnetic field.

The total Hamiltonian, including AC Stark shifts and hyperfine interaction,
will not be diagonal in the fine-structure or the hyperfine-structure basis. In
case of AC Stark shifts that are small compared to the hyperfine interaction, the
hyperfine states |F,mF 〉 remain energy eigenstates to a good approximation and
can be assigned polarizabilities. Their AC Stark shift can then be calculated
with equation 3.1 by replacing J with F , mJ with mF and using the following
approximate polarizabilities [92]:

α
(s)
nJF =

1√
3(2J + 1)

α
(0)
nJ (3.7)

α
(v)
nJF = (−1)J+I+F

√
2F (2F + 1)

F + 1

{
F 1 F
J I J

}
α

(1)
nJ (3.8)

α
(t)
nJF = (−1)J+I+F

√
2F (2F − 1)(2F + 1)

3(F + 1)(2F + 3)

{
F 2 F
J I J

}
α

(2)
nJ (3.9)

where α
(K)
nJ is given by equation 3.5. Note that the approximate tensor polar-

izability of the hyperfine states can be related to the finestructure tensor polariz-
ability by α

(v)
nJF = 3X(X−1)−4F (F+1)J(J+1)

(2F+3)(2F+2)J(2J−1)
with X = F (F+1)+J(J+1)−I(I+1),

a relation that is known from the case of static electric fields [98]. Table 3.2 sum-
marizes the calculated small-field approximations for the relevant wavelengths.
The scalar polarizabilities are not shown as they are identical to the finestruc-
ture states’ scalar polarizability, which can be found in Table 3.1. The excited
F = 0 state is omitted as well, as its vector and tensor polarizabilities are zero.
Where applicable, literature values (values in parentheses in Table 3.1) that are
typically calculated with more elaborate methods [99] have been used instead
of the calculated values.

For AC Stark shifts that are comparable to the hyperfine-interaction energy,
neither the |F,mF 〉 state nor the |J,mJ〉 states will be energy eigenstates. In
order to find the new energy eigenstates of the perturbed atom, the total Hamil-
tonian H that contains AC Stark shifts HACS and hyperfine interaction HHFI

must be diagonalized. The diagonal elements of HACS are given by equation 3.1
and are transformed into the hyperfine basis:

HACS =
∑
F,mF
F ′,m′F

( ∑
mJ ,mI

EACS
J,mJ

CF,mF

J,mJ ,I,mI
C
F ′,m′F ∗
J,mJ ,I,mI

)
|F,mF 〉〈F ′,m′F |, (3.10)

where CJ3,m3

J1,m1,J2,m2
are Clebsch-Gordan coefficients. The hyperfine interaction
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3.2. Theory

λ = 1064 nm λ = 772.37 nm

α
(v)
5S1/2,F=1 14.3 a.u. 3344 a.u.

α
(v)
5S1/2,F=2 -28.7 a.u. -6688 a.u.

α
(v)
5P1/2,F=1 329.5 a.u. -1695 a.u.

α
(v)
5P1/2,F=2 -659.1 a.u. 3389 a.u.

α
(v)
5P3/2,F=1 -291 a.u. 4252 a.u.

α
(t)
5P3/2,F=1 -222 a.u. 1935 a.u.

α
(v)
5P3/2,F=2 -583 a.u. 8504 a.u.

α
(t)
5P3/2,F=2 0 a.u. 0 a.u.

α
(v)
5P3/2,F=3 -874 a.u. 12756 a.u.

α
(t)
5P3/2,F=3 555 a.u. -4840 a.u.

Table 3.2.: Approximate dynamical polarizabilities of hyperfine states.
Scalar polarizabilities are not given as those are identical to the finestruc-
ture state’s scalar polarizability which can be found in table 3.1.

energy is diagonal in the hyperfine basis HHFI =
∑

F,mF
EHFI
F,mF
|F,mF 〉〈F,mF |

and the corresponding diagonal elements EHFI
F,mF

are given by

EHFI
F,mF

= AHFI
K

2
+BHFI

3/2K(K + 1)− 2I(I + 1)J(J + 1)

4I(2I − 1)J(2J − 1)
, (3.11)

where K = F (F + 1)− I(I+ 1)−J(J + 1). The values of the magnetic dipole
constants AHFI and electric quadrupole constants BHFI of the relevant states are
taken from [100] (and references therein). Because the projection of the coupled
hyperfine spin onto the quantization axis mF = mI + mJ is a good quantum
number in both bases, the Hamiltonian will be block-diagonal. Off-diagonal
elements will appear only between states that have a different hyperfine spin F
but identical mF .

Figure 3.2 shows the results of a numerical calculation of the energy eigen-
states in the 5P3/2-manifold that are perturbed by off-resonant, linearly polarized
light at wavelengths of (a) 1064 nm and (b) 772.37 nm. These energy eigenvalues
are shown as a function of the intensity I = 1

2
cε0E

2 of a plane traveling light
wave.

• For vanishing intensity, the unperturbed hyperfine structure of the 5P3/2

state is found with values of the hyperfine spin F ranging from 0 to 3. For
small intensities, the numerically calculated values agree with the small-
field approximation (dotted lines).

• In the case of high intensities, the hyperfine structure breaks down and mI
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3. AC Stark Shifts and Hyperfine Breakdown
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Figure 3.2.: Energy eigenstates in the 5P3/2 manifold perturbed by
a strong off-resonant light field (a) Calculated for λ = 1064 nm. The
dotted lines on the left side of the graph indicate the approximate small-field
solution. The dotted lines on the right side show the high-field results. These
are valid for differential light shifts within the finestructure manifold in excess
of the typical hyperfine interaction energy. (b) Calculated energy eigenstates
for λ = 772 nm.

and mJ are good quantum numbers. The energy eigenvalues will depend
linearly on the intensity with a slope that is given by the polarizabilities
α|mJ |=1/2 = (α(s) − α(t)), and α|mJ |=3/2 = (α(s) + α(t)), respectively. The
residual offsets of the states that are caused by the hyperfine interaction
can be calculated in first order perturbation theory as the expectation
value of the HHFI in the finestructure basis and are shown as dotted lines.

• For intermediate intensities, the energy eigenstates are not eigenstates
of the finestructure or hyperfine structure spin and appear as complex
superposition states when expressed in either of the two bases.

For both wavelengths, the absolute value of the polarizability of the |mJ | = 1/2

states is greater than that of the |mJ | = 3/2 states, due to coupling to the J = 1/2

ground state (which is the dominant contribution to the polarizability in both
cases). With a choice of the quantization axis along the light’s electric field,
only π-polarized transitions will be driven. This leaves the excited |mJ | = 3/2

states uncoupled and only their coupling to even higher excited states J ≥ 3/2

contribute to the polarizability of these two Zeeman states.

The red line that corresponds to the |mF | = |mI +mJ | = 3 states is a straight
line for all wavelengths, as it is an eigenstate of both the finestructure and
hyperfine structure spins J, I, and F . This holds not only for the considered
case of linearly polarized light, and is also true for the |5S1/2, F = 2,mF = ±2〉
ground states. The cycling transitions will thus not be affected by effects of
hyperfine breakdown.
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Figure 3.3.: Spectroscopy of exited energy eigenstates perturbed
by the dipole trap Initialization of the atom in |5S1/2, F = 1〉 is followed
by impinging probe light (red) with a frequency that is changed between
repetitions of the experiment. When the probe light happens to be resonant
with the transition to an excited state, population in this state will lead to
decay rates back to the F=1 ground state (with rate Γ1) and to the F=2
ground state (with rate Γ2). Population of F=2 is detected and serves as a
spectroscopic signal.

3.3. Experimental Results

Many of the experiments that are discussed in this thesis contain resonant op-
tical excitation. Precise knowledge about the structure of excited energy eigen-
states that are perturbed by the dipole trap is therefore essential. The intensity
of the light used to create the optical dipole traps is difficult to estimate from
first principles, as many involved geometric parameters (e.g. overlap of two
counter-propagating running waves) are not known with sufficient accuracy.
Spectroscopy of the trapped atoms is therefore used as a tool to measure the
intensity at the position of an atom by using that atom itself as a probe.

Despite the broad spectrum of applications of optical dipole traps, experi-
mental characterization of electronically excited states that are perturbed by
the trapping light is a largely unexplored topic. Few studies on magic wave-
lengths [101] and two measurements of a tensor light shift on excited hyperfine
states [102,103] are published.

3.3.1. Experimental Technique and Line Shapes

Spectroscopy of the perturbed excited energy eigenstates of a single trapped
atom is performed by detecting changes in the ground state’s hyperfine spin
that are caused by the inelastic resonant scattering of a probe beam. To this
end, the atom is initially prepared in the 5S1/2, F = 1 ground state by optical
pumping (see Chapter 2.3). A weak probe beam is then shone onto the atom
for a duration T = 2µs � 1/Γ that is longer than the lifetime of the excited
state. The probe pulse propagates along the −45◦-axis (see Chapter 2.1) and
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3. AC Stark Shifts and Hyperfine Breakdown

its linear polarization lies in the xy-plane. The electric field is thus oriented
perpendicular to the cavity axis and the 1064 nm trap polarization. In the
atomic coordinate frame with the quantization axis chosen along the electric
field of the trap light, the probe pulse drives σ+ and σ− transitions with equal
strength. If the frequency of the probe pulse happens to be resonant with the
transition from the F=1 ground state to an excited state, the excited state can
be populated and will decay by spontaneous emission.

In contrast to observing the light emitted during the transfer, the change in
ground-state population that results from a decay into F=2 can be detected
with unity efficiency by employing cavity-assisted hyperfine-state detection (see
Chapter 2.5.1). The described technique is sketched in Fig. 3.3.

The observable transition lines are expected to deviate from a radiatively
broadened Lorentzian profile due to residual thermal excitation of the atom’s
motion. In the following paragraphs, the expected line shapes are derived in a
general manner. Intermediate results of the derivation are used in later chapters
(e.g., Chapter 6.4.1).

The polarizability of the ground state, which creates the mechanically con-
fining potential, generally differs from the excited state’s polarizabilities and
mechanical excursions of the atom will therefore lead to a shift of the transition
frequency. The confining potential of the ground state Ug(x) can be approx-
imated quadratically in all three spatial directions (see Chapter 4.2) Ug(x) ≈∑3

i=1 mω
2
i x

2
i /2. Here, m is the atomic mass and ωi =

√
(∂2U(x)/∂x2

i )/m are
the angular trap frequencies along the different spatial directions. In a simple
model, a semiclassical approximation is made for the position distribution n(x)
of the atom

n(x) = n0e
−βUg(x) (3.12)

with β = 1/kBT , kB the Boltzmann constant and T the temperature of the
atom. By requiring that the distribution is normalized to 1, the peak density is
found to be n0 = (mω̄2/2πkBT )3/2, where ω̄ = (ωxωyωz)

1/3 is the harmonic mean
of the angular trapping frequencies. The detuning of the atom as a function
of the position is expressed as ∆(x) = ∆0 + αe−αg

~αg
Ug(x). Here αe/g indicate

the dynamical polarizability of the ground and excited state respectively. ∆0

denotes the detuning of an atom at the bottom of the trap (x = 0). The
expectation value of a function f(∆) that depends on the atomic detuning is
then identified as:

〈f(∆(x))〉x = ω̄3

(
m

2πkBT

)3/2 ∫
d3xf

(
∆0 +

αe − αg
~αg

Ug(x)

)
(3.13)

The coordinates xi are rescaled by the respective trap frequency in order
to yield rotational symmetry xi → ωixi/ω̄. The Jacobian determinant of this
transformation is 1. The integral in transformed coordinates depends only on
r = |x| and the azimuthal and polar angle of x in spherical coordinates can be
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integrated, yielding:

〈f(∆(x))〉x = ω̄3

(
m

2πkBT

)3/2

4π

∫ ∞
0

drf

(
∆0 +

αe − αg
~αg

m

2
ω̄2r2

)
r2e−β

m
2
ω2r2

(3.14)

Another coordinate transformation βmω̄2r2/2→ r2 yields the following gen-
eral result that does not make assumptions about f(∆)

〈f(∆(x))〉x =
4√
π

∫ ∞
0

dr f(∆0 + τr2)r2e−r
2

(3.15)

with τ = αe−αg

~αg
kBT as a temperature parameter that scales with the relative

difference of ground- and excited state polarizability. At a magic wavelength
(αg = αe), τ will be independent of the actual temperature T .

For the AC Stark shift spectroscopy, the function f(∆), which depends on
the atomic detuning will be the population that was transferred into F=2. As
the probe pulse is long in comparison to the time scale on which coherences
decay, its action on the atom can be described with a rate equation model. The
steady state population ρee of an excited state |e〉, which is coupled to the F=1
ground state |g〉 by the probe laser of intensity I that is detuned by ∆ from the
|g〉 ↔ |e〉 transition, is:

ρee =
Ip
2Is

1

1 + [2∆/Γ]2
, (3.16)

where Is is the transition’s saturation intensity, Ip � Is is the intensity of
the probe light, and ∆ = ωprobe − ωge is the detuning of the laser from the
potentially AC-Stark-shifted atomic transition at ωge. Population of the excited
state will lead to a partial decay rate Γ2ρee into the F=2 ground state, such that
after a probing duration d an atomic population P2 = Γ2ρeed will have been
transferred to the F=2 state. This simplified model assumes that Γ2ρeed �
1, such that effects of depletion of the F = 1 state can be neglected. The
saturation intensity Is will be different for every observed transition and change
with different settings of the trap power as the excited energy eigenstates change.
Furthermore, the initial population of the Zeeman states in the F=1 manifold
after optical pumping is unknown. Making quantitative predictions about the
amplitude of the observed transfer lines is therefore unrealistic. All prefactors
are thus subsumed in a general scaling factor and application of equation 3.15
yields the following dimensionless spectrum

〈P2(∆)〉x ∝
∫ ∞

0

dr
r2e−r

2

1 + 4(δ + τ ′r2)2
, (3.17)

where τ ′ = τ/Γ is a dimensionless temperature parameter and δ = ∆/Γ is
a dimensionless detuning. For δ, τ ∈ R, and τ 6= 0, the following analytical
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Figure 3.4.: Inhomogneously broadened lineshapes (a) Simulated line-
shapes including inhomogeneous broadening due to residual atomic temper-
ature. The curves are calculated using parameters valid for the D1 line. (b)
Overview of the different effects onto the observed transitions due to inho-
mogeneous thermal broadening.

solution is available [104]:

〈P2(∆)〉x ∝
π

4τ
<(z w(z)), z =

√
i− 2δ

2τ ′
(3.18)

where w(z) = e−z
2
erfc(−i z) is the Fadeeva function [104] and erfc(z) = 1 −

erf(z) = 1− 2√
π

∫ z
0
e−t

2
dt is the complementary error function.

Figure 3.4(a) shows the results of this model (i.e., thermally broadened transi-
tion lines for different temperatures). The curves were calculated with equation

3.18 using the polarizability values α
(s)
5S1/2

= 686 a.u. and α
(s)
5P1/2

= −1274 a.u.

and the decay rate Γ = 2π ·5.75 MHz of the D1 line. The inhomogeneous broad-
ening caused by thermal fluctuations is asymmetric. This stems from the fact
that the atomic transition frequency is reduced (in the case of a red-detuned
trap) regardless of which direction the atom is displaced with respect to the trap
center. For low temperatures, the asymmetry is barely noticeable and devia-
tions from a Lorentzian will only become prominent for temperatures in excess
of 50µK for this particular set of parameters. Moreover, the inhomogeneous
broadening causes the line to shift towards smaller frequencies. The three ma-
jor effects of thermal excitation, namely broadening and shift of the line, and
decrease of the maximum amplitude, are plotted in Fig. 3.4(b) as a function of
the temperature.

The theory presented here makes several simplifying assumptions. The ratio
(αe − αg)/αg was applied to the motion along all three spatial directions. In
the experiment, the confinement along the x- and y-axis was provided by a
red-detuned trap at 1064 nm, while a blue-detuned trap at 772 nm provides
strong confinement along the z-axis3. The values of τ calculated for the two

3An extended discussion of this topic can be found in the appendix of reference [105]
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Figure 3.5.: Spectroscopy of excited states perturbed by the trap
light Single spectrum recorded at P1064 = 2.25 W. Five resonances are clearly
visible. The peaks are labeled with the energy eigenstates expressed in the
hyperfine basis (see text). Splitting of the F=2 state (double peak in the very
right part of the spectrum), which is not predicted in the weak-field approxi-
mation, is an unambiguous indication of hyperfine-breakdown. The leftmost
peak indicates a state which for weak power coincides with the unperturbed
F=0 state. The F=0 state does not decay to the F=2 ground state. The fact
that population transfer is observable here stems from the admixture of the
F = 2,mF = 0 excited state to the energy eigenstate.

wavelengths differs for some states by a maximum factor of three. Furthermore,
this theory assumes that all three axes are thermalized and described by a
classical Boltzmann distribution. However, there is experimental evidence (see
Chapter 4.4.3) that this is not the case. Temperatures that are extracted by
application of this model to AC Stark shift spectra like the one in Fig. 3.5 are
typically ≥ 30µK, which corresponds to a thermal energy of kBT ≈ h×600 kHz.
This value does not exceed trap frequencies that were used in the experiment
(which were typically between 300 and 600 kHz) by far, as would be required for
the application of the semi-classical approximation. While these problems cast
doubt onto the quantitative validity of the extracted temperatures, the model
successfully describes the influence of thermal broadening in several different
experiments including cavity-reflection spectroscopy (see Chapter 6.4.1) and
scattering experiments with a single atom and two atoms (see Chapters 6.4.2
and 6.6).

3.3.2. Spectroscopic Results

After loading a single atom (see Chapter 2.3), the experimental sequence, inter-
leaved with molasses cooling intervals was repeated at 2 kHz until fluorescence
images indicated the loss of the atom. The frequency of the probe laser was
swept once per second over a frequency interval that typically covers 60 MHz.
Spectra of the transitions to the excited 5P1/2 and 5P3/2 states were recorded
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Figure 3.6.: Line positions vs. trap power Frequencies of the observed
transfer lines as a function of the applied trap power P1064. The upper panel
shows data recorded on the D1 line. Due to the absence of tensor polarizabil-
ity, the two hyperfine components shift linearly with the applied power. The
black lines are fitted to the data. The lower panel shows data recorded on
the D2 line. The solid lines are calculated with theoretical model described
in the text. The color encode the mF = mI + mJ quantum number of the
particular state (green=0, blue=±1, purple=±2). The dotted lines show the
small-field approximation that neglects hyperfine breakdown.

for different settings of the 1064 nm dipole trap power P1064. Since the 1064 nm
trap is red detuned, atoms are trapped at maxima of |E|2, whereas the opposite
holds for the blue-detuned intracavity trap. Residual shifts of the blue-detuned
trap are on the order of the trapping frequency, which is far below the linewidth
of the observed electronic transitions. This was verified experimentally by re-
peating spectroscopy of a single transition line for two different potential heights
of the blue trap that were a factor of two apart; a negligible shift of 79(91) kHz
was found.

Figure 3.6 shows a single spectrum that was recorded at P1064 = 2.25 W
on the D2 line. Five resonances are clearly distinguishable and fitted with a
multiple Lorentzian fit (red line). The fitted widths of the resonance lines are
larger than the free space value Γ/2π = 6.1 MHz by a factor of approximately
1.5. Applying the previously discussed model, this corresponds to a tempera-
ture of 30µK, which is consistent with the hardly observable deviation from a
Lorentzian profile (see Fig. 3.3) and yields an expected lineshift towards smaller
frequencies of 2 MHz. The fitted line centers found for different trap powers are
shown in Fig. 3.6. The y-axis is scaled such that zero corresponds to the tran-
sition frequency from the |5S1/2,F=1〉 ground state to the unperturbed excited
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finestructure state.

In order to fit the theory described in the previous section, the electric field
strength of the trap light must be modeled as a function of the applied power.
The waist of the incident dipole-trap beam was measured wi = 3.17 mm. This
beam is focused into the cavity region with a lens that has a focal length of
f = 150 mm, which yields a focal waist of w0 = 1064 nm·0.15 m

πwi
= 16µm. The

focal intensity of a running wave beam with power P1064 is I = 2P1064

πw2
0

and the

squared electric field in a retroreflected beam of the same geometry is |E|2 =
η 16P1064

πcε0w2
0

. Here, η ≤ 1 is a factor that describes experimental imperfections such

as imperfect overlap of the two beams that change the power calibration.

The upper panel of Fig. 3.6 shows transitions on the D1 line (5S1/2 ↔ 5P1/2)
at 795 nm. As the excited state is a J = 1/2 state, no breakdown of hyperfine
coupling is expected from the linearly polarized light and the resonance positions
are expected to shift linearly with the applied power. The slope is given by
−1

4
η∆α1/2, where ∆α1/2 = (α

(s)
5S1/2
− α(s)

5P1/2
) is the difference in polarizability of

the ground and excited states. A fit to the data (black lines in the figure)
yields η∆α1/2 = −1675(3) a.u. and a hyperfine interval of (EF=2 − EF=1)/h =
816.6(2) MHz; the uncertainties are purely statistical. As the polarizabilities
of both states and the power calibration do not enter in the determination of
the hyperfine interval, this value can be measured with small systematic error.
In the literature, only two measurements of 5P1/2 state hyperfine interval are
found. The value obtained in the experiment described here is in agreement with
(EF=2 − EF=1)/h = 816.66(3) MHz as reported in [106]. The second published
value of 812.29(3) MHz [107] deviates by 20 standard deviations from the value
reported in [106] and the value measured here.

The lower panel of Fig. 3.6 shows data from the D2 line (5S1/2 ↔ 5P3/2)
at 780 nm. A fit yields η∆α3/2 = −1590(3) a.u. for the difference in scalar

excited- and ground-state polarizability and α
(t)
5P3/2

/∆α3/2 = −0.312(4). The

second quantity is an atomic property that can be measured independently of
η. Another such quantity is found in the ratio ∆α1/2/∆α3/2 = 1.054(2). From
the values found in the literature (see Table 3.1), the following predictions can

be calculated: ∆α1/2/∆α3/2 = 1.062(14) and α
(t)
5P3/2

/∆α3/2 = −0.306(4) in agree-

ment with the values that were measured in the experiments described here.

Another approach to data evaluation is to determine η using the theoretical
values for α

(s)
5S1/2

and α
(s)
5P1/2

to yield η = 0.876(8), α
(s)
5P3/2

= −1128(18) a.u. and

α
(t)
5P3/2

= 568(9) a.u.. The power calibration can easily deviate from one as it is

difficult to ensure that the focal points of both counter-propagating beams are
positioned precisely in the center of the cavity and are well-aligned with each
other. The measured scalar polarizability of the 5P3/2 state is congruent with
the theory value, while the tensor polarizability deviates by 2σ.

The fitted model permits the calculation of the energy eigenstates that cor-
respond to the peaks in Fig. 3.5. At low trap powers, the leftmost peak is not
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3. AC Stark Shifts and Hyperfine Breakdown

visible as it converges to the excited F=0 hyperfine state that cannot decay to
the F=2 ground state. The fact that this peak is visible is due to a coupling
caused by the 4 % admixture of the excited F=2 state. This is a clear conse-
quence of hyperfine breakdown in an optical dipole trap. The violation of a
free-space dipole selection rule has experimental consequences. As an example,
when attempting hyperfine state detection on the |5S1/2,F=1〉 ↔ |5P3/2,F=0〉
transition, it was always found that the achievable discrimination thresholds of
the light and dark states were limited by unintended optical pumping to the
dark F=2 ground state (see chapter 2.5.1). Hyperfine breakdown of the excited
F=0 state contributes to this detrimental effect.

Another clear signature of the hyperfine breakdown is the appearance of two
separable peaks in the very right part of Fig. 3.5, which converge to the F=2
excited state for low powers. In the low field approximation that ignores hy-
perfine breakdown, all Zeeman states of 5P3/2, F = 2 are expected to remain
degenerate.
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4. Trap Geometry and Cooling
Dynamics

4.1. Introduction

In earlier experiments that were conducted on the apparatus [77,108–112], atoms
were trapped in a one-dimensional optical lattice. The lattice was generated
with a retroreflected beam that traverses the cavity along the x-axis. While
the atoms were tightly confined along the x-axis owing to the standing-wave
structure of the light, confinement along the cavity axis was only provided by
the Gaussian envelope of the trapping beam1. This typically allows mechanical
excursions of the trapped atom over a full wavelength of the standing-wave
cavity mode structure. As a consequence, the coupling strength g fluctuated
between its theoretical maximum and an uncoupled system g = 0 whenever the
atom was traversing a node of the cavity mode. While many earlier experiments
could tolerate this fluctuation, the envisioned two-atom experiment relies on
the atoms being continuously coupled to the cavity with a well-known coupling
strength, and, just as important, a well-known and constant spatial distance
between the atoms. Therefore, a two-dimensional trap was implemented that
is comprised of an one-dimensional lattice along the x-axis and an additional,
repulsive lattice along the cavity axis. The geometry of the trapping potential
and the resulting energy spectrum of a single trapping site is discussed in the
first section of this chapter.

In experiments with ultracold quantum gases [114, 115], atoms are typically
cooled to ultracold temperatures before they are transferred into the final trap-
ping potential. Besides evaporative cooling that does not maintain the atom
number, no further cooling is performed and heating of the trapped ensem-
ble cannot be counteracted. In contrast to this, many experiments with single
atoms [83, 84, 113, 116–119], including those reported in this thesis, are carried
out by cooling the atoms while they are trapped in the final configuration. As
a result, many repetitions of an experiment can be performed without the need
to repeat a potentially lengthy loading procedure. Raman sideband cooling to

1In fact, the light used for length stabilization of the cavity by a Pound-Drever-Hall tech-
nique created a mechanical potential in earlier experiments. But, with exception of the
cavity-cooling experiments by Stefan Nußmann [113], no effect of this potential was ob-
served and it is unlikely that low enough atomic temperatures were achieved in subsequent
experiments.
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4. Trap Geometry and Cooling Dynamics

the motional ground state of the atom is described in Chapter 4.3.

The geometry of the two-dimensional optical lattice deviates slightly from per-
fect orthogonality. This leads to motional coupling of each individual trapping
site’s eigenmotions [120]. Raman sideband spectroscopy was used to quantify
this effect and a deviation of 1.26(57)◦ from orthogonality was; this value is
consistent with the value of 1.55(2)◦ that was found by evaluating fluorescence
images of the lattice (see Chapter 2.4). The data and the theoretical evaluation
are presented in Chapter 4.4.

4.2. Energy Spectrum of a Single Trapping Site

The two-dimensional optical lattice is generated in the intersection region of
the TEM00 cavity mode and a one-dimensional optical lattice along the x-axis.
Both traps are created by standing-wave light beams with Gaussian envelopes.
As the intracavity trap along the z-axis is blue-detuned, it confines atoms to
nodes of the light field and does not provide any confinement along the x- and
y-axis. The standing-wave structure of the red-detuned beam along the x-axis
generates strong confinement along the x-axis. Along the y-axis, the atoms are
confined solely due to the envelope of the 1064 nm beam.

In this section, the energy spectrum of the two individual traps is discussed
and Chapter 4.4 focuses on mechanical effects that arise from the combination
of the two beams.

The mechanical potential generated by the 1064 nm beam with an incident
power of P1064 for a ground-state atom is given by:

Ug,1064(~r) = −1

4

(
16P1064 η

π c ε0w2
1064

)
α

(s)
1064 cos

(
2π x

1064 nm

)2

e
− 2(y2+z2)

w(x)2 , (4.1)

where w(x) = w1064

√
1 + (z/z0)2 describes the divergence of the beam waist

with w1064 = 16µm as the focal waist, z0 = π w2
1064/λ = 0.8 mm as the Rayleigh

range and η = 0.876(8) is a measured power calibration factor that summarizes
alignment-related effects (see Chapter 3.3.2). The potential has a minimum at
x = 0 and a Taylor series expansion along the x-axis that neglects the beam
divergence (which changes the intensity on a length scale that is large compared
to the wavelength of the light) yields:

Ug,1064(x, y = z = 0) =
4P1064 η α

(s)
1064

π ε0 cw2

[
−1 +

1

4

(
4π

1064 nm

)2

x2

]
+O(x4). (4.2)

The constant offset contributes to line shifts (see Chapter 3.2) but is irrelevant
to the motional dynamics of the atom. Setting the constant offset to zero, the
mechanical Hamiltonian Hmech can be written as a harmonic oscillator Hmech =
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4.2. Energy Spectrum of a Single Trapping Site

p2

2m
+ mω2

xx
2

2
, where m = 1.443 · 10−25 kg is the mass of a single 87Rb atom and

ωx =

√
2P η α

(s)
1064

π ε0 cw2
1064m

(
4π

1064nm

)2

(4.3)

is the angular frequency of the oscillator. The majority of the experiments
that are described in the following chapters were conducted with P1064 = 1.25 W.
Based upon the intensity calibration that was performed through spectroscopy
of AC Stark shifted transitions (see Chapter 3.3.2), this value leads to a potential
depth of Ug,1064 = −h · 35 MHz = kB · 1.7 mK and a trap frequency along the
x-axis of ωx = 2π · 535 kHz. This result agrees2 with a measured value of
ωx = 2π · 531(2) kHz (see Chapter 4.4).

The potential along the z-axis can be treated analogously. For the majority
of experiments that are described in the subsequent chapters, the intracavity
trap (with a waist of w772 = 29.6µm) was operated at a power of P772 = 6.5µW
measured behind the outcoupling mirror3 that has a transmission of TOC =
101 ppm. With the calculated ground state polarizability α

(s)
772 = −11989 a.u.,

the expected potential height was Ug,772 = h·10.6 MHz = kB ·0.51 mK with a trap
frequency of ωz = 2π · 404 kHz. This value is inconsistent with the measured
value (see Chapter 4.3) of ωz = 429 kHz. The source of the discrepancy can
probably be found in the power calibration that was performed with a power
meter of unknown accuracy and which relies on precise knowledge of TOC (see
chapter 2.2).

Along the y-axis, the mechanical potential is given by the Gaussian envelope
of the 1064 nm standing-wave beam

Ug,1064(y, x = z = 0) = −1

4

(
16P1064 η

π cε0w2
1064

)
α

(s)
1064e

−2y2/w2
1064 . (4.4)

Harmonic approximation yields a trap frequency of

ωy =

√
16P1064ηα

(s)
1064

πε0w4
1064m

. (4.5)

2The crucial value η was measured in situ through spectroscopy of the AC Stark shifts. As the
AC Stark shifts are not sensitive to the beam geometry, deviations in the experimentally
found trap-frequency from the theoretical prediction can be expected when the standing-
wave is not fully modulated.

3Although terms like cavity enhanced power or circulating power are widely used, the power
going through the cavity differs from the power measured behind the cavity due to scat-
tering losses alone. This apparent paradox is resolved by the fact that the electric and
magnetic field of a standing-wave light field are out of phase, whereas they are in phase
for a propagating light field. Thus, the Poynting vector reverses its sign during one optical
period in the case of a standing wave. A fully modulated standing wave has exactly zero
intensity which does not contradict the maintenance of large electric field.
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Figure 4.1.: Energy eigenstates of the sinusoidal trapping potential
(a) The potential (blue line) generated by the intracavity trap at a power of
P772 = 6.5µW and its harmonic approximation (red line). The black lines
on the left side indicate the energy eigenstates E(n) = (n + 1/2)ωz, ωz =
2π · 404 kHz found in harmonic approximation. The black lines on the right
side indicate the energy bands found with an exact one-dimensional band-
structure calculation. (b) Spacing E(n)−E(n−1) between consecutive energy
eigenstates. The black dots are calculated using the center of mass energy of
the (very flat) energy bands and the red line indicates the constant spacing
that is found in harmonic approximation.

For P1064 = 1.25 W, this results in ωy = 2π · 8 kHz� ωx, ωz.

The actual mechanical energy eigenvalues of the sinusoidal trapping poten-
tial can be determined by performing a 1D lattice calculation (see Appendix B).
The results will generally be energy bands that are parametrized by a continuous
quasi-momentum q and an integer band index n. For deep lattices U(0)/~� ω,
the bands become flat in the sense that the energy eigenvalues within one band
are degenerate in q. Energy eigenstates will be spatially delocalized over the
entire lattice. In the case of deep lattices, tunneling rates between neighbouring
sites will be low, such that long-lived spatially localized superposition states
can be generated within the flat energy bands. These approximate the oscil-
lator eigenstates. Figure 4.1(a) shows the trapping potential along the z-axis,
generated by the intracavity trap for P772 = 6.5µW (blue line) together with
the harmonic approximation (red line). On the left side of the graph, the dis-
crete oscillator eigenstates of the harmonic approximation are shown and form
a ladder of states with uniform spacing En − En−1 = ~ω = h · 404 kHz. On the
right side, the exactly calculated energy band are indicated by black regions that
span vertically from the lower to the upper band edge. The bands are almost
flat until close to the edge of the potential barrier. Panel (b) shows the spacing
of adjacent energy eigenstates for all 33 trapped states. The red line indicates
the constant spacing of 404 kHz, which is valid for harmonic approximation.
The values are well described by ∆E = h · (404 − 4n) kHz for n ≤ 20. This
anharmonicity of the trapping potential results in a state-dependent transition
frequency for two-photon Raman transitions and microwave transitions between

48



4.3. Raman Spectroscopy and Ground-State Cooling
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Figure 4.2.: Raman sideband spectroscopy (a) Raman spectrum
recorded after Sisyphus cooling. The inset shows a close-up of the asym-
metrically broadened blue sideband. The red line serves as a guide to the
eye. (b) Raman spectrum recorded after sideband cooling. The inset shows
the results of an additional high-resolution scan of the blue sideband. The
red line is a single Lorentzian fit to the data. Note the different scales of the
x-axis of the two insets.

the hyperfine ground states. As an experimental consequence, an asymmetric
line broadening is observed (see the following chapter).

4.3. Raman Spectroscopy and Ground-State
Cooling

As discussed in Chapter 2.6, stimulated Raman transitions driven by the trap-
ping light in combination with a running-wave beam can be used to drive tran-
sitions between mechanical states. Figure 4.2(a) shows the result of a spec-
troscopical measurement that was performed by preparing the atom in the
|F = 1,mF = 0〉 internal spin state, attempting Raman transfer for a dura-
tion of T = 300µs, and finally checking for population in the F=2 ground state.
The intracavity trap was set to a power of P772 = 6.5µW measured behind the
output-coupling mirror, and the running-wave Raman beam propagating along
the x-axis (see Chapter 2.6) was set to a power of 1µW. Two transfer reso-

49



4. Trap Geometry and Cooling Dynamics

nances are visible that correspond to the ascending (∆n = +1) and descending
(∆n = −1) motional sideband. The carrier that corresponds to ∆n = 0 is
completely suppressed, as expected from theory (see Chapter 2.6). Both peaks
have widths that by far outnumber the minimum possible width of 3 kHz given
by the probing duration. The broadening of both lines is asymmetric with a
moderate slope towards zero detuning and a steep edge at a well-defined max-
imum (positive and negative) detuning. This broadening is a consequence of
the anharmonicity of the trapping potential as discussed in Chapter 4.2. For
the parameters of the experiment, the spacing between neighbouring mechan-
ical energy eigenstates decreases by 4 kHz per energy eigenstate. The Raman
transfer lines to the next lower and higher states correspondingly appear shifted
inwards. The inset in Fig. 4.2(a) shows a close-up of the blue detuned Raman
line. The line is broadened by approximately 25 kHz, which corresponds to
significant atomic population up to the 6th mechanically excited state.

Numerical evaluation of such asymmetrically broadened transition lines (see
Chapter 3.3 and reference [121]) can in principle serve as a thermometry tech-
nique. A more elaborate technique that enables the measurement of atomic
population in individual mechanical states is discussed in Chapter 5; a numeri-
cal evaluation of the Raman line shapes will therefore not be discussed here.

Unitary manipulations are reversible, and as such they can never remove
entropy from an initial mixed thermal state. If prior knowledge about the state
exists, for example if the atom is prepared in the |F = 2,mF = 0, n = 2〉
mechanical Fock state, a π-pulse on the |F = 2,mF = 0, n = 2〉 ↔ |F =
1,mF = 0, n = 1〉 transition at a two-photon detuning δf > E21/h below the
bare hyperfine-transition frequency, followed by a π-pulse on the |F = 1,mF =
0, n = 1〉 ↔ |F = 2,mF = 0, n = 0〉 transition at a two-photon detuning
δf < E21/h above the hyperfine-transition can bring the atom to the motional
ground state. However, if this same sequence is applied to an atom that is
already in the ground state |F = 2,mF = 0, n = 0〉 initially, the atom will be
brought to |F = 1,mF = 0, n = 1〉, an excited motional state. This problem
can be counteracted by introducing an incoherent process that carries entropy
into the environment. In the discussed scheme, this is achieved by optically
repumping the spin-degree of freedom after performing a π-pulse on the Raman
sideband, descending a motional quantum on a given transition.

To perform ground-state cooling, transfer on the descending motional side-
band |F = 1,mF = 0, n〉 ↔ |F = 2,mF = 0, n − 1〉 is alternated with optical
pumping of the atom back to |F = 1,mF = 0〉 [81,83,85,122]. In the Lamb-Dicke
regime, where the mechanical extent of the atomic wave function is small com-
pared to the wavelength of the radiated light, the optical pumping is expected to
leave the mechanical state unperturbed, such that per cycle one motional quan-
tum can be removed from the system. Once, the state |F = 1,mF = 0, n = 0〉
is reached, the atom is rendered dark with respect to excitation by this se-
quence. Figure 4.2(b) shows a Raman spectrum that was taken with the same
parameters as the spectrum in panel (a), but after 21 periods of Raman side-
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4.4. Eigenmotions in Non-Orthogonal Lattices

band cooling. During these 21 periods, the Raman coupling was permanently
switched on and optical pumping sequences to |F = 1,mF = 0〉 were generated
with a periodicity that was approximately equal to the duration of a π-pulse of
the Raman coupling.

In contrast to the spectrum recorded in the thermal case, only a single tran-
sition line corresponding to the ascending motional (blue detuned) sideband is
visible. Consistent with theoretical expectation, the asymmetry of the single
transfer line vanished as well. The inset shows a separate dataset with higher
resolution. The red line is a Lorentzian fit with a full width at a half maximum
of 3(2) kHz, which is compatible with the theoretical expectation of a single
Fourier-limited transition line. The line center is found at 425.58(3) kHz. In-
dependent measurements (see Chapter 5.2) indicated that the differential AC
Stark shift of the two hyperfine ground states shifts their splitting ∆HF/~ by
3 kHz towards smaller frequencies. In fact, the two well-defined, high-frequency
edges of the lines in Fig. 4.2(a) are symmetric around −3 kHz. The actual de-
tuning of the motional sideband from the carrier frequency and therefore the
trap frequency is ωz = 428.58(3) kHz. The quoted error is purely statistical.

4.4. Eigenmotions in Non-Orthogonal Lattices

4.4.1. Theory

The two standing-wave beams that form the optical lattice in the cavity do not
intersect in a perfect orthogonal manner. A deviation of β = 27.0(3) · 10−3 rad
was identified by evaluating fluorescence images of trapped atom pairs (see
Chapter 2.4). Thus, the pattern of the possible trapping sites in the skewed
lattice will deviate from a rectangular checkerboard pattern. Besides this in-
fluence on the geometry of the whole lattice, a second, non-trivial consequence
of the non-orthogonality appears in the geometry of each individual trapping
site. In this chapter, only two-dimensional effects that occur in the xz-plane
are discussed. The weak confinement along the y-axis is neglected and is not
expected to influence the motional dynamics in the xz-plane.

A sketch of the trapping geometry is shown in Fig. 4.3. The blue-detuned in-
tracavity trap at a wavelength of 772 nm is aligned with the z-axis and generates
a sinusoidal optical potential with maximum height of Uz = 1/4α772E

2
772, where

α772 is the dynamic polarizability of the ground state at the trap wavelength
and E772 is the amplitude of the standing wave’s electric field. The transver-
sal, red-detuned trap generates an attractive potential with a maximum height
|Ux| = 1/4α1064E

2
1064. In this discussion, the non-constant beam-envelopes are

ignored as their typical length scale z0 � λ is large compared to the modulation
of the potential due to the standing-wave structure. While they are thus unim-
portant for the consideration of a single trapping site, they will be important in
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Figure 4.3.: Eigenmotions in a non-orthogonal lattice (a) Sketch of the
trapping geometry. The intersection angle of the two standing-wave beams
deviates by β = 27.0(3) · 10−3 rad from orthogonality. (b) Lines of constant
potential U(~r) in the case of non-degenerate trap frequencies ωx � ωz. The
arrows mark the orientation of the eigenmotions, which are well aligned with
the coordinate axes. (c) The equipotential lines in the case of degenerate trap
frequencies ωx = ωz = ω. Owing to β 6= 0, the equipotential lines deviate
from circular symmetry and two distinct eigenmotions are formed along the
diagonal directions with non-degenerate trap frequencies.

the next chapter. The total trapping potential can be denoted by:

U(~r) = Uz sin(~kz · ~r)2 + Ux sin( ~kx · ~r)2 (4.6)

The two lattice axes are given by ~kz = 2π/772 nm · êz, and ~kx = 2π/1064 nm ·
(sin(β)êz + cos(β)êx). With this definition, the potential vanishes at the origin
and a two-dimensional Taylor expansion consists of only four quadratic terms:

U(~r) =
1

2

∑
(i,j)∈{x,z}

rirjHi,j +O(|r|3), (4.7)

where Hi,j = ∂2U(~r)/∂rirj is the Hessian matrix of the potential evaluated
at the origin. With m being the mass of the trapped atom, the trap frequencies
of the harmonically approximated individual one-dimensional lattices are ωi =√

2Ui/m |ki|. In terms of these trap frequencies the Hessian matrix can be
expressed as:

H = m

(
ω2
z + ω2

x sin(β)2 ω2
x sin(β) cos(β)

ω2
x sin(β) cos(β) ω2

x cos(β)2

)
. (4.8)

Independent of the angle β, the quadratically approximated potential fac-
torizes into two one-dimensional harmonic oscillators along directions that are
eigenaxes of the Hessian matrix with oscillator frequencies given by the corre-
sponding eigenvalues. Diagonalisation of equation 4.8 yields the following trap
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frequencies:

ω2
± =

1

2

(
(ω2

x + ω2
z ±

√
ω4
x + ω4

z − 2ω2
xω

2
z(2 cos(β)− 1)

)
(4.9)

Several cases can be distinguished:

• β = 0, ωx 6= ωz: The eigenaxes coincide with the coordinate axes and the
trap frequencies along the x- and the z-axis are identical to the individual
1D-lattices’ trap frequencies, ωx and ωz respectively.

• β = 0, ωx = ωz: The Hessian matrix is proportional to the identity
matrix and the potential has cylindrical symmetry. The eigenvalues are
degenerate and no preferred directions can be identified. The trajectory
of a classical particle that is launched from the coordinate origin into an
arbitrary direction will not leave the one-dimensional space spanned by
this direction.

• β 6= 0, ωx � ωz: For a large mismatch of the trap frequencies, the
eigenaxes will remain almost perfectly aligned with the coordinate axes.
The potential landscape of a single trapping site in this case is sketched
in Fig. 4.3(b). The trap frequencies also remain almost unperturbed.

• β 6= 0, ωx = ωz = ω: For a small angle β, the Hessian matrix can be
approximated as the sum of a diagonal matrix ω2 · 1 and a symmetric,
purely off-diagonal matrix ω2βσx (with the Pauli matrix σx). The eige-
naxes are consequently found along the diagonal directions (êx ± êz)/

√
2,

independent of the size of β. The trap frequencies can be approximated
to ω± ≈ ω(1± β). The potential landscape is shown in Fig. 4.3(c). While
the equipotential lines form circles for β = 0, they deviate from cylindri-
cal symmetry for β 6= 0 and preferred directions4 along the diagonals are
found.

By tuning the depth of the two traps, the ratio of their trap frequencies
can be influenced. Figure 4.4(a) shows simulated eigenenergies En+,n−(Pz) =
(n+ + 1/2)ω+(Pz) + (n− + 1/2)ω−(Pz) as a function of depth of the lattice along
the z-axis, which is parametrized by the optical power Pz in the standing wave.
The units of Pz are chosen such that the two traps’ frequencies are degenerate
for Pz = 1 and therefore absorb all of the effects of geometry and the atomic
properties. An avoided-crossing structure is found in the simulated values for
β = 0.1 (red solid lines), which is not present in the uncoupled case β = 0 (black
dotted lines).

4“Preferred directions” in the sense that an atom launched into these directions will never
deviate from a line spanned out of the origin along these directions. Into all other direc-
tions, complex motional patterns will be formed that reflect the slow exchange of kinetic
energy from one eigenmotion into the other and back.
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Figure 4.4.: Mechanical energy eigenstates in a non-orthogonal lat-
tice (a) Energies E = (n++1/2)~ω++(n−+1/2)~ω− as a function of the power
Pz applied to the trap along the z-axis calculated for β = 0.1 (red lines) and
β = 0 (black dotted lines). The units of power are chosen such that Pz = 1
leads to a trap frequency in the bare standing wave along z, which is identical
to the one along x (ωx = ωz = 1). (b) Position of the transfer resonances on
the blue sideband as a function of the power of the intracavity trap (observed
behind the outcoupling mirror). The red line was a calculated using equation
4.9 with parameters ωx = 531(2) kHz, ωz/

√
Pz = 2π · 171.0(5) kHz(µW)−1/2,

and β = 22(10) · 10−3 rad that were found by fitting to the data. (c) Sin-
gle spectrum of the blue sideband region recorded at Px,1064 = 1.4 W and
Pz,772 = 9.625µW. (d) Single spectrum recorded for Px,1064 = 1.4 W and
Pz,772 = 9.375µW. The red line in both spectra are double Lorentzian fits to
the data.

4.4.2. Raman Spectroscopy of Motional Coupling

The avoided crossing of the trap frequencies can be measured through Raman
sideband spectroscopy of the blue sideband for different settings of P772, the
blue intracavity trap’s power, which changes the ratio of the trap frequencies.
To avoid the asymmetric broadening of transition lines that was discussed in
the previous chapter, spectroscopical interrogation with a weak probe pulse was
preceded by 21 periods of Raman sideband cooling, as described in Chapter
4.3. The frequency of the red-sideband pulses that were used for cooling was
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4.4. Eigenmotions in Non-Orthogonal Lattices

determined for each setting of P772 from an initial spectrum that was recorded
for a thermal state. Raman cooling followed by an optical pumping sequence
prepared the atom in |5S1/2, F = 1,mF = 0〉. Raman interrogation (see Chapter
2.6) was then performed for 300µs followed by hyperfine-state detection (see
Chapter 2.5.1).

Figure 4.4(b) shows the positions of the transfer lines that were found by
fitting double Lorentzians to the individually recorded spectra (see Panels (c)
and (d) for example spectra). The power of the 1064 nm trap was held constant
at P1064 = 1.4 W. The red line is a fit of equation 4.9 to the data. An x-
trap frequency of ωx = 2π · 531(2) kHz was found, that is consistent with the
theoretical value ωx = 535 kHz (see Chapter 4.2).

For trap powers Pz < 8µW and Pz > 11µW, the position of the single
observed transfer resonance is well described by the square-root dependency
ωz(Pz) = 2π · 171.0(5) kHz/

√
µW
√
Pz. In this regime, the eigenmotions are

aligned with the x- and z-axis and only the eigenmotion along the z-axis can be
driven with the used Raman geometry (see chapter 2.6). As Pz approaches the
value 9.375µW, the eigenmotions start to bend away from the coordinate axis.
Both eigenmotions now have a non-zero projection onto the z-axis and thus
can be addressed by the Raman fields. For 8µW < Pz < 11µW, two transfer
resonances are observable, and their positions form an avoided crossing.

Figure 4.4(c) shows the blue-sideband part of a single spectrum recorded
for P772 = 9.375µW intracavity-trap power. Two well-separated transfer reso-
nances of approximately equal strength are clearly discriminable. These corre-
spond to the diagonally aligned eigenmotions with equal projections onto the
z-axis. Figure 4.4(d) shows another spectrum recorded for a greater intracav-
ity power of P772 = 9.625µW. Again, two transfer resonances can clearly be
discriminated. But in contrast to the data shown in panel (c), the two lines
are not equally strong. The line with the greater frequency corresponds to an
eigenmotion that has a greater projection onto the z-axis and correspondingly a
greater matrix element and Rabi frequency. The weaker line corresponds to the
orthogonal eigenmotion, which for even greater P772 will align with the x-axis
and correspondingly not be visible in the spectrum any longer.

This effect has been mentioned in the literature before only in the context
of ultracold quantum gases [120] where it was observed by adiabatically tuning
through the avoided crossing and observing the corresponding transfer of ex-
citation in time-of-flight imaging. The data presented here constitute the first
spectroscopic observation of a motional coupling in an optical lattice that is
caused by lattice non-orthogonality.

4.4.3. Observation of Stable Trapping Regions

In the previous chapter, the consequences of the deviation of the lattice geom-
etry from perfect orthogonality for the orientation of a single trapping site’s
eigenmotions were discussed. When tuning the system to degenerate trap fre-
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quencies, the new eigenmotions will be diagonally oriented and will both have
non-zero projections onto the z-axis, along which the Raman beams can couple
to motional states. In this situation, two-dimensional Raman cooling is possible
in a geometry that would otherwise permit only one-directional cooling.

Experimental results have demonstrated that this is also true for optical mo-
lasses cooling. The cooling beam is impinged at 45◦ within the xy-plane (see
Chapter 2.1) in a lin-⊥-lin polarization configuration. Optical molasses cool-
ing relies on a Sisyphus effect that is generated in the polarization lattice of
the cooling light [123]. Thus, this method can only cool motion that occurs
along the direction of the polarization gradient. In the experimental apparatus
these are the x- and y- directions. For a setting of the trap frequencies’ ratio
ωx/ωz 6= 1, one of the potential’s eigenmotions will be aligned with the z-axis
and will therefore remain uncooled.

Owing to the Gaussian envelope of the beams that generate the two-dimen-
sional lattice, the ratio of trap frequencies ωx/ωz along the x- and z- direction in
one trapping site depends on where the particular lattice site is located within
the intersection region. Figure 4.5(a) shows the relevant geometry. The in-
tensities of both intersecting standing-wave beams have a Gaussian envelope
transversally to the respective beam axis. Correspondingly, the trap frequency
along a particular beam for a given site will be smaller the further away the site
is from the beam axis. Trapping sites with identical trap frequencies along both
individual standing-wave beams are generally located on hyperbolas. These
merge into a cross when the trap parameters are chosen such that the two trap
frequencies ωx and ωz for motion along each beam found at a site centered within
this beam are degenerate. The eigenmotions within the xz-plane are oriented
along the diagonal directions for these sites. The Sisyphus cooling scheme is
expected to be more effective for these sites, as all three motional eigenaxes
(including the weakly confined motion along y) have a finite projection onto the
direction of the optical molasses’ polarization gradient.

The cooling performance influences the steady-state temperature of an atom
at a given site. For atoms that are not trapped at sites located on the described
hyperbolas, the optical molasses cools only the motion along the x- and y-axis
and consequently high temperatures of the motion along the z-axis are expected.
Atomic temperatures that are comparable with the lattice depth of typically
1 mK along the z-axis will quickly lead to loss of an atom from the trapping
site. The discussed patterns should therefore be observable by recording the
position-resolved lifetime of the atoms in the trap.

Panels (b)-(d) show superimposed images of loaded atoms for different settings
of the intracavity trap power P772 = 7.6, 5.7, 10µW respectively. After loading
a random number of atoms from the MOT, ten images were taken; each image
typically showed up to five well localized atoms (similar to the images in Chapter
2.4). Several thousand of these images were then added, such that a great pixel
value in the resulting images corresponds to having seen a single atom at this
particular location in many images compared to not having seen atoms very
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Figure 4.5.: Formation of stable trapping regions (a) The two inter-
secting standing-wave beams that create the two-dimensional lattice have
Gaussian envelopes. The ratio of an individual trapping site’s trap frequen-
cies ωx and ωz therefore depends on the location of the site in the intersection
region. (b) Atom distribution averaged over many experimental repetitions
for P772 = 7.6µW and P1064 = 0.88 W. The red lines indicate spatial regions
of identical ratio ωz/ωx. The solid line indicates ωz/ωx = 1. (c) The same
experiment for P772 = 5.68µW (d) The same experiment for P772 = 10µW.

often in the dark regions. The power of the 1064 nm trap was held constant at
P1064 = 0.88 W. Based on the spectroscopy presented in Chapter 4.4.2, identical
trap frequencies along the two beams individually should thus be reached for
a intracavity trap power of P772 = 6.7µW. The red lines indicate regions of
identical ratio of the two trap frequencies ωz/ωx with the solid line denoting
ωx = ωz.

• The trap frequencies in the center of the intersection region are almost
identical in panel (a) and the long-lived atoms form a star-like pattern
that is slightly elongated along the x-axis.

• Panel (c) shows a situation where ωz � ωx. The atoms are predominantly
found to the left and the right of the center where the intracavity trap has
decayed from its maximum value and the trap frequency along the cavity
direction has become identical to the trap frequency along the 1064 nm
standing-wave beam.

• The opposite situation ωz � ωx is observed in panel (d) where the atoms
are arranged along two hyperbolas above and below the trap center.

In all three images, the atoms are aligned along the independently calculated
regions of degenerate trap frequencies. During data collection, one could observe
how atoms that were initially trapped in an unstable region appeared at different
trapping sites in consecutive images until they were transferred by chance to a
site with degenerate trap frequencies. Once they had reached such a site, they
seldom changed their position.

The data presented in this chapter was collected with both traps linearly
polarized. It was later observed that elliptical polarization components of the
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intracavity light drastically enhances performance of the optical molasses cool-
ing. The patterns shown in Fig. 4.5 vanish and the atoms are homogeneously
distributed over a region that appears to be limited by the envelope of cooling
beams. This effect remains largely unexplained and offers an interesting future
research possibility.
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5. Detection and Manipulation of
Discrete Mechanical States

5.1. Introduction

Since the first demonstration of optical dipole traps [88], the degree of control
over trapped atoms has tremendously grown. To a great extent, this progress
has been driven by the development of new cooling techniques. Residual thermal
excitation of the motion of trapped atoms is a common source of experimen-
tal uncertainty (see Chapter 3.3.1) and cooling to the ground state of motion
appears as a canonical goal. For a single trapped atom, this has recently been
achieved by different groups along one spatial direction [83, 85, 124] and three-
dimensionally [81, 84, 125]. In all of these cases, vanishing of the descending1

motional sideband of either a Raman (see Chapter 2.6) or a microwave tran-
sition was used as an unambiguous signal of having reached the lowest energy
state.

To date, only few publications exist, which focus on the mechanical degree
of freedom of trapped neutral atoms, but do not report solely on cooling or
trapping. Among these, the transient dynamics of trapped ensembles of neu-
tral atoms in reaction to a modulation of the trapping potential was investi-
gated [126, 127], an ensemble of atoms was prepared in the first excited mo-
tional state [128] and a scheme to manipulate the motional state through mi-
crowave transitions was reported [124,125]. Different techniques were published
to characterize motion of trapped neutral atoms. For large ensembles, ballistic
expansion followed by absorption imaging [128] is a well-established technique,
especially in ultracold quantum gas experiments. While this technique enables
the measurement of the full momentum distribution of an ensemble, it intrinsi-
cally leads to loss of the atoms and is not applicable to small ensembles. Release
and recapture techniques [129] provide an indirect measure of the momentum
distribution of trapped atom, but they also inevitably lead to atom loss. Eval-
uating the line-strength ratio of motional sidebands in Raman spectroscopy
allows to measure the temperature of a trapped atoms [81, 84, 122, 130]. This
technique is applicable to single particles, but makes a-priori assumptions about

1For a transition to an excited state, the descending sideband is red detuned from the tran-
sition frequency. For stimulated transitions to energetically lower states, the descending
sideband appears at a higher frequency and therefore may appear as the blue detuned
sideband.
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the population distribution over motional states that cannot be verified. It thus
subsumes the complex mechanical degree of freedom in a single number, namely
the temperature, describing a statistical ensemble quantity. Recently, a ther-
mometry technique was reported that is based on evaluating asymmetrically
broadened transition lines in state-dependent potentials [121]. While this tech-
nique is, in principle, applicable to single particles, it also makes assumptions
about an energy distribution that are difficult to verify.

This is in striking contrast to trapped-ion systems, in which extensive use is
made of the motional degrees of freedom [122]. Here, the applications span from
fundamental topics like the generation of Schrödinger cat states [131] to applied
topics in quantum simulation [132] and quantum information processing [133].

Applications for neutral atoms do exist. Theoretical papers have proposed
the use of the huge Hilbert space of harmonic oscillators for applications in
quantum information processing [134–136] and optomechanics [137,138].

In addition to ground-state cooling (see Chapter 4.3) as the initialization of
a well-defined motional state, the coherent manipulation and readout of the
motional state are important prerequisites for the realization of these protocols.
This chapter reports an experimental technique for measuring the population
of individual mechanical energy eigenstates of optically trapped atoms. An out-
standing property of this technique is that it does not lead to atom loss or
alteration of the detected motional state, aside from the unavoidable quantum
projection, and is applicable to single atoms. As a measurement tool it tran-
scends established thermometry techniques in that it does not make a-priori
assumptions about an energy distribution and does not require calibration. The
theoretical background is discussed in Chapter 5.2. Experimental results on the
characterization of motional states are presented in Chapter 5.3.1. To this end,
the technique was applied to the motional state found after Sisyphus cooling,
and states found after Sisyphus cooling followed by additional Raman sideband
cooling. Chapter 5.3.2 discusses the preparation of a singly excited motional
Fock state, using coherent Raman sideband manipulation of the motional state.
Further, modulation of the trapping potential’s depth is used as a method to
directly manipulate the motional state. Results are presented in Chapter 5.3.3.
Parametric excitation of the motional ground state results in a state that is well
described by the phonon distribution of a squeezed motional vacuum state.

An overview over future research opportunities that are enabled by this tech-
nique concludes this chapter.

5.2. Theory

The discussed technique relies on generating elliptical polarization components
of the intracavity trap2. The polarization of the trapping light is described by

2This is only possible because the cavity is non-birefringent and therefore provides two
degenerate, orthogonally polarized modes.
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the complex polarization vector ε̂ with εz = 0. When the light is elliptical,
=(ε∗xεy) 6= 0, a vector light shift is generated (see Chapter 3.2) and the energy
shift of the hyperfine ground states |5S1/2, F,mF 〉 caused by the AC Stark shift
will be given by

∆EACS
F,mF

=
−|E|2

4

[
α(s) − α(v)=(ε∗xεy)

mF

F

]
, (5.1)

where α(s) and α(v) are the scalar and vector polarizabilities (see Chapter
3.2). The relative AC Stark shifts between different mF states will be small
compared to the hyperfine splitting ∆HF = 6.835 GHz of the two ground states.
It can therefore be assumed that hyperfine breakdown does not play a significant
role, and the hyperfine states thus remain valid energy eigenstates. The scalar
α

(s)
772.37 nm = −11989 a.u. and vector α

(v)
772.37 nm = −6689 a.u. polarizabilities for

the relevant wavelength λ = 772.37 nm were previously calculated.

As long as the light is not completely circularly polarized, it causes a ∆mF =
±2 coupling between Zeeman states of one hyperfine-spin manifold. The ac-
tual energy eigenstates will therefore deviate from the |F,mF 〉 states (that are
defined with the quantization axis chosen along the z-axis). To prevent this

from occuring, a magnetic field ~B = Bêz is applied along the z-axis that lifts
degeneracy of the |F,mF 〉 states. The shift of Zeeman states caused by the
magnetic field is ∆EB

F,mF
= µB gF mF B, where µB is the Bohr magneton and

gF is the Landé factor of the particular hyperfine spin. If the Zeeman splitting,
∆EB

F,mF
� 1

4
α(v)|E|2=(ε∗xεy)/F , dominates the scale of the vector light shifts,

the effects of off-diagonal elements in the AC Stark shifting Hamiltonian can be
ignored.

The elliptical trapping light and the resulting mF -dependent AC Stark shifts
lead to state-dependent trap frequencies (see Chapter 4.2):

ωF,mF
=

√
2P772

π ε0 cw2
772TOC m

(
α

(s)
772 + =(ε∗xεy)α

(v)
772

mF

F

)( 4π

772.37 nm

)2

(5.2)

wherem is the mass of a single 87Rb atom, w772 = 29.6µm is the 1/e2-intensity
radius of the cavity mode, TOC = 101 ppm is the transmission of the outcou-
pling mirror and P772 is the power of the intracavity trapping light measured in
transmission behind the outcoupling mirror.

Figure 5.1 shows how this situation can be exploited to detect the motional
state that is occupied by the single atom in a non-destructive manner. The
state of the atom is denoted by |F,mF , n〉, where F,mF describes the internal
hyperfine state and n is the mechanical state (n = 0 is the ground state of
motion). The atom is initially optically pumped to the |1, 0, n〉 internal hyperfine
state. In the next step, a microwave field is impinged that drives magnetic
dipole transitions between the ground states. The wavelength of the microwave
field is orders of magnitude greater than the extent of the atom’s spatial wave
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Figure 5.1.: Working principle Elliptical components of the dipole-
trapping light in combination with a non-zero vector polarizability generate
state-dependent trap frequencies. In this situation, the transition frequency
of a magnetic dipole transtion between the two hyperfine ground states de-
pends on the mechanical state |n〉 even for ∆n = 0 transitions that can be
driven with microwave radiation.

function. Therefore, the coupling between the hyperfine states can be regarded
as independent of the atom’s position. From the orthogonality of the mechanical
wave functions then directly follows that the microwave does not couple to
the atom’s motional degree of freedom and that it can only drive ∆n = 0
transitions3.

The AC Stark shift of an mF=0 state does not depend on the hyperfine
spin F , even in the presence of trap ellipticity, and the mechanical states in
the |2, 0, n〉 and |1, 0, n〉 manifolds are equally spaced. Microwave transitions
between the F=1 and F=2 ground states with a π-polarized microwave can
thus be driven resonantly at ∆HF = 6.834683 GHz regardless of the mechanical
state. The situation changes for σ± polarized microwave field components. For
example, σ+-polarized fields will drive transitions |1, 0, n〉 ↔ |2, 1, n〉. Since
the trap frequency of the two states differs, the same mechanical state |n〉 will
have different energy depending on the atom’s internal state |F,mF 〉. The spin
transitions can thus be driven at frequencies

fn = ∆HF + (n+ 1/2) · (ω2,1 − ω1,0)/2π + µB gF=2B/h (5.3)

that depend on the mechanical state n. In combination with cavity-assisted
hyperfine-state detection (see Chapter 2.5.1), population of a certain mechanical
state can be tested in a non-destructive manner.

Figure 5.2 shows a microwave spectrum that was recorded by initializing
the atom in the |F=1,mF=0〉 ground state, attempting microwave transfer for
300µs at a given frequency and testing for atomic population in F=2. This

3This can be circumvented using state-dependent lattices, as was shown in a joint publication
by the groups of Dieter Meschede and Poul Jessen [124]
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Figure 5.2.: Microwave spectroscopy in a spin-dependent lattice
Microwave spectrum covering all transitions from |F=1,mF=0〉 to the F=2
ground state. The π-polarized transition appears as a single line, because the
trap frequencies of the mF = 0 states are identical. The σ+ and σ− polarized
field components that lead to ∆mF = ±1 transitions generate well-resolved
line tuples. Each of the individual lines corresponds to a single mechanical
state and the line height indicates population of this state.

experiment is repeated at a rate of 1 kHz with interleaved optical molasses cool-
ing until simultaneously exposed images indicate loss of the single atom. While
repeating the experiment, the microwave frequency is repeatedly swept over the
full range of the spectrum during 1 second.

The spectrum clearly separates into three parts. A single line close to zero
detuning from ∆HF stems from π-polarized components of the microwave. As
discussed above, the frequency of the π-polarized |1, 0〉 ↔ |2, 0〉 clock transfer
is not influenced by the mechanical state or the presence of the magnetic field4.
The fact that the line is slightly shifted stems from a differential AC Stark shift
of the hyperfine states. In the derivation of the AC Stark shift, starting from
the finestructure states as described in Chapter 3.2, this effect appears only in
higher-order perturbation theory [91]. The line will always shift towards smaller
transition frequencies, unless the trap wavelength falls within the 6.8 GHz in-
between transitions from F=1 and F=2 to some excited states. In this case,
the trap is red-detuned with respect to one state and blue-detuned and will
consequently repel the two hyperfine ground states from one another.

Transitions driven by the σ+ and σ− polarized magnetic-field components
of the microwave appear as two tuples to the left and right of the central π-
polarized peak. Both tuples consist of well separated lines that correspond to
individual mechanical states. The trap frequencies ω2,0 = ω1,0 = 2π · 429 kHz
for the intracavity trap power P772 = 6.5µW were determined by Raman spec-
troscopy. The spacing between the mechanical lines within one tupel is 11 kHz,
such that the trap frequencies of the mF = ±1 states in the F=2 manifold are
found to be ω2,1 = 2π ·440 kHz and ω2,−1 = 2π ·418 kHz. Using equation 5.2, the
ellipticity of the trap can be calculated as =(ε∗xεy) = 0.19, which corresponds to

4For small magnetic fields that do not uncouple the hyperfine spin.
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a polar angle of θ = arcsin[2=(u∗xuy)] = 22.3◦ on the Poincaré sphere.

While the relative height of the two tuples is given by the microwave field’s
polarization, the relative height of individual lines within one tuple is propor-
tional to the population in the given state. This height decreases with distance
of the particular line from zero detuning in both tuples. This is consistent
with the expectation of Boltzmann distributed atomic population in the energy
eigenstates for an atom in a thermal state. However, as transition properties
may be different for lines associated with different mechanical states, the max-
imum line height found for unity population probability of the corresponding
mechanical state may not be identical for all lines. A numerical evaluation
of the data therefore requires a model of the involved transitions to calculate
state-dependent gauging factors.

During microwave interrogation, the microwave field is impinged with a con-
stant Rabi frequency ωR and detuning ∆ from the transition frequency of the
|0〉 ↔ |1〉 transition, where |0〉 = |F=1,mF=0, n〉 and |1〉 is one of the coupled
states in the F=2 manifold. The Bloch equations, including a (phenomenologi-
cal) dephasing rate γ, are

d

dt
~R =

 −γ ∆ 0
−∆ −γ −ωR

0 ωR 0

 ~R (5.4)

for the Bloch vector ~R = (ρ01 + ρ10)êx + i(ρ10 − ρ01)êy + (ρ11 − ρ00)êz. In the
case of vanishing dephasing γ = 0 and when initializing the system in state |0〉
(~R(t = 0) = −1êz), the population of state |1〉 after driving for a duration T
can be calculated analytically:

ρ11(T ) =
ω2
R

ω2
R + ∆2

sin2

(
1

2
T
√

∆2 + ω2

)
(5.5)

As the trap frequencies of the atom depend on its spin state, the mechanical
wave functions of the two coupled states will not be the same, even for identical
quantum number n. This will affect the Rabi frequency ωR and thereby the
population of the state |1〉. As the microwave coupling is assumed to be constant
over the spatial extent of trapped atomic wave functions, the transition matrix
element is proportional to the overlap integral 〈Ψn

ω|Ψn
ω′〉 of oscillator eigenstates

with the same quantum number n but different frequencies.

This is a special case of a Frank-Condon factor 〈Ψm
ω |Ψn

ω′〉 of two oscillator
eigenstates n and m of oscillators with different frequencies ω and ω′, but iden-
tical origin. A general analytical solution is found in the literature [139, 140].
Owing to symmetry, the overlap integral will vanish unless n and m are both
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Figure 5.3.: Squared overlap integral 〈Ψn
ω|Ψn

ω′〉2 between the same energy
eigenstates of two harmonic oscillators that have different frequencies ω and
ω′ but identical origin. The numbers on the curves indicate the ratio of the
trap frequencies ω′/ω

even or both odd. In these cases, the overlap integral is determined by:

〈Ψm
ω |Ψn

ω′〉 =

√
q m!n!

2m+n

min(m,n)∑
r=0,1

(2q)r

r!

x(m+n−2r)/2(−1)(m−r)/2

[1/2(n− r)]! [1/2(m− r)]!
, (5.6)

where x = (α − 1)/(α + 1), q = 2
√
α/(α + 1) and α = ω′/ω. The sum is

calculated in increments of two from r = 0(1) for even(odd) m and n. In the
case of m = n this equation simplifies to:

〈Ψn
ω|Ψn

ω′〉 =

√
q

4n
n!

n∑
r=0,1

(2q)r

r!

xn−r(−1)(n−r)/2

[1/2(n− r)]!2
(5.7)

Figure 5.3 shows numerically calculated values of 〈Ψn
ω|Ψn

ω′〉2 for different values
of α = ω′/ω. For the values extracted from the spectrum shown in Fig. 5.1(b),
α = 0.975 and the squared matrix element will deviate from 1 by less than 1 %
up to 10th excited state, and by less than 4 % up to n = 20. In this spectrum,
already the fifth line is barely visible indicating almost no atomic population in
higher excited state. The dependency of the ωR on n is therefore neglected in
the data evaluation.
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Figure 5.4.: Thermometry spectra for different mechanical states (a)
Zoom onto the σ+-polarized part of the microwave spectrum after Sisyphus
cooling. The indicated errors are statistical and the red line is a fit to the
data of the purely interaction-time broadened Rabi model. (b) The same part
of the spectrum after cooling the single atom to its ground state of motion
along the z-axis. The inset shows a zoom onto the pedestal of the single peak
and the dashed line marks the transition frequency for an atom in the first
mechanically excited state. (c) Population of the six lowest oscillator states
found from curves fitted to the data in (a) and (b). The thermal case shown
in red is well described by a Boltzmann distribution with an average number
of 〈n〉 = 1.4 phonons. This corresponds to a temperature of 29µK

5.3. Experimental Results

5.3.1. Resolving Individual Oscillator States

Figure 5.4(a) shows the σ+ part of the microwave spectrum with a higher res-
olution. The error bars are purely statistical and the red line is calculated by
adding multiple instances of equation 5.5 with relative weighting factors and
line centers found by fitting to the data. By normalizing the individual lines’
height Pn to the total transfer probability, P =

∑
n Pn, the atomic population

ρnn = Pn/P of a given motional state n is found5. This result is intrinsically
post-selected on the atom initially being in the internal |F = 1,mF = 0〉 state,

5The sum is carried out only over the states shown in the graph, i.e. up to n=5.
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Figure 5.5.: Preparation of mechanically excited states (a) Population
of the F=2 ground state as a function of the length of a Raman pulse on the
blue sideband. (b) Optical pumping to |F=1,mF=0,n=0〉 is followed by a
π-pulse on the blue sideband of the ∆mF=0 transition. The internal state
is then optically repumped to the initial state. Microwave interrogation on
the σ+-part of the spectrum and hyperfine-state detection are then used to
characterize the mechanical state. (c) Population of mechanical states after
the full sequence.

as otherwise no transfer can occur due to the detuning introduced by the mag-
netic field. The populations that are derived from the spectrum in panel (a) are
displayed as red bars in panel (c). The uncertainties were calculated by Gaussian
error propagation. The red line shows a Boltzmann distribution parametrized
only by the average number of phonons in the system. Fitting to the data finds
this value to be 〈n〉 = 1.4 corresponding to a residual temperature of 29µK.

While the data in panel (a) was recorded after Sisyphus cooling of the atom,
panel (b) shows the results of an experiment that included cooling of the atom
to the motional ground state (see Chapter 4.3) prior to microwave interroga-
tion. As expected, only a single peak is found in the spectrum at the spectral
position of the peak that has the highest population in the thermal case. The
inset shows a close-up of the pedestal of the peak. The side lobes of the peak are
reproduced by the simple Rabi model, which justifies the assumption of γ = 0
(i.e., a purely interaction-time broadened spectroscopy). Numerical evaluation
of this spectrum reproduces the sum of all peak heights to within 1 % of the
value found for the thermal spectrum, indicating that the atomic population in
|F=1,mF=0〉 was identical in both experiments. The dashed line in the inset
marks the frequency at which the n=1 line appears in the thermal spectrum.
The first mechanically excited state is the only state with a significant mechan-
ical population, asides from the ground state. Its population was 1.3(5) %.

5.3.2. Preparation of a Mechanical Fock State

Coherent Raman manipulation of the spin-mechanical state (see Chapter 2.6) in
combination with optical pumping (see Chapter 2.5.2) can be used to prepare
excited mechanical states. To this end, ground-state cooling of the atom is
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5. Detection and Manipulation of Discrete Mechanical States

followed by a Raman pulse on the |F = 1,mF = 0, n = 0〉 ↔ |F = 2,mF =
0, n = 1〉 transition. Figure 5.5(a) shows the population in the F=2 state as a
function of the duration of a Raman pulse on the blue sideband that was applied
after ground-state cooling. The red line is a fit to the data of a sinusoidal
oscillation that decays exponentially to half of its initial modulation depth.6

An effective Rabi frequency of Ωeff = 2π · 32.4 kHz and a decoherence rate of
(304µs)−1 were found. The microwave spectrum in Fig. 5.4 did not show any
sign of decoherence on this timescale although the driven transition is susceptible
to magnetic field fluctuations. The mF = 0 ↔ mF = 0 spin-transition that is
driven here is independent of the magnetic field to first order. The observed
decoherence must therefore origin from the Raman lasers themselves, or from
the mechanical part of the transition. The latter could be caused by intensity
fluctuations of the trap. For the given decoherence rate, the achieved effective
Rabi frequency is still sufficient to transfer almost 90 % of the initial atomic
population into the F=2 ground state after a duration of 15.4µs.

The Raman pulse causes a simultaneous transfer of spin and mechanical state.
In order to prepare the |5S1/2,F=1,mF=1, n=1〉-state, a π-pulse on the ascend-
ing Raman sideband is followed by optical pumping of the spin degree back to
the initial state. Ideally, the optical pumping does not affect the mechanical
state. The entire sequence, including a microwave pulse for final characteriza-
tion of the state is sketched in Fig. 5.5(b). Figure 5.5(c) shows the measured
population of mechanical states. The first mechanically excited state is popu-
lated with a probability of ρ11 = 0.89(1). The remaining population was found
predominantly in the ground state and to a small extent in the second and
third excited states. The residual ground-state population likely stems from
insufficient transfer, due to decoherence during the Raman pulse. Population in
higher excited states must be a consequence of heating during optical pumping
of the spin, following the Raman pulse.

5.3.3. Parametric Modulation

While Raman manipulations simultaneously drive coupled spin-mechanical tran-
sitions, direct modulation of the trapping potential can be used to solely ma-
nipulate the motional degree of freedom. The measurement technique described
above characterizes the one-dimensional motion of the atom along the z-axis.
The corresponding trapping potential is generated by the blue-detuned intra-
cavity trap. The geometry of this trap, including the spatial position of light
nodes, is defined by the position of the cavity mirrors, which are mounted in
a rigid metal structure. To translate the trapping potential, the entire cavity
must be mechanically moved, which is impossible due to the lack of mechanical

6An exponential decay is expected for coherences that decay with a constant rate. The case
of a Gaussian distributed detuning, which remains constant for the duration of one exper-
iment but changes in between experiments, yields coherences that decay with a Gaussian
envelope as a function of time.
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actuators and the physical mass involved. However, it is easy to modulate the
depth of the potential by modulating the intensity of the intracavity lattice.

Parametric modulation of the trap potential, in a periodic manner [126] or
by performing diabatic jumps [127, 141], excites breathing modes of motion in
trapped ensembles. Observing the loss of atoms from a trap as a function
of the frequency of a modulation applied to the depth of the trap is a well-
established technique for determining trap frequencies and forcing evaporative
cooling [142]. If the ensemble is replaced by a single atom in its ground state of
motion, the excited breathing mode will be identical to a mechanical squeezed
vacuum state [143].

The expectation value of the position and momentum coordinate 〈x〉 = 〈p〉 =
0 will be zero in the ground state of motion and in any parametrically excited
state, as modulating the trap depth must preserve the state’s spatial symmetry.
The variances σ2

x = 〈x2〉 − 〈x〉2 and σ2
p = 〈p2〉 − 〈p〉2, however, will behave

differently. In the ground state of motion, the variances are independent of
time and their product is the lowest possible value allowed by the uncertainty
relation σx σp ≥ ~/2. A higher trap frequency will decrease the spatial variance
σx but simultaneously the momentum uncertainty will increase by the inverse
factor such that their product is always constant. This latter property holds for
a squeezed state as well, but the two variances oscillate as a function of time.

This can easily be understood by considering the case of a diabatic jump
in trap frequency. If the trap frequency is abruptly reduced (∂tω � ω2), the
atomic wave function will be better localized around the origin than the ground
state of the new potential. The atom would then possess excess kinetic energy
at the expense of decreased potential energy compared to the ground state.
The result is an oscillatory exchange of kinetic and potential energy similar
to a harmonic oscillator except that the oscillation occurs in the width of the
wave packet rather than its center-of-mass coordinate. In a classical picture, all
of the initially displaced atoms will transit through the origin after a quarter
period of the trap frequency. After another quarter period, they will appear at
their mirrored starting positions, leading to the same positive initial value of
the distribution’s width. Thus, the oscillation of the variance occurs at twice
the trap frequency.

In terms of energy eigenstates, the explanation can be phrased as follows: The
spatial wave function that was left unaffected by the diabatic jump corresponds
to a superposition of energy eigenstates in the lower trap potential. The phases
of the energy eigenstates that appear in the superposition will evolve, leading
to the breathing dynamics of the wave packet’s width. As only even states
contribute to the superposition, the periodicity of the evolution will be twice
the trap frequency.

The populations of the energy eigenstates in a squeezed state can be calculated
following the lines of the discussion above and using equation 5.6 for the overlap
integral 〈Ψm

ω |Ψn
ω′〉 of two energy eigenstates (that are characterized by quantum

numbers n and m) of harmonic oscillators with identical origin but different
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Figure 5.6.: Squeezing by parametric modulation (a) Modulation of
the trap power. Two bursts of three periods each are generated with a vari-
able delay between them that is equivalent to a phase shift φ (b) Summed
population of all mechanically excited states (1 − ρ00) as a function of the
phase φ between two consecutively applied modulation bursts. (c) Measured
population of the mechanical states |n〉 after six periods of trap modula-
tion without an intermediate delay (φ = 0). The black bars are calculated
assuming a vacuum squeezed state with α = 9.8(1.2).
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)2n
(2n)!
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A series of experiments studying the dynamics of the motional ground state
perturbed by parametric modulation of the trap depth was performed. The
power of the 772 nm intracavity trap was set to P772 = 8µW and the trap fre-
quency of the |F = 1,mF = 0〉 state was measured: ω1,0 = 2π · 477 kHz. Figure
5.6(a) shows the modulation pattern that was applied for the first experiment.
Two bursts of three periods were generated where the periodicity equaled twice
the trap frequency. Between the two bursts, a short delay was introduced that
corresponds to a phase shift of the second burst φ ∈ [0, 2π] with respect to the
first burst. This modulation pattern was applied after cooling the atom to the
ground state of motion and the population of mechanical states was recorded
directly after application of the modulation. This experimental setting is remi-
niscent of a mechanical Ramsey interferometry experiment.

Figure 5.6(b) shows the summed population of mechanically excited states
1− ρ00 as a function of the phase φ between the two bursts. For φ = 0, the two
bursts were generated one directly after the other resulting in six uninterrupted
modulation periods. A maximum of 41(3) % of the atomic population were
transferred to mechanically excited states. This value was reduced to 9(5) %
when the second burst was applied out of phase with respect to the first burst
(φ = π). For longer delays (φ > π), the observed ground-state population was
reduced again.

The demonstrated phase-dependence of the second burst’s effect on the atom
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demonstrates coherent and potentially reversible excitation of motion by the
first burst; this would correspond to parametric cooling of the atom [116] back
to the ground state enabled by the knowledge of the exact phase and ampli-
tude of the motion generated by the first burst. Unfortunately, an independent
measurement with only the first three modulation periods was not carried out.

Figure 5.6(c) shows the phonon distribution of the mechanically excited state
created with φ = 0. The red bars are measured data and the black bars are a
fit to the data of the distribution given by equation 5.8. The single parameter
that characterizes the distribution is α = 9.8(1.2).

While the population distribution of a squeezed state with almost 10 dB
squeezing in the spatial variance was well reproduced, the described technique
does not permit measuring coherences in a straightforward manner. As mechan-
ical states up to n = 6 were significantly populated, deviations in the energy
eigenvalues from the harmonic approximation of almost one half trapping fre-
quency are expected for the higher excited states (see Chapter 4.2). Thus, the
coherences will evolve at rates that differ from the harmonic approximation and
the dynamics of the spatial wave function will deviate from a breathing mode.

Still, these findings nicely demonstrate the power of the developed technique
in studying motional dynamics of single trapped atoms.

5.4. Outlook

The demonstrated technique allows to drive spin transitions conditioned onto
the motional eigenstate of the trap that is occupied by the atom. In combination
with cavity-assisted hyperfine-state detection, this technique allows measuring
the diagonal elements of the motional state’s density matrix. The described
calibration-free single-atom thermometry is a trivial, first application of this.

An intriguing future direction for research might be the implementation of a
cavity-mediated interface between photonic and phononic states, as proposed
by Parkins and Kimble [137, 138]. The aim of these proposals is to reach a
regime where a single atom’s trapping frequency is larger than the linewidth
of the cavity in which the atom is embedded. In this case, the cavity inter-
acts selectively with only one motional sideband and absorption of a photon of
the coupled atom-cavity system is accompanied by generation or annihilation
of a motional excitation (phonon). Excitation of an atom-cavity system in this
resolved-sideband regime of cavity QED with squeezed light (e.g., from an op-
tical parametric amplifier) would thus lead to pairwise excitation of phonons,
analogous to the case of parametric excitation through modulation of the trap
that was discussed above. Generation of phonon-pairs caused by the illumina-
tion with squeezed light can be proven using the method described here.

A cavity-mediated photon-phonon interface could also be used in the oppo-
site direction. The non-destructive detection of motional states allows to prob-
abilistically generate non-classical states. To this end, population of a certain
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oscillator state in a classical motional state (e.g., a coherent state) is tested and
experiments are then conditioned onto the result that this state is not populated.
The remaining, partially projected state can have non-classical properties. With
the techniques described in [137], these states could be mapped from the atom’s
motion onto the light field in the cavity.
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6. Resonance Fluorescence of an
Atom Pair

6.1. Introduction

Young’s double-slit experiment in 1802 marked a milestone in the development
of optics, and physics in general. For the first time, wave-like properties of light
were unambiguously demonstrated [15]. Einstein’s description of the photoelec-
tric effect [2] then attributed obviously particle-like properties to light, and new
questions about the double-slit experiment were raised. A corpuscular theory
of light allowed one to ask which slit a single photon took and whether pho-
tons from independent sources could be made to interfere. The latter question
addresses whether it was necessary for the original experiment to display in-
terference that both slits were illuminated by the same source. In 1930, Paul
Dirac stated that “Each photon then interferes only with itself. Interference be-
tween two different photons never occurs.” [144] and was proven wrong in 1963
by Magyar and Mandel [145] who demonstrated that pulses from independent
lasers could be brought to interference. Magyar and Mandel thus eliminated
the single source that was common to both slits in Young’s original experiment
by truly independent sources.

Following the appearance of the laser [3], resonance fluorescence became an
intensely studied subject and the non-classical properties of the light emitted
by individual fluorescing atoms were discovered. Mollow predicted that the
coherence properties of the light emitted by a driven atom would depend on the
strength with which the atom is driven [4]. For weak driving, atoms behave like
classical scatterers and the spectrum consists of a single peak at the frequency
of the driving laser. For strong driving, the non-linear character of the atoms
becomes noticeable and incoherent scattering, i.e. emission of light with no well-
defined phase relation to the driving laser appears. While a weakly-excited atom
thus can resemble a classical emitter at least in the correlation properties of the
emitted electric field, Carmichael and Walls predicted in 1976 that the second-
order coherence properties (i.e., correlations of the intensity rather than the
field) would deviate from those of classical light [5] even for weak driving. The
second-order intensity correlation function g(2), as introduced by Glauber [146],
assumes the classically forbidden value of g(2)(τ = 0) = 0 for light emitted by a
single atom.

Following earlier work e.g. by Mandel [16], Richter in 1991 studied interfer-
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ence and g(2) correlation functions for light scattered from an ordered ensemble
of individual atoms [18]. The spatial ordering of the atoms assures well-defined
optical phases between the excitation laser, the atoms, and the detector in the
far field. For weak excitation, the atoms behave as classical scatterers and a sta-
ble interference pattern appears in the intensity. For strong driving, the atoms
do not maintain a constant phase relation and the intensity pattern vanishes.
The interference pattern will still be visible though in a two-point g(2)(x1, x2)
correlation function. Richter concluded that the full visibility of the modulation
pattern expected in such a g(2) measurement could not be explained classically.
While this effect was never observed, it was rediscovered and extended in theory
several times [21,22].

At the same time, the influence of an optical resonator on the properties of
resonance fluorescence was theoretically studied. Meyer and Yeoman predicted
in 1997 that surrounding two incoherently pumped atoms with a resonator along
their axis can lead to phase synchronization of the atomic dipoles [30]. The
surprising result was that a dark spot was expected on the symmetry axis in
the interference pattern of the two atoms’ emissions, transversal to the cavity
axis. Thus, the system’s symmetry is broken as the atomic dipoles would align
opposite to each other. This result was extended one year later to the case of
coherent driving by Rudolph and Ficek [20], where antisymmetric alignment
of the atomic dipoles was expected for certain parameters as well. In modern
terms, these were the first ideas towards steady-state entanglement in a tailored
electromagnetic environment [41,42].

Despite the large body of theoretical work, few experiments have been re-
ported thus far. In a seminal experiment in 1993, David Wineland’s group
trapped two ions simultaneously in the same Paul trap and observed interfer-
ence fringes in the collective fluorescence [27]. The polarization of the emitted
light was correlated with different decay channels of the two ions. Polarization-
sensitive detection thus allowed for generating which-way information and the
resulting vanishing of the interference pattern appeared as the main result of
this paper. Several groups reported Bragg scattering of light at regular atomic
structure in optical lattices [126, 147, 148]. In these publications, the classical
interference effects of light emitted from weakly excited atoms were used as a
measurement tool rather than an object of research.

Two experiments looked at collective scattering from a cloud of ultracold
atoms embedded in a resonator [149, 150]. The focus in these experiments was
on mechanical back-action due to the recoil imprinted on the atoms during
scattering instead of properties of the emitted light. Recently, two groups have
worked towards realizing the described theoretical paradigm of an ordered struc-
ture of few atoms embedded in an optical resonator. In the group of Rainer
Blatt, two ions were successfully trapped within the field of a Fabry-Perot type
cavity. Owing to the problems that appear when bringing dielectric surfaces
close to a Paul trap, the cavity is very long and therefore has a large mode vol-
ume. Significant coupling of the atom to the cavity can then only be achieved
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by making the mirror extremely high reflective. The residual transmission that
yields usable signal then typically becomes comparable to unavoidable scatter-
ing losses. Yet, in two proof-of-principle experiments, heralded entanglement of
two ions [151] and an enhancement of photon generation efficiency by making
use of collective effects could be shown [44]. Simultaneously in 2015, Dieter
Meschede’s group trapped two neutral atoms within a high-finesse optical cav-
ity and observed cavity-modified Rayleigh scattering [45]. A fluctuating rate
of photons emitted from the cavity was observed and interpreted as different
optical phases being realized while the atoms were jumping between different
sites of the two-dimensional intracavity lattice. The distribution of observed
intensities was bimodal. The authors attributed the lower value to destructive
interference and the higher value to constructive interference of the partial fields
emitted by the atoms. Due to the lack of and independent means to measure
the optical phases in this experiment, this appears as an a-priori assumption.

The two-atom experiment described in this chapter aimed to realize Young’s
double slit experiment with atoms instead of slits embedded in a high-finesse
optical resonator. As such it incorporates many of the topics discussed earlier
in this thesis. The ability to image pairs of atoms with single-site resolution in
a two-dimensional optical lattice (see Chapter 2.4) permits the determination
of the optical phases that are relevant to the scattering process. The ability to
optically cool the atoms and keep them stationary (see Chapter 4) guarantees
that a once realized value of the optical phases is not altered by jumping of
the atoms between lattice sites. Strong tensor light shifts that are generated
by the trapping light (see Chapter 3) are used to tailor the structure of the
electronically excited energy eigenstates of the atoms, such that a clean two-
level system can be isolated. In combination with a series of characterization
measurements, this allows for quantitative predictions.

The theoretical description of the two-atom-cavity system in terms of coupled
eigenstates is presented in Chapter 6.2 with and without an external drive.
The numerical model applied to quantitatively describe the system, including
incoherent damping processes is described in Chapter 6.3; the extreme cases of
perfect constructive and destructive emission of the two atoms into the resonator
are discussed. Characterization measurement on a single-atom cavity system
were performed to quantify experimental imperfections. Chapter 6.4 discusses
the mathematical treatment of these imperfections and the measurement results.
Chapter 6.5 explains how the single-site resolved images are evaluated in order
to calculate the difference in the optical phases that is relevant to the two-atom
experiments. Experimental data on the two-atom case are presented in chapter
6.6.
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6.2. Tavis-Cummings Model

6.2.1. Unperturbed System

In this section, the energy spectrum of the unperturbed (two)-atom-cavity sys-
tem and some general properties are derived. A quantized cavity is considered,
described by its Fock states |n〉 and annihilation (creation) operators a(a†) and
two-level atoms with ground state |g〉 and excited state |e〉 that are described
by the ladder operators σ+ = |e〉〈g| and σ− = |g〉〈e|. The atomic transition
|e〉 ↔ |g〉 is on resonance with the frequency ωcav of the cavity mode. Interac-
tion of the jth atom with the intracavity field is parametrized by the coupling
strength gj. In the rotating-wave approximation, the unitary part of the systems
evolution is described by the Tavis-Cummings Hamiltonian [152]

HTC =
∑
j

|gj|(σ+
j e

iφja+ σ−j e
−iφja†) (6.1)

Here, the coupling strength gi = |gi|eiφi is expressed in terms of its modulus
and phase φi.

In the standing-wave mode of the Fabry-Perot type cavity under considera-
tion, the light’s phase will be constant inbetween two nodes of the light field
while the field amplitude varies. Since the blue intracavity trap at 772 nm (see
chapter 4) confines the atoms to antinodes of the resonant standing-wave field
at 780 nm, the modulus |gi| can be assumed constant and φi will be discretized
to the two values 0 and π. It is important to consider the physical reality of this
phase and its impact on experiments. For a single atom, the phase is a global
phase not relevant here; for two atoms, the distance between the atoms mea-
sured along the cavity axis and the resulting phase difference between the two
atoms are introduced as new parameters. An even (odd) number of trapping
sites between the atoms introduces a 0 (π) phase difference between the atoms
in their coupling to the cavity. While the two situations are seemingly distin-
guishable to an external observer, they are not distinguishable when the system
is only probed through interaction with the cavity mode1 (e.g. via transmission
or reflection of a probe field).

Figuratively speaking, the atoms in this case lack a common clock, against
which they could measure the phase of the local electric field. Atoms at a
distance that is equal to an odd number of trapping sites will consequently build
up dipole moments that are mutually anti-aligned. However, with respect to the
local electric field they are aligned in the same manner as in the case two atoms
that incorporate a distance that is equal to an even number of trapping sites.
Mathematically, the phase terms eiφi can be removed by a gauge transformation
of the atomic operators σ+ eiφi → σ̃+, which are not observable. The phases

1And the atoms are well separated by a distance d� λ that renders direct dipole interactions
(DDI) unimportant [153,154]
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...

Cavity Atom Cavity Atom

...(a) (b)

Figure 6.1.: Energy eigenstates of a single-atom-cavity system (a)
Ladder of Fock states |n〉 of the empty cavity and ground- (|g〉) and excited
(|e〉) states of the atom. The cavity mode is assumed to be on resonance with
the bare atom’s transition frequency. (b) Energy eigenstates of the composite
atom-cavity system without (left) and with (right) light-matter interaction
that couples states |(n− 1) e〉 and |n g〉 at a rate g leading to the anharmonic
Jaynes-Cummings ladder.

become relevant in the case where the atoms are driven instead of the cavity,
as a transversally propagating driving laser provides the mentioned common
clock against which the atoms can compare the phase of the cavity field at their
respective positions.

The Tavis-Cummings Hamiltonian in the rotating-wave approximation com-
mutes with the operator N = a†a +

∑
j σ

+
j σ
−
j that counts the total number of

excitations in the system. Figure 6.1(a) shows the energy eigenstates of the
individual systems, namely the harmonic ladder of Fock states |n〉 in the cavity
and the two states of the atom(s), |e〉 and |g〉. On the left side of panel (b),
these states are rearranged in terms of eigenstates of the composite but uncou-
pled single-atom system forming a ladder with a well-defined number of total
excitations 〈N〉 on each rung. Apart from the ground state, every rung of the
ladder is two-fold degenerate as the states |(n − 1) e〉 and |n g〉 have the same
energy 〈N〉, but no two rungs have the same energy. For a non-zero coupling
strength g > 0, the Hamiltonian will couple only states of one rung and in the
case of one atom, diagonalization yields the eigenstates and eigenenergies:

|n±〉 =
√

1/2(|n g〉 ± |(n− 1) e〉) (6.2)

En,± = n~ω ±
√
ng (6.3)

The anharmonic splitting En,+ − En,− ∝
√
n of the normal modes is at the

heart of many fundamental single-atom cavity QED effects. Among them are the
collapse and revival of Rabi oscillations [155], photon-blockade in optical cavity
QED [156, 157], and non-linear two-photon transitions [158]. The observation
of these effects marked milestones in the development of the field.
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Figure 6.2.: Energy eigenstate of the two-atom-cavity system Both
atoms are resonant with the single cavity mode. The blue (red) bars indicate
states that are symmetric (antisymmetric) with respect to exchange of the
atoms.

The energy eigenstructure of a system that consists of m > 1 atoms coupled
to a single mode becomes complicated with increasing m. The degeneracy of the

N th rung in the uncoupled system is
∑N

k=0

(
m
k

)
. Note that as

(
m
k

)
= 0

for k > m, the degeneracy is 2m for all rungs N ≥ m. The photon number n
of states on a given rung with the total excitation number N can vary between
0 ≤ n ≤ N . This leads to a complex structure of the matrix elements of HTC

and consequently to a complex structure of the diagonalized excited states. Yet,
some general properties can be identified:

For a single excitation in the system, the Hamiltonian couples each atomic
excited state solely to the state |1 g . . . g〉, with a single photon in the cavity
and all atoms in their ground state. Likewise, |1 g . . . g〉 is coupled to a sym-
metric superposition of all states, in which a single atom is excited |D1〉 =
1/
√
m
∑m

k=0 |0 g . . . ek . . . g〉. This state is a Dicke state that appears in the the-
ory of superradiance [159, 160]. Diagonalization of this Hamiltonian yields the
collective normal modes |1±〉 =

√
1/2(|1 g . . . g〉 ± |0D1〉) in which - in analogy

to the single-atom case - a single excitation is shared between the cavity mode
and a collective excitation of the atoms. The energy of the collective normal
modes of the first rung is ~ω ±

√
mg. The remaining m+ 1 states will stay en-

ergetically unshifted at ~ω and can be denoted as
√

1/2(|0 g . . . ea . . . gb . . . g〉 −
|0 g . . . ga . . . eb . . . g〉). These are states in which a single excitation is shared an-
tisymmetrically between an atom pair without excitation of the cavity. The

√
m

scaling of the normal mode splitting that can be observed through transmission
spectroscopy [51, 161], has led to the terms collectively enhanced coupling and
even superatom, which suggest that m atoms can be thought of as a single atom
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6.2. Tavis-Cummings Model

with
√
m enhanced coupling strength. This notion holds for weak excitation,

but breaks down as soon as atomic saturation and excitation to the second rung
of the Tavis-Cummings ladder begin to play a role.

For two atoms, it is worthwhile to note that HTC commutes with exchange
of the atoms. The atomic Hilbert space can be divided into a part that is
symmetric with respect to atomic exchange |g g〉, |e e〉, |S〉 =

√
1/2(|e g〉+ |g e〉)

and the state |A〉 =
√

1/2(|e g〉 − |g e〉). Compound systems that are comprised
of identical two-level systems are often treated in terms of their coupled pseudo-
spin. In this context, the set of symmetric states corresponds to the triplet
system |S = 1,mS = −1, 1, 0〉 and the asymmetric state |A〉 corresponds to the
singlet state.

The energy eigenstates of the coupled two-atom-cavity system are shown in
Fig. 6.2 when both atoms are on resonance with the cavity mode and coupled
with identical gj. The colored bars indicate that the atoms are in symmetric
(blue) or antisymmetric states (red).

6.2.2. Driven System

An excitation laser that drives the atomic part of the two-atom cavity system
with Rabi frequency Ω is described by the Hamiltonian:

Hdrive =
Ω

2
(eiφ3σ+

1 + e−iφ3σ−1 + eiφ4σ+
2 + e−iφ4σ−2 ) (6.4)

Adding this to the Hamiltonian of the unperturbed system that is described
by equation 6.1 yields a total of four phases φj. Similar to the treatment of the
unperturbed system, the following transformations are applied:

σ+
1 → +e−iφ3σ̃1 (6.5)

a → e−i(φ1−φ3)ã (6.6)

σ+
2 → ei(φ2−φ1+φ3)σ̃+

2 (6.7)

These transformations collect all of the four phases in the phase difference
φ = (φ1 − φ2)− (φ3 − φ4) that remains in front of one atomic operator and its
Hermitian conjugate, and the driving term then reads:

Hdrive = Ω/2(σ+
1 + σ−1 + eiφσ+

2 + e−iφσ−2 ). (6.8)

While these transformations appear complicated, they bare only few physical
meaning. The same four phases are found in a classical Young’s double slit
experiment in which they describe the optical pathways from the source to the
two slits and from the slits to the detector. As long as intensities are the only
quantities of concern, and the phase relation of the light in the detector plane
with respect to the light source is not considered, the whole physics can as well
be captured by a single phase. This argument is reflected in the described case
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6. Resonance Fluorescence of an Atom Pair

by the fact that intensity expectation values a†a (or higher orders thereof) are
left unaffected by the transformation.

This means that every spatial configuration of atoms can be mapped onto an
equivalent pattern, in which the atoms are aligned along one phase front with
respect to the cavity field (i.e., along a single line along the x-axis), and differ
only in the phase with which they couple to the driving laser. Furthermore, the
observed physics is invariant under translations of the whole atomic pattern.
This would not remain true, if the electric field of the light emitted from the
cavity was measured in a homodyne setup with the excitation light as a local
oscillator.

The phase difference φ with which the atoms couple to the cavity mode and
to the driving laser defines the matrix element between atomic symmetric and
antisymmetric states. For φ = 0, which is referred to as the in-phase situation,
the driving term only couples states with identical symmetry with respect to
atom exchange. Conversely, for φ = π, each photon absorbed by the atoms
leads to an inversion of the atomic symmetry. The possible excitation pathways
from the atomic ground state |g g〉 are:

φ = 0 ⇒ |g g〉 ↔ |S〉 ↔ |e e〉
φ = π ⇒ |g g〉 ↔ |A〉 ↔ |e e〉

Comparing these atomic excitation pathways to the energy eigenstates of
the coupled system in Fig. 6.1(c) reveals a property that is at the heart of the
different radiation dynamics for the in-phase and out-of-phase situation. Via
the in-phase excitation path, the ladder of states can be climbed rung by rung
with unity increments in the photon number in the cavity. For out-of-phase
coupling, odd rungs of the ladder may resonantly be excited only by coupling to
atomic asymmetric states, which do not couple to the cavity. As a consequence,
only energy eigenstates with an even number of photons in the cavity are found
in the excitation pathway.

6.3. Light-Matter Dynamics

6.3.1. Numerical Model

In order to make quantitative predictions about the systems, dissipative pro-
cesses must be considered together with the unitary evolution described by the
Hamiltonian in equations 6.1 and 6.4. The relevant processes are loss of photons
from the cavity field and spontaneous decay of atomic excitation due to emission
of photons into free-space modes. The former is described by the field decay
rate κ = κOC + κloss = 2π · 2.75 MHz, which is the sum of the emission through
the outcoupling mirror and κloss that subsumes scattering and absorption losses
in the cavity and transmission through the high reflector (see Chapter 2.2).
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6.3. Light-Matter Dynamics

Dissipation from the system due to the atom’s coupling to free-space modes is
described by the rate γ = 2π ·3.03 MHz at which atomic polarization decays. To
account for the effect of these decohereing processes, a density matrix approach
is chosen and the loss mechanisms are described as Lindblad super-operators.

The evolution of the system’s density matrix ρ is given by the Liouville-von
Neumann equation:

∂tρ = − i
~

[H, ρ] (6.9)

+ κ(2 aρa† − a†aρ− ρa†a) (6.10)

+ γ
∑
j

(2σ−j ρσ
+
j − σ+

j σ
−
j ρ− ρσ+

j σ
−
j ), (6.11)

where the sum runs across all atoms. The unitary part of the evolution is
described by the driven Tavis-Cummings Hamiltonian H. The resonant Tavis-
Cummings Hamiltonian, as discussed in Chapter 6.2.2, did not account for dif-
ferences in the frequencies of atomic transition ωeg, cavity resonance ωc and
excitation laser ω. To include these, terms for a cavity detuning ∆c = ω − ωc
and atomic ∆a,j = ω−ωeg,j detuning for each atom are added. All detunings are
defined with respect to the excitation laser2. The complete Hamiltonian with
the phase convention described in Chapter 6.2.2 then reads:

H = |g|
∑
j

(σ+
j a+ σ−j a

†) +
Ω

2
(σ+

1 + σ−1 + eiφσ+
2 + e−iφσ−2 ) (6.12)

−
∑
j

(∆a,jσ
+
j σ
−
j )−∆ca

†a. (6.13)

All of the experimental observables A that are relevant to the described ex-
periment can be found by solving for the system’s steady-state density matrix
∂tρss = 0 and calculating the expectation value 〈A〉 = Tr(Aρss).

Figure 6.3 shows the result of simulations of an ideal two-atom cavity system
that is transversally driven. The cavity parameters that were used are identical
with those of the experimental setup (g, κ, γ) = 2π ·(7.62, 2.75, 3.03) MHz. Panel
(a) shows the intracavity population 〈a†a〉 as a function of the phase difference
φ with which the atoms couple to the cavity and the external driving laser. The
atoms are resonant with the cavity mode and driven at the same frequency. For
a small Rabi frequency (Ω = 2π ·100 kHz) an interference fringe is predicted that
drops almost to 〈a†a〉 = 0 for destructive interference of the individual atoms’
emission (φ = π). The dotted black line is calculated for a ten-fold increased
Rabi frequency Ω = 1 MHz and scaled by a factor of 100 corresponding to the
squared ratio of the two Rabi frequencies.

2While the experiments described in this chapter were conducted with the atoms being on
resonance with the cavity, these terms must be taken into account to model the residual
thermal excitation of the atoms.
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Figure 6.3.: Numerical simulation of the driven two-atom cavity
system (a) Expectation value of cavity population 〈a†a〉 (black) and atomic
excitation 〈

∑
i σ

+
i σ
−
i 〉 (blue) for resonant driving with two different Rabi

frequencies Ω = 2π · 100 kHz (straight line) and Ω = 2π · 1 MHz (dotted line).
The curves for the tenfold greater Rabi frequency are scaled by a factor of
1/100. (b) Cavity population as a function of the excitation laser’s detuning
from the two atoms and the cavity for two different values of the scattering
phase φ = 0 (straight line) and φ = π (dotted line). The Rabi frequency of
the driving field is Ω = 1 MHz. The red line is calculated for a single atom.
(c) Value of the second-order correlation-function g(2)(τ = 0) as a function of
the scattering phase φ between the atoms for resonant driving at two different
Rabi frequencies.

The two curves agree for in-phase emission from the two atoms into the cavity
(φ = 0); thus, the cavity population grew proportional to the intensity of the
driving field. A discrepancy appears for destructive interference, as the pre-
dicted interference fringe no longer drops to zero, indicating a light-scattering
mechanism that involves absorption of several photons at once and therefore
scales at least quadratically with the intensity.

The blue lines in panel (a) show the expected total atomic excitation 〈
∑

i σ
+
i σ
−
i 〉

for the same choice of parameters as the corresponding black lines. An interfer-
ence fringe is predicted that is inverted with respect to the cavity population in
the sense that the atoms have a maximum excitation probability for destructive
interference of their individual emission into the resonator, whereas they are
likely to stay in their ground state when they emit in-phase.

Panel (b) shows the intracavity population 〈a†a〉 when driving the atoms with
a Rabi frequency of Ω = 2π ·1 MHz as a function of the driving laser’s detuning.
The straight black line shows the calculated values for in-phase scattering and
the black dotted line for out-of-phase scattering. The red line is calculated for
a single atom in the cavity under the same conditions. For resonant driving,
correspondence with the data in panel (a) is found in that the expected cavity
population drops to a residual non-zero value when changing the scattering
phase from φ = 0 to φ = π. Comparison with other values of the driving
laser’s detuning shows that the two situations behave very differently. The
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6.3. Light-Matter Dynamics

in-phase situation is qualitatively very similar to the single-atom case with a
double peaked structure that attains the highest values when the two normal
modes (|1 g〉〉 ± |0 e〉)/

√
2 are driven resonantly at a detuning of ±g from the

bare atom’s resonance. The transition from a single atom to two atoms further
separates the two maxima, which are now found at ±

√
2g and correspond to

the excitation of the collective normal modes (|1 g g〉 ± |0S〉)/
√

2. Remarkably,
the cavity population remained almost unchanged when driving the system on
the bare atomic resonance and adding a second atom in phase to an already
present atom. This contradicts the free-space intuition of a fourfold increase
in intensity when a second field of identical amplitude is added in-phase to an
already existing field. This effect is discussed in Chapter 6.3.2. For out-of-phase
scattering, a singly-peaked curve is found that, in contrast to φ = 0, attains its
maximum value when driving the system on the bare atomic resonance.

In addition to the expectation value of the intracavity population, qualita-
tively different behaviour of the system for different values of φ was found as
well in the fluctuations of the cavity population. Panel (c) shows the value of the
second order correlation function g(2)(τ = 0) = 〈a†a†a a〉/〈a†a〉2 at τ = 0. This
value measures the likelihood of observing a coincident detection of a photon
pair normalized to the expected rate of coincident detections for a coherent field
of the same intensity. For in-phase emission (φ = 0), a value of g(2)(0) that is
very close to 1 was found for both Rabi frequencies that were simulated. From
the definition of the second-order correlation function follows:

〈a†a†aa〉
〈a†a〉2

=
〈a†(aa† − 1)a〉
〈a†a〉2

= 1⇒ 〈n2〉 − 〈n〉2 = Var(n) = 〈n〉, (6.14)

where n = a†a, indicating that the variance of the photon number distribution
is identical to its expectation value. For phases φ 6= 0, g(2)(0) assumes large
values that indicate strong super-Poissonian photon statistics3. The correlation
function assumes a maximum for φ = π. The effects occuring for out-of-phase
driving are discussed in Chapter 6.3.3.

6.3.2. In-Phase Emission

Three remarkable observations were made in the numerical simulation of con-
structive interference. In the case of resonant driving, the average cavity pop-
ulation changed slightly when adding a second atom emitting in-phase to an
already present atom. This appears to contradict the free-space intuition of a
fourfold increase in intensity. Furthermore, the atom excitation probability was
predicted to drop to almost zero although the cavity field was populated. This is

3Super-Poissonian in the sense that the variance of the photon number distribution exceeds
the expectation value. A value of g(2)(0) = 1 does not necessarily indicate Poissonian
photon statistics. It only makes a statement about the variance of the statistics being
equal to a Poisson distribution.
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Figure 6.4.: System excitation in the in-phase regime (a) In steady
state, the intracavity field and the excitation field act on the atoms. As the in-
tracavity field is of opposite phase, it counteracts the driving of the excitation
field. For a lossless cavity, spatial regions of perfect destructive interference
between the intracavity field and the excitation field form and the steady
state does not depend on the atom number at all. (b) Relative strength,
phase-relations and mutual dependencies of excitation field, induced atomic
dipole, and intracavity field when the frequencies of the atomic transition, the
excitation laser, and the cavity resonance are identical. The arrows mark the
amplitude and phase with the excitation field used as a reference shortly. (c)
The same quantities as in panel (b) shown for the case of a detuned atom. See
text for a detailed explanation. Both panels illustrate the transient situation
shortly after switching on the driving field.

in contrast to the out-of-phase situation in which the atoms are excited but the
cavity excitation probability was low. Finally, the intensity-correlation function
also deviates strongly from a free-space intuition. The value of g(2)(τ = 0) is
zero for a single atom in free space, regardless of the driving strength. In other
words, a single observed photon that defines τ = 0 in a correlation measurement
heralds the atom’s decay to its ground state. With N independently emitting
atoms, detection of a first photon heralds the decay of only one of the atoms and
from the remaining atoms stems a finite chance to see a second photon simulta-
neously. One can thus predict a value of g(2)(τ = 0) = 1− 1/N for a free-space
situation, which evaluates to g(2) = 0.5 in the two-atom case considered here.

The numerically predicted effects for in-phase emission have been analyzed
and explained by Alsing and Carmichael [162]. They turned out to be a classical
effect that does not require quantization of the light mode or of the atoms
in order to be explained. While Alsing and Carmichael focused on the effect
of suppressed atomic excitation for a single atom, Ritsch and colleagues later
generalized the treatment to multiple atoms [31].

The effect can easily be understood by considering the case of a perfect, loss-
less resonator (κ = 0) that holds a single atom. The atom’s resonance frequency
is identical with the cavity’s resonance and the atom is driven with a laser at
even this frequency. The following argumentation is outlined in Fig. 6.4(a). The
resonant driving laser will excite an atomic dipole moment that is π/2 phase-
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6.3. Light-Matter Dynamics

shifted compared to the excitation laser. This atomic dipole couples resonantly
to the cavity field, which will have another π/2 phase difference compared to
the exciting atomic dipole; it will therefore be out of phase with the excitation
laser. As both, the driving and the intracavity field act upon the atom, the
growing intracavity field will reduce the total field strength at the position of
the atom. In the system’s steady state, the intracavity field will have grown
to exactly the strength of the driving field and will perfectly counteract this
field, such that the atom will sit in a dark spot within the interference pattern
of the intracavity field and the driving field. In this case, an arbitrary number
of atoms can be placed into the dark spots of the interference pattern without
altering the steady state.

This argument can be extended to detuned systems that were experimentally
investigated in [45]. In this case, the atom was detuned from the cavity by
many linewidths, but was driven at the resonance frequency of the surrounding
cavity. This situation - again during the transient dynamics into the steady
state - is depicted in Fig. 6.4(b). The only difference to the resonant case is
that the induced atomic dipole has only a small phase-difference with respect to
the excitation laser. However, since it nevertheless oscillates with the excitation
field’s frequency, it can resonantly excite the cavity. The intracavity field will
therefore be slightly more than π/2 out-of phase with respect to the excitation
laser. The transient dynamics into the steady state thus differs from the resonant
case, as the intracavity field does not directly counteract the excitation field from
the beginning. A more complex evolution of the sum of the intracavity and the
driving field is the consequence, but the steady state remains the same. Also in
the detuned case, the steady state intracavity population does not depend on
the number of atoms.

The argument presented above, extended by cavity loss, was put into math-
ematical terms in [45] using the classical treatment of cavity QED from [163].
The ratio of the field strength of the intracavity (standing-wave) field Ecav and
the driving field Edrive at the position of the N atoms can be identified as:

Ecav

Edrive

= − 1
1

2NC
+ 1

, (6.15)

with the single-atom cooperativity C = g2/(2κγ). This ratio will be arbi-
trary close to −1 for large cooperativities, indicating the perfect, destructive
interference of the cavity and the driving field. The ratio’s dependency onto the
number of atoms N will also be suppressed for large C.

Alsing and Carmichael [162] stated that the classical treatment remains valid
even for strong atom driving that leads to atomic saturation in free-space and
their quantized treatment of the problem showed that the intracavity field is an
identical copy of the coherent excitation field, explaining the value of g(2)(τ) = 1.

85



6. Resonance Fluorescence of an Atom Pair

(a) (b)

0 25 50 75 100 125 150
0

1

2

3

4

5

g(2
) (τ

)

Detection time difference τ (ns)

6

Figure 6.5.: System excitation in the out-of-phase regime (a) Exci-
tation pathway of the two-atom cavity system when the two atoms couple
with opposite phase to the driving laser and the intracavity mode. A two-
step excitation to the second rung of the Tavis-Cummings ladder can lead to
population of the cavity with two photons simultaneously. (b) The g(2)(τ)
correlation function calculated as a function of the detection time difference
τ allows observation of the emission dynamics of the second photon of this
pair. Collective Rabi oscillations of the second emitted photon between the
resonator and the atoms are predicted with a revival of cavity population
after τ = 46.4 ns = (2

√
2 g)−1.

6.3.3. Out-Of-Phase Emission

While the in-phase regime could be explained in classical terms, this is not
the case for out-of-phase excitation of the system. Two classical emitters that
are embedded in a cavity and excited with opposite phases will always emit de-
structively into the cavity, regardless of the driving strength; no excitation of the
cavity mode is thus expected. To explain the numerical findings of non-zero exci-
tation of the resonator and strong super-Poissonian photon emission, the atoms
have to be treated as two-level systems rather than classical oscillators. Fig-
ure 6.5(a) shows the excitation pathway of Tavis-Cummings energy eigenstates
when the system is driven in the out-of-phase case. With each transition from
one rung to the next, atomic symmetry is inverted. The system’s ground state
|0 g g〉 is coupled to the atomic antisymmetric state |0A〉 = (|0 g e〉−|0 e g〉)/

√
2

in the first rung. This state decays predominantly via emission of a photo from
the atom into free space and the resonator is left in its ground state. When
the driving strength is not negligible with comparison to the excited state’s
lifetime, excitation to the second rung can happen before |0A〉 decays and the
energy eigenstate

√
2/3|0 e e〉−

√
1/3|2 g g〉 can be resonantly excited through the

coupling of |0A〉 to the fully atomic saturated state |0 e e〉.
In this state of the doubly excited manifold, the cavity is either in its vacuum

state or populated with two photons simultaneously. But it will never be excited
with a single photon only. This explains the large value of the g(2)(τ) correlation
function for τ = 0. The detection of a first photon heralds the decay of the
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system from
√

2/3|0 e e〉 −
√

1/3|2 g g〉 to the state |1 g g〉. In this state, the
cavity remains excited and can immediately emit a second photon.

In terms of the Tavis-Cummings energy eigenfunctions, the state |1 g g〉 is
a symmetric superposition of the two collective normal modes. Emission of a
second photon brings both of these energy eigenstates back to the ground state
|0 g g〉 and interference of the two emission paths is expected. Figure 6.5(b)
shows a numerical evaluation of the g(2)(τ) correlation function for the param-
eters (g, κ, γ,Ω) = 2π(7.62, 2.75, 3.03, 0.1) MHz (red line in Fig. 6.3(c)). The
discussed interference of the second photon’s two possible decay paths results
in a beating in the emission at a frequency of (2

√
2 g)−1, which is identical to

the splitting between the two collective normal modes.
This oscillation can also be understood in a corpuscular way. The single

photon left in the cavity after emission of a first photon either decays directly
by emission out of the cavity or is collectively absorbed by the two atoms and
then reemitted into the cavity. The system’s excitation is thus purely photonic
for τ = 0, purely atomic for τ = 1/2(2

√
2 g)−1, and again purely photonic after

a full cycle of the collective vacuum Rabi oscillations.

6.4. Preparatory Measurements

In all of the experiments described in preceding chapters, the optical resonator
surrounding the atoms was only used for cavity-assisted hyperfine state detec-
tion. Parameters of the atom interrogation, such as light polarization, intensity
and detunings, were experimentally chosen aiming for an emitted signal that
enables faithful discrimination of the two hyperfine states. A quantitative un-
derstanding of the light-matter interaction occuring in the resonator was there-
fore not necessary. This is different for the two-atom interference experiments.
Achieving quantitative agreement between theory and experiment requires a
thorough understanding of these parameters and detrimental experimental im-
perfections.

This section discusses preparatory measurements that were conducted with
a single atom and were used to gain quantitative understanding of residual
thermal excitation and imperfect optical pumping.

6.4.1. Cavity Reflection Spectroscopy

Cavity reflection spectroscopy was used to quantify the efficiency of optical
pumping and the strength g of coherent light-matter interaction. This tech-
nique was previously introduced in Chapter 2.2 and it was found that quan-
titative agreement between measurement and theory in reflection spectroscopy
requires that interference effects are taken into account. These effects stem
from imperfect mode matching of the incident light to the cavity mode in com-
bination with the collection of the reflected light with a single-mode fibre (see
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Fig. 6.6(a)). Equation 2.2 provides a theoretical model for the observed reflec-
tivity of an empty cavity. The values of the two parameters that characterize
the interference effects were η = 0.89 and φ = 0.173.

The reflectivity of the coupled two-atom cavity system can be calculated by
following the treatment in reference [164]. Assuming a weak incident field and
therefore vanishing atomic excitation, the field reflectivity of the two-atom cavity
system is:

r2(∆,∆a,1,∆a,2) = 1− 2κOC

i∆ + κ+
g21

i(∆+∆a,1)+γ
+

g22
i(∆+∆a,2)+γ

. (6.16)

Here, ∆,∆a,1 and ∆a,2 are the detunings of the probe laser and the first and
second atom from the resonance frequency of the empty resonator. g1 and g2

are the coherent coupling strengths of the two atoms, and κ and κOC are the
resonator’s total field decay rate and the partial decay rate caused by transmis-
sion through the output coupling mirror. γ describes the atomic polarization
decay rate. For g1 = g2 = 0 the equation collapses into equation 2.1 describing
the empty cavity reflectivity. The effect of an additional reflected field that has
not interacted with the cavity mode is accounted for in the same manner as
in Chapter 2.2 and the following expression for the modified reflectivity of the
two-atom cavity system is found:

R2(∆,∆a,1,∆a,2) =
|ηr2(∆,∆a,1,∆a,2) + (1− η)eiφ|2

η2 + (1− η)2 + 2η(1− η) cos(φ)
. (6.17)

Figure 6.6(b) shows the phase Arg(r2(∆, 0, 0)) of the reflected field for an
empty cavity and with a single atom coupled to the cavity4. The curves were
calculated with the parameters (κ, κOC, γ) = 2π · (2.75, 2.42, 3.03) MHz and the
theory value g = 2π·7.84 MHz for the light-matter coupling constant. Due to the
normal mode splitting caused by the atom, no energy eigenstate of the coupled
system can be resonantly excited at the frequency of the empty cavity resonance.
The phase of the reflected field differs by exactly π in the two cases. The effect
of imperfect mode matching shown in Fig. 6.6(c) is therefore less pronounced
in the case of a single coupled atom with respect to the empty cavity. It fails
to explain the high reflectivity R ≈ 0.25 that is observed on the single-atom
normal mode resonances in the experiment.

Inhomogeneous broadening of the atoms must be considered another impor-
tant experimental imperfection. Following the derivation in chapter 3.3.1, an
uncorrelated convolution of the two atoms’ detunings with a three-dimensional
Boltzmann distribution was carried out to account for the effect of residual
thermal excitation. Based on Equation 3.15, this yielded the following integral

4The single atom case is found by setting g2 = 0 in equation 6.16
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Figure 6.6.: Reflectivity of the coupled atom-cavity system (a) A
fraction η of the incident field couples to the resonator, which contains a single
atom. The residual thermal motion of the atom in the trapping potential U(~r)
leads to an inhomogeneous broadening of the measured reflectivity. (b) The
phase of the coupling part of the field reflected off of the cavity in the case
of an empty cavity and a single atom coupled to the cavity. (c) Expected
effective reflectivity in a well-coupled atom-cavity system and an imperfectly
mode matched system that is described by the parameters found in Chapter
2.2. Owing to the phase difference of π on resonance of the empty cavity,
the effect is more pronounced for the empty cavity. (d) Expected reflectivity
of a mode-matched system containing a single atom that is inhomogeneously
broadened due to residual thermal excitation. The atomic detuning ∆a = −τ
was chosen to counteract the line shifting effect of the thermal excitation
described by the temperature parameter τ (see Chapter 3.3.1).

expression for the expected reflectivity

R2(∆,∆a) =
16

π

∫ ∞
0

∫ ∞
0

|r(∆,∆a + τr2
1,∆a + τr2

2)|2r1r2e
−r21−r22dr1dr2, (6.18)

where τ = αe−αg

αg~ kBT measures the atomic temperature in terms of a typical

shift in the atomic detuning that results from fluctuating AC Stark shifts. αe and
αg are the polarizabilities of the excited and ground state (see Chapter 3.3.1).
Thermal excitation will cause an asymmetric shift of the measured frequency-
dependent reflectivity. Symmetry of the observed signal with respect to the
empty cavity resonance ∆ = 0 can be regained by introducing a small initial
atomic detuning ∆a = −τ 5. This is the situation that is aimed for when aligning
the apparatus. Figure 6.6(d) shows numerical simulations of the reflectivity of

5The atoms assume this detuning only when it is located precisely at the center of the trap.
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Figure 6.7.: Excited energy eigenstates (a) Energy eigenstates of the
|5S1/2, F = 2〉 and |5P3/2, F = 3〉 manifolds for a 1064 nm trap power of
P1064 = 1.4 W. At this setting of the trap power, the σ+-polarized cavity
mode is resonant with the cycling transition. During optical pumping, a
single atom appearing in the coupling ground state suppresses the intracavity
intensity so strongly that the second atom won’t be pumped. (b) Same as
(a) but for the setting of the trap power P1064 = 1.1 W which is used during
optical pumping. The cavity is no longer resonant with the cycling transition
and impinging circular polarized light allows to optically pump both atoms
instead of only a single atom. The light shifts in both cases depend only on
|mF | and the schemes are thus symmetric (see chapter 3.2).

the single-atom cavity system for different temperatures in the case of ∆a = −τ .
The dominant remaining effect is an increased reflectivity on the normal mode
resonances, while the reflectivity R(∆ = 0) at empty cavity resonance remains
almost constant.

A third experimental imperfection that must be considered is non-unity ef-
ficiency of optical pumping. The theory curves in Fig. 6.6 were calculated for
a coherent coupling strength of g = 2π · 7.84 Mhz, which assumes a circular
polarized cavity mode that interacts with the cycling transitions of 87Rb. When
the atom is initialized in the wrong Zeeman state, its effect is reduced to a
negligible, dispersive shift of the cavity resonance (see energy structure shown
in Fig. 6.8 and discussion below). This effect is modeled by assuming uncorre-
lated optical pumping of the two atoms described by the single-atom pumping
efficiency ηpump. The observed reflectivity R1

eff(∆) for a single atom and R2
eff(∆)

can then be expressed as weighted averages over the different contributions:

R1
eff = ηpumpR1(∆) + (1− ηpump)Rcav (6.19)

R2
eff = η2

pumpR2(∆) + 2ηpump(1− ηpump)R1(∆) + (1− ηpump)2Rcav (6.20)

where R1(∆) is the single-atom reflectivity (equation 6.18 with g2 = 0) and
Rcav(∆) is the empty cavity reflectivity given by equation 2.2.
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Problems with optical pumping that are related to the energy structure of
the excited energy eigenstates and the presence of the cavity are discussed in
the following paragraph. Figure 6.8(a) shows the energy eigenvalues of the
|5S1/2, F = 2,mF 〉 and |5P3/2, F = 3,mF 〉 states perturbed by the 1064 nm trap-
ping light for a trap power of P1064 = 1.4 W. The cavity frequency is stabilized
such that the cycling transition is resonant with the cavity for this setting of
P1064. The values were calculated using the theory developed in Chapter 3.2.2.
In order to optically pump the atoms to the |5S1/2, F = 2,mF = 2〉 state, the
cavity is excited with σ+ polarized light that drives ∆mF = +1 transitions.
Two problems for optical pumping appear. First, due to the strong tensor light
shift on the excited F=3 state, some excitation pathways are highly detuned.
The transition from the mF = −1 ground state to the mF = 0 excited state e.g.
is detuned by 50 MHz, leading to a low excitation rate and a consequently high
probability of the atom remaining in ground states with mF < 0. The second
problem was discovered during the first attempts to optically pump two atoms.
Although two atoms were clearly visible on the camera images, reflection spec-
troscopy of the coupled system did not deviate significantly from the case of a
single atom. This is a consequence of the resonance of the cavity with the cy-
cling transitions. The first atom to appear on the cycling transition will lead to
a normal mode splitting in the cavity excitation probability and the intracavity
intensity will be suppressed [63] by a factor (1 + 2C)2 with the cooperativity
C = g2/2κγ. Thus, for the parameters of this system, the first atom leads to
a seventy-fold reduction of the pumping light intensity in the resonator, which
tremendously slows pumping of the second atom.

As a solution, the trap power of the 1064 nm trap was reduced to 1.1 W during
the optical pumping, leading to the structure of excited energy eigenstates shown
in Fig. 6.8(b). The cavity is now not resonant with any atomic transitions while
the average detuning on all excitation pathways is decreased, which solved the
described problem of pumping two atoms.

Figure 6.8 shows experimental data for a single atom and two atoms coupled
to the cavity. Probing of reflectivity for 10µs is preceded by 80µs of optical
pumping and followed by optical molasses cooling. This sequence is repeated
at a rate of 500 Hz. The single resonance observed for the empty cavity (black
dots) is clearly split up into two resonances when a single atom is coupled
(red dots) corresponding to excitation of the single-atom normal modes of the
coupled system. The red line is a fit to the data. The parameters (κ, κOC, γ) =
2π·(2.75, 2.42, 3.03) MHz and η = 0.89, φ = 0.173 were taken from the evaluation
of the empty cavity data (see Chapter 2.2). The fitted parameters were g = 2π ·
7.62 MHz, ∆a = −2.82 MHz, τ = 2.01 MHz, and ηpump = 0.87. The fitted value
of g deviates only by 3 % from the theoretical maximum. This experimentally
found value is used for all further computations. The blue line is calculated using
equation 6.20 for the two-atom case with the parameters that were determined
by spectroscopy of the single-atom system and the empty cavity. No further free
parameters were introduced. The curves match the experimental data well (blue
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Figure 6.8.: Spectroscopy of the coupled one/two-atom-cavity sys-
tem in reflection Reflectivity of the empty cavity (black dots) and the
cavity containing a single (red dots) and two atoms (blue dots). The black
and red lines are calculated with theoretical models and fit to the data using
parameters describing the cavity itself and inhomogenous broadening of the
atoms due to residual thermal excitation (see text for details) The blue line
is calculated based upon the values found from the single-atom and empty
cavity data without further free parameters.

dots) and an increased collective coupling strength of geff =
√

2g = 2π ·10.8 MHz
was found in the splitting of the normal modes.

6.4.2. Transversal Excitation: Single Atom

Transversal excitation experiments with a single atom in the resonator were
initially carried out to calibrate the Rabi frequency of the excitation laser
and on a regular basis during the data collection of the two-atom interference
experiments. The results of these calibration experiments allow to monitor
small changes in the alignment that manifest themselves in a different Rabi fre-
quency of the excitation laser, or a different atomic detuning or temperature. A
sketch of the experiment is shown in Fig. 6.9(a). The polarization of the exci-
tation laser is linear perpendicular to the cavity axis. In the atomic coordinate
frame, the σ+-components of this laser thus couples to the cycling transition
|5S1/2,F=2,mF=2〉 ↔ |5P3/2,F=3,mF=3〉. It’s σ− components would drive a
∆mF = −1 transition, but this is highly unlikely due to the strong tensor light
shift caused by the π-polarized dipole trap (see Fig. 6.7(b)).

Figure 6.9(b) shows the measured rate of photons as a function of the exci-
tation laser’s detuning from resonance with the cavity. The red line is a fit to
the data of a single-atom model. The model is analogous to that described in
Chapter 6.3.1 but extended by fluctuating atomic detuning and imperfect op-
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Figure 6.9.: Transversal excitation of a single atom in the cavity
(a) Sketch of the scheme. A running-wave excitation laser propagates per-
pendicular to the cavity axis and illuminates a single atom trapped in the
cavity. The excitation laser is linearly polarized perpendicular to the cavity
axis with a power of 10 nW. Light emitted from the output coupling mirror is
detected with single photon detectors. (b) Rate of photons emitted from the
cavity versus frequency of the excitation laser. Zero on the x-axis marks the
resonance of the excitation laser with the empty cavity and the bare atom.

tical pumping in the manner that was discussed in the preceding chapter. The
only free parameters for fitting are the atomic detuning at the bottom of the
trap ∆a = −2π · 2.41 MHz, the atomic temperature described by the parameter
τ = 2π · 2.31 MHz, and the Rabi frequency of the excitation laser Ω = 940 kHz.
The optical pumping efficiency ηpump = 0.89 that was found from cavity reflec-
tion spectroscopy was used. The data agrees well with the fitted theory curve
and a normal-mode splitting of the resonance is clearly visible.

The detection setup allows for polarization-sensitive detection of the emitted
light (see Chapter 2.1). Insertion of a λ/4 wave plate maps circular polarizations
onto the two orthogonal linear polarizations which are discriminated by the
polarizing beam splitter in front of each detector pair. In this case and for the
described experiment, most of the fluorescence signal emitted from the cavity
appears on the detector that is sensitive to right-circular polarization. The ratio
of the two signals is 1:100 and is and therefore already close to the technically
limited extinction ratio of the detection setup. This polarization is expected, as
the light used for initial optical pumping of the atom onto a cycling transition
is right-circular polarized as well.

Experiments like the one described were performed periodically during the
two-atom data collection in order to verify the system’s alignment and the sta-
bility of all of the relevant parameters.
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6.5. Phase Calculation

As discussed in Chapter 2.4, unambiguous single-site resolved detection of the
difference vector between an atom pair was achieved. For the two-atom ex-
periments, this technique is employed to detect the value of the relevant phase
difference φ for every loaded atom pair. The excitation laser was carefully
aligned to propagate colinearly with the 1064 nm trap beam along the x-axis.
Because the 780 nm wavelength of the excitation laser is incommensurable with
the spatial periodicity of the trapping potential (532 nm), φ will increase by an
odd fraction of 2π with each additional site, by which the atom pair is separated
along the x-axis. Along the z-axis, the spatial periodicity of the trapping poten-
tial (1/2 ·772 nm = 386 nm) is also incommensurable with the 780 nm wavelength
of the resonant intracavity mode. Yet, while the phase of the electric field of
a propagating wave changes continuously and the field’s amplitude is constant,
the phase of a standing wave field is constant between two nodes of the light
field and undergoes a discontinuous jump of π at each light node. The jump
is accompanied by a zero transition of the field’s amplitude. For a given atom
pair with an integer number of trapping sites nx and nz along the x- and z-axis
between them, the value of φ is:

φ = nz · π + nx ·
532

780
· 2π. (6.21)

The small non-orthogonality found in the lattice (see Chapter 2.4) does not
alter the calculation of φ if the excitation laser propagates colinearly with the
x-axis trap.

The atoms are trapped in a region along the cavity where the 772 nm mode
that is used for trapping and the 780 nm mode that is held resonant with the
atoms are out-of-phase. The repulsive intracavity trap thus confines the atoms
to antinodes of the resonant mode. When the displacement of the atoms along
the z-axis increases, this no longer holds. The beating pattern of the two modes
has a spatial periodicity of 37µm and the intensity of the mode at the trapping
sites of the blue trap is modulated sinusoidally. In all of the experiments that are
discussed in this chapter only loading attempts were evaluated, which resulted
in atoms that were located within a region of interest that extended 6µm along
the z-axis. It was made sure in independent experiments that the center of this
region of interest coincides with a maximum of the beating pattern between
the two longitudinal modes. Thus, the greatest displacement of 3µm from this
maximum leads to a decrease of less than half a percent of the mode’s amplitude
and therefore the value of g.

Along the x-axis, the mode intensity is given by the Gaussian envelope of the
cavity field with its 1/e2 intensity radius of w = 29.6µm. The evaluated region of
interest extents 15µm along the x-axis, chosen symmetrically around the center
of the cavity mode. The maximum displacement of 7µm of a single atom from
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the cavity center thus leads to a maximum decrease in g of 3 %. Both effects
are negligible compared to other experimental imperfections such as residual
thermal excitation, which were discussed Chapter 6.4 and are neglected in the
analysis of the presented experiments.

6.6. Experimental Results

Several two-atom experiments were conducted with different experimental set-
tings. During application of the experimental sequence, the 1/e single-atom
trapping time was ≈ 20 s. This value is decreased by a factor of two for an atom
pair, as the loss of one of the two atoms destroys the pair. Because the loading
is less reliable for two atoms in comparison to a single atom, the experimental
duty cycle is further reduced. Still, data was collected approximately 25 % of
the available laboratory time and the experimental sequence was repeated with
a rate of 0.75 kHz during that time. This resulted in a comfortable data rate
that permitted frequency- and phase-resolved measurements in an acceptable
time.

Figure 6.10(a) shows a sketch of the experiment. After optical pumping of
the two atoms for 80µs with a reduced trap power (see Chapter 6.4.1), the atom
pair was transversally excited with a laser that was linearly polarized with its
electric field oriented perpendicular to the cavity axis. Owing to the tensor
light shift caused by the dipole trap, only the σ+ component of this laser cou-
ples resonantly to the atoms’ cycling transition (see Chapter 6.4.2). While the
excitation laser was applied, light transmitted through the outcoupling mirror of
the cavity was coupled to an optical fibre (not shown in the figure) and directed
to a Hanbury-Brown and Twiss type detection setup [165]. The setup consists
of a single-photon detectors behind each output port of a non-polarizing beam
splitter. This setup enables simultaneous recording of the rate of emitted pho-
tons and evaluation of the g(2)(τ) correlation function. Simultaneously recorded
fluorescence images were used to attribute the recorded data to a certain value
of the phase difference φ (see preceding chapter).

Figure 6.10(b) shows the data that was collected while exciting the atom
pair at a Rabi frequency of Ω = 2π · 300 kHz and scanning the detuning of
the excitation laser. The atoms were kept on resonance with the cavity. The
two datasets show the extreme cases of in-phase emission (φ = 0) and out-
of-phase emission (φ = π). The solid lines were calculated with parameters
for the residual temperature (τ = 2π · 2.3 MHz) and atomic detuning at the
bottom of the trap (∆a = −2π · 3.0 MHz), found from independent single-atom
experiments (see Chapter 6.4.2). The dashed line shows the theory curve fitted
to these single-atom data. The two-atom data reproduce all features that are
expected from the theoretical treatment, including the relatively small (1.2-fold)
increase of emitted power when comparing the two-atom in-phase data to the
single-atom data for resonant driving (∆ = 0).
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Figure 6.10.: Two-atom experiments: Intensity and fluctuations (a)
Rate of photons emitted from the cavity while driving the atoms with a Rabi
frequency of Ω = 2π · 300 kHz and a variable detuning of the drive laser from
the bare atoms’ resonance, which coincides with the cavity resonance. The
two data sets are evaluated for the out-of-phase situation φ = π and in-phase
emission φ = 0 of the two atoms. The dashed line is the fit result to a corre-
sponding single-atom verification measurement. (b) Rate of photons emitted
from the cavity as a function of the interatomic phase φ while driving the
atoms on resonance with a Rabi frequency Ω = 2π ·940 kHz. The dashed line
marks the single-atom value of 75 kHz. (c) Second-order correlation function
g(2)(τ = 0) recorded in the same setting as the data in panel (b). A transition
from almost Poissonian to strongly super-Poissonian photon emission is visi-
ble as the phase changes from constructive interference φ = 0 to destructive
interference φ = π.

Furthermore, the detunings that maximize the emitted power and mark exci-
tation of the collective normal modes are further apart for the two-atom in-phase
data compared to the single-atom data; this is consistent with cavity-reflection
spectroscopy (see Chapter 6.4.1). In the out-of-phase case, the calculated the-
ory curve strongly deviates from the numerical analysis of the perfect system
(see Figure 6.3). This is mainly a consequence of imperfect optical pumping.
In the majority of the cases in which optical pumping of two atoms did not
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succeed, light is still emitted by one single atom. The rate of emitted photons
is then by far larger as for two atoms emitting destructively and will display a
normal-mode spectrum as a function of the laser frequency (see Figure 6.9(b)).

The data shown in panel (b) of Fig. 6.10 show the rate of emitted photons as
a function of the phase φ while resonantly exciting the system. The excitation
power was increased with respect to the experiments shown in panel (a) from
1 nW to 10 nW. This setting and the corresponding increased rate of photon
emission permitted a measurement of the second-order correlation function in
acceptable time (one week) while fulfilling Ω < g and causing negligible heating
of the atoms. The dashed line at 75 kHz shows the single-atom value that was
found for the same experimental circumstances in independent single-atom ex-
periments. The red solid line was calculated with the theoretical model, using
parameters found from the same single-atom experiments (Ω = 2π · 940 kHz,
τ = 2π · 1.9 Mhz, ∆a = −2π · 2.6 MHz). From the ten-fold increase in excitation
power, a

√
10 = 3.2 fold increase in the Rabi frequency is expected, which is

in accordance with the measured values. The data shows a sinusoidal modu-
lation of the emitted power as a function of the phase and is congruent with
the theoretical expectation. Consistent with the data shown in panel (a), the
emitted power is increased by a factor 1.25 < 4, which is well below the simple
expectation of a fourfold increase for free-space emission (see Chapter 6.3.2).
For growing interference phase φ > 0, the observed intensity drops below the
single-atom value and assumes a non-zero minimum of 40 kHz for φ = π.

Panel (d) of Fig. 6.10 shows the theoretical expectation (red line) and the mea-
sured value (black dots) of the second-order correlation function g(2)(τ = 0). All
detection events of two single-photon detectors that observed the output of two
ports of a non-polarizing beam splitter (see Fig. 6.9(a)) during excitation of the
atom were denoted as timestamps with an electronic resolution of 160 ps. Pairs
of detection events (within one experimental shot), one of which occurred on
one detector and one on the other, were evaluated by denoting their detection
time difference in a table. The light path from the beam splitter to the two de-
tectors differs by 66 cm, which is accounted for by subtracting 2.2 ns from every
detected pair. As the correlation function is intrinsically symmetric, the sign
of the detected pairs does not bare any physical relevance and the found values
are replaced by their modulus. The registered values are subsequently binned in
2 ns wide bins and finally normalized to the expected number of pairs per bin,
assuming a Poissonian distributed number of temporally uncorrelated detected
photons per experimental shot. In the case of n detected photons in a particular
shot, n(n−1) detection time differences between photon pairs are detected. The
average number of detection time differences for a Poissonian distributed number

of detected photons will therefore be 〈n(n−1)〉 =
∑∞

k=0
〈n〉k
k!
e−〈n〉k(k−1) = 〈n〉2.

The beam splitter distributes the photons randomly onto the two detectors and
only pairs of photons that were registered on different detectors enter the eval-
uation. This procedure eliminates half of the data but avoids problems that
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Figure 6.11.: Second-order correlation functions The second-order cor-
relation function g(2)(τ) is shown as a function of the detection-time difference
(τ) for the cases of two atoms (a) emitting with opposite phases (φ = π) and
(b) emitting in-phase (φ = 0). In the case of destructive interference, an
oscillatory decay of the initial bunching peak g(2)(0) = 64 ± 7 to the uncor-
related steady-state value was observed. For in-phase emission of the atom
pair, uncorrelated photon emission was observed, as expected from a coherent
intracavity field.

are caused by detector dead time. The expected number of correlations is thus
reduced to 〈n〉2/2. Owing to the limited probing time T , the detection time
differences are not expected to be equally distributed. It is unlikely to find two
photons exactly at the boundaries of the probing time generating a data point
at τ = (±)T , whereas there are many possible realizations of a closely spaced
photon pair (τ < T ) within the pulse. In case of a constant ensemble-averaged
intensity during probing, a pyramidal envelope of the number of correlations per
bin is expected, reflecting the autocorrelation function of the pulse envelope. For
a total number N of experiments, the number of detection time differences (af-
ter taking the absolute value) in a bin with width w at detection time difference
τ will be (1 − τ/T )N〈n〉2w/(2T ). As the maximum evaluated detection time
difference τ = 100 ns is small compared to the probing time T = 5µs, the
τ -dependency of the normalization was ignored during data evaluation.

The strong dependence on the phase predicted by the theory is found in the
experiment and the data agree quantitatively within error bars. For destructive
interference, the light emitted from the cavity is strongly super-Poissonian with
g(2)(0) = 64 ± 7. For in-phase emission of the atoms, build-up of an almost
perfectly coherent field in the cavity is expected. A value of g(2)(0) = 0.79±0.16
is measured. The deviation from the expected value is only 1.5σ and evaluating
g(2)(τ > 0) provided additional supporting data to rule out photon antibunching
on atomic time-scales. These data will be discussed in the following.

The second-order correlation functions evaluated for detection-time differ-
ences τ > 0 are shown in Fig. 6.11 for φ=π in panel (a) and φ=0 in panel (b) to-
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gether with the theoretical expectation (red lines). In the out-of-phase emission,
the rapid oscillatory decay of the initial peak that is predicted by theory is re-
produced well by the data. A second maximum was found at (2

√
2 g)−1 = 46 ns.

As discussed above, this can be interpreted in a particle- or wave-like manner. It
can either be seen as the first maximum in the beating pattern of emission from
the two normal modes, or as the single photon that remains in the cavity after
emission of a first photon undergoing one full cycle of collective vacuum Rabi
oscillations. The theoretical expectation in the case of φ = 0 is hardly distin-
guishable from a perfectly constant function indicating absolutely uncorrelated
emission. Within error bars, the data agrees with this expectation. The fact
that the correlation functions in both cases do not settle to g(2)(τ → ∞) = 1
is supported by the theory. It is a consequence of the ensemble average over
different realizations of the same experiment, each of which is performed with a
different realization of fluctuating parameters, such as atom position and success
of optical pumping. This leads to an intrinsic bunching that is not associated
with any time-scale.
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7. Summary and Outlook

Throughout this thesis project full experimental control over a pair of atoms that
are permanently coupled to the single mode of a miniaturized Fabry-Perot res-
onator was achieved. A mechanism to isolate exactly two atoms from a random
initial sample was implemented. Moreover, a two-dimensional optical lattice in
combination with single-site resolved imaging of the atom pair allowed exact
determination of the atoms’ relative spatial position. Breakdown of the atomic
hyperfine structure caused by the dipole trap was experimentally observed. A
technique to measure the population of individual motional eigenstates of the
trapping potential was developed. This topic transcends characterization mea-
surements and was presented as a self-contained chapter. An outlook for future
research opportunities made possible by these findings was given in this chapter.

The achieved single-site resolution allows measurement of the relative optical
phases that appear when the atom pair is driven with a laser that is propagating
transversally through the resonator. In a scattering experiment, light emitted
from the resonator was observed as a function of the optical phases, with which
the atoms couple to the cavity mode and a transversal excitation laser. In this
experimental setup, the excitation laser in dependency of the phase difference
couples the system’s ground state to states that are symmetric or antisymmetric
with respect to the exchange of atoms. Emission of coherent light and a weak
dependency of the emission power on the number of atoms was found when
atomic symmetric states were excited and the atoms correspondingly emitted
constructively into the cavity mode. Excitation of atomic antisymmetric states
leads to reduced, though non-zero, light emission. In contrast to the uncor-
related photon emission observed for constructive interference, antisymmetric
excitation and therefore destructive emission was characterized by huge photon
bunching.

It is precisely these differences in the radiative behaviour of atomic symmetric
and antisymmetric states which are at the heart of many theoretical proposals
that are relevant for quantum information processing. Kastoryano et al. pro-
posed an experimental scheme for dissipative preparation of entangled states
between two atoms embedded in an optical cavity [41]. In this scheme, applica-
tion of a single optical pumping field drives the atoms into a maximally entangled
steady state that is realized in the atoms’ ground state manifolds. The entangled
state is then made available by simply switching off the light whenever needed,
e.g. in a quantum repeater scheme [166]. The underlying Tavis-Cummings
dynamics has been simulated on an ion-trap apparatus in David Wineland’s
group [167], yet its realization in the optical domain remains an open goal. The
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experimental techniques developed and characterized in this thesis provide all
the necessary building blocks.

Instead of the expectation value and fluctuation of emitted light’s intensity
that were observed in this thesis, field quadratures of the emitted light could
be recorded as a function of the phase between the atoms. The huge pho-
ton bunching that was observed for destructive interference, i.e. excitation via
atomic antisymmetric states, was explained as a consequence of excitation to a
doubly excited state, followed by photon-pair emission. Also for higher rungs
of the Tavis-Cummings ladder of states it remains true that the antisymmet-
ric excitation pathway excites only energy eigenstates with an even number of
photons. This excitation pathway can thus lead to squeezed-vacuum states of
the cavity field. This topic has been covered in theory [17, 32, 33] and the only
addition to the apparatus required is a homodyne-detection setup.

The possibility to trap and control several atoms as stationary quantum bits
coupled to the single light mode of a cavity as a shared resource is a prototypical
system for quantum information processing. Quantum computer architectures
and quantum logic gates [35, 38–40] have been proposed. The required control
over single atoms without illuminating other atoms can be provided by the
optical addressing system that was implemented; for the experiments reported in
this thesis this system was only used to resonantly excite atoms and remove them
from the trap. Initial experiments that aim to extend an already demonstrated
quantum memory process [78] to multiple atoms were conducted and promising
results were found.
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A. Reduced Matrix Elements

Transition Wavelength 〈nJ ||d||n′J ′〉/(ea0) Reference
5S1/2 → 5P1/2 794.7603 nm 2.992 [168]
5S1/2 → 5P3/2 780.0268 nm 4.225 [168]
5S1/2 → 6P1/2 421.5524 nm 0.2356 [168]
5S1/2 → 6P3/2 420.1792 nm 0.3601 [168]
5S1/2 → 7P1/2 359.1572 nm 0.08132 [168]
5S1/2 → 7P3/2 358.705 nm 0.1344 [168]
5S1/2 → 8P1/2 335.0812 nm 0.04069 [168]
5S1/2 → 8P3/2 334.8696 nm 0.07129 [168]
5S1/2 → 9P1/2 322.9156 nm 0.02527 [168]
5S1/2 → 9P3/2 322.7979 nm 0.04611 [168]
5S1/2 → 10P1/2 315.8259 nm 0.01768 [168]
5S1/2 → 10P3/2 315.7530 nm 0.03242 [168]
5P1/2 → 4D3/2 1475.64 nm 5.684 [169]
5P1/2 → 6S1/2 1323.88 nm 2.932 [169]
5P1/2 → 7S1/2 728.2 nm 0.674 [169]
5P1/2 → 7D3/2 564.93 nm 0.564 [169]
5P1/2 → 8S1/2 607.24 nm 0.355 [169]
5P1/2 → 8D3/2 536.41 nm 0.433 [169]
5P3/2 → 4D3/2 1529.26 nm 1.814 [169]
5P3/2 → 4D5/2 1529.37 nm 5.445 [169]
5P3/2 → 5D3/2 776 nm 0.333 [170]
5P3/2 → 5D5/2 776 nm 0.992 [170]
5P3/2 → 6S1/2 1366.87 nm 3.025 [169]
5P3/2 → 6D3/2 630 nm 0.253 [170]
5P3/2 → 6D5/2 630 nm 0.756 [170]
5P3/2 → 7S1/2 741.02 nm 0.675 [169]
5P3/2 → 7D3/2 572.62 nm 0.187 [169]
5P3/2 → 7D5/2 572.57 nm 0.559 [169]
5P3/2 → 8S1/2 616.13 nm 0.353 [169]
5P3/2 → 8D3/2 543.33 nm 0.143 [169]
5P3/2 → 8D5/2 543.3 nm 0.427 [169]
5P3/2 → 9S1/2 566 nm 0.233 [170]
5P3/2 → 9D3/2 526 nm 0.113 [170]
5P3/2 → 9D5/2 526 nm 0.336 [170]
5P3/2 → 10S1/2 539 nm 0.171 [170]
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B. 1D Lattice Calculation

The derivation is carried out following the treatment in [171]. The result will
be an energy spectrum that is parametrized by a discrete band index n and a
continuous quasi-momentum q. The potential is denoted as

U(x) = −U0 cos(k x)2 =
−U0

2
− 1

4
ei2kx − 1

4
e−i2kx

where k is the wave vector of the light used to generate the periodic potential.
The generated dipole potential has twice the periodicity. To find the eigenstates,
the following ansatz is chosen that factorizes into a plain wave with momentum
q and a lattice-periodic function u

(n)
q (x) = u

(n)
q (x+ π/k)

Ψ(n)
q (x) = e

iqx
~ u(n)

q (x)

Introducing this ansatz into the Hamiltonian yields

HBu
(n)
q (x) = E(n)

q u(n)
q (x) with HB =

1

2m
(p+ q)2 + U(x)

The potential U(x) =
∑

r Ure
i2rkx and u

(n)
q =

∑
l c

(n,q)
l ei2lkx are epxressed as

Fourier series. The potential’s Fourier coefficients are given by the definition of
the potential U−1 = U1 = 1

4
, U0 = −1

2
U0. Inserting this into the Hamiltonian

yields:

pot. energy: U(x)u(n)
q (x) =

∑
l,r

c
(n,q)
l Ure

i2(r+l)kx

=
∑
l

c
(n,q)
l U0

(
−1

2
ei2lkx − 1

4
ei2(l−1)kx − 1

4
ei2(l+1)kx

)
kin. energy:

(p+ q)2

2m
u(n)
q =

∑
l

(2~kl + q)2

2m
c

(n,q)
l ei2lkx

This is a recursive expression for the Fourier coefficients of the solution, which
may be expressed as an eigenvalue problem:

∑
l′

Hl,l′c
(n,q)
l′ = E(n)

q cl with Hl,l′ =


−1

2
U0 + 2~kl+q)2

2m
l = l′

−1
4
U0 |l − l′| = 1

0 else
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[43] G. R. Guthöhrlein, M. Keller, K. Hayasaka, W. Lange, and H. Walther.
A Single Ion as a Nanoscopic Probe of an Optical Field. Nature 414,
49–51 (2001).

[44] B. Casabone, K. Friebe, B. Brandstätter, K. Schüppert, R. Blatt, and
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Coherence and Raman Sideband Cooling of a Single Atom in an Optical
Tweezer. Phys. Rev. Lett. 110(13), 133001 (2013).

[86] R. Reimann, W. Alt, T. Macha, D. Meschede, N. Thau, S. Yoon, and
L. Ratschbacher. Carrier-Free Raman Manipulation of Trapped Neutral
Atoms. New. J. Phys. 16(11), 113042 (2014).

[87] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov. Optical Dipole Traps
for Neutral Atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).

[88] S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable. Experimental Ob-
servation of Optically Trapped Atoms. Phys. Rev. Lett. 57(3), 314–317
(1986).

[89] P. S. Jessen. Optical Lattices. Adv. At. Mol. Opt. Phys. 37, 95–138
(1996).

[90] B. Bransden and C. Joachain, Physics of Atoms and Molecules (Prentice-
Hall, 2003) 2nd ed.

111



Bibliography

[91] P. Rosenbusch, S. Ghezali, V. Dzuba, V. Flambaum, K. Beloy, and
A. Derevianko. AC Stark Shift of the Cs Microwave Atomic Clock Tran-
sitions. Phys. Rev. A 79(1), 013404 (2009).

[92] F. Le Kien, P. Schneeweiss, and A. Rauschenbeutel. Dynamical Polariz-
ability of Atoms in Arbitrary Light Fields: General Theory and Applica-
tion to Cesium. EPJ D 67(5), 1–16 (2013).

[93] Simon Elias Baur, A Single-Photon Switch and Transistor based on Ryd-
berg Blockade, Phd, TU München (2014).

[94] W. R. Johnson, D. Kolb, and K.-N. Huang. Electric-Dipole, Quadrupole,
And Magnetic-Dipole Susceptibilities and Shielding Factors For Closed-
Shell Ions Of the He,Ne,Ar,Ni,Kr,Pb and Xe Isoelectronic Sequences.
Atom. Data Nucl. Data 28(2), 333–340 (1983).

[95] W. D. Hall and J. C. Zorn. Measurement of Alkali-Metal Polarizabilities
by Deflection of a Velocity-Selected Atomic Beam. Phys. Rev. A 10(4),
1141–1144 (1974).

[96] B. Arora and B. K. Sahoo. State-insensitive Trapping of Rb Atoms: Lin-
early versus Circularly Polarized Light. Phys. Rev. A 86(3), 033416
(2012).

[97] M. Safronova. Private Communication.

[98] L. Armstrong, Theory of the Hyperfine Structure of Free Atoms (Wiley-
Interscience, 1971).

[99] J. Mitroy, M. S. Safronova, and C. W. Clark. Theory and Applications of
Atomic and Ionic Polarizabilities. J. Phys. B 43(20), 202001 (2010).

[100] D. A. Steck. Rubidium 87 D Line Data 2.1.4, 2010.

[101] J. Ye, H. J. Kimble, and H. Katori. Quantum State Engineering and Pre-
cision Metrology Using State-Insensitive Light Traps. Science 320(5884),
1734–1738 (2008).

[102] M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov,
and C. Kurtsiefer. Strong Interaction Between Light and a Single Trapped
Atom Without the Need for a Cavity. Nat. Phys. 4(12), 924–927 (2008).

[103] C.-Y. Shih and M. S. Chapman. Nondestructive Light-Shift Measurements
of Single Atoms in Optical Dipole Traps. Phys. Rev. A 87(6), 063408
(jun 2013).

[104] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions
(National Bureau of Standards, Washington, D.C., 1972) 10 ed.

112



Bibliography
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