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ABSTRACT

In this paper we present a resource-centric application clas-
sification approach that monitors data flow along the path
from main memory to the cores to locate spots of high re-
source utilization and potential resource contention. We des-
ignate three application classes, i.e. streaming applications,
last-level cache sensitive applications and applications that
restrict their activity either within the cores or in the private
levels of the memory hierarchy. Our classification scheme
can form the basis for a number of preliminary prediction
models that are capable of predicting application interfer-
ence with high accuracy.
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1. INTRODUCTION

Chip Multiprocessors (CMPs) encapsulate several cores
that share a number of critical resources such as memory
links, cache memory and memory controllers. Applications
running simultaneously may compete for these resources,
leading to resource contention and eventually to performance
degradation. Contention on shared resources may even vic-
timize the threads of a single parallel application moderat-
ing, or even mitigating benefits of parallel execution. Be-
yond performance degradation that can be severe in many
cases, performance instability is another critical issue espe-
cially in computing environments where performance guar-
antees need to be maintained. To address the problems
created by resource contention, researchers have proposed
modifications in hardware (e.g. cache partitioning [12]) or
software (e.g. contention-aware scheduling (3,10, 14]). In
all cases, a classification scheme is employed that utilizes
information regarding shared resource utilization [2, 3], ap-
plication resource footprints [6,7,15] or co-execution behav-
ior [4,8].
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Contention-mitigating mechanisms build upon this knowl-
edge to take better optimization decisions. For example,
contention-aware schedulers rely on application classification
that predicts interference of co-execution scenarios. Cache
utilization patterns [6,7,15], LLC miss rate [3], memory
link bandwidth [2, 10], contentiousness and sensitivity [14]
have been proposed towards this direction. Ultimately, these
schedulers aim at reversing the effects of contention on QoS,
throughput [16] or energy consumption [10].

The accuracy of the classification scheme in the prediction
of application co-execution penalties is one of the most crit-
ical factors for a co-scheduling framework. However, most
of these schemes capture applications’ activity in a limited
part of the architecture, i.e. either memory link or last level
cache (LLC). Thus, they cannot infer application utiliza-
tion at each specific hardware resource. In this paper we
present a classification scheme based on previous work [5]
that inspects the entire memory hierarchy from main mem-
ory down to the compute cores and captures data flow and
resource utilization. This information is utilized to under-
stand application behavior and predict interference prob-
lems. In this way we are able to spot contention on both
memory link and LLC. Our classifier distinguishes between
three application classes: streaming applications; cache in-
tensive applications; and applications that exhibit no sig-
nificant activity on the shared resources of the system. We
demonstrate interactions between applications from various
classes are adequately predictable through simple prediction
models, therefore could be applied in an optimized schedul-
ing mechanism.

The rest of the paper is organized as follows: Section II
presents our classification approach and Section III presents
experimental results. In Section IV we discuss related work.
Finally, Section V concludes the paper and discusses ideas
for future work.

2. CLASSIFICATION

Our application characterization approach has the follow-
ing objectives: a) to be capable of locating contention on
both the shared memory link and LLC simultaneously, in
order to more accurately capture the application’s resource
utilization pattern, b) to rely solely on information that can
be collected at runtime from the existing monitoring facili-
ties of modern processors (requiring no additional hardware
support) in order to increase its applicability as much as
possible, and c¢) to be sufficiently fast in order to be capable
of supporting prompt decisions, required in dynamic execu-
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Figure 1: Activity in application classes

tion environments where applications enter, exit and change
behavior frequently.

2.1 Application classes

In our analysis, the following three application classes are
relevant:

Class N: Applications that restrict their activity either
within the core or in the private caches of the core. The
members of this class create no contention to the shared
system resources. The class includes applications with heavy
computations, very small working sets or optimized data
reuse that can be serviced by the private caches.

Class C': Applications with high activity on the shared
LLC. This is a wide class including members with a com-
bination of main memory access and LLC data reuse, or
members with varying characteristics, such as those that
operate on small data sets with heavy reuse, optimized code
for the LLC (e.g. via cache blocking with a block size fitting
the LLC), or latency-bound applications that make irregular
data accesses and benefit a lot from LLC hits.

Class S: Applications of this class have a stable data flow
on all links of the memory hierarchy. This class typically in-
cludes applications that perform streaming memory accesses
on data sets that largely exceed the size of the LLC, or have
either no reuse or large reuse distances Although they fetch
data on the entire space of the LLC, they do not actually
reuse them either because their access pattern does not re-
cur to the same data, or because they have been swept out
of the cache. No level of cache memories helps S applica-
tions accelerate their execution. Thus, they tend to pollute
all levels of caches. Figure 1 indicates the activity spot of
each class.

2.2 Classification method

Having defined the application classes, we need a concrete
method to perform the classification using runtime statistics.
The core idea is to inspect the data path from main memory
down to the core to locate links with high utilization. We
have focused only on the stream flowing towards the core, as
we have empirically found that this direction concentrates
the largest portion of contention. Figure 2 illustrates this
idea.

Our classification method implements the decision tree
shown in Figure 3. We follow a hierarchical approach in
the classification. First, we look at the application activity
in L1 cache. No activity in L1 means that data used from
the entire path of memory are too few, indicating that the
application’s activity is restrained within the core. Applica-
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Figure 3: Decision tree for application classification

tions that exhibit this attribute are classified as N. If we are
unable to locate reuse at any level of the cache hierarchy,
then the application has a streaming attitude and is r};larked
Bon,
The rationale is simple: if data flow out of a cache towards
the core with a much higher rate than they flow in, then we
can safely assume that reuse is present. We empirically set
a threshold of 2 to designate reuse. If there is cache reuse,
reuse location needs to be examined. If reuse is higher in
the private caches, then the application is classified as N,

as S. As cache reuse factor, we use the ratio CR; =



else the application is classified as C (as the dominant reuse
is on the LLC).

2.3  Co-execution effects

Despite the fact that inside each class one may find appli-
cations with quite different execution patterns, the classes
themselves can be used to capture the big picture of how
applications access common resources and of co-execution
interference between applications. In the following we de-
note xy the co-execution of an application from class x with
an application from class y. We use * as a wildcard for “any
class”. Here is what we expect from the co-execution of all
combinations:

N - *: As applications from class N do not activate in any
shared resource, this co-execution does not create interfer-
ence with any of the applications.

S — S: Applications compete for the memory link. The con-
tention pattern in this case indicates that the shared re-
source which in this case is the memory link bandwidth is
divided (not necessarily equally) between the competing ap-
plications.

S — C: As S applications tend to pollute caches, C applica-
tions may suffer from the coexistence with S applications. In
cases of high pace of data fetching their co-execution can be
catastrophic for the C application. On the contrary, S appli-
cations having low pace of data fetching may cause no harm
to C applications. The streaming nature of S applications
causes data that are potentially heavily reused by C appli-
cations to be swept out of the LLC rapidly, enforcing them
to access main memory. This contention pattern can lead to
dramatic slowdowns for C applications. On the other hand,
S applications suffer no severe penalty from co-execution.
C - (C': This is the most difficult to predict co-execution. In
the general case, we expect cache organization and replace-
ment policies to be able to handle adequately high activity
from different applications on the shared LLC. However, if
both exhibit similar data access patterns, contention is ex-
pected to be high. To go deeper into the class and better
understand possible interactions, one would require informa-
tion on the data allocated to each application on the LLC
and the access pattern. This would require either informa-
tion from static analysis, or additional hardware support.

2.4 Interference prediction models

A successful classification model is the core of an accurate
prediction model that will ultimately be used by resource
management mechanisms such as contention-aware sched-
ulers. Interference prediction is the most useful one, since
it can be directly applied to scheduling policies. Interfer-
ence effects are more complicated as the number of appli-
cations running simultaneously, increases. To confirm the
validity of the expected co-execution effects, co-execution
scenarios have to be simple. Therefore these scenarios con-
sist of two applications competing for shared resources of the
same package at the same time. There are six possible sce-
narios derived from our classification model, described next.
We denote Dx_y the degradation of application X when
executed with application Y.

S — S: In this case both applications compete for the mem-
ory link. As the available bandwidth of the link is limited,
applications need to share it. Even S applications that are
running alone may have a small LLC reuse, this will be lost
due to the high pace of LLC pollution, that their competitor

causes. Because of this, we expect that the degradation will
be expressed as:

BWmaz
BW e + BWL,

mem—LLC

Ds_s =

where BW is the bandwidth, in denotes the inspected ap-
plication and co the co-executed one.

S — C': S applications invalidate C applications’ cached data.
We expect that as the bandwidth of S applications increases,
the consequences will be more dramatic for C applications.
The wide pallet of different memory access patterns de-
mands observation on a large number of parameters. How-
ever, as an initial attempt, we experiment with a linear func-
tion of degradation with the bandwidth of the co-executed
application. Thus, our prediction model is expressed as:

De_s=ax BWm-srrc+8

On the other hand, we expect S applications to suffer min-
imal pain, and we set Ds_c = c1, with ¢; taking a value
close to 1.

C - C: As cache hardware is expected to efficiently handle
the conflicts in this case, degradation prediction is defined
as a constant value taken from the average value of our ex-
perimental results, i.e. Do_c = c2

N -5 N - C, N - N: N applications do not affect and
are not affected by other applications. In all of these cases
all the degradation’s predictions are taken as constants, i.e.
DS—N = C3, DC—N = C4 and DN = Cs, again with Cc3, C4
and c¢s taking values close to 1.

We calculate parameters «, § and ¢ ... cs with regression
utilizing experimental data from the co-execution of our ap-
plication test suite, which is presented in Section 3.2. We
split our set in sliding windows of 80% training and 20%
testing sets.

3. EVALUATION

3.1 Experimental Platform

The evaluation of the classification scheme is performed
on an Intel® Xeon® CPU E5-4620. The architectural de-
tails are presented in Table 1. All the available hardware
prefetchers are enabled whereas Hyperthreading and Turbo
Boost are disabled. The platform runs Debian Linux 6.0.6
with kernel 3.7.10.

Cores 8

Data cache: private, 32 KB, 8-way, 64 bytes
L1 -
block size
Instruction cache: private, 32 KB, 8-way, 64
bytes block size

L2 private, 256 KB, 8-way, 64 bytes block size
L3 shared, 16 MB, 16-way, 64 bytes block size
Memory | 64 GB, DDR3, 1333 MHz

Table 1: Processor details

In order to monitor the applications and acquire their pro-
file, we employ hardware performance counters to collect
performance data. Specifically, we use UNHLT_CORE_CYCLES,
INSTR_RETIRED, L1D.REPLACEMENT, L2_LINES.IN. Further-
more, we use OFFCORE_REQUESTS (0xB7, 0x01; O0xBB, 0x01).

3.2 Experimental Setup

In our evaluation, we populated all four application classes
selecting benchmarks from a variety of multithreaded suites



Name Source Details ?8@7&% CRyj. = gi:z CRpp = gi:; IPC | class
jacobi_l polybench | large data set 10.321 1.50 1.02 0.559
stream 9] array size = 50000000, offset = 11.646 1.00 1.03 0.724 g

NTIMES = 10, kernel = TRIAD

bt NAS class A 8.566 0.97 1.36 0.813

fw polybench | small data set 7.468 1.02 1.16 1.903
Dynprog polybench | custom data set 8.220 0.98 1.54 1.384
Mvt polybench | custom data set 1000 0.006 4.21 565.29 0.455
Mvt polybench | custom data set 6000 2.274 0.92 8.3T 0.343
atax polybench | Targe data set 2.426 0.82 8.61 0.336
cg NAS class B 5.955 1.37 4.38 0.728

syr2k polybench | Targe data set 5.883 2.07 2.00 1.919 c
gemver polybench | Targe data set 2.873 0.82 7.23 0.440
cholesky polybench | Targe data set 0.156 0.85 195.56 1.876
pchase 1] A pointer-chasing benchmark with 0.135 1.00 222.01 0.148

data set fitting in LLC.
Tut inhouse Classic implementation of tiled LU de- 0.009 8.67 178.91 1.635
composition with data set fitting in
LLC.
Jjacobi_s polybench | small data set 0.534 1.15 35.17 1.209
fw_t inhouse Implementation  of tiled Floyd- 0.063 9.92 34.45 2.181
Warshall algorithm from [13]. Data
size fits in LLC.
ep NAS class A 0.000 0.97 2644.41 0.746
mm_t inhouse Classic implementation of tiled Matrix 0.030 17.82 5.68 2.933
Multiplication with data set fitting in N
LLC.
blackscholes PARSEC large data set 0.186 0.65 5.63 1.732

Table 2: Application suite

and inhouse implementations of classic kernels. Table 2
presents our application suite, together with key metrics
used to classify each application according to our scheme.
The test platform includes one shared LLC and two pri-
vate caches (L; and L2). In order to evaluate our classifi-
cation scheme, we co-execute all possible pairs of applica-
tions, totally 361 pairs. We allocated half of the available
cores to each application. If an application terminates, it is
respawned in order to keep contention at the same level.

S C N
1.76

121 1.15 1.09

co-runner class
0O

class average slowdown

Figure 4: Average application slowdown due to co-execution
at the class level. The horizontal dimension represents the
slowdown imposed by each class, while the vertical dimen-
sion shows the slowdown suffered.

Figure 4 provides a class-level view of average slowdowns
of each class measured. We may observe that our classifica-
tion scheme is able to capture the general trend in interfer-
ence penalties. In particular, we observe that whenever a N
application is involved, the interference overhead is negligi-
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Figure 5: Relative errors for the SCN, ‘median’ and ‘no
contention’ predictors.

ble. On the other side of the spectrum, the most contentious
pairings arise in S-S and S-C collocations.

Figure 5 shows the absolute values of the relative errors
for all co-executions for our predictor (SCN) and two naive
predictors, i.e. the ‘median’ predictor that always predicts
the median of all cases (1.27) the ‘no contention’ predic-
tor that neglects the effects of contention and always pre-
dicts a degradation factor of 1.05. Note that we favored the
naive predictors by using the same training and testing sets
(i.e. we did not split training and testing sets in 80% and
20% subsets as we did for SCN). We may notice that SCN
achieved a prediction error of less than 5% for 55% of the co-
executions and less than 30% for 94% of the co-executions.
On the other hand, the naive predictors provided guesses



with significantly lower accuracies, i.e. the ‘median’ predic-
tor had a prediction error of less than 5% for 9% of the co-
executions and less than 30% for 89% of the co-executions,
and the ‘no interference’ predictor had a prediction error of
less than 5% for 38% of the co-executions and less than 30%
for 80% of the co-executions.
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Figure 6: Co-execution with S.

Figure 6 shows the absolute values of the relative errors of
SCN prediction for applications of all classes when they are
co-executed simultaneously with S class applications. We
may notice that despite their simplicity, the prediction mod-
els for C—S and S-S co-executions are able to capture the
general degradation penalties and keep the prediction errors
lower than 30% for 72% of the co-executions. On the other
hand, as expected co-execution of S with N applications is
predicted with high accuracy.
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Figure 7: Co-execution with C.

Figure 7 shows the absolute values of relative errors of
SCN prediction of all classes when executed with applica-
tions from the C class. Quite interestingly, our simple con-
stant predictor for the C—C co-execution keeps errors lower
than 30% for 97% of the co-executions, showing that in our
experimental scenarios cache sensitive applications tend to
share gracefully the shared LLC cache. We also note that
S and N co-executions with C applications are accurately
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Figure 8: Co-execution with N.

predicted. Finally, Figure 8 shows the absolute values of
relative errors of our predictor for applications of all classes
when they are co-executed simultaneously with N class ap-
plications. Clearly, this is an easy to predict scenario since
N applications indeed cause no substantial harm to the their
co-executors, a fact that is captured by our predictor.

4. RELATED WORK

Various characterizations schemes have been proposed in
the past. Lin et al. [7] proposed a scheme that partitions
the LLC cache between two programs using cache coloring.
The scheme is employing a program classification based on
each program’s performance degradation when running us-
ing a 1MB cache compared to running using a 4MB cache.
Looking also at cache partitioning, Moreto et al. [11] pro-
posed two metrics, namely wpy, and wrry(th;)- The first
metric refers to the number of ways needed by a benchmark
to reach at least the P% of its maximum IPC, while the
second one refers to the ways allocated to each thread by
LRU when two benchmarks are executed together. Based
on these two metrics applications were classified in one of
three different classes.

Xie and Loh [15] proposed an animalistic approach of the
application classification problem. All applications may be-
long to one of four classes, named Turtle, Sheep, Rabbits and
Tasmanian Devils. Applications that do not make much use
of the LLC are turtles, while applications that make use of
the LLC but are not sensitive to the number of ways al-
located to them belong to the sheep group. Rabbits are
applications that are very sensitive to the ways allocated to
them, and, finally, devils are the applications that make use
of the LLC while having very high miss rates.

Jaleel et al. [6] categorize applications in four classes. Core
Cache Fitting (CCF) are applications with a dataset that
fits in the lower levels of the memory hierarchy and do not
benefit from the shared level of cache. On the other hand,
LLC Thrashing (LLCT) applications have a data set bigger
than the available LLC. Under LRU, these applications de-
grade performance of any co-running application that uses
the LLC. LLC Fitting (LLCF) applications require almost
the whole LLC and their performance is severely impacted if
there cache trashing occurs. Finally, LLC Friendly (LLCFR)
applications are ones that even though they could improve
their performance using more cache resources, they do not



suffer significantly when these resources are reduced.

Finally, Tang et al. [14] are employing two metrics for each
application, namely Contentiousness and Sensitivity. Based
on these, applications belong to one of the following four
classes: 1) contentious and sensitive; 2) not contentious and
insensitive; 3) contentious but not highly sensitive; or 4)
not highly contentious but sensitive. Contentiousness and
sensitivity are statistical numbers but, as authors claims,
can be easily calculated through performance counters.

5. CONCLUSIONS AND FUTURE WORK

In this paper we presented a resource-centric application
classification scheme that monitors data traffic across the
entire memory hierarchy, using existing hardware monitor-
ing mechanisms. We base a number of preliminary inter-
ference predictors on the classification scheme and evaluate
them on a set of parallel applications. The prediction ac-
curacy is very promising and sets a solid basis to support
contention-mitigating mechanisms. As a future work, we
intend to extend this work in the following directions: a)
augment our prediction approach to minimize errors and
mispredictions, b) apply this model in scenarios where more
than two applications run concurrently c) apply this work
to a contention-aware application scheduling environment.
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