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ABSTRACT
Co-scheduling processes on different cores in the same server
might lead to excessive slowdowns if they use a shared re-
source, like the memory bus. If possible, processes with
a high shared resource use should be allocated to different
server nodes to avoid contention, thus avoiding slowdown.
This paper introduces the simple scheme of avoiding to co-
schedule twins, i.e., several instances of the same program.
The rational for this is that instances of the same program
use the same resources and they are more likely to be either
low or high resource users − high resource users should ob-
viously not be combined, but a bit non-intuitively, it is also
shown that low resource users should also not be combined
in order to not miss out on better scheduling opportunities.
This is verified using both a statistical argument as well as
experimentally using ten programs from the NAS parallel
benchmark suite. By using the simple rule of forbidding
twins, the average slowdown is shown to decrease from 6.6%
down to 5.9%, and the worst case slowdown is lowered from
12.7% to 9.0%, indicating a considerable improvement de-
spite having no information about any programs’ resource
usage or slowdown behavior.
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1. INTRODUCTION
Processes executing on different cores in the same server

typically share many of the server’s resources such as, for
example, caches, buses, memory and storage devices. When
co-scheduled processes have to share a resource their exe-
cution is typically slowed down compared to if they would
have had exclusive access to that resource [11, 14]. In one
study [12] two co-scheduled programs even experienced a
super-linear slow-down due to memory traffic interference,
i.e. the execution times were more than doubled. In such
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cases it would be more efficient to run processes sequentially,
both in terms of execution time and throughput.

The contention for shared resources has implications for
job scheduling in large cluster or cloud systems where tens
or hundreds of different programs should be allocated to
thousands or tens of thousands of cluster or cloud nodes.
Ideally, job scheduling should be done in a way that avoids
combining jobs that compete for the same resources, thus
minimizing the slowdown caused by resource sharing. Cur-
rent research focuses on the obvious question of what in-
formation a scheduler needs in order to minimize the slow-
down caused by resource competition between co-scheduled
processes. Many studies are based on the idea that unless
the slowdown [3, 9] or the resource utilization [1, 6] of co-
scheduled processes can be fairly well estimated, it will not
be possible for the scheduler to make an informed decision.
Thus, the scheduling becomes pure guesswork and as a re-
sult the performance suffers. In this paper however, we show
that slowdowns might actually be avoided despite having no
knowledge of program characteristics.

It is common knowledge that co-scheduling programs with
a high degree of resource usage has a negative impact on per-
formance. However, the co-scheduling of two instances of a
purely computationally bound program might also have a
negative impact on the overall system performance; given
that there are other programs that could have benefited
from being co-scheduled with these programs. Hence, a co-
schedule consisting of two computationally bound programs,
albeit the fact that the programs do not experience any slow-
down, should be considered to be a bad co-schedule.

In this paper we propose a simple scheme based on an ob-
servation from [4] where we noticed that, among the overall
worst schedules examined, there was an over representation
of schedules where a program was co-scheduled with another
instance of itself. The scheme is based on the idea that
performance can be improved not only by selecting the best
ways, but also by avoiding the worst ways in which programs
can be co-scheduled.

In summary, we make the following contributions:

• We show that co-scheduling two computationally bound
programs has a negative effect on the overall perfor-
mance, and should be considered bad, although the
programs themselves are not slowed down.

• We prove that co-schedules consisting of twins, i.e.,
several instances of the same program, are over rep-
resented among co-schedules with low and high slow-
downs. That is, they are more likely to be considered
as bad.



• We show that by using the simple scheme of disallow-
ing a program to be co-scheduled with another instance
of itself, we avoid many bad co-schedules and manage
to do so without any knowledge of the programs’ re-
source usage nor slowdown behavior.

Based on an experimental evaluation using ten programs
from the NAS parallel benchmark suite, we find that our
simple scheme effectively reduces the number of bad co-
schedules. In Section 2, we first introduce the basic princi-
ples for how to co-schedule processes that have a low or high
resource usage. Then, in Section 3, we describe the simple
scheme and a statistical argument for why the simple scheme
also should be a good scheme. Section 4 presents the exper-
imental results before concluding the paper with discussions
and conclusions, in Sections 5 and 6, respectively.

2. CO-SCHEDULING CAVEATS
When processes are co-scheduled on the same node in a

cluster or cloud system they have to share the node’s re-
sources. It is obvious that a high level of resource sharing
slows processes down compared to when executing alone on
the same node, since they interfere with each other. It is not
equally obvious that a low level of resource sharing can be
a problem. This is best illustrated by an example where we
try to schedule two instances of a computationally bound
program, A, with two instances of a memory bandwidth
bound program, B, where the execution speed of program
B is limited by memory access contention. The four pro-
gram instances can be co-scheduled in two different ways
as shown in Figure 1. In the example we assume a simple
processor without frequency scaling or some other advanced
technique.

In Figure 1a, where two instances, A1 and A2, of A are
co-scheduled on node 1, the slowdown for both A1 and A2 is
0%. The program instances B1 and B2 however, will both
experience a slowdown of 100%, and require twice the time
to complete their execution compared to when executing
alone on the same hardware. Thus, the average slowdown
for all processes in Figure 1a is 50%.

In Figure 1b, where A1 is co-scheduled with B1 and A2

is co-scheduled with B2, the slowdown of A1 and A2 is still
0%. Since program A never share any resources with any
other program its slowdown will always be 0%. Turning to
B1 and B2 we can conclude that since they do not share any
resources, both B1 and B2 have exclusive access to memory
resources, and their slowdowns are 0%. Hence, the average
slowdown in Figure 1b is 0%.

From this illustration we can deduce two principles:

1. Co-scheduling programs which use the same resource
should be avoided, especially if the level of resource
usage is high.

2. Programs with no or very low resource usage should
not be co-scheduled with other programs that have no
or low resource usage. There might be much to gain by
co-scheduling these programs with other high resource
usage programs.

Conceptually, if the resource usage of all programs are
known, a scheduler could use this information to avoid co-
scheduling two programs that place a high load on any re-
source. It could also easily avoid co-scheduling two programs

Figure 1: Example showing a bad allocation (a) and
a good allocation (b) of instances of a program A
that is computationally bound and B that is memory
bandwidth bound.

with a low degree of resource usage, thus reaping the bene-
fits of co-scheduling them with programs that have a higher
degree of resource usage. However, in the next section we
present a simple scheme that manage to avoid some of the
bad co-schedules without this prior knowledge of the pro-
grams’ resource usage.

3. A SIMPLE SCHEME TO AVOID BAD CO-
SCHEDULES

The two principles presented in the last section and the
fact that we earlier have observed, in [4], that co-schedules
containing several instances of the same program are over
represented among the worst co-schedules are the foundation
for the simple scheme we propose:

• Avoid co-scheduling several instances of the same pro-
gram.

The rationale behind this is that if a program utilizes a
resource to a high degree, then, co-scheduling several in-
stances of the same program will violate Principle 1, since
we know that they all utilize the same resource. Likewise,
co-scheduling several instances of the same computationally
bound program will violate Principle 2.

One might argue that the resource usage of most pro-
grams is not extreme, that the described cases above will
only apply to a few programs and that co-schedules con-
taining several instances of the same program are indistin-
guishable from other co-schedules. This is not true as we
will now show, first statistically and then experimentally.
Co-schedules containing several instances of the same pro-
gram are more likely to violate the two principles than other
co-schedules.

To explain why instances of the same program might be
over represented among bad co-schedules, we use the fol-
lowing statistical argument. Let us assume that a program
or job Ji has a random resource utilization of Xi where
Xi is a uniformly distributed random variable between 0
and 1, i.e., between 0% and 100% resource usage. Mul-
tiple jobs J1, J2, ..., Jn will then have the resource usages



Figure 2: The probability distribution functions of
the sum of uniform random variables: a) two jobs
and b) four jobs. When combining different jobs
(green curve) it is more probable that the combined
resource use is centered around the average. In com-
parison, combining the same jobs (red curve) will
have a greater probability of generating a lower or
higher combined resource use.

X1, X2, ..., Xn where all Xi are independent uniform ran-
dom variables.

When co-scheduling two or more jobs, the combined re-
source usage will be the sum of the resource usages of the
individual jobs. For two jobs Ji, Jj , we get the combined
resource usage Xi+j as:

Xi+j =

{
Xi + Xj if i 6= j

Xi if i = j

This means that we obtain different probability distribu-
tions when combining two jobs depending on which jobs we
combine. Combining independent jobs results in a uniform
sum distribution while combining the same type of jobs pre-
serves the original uniform distribution. This is illustrated
in Figure 2 where we see that the sum of same jobs has a
uniform distribution (red curve) and the sum of indepen-
dent jobs has the uniform sum distribution (green curve),
centered more around the average. Increasing the number
of combined jobs would give us a distribution increasingly
similar to the normal distribution due to the central limit
theorem. This can be seen in Figure 2b which shows the
distribution when combining four jobs.

In practice, the combined resource usage cannot really
exceed 100% but the derivation above is valid also for lower
ranges of resource use. Also, as long as jobs are independent,
regardless of the actual underlying distribution, the central
limit theorem will still give us a higher probability of evening
out shared resource use when combining independent jobs
compared to when combining the same dependent jobs. This
means that combining instances of the same program often
leads to a comparatively low or high resource usage and thus
should be avoided.

4. EXPERIMENTAL EVALUATION
To evaluate our proposed simple scheme, we rely on bench-

mark execution time measurements and scheduling simula-
tions. We first, in Section 4.1, co-schedule different pairs
and measure the combined slowdown (sum of the two pro-
grams’ slowdowns) to verify that co-scheduling several in-

Figure 3: The combined slowdown (i.e., the sum of
slowdowns) of the ten NPB programs pairwise co-
scheduled in all different combinations. The pairs
containing twins, i.e. two instances of the same pro-
gram, have been marked in red.

stances of the same program really tend to produce lower
and higher combined slowdowns. Then, in Section 4.2, based
on a scheduling scenario we evaluate the possible impact of
the simple scheme on the overall throughput and perfor-
mance of a system.

The workload used in all experiments is the ten serial
benchmarks of the Numerical Aerospace Simulation (NAS)
parallel benchmark suite (NPB) reference implementation [10]
designed at NASA. The NPB benchmark suite is a collection
of five kernels, three pseudo programs, and two programs ap-
plicable to the area of computational fluid dynamics (CFD).
A description of the NAS-parallel benchmarks is given in
Table 1.

The evaluation was carried out on a computer equipped
with an Intel Q9550 processor running CentOS Linux 5.10.
The Yorkfield Q9550 processor has four cores and a 2-way
split second/last-level (L2) cache architecture where two cores
share the first L2-cache and the remaining two cores share
the second. During these experiments the NPB programs
were executed in pairs of two on the two cores sharing the
L2.

4.1 Co-Scheduling Slowdowns in NPB
Using the ten NPB programs we co-scheduled all different

program pairs and measured the combined slowdown of both
programs. The combined slowdown is calculated as the sum
of each individual slowdown for each program in the pair.
This resulted in the 55 different co-scheduled pairs plotted
in Figure 3. As can be seen the combined slowdown ranges
from virtually no slowdown (0.04%) up to 80.6%. The aver-
age combined slowdown for all co-schedule pairs is 14.15%.

The pairs containing twins, i.e. two instances of the same
program, are marked in red. As can be seen in Figure 3, the
twins seem to be a bit over represented in the low and high
areas of the distribution. This is in line with the statistical
arguments made in Section 3.

4.2 Avoiding Twins: Impact on Performance
and Slowdown

To evaluate the validity of the simple scheme, we used the
benchmark data from the previous section to enumerate all
possible ways in which two instances of each benchmark can
be scheduled on a cluster of ten dual-core nodes. Thus, we



Table 1: A summary of the ten NAS-parallel benchmarks (NPB) [10] used in the experiments.
Abbr. Type Description
BT Pseudo program Block Tri-diagonal solver
CG kernel Conjugate Gradient, irregular memory access and communication
DC Data movement Data Cube
EP kernel Embarrassingly Parallel
FT kernel Discrete 3D fast Fourier Transform
IS kernel Integer Sort, random memory access
LU Pseudo program Lower-Upper Gauss-Seidel solver
MG kernel Multi-Grid on a sequence of meshes, memory intensive
SP Pseudo program Scalar Penta-diagonal solver
UA Unstructured computation Unstructured Adaptive mesh, dynamic and irregular memory access

Figure 4: A histogram of the average slowdowns of
all 1.4 million schedules resulting from the schedul-
ing of two instances of each benchmark and the slow-
down measurements from Figure 3. The gray area
shows all schedules and the orange area is the subset
where all co-schedules containing twins have been
removed, showing that removing twins lowers both
the average as well as the maximum slowdowns. The
bin size is 0.1.

have 20 jobs to allocate to 20 cores. This results in a total
of 1,436,714 different combinations.

The simulation results show that all different combina-
tions exhibit an average slowdown ranging from 3.7% to
12.7%. The average of all combinations was 6.6%. This
means that given this job mix and a job-scheduler that ran-
domly allocates jobs to cores, the average slowdown would,
over time, converge towards 6.6%. Thus, any scheme worth
using has to improve on that percentage in order to be ben-
eficial. Figure 4 shows a histogram of the full 1.4 million
combinations of allocations, the black line marks the aver-
age slowdown of the entire population. The orange area
(noTwins) consists of all schedules that do not contain any
twins, i.e. pairs that include two instances of the same
program, while the larger grey area (Twins) consists of all
schedules that do include at least one twin.

When looking at Figure 4 it becomes quite obvious that
disallowing twins will increase the overall performance. How-
ever, removing all twins does not only lower the average
slowdown from 6.6% to 5.9% it also lowers the worst case

Figure 5: A histogram showing the same data as
in Figure 4 with the addition of the subsets: Low
twins, High twins, and Mid twins, illustrating that
each group of twins (low, mid, or high) makes the
slowdown worse compared to when all twins are re-
moved (noTwins).

slowdown from 12.7% to 9.0%. Furthermore, the execution
time of some program instances are decreased quite signif-
icantly since the three worst performing pairs with a com-
bined slowdown of ∼47%, ∼60% and ∼80% are all twins (the
High pairs in Figure 3). Despite the fact that most schedules
containing twins are bad, there are a few schedules contain-
ing twins that outperform most no-twin schedules. These
are visible as the thin grey area along the left face of the or-
ange noTwins area in Figure 4. It is unfortunate that these
schedules are removed, although without more in-depth in-
formation we cannot know in beforehand which schedules to
keep. These schedules mostly contain twins from the low
and mid areas of Figure 3.

To further validate the hypothesis that combining pro-
grams which have a low resource usage has a negative impact
on the overall performance we divided the twins into three
groups: low, middle and high according to their placement
in Figure 3. As Table 2 and Figure 5 show, all three twin
groups have an average slowdown that is higher than that
of the no-twins schedules. Furthermore, all schedules with a
slowdown between 9.0% and 12.7% contain twin schedules.

As expected, the schedules in the high twins group, which
has a high resources usage, should have much higher slow-



Table 2: Average, minimum and maximum slowdown in percent of the total execution time for all possible
combinations as well as for the subsets containing schedules with no twins, only twins, or the low-, mid-
and high twins. The noTwin schedules have the lowest average and worst slowdowns of all groups. Hence,
removing the twins from the schedules increases the performance.

All No Twins All Twins Low Twins Mid Twins High Twins
Number of schedules 1436714 669734 766980 305062 381989 421743

Best 3.66% 3.81% 3.66% 4.47% 3.66% 5.18%
Average 6.59% 5.92% 7.18% 7.05% 6.83% 8.10%
Worst 12.66% 9.01% 12.66% 12.66% 12.66% 12.66%

down than those in the other groups, consistent with the
earlier stated principle, Principle 1, in Section 3. Princi-
ple 2 stated that also the low twins should affect the over-
all slowdown negatively because there might be much to
gain by co-scheduling them with other, high resource usage,
programs. We can see that this is the case by looking at
Figure 5, which shows that the schedules in the low twins
group have higher slowdowns than both the no-twins and
mid twins group. Hence, we can conclude that that the two
principles are valid from our results. The mid twins group,
although better than both the low and high groups, still
performs worse than the no-twins group.

In conclusion we can see that all schedules containing
twins, and not only the low and high twins, are much more
likely to affect the slowdown negatively than a schedule with-
out twins.

As an interesting side note, when all processes are co-
scheduled as twins the average slowdown is 12.3% which
is the 16(th) worst schedule out of 1.4 million. Although
the all-twins schedule is not the very worst way in which
to schedule processes it is definitely one of the worst and it
illustrates the risk of putting only twins together. Further-
more, twin pairs from all three groups are represented in the
very worst schedule, which has a slowdown of 12.7%.

5. DISCUSSION AND RELATED WORK
The scheme presented in this paper is based on simple

heuristics that will avoid some of the worst co-schedules and
thus increase the performance of cluster or cloud systems.
The benefit of the simple scheme is that its rule is easy to im-
plement in a job-scheduler and no measurements or instru-
mentations are needed. However, this has to be balanced
against the fact that it will not be possible to constantly
find the best possible ways to co-schedule programs to reach
the optimal performance.

Currently, much related research is investigating methods
to find the best co-schedules by avoiding slowdown caused
by sharing of resources such as; caches [2], memory buses [7],
network links [8, 13] and co-scheduling slowdown [5]. The
common denominator for these methods is that they all mea-
sure one or several aspect of a program’s resource usage and
the measurements are then used by the scheduler to decide
which programs to co-schedule. In [4] as well as [15] the ef-
ficiency of several different methods are compared. Some of
these methods are more accurate than our simple scheme.
On the other hand, they are more complex to implement
and most of them require that the programs are executed
and characterized before scheduling them, or require access
to hardware performance counters or both.

The evaluation done in this paper, uses two core nodes and
single process programs. However, increasing the number

of cores or processes of a program should not change the
underlying principles. Nevertheless, further studies might be
motivated to examine the scheduling of parallel processes on
a larger number of cores and maybe using other workloads
and scheduling scenarios as well.

The simple scheme can be used by itself or it can be seen
as complementary to more complex methods. By combining
different methods it might be possible to reduce the number
of combinations to evaluate, thus reducing the complexity
of the problem.

6. CONCLUSION
This paper introduces Terrible Twins, a simple scheme

aimed at avoiding bad co-schedules by not co-scheduling
twins, i.e., several instances of the same program. This
simple rule is based on the observation that the twin co-
schedules have a statistical distribution that makes them
more likely to have a lower or higher combined resource us-
age compared to other co-schedules. And as shown, both
co-schedules with low or high resource usage will hurt the
overall system performance. The experimental results show
that by using the simple heuristic of forbidding twins, the
average and worst case slowdowns were decreased when co-
scheduling 20 jobs on 10 double-core nodes.
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