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Abstract— In this paper we address the problem of event-
based data scheduling for a class of physically intercon-
nected networked control systems which compete for limited
communication resources. The overall interconnected system
consists of multiple heterogeneous LTI sub-systems with the
physical interconnection being modeled by a directed acyclic
graph (DAG). The sub-systems are controlled by a networked
controller through a shared communication channel. In order
to cope with the limited channel capacity, we introduce a
bi-character deterministic-probabilistic scheduling mechanism
which dynamically assigns access priorities to each sub-system
at each time-step according to an error-dependent priority mea-
sure. The sub-systems which are granted channel access then
transmit their state information through the communication
network. Given an emulation-based control strategy, we prove
stability of such networked systems under the proposed schedul-
ing law in terms of f -ergodicity of overall network-induced
error. Simulation results illustrate the proposed approach and
show a reduction in the error variance compared to standard
TDMA and uniform random-access scheduling policies.

I. INTRODUCTION

Interconnected networked control systems represent a

system class with application examples ranging from in-

frastructure systems, e.g. distributed electrical power, gas

and water systems to mechatronic systems like large-scale

telescopes. The unifying property is that several components

are physically interconnected. Besides classical centralized

control methods, a different approach is to use decentralized

control, i.e. control based on local information [1]. As a

compromise between centralized and decentralized control,

distributed control methods have emerged that exploit partial

information exchange among local controllers. Recently,

many results have treated distributed control of intercon-

nected systems, see e.g. [2], [3] among many others.

In general, all these results assume a continuous or time-

triggered information exchange with periodic sampling. In

practice, however, typically a shared communication medium

is employed, and information exchange is subject to several

complications, e.g. communication capacity limitations and

congestion, time delay and packet dropouts. These problems

can deteriorate the control performance, and even lead to

instability. In order to make efficient use of limited com-

munication resources, event-triggered control and scheduling

strategies have been investigated in recent years [4]–[6].

These approaches entail that sampled values are transmit-

ted when a certain event happens instead of transmitting
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at periodic time instants. Events are typically triggered by

either deterministic or stochastic rules. A basic deterministic

scheduling approach is the Try-Once-Discard (TOD) that

awards the medium access to the system with the largest

estimation error and discards the remaining requests [6].

Stability of such systems are studied by computing the

Maximal Allowable Transfer Interval (MATI) which finds

an upper bound on the interval between two successive

transmissions [7]. Deterministic policies however are not

well suited to deal with delays, dropouts, collisions and

noisy systems [8]. Alternatively, probabilistic policies have

been investigated that consider stochastic NCSs [9], [10].

These methods are better equipped to deal with noise and

collisions but also with model uncertainties [11]–[13]. The

aforementioned results deal with NCSs with isolated sub-

systems, i.e. without physical interconnection.

The main contribution of this paper is a novel scheduling

scheme for an interconnected NCS. The system consists of

multiple physically interconnected LTI sub-systems which

are additionally coupled through a shared communication

network. A scheduler collects the error signals from all sub-

systems to assign priorities and then awards the channel

access based on a biased randomization. The presented

approach guarantees stability of the interconnected NCS

where the interconnections are represented by direct acyclic

graphs (DAGs) and each node of the DAG has access to

the information from all nodes affecting its dynamics either

direct neighboring nodes or multi-hop neighbors. DAGs

are used to model systems with some sort of hierarchy,

e.g. vehicle platoons [14]. Exploiting an emulative control

approach, we show stability of the resulting interconnected

NCS in terms of f -ergodicity. Furthermore, the proposed

approach promises better performance than standard time-

triggered and idealized CSMA approaches.

As the remainder of this paper, the problem statement is

described in Section II and follows by some preliminaries

of Markov chains’ stability. In Section III, we analyze the

stability of such NCSs under the proposed scheduling law.

Simulation results are presented in Section IV.

Notation. The Euclidean norm, conditional expectation, and

Gaussian distribution with mean µ and covariance matrix X
are denoted ‖ · ‖2, E[·|·] and N (µ,X), respectively. A state

vector with superscript i belongs to control loop i, while the

subscript k denotes the time-step. For matrices, subscript i
indicates the corresponding sub-system while superscript n
denotes the matrix power. A connected graph with set

of vertices V and set of directed edges E is represented

by Gc(V , E). A node j ∈ V is an affecting node if at least
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one node i exists between which a directed path from j
to i is established. Node i is called an affected node. If the

path’s length is one, node j is a direct neighbor of node i.
A node l ∈ V is called multi-hop neighbor of node i if a

directed path of length greater than one exists from l to i.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider an NCS composed of N heterogeneous LTI sub-

systems which are physically interconnected and are addi-

tionally coupled through a shared communication network,

as depicted in Fig. 1. Each controlled sub-system consists of

a stochastic discrete time LTI system Pi and a controller Ci,
and utilizes the communication network to transmit its state

information. We assume that the transmitted data is accessi-

ble for all corresponding affected sub-systems. Therefore,

control unit Ci corresponding to sub-system (node) i has

access to the transmitted information from the direct and

multi-hop neighbors of node i. To allocate the capacity-

limited channel among sub-systems, a scheduler decides

whether the ith state xik ∈ R
ni is an event to be scheduled

for channel access. A directed acyclic graph (DAG) Gc

represents the physical interconnections between the sub-

systems i ∈ {1, . . . , N}. An edge from node j to node i
indicates that the dynamics of ith node is directly affected

by j th one. We define the set of all direct or multi-hop

neighbors of a node i as S̃i
n, while the set of only direct

neighbors is denoted by Si
n. The dynamics of a sub-system

Pi then follows from the stochastic difference equation

xik+1 = Aix
i
k +Biu

i
k +

∑

j∈Si
n

Aijx
j
k + wi

k, (1)

where the noise sequence wi
k ∈ R

ni is i.i.d. with N (0, I)
at each time-step k, and Ai ∈ R

ni×ni , Aij ∈ R
ni×nj , Bi ∈

R
ni×mi describe system, interconnection and input matrices,

respectively. The initial state xi0 is randomly chosen from an

arbitrary distribution with bounded variance. Concatenation

of the system state leads to the overall networked system

xk+1 = Axk +Buk + wk, (2)

where x = [x1
⊤

, . . . , xN
⊤

]⊤∈ R
n, u = [u1

⊤

, . . . , uN
⊤

]⊤∈
R

m, A ∈ R
n×n consists of the blocks Ai on the diagonal,

andAij on the off-diagonal, and B∈R
n×m is block-diagonal

with the entries Bi. Clearly,
∑N

i=1
ni=n and

∑N

i=1
mi=m.

The scheduler decides which sub-systems utilize the channel

at each time-step k, by the binary variable δik ∈ {0, 1} as

δik =

{

1, xik sent through the channel

0, xik blocked.

Following an emulation-based control approach we as-

sume a stabilizing control law to be given for the system

without any capacity constraints. Assume that the con-

catenated system (2) is driven by a state feedback con-

trol uk = [u1
⊤

k , . . . , u
N⊤

k ]⊤. According to the information

pattern, each node has access to the information about

its own affecting nodes in the interconnection graph. The

affecting nodes of a certain node i include direct and multi-

hop neighbors of node i. Thus, the control unit Ci can exploit
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Fig. 1. A physically interconnected NCS over a shared communication
channel with error-dependent centralized scheduler.

this available information to compute the control signal uik.

This leads to a distributed control law having the same DAG

structure as the interconnection graph. The control signal uik
is updated at every time-step k either by the true state values

xik from the local sub-system and xjk from the affecting

nodes j∈ S̃i
n, or by the estimated states x̂ik and x̂jk:

uik = −LiE[x
i
k|Ii

k]−
∑

j∈S̃i
n

LijE[x
j
k|Ii

k], (3)

where Ii
k = {zi0, . . . , zik−1} ∪j∈S̃i

n
{zj0, . . . , zjk−1

} is the set

of information at node i, Li and Lij are feedback gains, and

zik =

{

xik, δik = 1

∅, δik = 0.

Assuming stabilizability of the concatenated system (2), i.e.

pair (A,B) is stabilizable, an emulative control law, e.g. [3],

ensures the gain L consisting of blocks Li on the diagonal

and Lij on the off-diagonal is stabilizing, i.e. the closed-loop

matrix (A−BL) is Hurwitz. In addition, a sub-system i has

knowledge of the matrices Aj , Bj and feedback gains Lij

from all nodes j∈ S̃i
n.

According to (3), uik is updated with true state values xik
and xjk if all direct neighbors j∈Si

n transmit at time-step k
along with the ith node itself. In case of a non-transmission

from either the node i or a direct neighboring node j, the

estimates x̂ik or x̂jk are computed by a model-based estimator.

The state estimate x̂jk of a node j ∈ Si
n at node i, i.e.

E

[

xjk|Ii
k

]

coincides with the estimation of xjk computed

at node j, i.e. E

[

xjk|I
j
k

]

. This follows from the fact that,

according to the DAG interconnection structure, if j ∈ Si
n,

the information set Ii
k includes the information set Ij

k , i.e.

Ij
k ⊂ Ii

k. Knowing this, we have from (1) and (3):

E
[

xik|Ii
k

]

= (Ai −BiLi)E
[

xik−1|Ii
k−1

]

(4)

+
∑

j∈Si
n

(Aij −BiLij)E
[

xjk−1
|Ij

k−1

]

,

with initial distribution E
[

xi0|Ii
0

]

= E[xj0|Ij
0 ] = 0. The

network-induced error of a node i at time-step k is defined

as the difference between actual and estimated state values:

eik = xik − E
[

xik|Ii
k−1

]

. (5)
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Defining the aggregate network state
[

xi
⊤

k , ei
⊤

k

]⊤

at node i,

the dynamics of the ith node follows from (1)-(5):
[

xik+1

eik+1

]

=

[

(Ai −BiLi) (1− δik)BiLi

0 (1− δik)Ai

] [

xik
eik

]

+

[

1
1

]

wi
k

+
∑

j∈Si
n

[

(Aij −BiLij) (1− δjk)BiLij

0 (1 − δjk)Aij

][

xjk
ejk

]

. (6)

Remark 1: The control law in this paper can possess de-

centralized and distributed structures as long as it is stabiliz-

ing. For notational convenience and to achieve better perfor-

mance, we assume a distributed control law with a structure

that is identical to the physical interconnection DAG.

Note that, in accordance with the emulation-based frame-

work, the control law synthesis is not explicitly addressed,

i.e., design the feedback gains Li and Lij . Instead, knowing

the feedback gain L stabilizes the system state (2) in the

absence of capacity constraints, we focus on the scheduling

design when communication resources are limited.

The aggregate network state (6) has triangular dynamics

for each sub-system i implying that the evolution of the local

error state eik is independent of the local system state xik and

neighboring states xjk. From (6), we have

eik+1 =
(

1− δik
)

Aie
i
k+

∑

j∈Si
n

(

1− δjk

)

Aije
j
k+w

i
k. (7)

Expression (7) suggests that stability of the error state eik
for i∈{1, . . . , N} is sufficient to show the overall stability

of the interconnected NCS. In consequence our focus is on

investigating the stability of the error state eik.

We propose a novel scheduling law which dynamically

prioritizes the limited communication resources for an in-

terconnected NCS. Assume the communication channel has

the capacity constraint c<N , i.e. not all nodes can transmit

at the same time. The following error-dependent scheduling

rule defines the probability of channel access for each node i
at a time-step k + 1 given the error values ejk and error

thresholds λj for all j ∈ {1, . . . , N} at time-step k by

P[δik+1=1|ejk, λj ]=















0 ‖eik‖2Qi
≤λi

1 ‖eik‖2Qi
>λi ∧ nλ≤c

‖eik‖
2
Qi∑

nλ
‖ej

k
‖2
Qi

‖eik‖2Qi
>λi ∧ nλ>c

(8)

where λi is local error threshold for node i. The number

of nodes satisfying ‖eik‖2Qi
> λi is denoted nλ, where we

define ‖eik‖2Qi
:= ei⊤k Qie

i
k and Qi is a positive definite

weight matrix. First, if ‖eik‖2Qi
≤λi, the corresponding node

is deterministically excluded from channel access compe-

tition. In case nλ > c, the c nodes are randomly selected

such that the ones with larger errors have more chances of

being selected, as indicated in the last line of (8). We assume

that the scheduler is updated with error norms ‖eik‖2Qi
∈R

from all nodes i at every time k. This can be realized by

considering a low-capacity channel between the scheduler

and sub-systems to send those N real numbers to the

scheduler. The randomization in the last line of (8) allows to

implement it approximately in decentralized fashion [13].

We define the aggregate error state ek∈R
n by stacking the

error vectors of all sub-systems i∈{1, . . . , N} as follows:

ek = [e1T
k , . . . , e

NT
k ]T, (9)

The scheduling policy in (8) is a randomized policy de-

pending only on the most recent error values. Since our

policy is forgetful about the error values em,m < k, (9)

defines a random process (7) possessing Markov property.

The Markov chain ek is homogeneous since the difference

equation (4) is time-invariant and the noise process wi
k is

i.i.d. for all i∈{1, . . . , N}. Moreover, the distribution wi
k is

absolutely continuous with positive density function at any

state ek implying the chain is aperiodic and ψ-irreducible.

For ease of presentation we impose the capacity constraint

such that one node can only transmit at each time-step k:

∑N

i=1
δik = c = 1. (10)

The presented results readily extend towards c>1.

A. Preliminaries

A common stability notion for uncountable Markov chains

is given by f -ergodicity, defined in the following:

Definition 1: [15] Let f : Rn → [1,+∞) be a real-valued

function. Then, a Markov chain Φ is called f -ergodic, if

1) Φ is positive Harris recurrent with the unique invariant

probability measure π,

2) the expectation π(f) :=
∫

f(Φk)π(dΦk) is finite.

Thus, ergodicity confirms the existence of an invariant finite

distribution over the entire state-space, implying that the

process returns to some petite sets in finite time.

Definition 2: Let V :Rn →R
+ be a real-valued measur-

able function of Markov chain Φ. The drift operator ∆ is

∆V (Φk) = E[V (Φk+1)|Φk]− V (Φk), Φk ∈ R
n. (11)

Theorem 1 (f -Norm Ergodic Theorem [15]): Suppose

that Markov chain Φ is ψ-irreducible and aperiodic

and let f ≥ 1 be a real-valued function in R
n. If a

small set D and a non-negative real-valued function V
satisfying V (Φ0)<∞ exists such that ∆V (Φ)≤−f(Φ) for

any Φ∈R
n\D and ∆V <∞ for Φ∈D, then Φ is f -ergodic.

Remark 2: All compact subsets of a linear state-space are

small sets [15, Sec. 5.3.5]. It is in addition well-known that

all small sets are petite [15, Sec. 5.5.2].

III. STABILITY ANALYSIS

In this section, we study the behavior of interconnected

NCSs, under the scheduling policy (8). Having the concate-

nated system (2) stabilized in the absence of the communi-

cation constraint, the triangularity of (6) allows us to invoke

Theorem 1 to solely analyze the error state ek. First, define

a non-negative real-valued function V (ek) :R
n→R

+ as

V (ek) =
∑N

i=1
ei

⊤

k Qie
i
k =

∑N

i=1
‖eik‖2Qi

. (12)

Due to characteristics of the selected function (12), employ-

ing the drift ∆V over one transition step, i.e. k→k+1 for

the Markov chain (9) becomes too conservative. We illustrate

this observation by the following example:
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Consider two identical scalar systems competing for one

channel slot at each time, with A1=A2=A, A12 6=0 while

A21 = 0. For illustration purposes, assume Q1 = Q2 = 1
and e1k = e2k = ēk >λ1 = λ2. Thus, the transmission chance

for each node at time k+1 is 1

2
according to (8). From (7)

and (12), the one-step drift (11) can be calculated as

∆V (ek) = E[V (ek+1)|ek]− V (ek)

= 2 + ‖Aēk‖22 +
1

2
‖A12ēk‖22 − 2‖ēk‖22.

For A >
√
2 or A12 > 2, the drift is positive, violating

Theorem 1. Due to the constraint (10), some sub-systems

are obliged to operate in open-loop between their two con-

secutive transmissions. Hence, their respective local errors

are expected to grow. Thus, looking at one-step transition

of the Markov chain might be too conservative to show the

ergodicity. Considering an interval with length N ensures

that enough transmission possibilities are provided, although

it does not guarantee that a sub-system certainly transmits

over the interval. Remember that ergodicity over an interval

implies ergodicity over longer intervals [15]. To infer f -

ergodicity over the interval [k, k+N ], we modify (11) as

∆V (ek, N) = E[V (ek+N )|ek]− V (ek), ek ∈ R
n. (13)

It is now essential to observe how the error of a node i
evolves over an interval. Employing (7), eik+N is written as

a function of the error at an arbitrary time k+ri∈ [k, k+N ]:

eik+N =
∏N

α=ri+1

(
1− δik+α

)
A

N−ri
i eik+ri

(14)

+
∑N−1

r=ri

[
∏N

α=r+2

(
1− δik+α

)
AN−r−1

i wi
k+r

]

︸ ︷︷ ︸

Corresponds to local dynamics of node i

+
∑

j∈Si
n





N−ri−1
∑

β=0

ri+β+1
∏

γ=ri+1

(1−δ
j
k+γ

)
N∏

κ=ri+β+2

(1−δik+κ)A
β̄1

i AijA
β
j



e
j
k+ri

+
∑

j∈Si
n





N−ri−2
∑

β=0

ri+β+2
∏

γ=ri+2

(1−δ
j
k+γ

)
N∏

κ=ri+β+3

(1−δik+κ)A
β̄2

i AijA
β
j



w
j
k+ri

+ . . .

+
∑

j∈Si
n





1∑

β=0

N+β−1∏

γ=N−1

(1 − δ
j
k+γ

)
N∏

κ=N+β

(1− δik+κ)A
1−β
i

AijA
β
j



w
j
k+N−3

+
∑

j∈Si
n

(1− δ
j
k+N

)Aijw
j
k+N−2

︸ ︷︷ ︸

The effect of direct neighboring nodes j ∈ Si
n

+
∑

j∈Si
n

∑

l∈S
j
n

Fe(δ
i, δj , δl, Ai, Aj , Al, Aij , Ajl)e

l
k+ri

+
∑

j∈Si
n

∑

l∈S
j
n

Fw(δi, δj , δl, Ai, Aj , Al, Aij , Ajl)w
l
[k+ri:k+N−3]

+ . . .

+
∑

j∈Si
n

∑

l∈S
j
n

. . .
∑

o∈St
n

(1−δ
j
k+N

)(1−δlk+N−1). . .(1−δok+ri+1)Āioe
o
k+ri

︸ ︷︷ ︸

The effect of multi-hop neighbors of node i

where, β̄1 = N − ri−β− 1, β̄2 = N − ri−β− 2, Āio =
AijAjl . . . Ato. The two matrices Fe and Fw are not given

explicitly due to space limitations, but they represent the

effect of two-hop neighbors l ∈ Sj
n. The expression (14)

is extremely complex to be analyzed due to its distributed

nature. Indeed to analyze the behavior of a single node i,
the behavior of all nodes need to be observed at all time-

steps. Thus, we confine our focus on a special class of in-

terconnected NCSs where the interconnections are modeled

by DAGs. Fig. 2 illustrates a sample DAG with eight nodes.

6 1

8

5

4

7

2

3
S6
n = {1, 3, 8}

S1
n = {3}

S3
n = {2, 4, 5, 7}

S4
n = ∅

S5
n = ∅

S8
n = {5}

S2
n = {4}

S7
n = {4, 8}

Fig. 2. A DAG with eight nodes and twelve directed edges. Node 6 is the
only-affected node while nodes 4 and 5 are the only-affecting nodes.

Two main properties of DAGs are: 1) There exists no cycle

which ensures the Markov property, 2) If node j is either

a direct or multi-hop neighbor of node i, i.e. j ∈ S̃i
n, then

node i is not a direct nor a multi-hop neighbor of node j, i.e.

i /∈ S̃j
n. These two properties play essential roles in analyzing

stability of the Markov chain (9). Having DAGs, we are

always able to divide the nodes into different layers, from the

layer including only-affecting nodes to the layer containing

only-affected nodes. The only-affecting nodes possess only

local dynamics as they are not affected (see nodes 4 and

5 in Fig. 2). Thus, we analyze (14) by initially looking at

only-affecting nodes. In fact, given an only-affecting node j
which admits an f -ergodic error state, then f -ergodicity of

an affected node i is preserved if j is a neighbor of i. In

Fig. 2, nodes 4 and 5 are only-affecting. Showing stability

of these nodes, then nodes 2 and 8 are also stable only if their

respective local dynamics (excluding the effect from nodes 4
and 5) are stable. The stability of nodes 4 and 8 ensure the

stability of node 7, if the local dynamics of node 7 is stable.

We can continue this scenario until the only-affected node 6.

Following this approach enables us to look at the error state

of each node independent of the neighboring effects.

Theorem 2: Consider an interconnected NCS with N het-

erogeneous LTI sub-systems given in (1) and a communica-

tion channel subject to the constraint (10), and the control,

estimation and scheduling laws given by (3), (4) and (8),

respectively. Let the interconnections between sub-systems

be modeled by a DAG Gc(V , E). Then appropriate λi’s
and Qi’s exist such that the Markov chain (9) is f -ergodic.

Proof: To invoke Theorem 1 for the local error state eik,

we need to check if they possess the Markov property

under the scheduling law (8). Considering a DAG as the

interconnection model, it follows that for a specific node i at

a time-step k+ri, the scheduling law (8) contains error values

only from one time-step earlier, i.e. eik+ri−1. This conclusion

follows from acyclic property of DAGs. Even if node i is

a neighbor of a node j, this effect appears via the term

Ajie
i
k+ri−1 which does not violate the Markov property. The

homogeneity of (7) follows since (4) is time-invariant and wi
k
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is i.i.d. for i= {1, . . . , N}. Furthermore, having continuous

noise distributions wi
k with positive density functions implies

that (7) is an aperiodic and ψ-irreducible Markov chain.

We study stability of each sub-system considering only its

local dynamics, i.e. we look at the first two terms of (14):

ei,local
k+N =

∏N

α=ri+1

(

1− δik+α

)

AN−ri
i eik+ri

(15)

+
∑N−1

r=ri

[

∏N

α=r+2

(

1− δik+α

)

AN−r−1

i wi
k+r

]

.

We assume that each sub-system has operated from time-

step k to k+N−1 utilizing the policy (8). Then, the last

time k + N is scheduled considering all possible scenarios

over [k, k+N−1]. It should be noted that the scheduling unit

receives true error values from each node and decides the

priorities considering the interconnections as well. Therefore,

the error values in (8) are given by the expression (14). We

define at every time k′∈ [k, k+N ] two time-varying disjoint

sets S1
k′ and S2

k′ , such that for every node i∈{1, . . . , N}

i ∈
{

S1
k′ if ‖eik′‖2Qi

≤ λi

S2
k′ if ‖eik′‖2Qi

> λi
, (16)

with S1
k′ ∪S2

k′ =N . Eligible nodes to transmit at time k′+1
are included in S2

k′ , while S1
k′ contains the excluded nodes

from access competition. Note that, transmission eligibility

of a node depends on both transmission occurrence and

noise process. To take this into account we discern three

complementary and disjoint cases for a node i as follows:

c1: Node i has either transmitted or not within the past

N−1 time-steps, and is in set S1
k+N−1, i.e.

i ∈ S1
k+N−1 ⇒ ‖eik+N−1‖2Qi

≤ λi,

c2: Node i has transmitted at least once within the past

N−1 time-steps, and is in set S2
k+N−1

, i.e.

∃k′∈ [k, k+N−1] : δik′ = 1 and ‖eik+N−1‖2Qi
> λi,

c3: Node i has not transmitted within the past N−1 time-

steps, and is in set S2
k+N−1

, i.e.

∀k′∈ [k, k+N−1] : δik′ = 0 and ‖eik+N−1‖2Qi
> λi.

Each node is characterized by only one of the above cases

during transition from k to k+N−1. We apply Theorem 1

to the cases c1 − c3 employing the drift (13) and Lyapunov

function (12). Remember that we consider local error of each

node. The N -step drift (13) is split into partial drifts as

∆V (e
i∈cj
k , N) =

∑

cj
E

[

‖ei,local
k+N ‖2Qi

|ek
]

− V (e
cj
k ), (17)

where V (e
cj
k )=

∑

i∈cj
‖eik‖2Qi

, for ∀i ∈ cj and j ∈ {1, 2, 3}.

For i ∈ c1 it follows ‖eik+N−1
‖2Qi

≤ λi. This im-

plies δik+N =0 for ∀i∈c1. Consider ri=N−1 in (15), then

∑

c1

E

[

‖ei,local
k+N ‖2Qi

|ek
]

=
∑

c1

E
[

‖Aie
i
k+N−1+w

i
k+N−1‖2Qi

|ek
]

≤
∑

c1
‖Ai‖22E

[

‖eik+N−1‖2Qi
|ek

]

+ E
[

‖wi
k+N−1‖2Qi

]

≤
∑

c1
‖Ai‖22λi + tr(Qi). (18)

According to (17), the partial drift then becomes

∆V (ec1k , N) ≤
∑

c1
‖Ai‖22λi + tr(Qi)− V (ec1k ).

With fc1 := ǫ1V (ec1k )−ξb+1 , where ξb
+

1 stands for the upper

bound (18) and ǫ1∈ (0, 1]. We can then find a small set D1

and constant ǫ1 such that fc1 ≥1 and ∆V (ec1k , N)≤−fc1 .

For a node i ∈ c2, assume that the last transmission

occurred at time k+ri, i.e. δik+ri
=1. Statistical independence

of the sequence wi
k+r and error eik+ri−1 follows

∑

c2
E

[

‖ei,local
k+N ‖2Qi

|ek
]

=
∑

c2

∑N−1

r=ri
E
[

‖AN−r−1

i wi
k+r‖2Qi

]

≤
∑

c2

∑N−1

r=ri
‖AN−r−1

i ‖22 tr(Qi). (19)

From (17), it follows

∆V (ec2k , N) ≤
∑

c2

∑N−1

r=ri
‖AN−r−1

i ‖22 tr(Qi)−V (ec2k ).

Define fc2 = ǫ2V (ec2k ) − ξb
+

2 , where ξb
+

2 is given in (19)

and ǫ2 ∈ (0, 1]. Thus, we can find a small set D2 ⊂ R
n and

constant ǫ2 such that fc2 ≥1 and ∆V (ec2k , N)≤−fc2 .

The nodes in c3 are eligible for channel access at final

time k+N as i∈S2
k+N−1

. To infer f -ergodicity, we split the

case c3 into two complementary and disjoint sub-cases:

lc31 node i has not transmitted within the past N−1 time-

steps, but has been in the set S1 at least once,

lc32 node i has not transmitted within the past N−1 time-

steps, and has been in S2

k̄
for all k̄∈ [k, k +N − 1].

In sub-case lc31 , suppose that k+ri ∈ [k, k +N − 2] was the

last time for which i ∈ S1
k+ri

, which implies ‖eik+ri
‖2Qi

≤λi.
Knowing that δi

k̄
= 0 for k̄∈ [k, k +N − 1], we reach

∑

l
c3
1

E

[

‖ei,local
k+N ‖2Qi

|ek
]

≤
∑

l
c3
1

[

‖AN−ri
i ‖22λi +

∑N−1

r=ri
‖AN−r−1

i ‖22 tr(Qi)

]

. (20)

Define flc3
1
= ǫlc3

1
V (e

l
c3
1

k )−ξb+
l
c3
1

, where ξb
+

l
c3
1

is given in (20),

with ǫlc3
1
∈ (0, 1]. Thus, we can find small set Dl

c3
1

and ǫlc3
1

such that flc3
1

≥ 1, and ∆V (e
l
c3
1

k , N) ≤ −flc3
1

.

In sub-case lc32 , we know ‖ei
k̄
‖2Qi

>λi for all time-steps

k̄ ∈ [k, k+N−1]. Considering (15) with ri = 0, we have

∑

l
c3
2

E

[

‖ei,local
k+N ‖2Qi

|ek
]

≤
∑

l
c3
2

E

[

‖AN
i e

i
k+

∑N−1

r=0

[

AN−r−1

i wi
k+r

]

‖2Qi
|ek

]

≤
∑

l
c3
2

‖AN
i ‖22V (e

l
c3
2

k ) +
∑N−1

r=0
‖AN−r−1

i ‖22 tr(Qi) (21)

Expression (21) depends on eik via the term V(e
l
c3
2

k ), thus it

is not bounded for arbitrary initial values. As the considered

cases cannot happen all together, we calculate the probability

that sub-case lc32 happens under the scheduling law (8).

Recall that the length of the interval equals N . Thus, if a

node, say i, does not transmit for all time-steps k̄∈ [k, k+N ],
then inevitably another node, say j, transmits more than
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once. Let k + rj denote the latest time node j transmitted,

i.e. δjk+rj
= 1. Thus, the probability that j ∈ c2 transmits

again at final time k+N , in the presence of node i∈ lc32 is

P[δjk+N = 1|δjk+rj
= 1, δi

k̄
= 0, ‖ei

k̄
‖2Qi

> λi]

= E

[

P[δjk+N = 1|ek]|δjk+rj
=1, δi

k̄
= 0, ‖ei

k̄
‖2Qi

>λi

]

= E

[

‖ejk+N−1
‖2Qj

∑

i∈S2‖eik+N−1
‖2Qi

|δjk+rj
=1, δi

k̄
= 0, ‖ei

k̄
‖2Qi

>λi

]

.

So far, f -ergodicity of the error states for the cases c1, c2,

and lc31 is shown without calculating the probability of

occurrence of those cases. In sub-case lc32 however, this is

not true without incorporating the probability of occurrence.

Remember that the scheduler assigns the priorities based on

true error values (14) and not the local values (15). Noting

that for nodes q∈c1, we have δqk+N = 0, we reach

Pl
c3
2

= P[δjk+N = 1|δjk+rj
= 1, δi

k̄
= 0, ‖ei

k̄
‖2Qi

> λi]

= E

[

‖ejk+N−1
‖2Qj

‖ejk+N−1
‖2Qj

+
∑i6=j

i∈{c2,c3}
‖eik+N−1

‖2Qi

∣

∣

∣
zi,j

]

≤ E

[

‖ejk+N−1
‖2Qj

‖ejk+N−1
‖2Qj

+
∑i6=j

i∈c2
λi+

∑

i∈l
c3
1
λi+

∑

i∈l
c3
2
λi

∣

∣

∣
zi,j

]

,

where zi,j abbreviates the conditions of the expectation. Due

to the linearity of sub-systems and the error dynamics (7) and

since ‖eik‖Qi
<∞, we conclude ‖ejk+N−1

‖2Qj
<∞. Thus, by

selecting appropriate λi’s and Qi’s we can make the latest

inequality arbitrarily close to zero. Intuitively, the probability

of subsequent transmissions for a certain node, in presence

of nodes with large errors and without prior transmissions,

can be made arbitrarily close to zero by tuning λi’s and Qi’s.

In fact, by increasing λj for j /∈ lc32 , more of them are left out

of channel competition in favor of nodes in lc32 . The N -step

drift defined in (13) can be expressed in terms of partial drifts

considering the probabilities of happening different cases as

∆V (ek, N) =
∑

cj
Pcj E

[

‖ei,local
k+N ‖2Qi

]

− V (e
cj
k ), (22)

where, Pcj is the occurrence probability of cases cj , such that
∑

cj
Pcj =1. Therefore, the overall drift can be expressed as

∆V (ek, N) ≤ ∆V (ec1k , N) + ∆V (ec2k , N) + ∆V (e
l
c3
1

k , N)

+
∑

l
c3
2

Pl
c3
2
E

[

‖ei,local
k+N ‖2Qi

]

− V (e
l
c3
2

k )

≤ −
[

fc1 + fc2 + flc3
1

+ flc3
2

]

= −f(ek),

where, in the upperbound Pc1 =Pc2 =Pl
c3
1
=1 is assumed .

Thus for the sub-case lc32 , and with (21) we have

Pl
c3
2

[

∑

l
c3
2

E

[

‖ei,local
k+N ‖2Qi

|ek
]

]

− V (e
l
c3
2

k )

≤
[

Pl
c3
2

∑

l
c3
2

‖AN
i ‖22 − 1

]

V (e
l
c3
2

k ) + ξb
+

l
c3
2

,

where ξb
+

l
c3
2

= Pl
c3
2

∑

l
c3
2

∑N−1

r=0
‖AN−r−1

i ‖22 tr(Qi). De-

fine flc3
2

= ǫlc3
2
V (e

l
c3
2

k )− ξb
+

l
c3
2

, with ǫlc3
2

∈ (0, 1]. We can

6 1

8

5

4

7

2

3

Fig. 3. The DAG of interconnections between sub-systems in an NCS.

find appropriate λi’s and Qi’s then such that small set Dl
c3
2

and ǫlc3
2

exist satisfying flc3
2
≥1, and ∆V (e

l
c3
2

k , N)≤−flc3
2

.

We have shown the conditions of Theorem 1 hold sepa-

rately for each case cj . As the cases are complementary and

disjoint, we define the small set Df ⊂R
n and ǫf ∈(0, 1] such

that f(ek)≥1, and ∆V (ek, N)≤−f(ek). This confirms that

Theorem 1 holds for the overall drift (22), which proves the

Markov chain (15) is f -ergodic. This yields that the random

error values for each sub-system are selected from bounded

variance distributions. This proves the f -ergodicity of local

error state (15) and consequently the f -ergodicity of (14).

Remark 3: For general interconnection structures with

undirected edges and cycles, the ergodicity of the error (14)

cannot be guaranteed. This follows from the fact that the

error of a node i at some prior time-steps might appear in

its dynamics again in future through the neighboring nodes,

which violates the Markov property. However, the DAG

assumption on the control structure can be relaxed, which

in turn introduces extra coupling terms in the system state

dynamics xik, i.e. in the first row of the squared matrix in (6).

IV. NUMERICAL RESULTS

To illustrate the performance of our scheduling design,

consider an interconnected NCS comprised of eight scalar

sub-systems competing for the sole channel slot at each time-

step. The interconnection between sub-systems is depicted in

Fig. 3, where the red and blue nodes represent only-affected

and only-affecting nodes, respectively. Consider a class of

identical sub-systems including nodes {3, 4, 5, 6}, with stable

systems and parameters A1 = 0.7, B1 = 1 and λ1 = 5.

The second class includes the remaining nodes {1, 2, 7, 8}
having unstable systems with parameters A2 = 1.2, B2 = 1
and λ2 = 3. Both classes start from zero initial condition

and wi
k ∼ N (0, 1). To stabilize local systems, we choose

a deadbeat control law, i.e. Li = Ai and Lij = Aij for

all i, j and a model-based observer given by (4). Next we

select Qi = I . For simplicity, assume all interconnection

matrices Aij = Aint are identical. We derive the numerical

results under the constraint (10) and the scheduling law (8).

Fig. 4 provides the average error variances for nodes

{1, . . . , 8} for different interconnection strengths Aint =
{0.1, 0.2, 0.3, 0.4, 0.5}. The averages are calculated via

Monte Carlo simulation over 5× 104 samples. The lower

bound is derived by ignoring the constraint (10), i.e. every

sub-system transmits at every time-step.

The results indicate that the average error vari-

ances expectedly increase with increasing interconnection
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Fig. 4. Error variances for each node of the DAG in Fig. 3.

strength Aint. The error variances corresponding to nodes 4
and 5 change only slightly as those are only-affecting nodes

and they possess no neighboring effect. The slight increase

in their corresponding variances follows from the fact that

by increasing Aint, transmission chances for nodes 4 and 5
decrease, as the access probabilities for the affected nodes

increase. Thus, nodes 4 and 5 transmit less occasionally,

which generally leads to an increase of their error values.

The error variance corresponding to node 6 grows rapidly by

increasing Aint, which results from being the most affected

node. In addition, the higher growth rate of error variances

for nodes {1, 2, 7, 8} follows from having unstable systems.
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Fig. 5. Comparison of error variances for different scheduling protocols.

In Fig. 5 the performance of our proposed policy is

compared with the standard TDMA and idealized CSMA

protocols. The results are obtained for TDMA considering

each node transmits exactly every eight time-steps. This is

the simplest pattern one might choose for TDMA and does

not take the system parameters into account. However, find-

ing the optimal pattern for TDMA over infinite horizon is an

open problem, while searching for patterns which outperform

the standard TDMA is not straightforward, especially for

interconnected systems. It can be seen that the event-based

prioritized scheme outperforms the standard TDMA in terms

of error variance. In addition, a comparison with the idealized

CSMA protocol, which is a uniform random access scheme,

is performed. Considering the uniform access probability 1

8

for each node at each time-step, the average error variance

for the case Aint = 0.1 has the order of 109. This is expected

since employing idealized CSMA results in a probable non-

transmission state for a node with rapidly growing error.

V. CONCLUSIONS

In this paper we propose an event-based error-dependent

scheduling law for a class of resource-constrained inter-

connected NCSs. Within this class, the interconnections are

modeled by directed acyclic graphs (DAGs). Given a stabiliz-

ing control law in the absence of communication constraints,

we show f -ergodicity of the overall network-induced error

for this class of interconnected NCSs. Simulation results are

in accordance with stability results and show performance

improvement in comparison with the time-triggered and pure

randomized protocols such as TDMA and idealized CSMA.
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