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Abstract— In this paper, we study event-triggered data
scheduling for stochastic multi-loop control systems commu-
nicating over a shared network with communication uncertain-
ties. We introduce a novel dynamic scheduling scheme which
allocates the channel access according to an error-dependent
policy. The proposed scheduler deterministically excludes sub-
systems with lower error values from the medium access
competition in favor of those with larger errors. Subsequently,
the scheduler probabilistically allocates the communication
resource to the eligible entities. We model the overall network-
induced error as a homogeneous Markov chain and show its
boundedness in expectation over a multi time-step horizon. In
addition, analytical upper bound for the associated average cost
is derived. Furthermore, we show that our proposed policy is
robust against packet dropouts. Numerical results demonstrate
a significant performance improvement in terms of error level
in comparison with periodic and random scheduling policies.

I. INTRODUCTION

Control over shared communication resources imposes

various imperfections, such as capacity limitation, conges-

tion, time delays and packet dropouts, that impair the control

performance and can even lead to instability. These network-

induced phenomena give rise to the notion of Networked

Control Systems (NCSs) [1]. In order to utilize the lim-

ited communication and energy resources in NCSs more

efficiently, event-triggered control and scheduling strategies

have been proposed recently [2]–[7].

Along with [7]–[9], the aforementioned references suggest

that it is often more beneficial to sample analog signals

and transmit the sampled values upon the occurrence of

certain events rather than at predefined (and periodic) time

instants. This is even more so when large-scale systems are

of interest due to the sheer amount of information that needs

to be exchanged. While stability of single-loop NCSs is well

addressed (e.g., [10], [11]), stability of multi-loop NCSs

requires further investigations (refer to [12]–[14] for some

notable exceptions). In [13], the authors show the Lyapunov

mean square stability of multi-loop stochastic NCSs under

static scheduling laws, and additive increasing/decreasing

laws depending on the delay time i.e. not necessarily error-

dependent. In addition, events typically trigger by either

deterministic or probabilistic scheduling policies [12], [15]–

[17]. Lossy communication channels in NCSs are investi-
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gated in, among others, [18], [19]. In most of the available

results, probabilistic packet dropouts are considered. Hence,

a scheduling design for stochastic multi-loop NCSs that

combines benefits of both deterministic and probabilistic

event-triggered policies, and is robust against the channel

imperfections is certainly of interest.

In this paper, we propose an error-dependent, locally im-

plementable and flexible bi-character scheduling protocol for

a network of multiple heterogeneous control loops commu-

nicating over a shared channel. This policy deterministically

blocks transmission requests with local errors not exceeding

predefined thresholds. Subsequently, the medium access is

granted to the remaining transmission requests in a proba-

bilistic manner. Unlike purely deterministic policies, which

require centralized knowledge of all entities, the probabilistic

nature of our scheduler facilitates an approximative decen-

tralized implementation. On the other hand, the deterministic

feature of our scheduler enhances the performance of NCSs

(especially as the number of loops increases). It is worth

mentioning that, we adopt an emulation-based approach

meaning that we are given stabilizing controllers in the ab-

sence of communication network. To investigate performance

vs. energy trade-offs of our bi-character scheduler, a cost

function is introduced. Afterwards, analytic uniform upper-

bound for the associated average cost is derived.

Notation In this paper, the Euclidean norm and conditional

expectation are denoted by ‖ · ‖2 and E[·|·], respectively.

The Gaussian distribution with mean µ and covariance

matrix X is represented by N (µ,X). A state variable with

superscript i indicates that it belongs to the subsystem i,

and the subscript k denotes the time step. For matrices

though, subscript i indicates the corresponding subsystem

while superscript n denotes the matrix power. Lastly, we use

(x, y) := [x⊤ y⊤]⊤ in order to simplify notation.

II. PROBLEM STATEMENT AND PRELIMINARIES

We consider an NCS composed of N LTI control loops

which are coupled through a shared communication network,

as schematically depicted in Fig. 1. Each individual loop

consists of a stochastic plant Pi, a controller Ci, and a sensor

Si. An event-based scheduler decides when the state vector

xik ∈ R
ni is an event to be scheduled for channel access. The

plant Pi is modeled by the stochastic difference equation

xik+1 = Aix
i
k +Biu

i
k + wi

k, (1)

where wi
k ∈ R

ni is i.i.d. with wi
k ∼ N (0,Wi) at each time

step k, and Ai ∈ R
ni×ni , Bi ∈ R

ni×mi describe system and

input matrices, respectively. Since our results are independent
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Fig. 1. A multi-loop NCS with a shared communication channel and
error-dependent scheduler.

of initial states, xi0 is allowed to be any random variable with

an arbitrary distribution and a bounded second moment.

At each time step k, the scheduler decides which subsys-

tems have the channel access via the variable δik ∈ {0, 1}:

δik =

{

1, xik sent through the channel

0, xik blocked.

This implies that the received signal zk at the controller is

zik =

{

xik, δik = 1

∅, δik = 0.

Each subsystem is assumed to be steered by a local state

feedback controller updated at every time step k either by the

true state values xik or by the estimated states x̂ik. Essentially,

we consider control laws γi’s given by

uik = γik(Z
i
k) = −LiE

[

xik|Z
i
k

]

, (2)

where Zi
k={zi0, . . . , z

i
k} is the update history and Li is any

stabilizing feedback gain. Notice that, in accordance with

the emulation-based frameworks, the control law synthesis

is not explicitly addressed (i.e., we do not design Li’s).

Instead, knowing that the controllers stabilize the plants in

the absence of communication network, we focus on the

scheduler design. It is also assumed that the ith controller is

provided with local information Ai, Bi, Wi, Z
i
k and xi0.

In case a transmission request is blocked, the least-square

estimate of xik is computed by a Kalman-like estimator

E
[

xik|Z
i
k

]

= (Ai −BiLi)E
[

xik−1|Z
i
k−1

]

, (3)

with initial distribution E
[

xi0|Z
i
0

]

= 0. The estimate in (3) is

well-behaved since a stabilizing Li ensures that the closed-

loop matrix (Ai −BiLi) is Hurwitz. The network-induced

error is defined as eik=x
i
k−E

[

xik|Z
i
k−1

]

and evolves as

eik+1 =
(

1− δik+1

)

Aie
i
k + wi

k. (4)

According to (1)-(4), the aggregate state (xik, e
i
k) has a

triangular dynamics within each local loop implying that the

evolution of eik is independent of the system state xik . This

implies that the stability of ek is sufficient to show the overall

stability of the NCS of interest.

To measure the performance of the designed scheduler, we

define a cost function per time-step for all subsystems as

Jek =
N
∑

j=1

e
j⊤
k Qje

j
k + ηjδ

j
k, (5)

where ηj is a non-negative constant and Qj is a symmetric

positive semi-definite weight matrix for the jth loop. We

adopt the following notation to avoid lengthy expressions:

‖ejk‖
2
Qj

:= e
j⊤
k Qje

j
k.

The cost function in (5) states that at each time k, the total

cost is the weighted norm of the error of all loops plus the

imposed cost incurred when a loop transmits. Moreover, we

evaluate the performance of the scheduler independently of

the control law and system state, i.e. there is no penalty on

the size of uik and xik signals. However, terms involving uik
and xik can easily be added because the stabilizing control

law is designed independently of the scheduling law.

Now we introduce the novel scheduling rule which dy-

namically prioritizes the channel access for a multi-loop NCS

with shared communication channel according to an error-

dependent policy. Assume that the communication channel

has the capacity constraint c<N . Our scheduling rule defines

the probability of channel access for each loop at each time-

step by the following deterministic-probabilistic policy:

P[δik+1=1|ejk, λj ]=















0 ‖eik‖
2
Qi
≤λi

1 ‖eik‖
2
Qi
>λi ∧ nλ≤c

‖eik‖
2

Qi∑
nλ

‖ej
k
‖2

Qi

‖eik‖
2
Qi
>λi ∧ nλ>c

(6)

where λi is the local error threshold for subsystem i, nλ is

the number of subsystems satisfying ‖ejk‖
2
Qj

> λj , and c is

the channel capacity. The probability distribution above is

supported on the semi-infinite interval [0,∞).
Remark 1: Since c<N , transmission requests from some

subsystems should be blocked. The blocking is performed

in two steps. First, according to the first argument in (6), if

‖eik‖
2
Qi

≤ λi, then a transmission request is not submitted

and the corresponding subsystem is excluded from channel

access competition. If the number of remaining subsystems

is less than or equal to the capacity of the channel, they all

transmit. Otherwise, the channel is allocated probabilistically

until the capacity is reached while remaining transmission re-

quests are blocked. In this allocation process, the subsystems

with higher error have a higher channel access probability.

In the interest of reducing the paper length, we impose the

following hard capacity constraint for every k ≥ 0:

∑N

i=1
δik = 1. (7)

Namely, only one subsystem is allowed to transmit at each

time-step. The presented results readily extend towards c>1.

A. Decentralized Implementation of the Scheduler

The stochastic nature of the policy (6) enables a decen-

tralized implementation within the CSMA protocol. As the
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details of implementation go beyond the scope of this paper,

we focus on sketching the main idea of the protocol.

The CSMA model follows the assumptions: (i) sensing the

carrier is instantaneous, (ii) there are no hidden nodes, (iii)

the backoff intervals are exponentially distributed with error-

dependent exponents, (iv) the mean backoff time is negligible

with respect to the sampling interval, (v) data packets are

discarded after one retransmission trial.

It should be noted that, due to the assumptions (i) and

(ii), no packet collisions may occur. The assumptions (iii)-

(v) are tailored to the discrete-time nature of the control

process. In particular, assumption (v) reflects the idea of

the try-once discard (TOD) protocol introduced in [16].

Moreover, assumption (vi) guarantees that the transmission

is accomplished at the end of each sampling interval.

At the beginning of every sampling instance, each eligible

subsystem waits to transmit according to its chosen backoff

interval. The duration is chosen randomly according to

assumption (iii) and depends on the current error norm of

the subsystem. The subsystem with the smallest interval

is permitted to transmit, while all other subsystems are

blocked. Furthermore, the mean backoff interval decreases

accordingly with increasing error norm. This naturally leads

to a prioritization of the control loops, as subsystems with

larger error norms are more likely to transmit.

III. UNIFORM PERFORMANCE BOUNDS

In this section, we investigate the behavior of a multi-loop

NCS with a shared communication channel under policy (6).

Our goal is to show that the expectation of error state eik
remains bounded. First, let us define the aggregate the error

ek ∈ R
n, where n =

∑N

i=1 ni, at each time-step k as

ek := (e1k, . . . , e
N
k ). (8)

The scheduling policy (6) is a randomized policy and de-

pends on the most recent error values. Hence, the error

evolution in (8) is a Markov chain. The Markov chain ek
is homogeneous because the difference equation in (3) is

time-invariant and the noise process wi
k is i.i.d. for i =

{1, . . . , N}. Since the noise distribution is absolute contin-

uous having a positive density function, it is furthermore

concluded that the chain is aperiodic and ψ-irreducible.

To show boundedness of E [ek] in the limit, we restrict

our attention to intervals of length N . The intuition behind

this choice is as follows. Between two consecutive trans-

missions of each subsystem, these subsystems operate in

open loop. Hence, in general, the respective local errors are

expected to grow. After each transmission, the respective

local errors reset. Now, say that at some time step k1 we

have arbitrary E [ek1
]. If one is to obtain boundedness of

E [ek1+N ], which is typically shown by requiring a negative

drift according to the f -Norm Ergodic theorem, [20, Chapter

14], all subsystems need to have a chance of transmitting

within [k1, k1 +N ]. Due to the capacity restriction (7), one

infers that the interval of interest needs to be of length greater

or equal to N , (see [21] for a comprehensive discussion).

This observation becomes more evident from the exposition

provided below. We first show E

[

‖ejk‖
2
Qj

]

is bounded over

an interval of length N , and then we invoke the f -Norm-

ergodic theorem to prove the ergodicity of (8). Lemma 1 is

the main tool to obtain the upper bound for the average cost.

Lemma 1: [22] Let ek represents a Markov chain evolv-

ing in state space R
n. Introduce Jek : R

n → R and a

measurable function h : Rn → R. Define the average cost

as

Jave = lim
n→∞

sup
1

n

∑n−1

k=0
E [Jek ] .

If h (ek) ≥ 0 for all ek ∈ R
n, then

Jave ≤ sup
ek

{Jek + E [h (ek+1) |ek]− h (ek)} .

As discussed earlier, we are interested in intervals of

length N while Lemma 1 refers to one step transitions.

However, since ek is a ψ-irreducible Markov chain evolv-

ing in uncountable space R
n, one can generate another

Markov chain that samples the states of the original chain

at steps {0, N, 2N, ...}. It is straightforward to show that

ψ-irreducibility and aperiodicity are carried over to the

generated chain. Moreover, time-homogeneity of the original

Markov chain implies homogeneity of the constructed chain.

Refer to [20, Chapter 1] for a comprehensive discussion.

Therefore, we rewrite the upper bound for the average cost

Jave from Lemma 1 as follows:

Jave ≤ sup
ek

{Jek + E [h (ek+N ) |ek]− h (ek)} . (9)

Introducing the non-negative quadratic function h (ek) =
∑N

i=1 ‖e
i
k‖

2
Qi
, and considering the cost function (5), the

upper bound for the average cost in (9) is reduced to

Jave ≤ sup
ek

[

Jek + E [h (ek+N ) |ek]−
∑N

i=1
‖eik‖

2
Qi

]

= sup
ek

[

E [h (ek+N ) |ek] +
∑N

i=1
ηiδ

i
k

]

= sup
ek

∑N

i=1

[

E
[

‖eik+N‖2Qi
|ek

]

+ ηiδ
i
k

]

. (10)

Theorem 1: Consider an NCS with N heterogeneous LTI

control loops, with the plants modeled as in (1), which share

a communication channel subject to the constraint (7). Given

the control and scheduling laws as in (2) and (6), respectively,

the average cost Jave is uniformly upper bounded.

Proof: In order to obtain an upper bound on Jave

over some interval [k, k +N ], we condition the expecta-

tion E[ek+N ] over all possible scenarios during the interval

[k, k +N − 1] under the policy (6). Thus, we define two

disjoint time-varying sets S1
k′ and S2

k′ where k′ ∈ [k, k +
N − 1], such that for a subsystem i at time step k′ we have

i ∈

{

S1
k′ , ‖eik′‖2Qi

≤ λi

S2
k′ , ‖eik′‖2Qi

> λi
. (11)

Notice that the subsystems in S1
k′ are not eligible to transmit

at k′ while the subsystems belonging to S2
k′ are. Clearly,

S1
k′ ∪ S2

k′ = N . According to the policy (6), we identify the

following four complementary and mutually exclusive cases

regarding the evolution of the error Markov chain ek as
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c1) Subsystem i has not transmitted during [k, k +N − 1]
and i ∈ S1

k+N−1,

c2) Subsystem i has transmitted at least once during

[k, k +N − 1] and i ∈ S1
k+N−1,

c3) Subsystem i has transmitted at least once during

[k, k +N − 1] and i ∈ S2
k+N−1,

c4) Subsystem i has not transmitted during [k, k +N − 1]
and i ∈ S2

k+N−1.

We proceed by deriving uniform upper bounds for Jave in

each of four cases, which assures boundedness of E[ek].
Suppose that some subsystems belong to c1 at time step

k+N−1, i.e., i ∈ c1. Since those subsystems do not transmit

until time step k +N , the bound in (10) reduces to

J i∈c1
ave ≤ sup

ek

∑

i∈c1

E
[

‖eik+N‖2Qi
|ek

]

= sup
ek

∑

i∈c1

E
[

‖Aie
i
k+N−1 + wi

k+N−1‖
2
Qi
|ek

]

≤ sup
ek

∑

i∈c1

‖Ai‖
2
2E

[

‖eik+N−1‖
2
Qi

∣

∣ ek] + E
[

‖wi
k+N−1‖

2
Qi

]

Since i∈S1
k+N−1, it follows that ‖eik+N−1‖

2
Qi

≤λi. Thus,

J i∈c1
ave ≤

∑

i∈c1
‖Ai‖

2
2λi + E

[

‖wi
k+N−1‖

2
Qi

]

. (12)

For the subsystems belonging to the second case, the

upper bound can be similarly obtained, noticing that the

transmission penalty must be considered. So, we have

J i∈c2
ave ≤

∑

i∈c2
‖Ai‖

2
2λi + ηi + E

[

‖wi
k+N−1‖

2
Qi

]

. (13)

For the third case, assume that the last transmission has

occurred at time k+ r′, where r′∈ [0, N − 1], i.e. δik+r′ =1.

We express eik+N as a function of the error at time k+ r′ as

eik+N =
∏N

j=r′+1

(

1− δik+j

)

AN−r′

i eik+r′

+
∑N−1

r=r′

[

∏N

j=r+2

(

1− δik+j

)

AN−r−1
i wi

k+r

]

, (14)

where for r′ = N − 1, we have
∏N

N+1(1− δik+j) = 1. Now,

employing (14), (10) is reduced to

J i∈c3
ave ≤ sup

ek

∑

i∈c3
E
[

‖eik+N‖2Qi
|ek

]

+ηi

≤
∑

i∈c3

∑N−1

r=r′
E
[

‖AN−r−1
i wi

k+r‖
2
Qi

]

+ηi. (15)

As for the fourth case, there is no guarantee that a system

with a higher priority for channel access wins the competition

against a system with a lower priority, due to the probabilistic

feature of our scheduling policy. To show boundedness of

the error, we consider two complementary and mutually

exclusive sub-cases within the fourth case as follows:

lc41 Subsystem i has not transmitted during [k, k +N − 1],
but has been in the set S1

k′ at least once,

lc42 Subsystem i has not transmitted during [k, k+N−1],
but has been in the set S2

k′ for all k′∈ [k, k+N−1].

For both sub-cases no transmission occurs so we can rewrite

(10) as follows

J i∈c4
ave ≤ sup

ek

∑

i∈c4
E
[

‖eik+N‖2Qi
|ek

]

. (16)

The sub-case lc41 is similar to the case c1. The difference is

that the subsystem in c1 is in S1
k+N−1 at time step k+N−1,

while in lc41 is in S1 in some prior time steps. Supposing

that in the last step the system i was in S1
k+r′ is k + r′, an

upper bound for (10) is readily obtained employing (14):

J
i∈l

c4
1

ave ≤
∑

i∈l
c4
1

[

‖AN−r′

i ‖22λi+
N−1
∑

r=r′

E
[

‖AN−r−1
i wi

k+r‖
2
Qi

]

]

(17)

The sub-case lc42 presents the situation in which a certain

subsystem has always been a candidate for channel access,

i.e., i ∈ S2
[k,k+N−1], even though it has never transmitted.

Hence, ‖eik′‖2Qi
> λi for all steps k′ ∈ [k, k +N − 1]. With

the upper bound for the average cost in (16) still valid and

considering (14) with r′ = 0, we obtain

J
i∈l

c4
2

ave ≤ sup
ek

∑

i∈l
c4
2

E
[

‖eik+N‖2Qi
|ek

]

≤sup
ek

∑

i∈l
c4
2

E

[

‖AN
i e

i
k+

N−1
∑

r=0

[

AN−r−1
i wi

k+r

]

‖2Qi
|ek

]

≤sup
ek

∑

i∈l
c4
2

E

[

‖
N−1
∑

r=0

[

AN−r−1
i wi

k+r

]

‖2Qi

]

+‖AN
i ‖22‖e

i
k‖

2
Qi
.

According to the scheduling policy (6), we calculate the

probability for the sub-case lc42 to occur. Recall that the

length of the interval of interest is N . Thus, if one system,

say j, does not transmit during the entire interval, there exists

another subsystem, say i, who transmits more than once.

Let k+ r̄ denote the most recent step in which system i

transmitted. The probability that δik+N =1 is computed as

P[δik+N = 1|δik+r̄ = 1, ejk, ‖e
j

k̄
‖2Qj

> λj ]

= E

[

P[δik+N = 1|ejk, λj ]|δ
i
k+r̄ = 1, ‖ej

k̄
‖2Qj

>λj

]

= E

[

‖eik+N−1‖
2
Qi

∑

j∈S2‖e
j
k+N−1‖

2
Qj

|ejk, δ
i
k+r̄= 1, ‖ej

k̄
‖2Qj

>λj

]

. (18)

Since we are interested in the worst case scenario (i.e. upper

bounds), we take ‖e
j∈l

c4
2

k′ ‖2Qj
≤‖e

j∈l
c4
2

k′+1‖
2
Qj

. Then we have

P[δik+N = 1|δik+r̄ = 1, ejk, ‖e
j

k̄
‖2Qj

> λj ]

≤ E

[

‖
∑N−2

r=r̄ AN−r−1
i wi

k+r‖
2
Qi

∑

j∈l
c4
1

‖ejk+N−1‖
2
Qj

+
∑

j∈l
c4
2

‖ejk+N−1‖
2
Qj

∣

∣

∣
zi,j

]

≤ E

[

‖
∑N−2

r=r̄ AN−r−1
i wi

k+r‖
2
Qi

∑

j∈l
c4
1

λj +
∑

j∈l
c4
2

‖ejk‖
2
Qj

∣

∣

∣
zi,j

]

=

∑N−2
r=r̄ E

[

‖AN−r−1
i wi

k+r‖
2
Qi

]

∑

j∈l
c4
1

λj +
∑

j∈l
c4
2

‖ejk‖
2
Qj

= Pl
c4
2

, (19)

where zi,j abbreviates the conditions of the expectation.

From (19) one infers that the probability of a subsequent
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transmission for a certain subsystem, in the presence of large

errors, can be made arbitrarily close to zero by selecting the

appropriate values for λj’s and Qj’s. Now, the average cost

for the sub-case lc42 becomes

J
j∈l

c4
2

ave ≤Pl
c4
2



‖AN
j ‖22‖e

j
k‖

2
Qj

+
∑

j∈l
c4
2

E

[

‖
N−1
∑

r=0

A
p
jw

j
k+r‖

2
Qj

]





≤
∑

j∈l
c4
2

‖Aj‖
2
2

∑N−2

r=r̄
E
[

‖Ap
iw

i
k+r‖

2
Qi
|zi,j

]

(20)

+

∑

j∈l
c4
2

∑N−1
r=0 E

[

‖Ap
jw

j
k+r‖

2
Qj

][

∑N−2
r=r̄ E

[

‖Ap
iw

i
k+r‖

2
Qi

]

]

∑

j∈l
c4
1

λj
,

where p = N − r− 1. The upper bound (20) is uniform and

independent of the initial state eik, and shows that the bound

can be made small by increasing λj’s and decreasing Qj’s,

but not arbitrarily small due to its first term. It confirms that,

despite having unstable plants and sparsity of the capacity,

which might cause a subsystem with large error waiting for

channel access, the aggregate error remains bounded.

In order to calculate the upper bound for lc42 , we con-

sidered the worst case possible error evolution by assuming

‖e
j∈l

c4
2

k′ ‖2Qj
≤‖e

j∈l
c4
2

k′+1‖
2
Qj

. This assumption places a condition

on the noise values w
j∈l

c4
2

k′ for all k′ ∈ [k, k+N ]. Basically,

the distribution of the vector AN−1
j w

j
k + . . . + w

j
k+N−1 =

W
(

Aj , w
j
)

is therefore restricted to distributions which en-

large the error-dependent term AN
j e

j
k. The worst case occurs

when the noise-dependent and error-dependent terms have

the same signs element wise (either positive or negative).

Due to the symmetry of the noise-dependent distribution

W
(

Aj , w
j
)

, both positive and negative parts of the cor-

responding distribution turn out to have the same values.

Since the noise variables are independent and W
(

Aj , w
j
)

has a zero-mean multi-dimensional Gaussian distribution

with covariance matrix Σ =
(

AN−1
j + . . .+Aj + I

)

Cj , the

following probability density function is obtained

f (w) =
1

√

(2π)nj |Σ|
exp

(

−wTΣ−1w

2

)

, (21)

where w is the nj-dimensional noise-dependent random

vector and |Σ| is the determinant of the covariance matrix.

Employing the law of unconscious statistician yields

E

[

‖W
(

Aj , w
j
)

‖2Qj
|W ≥ 0

]

=
‖Qj‖22

√

(2π)nj |Σ|

∫ ∞

0

. . .

∫ ∞

0

‖w‖22exp

(

−wTΣ−1w

2

)

dw.

Finally, we derived the uniform upper bounds (12),(13),

(15), (17) and (20) for all four cases. Having an upperbound

for (10) implies the boundedness of ‖eik‖
2
Qi

, and conse-

quently boundedness of the error variance over an interval

of length N . Therefore, the average cost, which is obtained

as the summation of all four cases, remains bounded. Hence,

the Markov chain ek given by (8) has a bounded quadratic

size over the interval [k, k +N ].
Having finite values for the E

[

‖eik‖
2
Qi

]

, for all time-steps k,

we can always find appropriate quadratic functions f such

that the conditions of the f -Norm Ergodic Theorem hold.

This implies that the Markov chain ek is ergodic meaning

that there exists an invariant finite transition function π(e)
over the entire evolution [20, Chapter 14].

IV. SCHEDULING OF COMMUNICATION

RESOURCE SUBJECT TO PACKET DROPOUTS

In this section, we investigate the robustness of the pro-

posed scheduler (6) with respect to data packet dropouts.

Although, the centralized structure of our scheduler implies

that the communication channel is collision-free, the consid-

eration of dropouts makes it feasible to handle the collisions

while implementing the scheduler in decentralized fashion.

So far in this paper, we assumed that every data packet

which is awarded the channel access, will be successfully

received by the controller. In this section, we relax this

assumption and consider the possibility of packet dropouts in

the channel. Assume that at every time step the scheduler is

aware whether the transmission has been successful or not.

This is achieved via the binary variable θk ∈ {0, 1}, i.e.,

θk =

{

1 packet is successfully sent

0 packet is dropped out

Hence, taking the possibility of dropouts into account, the

error evolution (4) also depends on θk as follows

eik+1 =
(

1− δik+1θk+1

)

Aie
i
k + wi

k. (22)

In what follows, we show that the quadratic measure of the

aggregate error (5) remains bounded in expectation even if

the scheduled data packets are dropped in the communication

channel. The way we model the dropouts is as follows –

whenever a packet is dropped, we assume that a virtual loop

has successfully transmitted instead of the subsystem with

dropped data packet. Basically, when a dropout occurs, N

real and one virtual subsystems share the communication

channel, and the channel is awarded to the virtual system.

The virtual loops have the same discrete LTI dynamics as

in (4) with appropriately chosen system parameters. Over the

interval [k, k+N ], we assume having as many virtual loops

connected to the NCS as the dropped packets. This assump-

tion affects the scheduling process and has no influence on

the average cost for which we seek the upper bound.

Let the channel experience m < N − 1 dropouts over the

interval [k, k+N − 1]. At time step k+N we have N real

and m virtual subsystems (all virtual ones have transmitted).

Consider again the cases c1, . . . , c3 as well as the sub-case

lc41 . It is clear from the equations (12), (13), (15) and (17)

that the aforementioned cases are uniformly upper bounded

regardless of the access probability. The intuition is that the

scheduler has a priori knowledge about the Markov chain

at a specific prior time knowing that the error is below

the threshold for those cases. Since the error evolves as a

homogeneous Markov chain, driven by the variance-bounded

standard Gaussian noise, it suffices to know that the Markov

chain has been bounded at a prior time step in order to show

boundedness of the chain in the future over a finite horizon.
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Proposition 1: Let an NCS be composed of a finite

number of LTI loops with dynamics (1). Assume that the

constraint (7) holds, and the channel experiences m packet

dropouts during the interval [k, k+N ]. Then, employing the

scheduling policy in (6), the error evolves according to a

bounded probability distribution, if m < N − 1.

Proof: The critical case is the sub-case lc42 in which the

error has always been above the threshold but the respective

subsystem has not transmitted. Thus, the scheduler has no

bounded knowledge about the error. Considering the worst

case over all possibilities of error evolution, we aim to find

the upper bound for the average cost. With this in mind, we

calculate again the probability that the sub-case lc42 occurs:

P[δik+N+m = 1|δik+r̄ = 1, ejk, dj , ‖e
j

k̄
‖2Qj

> λj ]

= E

[

‖eik+kdm
‖2Qi

∑

j∈S2‖e
j
k+kdm

‖2Qj

|ejk,m, δ
i
k+r̄= 1, ‖ej

k̄
‖2Qj

>λj

]

≤ E

[

‖
∑N+m−2

r=r̄ AN−r−1
i wi

k+r‖
2
Qi

∑

j∈l
c4
1

‖ejk+kdm
‖2Qj

+
∑

j∈l
c4
2

‖ejk+kdm
‖2Qj

|zi,j

]

≤

∑N+m−2
r=r̄ E

[

‖AN−r−1
i wi

k+r‖
2
Qi

]

∑

j∈l
c4
1

λj +
∑

j∈l
c2
2

‖ejk‖
2
Qj

. (23)

where kdm
=N+m−1. The last inequality holds considering

‖e
l
c4
2

k′ ‖2Qj
≤ ‖e

l
c4
2

k′+1‖
2
Qj

for all k′ ∈ [k, k + N + m − 1]. In

addition, we take
∑

l
c4
1

‖ejk+N+m−1‖
2
Qj
>
∑

l
c4
1

λj resulting

from being in the subset lc41 . Considering packet dropouts,

we calculate the upper bound for the average cost as:

J
j∈l

c4
2

ave ≤
∑

j∈l
c4
2

‖Aj‖
2
2

∑N+m−2

r=r̄
E
[

‖Ap
iw

i
k+r‖

2
Qi
|zi,j

]

+

∑

j∈l
c4
2

∑N−1
r=0 E

[

‖Ap
jw

j
k+r‖

2
Qj

][

∑N+m−2
r=r̄ E

[

‖Ap
iw

i
k+r‖

2
Qi

]

]

∑

j∈l
c4
1

λj

Comparing the last inequality with (20), one infers that λj
needs to be increased and Qj decreased in order to achieve

the same upper bound (the value in numerator gets larger).

Basically, to compensate the effect of dropouts, λj’s are

increased and Qj’s are decreased, which in turn increases

the chance of transmission for the subsystems in lc42 .

V. NUMERICAL RESULTS

In this section, the performance of our event-triggered

scheduler is compared with TDMA and idealized CSMA

policies. We also demonstrate that the deterministic feature of

our bi-character scheduler yields performance improvements

in comparison with the pure stochastic scheduler from [12].

Consider an NCS comprised of two classes of subsystems.

The first class includes control loops with unstable plants

while the second class contains control loops with stable

processes. The system parameters are A1=1.25, B1=1 and

A2 = 0.75, B2 = 1, respectively. In both classes, the initial

condition is x10 = x20 = 0 and the random disturbance is

given by wi
k ∼ N (0, 1). We consider N loops with equal

number of loops belonging to each of two classes. In order
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Fig. 2. Comparison of the average mean of error variance vs. the number
of control loops for different scheduling policies.

to stabilize the subsystems, we choose a deadbeat control

law Li = Ai for i ∈ {1, 2} and a model-based observer given

by (3). Next we select Qi = I , for each class i ∈ {1, 2}.

Figure 2 provides the obtained numerical results for

our and related scheduling protocols with different N ∈
{2, 4, 6, 8, 10}. Note that for N > 2, we have more unstable

systems than the available transmission slots per time-step

(which is one). The averages are calculated via Monte Carlo

simulations over a horizon of 105. The lower bound is

determined by relaxing the constraint in (7), (refer to [7] for

more details). For the results to be comparable, we disregard

the communication penalty, meaning that the channel usage

is costless. We calculate the mean variance by considering

equal λ’s for NCSs with different N , according to Table I.

The results indicate that the mean error variance is smaller

than the purely stochastic PEB protocol [12]. The increase

of λ as the number of loops increases follows from the fixed

channel capacity. Hence, the subsystems need to tolerate

greater error values. The superiority of our approach is also

evident in comparison with TDMA and idealized CSMA

protocols. TDMA is a time-triggered access scheme, where

subsystems update their controllers periodically. The ideal-

ized CSMA operates such that the probability of updating the

controller is 1
N

for each subsystem at each time step. As the

number of subsystems increases, the performance efficiency

of our scheduler becomes more evident. As it can be seen

from Fig. 2, the static idealized CSMA protocol results in an

acceptable performance only for N=2. This is expected as

this protocol allocates the channel in a static manner resulting

in a probable non-transmission for an unstable system when

the number of subsystems grows, and one free transmission

slot is available. For N ≥ 6, the variance of ek takes values

of magnitude 1015 which suggests an unbounded variance.

This is in accordance with [7, Theorem 2], where the stability

condition is violated for N ≥ 6 for the considered system

parameters. In Fig. 3, the mean variances are calculated with

the same thresholds as in Table I, considering one packet

dropout for an unstable loop. It can be seen that the variance

increases for the same error thresholds.
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Fig. 3. Effect of packet dropout on error variance.

Number of plants (N ) 2 4 6 8 10

Error threshold (λ) 0.2 6 10 15 18

Upper bounds on Jave 3.12 3.99 6.14 12.28 25.60

TABLE I

THEORETICALLY PREDICTED UPPER BOUNDS FOR THE AVERAGE COST

WITH COMMUNICATION PENALTY.

Next, we provide uniform upperbounds for the average

cost in (10). We employ the upper bounds in (12), (13), (15),

(17) and (20) for NCSs with {2, 4, 6, 8, 10} subsystems. In

Table I the analytical upper bounds are derived using the

same error thresholds for the simulation. For the sake of

simplicity, we assumed ηi = λi. Note that the average cost

in Table I considers the communication penalty, as discussed

in (5), while it is not considered in simulations. The absence

of the communication penalty in the average cost (10) can

decrease the overall cost as shown in Table II.

Number of plants (N ) 2 4 6 8 10

Error threshold (λ) 0.2 6 10 15 18

Numeric mean variance 1.31 1.87 2.05 2.34 3.05

Upper bounds on Jave 1.65 3.25 5.30 11.35 24.70

Upper bounds with dropout 2.45 3.76 5.70 11.68 25.00

TABLE II

NUMERICAL MEAN VARIANCE VS. THEORETICAL UPPER BOUNDS FOR

COSTLESS COMMUNICATION.

VI. CONCLUSIONS

In this paper, we examine stability and performance of

resource-constrained NCSs under a novel error-dependent

scheduling scheme which combines deterministic and prob-

abilistic scheduling. Given the stabilizing feedback con-

trollers, we show boundedness of the overall NCS error. In

addition, we derive analytical uniform performance bounds

for the error variance under the proposed scheduling policy.

We also study the possibility of packet dropouts and show

robustness of our approach against this network-induced phe-

nomenon. Numerical simulations validate boundedness of the

error variance and display a major performance improvement

in comparison with other randomized protocols, especially as

the number of subsystems increases.
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