
Dynamic Process Management with Allocation-internal
Co-Scheduling towards Interactive Supercomputing

Carsten Clauss
ParTec Cluster Competence

Center GmbH, Munich
clauss@par-tec.com

Thomas Moschny
ParTec Cluster Competence

Center GmbH, Munich
moschny@par-tec.com

Norbert Eicker
Jülich Supercomputing Centre

Forschungszentrum Jülich
n.eicker@fz-juelich.de

ABSTRACT
Heading towards exascale, the challenges for process man-
agement with respect to flexibility and efficiency grow ac-
cordingly. Running more than one application simultane-
ously on a node can be the solution for better resource
utilization. However, we believe that this approach of co-
scheduling can also be the way to go for gaining a degree of
process malleability and dynamicity that can enable some
kind of interactivity also in the domain of high-performance
computing. In this paper, we present the recent advances
made in this respect within ParaStation MPI, a high perfor-
mance MPI library supplemented by a complete framework
comprising a scalable and dynamic process manager. The
paper presents four new scheduling policies, implemented in
ParaStation MPI, for starting multiple MPI sessions concur-
rently and interactively within a single allocation of nodes.
The features of these policies are detailed and evaluated
by applying the Dynamic Job Scheduler Benchmark (djsb),
a tool developed by the Barcelona Supercomputing Center
especially for measuring interactivity and dynamicity met-
rics.

Keywords
Scheduling Policies, Co-Scheduling, Process Management,
Interactive Supercomputing, High-Performance Computing

1. INTRODUCTION
Since the beginning of the pre-exascale era, there has been

a rising demand for the support of interactivity and mal-
leability also in the domain of high-performance comput-
ing. Such a support will allow supercomputer users to in-
teract with their running applications, for example, in order
to steer the progress of a simulation during runtime. It is
widely believed that—besides some kind of a conceivable
real-time interaction, for example, via graphical user inter-
faces for in-situ visualization—on large-scale supercomput-
ers, such an interaction will primarily be conducted via ad-
ditional applications to be started concurrently on the user’s

COSH 2016 Jan 19, 2016, Prague, CZ
c© 2016, All rights owned by authors. Published in the TUM library.

DOI: 10.14459/2016md1288835

demand. (For proving this statement refer, for example, to
the Technical Requirement Document [1] of Pre-Commercial
Procurement (PCP) announcement issued by the Human
Brain Project (HBP): In the context of the HBP it is fore-
seen to build up (pre-) exascale supercomputing systems fea-
turing interactivity for large-scale brain simulations.1)

According to this, each job will consist of multiple job
steps (potentially divisible into primary and secondary ones)
that may be launched interactively and that in turn can
interact among each other. So, for instance, a user may
run a large and long lasting simulation application, which
then can interact during runtime with intermediately started
auxiliary applications. Such secondary applications, which
are then to be co-located with the primary application (ei-
ther within its existing allocation or by requesting further
resources) could then attach and interact with the long-
running simulation in order to track and even govern its
evolution. By co-locating the processes within the existing
allocation, the linked applications can then take advantage
especially of data and communication locality. Conceivable
use case scenarios are, for example, visualization pipelines
and the online post-processing of intermediate simulation
steps as well as computational workflows and coupled codes
for providing further input parameters during runtime of the
primary simulation. Since such user interventions as well as
the reactions made by the applications based on their inter-
action are not predictable, a dynamic and continuous sub-
partitioning of the allocated resources is the consequence.

Such an allocation-internal co-scheduling may on the one
hand aim at optimal system utilization. On the other hand,
as user interactivity is also a matter of responsivity, the
scheduling policy may focus on some kind of priorities. At
this point, the above-mentioned demand for job malleabil-
ity comes into play: Such a malleability comprises the ques-
tion of the actual starting order of concurrently launched
MPI sessions, the related question of a dynamic process-to-
core assignment, the demand for the ability to reduce or
increase the number of cores devoted to a certain MPI ses-
sion, and the request for the possibility to suspend a whole
MPI session on a temporary basis. Although these aspects
are in the first instance relevant to the job-internal process
management, at least the issue of reducing or increasing the
number of processes and/or cores of an MPI session may
also involve the system’s higher-level resource manager.

For clarifying the different terms used in this paper, Fig-
ure 1 should illustrate the hierarchy of entities that have
to be taken into account for the overall resource manage-

1www.humanbrainproject.eu



ment: The whole system is usually a cluster composed of
nodes, while each node commonly features multiple cores
resp. hardware threads. The user can request for a set of
nodes/cores in terms of a job allocation for starting multi-
ple parallel applications in terms of concurrent MPI sessions
within.

Taken as a whole, the comprehensive management sys-
tem then forms a three-tier hierarchy: At node level, the
Linux scheduler manages the processes and threads, poten-
tially governed by a predefined process pinning scheme. At
job level, the local process manager handles the process-to-
node/core assignment by starting, controlling and monitor-
ing parallel MPI processes within the allocation devoted to
the respective job. Finally, at cluster level, an outer resource
manager maintains the different job queues of the batch sys-
tem and performs the overall resource assignments granted
by a job scheduler.

Cluster (System)

Cores belonging to N
odes

Allocation (Job)

M
PI Sessions / Applications

App. A

App. B

App. C

Figure 1: Naming of tiers in the system hierarchy

2. PARASTATION MPI
ParaStation MPI is an open-source MPI library, devel-

oped and supported by ParTec GmbH2 under the umbrella
of the ParaStation Consortium—an alliance consisting of
ParTec, the University of Wuppertal, the Karlsruhe Insti-
tute of Technology (KIT), and the Jülich Supercomputing
Centre (JSC). This MPI library has already proven to scale
very well on large parallel production systems: In June 2009,
ParaStation pushed the 3,288 node JuRoPA cluster at the
JSC with more than 25,000 MPI processes to No. 10 in the
world according to the Top 500 list. Furthermore, its suc-
cessor, the JURECA system at the JSC with 49,476 cores,
has just recently entered the November 2015 list at No. 50—
again propelled by ParaStation [2].

The ParaStation MPI library (psmpi) is embedded into
a complete framework for providing state-of-the-art cluster-
based supercomputing [3]: Besides a robust and efficient
cluster middleware, the ParaStation software suite also com-
prises sophisticated administration components like the Pa-
raStation ClusterTools (for provisioning and maintenance),
the ParaStation HealthChecker (for automated error detec-
tion and integrity checking) and the ParaStation TicketSuite
(for analyzing and keeping track of issues).

psmpi is fully MPI-3 compliant [5], including support for
the recent additions to the RMA interface, and also supports

2www.par-tec.com

the MPICH-related Process Manager Interface (PMI) [4] as
well as MPI-2 compliant dynamic process spawning—a fea-
ture long time neglected by other MPI implementations, but
efficiently used by psmpi in the context of the Dynamical Ex-
ascale Entry Platform (DEEP) project [6], a project funded
from 2011 to 2015 by the EU 7th Framework Programme.3

2.1 The Process Management System
The management facility of psmpi, called ParaStation Man-

agement (psmgmt), offers a complete process management
system that can in turn be combined with an outer and more
generic resource manager together with a batch queuing sys-
tem plus job scheduler like TORQUE/MAUI or SLURM.
The process management of psmgmt includes the creation
of processes on remote nodes, control of the I/O channels
of the remotely started processes, and the management of
signals across node boundaries.

Since psmgmt knows about the dependencies between the
processes and threads building a parallel session on a number
of nodes of the cluster, it is able to take them respectively
into account. That way, processes are no longer independent
but form an entity in the same sense as the nodes are no
longer independent computers but form a cluster of nodes as
a self-contained system. This feature of psmgmt for handling
distributed processes as a single unit plays an important
role especially in the context of job control and allocation-
internal scheduling—as it will be detailed later in this paper.

One important key to ParaStation’s scalability is its effi-
cient communication subsystem for inter-daemon messages.
This subsystem, which uses the implementation of a highly-
scalable Reliable Datagram Protocol (RDP), is used for re-
source monitoring as well as for launching and controlling
the parallel processes by means of a network of ParaStation
Daemons (psid). So, for example, this subsystem also per-
forms process pinning, I/O forwarding and signal handling,
and it ensures a proper resource cleanup after job termina-
tion.

2.2 Relation to the Resource Manager
Following a one daemon per cluster node concept, the dae-

mon architecture is kept such generic that it can easily be
extended by plugins for consolidating various services. Fur-
thermore, this network of daemons also enables third-party
services to piggyback their payload on the ParaStation com-
munication subsystem. So, for instance, a TORQUE-related
plugin (psmom) and a SLURM-related plugin (psslurm) ef-
ficiently replace the native daemons of these resource man-
agers on the compute nodes in a ParaStation environment.

Figure 2 illustrates the orchestration between psmgmt and
SLURM, as it is currently employed on the JURECA sys-
tem at the Jülich Supercomputing Centre. As one can see,
the psid together with its psslurm plugin plays the central
role regarding process startup and job control on the com-
pute nodes. SLURM itself is designed to operate even in
heterogeneous clusters with up to tens of millions of proces-
sors and can accept thousands of job submissions per second
with a sustained throughput rate of hundreds of thousand
jobs per hour. Its direct linkage on JURECA to the net-
work of distributed psids makes this orchestration between
SLURM and ParaStation highly scalable and very flexible.

However, in case that the number of computing resources
should actually be increased by MPI-2 compliant dynamic

3www.deep-project.eu



Master
running the SLURM 

Control Daemon:

slurmctld

MPI Session BMPI Session A

Node M

Login
accepting the user’s
SLURM Commands:

squeue

scontrol

sbatch

srun

Node 1
spawning the

actual MPI session

mpiexec

jobscript

psid

Rank 0

psslurm

Job Requests

interactive
stdout/stderr

N
od

e 
Re

gi
st

ra
tio

n
Jo

b 
Te

rm
in

at
io

n

psid

Rank M-1

psslurm…
RDP RDP

…

N
od

e 
Re

gi
st

ra
tio

n
Jo

b 
Te

rm
in

at
io

n

N
od

e 
Re

gi
st

ra
tio

n
Jo

b 
Te

rm
in

at
io

n

Node NNode M+1
spawning the

actual MPI session

mpiexec

jobscript

psid

Rank 0

psslurm

psid

Rank N-M-1

psslurm…
RDP RDP

…

N
od

e 
Re

gi
st

ra
tio

n
Jo

b 
Te

rm
in

at
io

n

N
od

e 
Re

gi
st

ra
tio

n
Jo

b 
Te

rm
in

at
io

n

Node N+1

psid

psslurm …
RDP RDP

Figure 2: Orchestration between SLURM and ParaStation Management (psmgmt) via its psslurm plugin

process spawning during a job’s runtime, the MPI layer
would need the capability of requesting such a post-allocation
of nodes from the resource management system. Such a re-
quest has then to be negotiated between the entities, but
may very well also be rejected if the requested resources are
currently not available. In fact, this feature has recently
also been added to the ParaStation environment in the con-
text of the above-mentioned DEEP project: The TORQUE
server, which is used together with the MAUI scheduler in
the DEEP project, has been enhanced by facilities to receive,
queue and process new resource requests by applications via
the ParaStation daemon subsystem during the runtime of a
job. Moreover, the porting of these features to a SLURM en-
vironment, where the psslurm plugin for the psid and an ad-
ditional plugin for the SLURM resource manager will jointly
accomplish these tasks, is currently on-going work.

3. DYNAMIC PROCESS MANAGEMENT
As already stated in the introduction, dynamic process

management at job level targets the malleability of MPI
processes within an existing job allocation represented by a
certain set of nodes currently assigned to a particular user
or user group. A first degree of interaction between the user
and concurrently running MPI sessions can be achieved by
sending operating system signals to and between the respec-
tive parallel processes. However, such signals, as they are
supported by all customary operating systems, are normally
only valid in the context of the local node the operating sys-
tem is running on. Hence, for supporting signal forwarding
even across node borders, the respective middleware—thus,
in our case, the local process manager—has to be capable of
such a distributed signal handling.

3.1 Signal Handling and Process Pinning
In fact, psmgmt is already capable of doing so and na-

tively takes care for the handling of process signals in a
cluster-wide manner. This being so, some kind of runtime
interactivity between the user and the started MPI sessions
is already possible in this way. So, for example, sending a
common SIGTSTP to ParaStation’s mpiexec command would
cause the whole respective MPI session to get suspended,
whereas a SIGCONT can be issued to resume it later on.

Moreover, instead of a complete job preemption, even a
temporal reduction of computing resources devoted to an
MPI application is possible. According to this approach, the
psids get signaled to perform a runtime adjustment of the
rank-to-core pinning on each of the job’s compute nodes. By
means of such a re-pinning, some processes of a given job are
moved within the respective nodes in such a manner that an
appropriate fraction of oversubscribing for a certain group
of cores is achieved.

The main advantage of this approach is that it is still
transparent to the application. However, the temporal over-
subscription will induce an operating system related schedul-
ing overhead that might disturb the application’s internal
load-balancing scheme. Therefore, this method of re-pinning
and oversubscribing should rather be a temporary measure
in order to clear space, for example, for a short-running aux-
iliary application that is to be attached to a long-running
simulation.

Based on these two approaches (suspend/resume and re-
pinning of processes), new features for realizing job mal-
leability and interactivity have been implemented recently
within ParaStation. According to these approaches, the user
can (for example, in context of an interactive SLURM ses-
sion) launch multiple MPI applications in parallel and/or
subsequently. As long as there are enough slots within the
current allocation (according to the terminology of Para-
Station, these slots are the hardware threads that can be
assigned to processes resp. software threads), the psid will
ensure via pinning that all slots are used exclusively by the
assigned processes and threads. However, if the available
slots get exhausted, allocation-internal scheduling policies
come into play.

Moreover, the same applies to the case of MPI-2 compli-
ant dynamic process spawning if a post-allocation of further
nodes gets rejected by the resource manager. Although the
initial started number of MPI ranks (this is the initial world
size) may intentionally be smaller than the number of avail-
able slots within the allocation (this is the current universe
size), hence leaving space in terms of free slots where new
MPI processes can be spawned to, if all slots become pop-
ulated, an oversubscribing or some other allocation-internal
scheduling policy has to be applied for further spawn calls.



3.2 Allocation-internal Scheduling Policies
Currently, four of such policies for job- or allocation-in-

ternal co-scheduling are implemented in psmgmt: One that
just lets the newly started processes wait for getting free
slots, one that simply voids the previous exclusiveness of
resources and thus allows for oversubscribing of slots, one
that follows the suspend/resume approach in such manner
that each subsequently started MPI session suspends its re-
spective predecessor for getting free slots, and one that uses
re-pinning for a temporal reduction of computing resources
concerning the still running predecessor of the newly started
application. Moreover, for most of these approaches further
sub-policies are conceivable and to some extent already im-
plemented in psmgmt.

All the four policies, as they are detailed in the following
paragraphs, can currently be used by means of a wrapper
script called psmpiexec that extends the common mpiexec

command as commonly provided by psmpi. However, at
this point it should be emphasized that both commands are
more or less just user interfaces that can easily be replaced
by others—so, for example, by a more SLURM-like srun

frontend.

The Wait Policy.
According to this policy, any newly started MPI session

that can no longer be scheduled into free slots has to wait
until one or more of the previous ones gets finished so that
enough slots become available again. As this policy still
sticks to the original paradigm of preventing any oversub-
scription, mutual interferences between the sessions should
almost be avoided. However, on the other hand, if the in-
teraction between the sessions demand for a concurrent ex-
ecution, this policy cannot safely be used.

The Surpass Policy.
This policy is based on the suspend/resume mechanism of

psmgmt: Every time a new session gets launched within an
allocation with already filled slots, the prior session(s) (these
are the ones issued by preceding psmpiexec within the same
allocation) get(s) automatically suspended until the succes-
sor becomes finished. The idea behind this policy is that the
most recently started session should most probably be the
one with the highest priority from the user’s point of view.
According to this idea, the user can start further sessions
(for example for short running auxiliary applications) that
then will surpass previously started, long-running ones.

The Overbook Policy.
When this policy is enabled and all free slots are ex-

hausted, all the MPI sessions are run concurrently and in
a competitive manner on the nodes and cores of the alloca-
tion. The question whether there should still be some kind
of a pinning scheme in such an overbooked situation, or if
all the processes should then be enabled to flow freely across
the cores of their respective nodes, could be then considered
as a further sub-policy.

The Sidestep Policy.
This policy is quite similar to the overbook policy. How-

ever, the difference is that here the processes of the already
running applications are re-pinned in such a manner that
the processes of the new session run on their cores exclu-

sively. That means that, in a first instance, only those cores
are overbooked where the processes of the preceding MPI
sessions are pinned to.

The Spread Option.
Normally, ParaStation places all processes as compactly

as possible (with due regard to any threads) onto the nodes.
However, in cases where a small number of newly started
processes are overloading an allocation already filled up with
running applications, it might be beneficial to have the pro-
cesses of the new session get started on the nodes as wide-
spread as possible. This can be achieved by using an addi-
tional spread option, which is therefore meaningful together
with the overbook or the Sidestep policy. Using the spread
option, the hope is that the already running MPI sessions
will not get as much affected by the additionally started pro-
cesses as it would be the case if the latter were all started
on one (or only a few) node(s) of the allocation.

4. EVALUATION OF THE POLICIES
The Dynamic Job Scheduler Benchmark (dsjb) is a tool

developed by the Barcelona Supercomputing Center (BSC)
for evaluation different scheduling solutions. Although its
description4 as well as its source code5 are publicly avail-
able, this section initially gives a more detailed introduction
into the respective benchmarking metric since the knowl-
edge about this seems up to now not very widespread. Af-
ter this introduction, this section presents some early results
gained by applying this benchmark together with the new
allocation-internal scheduling policies of psmgmt as detailed
in Section 3.2.

4.1 Benchmark Description
The djsb has originally been written and released in the

context of the Pre-Commercial Procurement (PCP) of the
Human Brain Project (HBP). Its primary purpose is to al-
low for a performance comparison of the different resource
management solutions proposed by different tenders during
the PCP. In doing so, the benchmark focuses on interac-
tivity and the dynamicity of the proposed job scheduling
systems. The benchmark actually consists of multiple pro-
cesses and threads performing the STREAM benchmark [8]
in parallel—hence without any considerable communication.

The idea of this benchmark is to let two synthetic ap-
plications run concurrently within the same job allocation:
one longer running “simulation” application and one shorter
running “analysis” application, both to be modeled by the
STREAM executable. The benchmark basically measures
the runtime of each of both when they are started sepa-
rately, as well as the runtime when they are executed con-
currently. Based on these durations, the benchmark cal-
culates some reasonable efficiency numbers (the so-called
Simulation/Analysis/Wait Coefficients) and finally reports
a Dynamicity Ratio as a product of those three coefficients.

Although the djsb focuses on interactivity, the synthetic
applications are issued as MPI sessions automatically by a
Python-based benchmarking script that models the hypo-
thetical user of the job allocation by sporadically calling
mpiexec for the short-running analysis application. Please
note here that the document officially describing the bench-

4http://pm.bsc.es/˜vlopez/files/djsb doc.pdf
5http://pm.bsc.es/˜vlopez/files/djsb.tar.gz



mark [7] uses a different nomenclature than we do within this
paper: In the official djsb description, the term job refers to
a single application (rather than to an allocation) and hence
to the term of an MPI session according to the terminology
used in this paper.

The actually measured parameters and performance met-
rics of the djsb are:

• Wait Time: Time that has passed between the session
request issued by the“user”(this is the call of mpiexec)
and the actual start of the respective application.

• Execution Time: Time that has passed between ses-
sion start and its completion. This is hence the effec-
tive runtime of the application.

• Response Time: Time that has passed between session
request by the “user” and its completion. This is hence
the sum of Wait and Execution Time.

• Slowdown: Performance decrease in terms of the ratio
between the actually measured times and the reference
scenario where all sessions are run consecutively.

• Expected vs. Real Slowdown: While the Expected Slow-
down is a pre-calculated value based on theoretical as-
sumptions, the Real Slowdown is the actually observed
one.

• Efficiency Coefficient: This is just the ratio of Ex-
pected and Real Slowdown. Higher values are better.

E =
Expected Slowdown

Real Slowdown

• The Wait Coefficient: This value is calculated accord-
ing to the following formula. (Please refer to the official
djsb description [7] for a more detailed explanation of
this.) Values close to or even greater than 1 are better.

W =
Wait Time in static case + Normalization Constant

Wait Time in dynamic case + Normalization Constant

• Dynamicity Ratio: This is the product of the Effi-
ciency Coefficients as measured for both synthetic ap-
plications (the long-running simulation and potentially
several short-running analysis sessions)

D = E simulation · E analysis ·W analysis

4.2 Measured Benchmark Results
The benchmark results presented in this section were all

obtained on an allocation with 4 nodes and 160 cores in total.
The process/thread configuration chosen was as follows for
all the benchmark runs:

no threads with threads
Simulation 160 procs 32 procs (8 per node,
application (40 per node) 5 threads per proc)

Analysis
32 procs (all on one 8 procs x 4 threads

application
node, or 8 per node (all on one node, no
with spread option) spread option used)

Without using the spread option, as detailed in Section 3.2,
the chosen configuration would overbook the first node of
the allocation with 32 analysis processes. In contrast, if the

spread option is enabled, the 32 processes will be distributed
across all 4 nodes of the allocation so that each node would
then be overbooked by “only” 8 processes.

The following paragraphs show and briefly discuss the
single coefficients and the overall dynamicity results that
have been measured with this configuration for the different
scheduling policies:

The Wait Policy.

no threads with threads

Simulation Efficiency: 1.04 1.03
Analysis Efficiency: 2.0 2.03
Wait Coefficient: 0.55 0.55
Dynamicity Ratio: 1.15 1.15

Since both applications are run within the allocation sep-
arately according to this policy, their efficiency (and hence
their runtime seen individually) are quite good but the over-
all Wait Coefficient is relatively bad due to the long waiting
time of the analysis application before it gets started. How-
ever, the overall measured Dynamicity Ratio is here greater
than 1, what means that this policy improves the dynamic-
ity and hence the anticipated capability for interactivity—at
least with respect to the metric of the djsb benchmark.

The Surpass Policy.

no threads with threads

Simulation Efficiency: 0.86 0.86
Analysis Efficiency: 2.0 2.0
Wait Coefficient: 1.0 1.0
Dynamicity Ratio: 1.72 1.73

The main advantage of this policy is that long pending times
of the analysis applications are avoided and that at least the
efficiency of the analysis sessions should (and is) as good as
in the case of the Wait policy. However, as the simulation
application gets completely interrupted, its duration gets
extended accordingly so that its efficiency is decreased in
comparison to the Wait policy. Moreover, since the analysis
sessions are usually not only shorter in runtime, but also
smaller in the number of processors used, both policies (Wait
and Surpass) may lead to a temporary under-utilization of
the allocation.

The Overbook Policy.

no with spread option
threads threads (no threads)

Simulation Efficiency: 0.87 0.91 1.02
Analysis Efficiency: 1.23 0.89 1.02
Wait Coefficient: 1.0 1.0 1.0
Dynamicity Ratio: 1.07 0.81 1.04

In the case of this policy, the simulation as well as the analy-
sis are run concurrently and in a competitive manner within
the allocation. This usually means that the processes of the
analysis sessions get started (and pinned) onto a subset of
those cores where the simulation processes are already run-
ning on. Although this policy guarantees that there are no
unnecessary idle times of cores during the benchmark’s run,



the efficiencies of both the simulation application as well as
the analysis application are liable to get impaired due to the
temporary overload.

The Sidestep Policy.

no with spread option
threads threads (no threads)

Simulation Efficiency: 0.87 0.87 1.34
Analysis Efficiency: 1.61 1.5 1.13
Wait Coefficient: 1.0 1.0 1.0
Dynamicity Ratio: 1.41 1.3 1.5

These results show that this policy gains a very good Dy-
namicity Ratio, but when looking at all four policies it be-
comes clear that the Surpass policy gains the best results.
However, it has to be emphasized, that especially the Sur-
pass policy does not allow for an MPI-based interaction be-
tween both sessions via message-exchange due to the fact
that the simulation session actually gets suspended during
the runtime of the analysis application.

In fact, most of the efficiency coefficients are usually ex-
pected (at least in theory) to be in the range of [0,1] be-
cause this would represent the case when the applications
share some of their resources at some point in time. On the
other hand, the coefficients are greater than 1 when an ap-
plication runs with more resources than expected—like in a
session serialization.

However, according to the benchmark results we have
measured and presented here, all four of the new allocation-
internal scheduling policies would improve the dynamic be-
havior and thus the capability for interactivity. All in all,
this indicates two facts for us:

1st: The metric of the djsb benchmark (here especially
the calculation of the Expected Slowdown as well as the
applying of some “magic” Normalization Constants) seems
to be not very well balanced for all scenarios. However, it
has to be emphasized that for the HBP-PCP, the benchmark
scenarios are well-defined and differ from the process/thread
configuration used for our measurements—it is most likely
that the internal benchmarking parameters of the djsb are
tailored to those configurations as given by the HBP-PCP.

2nd: Since the djsb totally neglects the actually required
message-exchange between the concurrent sessions, the bench-
mark can only give a first hint for the interactive behavior of
a system, but cannot really judge about complex interactiv-
ity scenarios as they are envisaged for future supercomput-
ing systems. On the other hand, it is in the nature of things
that benchmark scenarios have to tend to simplify things in
order to make their results more conferrable.

5. CONCLUSION AND OUTLOOK
In this paper, we have presented recent advances made for

ParaStation MPI (psmpi) and its process manger (psmgmt)
with respect to co-scheduling and process malleability at
job level. While co-scheduling is frequently associated with
a means for better resource utilization, the approaches pre-
sented in this paper are primarily not so much resource-
centric but rather user -centric, as they focus on interactivity.
In doing so, four new policies for scheduling of concurrent
MPI sessions within a single interactive job allocation have
been presented and evaluated by means of the Dynamic Job

Scheduler Benchmark (djsb). It turned out that (at least
according to the metric used by the djsb) all four new poli-
cies help to improve the desired scheduling behavior towards
malleability and interactivity. However, at the same time
it became clear that the results of this benchmark are not
quite meaningful when it comes to how concurrent sessions
can actually interact between each other because the omits
any communication metrics.

All in all, we believe that interactivity will become more
and more important also in the domain of supercomputing
and that a dynamic and malleable process management, as
presented in this paper, is the first right step towards this
challenge.

6. REFERENCES
[1] HBP-PCP Technical Requirements concerning the R&D

services on “Whole System Design for Interactive
Supercomputing”, Forschungszentrum Jülich, Human
Brain Project, April 2014, online available:
http://apps.fz-juelich.de/hbp-pcp/

[2] Erich Strohmaier, Jack Dongarra, Horst Simon, and
Martin Meuer: www.top500.org – Lists of World’s
TOP500 Supercomputers, November 2015.

[3] ParTec Cluster Competence Center GmbH: ParaStation
Cluster Suite – product portfolio, online available:
http://www.par-tec.com/products/overview.html

[4] Pavan Balaji et al.: PMI: A Scalable Parallel
Process-Management Interface for Extreme-Scale
Systems, in Recent Advances in the Message Passing
Interface: 17th European MPI User’s Group Meeting,
Springer Lecture Notes in Computer Science, pages
31–41, September 2010.

[5] The Message Passing Interface Forum: MPI: A
Message-Passing Interface Standard – version MPI 3.1,
printed at the High Performance Computing Center
Stuttgart (HLRS), June 2015.

[6] Norbert Eicker, Thomas Lippert, Thomas Moschny,
and Estela Suarez: The DEEP Project – Pursuing
Cluster-Computing in the Many-Core Era, in
Proceedings of the 42nd International Conference on
Parallel Processing (ICPP), IEEE Computer Society
Press, pages 885–892, October 2013.

[7] Marcal Sola and Victor Lopez: Dynamic Job Scheduler
Benchmark – HBP-PCP Benchmark Documentation,
July 2014, online available:
http://pm.bsc.es/˜vlopez/files/djsb doc.pdf

[8] John D. McCalpin: Memory Bandwidth and Machine
Balance in Current High Performance Computers, IEEE
Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, pages 19–25,
December 1995.

[9] Suraj Prabhakaran et al.: A Batch System with Fair
Scheduling for Evolving Applications, in Proceedings of
the 43rd International Conference on Parallel Processing
(ICPP), IEEE Computer Society Press, pages 351–360,
September 2014.

[10] Suraj Prabhakaran et al.: A Batch System with
Efficient Scheduling for Malleable and Evolving
Applications, in Proceedings of the 29th IEEE
International Parallel and Distributed Processing
Symposium (IPDPS), IEEE Computer Society Press,
pages 429–438, May 2015.


