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Abstract—We study secure communication over a degraded
wiretap broadcast channel with multiple receivers and an eaves-
dropper. We consider two different secrecy measures: the tradi-
tional joint secrecy where the mutual information leakage of all
messages must be small; and individual secrecy where the sum
of the information leakage of each individual message must be
small. At first, we investigate the joint secrecy criterion, where
we present the capacity region established before and provide a
simpler converse proof. We then consider the individual secrecy
criterion and establish its capacity region, by combining the
techniques of wiretap random coding and Shannon’s one time
pad principle. Our results indicate that the individual secrecy
capacity region is bigger than the joint one. Further, we show
that the established capacity regions are valid for any degraded
wiretap broadcast channel, regardless of the degradedness order
of the eavesdropper. Finally, we extend our results to Gaussian
channels.

I. INTRODUCTION

The wireless medium is characterized by an open nature
that allows transmitted signals to be received not only by
legitimate receivers but eavesdroppers as well. To overcome
this problem, physical or higher layers secrecy techniques are
used. Recently, physical layer security also known as informa-
tion theoretic security is becoming more attractive because it
is not based on any assumptions regarding the computational
power of the eavesdroppers. Information theoretic security was
first introduced by Shannon in [1], where he showed that
secure communication between the transmitter and the receiver
can be achieved using a shared secret key, whose entropy
is greater than or equal the entropy of the message. In [2],
Wyner studied the degraded wiretap channel and proved that
secure transmission is still achievable in the absence of a secret
key. In [3], this result was extended to the Gaussian wiretap
channel and in [4], it was extended to the general wiretap
broadcast channel (BC). In [5], Wyner’s and shannon’s results
were combined by investigating secure communication over a
wiretap channel in the presence of a shared secret key. The
secrecy capacity was established by combining the wiretap
coding principle along with Shannon’s ciphering technique.

Recently, the problem of secure communication in wiretap
BC with more than one receiver has captured a lot of attention.
Researchers found it very challenging to establish the secrecy
capacity for the general multi-receiver wiretap BC, but they
managed to solve different special cases. In [6], the degraded
two-receiver wiretap BC was investigated, where the authors
succeeded in establishing the secrecy capacity. In [7], this
result was extended to the degraded wiretap BC with arbitrary

number of receivers. The importance of the class of degraded
channels lies in the fact that scalar Gaussian channels are
inherently degraded. In [8], the secrecy capacities for both
scalar and vector Gaussian multi-receiver wiretap BC were
established. However, all these works only considered the joint
secrecy requirement, where the legitimate receivers do not trust
each other. In this paper, we will study the degraded multi-
receiver wiretap BC under another secrecy criterion known as
the individual secrecy. Differently from the joint secrecy, the
individual secrecy is based on the mutual trust between the
legitimate receivers. To the best of our knowledge, previous
literature never investigated individual secrecy for the general
wiretap BC. It was only considered for wiretap multiple access
channels in [9] and for wiretap BC with receiver side infor-
mation in [10, 11], where it was shown that individual secrecy
can provide a larger secrecy capacity using the available side
information to apply secret key encoding.

This paper is organized as follows: In Section II, we
describe the model of the degraded multi-receiver wiretap
channel and explain the differences between joint and individ-
ual secrecy. In Section III, we briefly present the joint secrecy
capacity of the degraded multi-receiver wiretap BC and present
a simpler converse proof. We then establish the individual
secrecy capacity for the same channel. Our results indicate
that even in the absence of the receiver side information, the
individual secrecy can provide a larger capacity region as
compared to joint one. Finally, we extend our results to the
Gaussian channels in Section IV.

II. DEGRADED MULTI-RECEIVER WIRETAP BC

The degraded multi-receiver wiretap BC consists of a
transmitter with an input alphabet X , k legitimate receivers
with output alphabets Yj , where j ∈ J1, kK and an external
eavesdropper with output alphabet Z , such that the following
Markov chain holds

X−Y1 −Y2 − · · ·−Yk − Z. (1)

We consider the standard model of a block code of arbitrary
but fixed length n with input and output sequences xn, ynj and
zn. Through the whole paper j is taken to be in J1, kK, unless
stated otherwise.

Definition 1. A (2nR1 , . . . , 2nRk , n) code Cn for the multi-
receiver wiretap BC consists of: k independent message sets
Mj = J1, 2nRj K, a source of local randomnessR, an encoding
function at the transmitter

E :M1 × · · · ×Mk ×R → Xn,

IEEE ICC 2015 - Communication Theory Symposium

978-1-4673-6432-4/15/$31.00 ©2015 IEEE 4181



which maps the k confidential messages (m1, . . . ,mk) ∈
M1 × · · · × Mk and a realization of the local randomness
r ∈ R to a codeword xn(m1, . . . ,mk, r), and k decoders

ϕj : Yn
j →Mj ∪ {?},

that maps each channel observation at the respective receiver
to the corresponding required message or an error message.

We assume that the messages M1, . . . , Mk are chosen
uniformly at random. The reliability performance of Cn is
measured in terms of its average probability of error

Pe(Cn) ,P
[
M̂1 6= M1 or . . . or M̂k 6= Mk

]
, (2)

where M̂j is the estimated message at the jth legitimate
receiver. It is important to note that one of the consequences
of the Markov chain in (1) is that each legitimate receiver is
not only capable of decoding its own message, but it can also
decode the messages of the receivers degraded from it because
these channels are worse than its own channel.

The secrecy performance of the code that assures the
ignorance of the eavesdropper about the confidential messages,
can be measured with respect to two different secrecy criteria.

1. Joint Secrecy: This criterion requires the mutual leak-
age of the confidential messages to the eavesdropper to be
small. This condition can be formulated as follows:

L(Cn) , I(M1, . . . ,Mk; Zn) ≤ τn

,
k∑

j=1

I(Mj ; Zn|Mj+1, . . . ,Mk) ≤ τn. (3)

2. Individual Secrecy: This criterion requires the sum of
the individual leakage of each confidential message to the
eavesdropper to be small. This requirement can be expressed
as follows:

L(Cn) ,
k∑

j=1

I(Mj ; Zn) ≤ τn. (4)

In order to differentiate between these two criteria, we need to
understand the degree of secrecy each one provides. The joint
secrecy criterion is a conservative secrecy constraint, where the
legitimate receivers do not trust each other, so it guarantees that
the confidential message of each receiver is secure, even if the
confidential messages of the other receivers were revealed to
the eavesdropper. On the other hand, the individual secrecy
criterion is based on the mutual trust between the legitimate
receivers, thus the legitimate receivers cooperate together to
protect their messages against eavesdropping. This implies
that revealing the confidential message of any receiver to the
eavesdropper might threaten the secrecy of all other messages.
It is important to note that, any code that satisfies the joint
secrecy criterion also satisfies the individual one. This is
because, as long the confidential messages are independent,

k∑
j=1

I(Mj ; Zn) ≤ I(M1, . . . ,Mk; Zn).

Although the previous argument might advocates the joint
secrecy over the individual one, there is another feature that
promotes the usage of individual secrecy. It was shown in [10,
11] that, the individual secrecy can provide a bigger achievable
region compared to the joint one for the wiretap BC with

receiver side information. Although this result was based on
using the available side information as secret keys, we will
show that even in the absence of the receiver side information
the individual secrecy can still provide a larger capacity region.

Definition 2. A rate tuple (R1, . . . , Rk) ∈ Rk
+ is achievable

for the multi-receiver wiretap BC, if there exists a sequence
of (2nR1 , . . . , 2nRk , n) codes Cn and two sequence εn and τn,
where limn→∞ εn, τn = 0 such that, for n is large enough,
the following holds:

Pe(Cn) ≤ εn and L(Cn) ≤ τn. (5)

Depending on the selected secrecy criteria, L(Cn) is given by
(3) or (4).

Regardless of the selected secrecy criteria, we can refor-
mulate the reliability constraint by using Fano’s inequality as
follows:

H(Mj |Yn
j Mj+1 . . .Mk) ≤ H(Mj |Yn

j ) ≤ H(Mj |M̂j)

≤ 1 + PeH(Mj) ≤ 1 + εnnRj .

Now if we let γ̃j(εn) = 1/n+ εnRj , we have

Rj =
1

n
H(Mj |Mj+1 . . .Mk)

≤ 1

n

[
H(Mj |Mj+1 . . .Mk)−H(Mj |Yn

j Mj+1 . . .Mk)
]

+ γ̃j(εn)

=
1

n
I(Mj ; Yn

j |Mj+1 . . .Mk) + γ̃j(εn). (6)

III. SECRECY CAPACITY OF DEGRADED WIRETAP BC:
JOINT VS INDIVIDUAL

In this section, we will present the joint secrecy capacity
region of the degraded multi-receiver wiretap BC. This region
was established in [6] for k = 2 and extended to arbitrary
number of receivers in [7]. In particular, we will provide a
simpler converse proof for the previously established region,
which will be used later to establish the individual secrecy
capacity. We will then establish the individual secrecy capacity
for the degraded two-receiver wiretap BC and the multi-
receiver case as well, showing that the individual secrecy
provides a larger capacity region. Finally, we will show that
the established capacity regions for the two criteria establish
the secrecy capacity of any degraded wiretap BC regardless of
the degradedness order of the eavesdropper.

A. Joint Secrecy Capacity Region

Theorem 1. The joint secrecy capacity region of the degraded
multi-receiver wiretap BC is given by the union of all rate
tuples (R1, . . . , Rk) ∈ Rk

+ that satisfy

Rj ≤ I(Uj ; Yj |Uj+1)− I(Uj ; Z|Uj+1), (7)

where U1 = X, Uk+1 = ∅ and the union is taken over all
random variables (Uk, . . . ,U2,X) such that, Uk−· · ·−U2−
X−Y1 −Y2 − · · ·−Yk − Z forms a Markov chain.

Proof: This capacity region was established in [7].
The achievability is based on Cover’s superposition coding
scheme in addition to the random binning technique. For
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the converse, we present a simpler proof that will be later
adapted to the individual secrecy criterion. We start by letting
Ui

j , (Mj ,Y
i−1
j−1, Z̃

i+1,Ui
j+1), where Z̃i+1 = (Zi+1, . . . ,Zn),

Yi−1
0 = ∅ and Ui

k+1 = ∅. For Rk, we have

Rk

(a)

≤ 1

n

[
I(Mk; Yn

k )− I(Mk; Zn)
]

+ γk(εn, τn)

(b)
=

1

n

n∑
i=1

[
I(Mk; Yki|Yi−1

k Z̃i+1)−I(Mk; Zi|Yi−1
k Z̃i+1)

]
+ γk(εn, τn)

(c)

≤ 1

n

n∑
i=1

[
I(MkYi−1

k Z̃i+1; Yki)−I(MkYi−1
k Z̃i+1; Zi)

]
+ γk(εn, τn)

(c)

≤ 1

n

n∑
i=1

[
I(Ui

kYi−1
k ; Yki)−I(Ui

kYi−1
k ; Zi)

]
+γk(εn, τn)

(d)
=

1

n

n∑
i=1

[
I(Ui

k; Yki)− I(Ui
k; Zi)

]
+ γk(εn, τn) (8)

where γk(εn, τn) = τn/n+γ̃k(εn). (a) follows from (3)
and (6); (b) follows from the Csiszár sum identity [4,
Lemma 7]; (c) follows because Zi is degraded from Yki,
which implies that I(Yi−1

k Z̃i+1; Yki) ≥ I(Yi−1
k Z̃i+1; Zi) and

I(Yi−1
k−1; Yki|MkYi−1

k Z̃i+1) ≥ I(Yi−1
k−1; Zi|MkYi−1

k Z̃i+1); and
(d) follows because Yk is degraded from Yk−1, leading
I(Yi−1

k ; Yki|MkYi−1
k−1Z̃i+1) and I(Yi−1

k ; Zi|MkYi−1
k−1Z̃i+1) to

vanish. On the other hand, for Rj as j ∈ J1, k − 1K, we have

Rj

(a)

≤ 1

n

[
I(Mj ; Yn

j |Mj+1 . . .Mk)−I(Mj ; Zn|Mj+1 . . .Mk)
]

+ γj(εn, τn)

(b)
=

1

n

n∑
i=1

[
I(Mj ; Yji|Mj+1 . . .MkYi−1

j Z̃i+1)

− I(Mj ; Zi|Mj+1 . . .MkYi−1
j Z̃i+1)

]
+ γj(εn, τn)

(c)
=

1

n

n∑
i=1

[
I(Mj ; Yji|Mj+1Yi−1

j . . .MkYi−1
k−1Z̃i+1)

− I(Mj ; Zi|Mj+1Yi−1
j . . .MkYi−1

k−1Z̃i+1)
]
+γj(εn, τn)

(d)

≤ 1

n

n∑
i=1

[
I(Ui

j ; Yji|Ui
j+1)− I(Ui

j ; Zi|Ui
j+1)

]
+ γj(εn, τn) (9)

where (a) follows from (3) and (6) as γj(εn, τn) = τn/n +
γ̃j(εn); (b) follows from the Csiszár sum identity [4, Lemma
7]; (c) follows because (Yj+1, . . . ,Yk) are degraded from Yj ,
while (d) follows because Zi is degraded from Yji, which
implies that I(Yi−1

j+1; Yji|Ui
j+1) ≥ I(Yi−1

j+1; Zi|Ui
j+1). If we

introduce an independent uniformly distributed time sharing
sequence to (8) and (9), then take the limit as n → ∞ such
that γj(εn, τn)→ 0, our converse is complete.

Remark 1. It worth mentioning, that the following Markov
chain Uk − · · · −U2 −X was validated in the converse using
the principle of functional dependence graph [12].

Corollary 1. The joint secrecy capacity region of the degraded
two-receiver wiretap BC is given by the union of all rate pairs

(R1, R2) ∈ R2
+ that satisfy

R2 ≤ I(U; Y2)− I(U; Z) (10a)
R1 ≤ I(X; Y1|U)− I(X; Z|U) (10b)

where the union is taken over all random variables (U,X),
such that U−X−Y1 −Y2 − Z forms a Markov chain. Fur-
ther it suffices to have |U| ≤ |X |+ 3.

Proof: This capacity region was established in [6]. It can
be derived from Theorem 1 by letting k = 2, where the cardi-
nality argument follows by the Fenchel-Bunt strengthening of
the Carathéodory’s theorem [13, Appendix C].

B. Individual Secrecy Capacity Region

Theorem 2. The individual secrecy capacity region of the
degraded two-receiver wiretap BC is given by the union of
all rate pairs (R1, R2) ∈ R2

+ that satisfy

R2 ≤ I(U; Y2)− I(U; Z) (11a)
R1 ≤ I(X; Y1|U) + I(U; Z) (11b)
R1 ≤ I(X; Y1|U)− I(X; Z|U) +R2 (11c)

where the union is taken over all random variables (U,X),
such that U−X−Y1 −Y2 − Z forms a Markov chain. Fur-
ther it suffices to have |U| ≤ |X |+ 3.

Remark 2. The difference between this capacity region and
the joint capacity region in (10) is that, the individual secrecy
constraint allows the usage of M2 as a secret key for Y1, which
leads to a higher rate R1.

Proof: The proof combines the technique of superposition
coding with random binning and Shannon’s ciphering system,
where the Shannon ciphered message is interpreted as a part
of the randomization index used to confuse the eavesdropper.

1. Message Sets: We start by dividing each message set
Mj , for j = 1, 2 into three independent parts Mjl =
J1, 2nRjlK, for l = 1, 2, 3. In this division, we force M11

and M21 to be of the same size and use them to construct
M⊗1

= J1, 2nR⊗1 K by Xoring their corresponding elements.
We also make sure that M12 and M22 are of the same size
and use them to construct M⊗2 = J1, 2nR⊗2 K, such that

R⊗1
= R11 = R21 and R⊗2

= R12 = R22,

R⊗1 +R⊗2 ≤ R2. (12)

2. Random Codebook Cn: Fix an input distribution
QUX(u, x). Construct the codewords un(m2,m⊗1 ,mr1) for
m2 ∈ M2, m⊗1 ∈ M⊗1 and mr1 ∈ Mr1 = J1, 2nRr1 K by
generating symbols ui(mc,m⊗1 ,mr1) with i ∈ J1, nK inde-
pendently according to Q(u). For every un(m2,m⊗1 ,mr1)
generate codewords xn(m2,m⊗1

,mr1 ,m13,m⊗2
,mr2) for

m13 ∈ M13, m⊗2
∈ M⊗2

, and mr2 ∈ Mr2 = J1, 2nRr2 K
by generating symbols xi(m2,m⊗1

,mr1 ,m13,m⊗2
,mr2)

with i ∈ J1, nK, independently at random according to
QX|U(x|u(mc,m⊗1

,mr1)).

3. Encoder E: Given a message pair (m1,m2), it
calculates the triple (m13,m⊗1

,m⊗2
) then chooses a

message pair (mr1 ,mr2) uniformly at random from the
sets Mr1 and Mr2 . Finally, it transmits the codeword
xn(m2,m⊗1

,mr1 ,m13,m⊗2
,mr2).
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4. First Decoder ϕ1: Given yn1 , it outputs m̂1; where m̂1

is the concatenation of m̂11, m̂12 and m̂13. First, it finds the
unique messages m̂2, m̂⊗1 , m̂r1 , m̂13, m̂⊗2 and m̂r2 such that
un(m̂2, m̂⊗1 , m̂r1), xn(m̂2, m̂⊗1 , m̂r1 , m̂13, m̂⊗2 , m̂r2) and
yn1 are jointly typical. Then, it computes the pair (m̂11, m̂12)
by Xoring (m̂21, m̂22) and (m̂⊗1 , m̂⊗2) respectively.

5. Second Decoder ϕ2: Given yn2 , it outputs m̃2

by finding the unique triple (m̃2, m̃⊗1
, m̃r1) such that

un(m̃2, m̃⊗1
, m̃r1) and yn2 are jointly typical.

6. Reliability Analysis: We define the average error
probability for this scheme as

P̃e(Cn) , P
[
(M̂2, M̂⊗1

, M̂r1 , M̂13, M̂⊗2
, M̂r2) 6=

(M2,M⊗1
,Mr1 ,M13,M⊗2

,Mr2) or

(M̃2, M̃⊗1 , M̃r1) 6= (M2,M⊗1 ,Mr1)
]
. (13)

We then observe that P̃e(Cn) ≥ Pe(Cn), cf. (2). Using the
standard analysis of random coding, we can prove that for a
sufficiently large n, with high probability P̃e(Cn) ≤ εn if

R2+R⊗1+Rr1 ≤ I(U; Y2)− δn(εn)

R13+R⊗2
+Rr2 ≤ I(X; Y1|U)− δn(εn). (14)

7. Secrecy Analysis: Based on different the strong secrecy
approaches cf. [14, 15], for a sufficiently large n, the individual
leakage of M2 to the eavesdropper is with high probability
smaller than τn if

R⊗1
+Rr1 ≥ I(U; Z) + δn(τn). (15)

On the other hand, because of the new structure of M1, M1

can be defined as a random variable that combines the three
independent random variables M11, M12 and M13. Thus, the
leakage of M1 to the eavesdropper becomes

I(M1; Z
n
) = I(M13; Z

n
) + I(M12; Z

n|M13)

+ I(M11; Z
n|M13M12). (16)

Based on Shannon’s cipher system, one can prove that the
second and the third terms in (16) vanish as follows:

I(M12; Zn|M13) = H(M12|M13)−H(M12|ZnM13)
(a)
= H(M12)−H(M12|ZnM13)
(b)

≤ H(M12)−H(M12|M13M⊗1
M⊗2

Mr1Mr2)
(c)
= H(M12)−H(M12|M⊗2)

(d)
= 0 (17)

where (a) follows because M12 and M13 are independent; (b)
follows because the best the eavesdropper can extract from Zn

is all the transmitted message except M2, which is protected
by the condition in (15) ; (c) follows because M⊗2 is the only
message that is related to M12 and (d) follows because of the
Shannon’s cipher system where the entropy of the secret key
M21 is equivalent to the entropy of the transmitted message
M12. Similarly, I(M11; Z

n|M13M12) = 0. On the other hand,
the first term in (16) is with high probability smaller than τn
for a sufficiently large n, if

R⊗2
+Rr2 ≥ I(X; Z|U) + δn(τn). (18)

Thus the whole expression in (16) is with high probability
smaller than τn. Now, if we apply the Fourier-Motzkin elimi-
nation to the rate constraints given in (14), (15) and (18), we
have

R2 ≤ I(U; Y2)− I(U; Z)− δn(εn, τn)

R13 ≤ I(X; Y1|U)− I(X; Z|U)− δn(εn, τn). (19)

Now keeping in mind that R1 is the summation of R11, R12

and R13, we can use Eqs. (12), (15) and (18) which give some
bounds on the rates R11 and R12 in addition to Eq. (19) to
bound R1. If we do so, then take the limit as n→∞, which
implies that δn(εn, τn)→ 0, we prove the achievability of any
rate pair (R1, R2) satisfying (11).

Now for the converse, we start by R2 and observe that
the joint secrecy bound for Rk at k = 2 in (8) holds for
the individual secrecy as well. Thus, we focus on R1 and let
Ui , (M2,Y

i−1
1 , Z̃i+1), we have

R1

(a)

≤ 1

n

[
I(M1; Yn

1 )− I(M1; Zn)
]

+ γ1(εn, τn)

(b)

≤ 1

n

[
I(M1; Yn

1 |M2)− I(M1; Zn|M2) + I(M2; Zn|M1)
]

+ γ1(εn, τn)
(c)

≤ 1

n

[
I(M1; Yn

1 |M2)− I(M1; Zn|M2)
]

+R2 + γ1(εn, τn)

(d)

≤ 1

n

n∑
i=1

[
I(Xi; Y1i|Ui)− I(Xi; Zi|Ui)

]
+R2

+ γ1(εn, τn) (20)

where (a) follows from (4) and (6); (b) follows because
I(M1; Zn) ≥ I(M1; Zn|M2) − I(M2; Zn|M1); (c) follows
because nR2 ≥ I(M2; Zn|M1); while (d) follows as in (9).
The second bound on R1 can be derived as follows:

R1

(a)

≤ 1

n

[
I(M1; Yn

1 |M2) + I(M2; Zn)
]

+ γ̃1(εn)

≤ 1

n

n∑
i=1

[
I(M1; Y1i|M2Yi−1

1 Z̃i+1) + I(M2; Zi|Z̃i+1)

+ I(Z̃i+1; Y1i|M2Yi−1
1 )

]
+ γ̃1(εn)

(b)
=

1

n

n∑
i=1

[
I(M1; Y1i|Ui) + I(M2Yi−1

1 ; Zi|Z̃i+1)
]

+ γ̃1(εn)

≤ 1

n

n∑
i=1

[
I(Xi; Y1i|Ui) + I(Ui; Zi)

]
+ γ̃1(εn) (21)

where (a) follows from (6); while (b) follows from the Csiszár
sum identity [4, Lemma 7]. If we introduce an independent
and uniformly distributed time sharing sequence to (8), (20)
and (21), then take the limit as n→∞, such that γ1(εn, τn),
γ2(εn, τn) and γ̃1(εn)→ 0; our converse is complete.

Theorem 3. The individual secrecy capacity region of the
degraded multi-receiver wiretap BC is given by the union of
all rate tuples (R1, . . . , Rk) ∈ Rk

+ that satisfy

Rj ≤ I(Uj ; Yj |Uj+1)− I(Uj ; Z|Uj+1) +

k∑
l=j+1

Rl (22a)
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Rj ≤ I(Uj ; Yj |Uj+1) + I(Uj+1; Z) (22b)
k∑

l=j

Rl ≤
k∑

l=j

I(Ul; Yl|Ul+1) (22c)

where U1 = X, Uk+1 = ∅ and the union runs over all ran-
dom variables (Uk, . . . ,U2,X) such that, Uk − · · · − U2 −
X−Y1 −Y2 − · · ·−Yk − Z forms a Markov chain.

At first, we need to point out the interpretation of each
bound. The first bound (22a) implies that the achievable
secrecy rate of each receiver is less than the summation of the
random coded part in its layer and the rates of all receivers
degraded from it, which can be used as secret keys. The
second bound (22b) assures that the rate of any receiver can
not exceed the summation of the information in its layer and
all the randomization indexes of the lower layers. The last
bound (22c) is only needed for k ≥ 3, to assure that if any
randomization index is used to carry information for a certain
user, it can not be used by another one.

Proof: The achievability follows by extending the coding
techniques in Theorem 2, where each messages is divided into
k+1 independent parts and the messages of the weak receivers
are used as secret keys for the stronger ones. For the converse,
we start by letting Ui

j , (Mj ,Y
i−1
j−1, Z̃

i+1,Ui
j+1) and observe

that under the individual secrecy Eq. (8) still holds. We then
adapt Eq. (9) to the individual secrecy requirement as in (20).

Rj ≤
1

n

[
I(Mj ; Yn

j )−I(Mj ; Zn)
]
+γj(εn, τn)

≤ 1

n

[
I(Mj ; Yn

j |Mj+1 . . .Mk)−I(Mj ; Zn|Mj+1 . . .Mk)

+ I(Mj+1 . . .Mk; Zn|Mj)
]

+ γj(εn, τn)

≤ 1

n

[
I(Mj ; Yn

j |Mj+1 . . .Mk)−I(Mj ; Zn|Mj+1 . . .Mk)
]

+

k∑
l=j+1

Rl + γj(εn, τn)

≤ 1

n

n∑
i=1

[
I(Ui

j ; Yj,i|Ui
j+1)−I(Ui

j ; Zi|Ui
j+1)

]
+

k∑
l=j+1

Rl

+ γj(εn, τn). (23)

One the other hand, the bound in (22b) follows easily using
the same steps in (21), while the sum rate bound (22c) can be
derived as follows:

k∑
l=j

Rl

(a)

≤ 1

n

[ k∑
l=j+1

[
I(Ml; Yn

l |Ml+1 . . .Mk)

−I(Ml; Zn|Ml+1 . . .Mk)
]
+I(Mj+1 . . .Mk; Zn)

+ I(Mj ; Yn
j |Mj+1 . . .Mk)

]
+

k∑
l=j

γ̃l(εn)

(b)
=

1

n

n∑
i=1

[ k∑
l=j+1

[
I(Ui

l; Yli|Ui
l+1)−I(Ui

l; Zi|Ui
l+1)

]
+I(Ui

j ; Yji|Ui
j+1)+I(Ui

j+1; Zi)

]
+

k∑
l=j

γ̃l(εn)

(c)
=

1

n

n∑
i=1

k∑
l=j

I(Ui
l; Yli|Ui

l+1)+

k∑
l=j

γ̃l(εn) (24)

where γ̃l(εn) = 1/n + εnRl. (a) follows by applying Fano’s
inequality to (5) and the fact that I(Mj+1 . . .Mk; Zn) =∑k

l=j+1 I(Ml; Zn|Ml+1 . . .Mk); (b) follows as in (9) and
(21); while (c) follows because

∑k
l=j+1 I(Ui

l; Zi|Ui
l+1) =

I(Ui
j+1; Zi). Now, if we introduce an independent and uni-

formly distributed randomization index to the bounds in (23)
and (24) in addition to extending the reliability constraint in
(21) to all k receivers, then take the limit as n→∞ such that
γj(εn, τn) and γ̃j(εn)→ 0; our converse is complete.

C. Eavesdropper Degradedness Order

Proposition 3.4 in [12] states that the joint secrecy capacity
vanishes if the legitimate receivers is degraded from the
eavesdropper. This implies that investigating the effect of the
degradedness order of the eavesdropper on the joint secrecy
capacity is not necessary. On the other hand, in [11, Lemma
2], it was shown that for the degraded wiretap BC with
receiver side information, the optimum coding technique for
the individual secrecy criterion depends on the degradedness
order of the eavesdropper. This raises a question about the
validity of the individual secrecy capacity region in (11), if the
degradedness order of the eavesdropper is changed. In order
to answer this question, we need to consider the following
scenarios:

1. X− Z−Y1 −Y2: Under this Markov chain, for any
distribution on (U,X), we have I(U; Y2) ≤ I(U; Z) and
I(X; Y1|U) ≤ I(X; Z|U). This implies that the individual
achievable region in (11) simplifies to R1 = R2 = 0. In order
to proof that these rates are the actual capacity, we refer to [10,
Proposition 1], which implies that for the given Markov chain
I(M2; Yn

2 ) ≤ I(M2; Zn) and I(M1; Yn
1 ) ≤ I(M1; Zn). Using

these two inequalities in (20) and (8) completes the converse.

2. X−Y1 − Z−Y2: For this Markov chain, we have
I(U; Y2) ≤ I(U; Z). Thus the individual achievable region in
(11) simplifies to R2 = 0 and R1 ≤ I(X; Y1|U)− I(X; Z|U).
The converse for the bound of R2 follows as in the previous
case because I(M2; Yn

2 ) ≤ I(M2; Zn), while the converse for
bound of R1 follows as in (20) when R2 = 0.

IV. GAUSSIAN MULTI-RECEIVER WIRETAP BC

In this section we will extend our results to Gaussian
channels. We will restrict our attention to the two users
scenario for simplicity. We define the Gaussian scalar two-
receiver wiretap channel as:

Yj = X + Nj , j = 1, 2

Z = X + NZ (25)

The channel input X is subject to a power constraint E[X2] ≤
P . N1, N2, NZ are zero-mean Gaussian random variables,
whose variances are given by σ2

1 , σ2
2 , σ2

Z respectively.
The Gaussian scalar wiretap channel belongs to the class

of degraded wiretap BCs, where the variance (power) of the
Gaussian noises N1, N2 and NZ defines the degradedness
order of the channel. For example, if σ2

1 ≤ σ2
Z ≤ σ2

2 , then
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X−Y1 − Z−Y2 forms a Markov chain. Since we already
showed that the capacity regions in (10) and (11) establishes
the joint and individual secrecy capacity of any degraded
wiretap BC regardless of the degradedness order of the eaves-
dropper, we can use Corollary 1 and Theorem 2 to derive the
joint and individual secrecy capacity regions for the Gaussian
case.

To compute the secrecy capacity region explicitly, we need
to find the optimal joint distributions of (U,X) in (10) and
(11). In [8], Ekrem and Ulukus computed the joint secrecy
capacity of the Gaussian scalar two-receiver wiretap channel,
showing that the optimal choice is a jointly Gaussian distri-
bution on (U,X). They showed the optimality of this choice
using two converse techniques along with the properties of
differential entropy. The first technique is based on the MMSE,
while the second one depends on the Fisher information. That
is why, we will only focus on extending the individual secrecy
result in Theorem 2 to Gaussian channels.

Theorem 4. The individual secrecy capacity region of the two-
receiver Gaussian wiretap BC is given by the union of all rate
pairs (R1, R2) ∈ R2

+ that satisfy

R2 ≤ f
(

1 +
ᾱP

αP + σ2
2

)
− f

(
1 +

ᾱP

αP + σ2
Z

)
R1 ≤ f

(
1 +

αP

σ2
1

)
+ f

(
1 +

ᾱP

αP + σ2
Z

)
R1 ≤ f

(
1 +

αP

σ2
1

)
− f

(
1 +

αP

σ2
Z

)
+R2 (26)

where f(x) = 1
2 log(x) and the union is taken over all values

of α ∈ [0, 1], such that ᾱ = 1− α.

Proof: The achievability follows by selecting (U,X) to be
jointly Gaussian in Theorem 2, where X can be viewed as the
summation of two independent zero-mean Gaussian random
variables U and V, with respective variances ᾱP and αP . This
implies that the total input power P is distributed among the
two users, such that ᾱP is dedicated for Y2, while the rest is
dedicated for Y1. On the other hand, the converse follows by
adapting the techniques used in [7] to the individual secrecy
constraint, keeping in mind that the second bound is just a
reliability bound.

In order to visualize the difference between the individual
secrecy capacity region for Gaussian channels given by (26)
and the joint secrecy capacity region for Gaussian channel
given in [7, Theorem 5], we calculate the secrecy rates R1

and R2 at different values of α. The parameters used in this
calculation were as follows: P = 1, σ2

1 = 0.05, σ2
2 = 0.1 and

σ2
Z = 0.15. The results plotted in Figure 1 agree with the fact

that the individual secrecy capacity region is larger than the
joint one.

V. CONCLUSION

We studied secure broadcasting over a degraded multi-
receiver wiretap BC with respect to two secrecy criteria: joint
secrecy and individual secrecy. For both criteria, we estab-
lished the secrecy capacity for arbitrary number of receivers
showing that the individual secrecy has a bigger capacity
region. This increase arises from using the messages of the

weak receivers as secret keys for the stronger ones. Further,
we extended our results to Gaussian channels.
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Fig. 1. Joint and Individual secrecy capacity regions of a Gaussian BC.
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