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Abstract

In this thesis, we present a multiphysics model and numerical solution framework for subsurface
methane hydrate systems. The focus of the model development is laid on application to natural
gas production through depressurization and thermal stimulation methods. The model considers
kinetic hydrate phase change and non-isothermal, multi-phase, multi-component flow in linear-
elastically deforming soils, and accounts for the dynamic effects on the mechanical and the fluid-
solid interaction properties occurring due to the chemo-hydro-geo-mechanical coupling. We
develop numerical solution strategies for this model and validate against several benchmark tests,
analytical solutions, and experimental data.
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Zusammenfassung

Wir präsentieren ein Multiphysik-Modell und eine numerische Lösungsmethode für unterirdische
Methanhydrat Systeme. Der Fokus des Modells liegt auf Erdgasförderung durch Reduktion des
Druck oder thermische Stimuation. Das Modell berücksichtigt kinetische Phasenänderung des
Hydrats und nicht-isotherme Mehrphasen-Mehrkomponenten-Strömung in linearelastisch ver-
formbaren Böden. Die dynamischen Auswirkungen der chemo-hydro-geo-mechanische Kop-
plung auf die mechanischen und hydraulischen Eigenschaften des Hydrats werden ebenso mit
einbezogen. Wir entwickeln numerische Lösungsstrategien für dieses Modell, und validieren
diese gegen verschiedene Standardtests, analytische Lösungen, und experimentell ermittelte Mes-
sungen.
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Chapter 1
Introduction

Methane hydrates are crystalline solids formed when water molecules form a cage-like struc-
ture and trap a large number of methane molecules within. Methane hydrates are thermody-
namically stable under conditions of low temperature and high pressure and occur naturally in
permafrost regions or sub-seafloor soils. If warmed or depressurized, methane hydrates desta-
bilize and dissociate into water and methane gas. Natural gas hydrates are considered to be a
promising energy resource. It is widely believed that the energy content of methane occurring
in hydrate form is immense, possibly even exceeding the combined energy content of all other
conventional fossil fuels (Pinero 2013 [74], Burwicz et al. 2011 [17], Archer et al. 2009 [6],
Milkov 2004 [57], Kvenfolden 1993 [51]).

Several methods have been proposed for production of natural gas from gas hydrate reservoirs
through thermal stimulation, depressurization or chemical activation (Moridis et al. 2009, 2011
[61, 62], Park et al. 2006 [71], Lee et al. 2003 [52]). Refer Fig. 1.1. Currently, depressurization
is considered as the most mature approach, and therefore, there is a strong focus on evaluating the
potential for using depressurization as the essential driving force for releasing gas from natural
gas hydrate reservoirs. Recent field trials, onshore in the Alaska permafrost and in the Nankai
Trough offshore Japan, were essentially depressurization tests; the Japanese test used only de-
pressurization (Yamamoto 2013, 2015 [114, 115], David 2013 [23]), while, the Alaska test was
combined with N2:CO2 injection and CH4-CO2-hydrate exchange (Anderson et al. 2014 [4],
Schoderbek et al. 2013 [93]).

Several mathematical models have been proposed (e.g. Tsypkin [105], Ahmadi et al. [2],
Yousif et al. [117], Sun and Mohanty [101], Liu and Flemmings [55], Moridis [60, 63]) and
different numerical simulators have been developed (e.g. MH21-HYDRES [49], STOMP-HYD
[111], UMSICHT HyRes [42], TOUGH-HYDRATE [64]) for simulating hydrate reservoirs and
evaluating the performance of the various gas production methods. These models and simulators
consider mainly hydrate phase change and fluid flow while neglecting the geomechanical effects.
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Figure 1.1: Gas production methods from methane hydrates.
a) Thermal Stimulation: Hydrate formation is heated at constant pressure through the injection of hot fluid
or potentially, through direct heating of the formation. Thermal stimulation is energy intensive and leads
to relatively slow, conduction-limited dissociation of the gas hydrates unless warmer pore fluids become
mobilized and increase the volume of the formation exposed to higher temperature. The endothermic na-
ture of hydrate dissociation presents additional challenge to thermal stimulation.
b) Depressurization: The hydrate formation is exposed to low pressure while maintaining the formation
temperature constant, usually by pumping out the free gas. This method is inherently less energy intensive
as no heating is involved.
c) Chemical methods: Injection of certain chemical compounds can shift the hydrate equilibrium curve
and destabilize the methane hydrates present in the formation. Chemical Inhibition exploits the fact that
methane hydrate stability is inhibited in the presence of certain organic (e.g., glycol) or ionic (e.g., sea-
water or brine) compounds. Chemical substitution involves the substitution of methane gas in the hydrate
lattice by another gas (e.g., carbon dioxide), whose hydrate is energetically more favourable as compared
to methane hydrate. In laboratory, injected carbon dioxide has been shown to replace the methane in the
gas hydrate lattice without measurable dissociation of the gas hydrate [28, 52].
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It has been widely recognized in the hydrate community that the destabilization of hydrates
can cause significant consolidation, ground deformation, and other soil stability issues. Several
mathematical models have also been proposed to extend the above mentioned hydrate-reservoir
model concepts to include geo-mechanics (e.g. Rutqvist and Moridis [82], Kimoto et al. [46]).
Rutqvist and Moridis [82] have coupled TOUGH-HYDRATE with the commercial geomechan-
ical code FLAC3D [34] to investigate the hydro-geomechanical behaviour of hydrate reservoirs.
Kimoto et al. [46] have developed their own chemo-thermo-hydro-mechanical simulator. Their
simulator uses an elasto viscoplastic model to simulate deformation. Several simulation stud-
ies have been performed to predict the effect of gas hydrate dissociation and fluid flow on the
soil stability (e.g., Ning et al. 2012 [68], Rutqvist et al. 2009, 2012 [83, 84], Klar et al. 2010
[47], Hyodo et al. 2014 [39]). However, the nature and extent of the geotechnical problems
actually observed during the field trials were beyond predictions, and the sediment destabiliza-
tion and sand production could not be sufficiently controlled. Because of these apparent process
management and safety concerns it is important to carefully evaluate future technologies for gas
extraction from gas hydrate reservoirs and to include detailed risk quantification from inherent
geohazards in the particular situation and setting.

Multiphysics models and numerical codes for strongly coupled hydro-thermo-chemo-geo-
mechanical processes have, over the years, become a very powerful and indispensable tool for
making such performance evaluations at relatively low costs, although computing power neces-
sary for detailed field scale modeling can be huge (Reagan 2015 [77]). The predictive value of
numerical models depends on their ability to capture the influence of important variables such
as gas hydrate saturation and distribution in relation to soil characteristics, as well as to describe
how this behavior changes when gas hydrate-soil fabrics are dynamically altered during and after
gas production. Thus, to be able to make any predictions with confidence, the numerical models
need to be thoroughly validated against experimental data.

Numerous experimental studies on mechanical behavior of gas hydrate-bearing soils have been
carried out in the past. Small-strain mechanical properties such as P- and S-wave velocities of
gas hydrate bearing soils with various soil types and gas hydrate saturations have been evalu-
ated to calibrate field geophysical exploration procedures, and to allow prediction of small strain
strength and stiffness, volume yield behavior and subsidence upon changes in gas hydrate sat-
uration and gas hydrate-soil fabrics under defined stress conditions (Winters et al. 2007 [112],
Lee et al. 2010 1/2 [54], Priest et al. 2005, 2009 [75, 76]). It is generally agreed on that the
distribution of gas hydrates and the gas hydrate-soil skeleton has marked influence on strength
and stiffness behavior, such that cementing gas hydrates increase stiffness and strength already
at low gas hydrate saturations whereas pore filling gas hydrates only become effective at higher
gas hydrate saturations (≈ 0.4− 0.5) (Waite et al. 2009 [110]). Material models were frequently
obtained using THF to allow for fast and controlled gas hydrate formation in the laboratory with-
out necessity of having a free gas phase and more complicated volume change behavior (Lee et
al. 2010 [54], Yun et al. 2007 [119]). Large-strain and dynamic strength and stiffness behavior
during depressurization or thermal stimulation was studied in triaxial experiments (Hyodo et al.
2013, 2014 [40, 39], Song 2014 [96], Ghiassian and Grozic 2013 [33]). In the recent past there
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has also been a marked transition towards carrying out studies on undisturbed pressure cores,
which will clearly advance the field towards a much better understanding of the mechanics of the
gas hydrate-bearing soils (Inada and Yamamoto 2015 [41], Yun 2006 [118], Santamarina 2015
[88], Yoneda et al. 2015 [116]).

Experimental results and micro-mechanical considerations have led to the development of
different formulations for elastic yielding parameters (Youngs modulus, Poisson ratio). For ex-
ample, Sultan and Garziglia 2011 [99] assume a linear relationship between gas hydrate stiffness
and gas hydrate saturation, which is supported by experimental results reported by Soga et al.
2006 [95] and Waite et al. 2009 [110], while Miyazaki et al. 2010 [58] relate gas hydrate stiff-
ness and peak strength with the strain-rate, besides considering a non-linear relationship between
the stiffness and the hydrate saturation. The formulation in this study is based on the earlier
findings reported in Santamarina and Ruppel 2010 [87], who propose that the effective-stress-
dependent soil stiffness and the gas-hydrate stiffness contribute additively to the stiffness of the
gas-hydrate-bearing sediment. The stiffness contribution from gas hydrates is considered as vary-
ing non-linearly with the gas hydrate saturation and is, thus, much more pronounced at high gas
hydrate saturations.

The focus of this thesis is laid on building a consistent mathematical and numerical framework
for simulating hydrate systems using a multi-physics approach. The scope of the model is limited
to gas production from thermally stimulated or de-pressurized reservoirs, and the mechanical
behaviour of the hydrate-bearing soil is modelled under the assumption of linear poro-elasticity.
The primary objective is to capture the dynamic coupling between the transport, chemical, and
geo-mechanical processes observed at macroscopic scales during methane hydrate formation and
dissociation in sandy soil.

Layout of the thesis

In Chapter 2, we present the thermo-chemo-hydro-geo-mechanical model for the simulation
of methane gas production from gas hydrate reservoirs.

In Chapter 3, we present the numerical solution strategy. In particular, we discuss a ’cause-
effect’ based decoupling strategy, where the system of governing PDEs comprising the math-
ematical model is decoupled into two sub-models (or blocks), the flow model and the geome-
chanical model, with the porosity equation acting as the glue between them. In Section 3.1, we
summarize the methods used for spatial and temporal discretization of the governing PDEs. In
Section 3.2, we present a block Gauss-Seidel scheme for iteratively introducing the coupling be-
tween the sub-models, and in Section 3.3, we present two multirate time stepping (MRT) schemes
based on implicit-explicit (IMEX) approach.

In Chapter 4, the important couplings present in the multi-physics model are identified, and
test problems are presented through which we 1) verify each of the model components making up
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the hydrate simulator, and 2) show the versatility of the model in the variety of hydrate reservoir
related problems it can handle.

In Chapter 5, we evaluate the performance of the MRT schemes presented in Section 3.3 in
terms of speed up and accuracy as compared to the iterative block Gauss-Seidel scheme.

In Chapter 6, we present a complex 3D example problem, where a typical subsurface hydrate
reservoir is destabilized by depressurization. We qualitatively show the capabilities of the model
through this example. We also use this example to show the advantage of using multirate time
stepping for performing computations in 3D.

Finally, in Chapter 7, we verify the developed hydrate reservoir model against experimental
data. We numerically simulate the results of a controlled triaxial volumetric strain test on a
soil sample in which methane hydrate is first formed in situ under controlled isotropic effective
stress and then dissociated via depressurization under controlled total stress. The main focus
of this work is laid on testing how well our hydro-geomechanical gas hydrate reservoir model
captures the coupling between transport, reaction, and mechanical processes during methane
hydrate formation and dissociation in sandy soil.

We conclude this thesis with a discussion in Chapter 8 on the current limitations of the devel-
oped model, and propose possible extensions and improvements to the model and the numerical
solution schemes.
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Chapter 2
Mathematical model

Methane hydrate formations are a fairly complex subsurface system characterized by a large
number of highly interdependent physical phenomena. The typical physical processes occurring
in a stimulated hydrate reservoir include 1) hydrate phase change, 2) non-isothermal multi-phase,
multi-component flow, 3) geomechanical deformation of the hydrate bearing sediment, and 4)
change in the hydraulic as well as the mechanical properties of the hydrate bearing soil. To
describe these processes mathematically and to account for their interdependencies in an effective
manner, we use a multi-physics approach, which is described in the subsequent sections.

2.1 Macroscopic continuum

We desribe the conservation laws for the phases comprising the porous medium using a con-
tinuum approach on a macro-scale.

By averaging over all molecules contained in a small volume whose length is greater than
the mean free path of the molecules, the substance can be considered as a particle continuum
on the micro-scale [11]. Further averaging over an elementary volume which includes several
of these microscopic particles leads to a continuum on the macro-scale. Each averaging step
involves new quantities characterizing the continuum. The values of these quantities vary with
the volume over which they are averaged. If the averaging volume is too small, the quantity
will exhibit fluctuations caused by micro-scale effects. If the averaging volume is large enough,
the values of the quantities will remain constant with the increasing averaging volume. For very
large volumes though, the value of the quantity will increase or decrease if the macro-scale is not
completely homogeneous. (See Fig. 2.1.) Bear [11] called the minimum volume needed for a
consistent value as the representative elementary volume, abbreviated as REV.

Fig. 2.2 illustrates how the porous medium in a particle continuum with specific geometry
of the solid matrix, and with a particular distribution of the pore fluids, i.e., water and gas, and
solid constituents, i.e., soil and hydrate, is averaged over an REV on a macro-scale. All detailed

7
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Figure 2.1: A generic property characterizing the porous medium averaged over different volumes.
Vm is a micro-scale volume, VM is a macro-scale volume, and VREV is the elementary volume over which
the averaging value is representative for the property it describes.

information is lost. Instead, the composition of the porous medium is characterized by the volume
fractions of each phase, the description of the geometry is lumped into averaged variables such as
porosity and intrinsic permeability, and the interaction between the fluids, described by interfacial
tensions and contact angles on the micro-scale, are lumped into averaged properties such as
capillary pressure and relative permeabilities [37].

The basic quantities that characterize the porous medium on macro-scale and the related ter-
minology are introduced below:

- Phases are defined as the independent material continua present in the REV, separated by
sharp interfaces across which discontinuities in properties exist. A phase can be fluid or
solid, and may be composed of a single or several chemical species.

- Components are defined as the independent chemical species (e.g., elements, like hydro-
gen, methane, etc., or compounds, like salt, water, hydrates, etc.) that are necessary for the
complete description of the structure of all the phases present in an REV.

- The porous medium, on a macro-scale, is conceptualized as being composed of two distinct
parts, 1) a solid matrix, composed of the soil continuum, and 2) the pore spaces, which are
the voids in the matrix which are occupied by the other phases, both fluids and solids.

- Porosity, denoted by φ, is indicative of packing fraction of the soil particles comprising the
solid matrix. It is expressed as the ratio of the pore volume in the REV to the total volume

of the REV, i.e., φ =
Vp
Vt

. The higher the porosity, the more loosely packed the soil is, and

the more space there is for the reactive transport of the other phases.
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- Saturation of any phase γ, denoted by Sγ , is a property which is defined only for those
phases which occupy the pore-spaces. Saturation is indicative of the material composition
of the porous medium. It is expressed as the ratio of the volume of phase γ within the REV

to the volume of the pore spaces in the REV, i.e., Sγ =
Vγ
Vp

. By definition, the saturation

of all pore-filling phases sums up to 1, i.e.,
∑

γ Sγ = 1.

- Mole-fraction, denoted by χκγ , quantifies the composition of a phase γ in terms of its
constituent components κ. It is expressed as the ratio of number of moles of component κ

present in the γ to the number of moles of all components present in γ, i.e., χκγ =
nκγ∑
κ n

κ
γ

.

- Intrinsic permeability, denoted by K̃0, is the measure of the capacity of a porous material
to transmit fluid through it. It is a property of the solid matrix, and depends on the geome-
try, size, and number of interconnected pores, capillaries and fractures composinf the solid
matrix, or in other words, the microstructure of the soil. For most geological porous mate-
rials, the intrinsic permeability is directly proportional to some power of porosity. The soil
texture, sorting, and mineralogy also affect the magnitude of permeability by increasing or
decreasing the cross-sectional area of open pore space. These factors affect the geometry
of the pore space and are independent of fluid types occupying the pores. Permeability,
in general, is a tensorial quantity. However, for an isotropic material, permeability can be
considered a scalar, i.e., K̃0 = K0Ĩ.

- Tortuosity, denoted by τ , is the ratio of the true or total length Lt of the diffusion path of a
fluid particle diffusing through the porous matrix and the straight line distance L between
the starting and finishing points of the particle’s diffusion, i.e., τ = Lt

L .

- Capillary pressure, denoted byPc0, is the pressure difference that occurs across the gaseous
and aqueous phase interface due to balancing of cohesive forces within the wetting phase
and the adhesive forces between the wetting phase and the soil-matrix.

- Relative permeabilities of any fluid phase γ, denoted by kr,γ , indicate the factor by which
the permeability of phase γ is hindered due to the presence of the other phases. Relative
permeabilities depend on the saturation of the respective phases. If the porous medium
is fully saturated by one phase, its relative permeability is 1, and it approaches 0 as the
saturation of the phase tends towards an irreducible (also called residual) value.

Additionally, for a deforming solid matrix, the microstructure, in general, changes during the
course of deformation. The properties of the micro-structure and the mechanical response of the
micro-constituents that comprise the material points are lumped to get an average stress and strain
state for the macroscopic continuum bounded by an REV [66]. The mechanical state of the REV
is, thus, characterized by equivalent (or average) displacement, strain, and total stress fields,
denoted by u = u(x), ε̃ = ε̃(x), and σ̃ = σ̃(x), respectively, where, x is the position vector of
a typical point in VREV . The REV must be in equilibrium, and it’s overall deformation must be
compatible. The prescribed surface tensions must be self-equilibriating. The prescribed surface
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Figure 2.2: Pore-scale to REV-scale

displacements must also be self compatible so that they do not include rigid-body translations
and rotations [66].

2.2 Model concept

We consider four molecular components: CH4, H2O, CH4. (H2O)Nh (Hydrate), and soil
grains, which are present in four distinct phases: gaseous, aqueous, hydrate, and soil. The
gaseous phase comprises of molecular methane and molecular water in vapour form. The aque-
ous phase comprises of molecular water and dissolved molecular methane. At this stage the
adsorption of methane gas on the surfaces of the solid matrix and the hydrate is not considered.
Therefore, the hydrate phase comprises purely of CH4. (H2O)Nh , and the soil phase comprises
purely of the soil grains. The soil phase is assumed to form the solid-matrix, which provides the
skeletal structure to the porous medium. The aqueous, gaseous, and hydrate phases exist in the
void spaces of this solid matrix (See Fig. 2.2).

At the pore-scale, we make a distinction between the actual pore-space, which is the void
space outside the soil-grains, and the apparent pore-space which is that part of the void space that
is not occupied by hydrate and is, thus, available for flow of water and gas. At the REV-scale, this

translates to actual or total porosity φ =
Vp
Vt

, and apparent or effective porosity φeff =
Vp − Vh
Vt

(See Fig. 2.2). This distinction is important as it gives us a conceptual advantage in isolating the
effects of deformation and hydrate melting on the hydraulic properties of the porous medium.
(See Section 2.4.3)
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To describe the hydraulic properties in Section 2.4.3 and the effect of hydrate melting on these
properties, we make an additional assumption that, at the pore-scale, the hydrate coats the soil
grain perfectly, and the water phase forms a film over the hydrate.

In the subsequent discussion, the phases occupying the pore space (gaseous, aqueous, hydrate)
will be denoted by ’β’ = g, w, h respectively, the mobile phases (gaseous and aqueous) will
be denoted by ’α’ = g, w, and the molecular components making up the fluid phases will be
denoted by ’κ’ = CH4, H2O. The molecular hydrate, i.e., CH4. (H2O)Nh , will be denoted
by superscript ’h’, while the phase hydrate will denoted by subscript ’h’. The soil matrix will
be denoted with the subscript ’s’. The soil+hydrate composite matrix will be denoted with the
subscript ’sh’. ’γ’ will be used to denote all phases, i.e., γ = g, w, h, and s.

Assumptions The definition of the mathematical model is based on the following set of as-
sumptions.

- Gas hydrate reservoir is of SI type, i.e., the gas caged in the hydrate is purely methane.

- Ice formation is neglected.

- Aqueous phase is free of any salinity.

- Local thermal equilibrium (LTE) condition prevails in a representative control volume
(REV) so that the solid and the neighboring fluid are at the same temperature.

- Gaseous and aqueous phases are treated as ideal mixtures. It is further assumed that the
chemical species in the fluid phases attain chemical equilibrium instantaneously. It is im-
portant to emphasize that the chemical equilibrium exists only between the fluid phases,
not between the fluids and hydrate. The hydrate phase change is a relatively slower process
compared with the methane dissolution and water evaporation processes.

- Flow velocities of mobile gaseous and aqueous phases belong to Darcy’s Law regime.

- Hydrate is of grain-coating type and remains perfectly adhered to the pore walls in the soil
matrix.

- Soil and hydrate form a composite material. This material (composite-solid-matrix) is
treated as a continuum phase, and the stresses are considered to be acting on this composite-
solid-matrix as a whole (and not on the soil matrix alone). The mechanical behaviour of
this composite material is described using a linear elastic stress-strain constitutive law. The
mechanical properties of this composite material are assumed to vary with the composition
and stress-state of the composite-solid-matrix.

2.3 Governing equations

The transport processes characterizing the gas production from a typical sub-surface methane
hydrate reservoir can be described by invoking the conservation laws for mass, momentum, and
energy described for the macroscale properties of the porous medium [37].
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Mass conservation The mass conservation for water and gas is written componentwise, i.e.,
for each component κ = CH4, H2O, we get,∑

α

[∂t (φ ρα χ
κ
α Sα)] +

∑
α

[∇ · (φ ρα χκα Sα vα,t)]

=
∑
α

[∇ · (φ Sα Jκα)] + ġκ +
∑
α

q̇κmα . (2.1)

The mass conservation for the hydrate phase is given by,

∂t (φ ρh Sh) + ∇ · (φ ρh Sh vh,t) = ġh . (2.2)

The mass conservation for the soil phase is given by,

∂t [(1− φ) ρs] + ∇ · ((1− φ) ρs vs) = 0 . (2.3)

Momentum conservation For mobile phases in porous medium, under certain simplifying
assumptions, the momentum conservation can be reduced to Darcy’s Law [36], which is stated
as,

vα = −K krα
µα

(∇Pα − ρα g) . (2.4)

Here, K is the intrinsic permeability of the composite matrix, kr,α and µα are the relative
permeability and the dynamic viscosity of the phase α, respectively.
vα is the velocity of the mobile phase relative to the soil matrix. The hydrate phase is immobile
relative to the soil-matrix, i.e., vh = 0. The total velocity of any phase β occupying the pores is
given by φSβvβ,t = vβ + φSβvs. The soil phase velocity is the rate of deformation of the soil
matrix, and is given by vs = ∂tu.

Momentum conservation for the composite solid matrix is given by,

∇ · σ̃ + ρsh g = 0 . (2.5)

Energy conservation For describing the energy conservation in the porous medium, one en-
ergy balance equation is sufficient since local thermal equilibrium has been assumed [37]. The
energy balance equation is, thus, given by,

∂t

(1− φ) ρsus +
∑
β

(φ Sβ ρβ uβ)

+
∑
α

[∇ · (φ ρα χκα Sα vα,t hα)]

= ∇ · kceff∇T + Q̇h +
∑
α

(
q̇κmα hα

)
(2.6)
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where, uγ is the specific internal energy of phase γ, and hα is the specific enthalpy of a mobile
phase α, given by,

hα =

∫ T

Tref

Cpα dT and uγ =

∫ T

Tref

Cvγ dT .

Additionally, kceff is the effective (or lumped) thermal conductivity of the porous medium, given
by,

kceff = (1− φ) kcs +
∑
α

∑
κ

(φ χκα Sα k
c
α) + φ Sh k

c
h .

Closure relations The saturations of the phases occupying the pores satisfy the summation
condition

∑
β Sβ = 1 .

Additionaly, for each mobile phase α, the constituting component mole-fractions also satisfy the
summation condition

∑
κ χ

κ
α = 1 .

Furthermore, the pressures of the fluid phases are related through a capillary pressure Pc as
Pg − Pw = Pc(Sw) . The parametrization used for approximating Pc is further elaborated upon
in Section 2.4.3.

2.4 Constitutive relationships

In the mathematical model described in Section 2.3 following variables can be identified,

Sβ , χ
κ
α , Pα , Pc , T , φ , σ̃ , u , Jκα , vα , ġ

κ,h , Q̇h (2.7)

i.e., the total number of variables is 24. (The vectors and tensors are considered as single vari-
ables.) However, the number of governing equations add up to only 12. To close this system
12 additional constitutive relationships are defined for χκg , Pc , σ̃ , Jκα , ġ

κ,h , and Q̇h in this
section. Some other properties which are important for modelling hydrate reservoirs are also
discussed.

2.4.1 Vapor-liquid equilibrium

The two-phaseCH4−H2O fluid system is assumed to be in a state of vapor-liquid-equilibrium.
To calculate the concentrations of CH4 and H2O in both gaseous and aqueous phases Henry’s
Law [7] and Raoult’s Law [7] for ideal gas-liquid solutions are invoked:

For dissolved methane, χCH4
w = H(T ) χCH4

g Pg (2.8)

For water vapor, χH2O
g = χH2O

w

P satH2O
(T )

Pg
(2.9)

Using Eqn. (2.8), Eqn. (2.9), and the summation conditions for each α,
∑

κ χ
κ
α = 1 , the

mole fractions can be calculated explicitly.
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In Eqn. (2.8),H is Henry’s constant for methane gas dissolved in water and is calculated in our
model using the empirical relation from NIST standard reference database [86]. In Eqn. (2.9),
P satH2O

is the saturated vapour pressure for water in contact with methane gas. We use Antoine’s
equation [7] to calculate P satH2O

.

2.4.2 Fick’s law for diffusive mass-transfer flux

The diffusive solute flux through sediment Jκα is calculated using Fick’s Law [36], as stated
below

Jκα = −τDα (ρα∇χκα) . (2.10)

where, Dα is the binary diffusion coefficient in the mobile phases α = g, w The gas-phase
binary diffusion coefficient for low density binary CH4 − H2O system is estimated using the
empirical relationship proposed by Stattery and Bird [97]. For the aqueous phase binary diffusion
coefficient, Wilke-Chang correlation [38] for dilute associated liquid mixtures is used.

2.4.3 Properties of the fluid-matrix interaction

Capillary pressure On the macro scale, the capillary pressure in a porous medium is an aver-
age pressure depending on the pore-size distribution and the aqueous phase saturation. Several
parameterizations exist which relate the capillary pressure and effective aqueous phase satura-
tion using soil specific parameters. Our model uses one of the most common parameterizations
proposed by Brooks and Corey [14].

For an un-deformed, un-hydrated soil matrix the capillary pressure is expressed as a function
of effective (or normalized) aqueous phase saturation, as given below,

Pc0 = Pentry S
−1/λBC
we (2.11)

where, Pentry is the gas entry pressure, λBC is the soil specific parameter depending on the
pore-size distribution, and Swe is the normalized aqueous phase saturation given by,

Swe =
Sw − (Swr + Sgr)

1− Sh − (Swr + Sgr)
,

where, Swr and Sgr are the irreducible water and gas phase saturations, respectively.

The effect of presence of hydrate in the soil matrix and the changing hydrate saturation on the
capillary pressure Pc is modelled by scaling Pc0 with a scaling-factor fPcSh which is a function
of Sh [20, 79]. Also, the effect of changing porosity due to deformation of the porous matrix
is accounted for by scaling Pc0 with a scaling-factor fPcφ which is a function of φ using Civan’s
power-law correlation [19]. Thus, the capillary pressure is given by,
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Pc = Pc0 · fPcSh (Sh) · fPcφ (φ) (2.12)

where,

fPcSh = (1− Sh)
−mλBC−1

mλBC , and fPcφ =
φ0

φ

(
1− φ
1− φ0

)a
where m and a are model parameters.

Intrinsic permeability The intrinsic permeability, K, is related to the connectivity of the pore
spaces and the grain size of the soil. An estimate of the intrinsic permeability can be made
using mathematical expressions such as those proposed by Bear [11], or Mualem [65]. Usually,
however, the intrinsic permeability is evaluated experimentally as part of the characterization of
the soil sample.

The effect of changing hydrate saturation on the intrinsic permeability is modelled by scaling
the initial or reference intrinsic permeability of the sediment K0 with a scaling-factor fKSh which
is a function of Sh [20, 79], and, the effect of changing porosity due to deformation of the porous
matrix is accounted for by scaling K0 with a scaling-factor fKφ which is a function of φ using
Civan’s power-law correlation [19]. Thus, the intrinsic permeability for the hydrate sample is
modelled as,

K = K0 · fKSh (Sh) · fKφ (φ) (2.13)

where,

fKSh = (1− Sh)
5m+4
2m , and fKφ =

φ

φ0

(
fPcφ
)−2

.

These scaling factors (for both, Pc and κ) are derived based on the assumption that hydrate
phase sticks uniformly at the pore surface. For the ideal case of a spherical pore geometry,
m = 3.

Relative permeabilities The relative permeability factors for both mobile phases are evaluated
using the Brooks-Corey model in conjunction with the Burdine theorem [16], as,

krw = S
2+3λBC
λBC

we , and

krg = (1− Swe)2

(
1− S

2+λBC
λBC

we

)
. (2.14)
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Figure 2.3: Methane hydrate P-T phase curve

Specific surface area An important property of the porous matrix is it’s specific surface area,
As, which is defined as the ratio of the total internal surface area of the pores enclosed within
an REV to the total volume of the REV. The correlation proposed by Yousif [117] is used for
estimating the specific surface area of the porous matrix,

As =

√
φ3
eff

2 K
where, φeff = φ (1− Sh) . (2.15)

Hydraulic tortuosity Tortuosity is empirically related to porosity, as,

τ = φn where, 1 ≤ n ≤ 3 . (2.16)

2.4.4 Hydrate phase change kinetics

Methane hydrates, upon heating or depressurization, decompose to produce methane gas and
water as shown in Fig. 2.3. Chemically, this phase change process can be expressed as CH4 ·
(H2O)Nh � CH4 +Nh ·H2O, where, Nh is the hydration number.

This non-equilibrium phase change of methane hydrate is modeled by the Kim-Bishnoi kinetic
model [45]. The rate of gas generated or consumed on hydrate decomposition or reformation is
given by,

ġCH4 = kreac MCH4 Ars (Pe − fg) . (2.17)
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Correspondingly, the rates of water and methane hydrate generated/consumed are given by,

ġH2O = ġCH4 Nh
MH2O

MCH4

, and ġh = −ġCH4
Mh

MCH4

. (2.18)

In Eqn. (2.17), kreac is the kinetic rate constant given by,

kreac = k0
reac exp

(
−∆Ea
R T

)
(2.19)

where, Eact is the activation energy, and kreac is the intrinsic rate constant for the kinetic phase
change.

Ars is the specific reaction area, and is a measure of the actual surface available for the kinetic-
reaction to occur. It puts a limit on the mass transfer during hydrate formation and dissociation.
As the hydrate saturation in the pore-space increases, the availability of free surface for the
hydrate formation to occur decreases, and vice versa. Additionally, for hydrate formation to
occur, availability of both gas and water in sufficient quantities in the pore space is a necessary
condition. This behaviour of Ars is modelled as,

Ars = ΓrAs (2.20)

s.t., Γr =

{
φSh for (Pe − fg) > 0

(SgSwSh)
2
3 for (Pe − fg) ≤ 0 .

where, Γr is the fraction of the pore surface area that is active in hydrate kinetics [100].

The methane gas fugacity fg in the kinetic model is computed based on the Peng-Robinson’s
thermodynamic equation of state for methane [73]. The equilibrium pressure for the methane
hydrate Pe is determine using the Kamath and Holder correlation [43] as given below,

Pe = A1 exp

(
A2 −

A3

T [K]

)
. (2.21)

Methane hydrate dissociation reaction is an endothermic process. Conversely, methane hydrate
re-formation is an exothermic reaction. The heat of reaction for hydrate phase change is modelled
by,

Q̇h =
ġh

Mh

(
B1 −

B2

T [K]

)
. (2.22)
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2.4.5 Poro-elasticity

Principle of effective stress When a porous fluid-filled soil encounters an external load, the
stress is partly supported by the soil matrix and partly by the pore-fluids. The deformation of the
porous medium is effected by only that part of the total stress that is supported by the soil matrix.
This stress, introduced by Terzaghi [104], is called the effective stress. Using this concept, the
total stress σ̃ appearing in Eqn. (2.5) can be decomposed as,

σ̃ = σ̃′ + αbiotPeff Ĩ (2.23)

where, σ̃ is the total stress acting on the bulk porous medium, σ̃′ is the effective stress acting
on the composite skeleton, and Peff is the effective pore-pressure exerted by the mobile phases,
given by,

Peff =
Sw

Sw + Sg
Pw +

Sg
Sw + Sg

Pg .

The parameter αbiot is Biot’s constant. One of the generally accepted expressions for αbiot in

rock-mechanics applications is αbiot = 1 − Bm
Bsh

[13]. Here, Bsh is the bulk modulus of the

composite matrix, and Bm is the bulk modulus of the porous medium.

Stress-strain behaviour The deviatoric stress vs. axial strain response obtained from tri-axial
tests of distributed hydrate-bearing sands reported by Masui et al. [56] and Miyazaki et al. [59]
show that the hydrate-sand specimens are not elastic bodies, but it is possible to consider the
stress-strain relationship to be elastic if the range of application is sufficiently limited to small-
strain cases far away from the critical state.

In our model, we use the linear-elastic constitutive law to describe the stress-strain response of
the hydrate-soil composite matrix, given as,

σ̃′ = 2 Gsh ε̃+ λsh(tr ε̃) Ĩ (2.24)

where, Gsh and λsh are the Lame’s parameters for the elastic composite-matrix and can be de-
fined in terms of the apparent elastic mechanical properties (e.g. Young’s modulus Esh, and
Poisson’s ratio νsh) as,

Gsh =
Esh

2 (1 + νsh)
, λsh =

Esh νsh
(1 + νsh) (1− 2 νsh)

. (2.25)

ε̃ is the linearized strain, given by ε̃ =
1

2

(
∇u +∇Tu

)
.
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Elastic properties From the tri-axial tests it is observed that the presence of methane hydrate,
in general, increases stiffness and leads to higher strength. Also, the effect of methane hydrate
saturation on the Poisson ratio appears to be small. Further details on the general trends of
mechanical properties of methane hydrates can be found in Waite et al. [110], and Soga et al.
[95].

To make the model consistent with these observations, we assume the Poisson ratio νsh to be
a constant, and we define the Young’s modulous using the expression proposed by Santamarina
and Ruppel [87], given as,

Esh = Es0

(
σc
σc0

)b
+ c Eh (Sh)d (2.26)

where, Es0 is the isothermal Young’s modulus of hydrate-free sand at the reference confining
stress of σc0 = 1 kPa, b is the sensitivity of the Young’s modulus of hydrate-free sand to con-
fining stress σc, c is the contribution of the isothermal Young’s modulus of hydrate for a given
pore habit, i.e., pore filling, cemented (grain-coating), or patchy, and d is the nonlinear effect of
hydrate saturation.

Compressibility The grains of the composite material are assumed to be incompressible, but
the bulk material as a whole is compressible. This compressibility can be attributed to the fact
that due to the pore pressure variations or isotropic loading the grains redistribute, which, on
macro scale, manifests as change in density of the solid material. This change in density can be
modelled as,

∂

∂t
ρsh =

ρsh
Gsh (1− φeff )

(
∂

∂t
σ − φ ∂

∂t
Peff

)
(2.27)

where, σ is the isotropic stress.
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Chapter 3
Numerical solution strategy

The mathematical model describing the hydromechanical processes in a hydrate system actu-
ally contains two sub-classes of models, the flow and transport model comprising of the mass,
momentum, and energy balance equations for the phases occupying the pore spaces in the hydrate
formation, i.e., equations (2.1), (2.2), (2.4), and (2.6), and the geomechanical model, comprising
of momentum balance equation (2.5). The soil phase mass balance, Eqn (2.3), can be seen as a
mortar between these two sub-models (Fig. 3.1).

The interaction between these two models manifests physically in the form of, a) changes in
the hydraulic properties (total porosity and permeability) due to deformation of the solid ma-
trix structure, b) shift in the seepage velocity of the pore fluids due to the rate of deformation
of the solid matrix, and, c) changes in the mechanical properties of the solid matrix (strength,
bulk modulus, density, etc.) resulting from the flow dynamics of the pore-fluids and the loss in
cementation due to melting of the hydrate phase. In other words, each model affects the other
model by altering it’s properties. Thus, the nature of the coupling between these two models is
dynamic, but weak.

We use this observation to devise a decoupled solution strategy. Broadly speaking, we first
decouple the flow model and the geomechanical model, and solve them separately for a given
time-step. Then, we iteratively re-introduce the coupling through a block Gauss-Seidel solution
scheme, which is summarized in Sec. 3.2. This iteratively coupled solution scheme greatly
reduces the computational effort as compared to a monolithic fully implicit scheme.

However, the dynamics of the flow and the geomechanical models evolve at very different
time scales. We know a priori that the ground deformations manifest at a much slower rate as
compared to the flow and transport processes. Since the refinement of the time-mesh is controlled
by the dynamics of active (or the fast) components, solving the latent (or the slow) components
at this fine time-mesh results in redundant computational work. The computation can be made
more efficient if the slow components are solved on a coarse time-mesh and the fast components

21
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on a fine time-mesh. Such time stepping methods are called the Multi-Rate Time-stepping (MRT)
methods. We present, in Sec. 3.3, two MRT algorithms which we use for speeding up our hydro-
geomechanical hydrate reservoir model. The first MRT algorithm is based on a semi-implicit
approach and the second is based on a compound-fast approach.

We chose the following set of variables as the primary variables: the gas phase pressure Pg,
the aqueous phase saturation Sw, the hydrate phase saturation Sh, the temperature T , the total-
porosity φ, and, the composite-matrix displacement u. All other variables can be derived (ex-
plicitly or implicitly) from this set of variables.

The methods used for the spatial and temporal discretization of the PDE-systems comprising
the sub-models are summarized in Sec. 3.1. The strong non-linearities in each of the sub-models
are dealt with using a damped Newton-Raphson linearization. Each of the resulting linear sub-
systems are solved using the SuperLU linear solver [25]. Both the numerical schemes, block
Gauss-Seidel and MRT, are implemented in the C++ based DUNE-PDELab framework [10]. The
numerical code is capable of solving problems in 1D, 2D, and 3D spatial domains. Furthermore,
the block structure of the decoupling scheme makes the code modular, and gives the flexibility to
solve either the flow model alone or the full geo-mechanical model, depending on the problem at
hand.

3.1 Discretization schemes

The system of PDEs comprising the flow-system are solved fully implicitly for the variables
Pg, Sw, Sh, and T . The spatial discretization is done using the fully up-winded classical cell cen-
tered finite volume method, which is summarized in Sec. 3.1.1. Orthogonal grids aligned with
the principal axes are defined and a control-volume formulation with two-point flux approxima-
tion (TPFA) is used. For time-stepping, an implicit Euler method is used, which is summarized
in Sec. 3.1.3.

The geomechanical system is solved for the primary variable u. The soil momentum balance
equation comprising the geomechanical model is spatially discretized using the standard Galerkin
finite element (FEM) scheme defined on Q1 elements. The FEM formulation is summarized in
Sec. 3.1.2.

The soil-phase mass-balance equation is solved separately for φ. It is also spatially discretized
using the cell centered finite-volume method, and is marched forward in time using the implicit
Euler method.

3.1.1 Space discretization: Finite volume method

The conservation law for a generic conserved quantity F s.t., F = ρf , can be expressed as,

∂tρf +∇ · ρfvt = ∇ · ρd∇f + q (3.1)
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where, the quantity ρfvt is the total convective flux, the quantity ρd∇f is the diffusive flux, and
the quantity q is the volumetric source of F .

For fluid flow through a deformable porous medium, vt = vf +vs, where, vf is the interstitial
velocity with which the property F is convected and vs is the velocity of the solid matrix. The
divergence of the convective flux in Eqn. (3.1) can be expanded as,

∇ · ρfvt = ∇ · ρfvf + ρf∇ · vs + vs · ∇ρf .

For the case of rapidly changing effective stress relative to the fluid mobility together with the
small-strain assumption, the term vs · ∇ρf can be neglected [81]. In addition, the divergence
of the solid velocity, i.e. ∇ · vs , can be expressed in terms of the volumetric strain εv of the
solid-matrix [12], as,

∇ · vs =
Dεv
Dt
≈ ∂tεv

where, ∂tεv is the volumetric strain rate.
Therefore, the conservation law for F , Eqn. (3.1), can be approximated as,

∂tρf +∇ · ρfvf + ρf ∂tεv = ∇ · ρd∇f + q (3.2)

The Table 3.1 gives an overview of the mass and energy conservation laws expressed in terms
of the generic conservation law, Eqn. (3.2).

The finite volume based spatial discretization of Eqn. (3.2) is based on a balance approach:
1) the problem domain is subdivided into local closed entities called the control volumes, and a
local balance is written on each control volume; 2) using the divergence theorem, an integral for-
mulation of the fluxes on the boundary of a control volume is obtained; and finally, 3) the integral
formulation is discretized in space with respect to the discrete unknowns. We now elaborate on
the steps involved in the finite volume discretization process.

Cell centered grid

A cell centered grid of a spatial domain D ⊂ Rd consists of a set of closed control volumes
V = {Vi ⊂ D : i = 1, ..., I} and a set of storage locations X = {xi ∈ D : i = 1, ..., I}, s.t.,

- xi is at the center of mass of Vi .

- The volumes cover the entire spatial domain: D =
I⋃
i=1
Vi .

- The volumes do not overlap, i.e., for all i 6= j, either,

Vi ∩ Vj = ∅

or, if the volumes are adjacent,

Vi ∩ Vj = ∂Vi ∩ ∂Vj
where, ∂Vi denotes the boundary of Vi .
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The grid is denoted as G = (V,X ) . The control volumes V , also called cells, are chosen to be
quadrilateral in shape for D ⊂ R2 and hexahederal for D ⊂ R3.

Integral form

Given the cell centered grid G for the space domain D, if K grid cells are adjacent to the open
boundary ∂D, introduce K adjacent virtual cells VI+1, ...,VI+K . Let Ji contain the indices of
the neighbours of grid cell Vi, s.t.,

Ji = {j ∈ {1, ..., I +K} : Vi ∩ Vj 6= ∅} .

Further, let Sij denote the joint boundary of the neighbouring grid cells Vi and Vj , s.t.,

Sij = ∂Vi ∩ ∂Vj .

Also, let nij be the unit normal vector on Sij directed towards Vj .

Then, the integral form of the conservation law, which results from integrating Eqn. (3.2) over
the cell volume and using the Gauss’ divergence theorem to convert the volume integral of the
divergence of a flux of F to the surface integral of the flux of F , can be expressed as,

∂t

∫
Vi

ρf ∂x +
∑
j⊂Ji

∫
Sij

ρfvf · nij ∂x +

∫
Vi

ρf ∂tεv ∂x (3.3)

=
∑
j⊂Ji

∫
Sij

ρd∇f · nij ∂x +

∫
Vi

q ∂x

We define the following volume and boundary averages for any quantity ϕ :

ϕi (t) =


1

|Vi|
∫
Vi
ϕ (x, t) dx , i = 1, ..., I , and x ∈ Vi ,

1

|Vi ∩ ∂D|
∫

Vi∩∂D
ϕ (x, t) dx , i = I + 1, ..., I +K , and x ∈ Vi .

(3.4)

and,

ϕij(t) =
1

|Sij |

∫
Sij

ϕ (x, t) dx , x ∈ Sij (3.5)

where, |Vi| denotes the volume of Vi, and |Sij | denotes the surface are of Sij .

Using definitions 3.4 and 3.5, we can re-write the integral form of the conservation law in Eqn.
(3.3) as,

∂t F i |Vi|+
∑
j⊂Ji

|Sij | F ij vf ij · nij + F i ∂tεvi |Vi|

=
∑
j⊂Ji

|Sij | ρij dij ∇f · nij + qi |Vi| . (3.6)
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The terms FCij := F ij vf ij ·nij are the convective fluxes, and the terms FDij := ρij dij ∇f ·
nij are the diffusive fluxes across the cell interfaces.

Finite volume approximation

If ϕ is the quantity being solved for (i.e. the primary variable), and the quantities f , ρ, d
and q in the generic conservation law (3.1) are functions of ϕ, then the finite volume method
approximates ϕ over the domain D using a piecewise constant function defined over the cell
centered grid G, s.t.,

ϕ (x, t) ≈ ϕa (x, t) =
I∑
i=1

ϕ̌i (t)ωi (x) (3.7)

where, ωi (x) =

{
1 x ∈ Vi
0 x 6∈ Vi

and, ϕ̌i (t) = ϕi (t)

The gradient of the finite volume solution ϕa across the cell interfaces is approximated using
a finite difference two-point flux method [], as,

∇ϕa (x, t) · nij =
ϕj (t)− ϕi (t)

||xj − xi||2
(3.8)

Since the finite volume solution ϕa is discontinuous across the cell interfaces, the value ϕij is
not uniquely defined. Therefore, the convective fluxes and the diffusive fluxes across the cell in-
terfaces are approximated through the numerical flux functions ΦCij

(
ϕi, ϕj

)
and ΦDij

(
ϕi, ϕj

)
,

respectively.

Numerical convective flux function: The convective flux FC has a hyperbolic characteristic.
Therefore, ΦC is approximated using a first order upwind-biased discretization of the convection
terms, as,

ΦCij = θ F iλi ζij + (1− θ) F jλj ζij (3.9)

where, ζij =

(
∇P −

ρi + ρj
2

g

)
· nij

and, θ =

{
1 if, ζij ≤ 0

0 if, ζij > 0 .

Numerical diffusive flux function: The diffusive flux FD has a parabolic characteristic.
Therefore, ΦD is approximated using a central difference discretization of the diffusion terms,
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as,

ΦDij =

(
ρidi + ρjdj

2

)
∇f · nij (3.10)

Therefore, the cell-wise spatial discretization of the conservation law (3.2) in a domain D
using a cell centered finite volume method is given as,

∂t F i |Vi| =
∑
j⊂Ji

(
ΦDij − ΦCij

)
|Sij |+

(
qi − F i ∂tεvi

)
|Vi| . (3.11)

3.1.2 Space discretization: Finite element method

The governing field equations for the linear poroelasticity problem consist of,

solid-phase momentum balance: −∇ ·
(
σ̃′ + P Ĩ

)
= ρg , (3.12)

strain-displacement relationship: ε̃ =
1

2

(
∇u +∇uT

)
, (3.13)

and, stress strain constitutive law: σ̃′ = 2Gε̃+ λ (trε̃) Ĩ , (3.14)

where, σ̃′ is the Cauchy stress acting on the solid matrix, ε̃ is the linear stress tensor, G and λ are
the Lame’s parameters, ρ is the density of the solid matrix, and P is the effective pressure given
by,

P =

αbiot
∑

α=g,w
SαPα∑

α=g,w
Sα

.

The displacement form (or the irreducible form) of the momentum balance Eqn. (3.12) can,
thus, be expressed as,

−∇ ·
[
G
(
∇u +∇uT

)
+ λ (∇ · u) Ĩ

]
= ∇P + ρg (3.15)

where, fb := ∇P + ρg represents the body forces acting on the solid matrix.

The linear (poro)-elasticity problem can be stated as:

Problem: Given the problem domain D ⊂ Rd, and time domain t ∈ R, t ≥ 0, find u, s.t.,

for t = 0 : u = u0 (3.16)

and, for t > 0 : −∇ · σ̃′ − fb = 0 in D (3.17)

u = u on ∂DD and t := σ̃′n = t on ∂DN . (3.18)
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Eqn. (3.17) is called the strong form of the linear (poro)-elasticity problem. Also, note that the
boundary of the domain D is divided into two distinct and complementary parts, ∂DD and ∂DN ,
such that,

∂DD ∪ ∂DN = ∂D ,
∂DD ∩ ∂DN = ∅ .

The part ∂DD is associated with the Dirichlet boundary condition, where the prescribed displace-
ment values are enforced. The part ∂DN is associated with the Neumann boundary condition,
where the prescribed traction values are enforced.

We now present a finite element discretization procedure for the linear (poro)-elasticity prob-
lem given by Eqns. (3.16)-(3.18).

Finite element grid

Given the spatial domain D ⊂ Rd and the cell centered grid G = {V,X} , we now define a
finite element grid E = {Ω,Y} consisting of closed elements Ω =

{
Ωi ⊂ D : i = 1, ..., I

}
s.t.,

D =
I⋃
i=1

Ωi and Ωi = Vi ∀ i = 1, ..., I ,

and, a set of storage locations Y =
{
yik ∈ D : i = 1, ..., I; k = 1, ..., n

}
, where, yik represents

the location of the nodes in each element Ωi, and n denotes the total number of nodes present
in Ωi. We chose Lagrangian elements where the nodes are defined as the points of intersection
of the interfaces Sij for j ∈ Ji. We also define a set Lik containing the indices of all elements
sharing the kth node associated with the ith element, i.e.,

Lik =

{
l := 0 for Ωi, l ∈ {0, 1, ..., L− 1} :

L−1⋂
l=0

Ωl = yik

}

where, L is the total number of elements sharing the node at yik. In our case, if D ⊂ R2, then
L = 4, and if D ⊂ R3, then L = 8.

The finite element solution is stored at the nodes yik and the finite volume solution is stored at
the center of mass xi of the coincident elements Ωi and volumes Vi .

Weak form

Let U be the space of vector field u = u(x, t), representing the displacement at any time
t ≥ 0, t ∈ R, such that,

U =
{

u : D → Rd|u ∈ H1(D),u = ū(x, t) for x ∈ ∂DD
}
,
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and, letW be the space of vector valued weighting functions w, such that,

W =
{

w : D → Rd|w ∈ H1(D),w = 0 for x ∈ ∂DD
}
,

where, H1(D) is the Sobolev space, representing the space containing all vector valued functions
defined in the problem domain D such that the function values and their weak first derivatives
are square integrable.

We use the method of weighted residuals (or the Galerkin procedure) to construct a variational
or weak form of our linear elasticity problem. We multiply the strong form (3.17) by a vectorial
weight function w ∈ W , and integrate over the problem domain D, as,∫

D

w ·
(
−∇ · σ̃′ − fb

)
∂x = 0 .

Using Green’s formula, we get,∫
D

∇w · σ̃′ ∂x =

∫
D

w · fb ∂x +

∫
∂D

w · σ̃′n ∂x .

By virtue of the property of definite integrals requiring that the total be the sum of the parts,
we can rewrite the above integral as a sum over the element domains, as,

∑
i

∫
Ωi

∇w · σ̃′ ∂x =
∑
i

∫
Ωi

w · fb ∂x +
∑
i

∫
∂Ωi

⋂
∂D

w · σ̃′n ∂x .

Substituting the body forces, the constitutive law for stress, and imposing the boundary condi-
tions, the weak form of the linear elasticity problem can now be stated as,

Problem: Given the domain D and the finite element grid E (Ω,Y),

find u ∈ U , such that,∑
i

∫
Ωi

G

2

(
∇w +∇Tw

)
·
(
∇u +∇Tu

)
∂x +

∑
i

∫
Ωi

λ (∇ ·w) (∇ · u) ∂x

=
∑
i

∫
Ωi

w · ∇P ∂x +
∑
i

∫
Ωi

w · ρg ∂x +
∑
i

∫
∂Ωi

⋂
∂DN

w · t̄N ∂x

holds for all w ∈ W . (3.19)
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Finite element approximation

We approximate the displacement field u over the domain D using a piecewise linear C0(D)
function defined over the finite element grid E , s.t.,

u(x, t) ≈ ǔ(x, t) =
I∑
i=1

ωi (x) ǔi (x, t)

where, ωi (x) =

{
1 x ∈ Ωi

0 x 6∈ Ωi

and, ǔi (x, t) =

n∑
k=1

Nk (x) ûik(t) = N (x) ûi(t) , (3.20)

such that, ûik(t) gives the displacement at the nodes located at position yik, and, the functions
Nk (x) are Q1-polynomial based local shape functions (or interpolation functions), with the
following property,

Nk

(
yil
)

= Nk

(
yil
)
I =

{
I if, l = k ,

0 if, l 6= k ,
∀i .

It is clear that ǔi (x, t) denotes the approximate solution of the displacement field within the ele-
ment Ωi. The shape functions are defined such that the displacement field is continuous through-
out the problem domain.

Note that in the weak form (3.19) we have to approximate the first derivative of P . For that
we construct a C0-continuous approximation P̌ (x, t) ∈ Up of P over the domain D with

Up =
{
p : D → R| p ∈ H1(D)

}
,

We approximate the effective pressure at a node yik, i = 1, ..., I; k = 1, ..., n, as a volume-
weighted average of the finite volume solution for each cell associated with the node yik, i.e.,

P̌ (x, t) =
I∑
i=1

ωi (x) P̌ i (x, t)

where, P̌ i (x, t) =
n∑
k=1

Nk (x) P̂ ik(t) = N (x) P̂ i(t)

and, P̂ ik(t) =

L−1∑
l=0

P i(t)|Vl|

L−1∑
l=0

|Vl|
, for l ∈ Lik . (3.21)

The values of the Lame’s parameters G and λ can, in principle, be discontinuous. Therefore,
we directly use the values at the cell centers xi calculated using the finite volume solution at time
t.
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We use the standard Galerkin method (also called the Bubnov-Galerkin method), where, the
weighting function is chosen the same as the basis function, i.e.,

w(x) =
I∑
i=1

n∑
k=1

ωi (x) Nk (x) (3.22)

Substituting the approximate displacement field (3.20), the approximate effective pressure field
(3.21), and the weight function (3.22) in the weak form (3.19), we get,∑

i

∫
Ωi

G(xi, t)

2

(
∇N(x) +∇TN(x)

)
·
(
∇N(x) +∇TN(x)

)
ûi(t) ∂x

+
∑
i

∫
Ωi

λ(xi, t) (∇ ·N(x)) (∇ ·N(x)) ûi(t) ∂x−
∑
i

∫
Ωi

N(x) · ∇N(x) P̂ i(t) ∂x

=
∑
i

∫
Ωi

N(x) · ρ(xi, t)g ∂x +
∑
i

∫
∂Ωi

⋂
∂DN

N(x) · t̄N ∂x . (3.23)

Thus, we obtain a discrete-in-space problem given by the set of algebraic equations,

Ku(x, t)û(t)−Kp(x, t)P̂ (t) = F(x, t) (3.24)

where, Ku(x, t) and Kp(x, t) are global stiffness matrices, and F(x, t) is the global force vector
given as,

Ku(x, t) =
∑
i

∫
Ωi

G(xi, t)

2

(
∇N(x) +∇TN(x)

)
·
(
∇N(x) +∇TN(x)

)
∂x

+
∑
i

∫
Ωi

λ(xi, t) (∇ ·N(x)) (∇ ·N(x)) ∂x

Kp(x, t) =
∑
i

∫
Ωi

N(x) · ∇N(x) ∂x

and, F(x, t) =
∑
i

∫
Ωi

N(x) · ρ(xi, t)g ∂x +
∑
i

∫
∂Ωi

⋂
∂DN

N(x) · t̄N ∂x .

The vectors û(t) and P̂ (t) contain all the nodal values of u and P (with nodes numbered glob-
ally).

3.1.3 Time discretization: Implicit Euler method

We divide the time domain into N intervals, with tn as the time at the nth step, where n ∈ N,
n = 0, ..., N , and hn+1 = tn+1 − tn as the time-step sizes. Let ϕn be the solution computed at
time tn.
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We approximate the time derivative of variableϕ using an implicit (or backward) Euler method.
The implicit Euler method is a finite difference approximation based on a truncated Taylor series
expansion of ϕ in the neighborhood of t = tn+1, i.e.,

ϕ(tn+1 − hn+1) ≡ ϕn+1 = ϕn − hn+1
∂ϕ

∂t

∣∣∣∣
tn+1

+O
(
h2
n+1

)
,

where, O
(
h2
n+1

)
is the order of the local truncation error (LTE) of the method. The implicit

Euler method is a first order technique.

Using the above Taylor series expansion, we can now approximate the time derivatives appear-
ing in the semi discrete form of the conservation laws, Eqn. (3.11), as,

∂ϕ

∂t

∣∣∣∣
tn+1

=
ϕn+1 − ϕn

hn+1
. (3.25)

Note that if the semi discrete form is expressed as,
∂ϕ

∂t
= F (ϕ),

then, in Eqn. (3.25),

∂ϕ

∂t

∣∣∣∣
tn+1

= F
(
ϕn+1

)
. (3.26)

3.2 Iterative block Gauss-Seidel scheme

The space-time discrete model can be represented as a system of algebraic equations, as,

Flow block:

F1 : A1

(
Xn+1,Xn

)
Xn+1

1 − B1

(
Xn+1,Xn

)
= 0 ,

Geomechanical block:

F2 : A2

(
Xn+1,Xn

)
Xn+1

2 − B2

(
Xn+1,Xn

)
= 0 ,

Total-porosity block:

F3 : A3

(
Xn+1,Xn

)
Xn+1

3 − B3

(
Xn+1,Xn

)
= 0 , (3.27)

where, the vectors X1 : R → Rdf , X2 : R → Rdg and X3 : R → Rdφ denote the discrete
in space approximations at any given time step to the primary variables of the flow model (i.e.
Pg, Sw, Sh, T ), the geomechanical model (i.e. u) and the total-porosity equation (i.e., φ), respec-
tively. X is the solution vector given as X = [X1 X2 X3]T . The indices n and n + 1 denote
the solution at time tn and tn+1 respectively.

We solve the discrete system (3.27) for Xn+1 in a block-wise manner.
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solve F1  → [ X1
n+1  , k+1  X2

n+1  , k     X3
n+1  , k    ]T

|| X n+1 , k+1
−Xn+1  , k  ||

              < ϵ   ?

             set : 
Xn+1  , k

= Xn+1  , k+1

         k=k+1

solution :  Xn+1
=  Xn+1  , k+1

update time :  tn=t n+1

initialize iteration counter :  k=0

solve F2  → [ X1
n+1  , k+1  X2

n+1  , k+1  X3
n+1  , k    ]T

solve F3  → [ X1
n+1  , k+1  X2

n+1  , k+1  X3
n+1  , k+1

]
T

initialize Xn+1  , k
→ Xn+1  , k

= Xn

( X n+1  , k  , Xn )

set :  Xn
=  Xn+1

Figure 3.2: Block Gauss-Seidel outer iterative solution loop

The blocks F1, F2, and F3 are solved separately. Solution of the flow block F1 and the
total-porosity block F3 requires, 1) linearization step using the Newton-Raphson method, and
2) solution of the linearized system using the SuperLU linear solver. These steps are repeated
until convergence is achieved for Xn+1

1 and Xn+1
3 . This forms the inner iterative loops. The

geomechanical block F2 is a linear system and is, therefore, solved directly.

The coupling between the blocks is introduced through a Gauss-Seidel scheme operating
blockwise. This forms the outer iterative loop, as shown in Fig. 3.2. First, the flow block
is solved and the solution vector Xn+1 is updated with the improved approximation of Xn+1

1 .
Then, the geomechanical block is solved and the solution vector Xn+1 is updated with the im-
proved approximation of Xn+1

2 , following which, the porosity block is solved and the solution
vector Xn+1 is updated with the improved approximation of Xn+1

3 . These steps are repeated
until convergence is achieved for Xn+1.

In our algorithm, we generally control the number of iterations in the outer loop heuristically
with the number of newton steps required for convergence of the flow block.
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3.3 Multi-rate time stepping scheme

The concept of MRT methods was introduced for systems of differential equations (ODEs and
DAEs) in such studies as [32, 35, 78], and some recent results are presented in [9, 22, 27, 50, 90].
MRT methods for conservative laws are developed in [21, 24, 102] and for parabolic equations
in [89, 91]. A review of the MRT methods developed over the last two decades can be found
in [31]. The application of MRT methods, especially the Implicit-Explicit methods (ImEx), is
becoming increasingly popular in the PDE community. Some of the recent extensions of these
methods to application areas of coupled free and porous media flows, air pollution modelling,
multi-scale fluid-solid interaction, besides others, can be found in [85, 92, 113, 120, 106].

In our hydro-geomechanical hydrate reservoir model, we use two different ImEx based MRT
algorithms to speed up our calculations. The first MRT algorithm is based on a semi-implicit
approach and the second is based on a compound-fast approach. To understand the stability of
these and related MRT methods in general, the reader is referred to [107].

We now summarize our MRT algorithms.

Let the vectors XF (t) : R → Rdf and XG(t) : R → Rdg denote the time-dependent discrete
in space approximations to the primary variables of the Flow model (i.e. Pg, Sw, Sh, T ) and the
Geomechanical model (i.e. u) respectively. We will refer to XF as the active components and
XG as the latent components. Since changes in porosity are very small and depend predominantly
on soil deformation, for simplicity, we chose to eliminate the soil-phase mass balance, PDE (2.3),
by approximating the total porosity φ as a function of the volumetric strain εv, which is then
solved only as a post process.

Further, let F : R×Rd×Rdf ×Rdg → Rdf and G : R×Rd×Rdf ×Rdg → Rdg denote the
spatial discretization operators for the Flow and the Geomechanical models respectively. Here,
d is the dimension of the space domain. In our numerical scheme, the operator F is obtained by
assembling the spatially discretized conservation laws, Eqn. (3.11), for the flow model, and the
operator G is given by Eqn. (3.24).

The spatial discretization of the PDEs governing our hydro-geomechanical model leads to a
semi-discrete problem of the following form:

Problem: For t ∈ [0, T ], given the initial conditions

XF (t = 0) = X0
F and, XG (t = 0) = X0

G ,

find solutions for XF and XG which satisfy

∂tXF = F (t,x,XF ,XG) (3.28)

0 = G (t,x,XF ,XG) (3.29)
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Figure 3.3: Time-mesh for active and latent components

Eqn.(3.28) is the active ODE (Ordinary Differential Equation) system and Eqn.(3.29) is the
latent AE (Algebraic Equations) system. Together, they form a naturally partitioned multi-scale
DAE (Differential Algebraic Equations) system.

Each part of the partitioned DAE system is marched in time on an independent time-mesh
which depends on it’s own activity. We assume that the activity of the components does not vary
in space. For the latent system, we define a coarse time-mesh {Tn, 0 ≤ n ≤ N} with time
step sizes {Hn = Tn − Tn−1, 0 < n ≤ N}. We will refer to this as the macro-grid, and the
time step from Tn−1 to Tn as the macro-step. For the active system, we define a refined time-
mesh {tn,k , 0 ≤ n < N, 0 ≤ k ≤ m} with time step sizes {hn,k = tn,k − tn,k−1, 0 ≤ n <
N, 0 < k ≤ m} and multirate factor m. We will refer to this as the micro-grid, and the time
step from tn−1,k−1 to tn−1,k for each k = [1, ...,m] as the micro-steps. The two time-meshes are
synchronized, which implies that for all n, Tn = tn,0 = tn−1,m (See Fig. 3.3).

All MRT methods have the basic property that the time integration can proceed from synchro-
nization level n to n+ 1 only when all the components, slow and fast, have made their respective
macro and micro steps and have synchronized at the level n.

For marching the DAE system (3.28,3.29) forward in time from Tn−1 to Tn, the active ODE
(3.28) is integrated on the micro grid tn−1,k using the implicit Euler method for each micro step,
while the latent AE (3.29) is evaluated directly at the macro grid point Tn using the solution of
the active ODE at tn−1,m. The two MRT algorithms that we will discuss differ in how the latent
components are approximated on the micro grid for solving the active ODE.

In the semi-implicit MRT method (Algorithm 1), we first make themmicro steps for the active
components from tn−1,0 to tn−1,m. The values of the latent components needed on the micro
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grid, i.e. XGn−1,k, for making the micro steps are approximated by means of extrapolation. In
our scheme, we construct a polynomial function of order p for extrapolation using the values of
XG evaluated at p + 1 previous macro grid points, i.e., Tn−1, ..., Tn−(p+1). We then make the
final macro step to evaluate the latent component at Tn.

For m = 1, this method essentially becomes a decoupled sequential solution scheme, which
by itself is faster than the iteratively coupled solution scheme. For m ≥ 1, all systems are solved
only once on their respective time-meshes, and the coefficients of the extrapolation function also
need evaluation only once per macro step, thus requiring very little computational effort.

ALGORITHM 1: Semi-implicit MRT method.

STEP 1: Extrapolation macro step
Extrapolate XGn−1,k at each k = [1, ...,m] on the fine time-
mesh using the p + 1 old step values of XG computed at
Tn−1, ..., Tn−(p+1):

X̃Gn−1,k = XGn−1 +

p∑
j=1

Aj (tn−1,k − Tn−1)j (3.30)

STEP 2: Micro-steps
Solve for XF n−1,k at each k = [1, ...,m] on the fine time-mesh
using the implicit Euler method:

XF n−1,k = XF n−1,k−1

+ hn−1,k F
(
tn−1,k , x , XF n−1,k , X̃Gn−1,k

)
(3.31)

STEP 3: Macro-step
Solve for XGn:

G
(
Tn , x , XF n−1,m , XGn

)
= 0. (3.32)

In the compound-fast MRT method (Algorithm 2), we first make a predictor macro step to get
an approximate value of the latent component at Tn. In this step, we integrate the active ODE
on the macro grid from Tn−1 to Tn with a relaxed stopping criteria for the Newton slover. This
gives a rough approximation of XF at Tn (denoted by X̃F n), which is then used to solve the
latent AE to get an approximate value of XG at Tn (denoted by X̃Gn). We then make the micro
steps to integrate the active ODE from tn−1,0 to tn−1,m. The values of the latent components
needed on the micro grid, i.e. XGn−1,k, for making the micro steps are approximated by means
of linear interpolation (refer Eqn.(3.36)). In the final step, called the corrector macro step, we
solve the latent AE once more at the macro grid point Tn to correct (improve) the solution from
the predictor step.
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If the ODE becomes unsolvable on the macro grid and the predictor step fails, then, in our
simulator we reduce the value of Hn by half and attempt the predictor step once again.

ALGORITHM 2: Compound-fast MRT method

STEP 1: Predictor macro step (or compound step)
Integrate active ODE (3.28) with large step size Hn. Relax the
stopping criteria for the Newton solver to get a rough approxima-
tion at Tn, X̃F n:

X̃F n = XF n−1 +Hn · F
(
Tn , x , X̃F n , XGn−1

)
(3.33)

Use X̃F n to predict X̃Gn:

G
(
Tn , x , X̃F n , X̃Gn

)
= 0. (3.34)

STEP 2: Micro-steps
Solve for XF n−1,k at each k = [1, ...,m] on the fine time-mesh
using implicit Euler method:

XF n−1,k = XF n−1,k−1

+ hn−1,k F
(
tn−1,k , x , XF n−1,k , X̃Gn−1,k

)
(3.35)

where, X̃Gn−1,k are the linearly interpolated values of XG at
tn−1,k:

X̃Gn−1,k = XGn−1 +
(
X̃Gn −XGn−1

) k∑
i=1

hn−1,k

Hn
(3.36)

STEP 3: Corrector macro step
Solve for XGn:

G
(
Tn , x , XF n−1,m , X̃Gn + ∆XGn

)
= 0. (3.37)

The performance of the presented MRT schemes, in terms of accuracy and speed-up, is evalu-
ated in Chapter 5 through a 1D consolidation test problem. The advantage of these MRT schemes
in terms of speed-up for performing 3D calculations is shown in Section 6.3.



Chapter 4
Model verification

The mathematical model described in Chapter 2 consists of three important parts that are spe-
cific to the gas-production from stimulated gas hydrate reservoirs. These are the methane hydrate
dissociation kinetics, the poroelasticity coupling, and the kinetics-poroelasticity coupling. In this
chapter, we present numerical tests where we isolate these model components and couplings in
our hydrate reservoir model, and verify them one by one.

In Test 1, Section 4.1, we verify the dissociation kinetics model. We simulate the methane
gas production in 1D and 2D lab-scale experiments on hydrate dissociation via depressurization
by Tang et al. (2007) [103] and Yuhu et al. (2009) [8], respectively. In these experiments,
the geo-mechanical effects are negligible and reaction kinetics dominates over fluid flow, thus,
effectively isolating dissociation kinetics from the other processes. Through this test, we ensure
that our hydrate kinetics model can effectively capture the gas production behaviour and the
pressure profiles.

In Test 2, Section 4.2, we verify the coupling between the hydrate kinetics model and the
two-phase fluid flow in the porous media. We simulate an artificial setting similar to the five-
spot problem in a diagonal flow configuration, with the addition of a gas source in the form of
a dissociating block of hydrate located in the center of a unit square domain which is initially
saturated with water. The domain is depressurized using a water outflux boundary condition
prescribed at the gas well located at lower left corner of the domain. The diagonally opposite
end is held at a constant pressure. The water outflow is expected to destabilize the hydrate block,
causing it to dissociate. The released gas must then get drawn towards the low pressure zone
created by the gas well. Through this test, we ensure a correct implementation of the convection,
diffusion, and the reaction terms in our numerical scheme.

In Test 3, Section 4.3, we verify the poro-elasticity coupling. We ignore the hydrates in the
porous medium, thus reducing the model to a simple two phase hydro-mechanical system. We
consider a classical 1D consolidation problem by Terzaghi (1925) [104] to test the fluid pressure

39
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response generated by the mechanical compression of the soil. For benchmarking, we simulate
the problem setting described by Kolditz et al. (2012) [48], and compare our numerical results
with the analytical solution. Through this test we ensure a correct implementation of the poroe-
lastic coupling in our hydrate reservoir model.

Finally, in Test 4, Section 4.4, we verify the kinetics-poroelasticity coupling, which is essen-
tially the most important coupling for capturing the hydro-chemo-geomechanical response of a
hydrate reservoir. We extend Terzaghi’s 1D consolidation problem to include hydrate kinetics
in the poroelastic coupling. We simulate a test problem where an axially loaded hydrate bearing
sand sample experiences a spontaneous shift in the hydrate stability curve causing the hydrate to
melt. For this problem, we present an analytical solution for pore-pressure response, which we
subsequently use to test the accuracy of our numerical results.

4.1 Test 1: Verification of dissociation kinetics model

We consider 1D and 2D experiments on hydrate dissociation by depressurization by Tang et
al. (2007) [103] and Yuhu et al. (2009) [8], respectively.

4.1.1 1D experiment

Experimental set-up

A cylindrical, stainless steel cell with internal diameter of 38 mm and length of 500 mm was
used as the main pressure vessel. The cell was jacketed with an insulating, impermeable layer
and was immersed in an air-bath. During each experimental run, the dry sands were sieved into
size range of 300− 450 µm and were pushed tightly into the vessel, resulting in a sediment with
porosity of 33% and a permeability of 300 mdarcy.

The sediment was saturated with distilled water, and the methane hydrate was formed in-situ
by slowly injecting methane gas at a pressure higher than the equilibrium pressure. The hydrate
was formed in two stages to obtain a homogeneous distribution.

To perform the dissociation experiment, the back pressure regulator was set to a pressure lower
than the hydrate equilibrium pressure at the working temperature, and the outlet valve was opened
quickly. The gas released through the outlet valve was continuously recorded and a cumulative
gas-production curve was plotted.

Numerical simulation

A schematic of the test domain for this experiment is shown in Fig. 4.1. The domain is discretized
into 100 cells along the X-axis and the simulation is performed in 1D. The geo-mechanical
block is switched off and only the flow-transport block is solved. Gravity is neglected. The
depressurization (i.e. back pressure regulation) is considered at the left boundary. The left
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Figure 4.1: Test 1 - Test setting for 1D experiment

Table 4.1: Test 1 - Initial conditions for 1D ex-
periment

ICs Run 2 Run 3
Pg,i [ MPa ] 3.535 3.584
Ti [ 0C ] 1.54 2.08
Sw,i [ % ] 29.61 19.25
Sh,i [ % ] 21.83 25.44
Ki [ mD ] 300 300
φi [ % ] 30.8 30.8

Table 4.2: Test 1 - Boundary conditions for 1D
experiment

at x = 0, t > 0 Run 2 Run 3
Poutlet [MPa] 0.93 1.94
Tbath [0C] 1.54 2.08

at x = L, t > 0

ṁg = 0
ṁw = 0
∇T = 0

boundary also serves as the gas outlet. Two depressurization modes have been considered for
this test. In the first (Test-ID:Run2), the pressure is decreased from 3.535 MPa to 0.93 MPa at
Tbath = 1.540C. In the second (Test-ID:Run3), the pressure is decreased from 3.584 MPa to
1.94 MPa at Tbath = 2.080C. The total dissociation process for Run2 and Run3 was reported by
Tang et al. to last 40 and 110 minutes respectively. So, the tend for the numerical simulations
was chosen accordingly. The initial and boundary conditions are listed in Table 4.1 and Table
4.2, respectively.

Tang et al. (2007) used TOUGH-Fx/Hydrate to simulate the experimental data. The value of
the intrinsic rate constant k0

d, as reported by Tang et al., was back calculated to fit the experi-
mental data. We have used the same method to calibrate our model and obtain the best value of
k0
d for each depressurization mode (Run2 and Run3). The resulting values for kinetic-parameters

∆Ea/R and k0
d are listed and compared in Table 4.3. "reported" refers to the values reported by

Tang, and "fitted" refers to the values obtained from our calculations. Also, since the parameter-
ization for Peqb was not reported by Tang et al., we have used the standard relationship proposed
by Kamath and Holder [43] for pure methane dissolved in distilled water.
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Table 4.3: Test 1 - Kinetic parameters for 1D experiment

∆Ea/R k0
d

[K]

[
mol

m2 · Pa · s

]
Run 2 (reported) 9400 1.7× 104

Run 2 (fitted) 9400 1.7× 104

Run 3 (reported) 9400 1.4× 104

Run 3 (fitted) 9400 0.8× 104

RUN 2

(a) Run 2

RUN 3

(b) Run 3

Figure 4.2: Test 1 - Cumulative gas production curves for 1D experiment

(comparison with Tang et al. (2007)). Here, fA =
fitted k0d

reported k0d
.

Results

Fig. 4.2a and Fig. 4.2b show the comparison between cumulative gas volume curves obtained
experimentally and numerically for Run2 and Run3, respectively. Our numerical results show that
the kinetics hydrate phase change model in our hydrate reservoir model is capable of capturing
the gas production behaviour of a dissociating gas hydrate sample.

4.1.2 2D experiment

The experimental set-up for hydrate formation and dissociation processes used in this experi-
ment are very similar to the 1D experiment by Tang et al. described above. The main difference
is the sample geometry, which is cylindrical in the 1D case and square wafer-like in this case.
Reaction kinetics is essentially only a time dependent process, and the number of spatial dimen-
sions do not directly affect the kinetics. However, testing the kinetics model in both 1D and
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Figure 4.3: Test 1 - Test setting for 2D experiment

Table 4.4: Test 1 - Kinetic parameters for 2D experiment

∆Ea
R

[K] 9752.73

k0
d

[
mol

m2 · Pa · s

]
3.6× 104

Q̇h

[
J

kg

]
−1050 T + 3527000

2D geometries ensures that the spatial coupling between the different model components are
correctly resolved, and that no spurious spatial effects manifest in the simulation of dissociation
process.

Experimental set-up

The hydrate formation and dissociation unit was a stainless steel vessel with length, width, and
thickness of 380 mm, 380 mm, and 18 mm respectively, and was immersed in an air-bath. The
procedure for sand sample preparation and in-situ hydrate formation were similar to that de-
scribed in Sec. 4.1.1. The resulting sediment porosity and permeability were 40% and 1.97
Darcy, respectively, and the hydrate saturation was 17.6%.

To perform the dissociation experiment, the back pressure was reduced from an initial pressure
of 3.24 MPa to 2.25 MPa, and the outlet valve was opened quickly. The bath temperature was
maintained at 1.70C. The gas released through the outlet valve was continuously recorded and a
gas production rate was plotted.
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Figure 4.4: Test 1 - Results for 2D experiment (comparison with Yuhu et al. (2009))

Numerical simulation

A schematic of the test domain for this experimental set up along with the initial and boundary
conditions are shown in Fig. 4.3. The domain is discretized in 10 × 100 cells, and the simula-
tions are performed in 2D. The geo-mechanical block is switched off and only the flow-transport
block is solved. Gravity is neglected. Depressurization and gas outlet are prescribed at the left
boundary. The reaction-kinetics parameters are listed in Table 4.4.

Results

Fig. 4.4b and Fig. 4.4a show the experimental and numerical comparisons of the gas gen-
eration rate and the gas pressure for this setting. Our numerical results are in good agreement
with the experimentally recorded values and show that the kinetics model in our hydrate reservoir
model is capable of reproducing the hydrate dissociation and gas production behaviour observed
in the experiments, especially towards steady state.
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4.2 Test 2: Verification of three-phase hydrate model

In this section, we test the coupling between the kinetics model and the two phase flow model
in our numerical scheme.

For this, we use an artificial setting similar to the five-spot problem, with the addition of a gas
source in the domain in the form of a dissociating block of hydrate. This test ensures a correct
implementation of the convection, diffusion, and the reaction terms in the 2D numerical scheme.
It also ensures that the numerical scheme does not produce any spurious grid-based effects.

Problem set-up

q̇w
out

=0.1
kg

m2

Sw ,i =0.5
Sh , i = 0.5
P i =2.85 MPa

T i = 2.250 C

K i =2.27×10−14 m2

ϕ =0.3

Sw ,i =1
Sh , i = 0

P i =2.85 MPa

T i = 2.250 C

K i =1×10−13 m2

ϕ =0.3

Pg=2.85 MPa

no flow, adiabatic

no flow, adiabatic 

no flow
, ad iabatic

no flow
, ad iabatic

A (0,0)

B (1,1)

a (0.35,0.35)

b (0.65,0.65)

Figure 4.5: Test 2 - Test setting

A schematic of the test domain is shown in
Fig. 4.5. The domain is a unit square with
a 0.3m × 0.3m hydrate block located in the
center. The domain is initially saturated with
water. The hydrate saturation in the block is
50%. Point A at (0, 0) is the gas well. Neu-
mann water-outflux B.C. is prescribed at A.
The diagonally opposite point B at (1, 1) is
held constant at initial pressure. The rest of
the domain boundaries are closed and adia-
batic. The depressurization caused by water
outflow at A is expected to destabilize the hy-
drate block causing it to dissociate. The re-
leased gas must then get drawn towards the
low pressure in the gas well at point A.

Numerical simulation

For this problem, the geomechanical block is switched off and only the flow-transport block
is solved. The initial and the boundary conditions for the problem are specified in Fig. 4.5. The
hydraulic properties, hydrate stability curve parameters, and the dissociation kinetics parameters
used in the numerical simulation are listed in Table 4.5. The end-time for this problem is chosen
as tend = 500 minutes. For the base test (run0), the domain is discretized uniformly into 20× 20
cells. The time-step size is kept constant at 120 seconds. To check the mesh dependency of the
numerical scheme, the mesh is successively halved, i.e. (∆x)run1 = 1

2 (∆x)run0 , (∆x)run2 =
1
2 (∆x)run1 , and (∆x)run3 = 1

2 (∆x)run2 . The time-step size is also successively halved so
that ∆x/∆t ratio remains constant for each of the test-runs.

Results

The gas plume takes about 300 minutes to reach the gas well at A. Fig. 4.6 shows the screen-
shots of gas saturation in the domain at 100, 200, and 300 minutes. Fig. 4.7 shows the line-plot
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Table 4.5: Test 2 - Model parameters

Brooks-Corey parameters
Pentry [Pa] 5000
λBC 1.5

Hydrate stability curve
Peqb [Pa] A1 = 1000, A2 = 38.980, A3 = 8533.80 if T > 273.15

A1 = 1000, A2 = 14.717, A3 = 1886.79 if T ≤ 273.15

Dissociation kinetics parameters
∆Ea/R [K] 9400

k0
d

[
mol

m2 · Pa · s

]
3.6× 104

of Sg at 200 and 300 minutes along the diagonal aligned with flow direction, i.e. lineX−Y = 0.

In Fig. 4.7a the solution shows convergence with mesh-refinement. The flow in the right half
of the domain (i.e. Y + X − 1 > 0) is diffusion dominated, whereas, that in left half (i.e.
Y + X − 1 < 0) is convection dominated being strongly influenced by the low pressure in
the gas well. The gas front is more diffusive on a coarse mesh, but gets sharper as refinement
is increased. Fig. 4.7b shows the saturation of the gas plume that reaches the gas well at 300
minutes.

Figure 4.9: Test 2 - vg profile (at t = 30 minutes)
Red vectors represent vg in the hydrate zone

Black vectors represent vg in hydrate free zone.

Note that in Fig. 4.7a and Fig. 4.7b, what
appears to be a kink in gas saturation at the
corner of the hydrate zone is not a numerical
artifact. This kink is caused because of the fol-
lowing physical effects: the gas velocity in the
hydrate free zone is higher than that in the hy-
drate zone (due to difference of almost an or-
der of magnitude in the permeabilities) (See
Fig. 4.9). This causes the gas to be sucked
out of the hydrate zone faster than the time re-
quired by gas to equilibrate inside the hydrate
zone. So, the gas begins to deplete along the
edges of the hydrate zone. Further, the extent
of the depletion is higher where ġCH4 is lower
(i.e., where Pg is higher). This effect is more

clearly visible in Fig. 4.8a and Fig. 4.8b which show the Sg profiles along X-axis (at Y = 0.5
m) at times t = 300 min and t = 500 min respectively. The pressure in the right half along the
X-axis is higher than that in the left half, causing ġCH4 to be lower in the right half. Therefore,
the extent of gas depletion is higher in the right half of the hydrate zone.
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Figure 4.6: Test 2 - Sg profile
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4.3 Test 3: Verification of poroelasticity coupling
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Figure 4.10: Test 3 - Terzaghi problem
Schematic

In this example we ignore the methane hy-
drates in the medium, thus reducing the model
to a simple two-phase hydro-mechanical sys-
tem. We consider the classical 1D consoli-
dation problem by Terzaghi [104] to test the
fluid pressure response generated by the me-
chanical compression of the soil. This test
was originally formulated by Terzaghi for an-
alyzing the time delay observed when com-
pressing clay layers and is now considered as
a standard benchmark test for the coupling re-
lationships between fluid and mechanical sys-
tems.

Problem statement

The problem set-up consists of a confined
soil sample surrounded by a circular ring and
placed in a container filled with water. The
sample is loaded by a constant or ramped ver-
tical stress at its upper surface, and the defor-
mation is measured. The lower boundary is
impermeable, and the upper boundary is fully
drained. This is called a confined compression
test or an oedometer test. Fig. 4.10 shows a
schematic for this problem. It is expected that
the compression of a soil sample will be ac-
companied by an expulsion of pore fluids from

the sample. Also, if the soil permeability is low, this may take considerable time. In Terzaghi’s
original work, the pore fluid and the soil particles were both assumed to be incompressible, so
that the only mechanism of deformation was a rearrangement of the particles. However, Biot’s
more generalized consolidation framework, which is also the basis of our poroelasticity model,
accounts for both fluid and soil compressibilities. So, in the further discussion, the fluid and the
soil are treated as compressible mediums.

The mathematical description of such a problem in 1D reduces to a fluid diffusion equation of
hydrogeology,

∂tP − c
∂2

∂z2
P = 0 (4.1)

where, P is the mean fluid pressure given by P = SwPw+SnwPnw, and c is 1-D fluid diffusivity.
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Table 4.6: Test 3 - Terzaghi problem
Solid-matrix properties

Property Symbol Unit Value
Drained
bulk
modulus

Bs GPa 8.0

Poisson
ratio

ν - 0.20

Porosity φ - 0.19
Permeability K m2 1.9×

10−13

Biot
constant

α - 0.8

Table 4.7: Test 3 - Terzaghi problem
Fluid properties

Property Symbol Unit Value
Wetting fluid
Bulk
modulus

Bw GPa 2.933

Density ρw
kg
m3 997.05

Viscosity µw Pa · s 8.9008×
10−4

Non-wetting fluid
Bulk
modulus

Bnw GPa 1.187

Density ρnw
kg
m3 997.05

Viscosity µnw Pa · s 8.9008×
10−4

For a vertical load σzz ramped linearly at the top boundary at a rate dσzz/dt = σ̇z , the analyt-
ical solution for the pore pressure response is given as,

P (z, t)

P 0

= 1−
(
L− z
L

)2

− 32

π3

∞∑
m=0

(
−1m

(2m+ 1)3 e
(−ψ2ct) cos [ψ (L− z)]

)
(4.2)

where, P 0 is the total pressure generation given as,

P 0 =
L2

2c
(Hvσ̇z) . (4.3)

ψ = (2m+ 1)π/ (2L), L is the total column length, and z is the location in the column
downward from the applied stress. Hv is the 1-D Skempton coefficient given by,

Hv = − δP

δσzz

∣∣∣∣
εxx=εyy=ζ=0

=
α

BsvSv
(4.4)

where, Bsv is the uniaxial drained bulk modulus, and Sv is the 1-D specific storage given by
Sv = K/(µc).

µ is the fluid mobility given as
1

µ
=

1

2

(
1

µw
+

1

µnw

)

The complete derivation of the analytical solution (Eqn. 4.2) can be found in many of the
textbooks on soil mechanics, for example, Verrujit (2013) [109].
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Figure 4.11: Test 3 - Terzaghi benchmark test results

Numerical simulation

For benchmarking, we use the test setting described by Kolditz et al. [48]. A soil column of 50
m is chosen. The properties of the rock material are listed in Table 4.6, and that of the two fluid
phases are given in Table 4.7. The column is discretized uniformly into 200 grid cells. The initial
fluid pressure in the column is null, and the initial fluid saturations are Sw = 0.8 and Snw = 0.2.
The hydraulic properties are chosen as Pc = 0 and kr,w = kr,nw = 0.5. As shown in Fig. 4.10, a
load σzz = 10 MPa is applied at the top boundary at a loading rate of σ̇z = 0.01and 0.001 MPa/s.
The bottom boundary of the column is subjected to roller displacement BC and the top boundary
is allowed to compress freely under the applied load σ̇z . The top boundary is a free-drainage
boundary. All other boundaries are no-flow.

Results

The results of the numerical simulation for the two loading rates (σ̇z = 0.01, 0.001 MPa/s)
are presented in Fig. 4.11a and Fig. 4.11b. Compression of the column leads to a rapid pressure
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increase followed by dissipation of pressure over time from top of the column. It can also be
observed that for a lower loading rate, the pore-pressure equilibrates faster, whereas, for a higher
loading rate the pore-pressure takes longer to dissipate. The numerical results show a very good
agreement with the analytical solution.

4.4 Test 4: Verification of kinetics-poroelasticity coupling

We now extend Terzaghi’s 1D consolidation problem to include hydrate kinetics in the poroe-
lastic coupling. We consider a confined soil sample which is uniformly hydrated and fully sat-
urated with water. A constant vertical stress is applied at the top boundary while the lower
boundary is held fixed. The upper boundary is fully drained, while at the lower boundary the ini-
tial pressure is maintained at all times. For time t ≤ 0−, the thermodynamic state of the sample
lies on the hydrate stability curve, so that P 0− = P 0−

e , and the hydrate in the sample is stable
(see Fig. 4.12). Here, P indicates the phase pressure, and Pe indicates the equilibrium pressure
for hydrate stability. At time t = 0, the hydrate stability curve experiences an instantaneous shift
such that P 0

e > P 0−
e (while P 0 = P 0−). The hydrate becomes unstable and begins to disso-

ciate. This generates excess pore-pressure which prevents the full consolidation of the sample.
The schematic for this problem is shown in Fig. 4.13. Although highly simplified, this problem
helps us to isolate the poroelastic-kinetic coupling, thus providing a framework for validating the
numerical implementation of our hydro-mechanical code for the hydrate reservoir model.
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equilibrium curve 
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Initial system pressure

Initial equilibrium 
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Figure 4.12: Test 4 - Hydrate stability curve shift at t = 0
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Figure 4.13: Test 4 - Problem schematic

Problem statement

For this problem we make the following additional assumptions:

• Gas does not dissolve in water phase, and water vapor is not formed, i.e., χCH4
g = 1, and

χH2O
w = 1. Based on this assumption, we rewrite the mass balance equations for water and

methane in Chapter 2 phase-wise instead of component-wise.

• All the processes, including hydrate phase change, are isothermal.

• There is no suction pressure between the two mobile phases, so that Pg − Pw = 0. Since
the phase pressures are now equal, we drop the subscript and assign the symbol P to the
phase pressures throughout this section.

• Relative permeabilities are kr,g = kr,w = 0.5.

• Effect of gravity is neglected.

• Effect of porosity and hydrate saturation on intrinsic permeability K is neglected, i.e. K
is constant.

Further, we simplify the hydrate reaction kinetics model as,

q̇g = k0 As Mg (Pe − P )

As = As,0 Sh (4.5)

where k0 is the rate of hydrate dissociation, and As,0 is the specific surface area of the hydrate
free sample. Both k0 and As,0 are assumed to be constant.
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Using these assumptions, we can reduce the mathematical model described in Chapter 2 to an
ODE for the pressure P , given by

α
d

dt
εv + S

d

dt
P = ∇ · K

µf
∇P + C Sh (Pe − P ) . (4.6)

A detailed derivation is given in Appendix A.

The term S, called the Storativity, is given as,

S = φe

(
Sw,e
Bw

+
Sg,e
Bg

)
+

(α− φe)
Bsh

,

the term C lumps the volumetric source terms, as,

C =

(
Nh

Mw

ρw
+
Mg

ρg
− Mh

ρsh

)
k0 As,0 ,

εv is the volumetric strain given as εv = ∇ · u, α is Biot’s constant, and, µf is the fluid mobility
given as,

1

µf
=

1

2

(
1

µg
+

1

µw

)
.

Eqn. (4.6) is the storage equation. In this form it can be interpreted as: on the REV scale,
the compression of the soil consists of compression of the pore-fluids and the compression of the
solid particles, plus the total volume of fluid expelled from the REV and the fluid generated in
the REV.

Further, in Eqn. (4.6), the term
[
α
d

dt
εv

]
is the mechanical part, and the term

[
∇ · κ

µf
∇P

]
is

the flow part. The terms
[
S
d

dt
P

]
and [C Sh (Pe − P )] are the coupling terms, the former for the

coupling between the flow and the mechanical models, and the latter for the coupling between
the flow and the reaction kinetics models.

For the 1D problem under consideration, we can rewrite Eqn. (4.6) as

α
d

dt
εv + S

d

dt
P =

K

µf

d2

dz2
P + C Sh (Pe − P ) . (4.7)

In case of 1D deformation, the volumetric strain equals the vertical strain and is induced by
the vertical stress σ′zz ,

d

dt
εv = −Cm

d

dt
σ′zz = −Cm

(
d

dt
σzz − α

d

dt
P

)
, (4.8)

where, Cm is the compressibility of bulk porous material, such that Cm =
1

Bm
.
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Thus, we eliminate
d

dt
εv in Eqn. (4.7) using Eqn. (4.8), which gives

d

dt
P =

αCm
α2Cm + S

d

dt
σzz +

κ

µf (α2Cm + S)

d2

dz2
P +

C Sh
α2Cm + S

(Pe − P ) . (4.9)

At time t = 0, an external load q is instantaneously applied, and the equilibrium pressure of
hydrates is instantaneously changed from P 0−

e to P 0
e . Since both these processes are instanta-

neous, no fluid is mobilized at t = 0, i.e., in Eqn. (4.9),
d2

dz2
P = 0. So, from Eqn. (4.9), we get

the initial condition of the sample as

t = 0 : P = P 0 =
αCm

α2Cm + S + CSh
q +

CSh
α2Cm + S + CSh

P 0
e . (4.10)

For t > 0, the external load remains constant, so
d

dt
σzz = 0. The equilibrium pressure also

remains constant, i.e., P 0+
e = P 0

e = Pe. Thus, from Eqn. (4.9),

t > 0 :
d

dt
P =

κ

µf (α2Cm + S)︸ ︷︷ ︸
Cv

d2

dz2
P +

C Sh
α2Cm + S︸ ︷︷ ︸

Cr

(Pe − P )

=⇒ t > 0 :
d

dt
P = Cv

d2

dz2
P + Cr (Pe − P ) . (4.11)

Cv is the consolidation parameter which comes from the Terzaghi’s classical theory of consoli-
dation. Cr is the reaction parameter. It is indicative of the damping of the normal consolidation
due to dissociation kinetics.

The boundary conditions at the top and bottom of the sample are

t > 0, z = L :
d

dz
P = 0

t > 0, z = 0 : P = P 0 . (4.12)

The ODE in Eqn. (4.11) is a non-homogeneous ODE. We can homogenize it by choosing a
new primary variable P such that P = Pe−P . Then the initial-boundary-value problem (IBVP)
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can be formally summarized as

0 ≤ z ≤ L, t > 0 :
d

dt
P = Cv

d2

dz2
P − Cr P

z = 0, t > 0 : P = Pe − P 0

z = L, t > 0 :
d

dz
P = 0

0 ≤ z ≤ L, t = 0 : P = Pe − P 0

where, P 0 =
αC0

m

α2C0
m + S0 + CS0

h

q +
CS0

h

α2C0
m + S0 + CS0

h

Pe

(4.13)

which is a homogeneous ODE with non-homogeneous boundary conditions. An analytical so-
lution can be obtained for this problem using any of the standard techniques for solving ODEs.
The final solution for P can be written as,

Pe − P (z, t)

Pe − P 0
=

cosh (θ (L− z))
cosh (θL)

+
2

L

∞∑
n=1

(
1

λn

[
1− λ2

n

λ2
n + θ2

]
sin (λnz) exp

[
−Cv

(
λ2
n + θ2

)
t
])

. (4.14)

The details of the solution for the IBVP are included in Appendix B.

Computational domain and test setting

We chose a sample of length L = 1 m containing 30% hydrate by volume. The sample is initially
fully water saturated and is contained in a pressure vessel at P 0 = 6 MPa. A constant external
load q = 10 MPa is applied at the top boundary, i.e., at z = L = 1. At the bottom boundary, i.e.,
z = 0, the pressure is held constant at the initial value.

Fig. 4.14 shows the domain specifications, the initial conditions, and the boundary conditions.
The material properties are listed in Table 4.8.

The storage equation governing this problem, Eqn. (4.13), contains two parameters: Cv and
Cr. To test the numerical implementation, we chose three different values of Cv and Cr, each
with a different order of magnitude. Therefore, we run nine tests with all combinations of the
chosen Cv and Cr. We control the parameter Cv by varying the sample permeability κ and
the parameter Cr by varying the dissociation rate constant k0. For each test, the value of Pe
is chosen such that the initial condition of no-drainage is satisfied. The control parameters for
each of the nine tests are listed in Table 4.9. It can be observed in Table 4.9 that as the reaction
rate constant k0 increases the value of equilibrium pressure Pe decreases. This is due to the
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Figure 4.14: Test 4 - Computational domain settings

Table 4.8: Test 4 - Material properties

Property Symbol Unit Value
Water phase

Density ρw kg ·
m−3

997.05

Molar mass Mw kg ·
mol−1

0.018

Dynamic
viscosity

µw Pa · s 8.9008×
10−3

Bulk
modulus

Bw GPa 2.933

Gas phase
Density ρg kg ·

m−3
0.717

Molar mass Mg kg ·
mol−1

0.016

Dynamic
viscosity

µg Pa · s 1.0245×
10−5

Bulk
modulus

Bg GPa 0.1013

Property Symbol Unit Value
Hydrate phase

Density ρh kg ·
m−3

900

Molar mass Mh kg ·
mol−1

0.119

Hydration
number

Nh − 5.75

Young’s
modulus

Eh GPa 1.35

Soil phase
Density ρs kg ·

m−3
700

Surface
area

As,0 m2 105

Young’s
modulus

Es GPa 0.3

Solid composite
Poisson
ratio

νsh − 0.2

Biot
constant

α − 0.8
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Table 4.9: Test 4 - Control parameters

test
ID

κ
[mD]

k0 ×a∗[
mol

m2 Pa s

] Cv Cr Pe
[MPa]

1 0.1 360 1.53755 0.289504 19.151
2 0.01 360 0.153755 0.289504 19.151
3 0.001 360 0.0153755 0.289504 19.151
4 0.1 3600 1.53755 2.89504 7.315
5 0.01 3600 0.153755 2.89504 7.315
6 0.001 3600 0.0153755 2.89504 7.315
7 0.1 36000 1.53755 28.9504 6.132
8 0.01 36000 0.153755 28.9504 6.132
9 0.001 36000 0.0153755 28.9504 6.132

∗a = exp (−∆Ea/(RT )), where, ∆Ea/R = 9400 K and T = 283.15 K

no-drainage condition at t = 0. The faster the dissociation, the more the generated fluids will
mobilize. Conversely, the slower the dissociation reaction, the higher margin we get for raising
Pe without instantaneously mobilizing the fluids.

Simulation and results

The domain is discretized into 400 cells in z-direction, and the problem is solved in 1D. The
time-step is kept constant at t = 0.1 s and the simulation is run until tend = 60 s.

In Fig. 4.15, the numerically computed pressure values for each test case 1− 9 are compared
with the analytical pressure P (z, t) obtained from Eqn. (B.11). For each test case, the pressure
solutions are plotted over time at the observation points z = 1 m, 0.8 m, 0.6 m, 0.4 m and 0.2 m.
The plots show a good agreement between the numerical and the analytical solutions signifying
that the poroelastic - reaction kinetics coupling terms are correctly handled in the numerical code.

testID-3 The pressure build-up along the length of the sample is plotted for testID 3 in Fig.
4.17. Also, for testID 3 a grid-convergence study is performed. The mesh is refined from n = 25
cells up to n = 800 cells, and correspondingly, the time-step size is reduced from δt = 2s down

to δt = 0.0625s such that the ratio
δz

δt
remains constant. The L2 error is calculated at t = 10s

for each refinement and is plotted against the number of grid-cells n on a log-log graph in Fig.
4.16. It can be seen that the error decays linearly with refinement. This is in line with the finite
volume discretization technique.
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(a) TestID 1 (b) TestID 2 (c) TestID 3

(d) TestID 4 (e) TestID 5 (f) TestID 6

(g) TestID 7 (h) TestID 8 (i) TestID 9

Legend: rrrrrrrrr numerical solution , analytical solution

Figure 4.15: Test 4 - Comparison of numerical and analytical solutions
Note: For TestID 5, pressure profiles at z = 1 m and 0.8 m are equal, for TestID 6 and TestID 8, pressure
profile at z = 1 m, 0.8 m, 0.6 m, and 0.4 m are equal, and for TestID 9 pressure profile at z = 1 m, 0.8 m,

0.6 m, 0.4 m, and 0.2 m are equal.
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Figure 4.16: Test 4 - testID 3: L2-error vs n

Figure 4.17: Test 4 - testID 3: Time-evolution of the numerical solution of P along the height of the
sample



Chapter 5
Performance evaluation of the MRT
methods

In this chapter, we test the performance of the two MRT algorithms presented in Section 3.3.
We consider a 1D consolidation in a depressurized methane hydrate sample as our test problem.
The test setting is described in Section 5.1. This problem is numerically simulated using the
semi-implicit and the compound-fast MRT methods. For comparison, the problem is also sim-
ulated using the iterative block Gauss-Seidel scheme. The performance of the MRT methods is
evaluated in terms of accuracy and speedup as compared to the iterative solution scheme, which
are defined in Section 5.2. The errors and the speedup obtained for both the MRT methods are
presented in Section 5.3, and some conclusions are drawn in Section 7.3 on the advantages and
disadvantages of each of the MRT method in terms of their applicability to our hydrate reservoir
model. In particular, we discuss the factors which affect the choice of a particular MRT method
for a given problem.

5.1 Test problem

The problem set-up consists of a confined soil sample of height 1m. The sample has a uni-
formly distributed hydrate saturation of Sh = 0.4 and is fully saturated with water. The porosity
and the permeability of the hydrate free soil are φ = 0.3 and κ = 10−12 m2 respectively. A
constant vertical stress of 1 MPa is applied at the top boundary while the lower boundary is held
fixed. At the upper boundary the pressure is kept constant at the initial value of 10 MPa, while at
the lower boundary a low pressure of 6 MPa is maintained at all times.

The schematic for this problem is shown in Fig. 5.1. The selected material properties and
model parameters are listed in Table 5.1.

61
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Table 5.1: Material properties and model parameters

Thermal conductivities
kcg −0.886× 10−2 + 0.242× 10−3 T −

0.699× 10−6 T 2 + 0.122× 10−8 T 3

W
m·K

kcw 0.3834 ln(T )− 1.581 W
m·K

kch 2.1 W
m·K

kcs 1.9 W
m·K

Specific heat capacities
Cpw 4186 J

kg·K
Cvw Cpw +RH2O

J
kg·K

Cvh 2700 J
kg·K

Cvs 800 J
kg·K

Dynamic viscosities

µg 10.4 e−6

(
273.15 + 162

T + 162

)(
T

273.15

)1.5

Pa · s

µw 0.001792 exp

[
−1.94− 4.80

(
273.15

T

)
Pa · s

+6.74

(
273.15

T

)2
]

Densities

ρg
Pg

zRgT
kg
m3

ρw 1000 kg
m3

ρh 900 kg
m3

ρs 2100 kg
m3

Hydraulic properties
Brooks-Corey parameters
λBC 1.2
Pentry 50 kPa

Hydrate kinetics

kr 3.6× 104 exp

(
−9752.73

T

)
mol

m2·Pa·s

Nh 5.75
Peqb A1 = 1000, A2 = 14.17, A3 = 1886.79 Pa

Q̇h B1 = 56599, B2 = 16.744 W
m3

Poroelasticity parameters
αbiot 0.8
νsh 0.15
Esh 160 + 250 Sh MPa
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T 0    =100C
Sh , 0  = 0.4
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m
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P (0, t)
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P (L , t)
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σ zz(L , t)=1 MPa

uz(0,t )=0

Figure 5.1: Schematic of the 1D test problem

5.2 Numerical simulation

We discretize the space domain into 200 cells along the Z-axis, and run the simulation up to
T = 18000 sec. For simplicity, we assume uniform, non-adaptive micro and macro time-grids.
The time step size for the micro grid is fixed at hn,k = h = 60 sec for all n and k. This time-step
satisfies the CFL condition for the flow model to ensure stability of the active system. We chose
different values of the multirate factor, as,

m = [1, 2, 5, 10, 20, 30],

so that the macro grid is m times coarser than the micro grid, i.e. Hn = H = mh for all n.

We evaluate the performance of the two MRT methods in terms of 1) Speed up, and 2) Relative
error. Speed up is calulated as,

speed-up =
CPU-time for m-step MRT method

CPU-time for iteratively coupled scheme
(5.1)

The time step size of h = 60 sec is used for the iteratively coupled scheme.
The relative error is calculated as,

relative error =
L2-error by m-step MRT method

L2-error by iteratively coupled scheme
(5.2)

where, to compute the error in the solution from the iteratively coupled scheme and the MRT
schemes, the solution from a fully coupled fully implicit scheme is used as the reference solution.
The time step size used for the fully coupled fully implicit scheme is also h = 60 sec.

For the solution of the active system on the micro grid, a minimum error reduction of 10−8 is
prescribed for the Newton solver. For the predictor step of the Compound-fast MRT method, the
minimum error reduction for the Newton solver is relaxed to 10−3.
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5.3 Results

5.3.1 Semi-implicit MRT method

Relative error

In Fig. 5.2, the relative error in Pg is plotted over m for the semi-implicit MRT method using
polynomials of order p = 0, 1, 2, 3 in the extrapolation steps. The scheme with polynomial of
order p = 0 is the most stable, but gives only ≈ 80% accuracy as compared to the iteratively
coupled solution scheme, while the polynomial of order p = 2 gives an accuracy of ≈ 99%
compared to the iteratively coupled scheme for m ≤ 5, but becomes increasingly unstable for
higher m. The polynomial of order p = 3 does not give any significant advantage in terms of
accuracy but makes the scheme highly unstable.
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Figure 5.2: Relative error in Pg over m at t = 18000 sec for the semi-implicit fast-first MRT method
using polynomials of order p = 0, 1, 2, 3 to approximate XG in the extrapolation steps.

Speed up

Consider integration by the iteratively coupled and the semi-implicit MRT schemes between
the synchronization level n − 1 to n. There are m uniform micro steps of size h and one macro
step of size H = mh between n− 1 and n. The iteratively coupled scheme solves both the flow
and the geomechanical systems on the micro grid, while the semi-implicit MRT solves the flow
system on the micro grid and the geomechanical system on the macro grid.

Let Wg be the time required to solve the geomechanical system, and wf be the time required
for executing one Newton step in the flow system. If the iterative scheme requires nit Newton
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steps to converge, then time required to solve the flow system per step is Wf = nitwf . Further,
if nfp fixed-point iteration steps are required to get the solution, then the total time required for
integration from n− 1 to n using the iteratively coupled scheme is,

(CPU-time)it = m nfp (Wf +Wg) .

Similarly, if the semi-implicit MRT scheme takes nmrt1 Newton steps to converge, then time
required to solve the flow system per micro step is,

Wf,mrt1 = nmrt1wf = ns1Wf ,

where, ns1 =
nmrt1
nit

.

The total time required for integration from n − 1 to n using the semi-implicit MRT scheme is,
thus,

(CPU-time)mrt1 = m ns1 Wf +Wg

Therefore, the speed up is given as,

speed-up =
(CPU-time)it

(CPU-time)mrt1
=
m nfp (Wf +Wg)

m ns1 Wf +Wg

=
nfp m

ns1 (1− C)m+ C
(5.3)

where, C =
Wg

Wf +Wg
.

In Eqn. (5.3), 0 < C < 1, nfp ≥ 1, and ns1 = 1 for a stable system and ns1 > 1 for an
unstable system.

We can identify the following two special cases:

1. For a stable system, for the case of m = 1 (i.e. decoupled sequential scheme) we get the
minimum value of speed-up,

(speed-up)min = nfp . (5.4)

2. For infinitely large m (i.e. the limiting case of m → ∞) we get the maximum value of
speed-up,

(speed-up)max =
nfp

ns1 (1− C)
. (5.5)
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Figure 5.3: Speed up in Pg over m for the semi-implicit fast-first MRT method using polynomials of
order p = 0, 1, 2 to approximate XG in the extrapolation steps.

The speed-up curves for the extrapolation based semi-implicit MRT schemes using polynomi-
als of order p = 0, 1, 2 are plotted in Fig. 5.3. For comparison, the speed-up curve from Eqn.
(5.3) is also plotted in Fig. 5.3 using Wg = 0.9 sec, Wf = 1.21 sec, nfp = 2 and ns1 = 1. We
can see that our numerical results for the speed-up reflect very well the behaviour expected from
Eqn. (5.3). The speed up curves for polynomial order p = 0, 1, 2 coincide for those values of m
where the respective schemes are stable. The maximum speed-up for polynomial order p = 2 is
slightly lower due to instabilities at higher m, as predicted.

It can be further inferred that the higher the value ofC, the higher is the speed-up. This implies
that for problems where the solution of the latent system is more time-consuming, for example
in the non-linear case or the 3D case, a higher speed-up can be expected from the extrapolation
based semi-implicit MRT schemes.

Stability of the scheme with extrapolation polynomial of order p = 2

For problems where a high accuracy is desired, we usually use an extrapolation polynomial of
order p = 2, but this results in instabilities. In Fig. 5.4a and Fig. 5.4b showing the Pg and the uz
profiles, we can see that the solutions deviate from the reference solution very much for m > 10
for this example. This implies that we cannot choose any arbitrary value of m. The value of m
should be small enough so that the extrapolation error does not dominate, but it should be large
enough so that we can take advantage of the speed up optimally, thus making the choice of m an
important consideration.

Choice of m: Consider the non-dimensional numbers Cv and Cr. Cv is the consolidation
coefficient which comes from Terzaghi’s consolidation theory, and is given by,

Cv =
κ
(
kr,w
µw

+
kr,g
µg

)
α2
biotKm + S

.
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(a) Pg profile over z at t = 3600 sec. (b) uz profile over z at t = 3600 sec.

Figure 5.4: Pg and uz profiles for fully-coupled (FC) scheme, iteratively-coupled (SEQ-it) scheme, and
m-step semi-implicit MRT schemes using polynomial of order p = 2 for extrapolation.

Cr is the reaction coefficient indicative of the damping of the normal consolidation due to disso-
ciation kinetics, and is given by,

Cr =

(
Mg

ρg
+Nh

Mw
ρw
− Mh

ρh

)
krAr,s

α2
biotKm + S

,

where, φe = φ (1− Sh) is the effective porosity, S is the bulk storativity of the system given by,
S = φe (KwSw,e +KgSg,e) + (α− φe)Ksh, Kγ is the compressibility of material γ, and

Km =
Ksh

1− αbiot
is the compressibility of the bulk porous material.

The derivation of Cr can be found in Test problem 4 in Section 4.4 for a simplified 1D consol-
idation problem with hydrate dissociating in the sample due to depressurization.

The rate of consolidation is directly proportional to Cv and inversely proportional to Cr. Thus,
the Cv/Cr ratio can be seen as the relative activity of the latent component.

In Fig. 5.5, we show the errors in Pg plotted over m for a broad range of Cv/Cr ratio. We
observe that the higher the relative activity of the latent component, the more dominating is the
extrapolation error. For the case of a non-dominating extrapolation error, the values of m can be
chosen very large. However, in the absence of a priori estimate of the relative activity, the value
of m must be kept small in order to keep the relative error close to 1. In our hydrate reservoir
simulator we choose m ≤ 5.
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Figure 5.5: Error in Pg plotted over m for different values of the Cv/Cr ratios for m-step semi-implicit
MRT schemes using polynomial of order p = 2 for extrapolation.

5.3.2 Compound-fast MRT method

Relative error

In Fig. 5.6a and Fig. 5.6b, we show the relative errors in Pg and uz plotted over m, respec-
tively, for the compound fast MRT method. For comparison, we have also plotted the errors in
Pg and uz for the semi-implicit MRT method using extrapolation polynomials of order p = 2.
We can see that the relative errors for this scheme remain close to 1 and do not depend on m
significantly.

In this example, the active ODE becomes unsolvable in the predictor step at m ≥ 60 for the
minimum error reduction of 10−3 that is prescribed for the Newton solver.

Speed-up

Fig. 5.6c shows the speed up obtained from this scheme as compared to the speed up from the
semi-implicit scheme. We can see that this scheme gives lower speed up, especially at smaller
values of m.

The speed-up curve can be derived for the compound-fast method using similar arguments
as in the case of the semi-implicit MRT method. The compound-fast method solves the flow
system once on the macro-grid (during the predictor step) and once on the micro grid (m micro-
steps), and the geomechanical system twice on the macro grid (once during the predictor step,
and once during the corrector-macro step). If the compound-fast scheme takes nmrt2,p and nmrt2
Newton steps to converge for the predictor-step and for each micro-step, respectively, then the
time required to integrate the flow system per micro step is,

Wf,mrt2 = nmrt2 wf = ns2 Wf ,

and the time required to solve the flow system for the predictor step is,

Wf,p = nmrt2,p wf = ns2,p Wf ,
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where, ns2,p =
nmrt2,p
nit

, and ns2 =
nmrt2
nit

. Furthermore, since the scheme is stable, ns2 = 1.

The total time required for integration from n− 1 to n using the compound-fast MRT scheme
is, thus,

(CPU-time)mrt2 = Wg,p + (ns2,p +m)Wf +Wg

where, Wg,p is the time required to solve the geomechanical system in the predictor step.

Therefore, the speed-up is given as,

speed-up =
(CPU-time)it

(CPU-time)mrt2

=
m nfp (Wf +Wg)

Wg,p + (ns2,p +m)Wf +Wg

=
nfp m

(1− C)m+ C + ∆p
(5.6)

where, ∆p = ns2,p (1− C) + Cp , s.t., Cp =
Wg,p

Wf +Wg
.

In Eqn. (5.6), ∆p > 0 because ns2,p > 0, Cp > 0 and 0 < C < 1.

Comparing equations (5.3) and (5.6), we can conclude that for any given m ≥ 1, the speed-
up obtained from the compound-fast MRT method is always smaller than that obtained from
corresponding semi-implicit MRT method. However, for the limiting case ofm→∞, the speed-
up from compound-fast method approaches the speed-up from a stable semi-implicit method.

5.4 Discussion

5.4.1 Semi-implicit MRT method

Advantages

• This scheme gives a higher speed up for a given m, especially if the natural time scale of
the latent component is comparable to that of the active component.

• This scheme is more attractive when the solution of the latent system is more time-consuming,
for example in case of a 3D problem where the matrix assembly times are larger, or when
the latent AE system is non-linear.
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Figure 5.6: Relative error and speed-up curves for the compound-fast MRT method and the semi-implicit
MRT method using polynomial of order p = 2 for extrapolation.



5.4. DISCUSSION 71

Disadvantages

• The scheme with lower order polynomials for extrapolation shows high stability but low
accuracy. The use of higher order polynomial extrapolation improves the accuracy signif-
icantly, but introduces errors which grow exponentially with m, thus, making the scheme
unstable at large m values.

• With the use of higher order polynomials, the choice of m becomes strongly dependent on
the actual activity of the latent components.

• For problems where relative activities of the components are expected to fluctuate over
time, one must use an MRT scheme which is relatively insensitive to the component activ-
ities. Therefore, for such problems the semi-implicit scheme can only be used with lower
order polynomial extrapolation, thus compromising the accuracy of the solution.

5.4.2 Compound-fast MRT method

Advantages

• This scheme is stable for arbitrarily large values of m, provided that the active system is
stable and solvable upto the prescribed error reduction in the predictor-step [107].

• The errors in solution are comparable to that of the iteratively coupled solution scheme
and do not grow with increasing m. The time-mesh for the latent component can be made
quite coarse irrespective of the actual activity of the latent component.

• It is easier to handle problems where the activity of latent system fluctuates in time because
the stability of the scheme is insensitive to the refinement of the macro-grid.

Disadvantages

• It gives lower speed-up as compared to the semi-implicit scheme, especially for lower
values of m. If the natural time scale of the latent system is large, then this increase in
computation time due to predictor steps can be compensated by using a very coarse macro
grid. If, however, the natural time scale of the latent system is small and/or the time-
evolution of the latent component is desired at a finer resolution, then this method may
prove computationally more intensive.

To conclude, for multi time-scale hydro-geomechanical subsurface flow problems the multi-
rate time stepping methods provide a significant speed up as compared to fully coupled or de-
coupled (iterative or sequential) schemes, provided the model can be partitioned into sufficiently
weakly coupled subsystems having distinctly different time-scales. In our case, we deal with
subsurface hydrate reservoirs where the mathematical model is naturally partitioned into active
flow system and latent geomechanical system. In this chapter, we have shown that the stability
of the extrapolation based semi-implicit method is sensitive to the relative activity of the latent
component, while the compound-fast method is fairly independent of the relative activity of the
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latent component. If the difference in time-scale between the active and latent components is
comparable, then the semi-implicit MRT is very attractive as it gives a higher speed up. It must,
however, be kept in mind that this method is only conditionally stable for higher order extrapola-
tion and extrapolation errors tend to pile up with increasing m. It is therefore necessary to keep
the choice of m small. On the other hand, if the difference in time-scale between the active and
latent components is large, then the compound fast MRT method is more suitable as it is stable
for arbitrarily large values of m, provided that the active system is solvable in the predictor step.
Another important consideration is whether the relative activities are expected to vary over time.
For problems where the activity of the latent component in particular fluctuates in time, it is im-
portant that the MRT method be insensitive to the the relative activity of the latent component,
thus making compound-fast MRT methods very attractive in such cases.



Chapter 6
Numerical study of a 3D hydrate reservoir
problem

In Chapter 4, we considered examples which focussed on systematically isolated couplings
and model components. In this chapter, we present a more complex example where we simu-
late the hydro-geomechanical processes in a subsurface hydrate reservoir which is destabilized
by depressurization using a low pressure gas well. This example puts together all the impor-
tant components of our model including dissociation kinets, non-isothermal effects, multi-phase
multi-component fluid flow, and geo-mechanics, and qualitatively shows the effects and counter
effects of various physical processes occurring in the hydrate reservoir. The objective of this
example is to give an insight into the capabilities of our hydrate reservoir model. A detailed
quantitative analysis of the problem and parameter sensitivity study is, however, beyond the
scope of this thesis.

6.1 Test setting

We consider a scaled down 3D reservoir with dimensions 10m× 10m× 5m, as shown in Fig.
6.1. The hydrate is homogeneously distributed in a 4m thick layer lying between 0.5m ≤ z ≤
4.5m, and has a saturation of 40% by volume. The reservoir is fully saturated with water and
has an initial pressure of 10 MPa. The reservoir is depressurized through a low pressure gas well
located at (0, 0, z). The pressure in the gas well is maintained at Pwell = 4 MPa. A constant
vertical load of 10 MPa is acting on the top boundary of the reservoir (i.e. at z = 10 m).

The initial and the boundary conditions are listed in Table 6.1 and Table 6.2, respectively. The
material properties and other model parameters are listed in Table 6.3.
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Table 6.1: Initial conditions for depressurized 3D-reservoir example

Hydrate layer
Peff,i = 10 MPa
Sh,i = 0.4

at t = 0, for Sg,i = 0
0 ≤ x, y ≤ 10 , 0.5 ≤ z ≤ 4.5 Ti = 10 0C

Ki = 0.0198 mD
φeff,i = 0.18

Hydrate-free layers
Peff,i = 10 MPa

at t = 0, for Sh,i = 0
0 ≤ x, y ≤ 10 , z < 0.5 Sg,i = 0
and Ti = 10 0C
0 ≤ x, y ≤ 10 , z > 4.5 Ki = 0.1 mD

φeff,i = 0.3

Table 6.2: Boundary conditions for depressurized 3D-reservoir example

FLOW model
Gas well at Pg = 4 MPa
x = 0, y = 0, 0 ≤ z ≤ 5 Sw = 0

∇ · T = 0

Pressure constraint at Peff = Peff,i
x = 10, y = 10, 0 ≤ z ≤ 5 Sw = Sw,i

T = Ti
No-flow and adiabatic
conditions

vg · n̂ = 0

on remaining boundaries, i.e., vw · n̂ = 0
∇ · T = 0

GEOMECHANICAL model
Top boundary
0 ≤ x ≤ 10 , 0 ≤ y ≤ 10 ,
z = 5

σzz = 10 MPa ,
σxy = σyx = 0

Bottom boundary
0 ≤ x ≤ 10 , 0 ≤ y ≤ 10 ,
z = 0

uz = 0 ,
σxy = σyx = 0

Remaining boundaries
ux = uy = 0 ,
σzz = 0
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Figure 6.1: Schematic of depressurized 3D-reservoir example

Table 6.3: Material properties and model parameters for 3D-reservoir problem

Thermal conductivities
kcg −0.886× 10−2 + 0.242× 10−3 T W ·m−1 ·K−1

−0.699× 10−6 T 2 + 0.122× 10−8 T 3

kcw 0.3834 ln(T )− 1.581 W ·m−1 ·K−1

kch 2.1 W ·m−1 ·K−1

kcs 1.9 W ·m−1 ·K−1

Specific heat capacities
Cpw 4186 J · kg−1 ·K−1

Cvw Cpw +RH2O J · kg−1 ·K−1

Cvh 2700 J · kg−1 ·K−1

Cvs 800 J · kg−1 ·K−1

Dynamic viscosities

µg 10.4 e−6
(

273.15+162
T+162

) (
T

273.15

)1.5
Pa · s

µw 0.001792 exp
[
−1.94− 4.80273.15

T + 6.74
(

273.15
T

)2]
Pa · s

Densities
ρg

Pg
zRgT

kg ·m−3

ρw vapour: 0.0022
Pg
T kg ·m−3

Continued on next page
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Table 6.3 – Material properties and model parameters for 3D-reservoir problem (continued)
liquid: 1000 kg ·m−3

ρh 900
[
1 +

(
αbiot−φ

1−φ

)
∆Peff
Bsh

−
(
λsh+(2/3)Gsh

Bsh

)
∇·u

1−φeff

]
kg ·m−3

ρs 2100
[
1 +

(
αbiot−φ

1−φ

)
∆Peff
Bsh

−
(
λsh+(2/3)Gsh

Bsh

)
∇·u

1−φeff

]
kg ·m−3

Hydraulic properties
λBC 1.2
Pentry 50 kPa
m,a (Eqn. (2.12)) 3, 2

Hydrate kinetics
k0
reac 3.6× 104 mol ·m−2 ·Pa−1 · s−1

∆Ea/R 9752.73 K
NHyd 5.75
A1, A2, A3 (Eqn. (2.21)) 1000, 38.98, 8533.8
B1, B2 (Eqn. (2.22)) 56599, 16.744
Γr (Eqn. (2.20)) φ Sh

Poroelasticity parameters
αbiot 0.6
νsh 0.2
Es0 0.3 GPa
Eh 1.35 GPa
b, c, d (Eqn. (2.26)) 0, 1, 1

6.2 Numerical simulation and results

The domain is discretized into 30× 30× 15 cells. Full hydro-geomechanical model is solved.
The decoupling strategy and iterative block Gauss-Seidel solution scheme described in Section
3.2 is used. The primary variables being solved for are: gas phase pressure Pg, aqueous phase
saturation Sw, hydrate phase saturation Sh, temperature T , total porosity φ, and displacements
u. Some of the other important secondary variables which are calculated as post process include
gas saturation Sg, effective porosity φeff , intrinsic permeabilityK, stresses σ̃′, strains ε̃, etc. The
simulation is run until tend = 24 hrs with a time step size of dt = 200 s.

Selected profiles showing the state of the reservoir at tend are shown in Fig. 6.3. The low
pressure in the gas well destabilizes the methane hydrate, which dissociates into methane gas and
water. The pressure gradient draws the fluids towards the gas well. Fig. 6.3a shows the melted
hydrate, and Fig. 6.3b shows the accumulated gas in the vicinity of the gas well. Fig. 6.3c shows
the temperature distribution in the reservoir. The temperature drops in the zone where the hydrate
is dissociating, due to the endothermic nature of hydrate dissociation. Fig. 6.3d shows the stress
built up in the region aroung the well where the hydrate is dissociating. The model predicts that
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the stresses are highest around the hydrate dissociation front. Fig. 6.3e and Fig. 6.3e show the
change in effective porosity and intrinsic permeability as a result of hydrate dissociation and soil
deformation. It can be seen that the effect of soil deformation on effective porosity and intrinsic
permeability is quite significant. The vectors in Fig. 6.3 show the displacements u. The domain
is warped with respect to displacement to show the ground subsidence around the well clearly.
The warping of the domain is achieved through post-processing using PARAView [3].

6.3 Numerical solution using multirate time stepping

We now simulate this problem using the compound fast MRT method, and the semi-implicit
MRT method with p0 polynomial extrapolation, and show the speed-up obtained in our calcula-
tions. We assume uniform, non-adaptive micro and macro time-grids, and chose the following
values of the multirate factor,

m = [1, 2, 5, 10, 15, 30] .

The micro grid size is chosen as h = 200 s, and the macro grid size as H = m h.

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

Compound-fast MRT

Semi-implicit MRT

no. of sub-steps (m)

sp
ee

d 
up

Figure 6.2: 3D hydrate reservoir problem
Speed up over m for the compound-fast MRT method, and the semi-implicit MRT method using p0

polynomial for extrapolation.

The speed-up is evaluated using Eqn. (5.1). Fig. 6.2 shows the speed − up vs. m curves
obtained for the semi-implicit and the compound-fast MRT methods. We can see that, by using
the MRT methods for time-integration we can get a significantly large speed up for the 3D case.
For this problem, the CPU-time required to obtain the solution at tend using compound-fast MRT
method withm = 30 was approximately 12 hrs. In comparison, the CPU-time required by the it-
erative Gauss-Seidel scheme to obtain the solution with comparable accuracy was approximately
144 hrs.
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(a) Hydrate saturation (b) Gas saturation

(c) Temperature (d) Deviatoric stress

(e) Effective porosity (f) Intrinsic permeability

Figure 6.3: 3D hydrate reservoir problem
Selected profiles at tend



Chapter 7
Model verification using triaxial
compression lab experiments

To reliably predict the mechanical behavior of gas hydrate-bearing sediments during gas pro-
duction, numerical tools must be sufficiently calibrated against data from controlled experiments
or field tests, and the capability of the hydrate reservoir model in handling the dynamic cou-
plings observed in the lab/field scales must be thoroughly tested. To this effect, a combined
experimental-numerical study was performed with the objective of testing the developed hydrate
reservoir model against data from lab-scale experiments on methane hydrate formation and dis-
sociation combined with high-pressure triaxial testing.

The experiments were performed by Christian Deusner at GEOMAR in Kiel, Germany. The
experiments involved a controlled triaxial volumetric strain test on a sand sample in which
methane hydrate was first formed under controlled effective stress and then dissociated via de-
pressurization under controlled total stress. It has been assumed that this is realistic for natural
settings where the gas hydrates form at increased hydrostatic pressure in relatively shallow, un-
consolidated sediments at low effective stress, and depressurize under drained conditions without
changing the sediment and bulk fluid overburden, thus, assuming gas hydrates being located in a
highly permeable formation, which is confined by sediment regions of much lower permeability.
In the experiment, the gas hydrate was initially formed by pressurizing partially water-saturated
sand with gaseous methane to reach a gas hydrate saturation of 0.4, and remaining methane gas
was replaced with seawater before the sample was depressurized stepwise. Confining and axial
loads in triaxial testing were applied isotropically and controlled in a suitable manner to keep
the deformation of the sample small; shear loads were not applied. Under these constraints, the
concepts of poro-elasticity are assumed to be essentially valid.

In this chapter, we present a numerical simulation study for the above experiment using the
hydro-geomechanical hydrate reservoir model and the numerical framework developed in Chap-
ter 2 and Chapter 3, respectively. The focus of this numerical study is laid on testing how well
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the linear elastic model can capture the dynamic coupling between the transport, chemical re-
action, and mechanical processes observed during methane hydrate formation and dissociation
in sandy soil under isotropic loading. The details of the experiment are summarized in Section
7.1. The test-setting, including the computational domain, material properties, and model pa-
rameters are detailed in Section 7.2.1, and the simulation results are presented in Section 7.2.2.
Finally, in Section 7.3, we present a discussion on the results of our simulation. In particular,
we take a closer look at the parameterization for composite Young’s modulus, which showed a
much stronger dependency on bulk gas hydrate saturation during gas hydrate formation. We also
briefly analyze the differences of apparent stress-strain behavior observed during gas hydrate
formation and dissociation periods, indicating that the gas hydrate-sediment structure and bulk
hydrate distribution were largely different during these periods.

7.1 Materials and methods

7.1.1 Experimental set-up and components

Experiments were carried out in the custom-made high pressure apparatus NESSI (Natural
Environment Simulator for Sub-seafloor Interactions, Deusner et al. 2012 [26]), which was
equipped with a high-pressure triaxial cell mounted in a 40 L stainless steel vessel (APS GmbH
Wille Geotechnik, Rosdorf, Germany). All wetted parts of the setup are made of stainless steel.
Salt water medium was supplied from reservoir bottles (DURAN, Wertheim, Germany) using a
HPLC pump S1122 (SYKAM, Fürstenfeldbruck, Germany). Pressure was adjusted with a back-
pressure regulator valve (TESCOM Europe, Selmsdorf, Germany). Experiments were carried
out in upflow mode with injection of CH4 gas and seawater medium at the bottom of the sample
prior and after gas hydrate formation (Fig.7.1a), and fluid discharge at the top of the sample dur-
ing depressurization (Fig.7.1b). Axial and confining stresses, and sample volume changes were
monitored throughout the overall experimental period. Pore pressure was measured in the influ-
ent and the effluent fluid streams close to sample top and bottom. The experiment was carried
out at constant temperature conditions. Temperature control was achieved with a thermostat sys-
tem (T1200, Lauda, Lauda-Königshofen, Germany). Produced gas mass flow was analyzed with
mass flow controllers (EL FLOW, Bronkhorst, Kamen, Germany). For control purposes, bulk ef-
fluent fluids were also collected inside 100 L gas tight TEDLAR sampling bags (CEL Scientific,
Santa Fe Springs CA, USA). The sampling bags were mounted inside water filled containers.
After expansion of the effluent fluids at atmospheric pressure, overall volume was measured as
volume of water displaced from these containers.

7.1.2 Sample preparation and mounting

The sediment sample was prepared from quartz sand (initial sample porosity: 0.35, grain size:
0.1−0.6 mm, G20TEAS, Schlingmeier, Schwülper, Germany), which was mixed with deionized
water to achieve a final water saturation of 0.4 relative to initial sample porosity. The partially
water saturated and thoroughly homogenized sediment was filled into the triaxial sample cell
equipped with a Viton sleeve to obtain final sample dimensions of 380 mm in height and 80
mm in diameter. Sample geometry was assured using a sample forming device. The sample
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(a) Gas hydrate formation (b) Depressurization and gas production

Figure 7.1: Simplified flow schemes for relevant experimental periods

was cooled to 20C after the triaxial cell was mounted inside the pressure vessel. Initial water
permeability of gas hydrate-free sediment was 5× 10−10 m2.

7.1.3 Experimental procedure

Gas hydrate formation

Prior to gas hydrate formation the sediment sample was isotropically consolidated to 2 MPa
effective stress under drained conditions. The sample was flushed with CH4 gas and, subse-
quently, pressurized with CH4 gas to approximately 12.5 MPa (Fig.7.1a). During pressurization
with CH4 gas and throughout the overall gas hydrate formation period, formation stress con-
ditions of 2 MPa effective stress were maintained using an automated control algorithm. The
formation process was continuously monitored by logging the CH4 gas pressure. Mass balances
and volume saturations were calculated based on CH4 gas pressure and initial mass and volume
values. Gas hydrate formation was terminated after 1.84 mol of CH4-hydrates had been formed
after approximately 6 days, corresponding to CH4-hydrate saturation of 0.39. The sample was
cooled to −50C and stress control was switched to constant total isotropic stress control at ap-
proximately 9 MPa before the sample pore space was de-pressurized to atmospheric pressure and
remaining CH4 gas in the pore space was released. System re-pressurization and water satura-
tion of pore space was achieved by instant filling and re-pressurization with pre-cooled

(
−10C

)
saltwater medium according to seawater composition. Hydrate dissociation during the brief pe-
riod of depressurization was minimized by taking advantage of the anomalous self-preservation
effect, which reaches an optimum close to the chosen temperature (Stern et al. 2003 [98]). After
completion of gas - water fluid exchange, the sample temperature was re-adjusted to 20C.
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Depressurization and gas production

The sample pore space was de-pressurized and gas produced by stepwise decrease of back
pressure at constant isotropic total stress (Fig.7.1b). Overall fluid production (water and CH4

gas) was monitored after de-pressurization at ambient pressure after temperature equilibration.

7.2 Numerical simulation

To simulate the hydrate formation and dissociation processes in the lab-scale triaxial com-
pression experiment described in Section 7.1.3, we use the mathematical model and the numer-
ical solution strategy developed in Chapter 2 and Chapter 3, respectively. The model considers
kinetic hydrate phase change and non-isothermal, multi-phase, multi-component flow through
poro-elastic porous medium, and accounts for the effect of hydrate phase change on the mechan-
ical properties of the sediment, and also for the effect of sediment deformation on the fluid-solid
interaction properties relevant to reaction and transport processes (e.g., reaction surface area,
permeability, capillary pressure).

7.2.1 Computational domain and test-setting

Assuming that the sand sample is axially symmetric, a 2D radial plane of dimensions 360 mm×
40 mm is chosen as the computational domain. The dimensions correspond to the physical size
of the sample. The domain is discretized into 72× 8 cells.

The overall experiment was carried out in four steps, viz. 1) pre-consolidation, 2) gas hydrate
formation, 3) pore-fluid exchange, and 4) depressurization, as described in section 7.1.3. During
steps 1 and 2, the sample was maintained under a defined effective loading with the confining
and the axial stresses controlled to remain 10 bar above the pore pressure. However, during steps
3 and 4, the total isotropic stress was controlled to remain at a constant level. (See Fig. 7.2.)
The experiment was performed over a total period of about 16.8 days. The periods of interest
for the simulation in this study are: 1) from Day− 3 to Day− 10, corresponding to gas hydrate
formation, and 2) from Day − 12.8 to Day − 13.8, corresponding to depressurization and gas
production. We simulate both of these periods separately.

Gas hydrate formation period

The schematic of the hydrate formation test is shown in Fig.7.3. The schematic also shows the
initial and boundary conditions. The simulation is run until tend = 604800 s (i.e. 7 days) using
a maximum time step size of 120 s.

Depressurization and gas production period

The schematic of the depressurization test is shown in Fig.7.4. The schematic also shows the
initial and boundary conditions. The simulation is run until tend = 86400 s (i.e. 1 day) using a
maximum time step size of 120 s.



7.2. NUMERICAL SIMULATION 83

Figure 7.2: Overview of the measured pressure and stresses over time.
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a) b)

Figure 7.3: Test setting for the gas hydrate formation period.
a) shows the sample and the initial conditions, and b) shows the 2D computational domain and the bound-

ary conditions.
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Figure 7.4: Test setting for the depressurization and gas production period.
a) shows the sample and the initial conditions, and b) shows the 2D computational domain and the bound-

ary conditions.

Figure 7.5: Effect of salinity on hydrate stability curve at Tbath = 20C
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The important material properties and model parameters are listed in Table 7.1. The values of
the thermal conductivities, specific heat capacities, dynamic viscosities, and densities for each
phase are chosen from standard literature, the references to which are included in the table.
The Brooks-Corey parameters are chosen from the range of typically expected values for sand
samples. The most important properties/parameters relevant to the simulation of the experimental
data arise from 1) the hydrate-phase-change kinetics, and 2) the poro-elastic behaviour of the
hydrate bearing sediments.

The hydrate phase-change is modelled by Eqns. (2.17,2.18, and 2.22), described in Section
2.4.4. The hydrate-phase equilibrium pressure Pe in Eqn. (2.17) is modelled in accordance with
the findings of Kamath et al. (1984) [44]. For hydrates in pure water, the equilibrium pressure
depends only on the temperature. However, for hydrates in sea water (which is the case for
our sample), the equilibrium pressure also depends on the salinity, as shown in Fig.7.5. We
account for effect of salinity on the hydrate equilibrium pressure through linear curve fitting on
dissociation pressure vs. salinity curve of Fig.7.5, as,

Pe[MPa] = Pe,0 − 0.5 +
0.5

40
s0 , (7.1)

where, Pe,0 is hydrate stability curve for pure water with no salinity given by Eqn. (2.21), s0
i

is the initial salinity of the sea-water in our sample, i.e., s0
i = 35, and s0 is the salinity of the

sea-water in the sample after dilution as a result of production of pure water from the dissociation
of hydrate. Salinity s0 at any given time is derived using the following argument: The production
of pure water reduces the salinity of the sea water in the sample. Assuming perfect mixing, for x
amount of salt dissolved in the sea water,

x = s0
iVwi = s0 (Vwi + ∆Vw)

where, Vwi is the initial volume of water in the sample, and ∆Vw is the volume of water produced
due to hydrate dissociation. Using the hydrate kinetics and rearranging, we get the expression
for salinity s0 as,

s0 = s0
i

[
1 +Nh

ρhMw

ρwMh

(
Shi − Sh
Swi

)]−1

The reaction surface area, Ars, in Eqn. (2.17), describes the surface area available for the
kinetic-reaction, and puts a limit on the mass transfer during hydrate formation and dissociation.
As the hydrate saturation in the pore-space increases, the availability of free surface for the
hydrate formation to occur decreases, and vice versa. Additionally, for hydrate formation to
occur, availability of both gas and water in sufficient quantities in the pore-space is a necessary
condition. This behaviour of Ars is modelled using the parameterization proposed by Sun and
Mohanty (2006) [100], given by Eqn. (2.20). The rate of reaction, kreac, is a free parameter in our
simulation which is used to calibrate the hydrate-kinetics model with respect to the experimental
data. In the table we can see that the values of kreac, for both hydrate formation as well as
dissociation periods, lie well within the range reported in the literature.
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The poro-elastic behaviour of the hydrate-bearing sediment is characterized by three param-
eters, viz., Biot’s constant αbiot, Poisson ratio νsh, and Young’s modulus Esh. Biot’s constant
is chosen from a range of typically expected values. The Poisson’s ratio is assumed to be a
constant independent of the hydrate saturation following the experimental studies by Miyazaki
et al. (2011) [59]. The Young’s modulus is modelled using the parameterization proposed by
Santamarina and Ruppel (2010) [87], given by Eqn. (2.26). This parameterization is simplified
to,

Esh = Es + Sdh Eh ,

by assuming that the effects of confining stress and the pore-habit are implicitly contained in the
choice of the Young’s modulii Es and Eh for this simulation.

The Young’s modulii Es and Eh are free parameters which are used to calibrate the poro-
elasticity model with respect to the experimental data. For the formation period, Es and Eh are
chosen such that the simulated volumetric strain in the sample at the end of the formation period
matches the experimentally measured value. For the dissociation period, Es is chosen such that
the simulated volumetric strain in the sample at the end of the dissociation period (i.e., when
Sh = 0) matches the experimentally measured value, and Esh is chosen such that the simulated
volumetric strains in the sample at the end of the first and second depressurization steps matches
the experimentally measured value. The choice of the exponent d is described in more detail in
Section 7.3.

Table 7.1: Material properties and model parameters

Thermal conductivities Ref.
kcg −0.886× 10−2 + 0.242× 10−3T − 0.699× 10−6T 2 +

0.122× 10−8T 3
W ·m−1 ·
K−1

[80]

kcw 0.3834 ln(T )− 1.581 W ·m−1 ·
K−1

[1]

kch 2.1 W ·m−1 ·
K−1

[94]

kcs 1.9 W ·m−1 ·
K−1

[29]

Specific heat capacities
Cpg ∆Cpresg

(
1238 + 3.13T + 7.9× 10−4T 2 − 6.86× 10−7T 3

)
J · kg−1 ·
K−1

[72,
29]

Cvg Cpg +RCH4 J · kg−1 ·
K−1

Cpw 4186 J · kg−1 ·
K−1

[1]

Cvw Cpw +RH2O J · kg−1 ·
K−1

Continued on next page
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Table 7.1 – Material properties and model parameters (continued)
Cvh 2700 J · kg−1 ·

K−1
[94]

Cvs 800 J · kg−1 ·
K−1

[29]

Dynamic viscosities

µg 10.4× 10−6

(
273.15 + 162

T + 162

)(
T

273.15

)1.5

Pa · s [30]

µw 0.001792 exp

[
−1.94− 4.80

(
273.15

T

)
+ 6.74

(
273.15

T

)2
]

Pa · s [1]

Densities

ρg
Pg

zRgT
kg ·m−3 [72]

ρw vapour: 0.0022
Pg
T

kg ·m−3 [1]

liquid: 1000 kg ·m−3 [1]
ρh 900 kg ·m−3 [94]
ρs 2100 kg ·m−3

Hydraulic properties
λBC 1.2 [37]
Pentry 50 kPa [37]

Hydrate kinetics
kreac formation: 0.2× 10−11 mol ·m−2·

dissociation: 3.2× 10−10 Pa−1 · s−1

NHyd 5.75
Pe,0 A1 = 106, A2 = 38.98, A3 = 8533.8 Pa [43]
Q̇h B1 = 56599, B2 = 16.744 W ·m−3 [29]

Poroelasticity parameters
αbiot 0.8 [108]
νsh 0.15 [59]

formation dissociation
Es 32 160 MPa
Eh 250 360 MPa
d 1 3
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7.2.2 Simulation results

As discussed in Sec. 7.2.1, we essentially chose one free parameter in kinetics, i.e., kreac, and
one free parameter in linear-elasticity, which is Esh, to calibrate the kinetics and the mechanical
models separately. With these calibrated models, we simulate numerically the coupled hydro-
mechanical response of the sand sample in triaxial test-setting using our gas hydrate reservoir
model. The numerical results, together with the corresponding experimental data, are plotted in
Fig. 7.7 for the gas hydrate formation period, and in Fig. 7.8 for the hydrate dissociation period.

In the gas hydrate formation period, methane gas in the free pore space is continuously con-
sumed and average bulk gas pressure is decreased. (See Fig. 7.7a.) The gas pressure recorded
during the experiments was influenced by additional free volume space in inflow / outflow
pipelines. During the hydrate formation, a substantial volume of gas (≈ 180 mL) was trapped in
the dead spaces (e.g., in pipes and manifolds). This gas interacted with the sample and signifi-
cantly damped the pressure decay during to hydrate formation. We account for this effect in our
simulation by introducing an additional source term for methane gas, SCH4

ext , in the mass balance
PDE for CH4. The rationale behind adding this source term is the following:

- The dead space has a fixed volume of Vext = 180 ml, and at the start of the experiment it
is filled with methane gas.
Mass of methane in the dead space is mg,ext = ρg(Pext, Text) Vext , and the rate of change

of gas mass is
∂

∂t
mg,ext = Vext

∂

∂t
ρg(Pext, Text) .

- Assuming that the pressure and temperature in the system (sample+dead space) equilibrate
very fast, we can say Pext = Pg and Text = T . So, the rate of change of mass of methane
gas in the dead space can be expressed as,

∂

∂t

mg,ext
= Vext

∂

∂t

ρg(Pg, T )
= Vext

ρg(Pg, T )

Bg

∂

∂t

Pg

where, Bg is the bulk modulus of methane gas.

- Since the dead space+sample together form a closed system, any change of mass in the
dead space must be due to transport of gas from dead space into the sample. Assuming
that this transport is very fast, we can introduce a volumetric source term SCH4

ext s.t.,

SCH4
ext =

1

Vs

∂

∂t

mg,ext
=
Vext
Vs

ρg(Pg, T )

Bg

∂

∂t

Pg

where, Vs is the sample volume.

In Fig. 7.6, the average gas pressure in the domain which is simulated without accounting for
the gas in the dead spaces has been plotted. We can see clearly that the dead volume of the gas
damped the gas pressure decay significantly, and could not be ignored.
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Figure 7.6: Average gas pressure for the gas hydrate formation period without accounting for the gas
trapped in the dead spaces.

In Fig. 7.7b, the numerically computed and experimentally recorded values of average hydrate
and water phase saturations are plotted over the hydrate formation period. Clearly, the rate of gas
hydrate formation is not constant. In the beginning, after the sample is pressurized at constant
isotropic effective stress, gas hydrate formation from free methane gas and pore water is fast, but
the rate of formation steadily decreases due to mass transfer limitations and shrinking reaction
surfaces. In accordance to that, after pressurization the gas hydrate saturation increases rapidly
and the water saturation decreases proportionally. In Fig. 7.7c, the volumetric strain is plotted
over the hydrate formation period. The volumetric strain at constant effective stress shows a fast
positive response during early gas hydrate formation at relatively low gas hydrate saturation, and
sample stiffness increases at higher gas hydrate saturation.

During the gas hydrate dissociation period, pressure is decreased step-wise until methane hy-
drates become unstable at the respective P-/T-conditions. Fig. 7.8a shows the numerically com-
puted gas phase pressure in the sample. The gas production is plotted in Fig. 7.8b. With the
onset of gas hydrate dissociation after reaching the hydrate stability boundary, pressure is main-
tained at a relatively constant level because hydrate dissociation and gas production equilibrate
dependent on experimental and technical conditions.

Volumetric strain during gas hydrate dissociation, plotted in Fig. 7.8c, is dependent on ef-
fective stress and gas hydrate saturation through the sample stiffness, which decreases with the
ongoing gas hydrate dissociation and gas production.

To show the thermal aspect of the simulation, the numerically computed temperature profile of
the sample during dissociation is plotted in Fig. 7.8d. The model predicts that sub-cooling from
gas hydrate dissociation occurs, but is negligibly small on the sample scale due to isothermal
temperature control.
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Figure 7.7: Comparison of the simulation results with the experimental results for the gas hydrate for-
mation period.
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7.3 Discussion

From the results presented above, we can see that the developed model is capable of reproduc-
ing the dynamic thermo-hydro-chemo-mechanical behavior of methane hydrate-bearing sandy
sediments. The key behaviors include gas hydrate formation and gas production rates and yields,
pressure and temperature response, and bulk volumetric yielding observed in our triaxial com-
pression experiments during gas hydrate formation in partially water-saturated sediment, as well
as hydrate dissociation via depressurization.

Overall, the experimental and simulation results on stress-strain behavior and elastic properties
of gas hydrate-bearing sands are in accordance with earlier experimental and numerical studies,
which reported Young’s modulus or secant stiffness in a wide range of approximately 100 to 400
MPa for relevant gas hydrate concentrations (Brugada et al. 2010 [15], Miyazaki et al. 2010 [58],
Santamarina et al. 2010 [53], Yun et al. 2007 [119]). Stiffness measured in the presence of THF
hydrates appears to be higher than forCH4-hydrates in sediments. Young’s modulus in our simu-
lations tends to relatively low values compared to the published experimental and numerical data,
and approaches values for dense soils. This limited absolute contribution of gas hydrates to over-
all stiffness might be due to different sample preparation and consolidation schemes, relatively
low gas hydrate saturations, or due to using CH4 instead of THF, which was frequently used
in published studies. It was recently concluded that CH4-hydrate in soils does not reveal soil-
cementing capabilities (Chaouachi et al. 2015 [18]), thus sediment stiffness can be expected to
remain relatively unaffected at low gas hydrate saturations. However, this stress-strain behavior
might also reflect differences in gas hydrate distribution and gas hydrate-soil fabrics. This aspect
needs further evaluation in upcoming studies. We used a simple approach to describe composite
Young’s modulus Esh, as being dependent on additive contributions of sand stiffness and gas hy-
drate stiffness, respectively. We have not included a contribution of effective stress conditions on
the stiffness of gas hydrate-bearing sediment. Instead, we assume that during gas hydrate forma-
tion the effective stress is essentially constant, and during gas hydrate dissociation the stiffness
of the sand is dominated by over-consolidation during gas-water exchange. Thus, effective stress
effects on stiffness were assumed to be captured by adjusting Young’s modulus of the soil matrix
during gas hydrate formation and dissociation, respectively. Although the Young’s modulus was
treated as a free fitting parameter and initialized based on apparent stress-strain behavior during
intervals of known and constant gas hydrate saturations, physically meaningful values for indi-
vidual modulii Es and Eh were obtained. The Young’s modulus Es for the sediment without gas
hydrate reflected stiffness behavior typical for loose soil during gas hydrate formation while the
sample was normally consolidated at low effective stress. In contrast, during the period of gas
hydrate dissociation, gas hydrate-free sediment behaved like dense soil. This apparent step-like
change of Esh from 132 MPa to 183 MPa between gas hydrate formation and depressurization
periods was presumably caused by over-consolidation during gas-water exchange at the end of
the gas hydrate formation period. Thus, the gas hydrate-sand composite became stiffer without
formation of additional gas hydrate.
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Figure 7.9: Volumetric strain curves for different functional dependences of Esh on Sh (i.e. d = 1, 2, 3, 5
) for the depressurization and gas production period.

The composite modulus Esh depends almost linearly on Sh during gas hydrate formation,
while during the hydrate dissociation period the dependence of Esh on Sh is smaller. Fig. 7.9
shows the volumetric-strain plotted over time for the depressurization period for different func-
tional dependences of Esh on Sh (i.e. d = 0.5; 1; 2; 3; 5 ). Our simulation results indicate that
an exponent d = 3 is a reasonable approximation. Santamarina and Ruppel (2010) [87] suggest
that Sh tends to be raised to a power larger than 1, which reduces the impact on stiffness at low
gas hydrate saturations relative to that for high gas hydrate saturations. Since we expect that gas
hydrates formed in our procedure are predominantly located in the pore throats rather than in the
free pore space, the linear and relatively strong dependence of Esh on Sh appears reasonable.
Under the initial conditions of only partial water saturation of the soil, the formed CH4-hydrate
is assumed to contribute to the stiffness of the soil skeleton even at low gas hydrate saturations.
This effect is further enhanced in weakly consolidated sediments, in which stiffness of the soil
itself is low. The weak dependence of Esh on gas hydrate saturation during dissociation appears
also reasonable, since after exchanging gas with water in the pore space, gas hydrate-sediment
fabrics will be steadily altered, and also during dissociation the grain-scale hydrate-sand struc-
ture is presumably changed. The mechanical implications of these structural transitions in gas
hydrate-bearing sands during gas hydrate aging and dissociation are important issues. Any pre-
diction of such dynamic changes in gas hydrate structure or its transient effects on geomechanics
is yet not explicitly accounted for in our model, and needs further investigation.

For this experiment we have also ignored the effects of pore pressure and confining stresses
on Esh and other elastic material properties of the composite matrix. We have assumed that
mechanical behavior of gas hydrate-bearing sands is dominated by gas hydrate saturation and
effective stress conditions rather than by pore or cell pressure which is in accordance to earlier
findings (Miyazaki et al. 2011 [59]). However, contrasting results showing strengthening effects
of high pore or confining pressures have also been reported (Song 2014 [96], Hyodo 2013 [40]).
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Poisson ratio is treated as a constant in our study, and its value chosen for gas hydrate-bearing
sediments is in accordance with earlier studies (Miyazaki et al. 2011 [59], Lee et al. 2010 [54]).
The Poisson ratio is of particular importance for the mechanical behavior under shear load and
will be evaluated in more detail in upcoming studies by considering axial and lateral deformations
along with bulk volume yielding.



Chapter 8
Outlook

The presence of gas hydrates influences the stress-strain behavior and increases the load-
bearing capacity of sub-marine sediments. This stability is reduced or completely lost when
gas hydrates become unstable. Since natural gas hydrate reservoirs are considered as poten-
tial resources for gas production on industrial scales, there is a very strong need for numerical
simulators with geomechanical capabilities. To reliably predict the mechanical behavior of gas
hydrate-bearing sediments during gas production, numerical tools must be sufficiently calibrated
against data from controlled experiments or field tests, and the models must consider thermo-
hydro-chemo-mechanical process coupling in a suitable manner. In this thesis, we have presented
a multiphysics hydro-geomechanical model for subsurface methane hydrate systems, with a fo-
cus on the gas production application. The model considers kinetic hydrate phase change and
non-isothermal, multi-phase, multi-component flow in elastically deforming soils. The model
accounts for the effect of hydrate phase change and pore pressure changes on the mechanical
properties of the soil. It also accounts for the effect of soil deformation on the fluid-solid interac-
tion properties relevant to reaction and transport processes (e.g., permeability, capillary pressure,
reaction surface area). We have developed a numerical solution framework, and validated the
numerical implementation of the model. We have also validated the model against experimen-
tal data from a controlled triaxial volumetric strain test on a sediment sample in which methane
hydrate is first formed under controlled isotropic effective stress and then dissociated via depres-
surization under controlled total stress. The numerical results show that the dynamic coupling
between transport, reaction, and mechanical processes during methane hydrate formation and
dissociation in sandy sediment is captured well, and experimental gas production, dynamic vol-
umetric strain and pressure response were closely reproduced. The model, however, has certain
limitations and constraints which need to be addressed in the future to improve the quality and
reliability of it’s predictions.

We have assumed that the sediment matrix behaves as a linear elastic material. This assump-
tion holds true only for relatively stiff soils under small loads. In the triaxial volumetric strain
test used for model validation, the sample deformations were kept small such that the concepts
of poro-elasticity were essentially valid. For more realistic settings, however, we must include
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rate-independent plasticity models emanating from Mohr-Coulomb and critical state plasticity
theories in our hydrate reservoir model to model the mechanical behaviour of the sediment ma-
trix.

One of the key assumptions in our hydrate reservoir model is that the methane hydrate per-
fectly coats the sand grain and the load is borne by sand-hydrate composite matrix. The recent
experimental studies on the microstructure of the natural gas hydrates by Chaouachi et al. (2015)
[18], however, show that a fluid phase film of up to several micron thickness appears between
gas hydrates and the surface of the sand grains. These microstructural findings suggest that the
assumption of grain-coating hydrates is not completely valid, and new modelling concepts must
be developed to account for these findings in our hydrate reservoir model.

A serious flow assurance and wellbore stability issue that has emerged with regard to the
field applicability of the depressurization method is the production of sand and fine particles
that accompany the production of gas and water by hydrate dissociation in sedimentary layers.
In Canada’s Mallik field in the Alaskan permafrost, the test had to be stopped because of un-
controlled sand production. The test was resumed after well completion system was redesigned
to consider the control of sand production. In the marine test in the Nankai Trough of Japan
too, a significantly large sand production was observed at the end of the test. The production
of sands and fines is detrimental to the productivity of the production wells as it increases the
maintenance and operational costs. To design effective sand control methods, it is imperative to
develop modelling approaches that predict the sand flow and production behaviour in relation to
the production conditions. The flow behavior of sands is typically modelled using constitutive
theories amenable to viscous flow, e.g., Bingham fluid. The modelling concepts that bridge the
critical state behaviour and the viscous flow behaviour of sands (e.g., Andrade et al. (2012) [5],
and Pailha and Pouliquen (2009) [70]) are of particular interest for our hydrate reservoir model.

There is also a large scope for improving the quality of the numerical solution and the effi-
ciency of the computations in our hydrate reservoir simulator. For instance, in the cell centered
finite volume (FV) approximation used for the spatial discretization of the flow model, we have
used the linear two-point flux approximation (TPFA) to evaluate the diffusive fluxes across the
cell boundaries. The TPFA schemes are, in general, more appealing than the MPFA (multi-
point flux approximation) schemes due to the compact stencil of the FV dicretization. The linear
TPFA, however, does not provide an approximation for the case of non-orthogonal grids or for
full anisotropic permeability tensors. It would, therefore, be of interest to consider non-linear
TPFA schemes (e.g., Nikitin et al. (2013) [67], ) which are less sensitive to grid distortions and
provide approximations for fully anisotropic permeability fields. It would also be attractive, in
terms of savings in computational work, to extend the multirate time-stepping (MRT) algorithms
developed in Section 3.3 by considering space and time adaptive meshes similar to the methods
developed by Osher and Sanders (1983) [69], Sandu and Constantinescu (2007) [21], Savcenco
(2008) [91], etc.
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An exhaustive parameter sensitivity analysis and model calibration for kinetic rates of dissoci-
ation and formation, and parameterization for apparent linear elasticity parameters, viz. Esh and
νsh, are also in line to improve the reliability of the predictions on field scale using our hydrate
reservoir model in future.



98 CHAPTER 8. OUTLOOK



Appendix A
Derivation of storage Eqn. (4.6)

We re-write the mass conservation equations for gas and water phase-wise, i.e., for each fluid-
phase α = g, w,

∂

∂t
(φραSα) +∇ · (φραSαvα,t) = q̇α (A.1)

where, q̇α is the volumetric source term for phase α given as q̇α =
∑

α (χκα ġ
κ).

Expanding the partial derivatives in Eqn. (A.1) and rearranging gives

φSα

(
∂

∂t
ρα + vα,t · ∇ρα

)
︸ ︷︷ ︸

d

dt
ρα

+ρα
∂

∂t
(φSα) + ρα∇ · (φSαvα,t) = q̇α

=⇒ φSα
d

dt
ρα + ρα

∂

∂t
(φSα) + ρα∇ · (φSαvα,t) = q̇α . (A.2)

The rate of change of the fluid density is defined as
d

dt
ρα =

ρα
Bα

d

dt
Pα , where, Bα is the

fluid-phase bulk modulus. Using this definition in Eqn. (A.2) and dividing by ρα, we get

φSα
Bα

d

dt
Pα +

∂

∂t
(φSα) +∇ · (φSαvα,t) =

q̇α
ρα

. (A.3)

Since we assume Pc = 0, the phase pressures are equal. So we drop the subscript and assign
the symbol P to the phase pressures.

Next, we sum Eqn. (A.3) over α = g, w, which gives

φ

(
Sw
Bw

+
Sg
Bg

)
d

dt
P +

∂

∂t
[φ (Sw + Sg)] +∇ · (φSwvw,t) +∇ · (φSgvg,t) =

q̇w
ρw

+
q̇g
ρg

.

(A.4)
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We define the effective fluid-phase saturation Sα,e as the volume of fluid phase α = g, w in the

effective pore space which is characterized by the effective porosity φe. So, Sα,e =
Sα

1− Sh
,

and φe = φ(1 − Sh) . Also, by the summation relationship, Sw + Sg = 1 − Sh , or
Sw

1− Sh
+

Sg
1− Sh

= 1 .

Substituting these definitions in Eqn. (A.4), we get Eqn. (A.5) which we will call the fluid
mass balance equation.

φe

(
Sw,e
Bw

+
Sg,e
Bg

)
d

dt
P +

∂

∂t
φe +∇ · (φeSw,evw,t) +∇ · (φeSg,evg,t) =

q̇w
ρw

+
q̇g
ρg

. (A.5)

For the hydrate and the soil phases, the mass conservation equations (Eqn. (2.2) and Eqn.
(2.3)) described in Section 2.3 are used. Adding Eqn. (2.2) and Eqn. (2.3), we get

∂

∂t
[φShρh + (1− φ) ρs] +∇ · [φShρh + (1− φ) ρs] vs = q̇h

=⇒ ∂

∂t
(1− φe) ρsh +∇ · [(1− φe) vs] = q̇h . (A.6)

Eqn. (A.6) is the mass balance relationship for the hydrate-soil-composite matrix. Expanding
the derivatives in Eqn. (A.6) and rearranging gives

(1− φe)
[
∂

∂t
ρsh + vs · ∇ρsh

]
︸ ︷︷ ︸

d

dt
ρsh

−ρsh
∂

∂t
φe + ρsh∇ · [(1− φe) vs] = q̇h

=⇒ (1− φe)
d

dt
ρsh − ρsh

∂

∂t
φe + ρsh∇ · [(1− φe) vs] = q̇h . (A.7)

Using the expression for rate of change of density of the composite matrix from Eqn. (2.27)
in Eqn.(A.7), we get

∂

∂t
φe =

1

Bsh

d

dt
σ − φe

Bsh

d

dt
P +∇ · [(1− φe) vs]−

q̇h
ρsh

(A.8)

where, Bsh is bulk modulus of the composite solid.

Eqn. (A.8) describes the rate of change of the effective porosity due to external stress σ and
internal fluid pore-pressure P . Finally, substituting Eqn. (A.8) in Eqn. (A.5), we obtain

φe

[(
Sw,e
Bw
− Sw,e
Bsh

)
+

(
Sg,e
Bg
− Sg,e
Bsh

)]
d

dt
P +

1

Bsh

d

dt
σ

+∇ · [φeSw,e (vw,t − vs)] +∇ · [φeSg,e (vg,t − vs)]

+∇ · vs =
q̇w
ρw

+
q̇g
ρg

+
q̇h
ρsh

. (A.9)



101

Table A.1: Simplified constitutive relationships

Hydrate reaction kinetics q̇g = k0 As Mg (Pe − P )
As = As,0 × Sh
q̇w = Nh

Mw

Mg
q̇g , −q̇h =

Mh

Mg
q̇g

Darcy velocity vα,r = −Kkr,α
µα
∇P

kr,g = kr,w = 0.5

Effective stress principle σ̃ = σ̃′ + αP Ĩ
isotropic stress→ σ = σ′ + αP

Linear elastic σ̃′ = −2Gsh ε̃− λsh (tr ε̃) Ĩ
stress-strain law ε̃ = 1

2

(
∇u +∇Tu

)
isotropic strain→ ε = ∇ · u = −

(
Bsh −

4

3
Gsh

)−1

σ = −(1/Bm) σ′

Eqn. (A.9) expresses the total mass balance for the whole porous medium consisting of phases
γ = g, w, h, s. We now substitute the simplified constitutive relationships listed in Table A.1 in
Eqn. (A.9),

φe

[(
Sw,e
Bw
− Sw,e
Bsh

)
+

(
Sg,e
Bg
− Sg,e
Bsh

)]
d

dt
P +

d

dt
ε

+
1

Bsh

(
d

dt
σ′ + α

d

dt
P

)
−∇ ·

[
K

(
kr,w
µw

+
kr,g
µg

)
∇P

]
=

(
Nh

Mw

ρw
+
Mg

ρg
− Mh

ρsh

)
k0 As,0 Sh (Pe − P )

=⇒
[
φe

(
Sw,e
Bw

+
Sg,e
Bg

)
+

(
α− φe
Bsh

)]
︸ ︷︷ ︸

Storativity S

d

dt
P +

(
1− Bm

Bsh

)
︸ ︷︷ ︸

α

d

dt
ε−∇ · K

2

(
1

µw
+

1

µg

)
︸ ︷︷ ︸

K

µf

∇P

=

(
Nh

Mw

ρw
+
Mg

ρg
− Mh

ρsh

)
k0 As,0︸ ︷︷ ︸

C

Sh (Pe − P ) . (A.10)

Eqn. (A.10) can be rewritten in a condensed form as

α
d

dt
ε+ S

d

dt
P = ∇ · K

µf
∇P + C Sh (Pe − P ) . (A.11)

This is the storage equation describing the pressure response in a poroelastic hydrate soil.
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Appendix B
Analytical solution for the
Initial-Boundary-Value Problem (4.13)

This problem described in (4.13) is a homogeneous ODE with non-homogeneous boundary
conditions. It can be transformed into two equivalent but simpler problems, viz., a steady state
non homogeneous problem and a transient homogeneous problem.

To do this, we introduce new functions v(z) and w(z, t) such that

P (z, t) = v(z) + w(z, t) (B.1)

We substitute (B.1) in (4.13), and get

ODE 1: Cv
d2

dz2
v(z)− Cr v(z) = 0 (B.2)

and, ODE 2:
d

dt
w(z, t)− Cv

d2

dz2
w(z, t) + Cr w(z, t) = 0 (B.3)

The transient ODE 2 is subjected to following boundary and initial conditions

w(0, t) = P (0, t)− v(0) =
(
Pe − P 0

)
− v(0) (B.4)

d

dz
w(L, t) =

d

dz
P (L, t)− v(L) = −v(L) (B.5)

w(z, 0) = P (z, 0)− v(z) =
(
Pe − P 0

)
− v(z) (B.6)

The function v(z) is chosen such that the boundary conditions for the function w(z, t) become
homogeneous, i.e.,

if, w(0, t) = 0 and,
d

dz
w(L, t) = 0

=⇒ v(0) = Pe − P 0 and,
d

dz
v(L) = 0 (B.7)
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To summarize,

ODE 1:

Cv
d2

dz2
v(z)− Cr v(z) = 0

v(0) = Pe − P 0

d

dz
v(L) = 0

ODE 2:

d

dt
w(z, t)− Cv

d2

dz2
w(z, t) + Cr w(z, t) = 0

w(0, t) = 0

d

dz
w(L, t) = 0

w(z, 0) =
(
Pe − P 0

)
− v(z)

Solution of ODE 1 gives

v(z) =
(
Pe − P 0

) cosh

(√
Cr
Cv

(L− z)
)

cosh

(√
Cr
Cv
L

) (B.8)

Solution of ODE 2 gives

w(z, t) =

∞∑
n=1

Cn sin (λnz) exp
[
−Cv

(
λ2
n + θ2

)
t
]

(B.9)

where, λn =

(
n− 1

2

)
π

L
, and, θ =

√
Cr
Cv

The constant Cn is evaluated as

Cn =
2

L

∫ L

0
w(z, 0) sin (λnz) dz

=⇒ Cn =
2

L

(
Pe − P 0

) 1

λn

[
1− λ2

n

λ2
n + θ2

]
(B.10)

Therefore, the final solution for P can be written as

Pe − P (z, t)

Pe − P 0
=

cosh (θ (L− z))
cosh (θL)

+
2

L

∞∑
n=1

(
1

λn

[
1− λ2

n

λ2
n + θ2

]
sin (λnz) exp

[
−Cv

(
λ2
n + θ2

)
t
])

(B.11)
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