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ABSTRACT
We propose an approach for learning manipulation skills of robot arms based on complex sensor data. The first
component of the used model serves as a projection of high-dimensional input data into an eigenspace by using Prin-
cipal Component Analysis (PCA) . Complex sensor data can be efficiently compressed if robot movements achieving
optimal manipulation tasks are constrained to a local scenario. The second component is an adaptive B-spline model
whose input space is the eigenspace and whose outputs are robot motion parameters. In the offline learning phase,
an appropriate eigenspace can be built by extracting eigenvectors from a sequence of sampling sensor patterns. The
B-spline model is then trained for smooth and correct interpolation. In the online application phase, through the
cascaded two components, a sensor pattern can be mapped into robot action for performing the specified task.

This approach makes tasks such as visually guided positioning much easier to implement. Instead of undergoing
cumbersome hand-eye calibration processes, our system is trained in a supervised learning procedure using system-
atical perturbation motion around the optimal manipulation pose. If more sensors or some robust geometric features
from the image processing are available, they can also be added to the input vector. Therefore, the proposed model
can integrate multiple sensors and multiple modalities.

Our experimental setup is a two-arm robotic system with "self-viewing" hand-eyes and force/torque sensors
mounted on each parallel jaw gripper. Implementations with one-hand grasping and two-hand assembly based on
visual and force sensors show that the method works even when no robust geometric features can be extracted from
the sensor pattern.
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1. INTRODUCTION
Grasping and assembly are two of the most important and most demanding sensor-based manipulation skills. While
multifinger grasping can be viewed as a complex planning problem, two-finger grasping of rigid objects poses problems
of hand-eye coordination and sensor-guided positioning. Given an object whose model is unknown, the fine-motion
of a gripper should be exactly controlled based on dynamic sensor data so that it can move from any location in the
vicinity of the object to the optimal grasping position. The assembly skills, e.g. inserting and screwing, can be de
decomposed into force control techniques and vision-based fine-positioning.

The traditional methods of sensor-guided fine-positioning are based on hand-eye calibration. Such methods work
well if the hand-eye configuration is strictly fixed and the geometric features of the grasping position can be extracted
robustly. However, the hand-eye calibration matrix cannot be interpreted as an adequate cognitive model of human
grasping.

Recently, neural network based learning has also found applications in grasping,4'8'3 which use geometric features
as input to the controller. Since the image processing procedures such as segmentation, feature extraction and
classification are not robust in real environments and since these processing algorithms are computationally expensive,
some of the work has to use marked points on the objects to be grasped. It is desirable that a general control model
can be found which transforms raw image data directly to action values. If such a model can be found it may be
studied whether it bears similarities with the cognitive abilities of humans.

Learning of vision-based positioning based on visual appearance information was introduced.5 A parametric
eigenspace representation is used for describing the different objects as well as object locations. The positioning
problem is thus transformed into finding the minimum distance between a point and a manifold in the eigenspace.

E-mail: zhangknoll©techfak.uni-bielefe1d.de

Part of the SPIE Conference on Sensor Fusion and Decentralized

Control in Robotic Systems • Boston Massachusetts • November 1998 211

SPIE Vol. 3523 • 0277-786X/981$1O.OO

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/12/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



In tins JapeL \VP propose a solution b' conibiiiing t be PC.\. (pvineipni (Ohli.pOiI(-'1tt (Lfl(Li'I/Si,S ) tecliiiiqiie with an
adaptive fuzzy controller .A"self-viewiiig' liaiid-niouiited camera provides visual feedback to the fine-inot ion control.
In the following sections. we first iitrodiice the models we eiiiploed and explain t lie relation with liuinaii seiisoriiiwtor
control. In the experimental pats two applications are preseiited: one is grasping based on the hand-eve data, tin
ot her 0111 is asseiiiblv using a two-arm svst em.

2. CONCEPT OF BUILDING THE SENSING-ACTION MODEL
2.1. Dimension Reduction by Using Observation Data
It is well-known that general neural or fuzzy systems with a large miiiiher of input variables sullei froni the problem
of the curse of dimensionalit v" For instance, an Image has 192 x 144 pixels. each pixel is iiieasured by I righitness
level. If 110 extra image processing is performed. then a control system with ahout 26()t)( ) input varia Ides iieods to
he modelled. The outputs of the system are tile miiotiomi values for a robot (mobile robot as well as robot arm). Is it
possible to build a rieurc,—fuzzy model to niap the inputs to the 0utputs

If the ulput vectors are considered as a stack of vectors of training data originat jug from a ('out i lliouslv varying
process. statistical indices can he extracted. These iidices describe dat a (list ributioii, variances. am I the lilost
interesting features for control eigellvectors (see Fig. 1 for au exaiiiple) amid principal ('oiiipoileiit 5.

(a) A sequence of hrightness images taken hv rotating the viewing 1)1)11(1 iii tile ('Ollillil.

Os

0
0 0 10 20 3 30

(h) Figenvalues. )c) I'iie first six ('igeniv('(turs.

Figure 1. An example of extracting eigenvectors from a sequence of training ilililges.

For an input space X x X x x .V,. if all the varialdt .i' to .m', may vary in all t lien universes (luring
lit' observed satnpliiig procedure, input data will he scat t€red over t lie whole input re.N ever t bless, iii a high—

dinensional input space. if the ohsei'ved process runs continuously. the input vector varies onl giaduallv. Under
an appropriately separated observation. e.g. within a local scenario of t lie rolmt environment. tin' input vectors
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possess a large grade of similarity. In other words: the observed input data are correlated to a large degree in the
high-dimensional input space.

If certain correctly selected original input variables happen to be the axes along which the sampling data aggregate
they can be directly used as fuzzy controller inputs. Otherwise, the information from the unselected variables will
be lost.

2.2. Projection in Eigenspace
A well-known technique for dealing with multivariate problems in statistics is PCA. Until now, it is mainly applied
in data compression and pattern recognition.6 This technique is also suitable for reducing the dimension of the
input space of a general control problem.

An eigenvector, noted as a, is computed as [ai,2, a2,, . . . , am,j]T. The eigenvectors form an orthogonal basis for
representing the original individual sensor patterns. Assume that the eigenvectors , 2, . . . are sorted according
to their eigenvalues in a descending order. An eigenspace with a reduced dimension n can be formed with the
first n eigenvectors. a accounts for the ith dimension in the eigenspace. The projection of an input vector X =
[ x1 , x2, . . . , Xml on eigenvector called the ith principal component, is p = a1,x1 + a2,x2 + • + am,jXm. The
complete projection can be represented as:

-. -T T
[a1,.. . ,a] . = [P1,. . . ,Pi-tI

All projections of the sample data sequence form a manifold in the eigenspace.

Depending on how "local" the measuring data are and therefore how similar the observed sensor patterns look
like, a small number of eigenvectors can provide a good summary of all input variables. It is possible that two or
three eigenvectors supply the most information indices cf the original input space. In very high-dimensional cases,
an efficient dimension reduction can be achieved by projecting the original input space into the eigenspace. This
step is illustrated in the left part of Fig. 2.

pattern
coding/

xl a11\a2 /
p2

X2\\

input
vectors

eigenvectors principal
components

Figure 2. The task based mapping can be interpreted as a neuro-fuzzy model. The input vector consists of pixels
of a brightness image.

The eigenvectors of a covariance matrix can be efficiently computed by the Jacobian2 or perceptron approach.7
The perceptron approach has three advantages over the Jacobian method if the number of the eigenvectors are pre-
selected. Firstly, the Jacobian method calculates all eigenvectors of the covariance or explicit covariance matrix of the
input data; the perceptron method only calculates the first n eigenvectors, thus saves computation time. Secondly,
Jacobian requires the construction of the covariance matrix of the input data. With large input data sets this is
often critical regarding the amount of memory needed. Thirdly, the eigenvectors found with the perceptron method
are already in descending order.
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2.3. Adaptive Interpolation
If the dimension is high, the whole sensor space cannot be directly partitioned into fuzzy regions. However, with
PCA, a fuzzy partition is possible in the eigenspace.

Therefore, a control rule looks like:
"If the current input is similar with Scnsor_pattern Then the output value should be y"
The Sensorpattern can be approximately reconstructed using the principal components. This procedure is

comparable with the vector quantisation.

Partitioning of eigenvectors can be done by covering eigenvectors with linguistic terms, see the right part of Fig. 2.
In the following implementations, fuzzy controllers constructed according to the B-spline model are used.9 This
model provides an ideal implementation of CMAC proposed by Albus.' We define linguistic terms for input variables
with B-spline basis functions and for output variables with singletons. Such a method requires less parameters than
the other set functions such as trapezoid, Gaussian function, etc. The output computation becomes very simple and
the interpolation process is transparent. We also achieved good approximation capability and rapid convergence of
B-spline fuzzy controllers.9 An illustrative example is shown in Fig. 3.

.. . _____________

Figure 3. Approximation of the function y = sin(2irx2). The horizontal axis represents x, covered with B-spline
basis functions of order 3, the vertical axis represents the output value y. (a) The function sin(2irx2). (b) The initial
controller output set as zero. (c) The output curve after 2000 epochs without knot adaptation. (d) The output curve
after 2000 epochs with knot adaptation.

In the online application, the input data are first projected into the eigenspace, then mapped to output based on
the fuzzy control model, Fig. 2.
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3. THE APPROACH
By summarising the above ideas and formulating them stepwise, it turns out that constructing a controller for a
multivariate problem consists of two phases. The first phase comprises sampling and analysing training data. The
second phase is a supervised learning algorithm for a fuzzy controller (if the desired output data as well as the input
data are available) . Once the fuzzy controller has been constructed the outputs can be calculated through eigenspace
projection and fuzzy rule synthesis.

3.1. Phase 1: Sampling Training Data and Analysis
This step aims at evaluating the statistical indices and at performing the dimension reduction. It is desirable that
all representative values of input data be available for the sampling process.

1. Sample input data, record the desired output values (if available).

2. Pre-process the input data: normalise and subtract the mean value.

3. Stack the input variables into vectors.

4. Compute the eigenvectors and eigenvalues, e.g. with the Jacobian method.

To improve the results of the Eigenspace transformation, all images are normed, so that their energy is equal.
This preprocessing is done by the following formula:

. \/
gj(3) = c • fi(J)

(f(k))2

where

I f(j) is the intensity of the j-th pixel in the i-th image.

. gj(j) is the intensity of the j-th pixel in the corresponding normed image.

. dim is the number of pixels in the image.

. c is a constant which is usually so chosen that gj (j) can be represented in integer arithmetic.

Interpreting the k training images as vectors b that come from a pattern-generating process, we can compute
the mean value of these vectors:

T =
k

3.2. Phase 2: Training the Fuzzy Controller
By adapting the supervised learning algorithm presented in our earlier work,9 the training procedure looks as follows:

1. Select the n eigenvectors with the largest n eigenvalues, noted as a1.

2. Select the order of the B-spline basis functions for each eigenvector.

3. Determine the knots for partitioning each eigenvector.

4. Initialise the control vertices for the output.

5. Learn the control vertices using the gradient descent method.

6. If the results are satisfactory: terminate.

7. Modify the knots for eigenvectors, go to 4.
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3.3. Online Application
In the case of supervised learning, each learning datum corresponds to a supporting point in the control space. If a
sensor pattern is taken online and its eigenvalues are calculated, the computation of the controller outputs may then
be regarded as the "blending" of all the firing rules.

The following steps are necessary:

1 . Update the input data (x1 , x2 , . . . ,

2. Pre-process the data - normalise and subtract mean;

3. Project the input into the eigenspace (P1 , . ,p,);

4. Compute the output by feeding the projection vector (principal components) into the fuzzy controller trained
in section 3.2.

The offline and online phases can be illustrated by Fig. 4. The following grasping and hole-searching experiments
are based on such a flowchart.

camera image

L Image Preprocessing

position normed image
information

T Eigen-— ..
: Projection

transformed 4mae

Interpolation

..
robot correction

: motion

Figure 4. The offline training and online application phase.

4. GRASPING EXPERIMENTS
In the following implementations, linguistic terms of the eigenvectors are defined by B-spline basis function of order
three. The output value of each rule is represented as a singleton which is called control vertex in the B-spline fuzzy
controller. The control vertices are adaptively determined by minimising the RMS error for the supervised learning.

4.1. Experimental Setup
This approach is applied to find exact grasp positions by a robot parallel gripper equipped with a hand-eye system,
Fig. 5.
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(a) Se1f-vkving' baird—

camera.

Figure 5. Fine—positioning using a "se1f—viewing' liand—caiiiera.

4.2. Training
An ofthne learning approach starts with position ig the robot gripper over the desired position. The robot hand is
then moved incrementally, e.g. in the freedom of displacement j, ij and/or the orientation each new location.
an image is produced while the motion parameters are recorded. i.e. a sequence of immiages is obtained. fo a large
degree each pair of two adjacent images is similar, see Fig. 6.

Figure 6. Six t raining images (192 x 144 pixels. with orient ation variation 0°. 30. 60°. 90°. 120.1 i0) for alit oniiitic

grasping. taken froni about 300 training images.

The large amount of brightness data of the image pixels can he signihcuitly t' unpressed by fill(liIlg I lie rigelivectol's
of their covariance matrix. If tIme eigcnvectors are ordered according to the niagmi tide of I heir eigenvalurs. it canbr

easily found that tiiilv a Hunted number of eigeiivectors need to be considered while the others (anhe ignored.

4.3. Control Rules
In I Ins way, the (lililensioli of the local perceptuirl space is reduced to a nianipiilalle size of a siihspace. If t lie axis of

a principal component, denoted as p1 (j = 1 ti). is covered with B-spline basis functions. denoted as.\;1 , the

rule for deterniiiiing the relative location of the robot gripper to time object can be \vril tell iii t Ire forimi:
IF (Pt IS ,k, ) and ... and (p IS .Y1° ie
(ituenhtq: flu inpui tnoq( itlat('he.s jxit(it'it
THEN (.r is ) and (!/ is

and (0 is e0 ,,

Each rule corresponds to a supporting crmitrol vertex for time imiterpolat iou ill the ('igelisj)il('e. with ICSS I han (3

eigeiivectors a suflit'ient grasping precision of the separated objects using tiit robot llali(I ('011 be old ained.

217

b) 'The start position. (c) reproved perlmen. (d) 'lire ij>tirmial resitiori
for gI'aSpi1t2,.

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/12/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



5. VISUALLY GUIDED HOLE-SEARCHING
In the assembly scenario (Fig. 7), two cooperating robots are to insert a screw (5) into a wooden slat (4). The
imianipulators are installed overhead and can grasp the required assembly components froni the assemnbl table.
Each robot, is equipped with a force sensor (2.2') on which a pneumatic parallel-jaw gripper (3.3') is mounted. A
small camera (1.1'). which observes the scene, is mounted over the gripper at an angle of approxiiiiatelv 3(1°. The
manipulators are two Puma 260.

Figure 7. The experimental setup for assembly. 1,1': hand-camera; 2,2': force/torque sensor; 3,3': Parallel jaw-
gripper: 4: slat: 5: screw-head.

5.1. Selecting Region of Interest
For this task, focusing attention is transformed into crop the camera image to find out the uiterestiug part. namiielv
the hole iii the slat, see Fig. 8.

Figure 8. One important pre—processinig is to select the region of interest.
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(a) The camera image ( b ( The cropped ii age.
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(Oneral solution of this problem requires complex image processing Igoril Iiiiis. Ion liiLt(l. oiie Ii ick can be
used to robustly fin(I the desired result. Before the slat iS grusod. it 10-S Oil the (lesk-toh) and t hierefore what the
camera sees through the hole. in the iiionient the slat is grasped. is the (lesk-tol) itself, winch in our (05P iSblink.
The posit ion of the hole flow can he reineiiihered the whole tulle the gripper grasps the sluit. As long as tile slat stays
between the gripper fingers. the position of the hole iii the uiiages us colist alit atid so pictures cati easily he cropped
to a reel angle region around the hole.

5.2. The Problem of Finding a Hole
The search for a hole based only oti l>lindly force control is slow aiid prone to failure. li is suder to nionitor the
scene through the hole with a camera. The screw (or the slat ) may thins be giuded to I lie correct posit iOil

Figure 9. Typical images taken by the hand-camera (Image size: 111 x 103 pixels) Not ice I hut Ilie buickgrouiid

changes continuously ard the shape of the screw varies during the gripper rotal ion.

Fig. 9 shows a sequence of typical views of the scene. It is obviously luthcult to recognise geonietricfeatures iii

the images.

5.3. Eigenspace Projection
\\e exaniiiied our svstenl with both 200 and 400 training images. The resulting Eigenvect ors amid t lie pro jectioti oil
the first three most import alit eugenvectors are shown in Fig. 10.

5.4. Numerical Results
Fig. 11(a) shows the learned control vertices for the first two eigemivect ors and 11(b) tIle resulting cont rol surface.

Table 1 shows the average number of the required correctiOll steps in 0-direct ion dependilig on the ('olltrollei

paraiuters for sonic typical displacements.

>oinlher of

uSed E\'s
Number of
used B-Sphines

flobot (us—

1>hacemnent -______________________________________

ih love right ____________ __________________

thihftabove left 4.? 2.2 _______

Table 1. flequired correction steps iii 0-direction for two different (0111 rollers.

Our exper tient shows that vitli an increasing munber of eigemivectors fewer steps for correctuig Ilie position of

the slat are reciuirecl. \Vitli three and five eigenvectors 1101 uill situations aii ho separated. If. for example, the screw
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(a) Eigenvalues (200 training images).

Sorted Eigenvaloas of the Covarianoe-Matrix

(b) Projected data (200 training images).

First three dimensions of Eigenspace

Transformed training-images
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(c) Eigenvalues (400 training images). (d) Projected data (400 training images).

Figure 10. Eigenvectors, eigenvalues and eigenspace projections.
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(a) ('orit rot vert ices on the plane of the first two principal corn-
poti s' itS.

(h) ('ontrol surface with the first two pri ripal components as
input ail(! the rohot displaceiiieiit as out pitt

Figure 11. Control vert ices and surface.

Figure 12. Correct ion sequence output by tile proposed task—mapping model.

is to the left of the hole. the controller cannot correct the tlisi>laceliient. In tins ease tJie motion was lijad to the
wrong (lirectioli. Fig. 12 shows a sequence of movements generated hy the fuzzy 111tn tiler.

Force cciii rol based on tile force/torque sensor readings is applied to est;tltlisll contact between t lie scie\v andthe

slat before the line-positioning, and to verify if the screw sits correctly in t lie hole after the fine-positioning.

6. DISCUSSION
\Ve have shown that higli-dinensional problenis such as visually guided hi ie-niot loll tail he solvt'd with a ueuro-fuzzy
iiiodel. The B-spline model serves as an efficient interpolator which can be iliterl)reted as fuzzy (ontItil rules. rhie

advantages of tins approach are:

• By pro jectuig the high-dimensional input space 11111) a n-dined eigelispiitt'. t lie most sigiiificiiit imiformnat ion for

(out rol is tnai itai ted. A limited number of transformed inputs can he partitioned wit Ii I lie B-spiimie tinide! and

a sufficient prcwn can be obtained for deternnnimig the robot posit ion correction.

• fhie statistical indices used in the approach provide a suitable soltition to describe the imihormiiiit ion ill ililiges

wit ii a lot of tmilcert ailit ies.

• A vector i the eigenspace is directly niapped onto flit' controller output based on tlit' B-spimiit model. fhis

triakes real—time computation possible.
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• Training motion can be programmed so that representative images can he generated ;wtoinaticallv. The only
work for the user IS to place the object or robot so that the grasping or inserting pose is corr:ct. Obviously, tins
procedure is much simpler for a user in comparison with the hand—e e calibration.

If observed scenarios are not "local' enough, i.e. the images iiossess less similarity, t lien it, could be happen that
the grasp precision cannot be satisfied with too few (e.g. with six) eigeiivectors. For these cases. we are investigating
methods to classify the image sequence into more local scenarios by using some simple criteria. e.g. objects are "left
"right" , "tOJ) arid "down"

Figure 13. Different modalities of a colour image input can be integrated for PCA

If more sensors or different representations from the image pre-processing are available, they (all also be added to
the input vector. Therefore, without modification, the proposed model can integrate multiple sensors arid iiiultiple
modalities, see Fig. 13 for an example. Since each filter works robustly again certain noise factors, integration of
many results after different filters can enhance the robustness of the approach. Tile proposed solution can still work
because the efficiency of the PCA still depends on the variance of the input. data although the iliniensiomi of the
input iriforriiation increases. Our future work will be investigating the capability of the approach to grasp more
complicated assembled aggregates by using multiple cameras and laser sensors.

Acknowledgement
This work is part! funded 1w DFG project SFB36O Situated Artificial Comnmunicators' . Uie alit hors thank Y.
von Collani. R. Schmidt, A. Zielke. H. \\'irauskv for implenienting the methods with real rohct 5.

REFERENCES
3. S. Albus. A new approach to manipulator control: The Cerebellar Model Articulation Contorller (('MAC).
Transactions of ASAIE, Journal of Dynamic Systems Mcasui'ernent and Control, 97:220 227. 1975.

2. .1. Greenstadt . The determination of the chararcteristic roots of a matrix by the Jacobi imiethiod. 113111 Report.
1961.

3. I. Kamon. I. Flash, and S. Edelman. Learning to grasp using visual infurimiatiomi. In Proceedinys of the IEEE
International Conference on Robotics and Automation, pages 2170—2476, 1996.

4. \V. T. Miller. Real—time application of neural networks for sensor—based control of robots with vision. IEEE
Transactions on System. Man and Cybernetics, 19:825—831, 1989.

3. S. K. Nayar, H. Murase. and S .A.Nene. Learning, positioning, and tracking visual appearance. Iii Proceedings
of the IEEE International Conference on Robotics and Automation, pages 3237 324.1, 1994.

6. E. Oja. Snbspace methods of pattern recognition. Research Studies Press, Hertfordshiire, 1983.
7. T. Sanger ..4n optirnulity principle for unsupervised learning Advances iii neural inforniatiomi jnocessiig systemiis

1. D. S. Touretzkv (ed), Morgan Kaufniann, San \lateo. ('A. 1989.
8. C .—Q. \Vei, C. Hirzinger. and B. Brunner. Sensoriinotion coordination and sensor fusion by neural networks. In

Proc. IEEE Jut. Conf. Neural Networks, Sun Francisco, pages 150 153, 1993.
9. 3. Zhang amid A. Knoll. Constructing fuzzy controllers with l3—spliiie mninlels — priiciples amid applications.

International Journal of Intelligent Systems, 13(2/3):257 285. FEB/MAR. 1998.

222

(a) 1—cornpundit ( h) S—corn poncent (c) After a Sohel hirer. (ci) After a (rahor filter.

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/12/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx


