
Generalization of Optimal Motion Trajectories for Bipedal
Walking

Alexander Werner† Dietrich Trautmann† Dongheui Lee∗ Roberto Lampariello†

Abstract—Control of robot locomotion profits from
the use of pre-planned trajectories. This paper
presents a way to generalize globally optimal and
dynamically consistent trajectories for cyclic bipedal
walking. A small task-space consisting of stride-length
and step time is mapped to spline parameters which
fully define the optimal joint space motion. The paper
presents the impact of different machine learning al-
gorithms for velocity and torque optimal trajectories
with respect to optimality and feasibility. To demon-
strate the usefulness of the trajectories, a control
approach is presented that allows general walking
including transitions between points in the task-space.

I. Introduction

As many aspects of robotics technology improve,
robots cover more tasks such as manipulating objects in
complex environments. Often designed with humans in
mind, these environments feature challenges like stairs
or uneven terrain. It is therefore desirable that robots
have matching abilities when it comes to locomotion in
these environments. This motivates the use of legged
locomotion for our robotic platforms.

However, legged locomotion comes with rather com-
plex kinematics and dynamics which still provide plenty
of challenges for planning and control. All approaches
create a mapping between the task of moving the robot
somewhere and a suitable trajectory which deals with
the full complexity of the robot. Models of varying
complexity [1] are used to create this mapping. Creating
a trajectory using a model that contains all degrees of
freedom and takes into account the systems limitations
is however not feasible when the solution should be
created on-line, taking into account the task and the
environment.

The approach developed in this work, first presented
in [2], provides this mapping from the task-space to
the trajectory. For this it uses a combined approach of
trajectory planning using non-linear optimization and
generalization of these results by current machine learn-
ing methods. The optimization allows exploitation of the
dynamics of the system by using strong models. This
paper contains an analysis of the performance of a set of
machine learning algorithms in providing this mapping
for a successful execution of the task.

∗ Chair of Automatic Control Engineering, Department of Elec-
trical and Computer Engineering, Technische Universität München
(TUM)

† Institute of Robotics and Mechatronics, German Aerospace
Center (DLR)

We have selected the stride length and cycle time as
task-space variables, allowing arbitrary cyclic walking
on flat ground. Two cost functions, joint velocity and
joint torque, were evaluated, posing different levels of
complexity for the machine learning. We computed dense
data sets for a task-space grid on which a set of ma-
chine learning algorithms were applied. The quality of
the machine learning results was evaluated for different
sampling densities of the task-space. For practical ap-
plication, the required density is always a compromise
between computation time and loss in optimality, with
a lower bound defined by feasibility of the generated
trajectories. The paper analyses this trade-off.

The method is applied to 2D bipedal walking with 6
joints and flat feet stepping on level ground. The system
has realistic mass and actuator properties that are in-
spired by existing robots. All system limitations found to
be relevant for a successful execution in [1] are respected
by the trajectories. The planning approach presented
here provides cyclic gait patterns for any required task
which lies within the learned region. The pattern can be
computed from the learned model within an execution
time that enables its use in reactive on-line step planning
algorithms. The method is general and can be applied to
three dimensional walking robots as well.

The paper is organized as follows: after presenting the
related work in Section II, the problem is described in
Section III. A more detailed explanation of the optimiza-
tion problem and the methods to generate the data set
used in the machine learning is given in Section IV and
Section V. The following Section VI described the applied
machine learning algorithms and their parameterization.
Section VII gives results for the machine learning process
which are validated on different levels. A simulation
demonstrates the use of the trajectories in combination
with a feed-back. The paper provides a discussion in
Section VIII and Section IX.

II. Related Work

Using a similar approach the task of robotic ball-
catching was studied in [2]. There, a mapping from a ball
velocity vector to an optimal robot trajectory to catch
the ball is learned. This allows real-time execution while
respecting the dynamic constraint of the robot.

Learning approaches are also applied differentially
onto existing trajectories to compensate for the tracking
errors of feed-back control schemes build on reduced
models. [3] presents a way to reduce the tracking error



of the Zero-Moment Points for bipedal walking by using
iterative learning control. The approach uses a simplified
model and compensates for the effects of the neglected
dynamics using machine learning.

In [1] we present an optimization problem to solve
three dimensional bipedal walking. The approach uses an
instantaneous double-support phase. This was resolved in
[4] with a 2-phase walking motion, with a time-variant
optimized contact force distribution. Additionally, tra-
jectory generation for serial-elastic robots is addressed.
This work borrows the formulation of the optimization
problem from [4] and applies it to a planar, rigid, bipedal
robot.

III. Problem Statement

In qualitative terms, the task is to provide motions
which make a bipedal robot traverse a horizontal distance
by attaching and detaching selected contacts with the
ground in a cyclic pattern. When looking at the geometry
of one cycle, the motion can be described by the stride
length of one step ks. The motion is divided into two
phases, the single- and the double-support phase. The
time allowed for one step, comprised of both phases, is
specified as kt. These two parameters make up the task
specification:

k =

[
ks
kt

]
(1)

The trajectory is defined in the joint space of the
robot q ∈ RNJOINTS through a B-spline function q =
fSPLINE(p, t) with the parameters p ∈ RNSPLINE . The
trajectory is required to fulfill the robot kinematics and
dynamics.

z

x

z

x

Fig. 1. Kinematic task of a symmetric step. Left: Schematic motion
of the swing foot during the single-support phase with start and
goal foot step locations. Right: Closed kinematic Loop during the
double-support phase.

The task k determines the location of the foot at
start and during the double-support phase as displayed
in Fig. 1:

H∆(0) = Hstart sstart = −sgoal =
ks

2
H∆(t) = Hgoal ∀t ∈ [rp · kt; kt]

(2)

where H∆ is the homogeneous transformation matrix of
the relative position of the swing foot to the stance foot.

This matrix contains only a translation in x of magnitude
sstart and sgoal respectively. The ratio between phase
time of the single-support phase and time of the complete
step is defined by rp. The stance foot is assumed to have
the position I. This assumption allows the computation
of the full base state x (shown in Fig. 1) contained in
the full system state y using a kinematic relation fKIN:

y =

[
x
q

]
x = f−1

KIN(q) (3)

given only the joint space q. The dynamics of the system,
described in [4], are given by:

M(y)ÿ+C(y, ẏ)ẏ+ g(y) = ST τ +

NC∑
i=0

JT
i (y)W i, (4)

with the required joint torques τ and generated contact
forces W i. τ must satisfy the robots hardware limita-
tions, whereas W i must lie within the set of forces that
keep a stable contact.

Additionally the goal is to provide an optimal trajec-
tory with respect to one of the following cost functions:

Γq̇(p) =
∫
q̇T · q̇ dt

Γτ (p) =
∫
τT · τ dt (5)

Essentially, the mapping between k → p can be re-
vealed through the solution of an optimization problem,
as described in the following Section IV. Considerable
computation power and time is required to compute p
given k such that the resulting trajectory is optimal
and feasible given the non-linear cost function and con-
straints.

To provide a solution quickly enough that it can be
used in a robot, where k is known only a very short time
in advance, the mapping should be generalized through
machine learning algorithms. The algorithms applied are
described in Section VI.

To generate the data set for generalization, the func-
tion is sampled at a set of training points kTRAIN yielding
a set of points pTRAIN . This data set must be sufficiently
smooth in k to lead to acceptable results. The computa-
tion of this data set is described in Section V.

IV. Optimization Problem

The requirements on the trajectory are formulated
as inequality constraints h(p) and equality constraints
e(p,k) in the optimization problem:

minimize
p

Γ(p)

subject to e(p,k) = 0
h(p) < 0

(6)

The inequality constraints contain joint position and
joint velocity limits which are linear in p. To compute
collision free trajectories, a safe distance between the
swing foot and the ground is enforced as inequality
constraint which are non-linear in p. Additionally the
required joint torques τ and contact forces W i given by



Optimization-
based

trajectory
gen. with
dynamics

Machine
Learning of

globally
optimal

trajectories

Determine desired step
with system state and

environment

Prediction
of optimal

spline
parameters

Computation
of tracking
trajectory

Locally
stabilized
execution

of trajectory

off-line on-line

Mapping

Fig. 2. Pipeline used to generate on-line walking based on a set of globally optimal trajectories (k,p)n. Given the task k∗ the required
spline parameters p∗ are computed.

ks in m 0.300.350.400.450.500.55
k t in s

0.50
0.55

0.60
0.65

pa
ra

m
et

er
va

lu
e

�0.34

�0.32

�0.30

�0.28

�0.26

Fig. 3. Non-linearity of a parameter p38 over k for the torque
cost function. This parameter does not exhibit the regions found
with this cost function in other parameters. Sparse black markers:
samples generated by the optimization. Dense mesh: predicted
values using Gaussian process regression.

(4) are implemented as inequality constraints, which are
highly non-linear in p. A simplification was made for this
data set: the redundancy of (4) in the contact forces W i

was resolved by taking the least-square solution. This can
be replaced by a parameterization of the contact force
distribution as already presented in [4].

The contact forces are constrained to fulfill the fric-
tion cone and Zero-Moment Point (ZMP) conditions [1].
These enforce that the contact is a full surface contact
throughout the contact phase.

The specified optimization problem is further re-
stricted to finding a solution in the subspace of p which
defines cyclic gait motions. A motion is considered to be
cyclic if it can be repeated for the following step when
swapping the leg joints [1].

The computation of the constraints is possible through
inverse dynamics for any given t, without having to
solve the differential equation (4) in t. Building on this
property, the optimization problem is approximated by
satisfying the constraints and computing the cost func-
tion only at a discrete, set number of points within the
time span of the trajectory.

The optimization problem is solved by using an interior
point method implemented in [5].

V. Data Set Generation from Optimization

Once the optimization problem is implemented, it is
possible to generate a set pTRAIN for a given kTRAIN.
The key to a successful generalization is that the data
set is sufficiently smooth. As p is computed by an
iterative numeric scheme and the cost functions (5) are

potentially not globally convex, the results provided by
the optimization must be treated with care.

The adopted method to deal with the existence of
global minima is to execute a global search based on
random initial parameters. To ensure (near to) global
optimality, the sample with the best cost function is
selected, potentially creating non-contiguous regions in
the mapping k → p.

Additionally, the smoothness can be destroyed by noise
which comes from the termination criterion in the opti-
mization algorithm. When looking at the mapping k → Γ
noise is mostly not present. However, in the parameter
space there might be considerable noise because

∂Γ

∂pi
<<

∂Γ

∂pj
for i 6= j (7)

can differ significantly. Even though all solutions found
might be feasible with respect to the constraints, this
noise can seriously deteriorate some machine learning
algorithms so that the predicted p∗ violates the con-
straints. The chosen solution is to re-optimize the results
of the one solver execution and maximize the difference
between initial cost value and solver tolerance.

The cost function Γτ (p) is not only non-linear in p,
it also has very different sensitivity (7) for different
parameters. This is caused by the quadratic function and
by the different inertias of some segments of the robot in
different contact configurations. An example of the non-
linearity in the data set is displayed in Fig. 3.

The parameter ks was varied in the range [0; 1.2] m,
kt was varied in [0.5; 1.08] s. This allows the generation
of any cyclic gait with these ranges. For the robot with
NJOINTS = 6, NSPLINE was chosen to be 192. The
restricted optimization space NCYCLIC = 132 was used
for the optimization.

VI. Applied Machine Learning Methods

In this Section the applied machine learning methods
are introduced. For the given data set, the properties
of each algorithm were studied and the most suitable
configuration for the algorithm was determined.

n-Nearest Neighbors (n-NN): This method [6], [7]
interpolates locally between the closest n samples.
Straightforward uniform weights and distance weights for
the neighbors were applied. With n = 1 this method
degenerates to a pure look-up table. We applied n-NN



up n = 7, since a higher number of neighbors added no
significant benefit.

Regression Tree (RT): An additional simple and fast
regression method is the RT [6]. Here the task-space
is partitioned into m regions and the average of the
samples in each region is computed. We evaluated RT
with multiple but fixed maximum depth in the range
d = [3, 7], while we also applied this method to estimate
an optimal tree depth with respect to the data (no
fixed maximum depth). The minimum leaf size was one
sample, while our condition for minimum split was two
samples.

Polynomial Regression (PR): PR [6] models the map-
ping through a n-th degree polynomial plane. We used
n = [1; 7]-order polynomials, while applying l2 regular-
ization.

Support Vector Regression (SVR): One of the more
sophisticated methods applied was the support vector
machine, since it can also be applied to regression prob-
lems. The two variants ε-SVR [8] and ν-SVR [9], [10]
were evaluated. The free model parameters ε and ν for
the respective algorithms, and C as the regularization
parameter in both approaches, were experimentally cho-
sen. ε controls the size of the ε-tube, within which errors
are not penalized. With ν in ν-SVR, the number of
support vectors and the number of training errors can be
adjusted. Additionally, we compared the performance of
a polynomial kernel and a Gaussian radial basis function
(RBF) kernel.

Gaussian Process Regression (GPR): Another non-
parametric method is GPR [11], [12]. This method relies
on classical probability theory, where not only the most
probable value but also the uncertainty of this value is
computed. A Gaussian Process does not model the func-
tion f(k) directly, but rather considers the correlation
between the input k and learned k points. We applied
kernels using squared exponential, as well as absolute
exponential, cubic and linear correlation to exploit the
distribution of our data. The parameter nugget (regular-
ization) was found through exploration.

VII. Results

This section follows Fig. 2 and evaluates the computed
p∗ in different ways. First we present the best determined
parametrization of each machine learning method intro-
duced in Section VI. All implementations of the applied
algorithms were taken from the library scikit-learn [13].
Second, we compare the machine learning methods, pa-
rameterized as described above, regarding the accuracy
of the predicted trajectory parameters p∗, and prediction
runtime. After that, we analyse p∗ using the cost function
and constraints specified in the optimization problem.
Finally the trajectories are applied to a simulated robot.

A. Parametrization of Machine Learning Methods

In order to find the best parameters for each machine
learning method we conducted a grid search on the

0.000

0.005

0.010

0.015

0.020

0.025

M
SE

of
p

in
ra

d2

ν-SVR
5-NN
1-NN

PR
GPR
RT

�0.005

�0.004

�0.003

�0.002

�0.001

0.000

0.001

R
el

at
iv

e
op

tim
al

ity
lo

ss
20 10 6

training set size in samples/m

0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

C
on

st
ra

in
tV

io
la

tio
n

Fig. 4. Mean squared error in the parameter space for different
machine learning methods and different sampling densities in the
stride-length (kl) direction of the task-space k for Γq̇ .

parameter space with the goal of maintaining generaliza-
tion and low model error. The best parameters for each
method are summarized in Table I.

TABLE I

Best Parametrization of each Method

ML-Methods Parameters

n-NN
neighbors n = 5
weight distance function

RT maxium depth d = 5

PR 5th order polynomial

ν-SVR
Gaussian kernel
ν = 4.73 · 10−1

C = 1 · 103

GPR
absolute exponential correlation
nugget = 3 · 10−2

B. Results for applied Machine Learning Methods

The quality of the mapping k → p provided by the
different machine learning methods described in Section
VI was evaluated with a 11-fold cross validation. The
validation was done in terms of mean-square error of
p∗, predicted with the machine learning methods against
p, provided by the optimization which was not part of
the training set. The test set was filtered to not contain
points which fall in a zone along the edges of the task-
space area. This zone was set to 0.3 of the allowed interval
of the respective task-space direction.



0.002

0.004

0.006

0.008

0.010
M

SE
of

p
in

ra
d2

ν-SVR
5-NN
1-NN

PR
GPR
RT

�0.020

�0.015

�0.010

�0.005

0.000

0.005

R
el

at
iv

e
op

tim
al

ity
lo

ss

52 26 17 7

training set size in samples/s

0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

C
on

st
ra

in
tV

io
la

tio
n

Fig. 5. Mean squared error in the parameter space p for different
machine learning methods and different sampling densities in the
step time (kt) direction of the task-space k for Γq̇ .

kt in s

0.5
0.6

0.7
ks in m�0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

pa
ra

m
et

er
va

lu
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 6. One parameter in p illustrating the structure of the data
set for Γτ . The different local minima are clearly distinguishable
surfaces.

Computation time being a concern for scaling this
approach to 3 dimensional walking and a larger task-
space, the sample density was varied in the task space
dimensions. This allowed us to find a sample density per
dimension with acceptable optimality loss and constraint
violation combined with the minimal computation time.
Fig. 4 shows the reduction of sampling density in the
direction of ks, Fig. 5 for the direction kt.

Results for the cost function Γτ where far worse ini-
tially. After a closer look into that data set it was revealed
that this was clearly due to the existence of local minima.
This means the global search provided multiple p for
a given k associated with different costs Γ. In order
to use always the best solution we separated the data
set into clusters using Gaussian Mixture Models and
removed all but the best cluster. Completely automating

TABLE II

Parameter Prediction Runtime

ML-Methods
Samples in training set

220 110 55 28

RT 2.3e-6 2.3e-6 2.3e-6 2.5e-6

PR 1.1e-5 1.1e-5 1.1e-5 1.0e-5

GPR 6.2e-5 4.1e-5 3.4e-5 2.6e-5

n-NN 2.1e-4 2.2e-4 2.1e-4 2.2e-4

ν-SVR 2.5e-3 1.6e-3 1.3e-3 1.0e-3

this process was very hard as the clusters have a branch
like structure and can also not be separated using the
cost value as additional parameter. The structure of the
results is shown in Fig. 6. After separation of the data,
the algorithms perform equally well as for Γq̇.

Prediction Runtime: Execution time of the prediction
was also evaluated. The results for the different combi-
nations of methods and size of the data set are presented
in Table II.

C. Cost Value and Constraint Violation

The learned mapping k → p was also evaluated using
the cost and constraint functions of the optimization
problem that was used to generate the data set. For this
evaluation, the same test samples and same subsampling
already described in Sec. VII-B were used. Fig. 4 and
Fig. 5 show the loss in optimality and constraint viola-
tions for the different methods. Before taking the max-
norm, the constraint violations for inequality constraints
with upper and lower bound were normalized using the
width of the allowed interval. The remaining constraints
were not normalized.

Constructing a trajectory which is feasible is con-
sidered critical for successful execution. The following
constraints are the ones most active in the optimization
problem and thus shape the trajectory, these are also the
ones most likely to be violated by a prediction error in
p∗ because they are already at their bounds:

• Equality constraints on H∆ during the double-
support phase

• Zero-Moment point and friction cone constraints
• Joint velocity and joint torque constraints

D. Simulation

In the process of generating the data set
(kTRAIN,pTRAIN) the real system dynamics were
only guaranteed not to be satisfied at a discrete set
of points within the time span of the trajectory.
We therefore used a standard rigid-body simulation
environment [14] to evaluate the computed trajectories.
The environment solves the equations of motion (4) for
t together with the contact dynamics at a rate of 1 ms.
The robot motions are controlled by τ .

For a given trajectory represented by p the full system
state y, ẏ and the required accelerations ÿ are computed



using the B-spline function and the fixed-base assump-
tion, as employed in the optimization process. Using (4),
the required joint torques τ and contact forces W i are
computed in exactly the same way as in the optimization
problem.

For evaluation of a single pattern, the simulation
environment is initialized with the start state y(0), ẏ(0)
of the pattern. The following computed τ is then passed
to the simulator:

τ = τ ∗ + PD(q∗, q̃, q̇∗, ˜̇q) + τ balance (8)

where τ ∗ are the torques computed by inverse dynamics
using (4) with the system state y∗ defined through the
spline function parameterized by p∗. Additionally, a joint
impedance controller is applied to improve tracking q∗

and q̇∗ with the current system state q̃ and ˜̇q respec-
tively. To stabilize the walking motion, τ balance, similarly
to [15] albeit without the constrained optimization prob-
lem, is introduced:

τ balance = cRJ
T
RAdjT (HRB)WB

+cLJ
T
LAdjT (HLB)WB

WB = PD(x∗
B, x̃B , ẋ

∗
B,

˜̇xB)

(9)

with x∗
B and ẋ∗

B the position of the robot computed with
p∗. The scalar weights cR and cL are zero if the contact
is not active and otherwise distribute a unit gain on
the active contacts. A Cartesian impedance controller
computes the Wrench WB acting on the central base
body of the robot and thus ensures that this body
follows the desired trajectory. As no forces can be directly
produced on the body, but only through the feet in
contact with the floor, the wrench is projected to the foot
frames using the adjoints Adj(HRB) and Adj(HLB) re-
spectively. Theses forces are then realized by computing
the required torques in the joint space using the body
Jacobians JR and JL respectively.

All parameters p from the optimization or from the
machine learning can be evaluated this way. As the
contact stability is paramount to a successful execution
of a trajectory, the ZMP can be compared for ideal and
learned trajectories. This is displayed for an example case
in Fig. 7.

In the application, the desired foot step locations
defining k are known one step ahead, which allows one
cycle to predict p, possibly for multiple values of k.

E. Transition steps

Varying distance between the foot steps requires a non-
cyclic gait pattern, which can be created by combining
two trajectories. Given the phasing variable α and the
task/spline parameter tuples (k1,p1) and (k2,p2) a tran-
sition trajectory can be computed as:

y = b(α)fSPLINE(p1, α · kt,1) +

(1− b(α))fSPLINE(p2, α · kt,2)

b(α) =

{
bBC(α/rp) for α < rp

1 for α ≥ rp

(10)

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0.4

combined x
ZMP

t in s

x zm
p in

 m

 

 

x
ZMP

x
ZMP,ref

Fig. 7. xZMP,ref (t) and xZMP(t), resulting for the trajectory
generated by optimization and xZMP computed for the predicted
trajectory displayed for two consecutive steps. The conservative
constraints imposed on the trajectory in the optimization problem
are shown in dashed red, the system constraints are shown in dash-
dotted black lines. The violation of the conservative constraints for
both trajectories is due to the approximation of the optimization
problem at a limited set of points along t.

with the polynomial, twice continuously differentiable
blending function bBC which ensures continuous transi-
tions for y . . . ÿ, thus continuous τ .

Blending two trajectories with (10) results in a subop-
timal total trajectory, but increases the application of the
computed trajectories to general walking, more so than
just executing one cyclic motion. This is very relevant as
the feed-back controller described in the previous section
does not have enough control authority to stabilize the
system in case of significant disturbances. The only way
to stabilize the system is to modify k for the following
steps, commonly know as step adaptation.

The suboptimality of these blended trajectories can be
remedied by providing optimized transitions steps, this
however increases the task-space dimensionality.

VIII. Discussion

The machine learning algorithms presented in Section
VI perform well on the smooth data set generated with
Γq̇ where optimality loss is very small and constraint
violations are reasonably small for GPR, as shown in
Section VII.

The data set generated with the cost function Γτ with
local minima, required further processing, after which the
different methods performed similarly as in the velocity
cost function case.

For both data sets the critical result is the maximum
relative constraint violation, as this determines how con-
servative the constraints in the optimization algorithm
must be configured to achieve consistently feasible tra-
jectories. As these limits already have to be reduced
to account for head-room for the feed-back control, to
ensure that the actuators are not saturated by small
disturbances. The 5% violation of the constraints seems
acceptable, as past experience shows that the head-room
for the controller must to be more the 10%, or more, of



the two-sided inequality constraints interval, depending
on the quality of the rigid-body model used.

Our approach is to generalize trajectories which are
generated off-line, using nonlinear optimization. This
takes the dynamic properties of the system, with re-
spect to both feasibility and optimality, into account.
In contrast to this, the trajectory generation approaches
which operate on-line are mostly restricted to kinematic
planning and higher-level heuristics to find a feasible
trajectory in the available time. Solving the problem of
trajectory generation off-line does not have this problem.
However, on-line approaches are always general when it
comes to varying starting conditions of the desired tra-
jectory. We show that the off-line generated trajectories
can also be applied in presence of disturbances, of course
without optimality.

IX. Conclusion

The presented approach of generalizing optimal tra-
jectories is feasible, although the quality of the results
strongly depends on the machine learning method the
user employs, as well as the sampling densities used.
For any of the learning methods discussed in the paper,
it is unlikely that suboptimal trajectories will result
from our new approach. Instead, the limiting factor for
the threshold of the sampling density is the maximum
constraint violation.

Future work will be focussed on extending the feed-
back aspects with a step adaptation based on the system
state and evaluating the performance in the direction
of robustness. Additionally, the aim is to extend the
formulation to the three-dimensional case.

The essential trade-off is between sampling density and
conservativeness of the inequality constraints. For the
equality constraints during the double-support phase the
criterion is the allowed error of the relative foot positions.

The representation of the optimal results has the
advantages of being compact, extensible to high task-
space dimensions and quick enough for use in conjunction
with a step planner that obtains feasible steps on-line
from sensor data.

References

[1] A. Werner, R. Lampariello, and C. Ott, “Optimization-based
generation and experimental validation of optimal walking
trajectories for biped robots,” in International Conference on
Intelligent Robots and Systems (IROS), 2012, pp. 4373–4379.

[2] R. Lampariello, D. Nguyen-Tuong, C. Castellini, G. Hirzinger,
and J. Peters, “Trajectory planning for optimal robot catching
in real-time,” in International Conference on Robotics and
Automation (ICRA), 2011, pp. 3719–3726.

[3] K. Hu and D. Lee, “Bipedal locomotion primitive learning,
control and prediction from human data,” in Proc. the 10th
International IFAC Symposium on Robot Control (SYROCO),
2012, pp. 536–542.

[4] A. Werner, R. Lampariello, and C. Ott, “Trajectory optimiza-
tion for walking robots with series elastic actuators,” in 53rd
Conference on Decision and Control (CDC), 2014, pp. 2964–
2970.

[5] A. Wächter and L. T. Biegler, “On the implementation of an
interior-point filter line-search algorithm for large-scale nonlin-
ear programming,” Mathematical Programming, vol. 106, pp.
25–57, 2006.

[6] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin, “The
elements of statistical learning: data mining, inference and
prediction,”The Mathematical Intelligencer, vol. 27, no. 2, pp.
83–85, 2005.

[7] T. Cover and P. Hart, “Nearest neighbor pattern classifica-
tion,” Information Theory, IEEE Transactions on, vol. 13,
no. 1, pp. 21–27, 1967.

[8] A. J. Smola and B. Schölkopf, “A tutorial on support vector
regression,” Statistics and computing, vol. 14, no. 3, pp. 199–
222, 2004.

[9] B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L.
Bartlett, “New support vector algorithms,” Neural computa-
tion, vol. 12, no. 5, pp. 1207–1245, 2000.

[10] C.-C. Chang and C.-J. Lin, “Training nu-support vector re-
gression: theory and algorithms,”Neural Computation, vol. 14,
no. 8, pp. 1959–1978, 2002.

[11] C. Rasmussen and C. Williams, “Gaussian processes for ma-
chine learning,” Gaussian Processes for Machine Learning,
2006.

[12] K. P. Murphy, Machine learning: a probabilistic perspective.
MIT press, 2012.

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, et al., “Scikit-learn: Machine learning in python,”
The Journal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

[14] F. Kanehiro, H. Hirukawa, and S. Kajita, “Openhrp: Open
architecture humanoid robotics platform,” The International
Journal of Robotics Research, vol. 23, pp. 155–165, 2004.

[15] C. Ott, M. A. Roa, and G. Hirzinger, “Posture and balance
control for biped robots based on contact force optimiza-
tion,” in International Conference on Humanoid Robots (Hu-
manoids), 2011, pp. 26–33.


