Microprocessing and Microprogramming 32 (1991) 541-548

An Applicative Real-Time Language for DSP-Programming
Supporting Asynchronous Data-Flow Concepis

A. Knoll and M. Freericks
Technische Universitaet Berlin
Sekretariat FR 2-2
W-1000 Berlin 10
Germany

An licative 1 d d to express parallelism and datae-flow in signal

is pr ted. Th > may be used for the specification of
networks isting of any of p tities. It is equally well suited
for the simulntion of networks both at the data flow level and at the al’gonthmsc
level. The language constructs have been selected so as to to obtain concise
descriptions of typical signel processing tesks. The paper discusses several key
aspects of the languege design; some simple examples illustrating the power of the

language are included.

1 INTRODUCTION

Applicative (functional) programmmg languages
have several advant over st:

tive languages: The abstraction from machine
and algorithmic details is much higher, there-
fore a program specification is normally consid-
erably closer to the problem to be solved. As a con-
sequence, programs writlen in an applicative
programming style are normally much shorter
than their imperative counterparts, they are
nicer to read, easier to comprehend, simpler to
write and less error-prone. In recent years, there
has been a number of attempts to design applica-
tive languages for signal processing applications
[1;2], most notably Silage {3], a comparatively
small and simple language used primarily in the
realm of VLSI design. Applicative languages
may be used stand-alone or as “natural” target
languages of graphic signal processing design
systems such as Gabriel [4] or CADiSP [5] be-
cauvse processing blocks in these systems map di-
rectly to function applications of applicative lan-
guages.

The programming language ALDiSP [6] is a gen-
eral-purpose applicative language primarily de-
signed for DSP algorithm and network spemﬁca—
tion, [t may be used both for the guéxh\ﬂahon of
OO nc an!

or ML [8;8], and it can be applied to problem do-
mains other than DSP programming. Inﬁxes&
quel, however, we will focus on the !
constructs relevant for DSP applications. Ti:e
major design goals to make the language useful
for DSP were:

¢ Time and process management must allow
for the handling of both synchronous and
asynchronous events

¢ The programmer must be able to handle
infinite streams of data objects

e A rich set of (parameterized) numerical
types should be defined to accommeodate as
many DSP architectures as possible

e Powerful cperators on complex data struc-
tllx,i'es (most notably arrays) should be avail-
able

e The language should be able to model nu-
merical properties of common DSP architec-
tures in a bit-by-bit manner

° Exceptions (both numerical and algorithmi-
cal) should be handled easily

e There should be censtructs permitting the
division of prozrams inte modules

2 LANGUAGE FEATURES

P Y

tmn of code for typxcai synchtonous s:gnal pro-
tasks i d or dedi-

power of

cated sngnal pr Th
ble to that of Sch 7

the 1 is

Program Stry
An ALDiSP program models a signal flow graph,
i.e. a net of signals connecting nodes. Nodes are
specified by user-defined or pre-defined funec-
tions; signals are modelled by streams and pipes.

542

1

A. Knoll, M. Freericks

1s. The el ts of a stream are produced

A program may censist of an arbitrary r of
modules and a net description. The latter de-
scribes the top-level flow of data and the connec-
tion of signals to I/O-devices.

Signal processing may be input-driven or output-
driven. In an input-driven (“call-by-availability”)
environment, a node remains dormant until
there are enough input data available to activate
the node; on activation the node consumes a
number of input tol and p a ber cf
output tokens into the net. In an output-driven
(“Call-by-need”) network output devices “pull”
data tokens out of the network. When a node re-
ceives a request to produce an output token, it
propagates the request to its input. Obviously,
this propagation works only if there are functions
at the end of the propagation path that produce
output tokens without prior input, i.e. functions
acting as signal generators.

In ALDiSP, signals are modeled as infinite lists
of data tokens. The programming language of-
fers two different kinds of lists: Streams, which
are a well-known data structure in functional
languages [10], model output-driven signals.
Pipes, on the other hand, model input-driven

by a stream-generator, which is simply an ordi-
nary function supplying the elements of a stream
upon request, one at a time. These elements typi-
cally represent successive samples of an algo-
rithmically definable signal. At any given time,
only a finite set of stream elements is known
while the remaining infinite list of stream ele-
ments remains to be determined.

The following ALDiSP program illustrates the
usage of streams by modeling a tapyped shift reg-
ister via a stream called “RandomBita”. It can be
used as a noise signal generator. Ths generator
P £ \ Iy

prod ani q of p

bits. The initial seed (a large cardinal number) is
divided into a stream of bits. The stream is tapped
by a function GenBitStream, which generates
new pseudo-random bits by XORing a number of
bits on the stream.

Fig. 1 shows the circuit diagram of the noise gen-
erator; fig. 2 shows how the algorithm works in
terms of a data flow model. The program imple-
menting this network is shown in fig. 3, where
">>" denotes a right shift of bits, "&" is the logical
AND of bits, and "::" is an operator that puts a to-
ken at the head of a stream.

Seeq -~

Shift Register, initially containing seed
Output
[X X] L
a J - |
ﬂ & Feee—e
\
Fig. 1: Circuit diagram of the noise g
RandomBits
—1

GenBitStream
—

Fig. 2: Data-flow model of the noise generator

An applicaiive real-time

- Sead and length of shift register

Seed = 745608675123538549606358473849506847389;
ShiftRegLength = 100;

\ - Function dividing a number into a stream of single bits

func CardToBitList (n, Index) =
it Index < 0 then Null
e:‘e‘lﬂsfe {(n >> Index) & 1) :: CardToBitList (n, Index-1)

- Vector holding the indices of the bits to be XORed, may
have any number of E'aments < ShiftRegLength

XORBitVect = [4, 17, 39, 49};

Function XORing the numbers as indicated by
XORBitVect in a stream

Note: select is a predefined function selecting the ofh
element of a list and the predefined function reduce
applies a binary function to a vector or & list

func GenRandomBit (list) =
let
func Extract (n : Card) = select (list, n)
in

reduce (bitXOR', Extract (XORBitVect))
endlet

\ - Function applying the random number generator

successively to the shift register and then shifting it

func GenBitStream (stream) =
GenRandomBit (stream)::GenBitSiream (taii{stream))

Netlist describing the topography of the network

net
RandomBits =
append (CardToBitList (Seed, ShiftRegLength)
. delay (GenBitStream (RandomBits)))
n
StreamToPort (AnOutputPort, Randomaits)
endnet

Fig. 3: Program implementing the noise generator

The function Extract, which is based on the pre-
defined function select, returns the n'" element of
a list; the first element having the index 0. If it is
cailed with the index n being an array, the aute-
mapping mechanism built into ALDiSP will
return an array of selected objects. An example
call Extract ({1, 3,20 applied to a list (10, 20, 30,

40, ...) will give an array of the f{orm

for DSP p 543

[20, 40, 30]. The auto-mapping mechanism in
ALDISP works as follows: If a function is defined
for numbers but applied to a stream {or an ar-
ray), it is tically d to each el

of the stream (or the array) “The results are col-
lected into a new stteam (or array). The prede-
fined functi ds a list or a stream
to a stream. The ¢ delay operator delays the evalua-
tion of its argument until its value is needed.
This operator is umphcltly coutamed in the
stre buildin, i g it to have a
“call-by-need” semantics.

The topography of the network, i.e. the flow of
streams between nodes containing processing
functions is described in the et-part of the pro-
gram. The pmgram shown is complete, i.e. no
vanab!e as-

4 ts, etc., 1 Y.
driven by the predefined function StreamToPort,
which writes stream elements to an output port
whenever the port can accept data.

Consider the stream processing system of fig. 4:
A signal generator produces a stream of scalar
elements. A functional block “ConstructVect” col-
lects this sequence of scalar elements into blocks
or vectors of, say, 256 elements. Each of these vec-
tors is transformed into the frequency domain by
a Fourier transformer. The transformed vectors
(now of complex type) on the stream are filtered
in the frequency domain by multiplying the am-
plitude of each vector component by a co:rrespond-
ing attenuating coefficient and leaving the phase
unchanged. The result is then transformed back
into the time domam and consumed by further

Ppr g entiti g the funttions

SigGen () = ... \ - Generate signal

FFY (aVector) = ... \ - input: Fieal vector,
Output:Two real vectors

IFFT (twoVectors) = ...

AtinCoeffs =[c1,02,....] \ - Vect of 256 spectral coeff.

have been defined and collected in a module
called FreqDomainFilt. Then, the complete
ALDiSP program implementing the system ac-
cording to fig. 4 looks as shown in fig. 5.

SigGen ConstructVect Transform
@ (=0 |=5TTE
Al . |Bgoe-

DisassembleVector InvTransform Filter
F E D f

Fig. 4: Network for filtering blocks of a scalar signal

544 A. Knoll, M. Freericks

import SigGen, FFT, IFFT, AttnCoeffs from FreqDomainFilt

\— Note that VectorizeStream and ListifyVectors are

predefined functions
Net
A = SigGen ();
B = VectorizeStream (A, 256);
(Ampl, Phase) = FFT (B);
= Ampl * AtinCoeffs; \ -- Do the filtering by
multiplying the
vectors elementwise
E = IFFT (D, Phase);
F = ListifyVectors (E) \ -- Now we have a
stream of scalars
in
F
Endnet

Fig.5: ALDISP program for the network of Fig. 4

Note that FFT returns two separate vectors for
amplitude and phase which are sent onto two dif-
ferent streams Amp! and Phase. If these streams
are kept separate, the manipulation of only the
amplitude vector is very easy. Every ALDiSP
function may generate m- -‘tlple retum values ob-
viating the need to “ d re-
sults before sendmg them onto a stream. The au-
tomatic mapping of functions on finite data struc-
tures is employed by the prog line doing the
filter: The operator "*" is applied to all elements
of the vectors Ampl and AttenuatingCoeffs yield-
ing a new scalar vector. In general, if a function
is not defined to manipulate an array, but is ap-
plied to ore, it is applied automatically to all its
clements. This holds for user-defined functions
as well as for predeﬁ.ned ﬁ.mctlons. A compre-

hensive set of functi ting arrays as
complete data units has been defined (see [en; the
need to pulate single el ts of arrays

hardly ever arise.

This example clearly shows how well the applica-
tive approach of programming is intuitively com-
patible with the DSP-engineer’s block-diagram
oriented way of thinking. The automatic map-
ping of functions on stream elements and partic-
ularly the aut of functions on ar-
rays makes the p of t lating block dia-
grams into programs extreraely simple. The pro-
grammer need not be concerned with breaking
down complex data structures and subsequently

their t; before teassemblmg
them ¢ again. I d, he will p data ob-
jects as a whole and the mapping process is done
implicitly by the compiler.

Like other modern applicative 1

parameters of different types. The compiler de-
tects type inconsistencies by analyzing the type of
op ions applied to a given function pa
(see the following ple). The eval tion strat-
egy is call-by-value, for functions generating
streams this may be changed to call-by-need by
the delay operator (which is implicitly contained
in the ":" operator used for assembling lists or
tr). Like functi operators may be over-
loaded to accept different types of operands.
Operators may also be defined to be used in pre-,
post-, or infix-notation, whichever is more conve-
nient. Operator prccedence may also be specified.
ALDiSP permits recursion and higher order
functions, i.e. functions that have other functions
as arguments and/or return other functions as
results. Streams may be defined :>cursively and
they may be delayed by an arbitrary number of el-
ements. Therefore the concept of stream process-
ing lends itself ideally to the implementation of
filter networks. The example IIR-filter of fig. 6
may be realized directly by the ALDiSP function
shown in fig. 7.

Lﬂ_E___L\ >) outp

Fig. 6: IR filter network

func IIR (b0,b1,b2,a1,a2: number) (inp: stream) =
let

outp = delay (b0"inp + s1)
s1=0:(b1%inp + al"oulp + s2)
) $2= 0 :: (h2"inp + a2°outp)
in

outp
endlet

Fig. 7: Function implementing the Network of Fig, 6

Here, the stream outp results from the addition of
the streams inp (each element weighted by b0)
and sl. Stream £2 is the concatenation of the ele-
ment "0" and the weighted sum of all the other
streams. If y, delaying ions may be

ALDISP is polymorphic, i.e. functions may accept

defined (r ively) that delay streams by an ar-
bitrary number of elements. Note that the IIR fil-

An ot .

ter function will filter integer values of any type
and real values as well because the operators
"+", "¥" and ":" are defined for all of these data
types. A shorter program implementing this fil-
ter is hardly conceivable!

Asynchronous communication and /0
Demand-driven (output-driven) streams are ade-
quate in synchronous applications where the
permanent avallabxhty of stream elemfgnts can be
guarant , this of i
cation is not smtable in situations where it can-
not be specified when (if ever) the next data item
becomes available (asynchronous case). With
streams it would be possible to continucusly gen-
erate “not available” elements if there is no item
but this would be extremely inefficient; it would
in fact be like constructing a “busy-waiting” loop
in imperative programming languages. To cope
with this problem we have introduced the concept
of pipes into ALDiSP. Pipes are syntactically
similar to streams, but instead of being demand-
driven they are data-driven. A pipe can be viewed
as a buffer accepting and storing data elements
as they become available over time. A consumer
may make use of data held in pipes in exactly the
same way as with streams; by reading from the
pipe, the ively pties the
buffer. If there is no data available, the consumer
is suspended. On pipes a predicate isAvailable is
defined, which becomes true once there is at least
one element in the pipe.

In ALDiSP, synchronicity is idered a ial
case of asynchronicity. Smce ALD;SP is an ap-
plicative language, values cannot “change”. Once
an object is created it cannot be destroyed any
more. Therefore, all ¥/O is handled through
(virtually) infinite data struct tead of pro-
gram state. Hence, the dlstmchon between syn-
chronicity and a: is only important
when-it comes to input/output. There are two
kinds of I/O-devices: ports and regtsters. An ob-
ject of type regist maps to a hardware register
or memory location, i.e. it can be read or written
to at any time. Since its value can change at any
time, the exact ti of is im-
portant. Ports, on the other hand, are asyn-
chronous devices: They may generate and accept
tokens at arbitrary points in time, as soon as they
become available. A process trying to access a
port that has no data available is suspended. It is
re-activated automatically once data becoma
available.

Time management and the suspension construct

In ALDiSP there is only a single language con-
struct covermg both synchronous and asyn-
chronous timi the susp con-
struct :

suspend exprl until expr2 within timel, time2

for DSP p i 545

When a suspension is evaluated, x .e. mlied by a
functlon, an
process is hibernated upon its creat;on. It re-
mains dormant until expr2 becomes true. Once
this happ the isg d to be ac-
tivated afier the penod of time specified by timel
IS overandbefore thetnne specified by time2 has

After , the process evaluates
exprl and then terminates. A simple example il-
lustrates the usage of this construct:

suspend OpenValve() until OverPressure within G ms, 05 ms

Here, a safety valve controlled by an interrupt
OverPressure opens no later than 0.5 millisec-
onds after an overpressure is signaled. Using
suspend, macros covering all other relevant
cases of scheduling are readily composed:

\— Synchronous delay
expr after ime = suspend expr until true within time,
time

\ -— Asynchronous, action is taken immediately

expr1 when expr2 = suspend exprt until expr2 within
0 sec, 0sec

\ — Asynchronous with timeout (SystemClock(} is a builtin
function retuming the cument time)
when (expr1, expr2, imeoutPeriod) =
fat
StartTime = SystemClock()
in

suspend expri
until (expr2 or SystemClock() - StartTime >
timeoutPeriod)

within 0 sec, 0 sec
endiet

\ — Synchronous, even when duration of action varies

expr equidistant duration =

let

_ StartTime = SystemClock{)

in
proc tmp{) =
suspend seq expr; tmpf) endsegq
until (Systemcm() StariTime) mod duration = 0
within 0 ms, 0 ms

endlet

The times may be dynamic; however, if they are
known at compile-time, a static schedule may be
produoed Pipes are implemented using suspen-
sions: The last available element of a pipe is a
suspension waxtmg for more input. Thus, when
a pipe is is sus-
pended until data become available.

Using suspend and the isAvailable predicate,
processing of asynchronous pxpes is very elegant.
The ubiquitous merging of two pipes (where any

546 A. Knoll, M. Freericks

of the two may or may not have data available)
takes on the following form:

proc merge {1, p2) =
suspend

if isAvailable(p1) then
hear(p1) :: merge(p2,p1)
head(p2) :: merge(p1,02)
endif
untit
isAvailable(p1) or isAvailable(p2)
within Osec, Osec

This is an easy-to-understand counterpart of the
ALT-construct used in Occam [11} for processmg
asynchronous data flowing through ch at

e Create Subvector:

SubVector ([1,2,31, 0, 2) - [1,2]
e Compose Vector:

CmpsVeetor ([1,2], [3]) — [1,2,3]

Because of the automatic mapping facility, all
functions defined on atomic types can be applied
to the contents of arrays, too:

° (1,2,3] + 10 —[11,12,13]

Similar functions exist for two dimensional ar-
rays (matrices), moreover functions are prede-
fined that select rows or columns of matrices, ex-
tract diagonals, and reduce matrices.

different rates. Using this construct, interrupt
handlers responding asynchronously to a condi-
tion becoming true are also written easily.

The ALDISP Type System

The type system of ALDiSP is based on predi-
cates: An arbitrary set of values may constitute a
type. For example, a type comprising all multi-
ples of 3 may be defined as follows:

func mult3p(x) = If isint (x) then x mod 3 == 0 else false endif;
type mult3 = mult3p

Mule3p is a predicate testing whether its argu-
ment is a multiple of 3; mult3 is a type defined by
this predicate.

In most cases, however, such complex defini-
tions are unnecessary. A rich set of frequently
used types has been defined, many of which are

par ized. Type cl are:
© Base types, necessary to construct a
complete type system

° Atomic types: Unstructured objects and
numeric types

° Arrays: n-dimensional collections of object
of the same type

e User-defined abstract types (Records,
variant records)

° Machine types: Reg

s, Ports, Interrupts

Exzamples of atomic types are parameterizable
numeric types: nBitInteger (n), nBitCardinal (n),
FixzInt (n,m), ShortReal, Real, Longreal, ete. All
commonly operations are available. For one-
dimensional arrays (vectors), a great number of
functions has been defined, some examples are
listed below:

e Selective Update:
UpdVector ({2,2,3], 1, 5) - (1,531
¢ Reduction:
Reduce (", [1.234D - (1-2)-3)-4

E ion Handling

Expressions or functions may be guarded for er-
rors that may occur during their evaluation. If
an error occurs, a predefined or user-defined ex-
cepuon-hand]er (a special kmd of function) is
called au lly. In g , & guarded ex-
pression looks as follows:

guard expr
on ExceptionDefinition

on ExceptionDefinition
endguard

When an error occurs during the evaluation of
expr, an exception is called. After the evaluation
of the exception the evaluation of expr is not con-
tinued; instead, the value defined by the excep-
tion-handler is returned as the result of the en-
tire guarded expressi:n. Continuation within the
expression is sometimes desirable and therefore
possible, too. Examples:

\ ---- DivisionByZero is a preciefined exception name

func reciprocalPlus3Verst (x) =
guard (1/x) + 3
on DivisionByZero () = 42
endguard

func reciprocalPius3Vers2 (x) =
guard (1/x) + 3
on DivisionByZero () = continue(42)
endguard

In the first example, the result of the function
when called with 0 is 42, as defined in the excep-
tion handler; in the second example the expres-
sion causing the error will continue to be evalu-
ated, resulting in a return value of 45.

Exceptions are the basis for actions to be taken on
overflows: Whenever an overflow occurs, a prede-
fined ezception handler is called. Overflow-reac-
tions are user-definable; the most commonly

An applicative real-time language for DSP programming 547

used are predehned ngna]mg, Ignoring, Realing,
[¢ are also
used to define roundmg modes with real num-
bers. Predefined rounding modes are
RoundToZero, RoundToPlus, RoundToMinus, RoundTo-
Even, RoundTeOdd.

3 ONCLUSIONS

We have P tel a d applicati lan-
guage fe i i of fi

on infinite and ﬁm‘n data, overloadable operators
for complex data structures, modularization and
time management. Both synchronous and asyn-
chronous data streams of different rates may be
defined, which makes interprocess communica-
tion in multi-rate-systems simple. Direct ma-
chine access and hardware-interrupt handling
are possible. An extremely flexible type system,
an elaborate exception handling mechanism and
a large number of predefined functions operating
on structured data as a whole make the language
suitable for complex DSP applications. Using this
language, programs may be written at very high
levels of abstraction, in many cases equivalent to
the mathematical description of the problem.
Expressing algorithms in an applicative lan-
guage directs much of the work normally done b,

the progr to the iler. As e

quence, transfonmng applicative ptograms mu)
code runuing on standard p

tures is a much more comphcated task than
compiling an imperative program. On the other
hand, parailelizing high-level applicative pro-
grams is potentially easier than trying to re-par-
allelize imperative programs written in ven-
Neumann languages. As compiler technology
advances, the difference in execution time be-
tween the languages will diminish but the advan-
tage of the compiler being able to match and op-
timize applicati speciﬁ tions to 1 archi-

tectures will remain.

Tnti PYy

A si most of the fea-
tures of ALD:SP has been developed, which is
rather slow Current work centers on transfor-

to stepwise simplify ALDiSP
programs to reduce the run-time requirements
for ALDiSP programs. The long-term goal is to
generate optimized code directly executable on
digital signal processors.

4 REFERENCES

[1) P. Caspi, N. Halbwachs, D. Pilaud, J.A.
Plaice
Lustre, @ Declarative Language for
Programming Synchronous Systems
Proc. 14th ACM Symposium on Principles of
Prog ing languages, Munich, 1987

{2] A. Benveniste, P. Bournai, T. Gautier, P.

LeGuernic
Signal: A Dataflow Oriented I for
Signal Processing

INRIA, Rapport No. 378, March 1985

[3] European Development Center
Silage Compiler Reference Manual
Brussels, 1989

[4] E.A. Lee
Programmaeble DSP Architectures: Part IT
IEEE-ASSP Magazine, Vol. 6, Ne. 1, Jan. 53

{51 A. Knoll, R. Nicberle
CADISP - A Graphical Compiler for the
Programming of DSP in a completely
symbolic way
Proc. IEEE-ICASSP 90, Albuguerque, 1990

[61 M. Freericks, A. Knoil
AI DiSP - Eine applxkatwe
Progr far di in
der digitalen ngnaluerarbeztung
Technical Report, Techn. Univ. Berlin, FB
20 No. 90-9

71 Rees,d.etal
Revised3 Report on the Algorithmic
Lenguage Scheme
SIGPLAN Notices Vol. 21, No. 12, Dec. 1986

[8] Milner, R.
A Proposal for Siendard ML
1984 ACM Symp. on Lisp and Functional
Programming

[91 MacQueen, D.
Modules for Stendard ML
1984 ACM Symp. on Lisp and Functional
Programming

[10] P. Pepper, G. Egger
The Opal Project
Internal Memo, TU Berlin, 1987

[11] INMOS Ltd.
Occam 2 Reference Manual
Prentice Hall, 1988

