
Microprocessing and Microprogramming 32 (1991) 541-548 541
North-Holland

An A p l ~ i ~ Rc~-Tin~ Language ~ D ~ ~ n ~ n g
sul~rdng As~ronous ~ C o n c ~

A. Knog and M. Freedcks
Technische Unive~taet Bergin

Sekretariat FR 2-2
W-lOgO Bertin 10

Germany

An applicative language designed to express parallelism and data-flow in sigr, al
processing systems is presented. The language may be used for the specification of
networks consisting of any number of processing entities. It is equally well suited
for the simulation of networks both at the data flow level and at the algorithmic
level. The language constructs have been selected s o as to to obtain concise
descriptions of typical signal processing tasks. The paper discusses several key
aspects of the language design; some simple examples illustrating the power of the
language are included.

1 INTRODUCTION

Applicative (functional) programming languages
have several advantages over standard impera-
tive languages: The abstraction from machine
and algorithmic details is much higher, there-
fore a program specification is normally consid-
erably closer to the problem to be solved. As a con-
sequence, programs written in an applicative
programming style are normally much shorter
than their imperative counterparts, they are
nicer to read, easier to comprehend, simpler to
write and less error-prone. In recent years, there
has been a number of attempts to design applica-
tive languages for signal processing applications
[1;2], most notably Silage [3], a comparatively
small and simple language used primarily in the
realm of VLSI design. Applicative languages
may be used stand-alone or as "natural" target
languages of graphic signal processing design
systems such as Gabriel [4] or CADiSP [5] be-
cause processing blocks in these systems map di-
rectly to function applications of applicative lan-
guages.

The programming language ALDiSP [6] is a gen-
eral-purpose applicative language p r b ~ a r f l y de-
signed for DSP algorithm and network specifica-
tion. It may be used both for the sintulation of
complex asynchronous networks and the genera-
tion of code for typical synchronous signal pro-
cessing tasks implemented on standard or dedi-
cated signal processors. The expressive power of
the language is comparable to that of S~heme [7]

or M L [8;9], a n d i t c a n b e app l i ed to p r o b l ~ n d ~
m a i n s o t h e r t h a n D S P p r o g r ~ r n r n i ~ . I n t h e se~
quel, however, we will foc~s on tl~e lang'~s~
constructs relevant for DSP applications. The
major design goals to make the language useful
for DSP were:

* .mime and process management must allow
for the handling of both synchronous and
asynchronous events

® The programmer must be able to handle
infinite streams of data objects

® A rich set of (parameterized) numerical
types should be defined to accommodate as
many DSP architectures as pe~db]e

" Powerful operators on complex data struc-
tures (most notably arrays) slmuld be avail-
able

. The language should be able to model nu-
merical properties of common D~ arclfitec-
lures in a b~t-by-bit manner

* Exceptions (both numerical and algerRhnfi-
ca]) should be handled easily

* T h e r e should be ~ustructs permitting t h e
division of pre~zams into modules

2 LANGUAGE FEATURES

GeneraIPmgram ~
An ALDISP program models a signal flow graph,
i.e. a n e t o f signuls connectlng nodes. Nodes a r e
specified by user-defined or pre-definod func-
tions; signals are modelled by streams and pipes.

542 A. Knoll, M. Freericks

A program may consist of an arbi t rary number of
modules and a net description. The l a t t e r de-
scribes the top-level flow of data and the connec-
tion of signals to I/O-devices.

Signal processing may be input-driven or output.
driven. In an input-driven ("call-by-availability")
environment , a noge remains dormant unt i l
there are enough input data available to activat~
the node; on act ivat ion the node consumes a
number of input tokens and pushes a number of
output tokens into the net. In an output-driven
("Call-by-needD network output devices "pull"
da ta tokens out of the network. When a node re-
ceives a request to produce an output token, i t
propagates the request to i ts input. Obviously,
this propagation works only i f there are functions
at the end of the propagation path that produce
output tokens without prior input, i.e. functions
acting as signal generators.

In ALDiSP, signals are modeled as infinite lists
of da ta tokens. The programming language of-
fers two different kinds of lists: Streams, which
are a well-known da ta s t ructure in functional
l anguages [10], model output-dr iven signals.
Pipes, on the other hand, model input-driven

signals. The elements of a stream are produced
by a stream-generator, which is simply an ordi-
nary function supplying the elements of a stream
upon request, one a t a time. These elements typi-
cally represent successive samples of an algo-
ri thmieally definable signal. At any given time,
only a finite set of s t ream elements is known
while the remaining infinite l ist of s t ream ele-
ments remains to be determined.

The following ALDiSP program i l lus t ra tes the
usage of streams by modeling a tapered shift reg-
is ter via a s tream called "RandomBit~,~ n. I t can be
used as a noise signal generator. Th.-~ generator
produces en infinite sequence of pseugo-random
bits. The initial seed (a large cardinal r~,umber) is
divided into a stream of bits. The stream is tapped
by a function GenBitStream, which generates
new pseudo-random bits by XORing a number of
bits on the stream.

Fig. 1 shows the circuit diagram of the noise gen-
erator; fig. 2 shows how the algorithm works in
terms of a da ta flow model. The program imple-
menting this network is shown in fig. 3, where
">>" denotes a right shift of bits, "&" is the logical
AND of bits, and "::" is an operator that puts a to-
ken at the head of a stream.

Shift Register, initially containing seed

l l l l l l l . . . l l l l l l l

Fig. 1: Circuit diagram of the noise generator

RandomBits

[
Fig. 2: Data-flow model of the ngise generator

An applicative real-time language for DSP progran~ing 543

\ Seed and length of shift register

Seed = 745608675123538549606958473848506847389;
ShiftRegLength = 100;

\ Function dividing a number into a stream of single bits

rune CardToBitList (n, Index) =
if Index < 0 then Null

else ((n >> Index) & 1) :: CardToBitUst (n, Index-l)
end~;

\ Vector holding the indices of the bits to be XORed, may
have any number of E~ements < ShiitRegLength

XORBitVect = [4, 17, 39, ~J];

\ Function XORing the numbers as indicated by
XORBitVect in a stream

.... Note: select is a predefined function selecting the n th
element of a list and the predefined function reduce
applies a binary function to a vector or e list

func GenRandomBit (list) =
let

func Extract (n : Card) = select (list, n)
in

reduce ('bitXOR', Extract (XORBitVect))
endlet

\ Function applying the randum number generator
successively to the shift register and then shi~ng it

func GenBitStream (stream) =
GenRandomBit (stream)::GenBitSt~eam (taii(s~'eam))

~, --- Netiist describing the topography of the network

net
RandomBits =
append (CardToBitList (Seed, ShiftRegLength}

dela;, (GenBitStream (RandomBits)))
in

StreamToPort (AnOutputPort, RandomBits)
endnet

Fig. 3: Program implementing the noisy generator

The function Extract, which is based ,~n the pre-
defined function select, retoxns the n th element of
a list; the first element havb,.g the index 0. If it is
c~lled with the index n being an array, the auto-
mapping mechanism built into ALDiSP will
return an array of selected objects. An exavlple
call Extract ([1, 3, 2]) app~ed to a list {I0, 20, 30,
40 } will give an ~rray of the form

[20, 40, ~0]. The auto-mapping meehaaism in
ALDiSP works as follows: If a function is defined
for numbers but applied to a stream (or an ar-
ray), it is automatically mapped to each element
of the stream (or the array). The r~u] t e are co|-
lected into a new stream (or array). The prede-
fined function append appends a li:~t or a stream
to a stream. The delay operator delays the evalua-
tion of its argument until its va~ue is needed.
This operator is implicitly contained in the
stream-building operator "::" causing it to have a
=call-by-need " semantics.

The topography of the network, i.e. the flow of
s t reams between nodes containing processing
functions is described in the net-part of the pro-
gram. T h e r - rogram shown is comple te , i.e. no
additional memory management, variable as-
signments, etc., is necessary. The program is
driven by the predefined function S t ~ T o P o r t ,
which writes stream elements to an output port
whenever the port can accept data.

Consider the stream processing system of fig. 4:
A signal generator produces a stream of scalar
elements. A functional block =ConstructVect " col-
lects this sequence of scalar elements into blocks
or vectors of, say, 256 elements. Each of these vec-
tors is transformed into the frequency domain by
a Fourier transformer. The transformed vectors
(now o f comp lex type) on the stream1 are f i l t e red
in the frequency domain by multiplying She am-
plitude of each vector component by a co;'respond-
ing attenuating coefficient and leaving the phase
unchanged. The result is then transformed back
into the time domain and consumed by further
processing entities. Assuming the fun.~ions

S~en 0 ~ - G~'m ,<~
FFT (aVector) \ - ~ ~ v~t~',

Ou~:~ut:Two real vec~s
I;:FT (twoVectors)
A m C c e ~ = [c l , c2 ] ~ - Wct. of 25Ssp~r~coef f .

have been defined and collected in a module
cal led F r sqDomainF i l t . Then, the complete
ALDiSP program implement ing the system ac-
cording to fig. 4 looks as shown in fig. 5.

SigGcn Consm~Vect Transfccm

Fig. 4: Network for filtering blocks o~ a scalar signal

544 A. Knoll, M. Freericks

import SigC-en, FFT, IFFT, AttnCoeffs from FreqDomainFilt

\ - Note that VectorizeStream and ListifyVectors are
predefined ~nctions

Net
A = SigGen 0;
B = VectorizeStream (A, 256);
(Amp{, Phase) = FFT (B);
D = Amp{ * AttnCoeffs; ~ -- Do the filtering by

multiplying the
vectors elementwise

E = iFFT (D, Phase);
F = UstifyVectors (E) ~ -- Now we have a

stream of scalars
in

F
E n ~ t

Fig.5: ALDiSP program for the network of Fig. 4

Note that FPT returns two separate vectors for
amplitude and phase which are sent onto two dif-
ferent streams Amp! and Phase. If these streams
are kept separate, the manipulation of only the
amplitude vector is very easy. Every ALDiSP
function may generate m=:Itiple return values ob-
viating the need to "sequentialize" compound re-
snlto before sending them onto a stream. The au-
tomatic mapping of functions on finite data struc-
tures is employed by the program line doing the
filter: The operator "*" is applied to all elements
of the vectors Ampl and AttenuatingCoeffs yield-
ing a new scalar vector. In general, if a function
is not defined to manipulate an array, but is ap-
plied to o~,e, i~ is applied automatically to all its
dements. This holds for user-defined functions
as well as for predefined functions. A compre-
hensive set of f~nctions manipulating arrays as
complete data units has been defined (see [6]); the
need to manipulate single elements of arrays will
hardly ever arise.

This example clearly shows how well the applica-
tive approach of progr~mmlng is intuitively com-
patible with the DSP-engineer's block-diagram
oriented way of thinking. The automatic map-
ping of functions on stream elements and partic-
nlarly the automatic mapping of functions on ar-
rays makes the process of translating block dia-
grams into progran~ extremely simple. The pro-
gra~rner need not he concerned with breaking
down complex data structures and subsequently
manipulate their elements before reassembling
them again. Instead, he will manipulate data ob-
jects as a whole and the mapping process is done
~plicif iy by the compiler.

Like other modern applicative languages,
ALDiSP is pdymorphic, i.e. functions may accept

parameters of different types. The compiler de-
tects type inconsistencies by analyzing the type of
operations applied to a given function parameter
(see the following example). The evaluation strat-
egy is call-by-value, for functions generating
streams this may be changed to call-by-need by
the delay operator (which is implicitly contained
in the "::" operator used for assembling lists or
streams). Like functions, operators may be over-
loaded to accept different types of operands.
Operators may also be defined to be used in pre-,
post-, or infix-notation, whichever is more conve-
nient. Operator precedence may also be specified.
ALDiSP permits recursion and higher order
functions, i.e. functions that have other functions
as arguments and/or return other functions as
results. Streams may be defined ~cursivaly and
they may be delayed by an arbitrary nmnber of el-
ements. Therefore the concept of stream process-
ing lends itself ideally to the implementation of
filter networks. The example IIR-filter of fig. 6
may be realized directly by the ?LLDISP function
shown in fig. 7.

N}

bl

E

b2

~1 outp

1t2

Fig. 6: liP, filter network

func IIR (b0,bl,b2,al,a2: number) (inp: stream) =
let

outp = delay (b0*inp + sl)
sl = 0 :: (bl*inp + al*outp + s2)
s2 = 0 :: (b2*inp + a2*outp)

in
outp

endlet

Fig. 7: Function implementing the Network of F;g. 6

Here, the stream outp results from the addition of
the streams inp (each element weighted by b0)
and sl. Stream s2 is the concatenation of the ele-
ment "0" and the weighted sum of all the other
streams. I f necessary, delaying functions may be
defined (recursivdy) that delay streams by an ar-
bitrary number of elements. Note that the IIR illo

An applicative real-tlme tanguage for DSP programming ~ 5

ter function will filter integer values of any type
and real values as well because the operators
"+", "*" and "::" are defined for all of these data
types. A shorter program implementing this fil-
ter is hardly conceivable!

Asynchronous communication and ~/O
Demand-driven (output-driven) streams are ade-
quate in synchronous applications where the
permanent availability of stream elements can be
guaranteed. However, this concept of communi-
cation is not suitable i n situations where it can-
not be specified when (if ever) the ~ x t data item
becomes awi l ab l e (asynchro~,ous case). With
streams i t would be possible to continuously gen-
erate "not available" elements if there is no item
but this would be extremely inefficient; it would
in fact be like constructing a ~busy-waiting ~ loop
in imperative programming languages. To cope
with this problem we have introduced the concept
of pipes into ALDiSP. Pipes are syntactically
similar to streams, but instead of being demand-
driven they are data-driven. A pipe can be viewed
as a buffer accepting and storing data elements
as they become available over time. A consumer
may make use of data held in pipes in exactly the
same way as with streams; by reading from the
pipe, the consumer successively empties the
buffer. If there is no data available, the consumer
is suspended. On pipes a predicate isAvailable is
defined, which becomes true once there is at]east
one element in the pipe.

In ALDiSP, synchronicity is considered a special
case of asynchronicity. Since ALDiSP is an ap-
plicative language, values cannot =change". Once
an object is created it cannot be destroyed any
more. Therefore, all I/O is handled through
(virtually) infinite data structzures instead of pro-
gram state. Hence, the distinction between syn-
chronicity and asynchronicity is only important
when-it comes to input/output. There are two
kinds of I/O-devices: ports and registers. An ob-
ject of t ~ e register maps to a hardware register
or memory location, i.e. i t can be read or written
to at any time. Sinc~ its value can change a t any
time, the exact timing of register accesses is im-
portant . Ports, on the other hand, are asyn-
chronous devices: They may generate and accept
tokens at arbitrary points in time, as soon as they
become available. A process trying to access a
port that has no data available is s u s ~ e d . It is
re-activated automatical ly once da ta hecom~
available.

Time management and the suspension construct
In ALDiSP there is only a single language con-
struct covering both synchronous and asyn-
chronous timing of actions, the suspension con-
struct :

suspend exprl ul~l expr2 within drool, dm¢2

When a suspension is evaluated, i.e. cal]ed by a
function, an anonymous proems is created. This
process is hibernated upon its creation. I t re-
mains dormant until expr2 becomes true. Once
this happens, the process is guar~uteed to be ac-
tivated after the period of time speci~ed by time1
is over and before the time specified by ~me2 has
elapsed. ARer activation, the p ~ s s e v ~ u a ~
exprl ~nd then terminates. A simple e x a m ~ ~-
lustrates the usage of this construc~

suspend OpenVa~,eO un~ Ove~esr~e ~ O ms, 0.5 ms

Here, a safety valve controlled by an interrul~
OverPressure opens no la ter than 0.5 ~ -
onds after an overpressure is signaled. Using
suspend, macros covering all other relevant
cases of scheduling are readily compesed~

~ - - Synchronous ~ a y
expr after ~me ~ suspend expr un~ true ~ ~me,
time

- - Asynchronous, action [s taken [m m s ~
exprt when expr2 =su~=nd exprl unit exp~v~t~n
Osec, Ose¢

- - Asynchronous with ~ e ~ t (SystemCbc]~ is a [~R-~
func~on re~mi~j the ctzrent t~me)
when (exp~l. ex~ , ~ e ~ P e r i ~ -
[~t
SmKfime = SystemCl~k0

in
s~p~ex~
un~ (exp~ or S ~ C ~ - S~r~T~ne >

tirneoutPer~)
w~thin 0 sec, 0 sec

enter

~, ~ Synchronous, even when ~ of ~:~n v~es
expr eqg~s~t dura~n =
let

S~art'~me = SystemC~kO
in

pmc tmpO =
suspend seq e ~ ; tWO eneseq
un~ (S~emC~P~) - Stanr~e) mad ~ = 0
wi~n 0 ms, 0 ms

em~

The times may be dynamic; however, if they are
known at compile-time, a static sch~ule may be
produced. Pipes are implemented using stmpen-
sions: The last available element of a pipe is a
suspension waiting for more inpu~ Thus, when
a pipe is accessed, the accessing process is sus-
pendod un t i l data become available.

Using suspend and the isAvailable predicate,
processing of asynchronous pipes is very elegant.
The ubiquitous merging of two pipes (where any

546 A. Knoll, M. Freericks

of the two may or may not have data available)
takes on the following form:

proc merge (pl, p2} =
s ~

if isAvai~bte{pl} then
head{p1} :: merge{p2,pl)

e~se
head(p?.} :: merge(p1 ,p?.)

endif
until

[sAvailable(pl) or isAvailable(p2)
within gsec, {}sec

This is an easy-to-understand counterpart of the
ALT-construct used in Occam [11] for processing
asynchronous data flowing through channels at
different rates. Using this construct, interrupt
handlers responding asynchronously to a condi-
/don becoming true are also written easily.

The ALD|SP Type System
The type system of ALDiSP is based on predi-
cates: An arbitrary set of values may constitute a
type. For example, a type comprising all multi-
ples of 3 may be defined as follows:

func mult3p(x) = if islnt (x) then x rood 3 == O else false endif;
type muir3 = muit3p

Mnlt3p is a predicate testing whether its argu-
ment is a multiple of 3; mnlt3 is a type defined by
this pred ica te .

In most c~ses, however, such complex defini-
tions are unnecessary. A rich set of frequently
used types has been defined, many of which are
parameterized. Type classes are:

* Base types, necessary to construct a
complete type system

* Atomic types: Unstructured objects and
numeric t ypes

o Arrays: n - d ~ e n s i o n a l co]iec~ons of objects
of the same type

® Usar-defined abstract types (Records,
va r ian t records)

® Machine types: =Registers, Ports, In ter rupts

Examples of atomic types are parameterlzable
numeric types: nBitlnteger (n), nBitCardlnal (n),
F'Lxlnt (n,m), ShortReal, Real, Longreal, etc. All
commonly used operations are available. For one-
dimensional arrays (vectors), a great number of
functions has been defined, some examples are
listed below:

® Selective Update:
UpdVector ([1~,3], 1, 5) .--) [1,5,3]

• Reduc~on:
Reduce C-". [1,2,3,4]) ~ ((1 - 2) - 3) - 4

® Create Subvector:
SubVector ([1,2,3], 0, 2) -~ [1,2]

e Compose Vector:
CmpsVector ([1,2], [3]) -# [1,2,3]

Because of the au tomat ic mapping facility, al l
functions defined on atomic types can be applied
to the contents of arrays, too:

® [1 , 2 , 3] + 10 --~ [11,12,13]

S imi la r functions exist for two dimensional ar-
rays (matrices), moreover functions a re prede-
fined tha t select rows or columns of matrices, ex-
t ract diagonals, and reduce matrices.

Exception Handling
Expressions or functions may be guarded for er-
rors t ha t may occur dur ing thcdr evaluation. I f
an error occurs, a predefined or user-defined ex-
cept ion-handler (a special k ind of function) is
called automat ical ly . In general , a guarded ex-
pression looks as follows:

guard expr
on ExceptionDeflnition

on ExceptionDeflnition
endguard

When an error occurs dur ing the evaluat ion of
expr, an exception is called. After the evaluat ion
of the exception the evaluat ion of expr is not con-
t inued; instead, the value defined by the excep-
t ion-handler i s re turned as the resu l t of the en-
t i re guarded ezpressi.:~n. Continuation within the
expression is sometimes desirable and therefore
possible, too. Examples:

\ DivisionByZero is a pr~efined exception name

func reciprocalPlus3Versl (x) =
guard (1Ix) + 3
on Div;sionByZero 0 = 42
endgoard

func reciprocalPtus3Vers2 (x) =
guard (1Ix) + 3
on DivisionByZero 0 = continue(42)
endguard

In the f i rs t example, the resu l t o f the function
when called with 0 is 42, as defined in the excep-
tion handler ; in the second example the expres-
sion causing the error will continue to be evalu-
ated, resul t ing in a re turn value of 45.

Exceptions are the basis for actions to be taken on
overflows: Whenever an overflow occurs, a prede-
fined exception handler is called. Overflow-reac-
t ions a r e user-def inable ; the most commonly

An applicative real-time language for DSP programming 547

used are predefined: Signallng, Ignoring, Realing,
Complexing, Saturated, Wrapping. Exceptions are also
used to define rounding modes with real num-
bers. Predefined rounding modes are
RoundToZero, RoundToPlus, RoundToMinus, Round'Po-
Even, RoundToOdd.

3 CONCLUSIONS

We have presentel a modern applicative lan-
guage featuring automatic mapping of functions
on infinite and fi~:.~ data, overloadable operators
for complex data ~t:?uctures, modularization and
time management. Both synchronous and asyn-
chronous data streams of different rates may be
defined, which makes interprocess communica-
tion in multi-rate-systems simple. Direct ma-
chine access and hardware-interrupt handling
are possible. An extremely flexible type system,
an elaborate exception handling mechanism and
a large number of predefined functions operating
on structm'ed data as a whole make the language
suitable for complex DSP applications. U~ this
language, programs may be written at very high
levels of abstraction, in many cases equivalent to
the mathematical description of the problem.
Expressing algorithms in an applicative lan-
guage directs much of the work normany done by
the programmer to the compiler. As a conse-
quence, transforming applicative programs into
code running on standard processor architec-
tures is a much more complicated task than
compiling an imperative program. On the other
hand, parallelizing high-level applicative pro-
grams is potentially easier than trying to re-par-
alle]ize imperative programs written in von-
Neumann languages. As compiler technology
advances, the difference in execution time be-
tween the languages will dlmlnish but the advan-
tage of the compiler being able to match and op-
timize applicative specifications to parallel archi-
tectures will remain.

A simulation program realizing most of the fea-
tures of ALDiSP has been developed, which is
rather slow. Current work centers on transfor-
mation techniques to stepwise simplify ALDiSP
programs to reduc~ the run-time requirements
for ALDiSP programs. The long-term goal is to
generate optimized code directly executable on
digital signal processors.

[2] A. Benveniste, P. Boumai, T..Oautier, P.
LeGuernic
Signal: A Dstaflow OHeated laaguage for
Signal Processing
INRIA, Raplmrt No. 378, March 1 ~

[3] EuroI~an Development Center
Silnge Compiler Reference Manual
Brussels, 1989

[4] E.A. Lee
Programmable DSP Areh~eetures: Part H
IEEE-ASSP M a g i c , VoL 6, No. 1, Jam .~9

[5] A. Knoll, R. Nieberle
CADb.qP . A Graphic~ Compiler for the
Prog.,~mming of DSP ia a eomp~ely
symbolic way
Proc. IEEE-ICASSP 90, Albuquerque, 1 ~

[6] M. Freericks, A. Knoll
ALDiSP . Eiae applEk~ive
Programmiereprache f~r Anweadungen in
der digitalen S~nal~,~rarbeitung
Technical Report, Toclm. Univ. Berlin, FB
20 No. 90-9

[7] Rees, J. et al.
Revised 3 Report oa the A l ~ r ~ m i c
Langu~e Scheme
SIGPLAN Notices Vol. 21, No. 12, Dec. 1986

[8] Mflner, R.
A Proposal for S~andard ML
1984 ACM Syrup. on Lisp and Functiena]
Programming

[9] MacQueen, D.
ModuEes for Standard ML
1984 ACM Syrup. on Lisp and Functional
Programming

[I0] P. Pepper, G. F-dgger
The Opal Project
Internal Memo, TU Rerlin, 1987

[11] INMOS Ltd.
Occam 2 Reference Manual
Prentice Hall, 1988

4 REFERENCES

[1] P. Caspi, N. Halbwachs, D. Piland, J.A.
Plaice
Lustre, a Declarative Language for
Pr6gramming Synchronous Systems
Proc. 14th ACM Symposium on Principles of
Programming languages, Munich, 1987

