
Microprocessing and Microprogramming 32 (1991) 541-548 541 
North-Holland 

An A p l ~ i ~  Rc~-Tin~ Language ~ D ~ ~ n ~ n g  
sul~rdng As~ronous ~ C o n c ~  

A. Knog and M. Freedcks 
Technische Unive~taet Bergin 

Sekretariat FR 2-2 
W-lOgO Bertin 10 

Germany 

An applicative language designed to express parallelism and data-flow in sigr, al 
processing systems is presented. The language may be used for the specification of 
networks consisting of any number of processing entities. It is equally well suited 
for the simulation of networks both at the data flow level and at the algorithmic 
level. The language constructs have been selected s o  as to to obtain concise 
descriptions of typical signal processing tasks. The paper discusses several key 
aspects of the language design; some simple examples illustrating the power of the 
language are included. 

1 INTRODUCTION 

Applicative (functional) programming languages 
have several advantages over standard impera- 
tive languages: The abstraction from machine 
and algorithmic details is much higher, there- 
fore a program specification is normally consid- 
erably closer to the problem to be solved. As a con- 
sequence, programs written in an applicative 
programming style are normally much shorter 
than their imperative counterparts, they are 
nicer to read, easier to comprehend, simpler to 
write and less error-prone. In recent years, there 
has been a number of attempts to design applica- 
tive languages for signal processing applications 
[1;2], most notably Silage [3], a comparatively 
small and simple language used primarily in the 
realm of VLSI design. Applicative languages 
may be used stand-alone or as "natural" target 
languages of graphic signal processing design 
systems such as Gabriel [4] or CADiSP [5] be- 
cause processing blocks in these systems map di- 
rectly to function applications of applicative lan- 
guages. 

The programming language ALDiSP [6] is a gen- 
eral-purpose applicative language p r b ~ a r f l y  de- 
signed for DSP algorithm and network specifica- 
tion. It may be used both for the sintulation of 
complex asynchronous networks and the genera- 
tion of code for typical synchronous signal pro- 
cessing tasks implemented on standard or dedi- 
cated signal processors. The expressive power of 
the language is comparable to that of S~heme [7] 

or  M L  [8;9], a n d  i t  c a n  b e  app l i ed  to  p r o b l ~ n  d ~  
m a i n s  o t h e r  t h a n  D S P  p r o g r ~ r n r n i ~ .  I n  t h e  se~ 
quel, however, we will foc~s on tl~e lang'~s~ 
constructs relevant for DSP applications. The 
major design goals to make the language useful 
for DSP were: 

* .mime and process management must allow 
for the handling of both synchronous and 
asynchronous events 

® The programmer must be able to handle 
infinite streams of data objects 

® A rich set of (parameterized) numerical 
types should be defined to accommodate as 
many DSP architectures as pe~db]e 

" Powerful operators on complex data struc- 
tures (most notably arrays) slmuld be avail- 
able 

. The language should be able to model nu- 
merical properties of common D~ arclfitec- 
lures in a b~t-by-bit manner 

* Exceptions (both numerical and algerRhnfi- 
ca]) should be handled easily 

* T h e r e  should be ~ustructs permitting t h e  
division of pre~zams into modules 

2 LANGUAGE FEATURES 

GeneraIPmgram ~ 
An ALDISP program models a signal flow graph, 
i.e. a n e t  o f  signuls connectlng nodes. Nodes  a r e  
specified by user-defined or pre-definod func- 
tions; signals are modelled by streams and pipes. 
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A program may consist of an arbi t rary number of 
modules and a net description. The l a t t e r  de- 
scribes the top-level flow of data  and the connec- 
tion of signals to I/O-devices. 

Signal processing may be input-driven or output. 
driven. In an input-driven ("call-by-availability") 
environment ,  a noge remains  dormant  unt i l  
there are enough input  data  available to activat~ 
the node; on act ivat ion the  node consumes a 
number of input  tokens and pushes a number of 
output  tokens into the net. In an output-driven 
("Call-by-needD network output  devices "pull" 
da ta  tokens out of the network. When a node re- 
ceives a request  to produce an output  token, i t  
propagates the request  to i ts  input.  Obviously, 
this propagation works only i f  there are functions 
at  the end of the propagation path  that  produce 
output tokens without prior input,  i.e. functions 
acting as signal generators. 

In ALDiSP, signals are modeled as infinite lists 
of da ta  tokens. The programming language of- 
fers two different kinds of lists: Streams, which 
are  a well-known da ta  s t ructure  in functional 
l anguages  [10], model output-dr iven signals.  
Pipes, on the  other  hand, model input-driven 

signals. The elements of a stream are  produced 
by a stream-generator,  which is simply an ordi- 
nary function supplying the elements of a stream 
upon request, one a t  a time. These elements typi- 
cally represent  successive samples of an algo- 
ri thmieally definable signal. At any given time, 
only a finite set of s t ream elements is known 
while the remaining infinite l ist  of s t ream ele- 
ments remains to be determined. 

The following ALDiSP program i l lus t ra tes  the 
usage of streams by modeling a tapered shift reg- 
is ter  via a s tream called "RandomBit~,~ n. I t  can be 
used as a noise signal generator.  Th.-~ generator  
produces en infinite sequence of pseugo-random 
bits. The initial seed (a large cardinal r~,umber) is 
divided into a stream of bits. The stream is tapped 
by a function GenBitStream,  which generates  
new pseudo-random bits by XORing a number of 
bits on the stream. 

Fig. 1 shows the circuit diagram of the noise gen- 
erator; fig. 2 shows how the algorithm works in 
terms of a da ta  flow model. The program imple- 
menting this network is shown in fig. 3, where 
">>" denotes a right shift of bits, "&" is the logical 
AND of bits, and "::" is an operator that  puts a to- 
ken at  the head of a stream. 

Shift Register, initially containing seed 

l l l l l l l . . . l l l l l l l  

Fig. 1: Circuit diagram of the noise generator 

RandomBits 

[ 
Fig. 2: Data-flow model of the ngise generator 
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\ .... Seed and length of shift register 

Seed = 745608675123538549606958473848506847389; 
ShiftRegLength = 100; 

\ .... Function dividing a number into a stream of single bits 

rune CardToBitList (n, Index) = 
if Index < 0 then Null 

else ((n >> Index) & 1) :: CardToBitUst (n, Index-l) 
end~; 

\ .... Vector holding the indices of the bits to be XORed, may 
have any number of E~ements < ShiitRegLength 

XORBitVect = [4, 17, 39, ~J]; 

\ .... Function XORing the numbers as indicated by 
XORBitVect in a stream 

.... Note: select is a predefined function selecting the n th 
element of a list and the predefined function reduce 
applies a binary function to a vector or e list 

func GenRandomBit (list) = 
let 

func Extract (n : Card) = select (list, n) 
in 

reduce ('bitXOR', Extract (XORBitVect)) 
endlet 

\ .... Function applying the randum number generator 
successively to the shift register and then shi~ng it 

func GenBitStream (stream) = 
GenRandomBit (stream)::GenBitSt~eam (taii(s~'eam)) 

~, --- Netiist describing the topography of the network 

net 
RandomBits = 
append (CardToBitList (Seed, ShiftRegLength} 

dela;, (GenBitStream (RandomBits))) 
in 

StreamToPort (AnOutputPort, RandomBits) 
endnet 

Fig. 3: Program implementing the noisy generator 

The function Extract, which is based ,~n the pre- 
defined function select, retoxns the n th element of 
a list; the first element havb,.g the index 0. If it is 
c~lled with the index n being an array, the auto- 
mapping mechanism built into ALDiSP will 
return an array of selected objects. An exavlple 
call Extract ([1, 3, 2]) app~ed to a list {I0, 20, 30, 
40 .... } will give an ~rray of the form 

[20, 40, ~0]. The auto-mapping meehaaism in 
ALDiSP works as follows: If a function is defined 
for numbers but applied to a stream (or an ar- 
ray), it is automatically mapped to each element 
of the stream (or the array). The r~u ] t e  are  co|- 
lected into a new stream (or array). The prede- 
fined function append appends a li:~t or a stream 
to a stream. The delay operator delays the evalua- 
tion of its argument until its va~ue is needed. 
This operator is implicitly contained in the 
stream-building operator "::" causing it to have a 
=call-by-need " semantics. 

The topography of the network, i.e. the flow of  
s t reams between nodes containing processing 
functions is described in the net-part of the pro- 
gram.  T h e  r - rogram shown is comple te ,  i.e. no 
additional memory management, variable as- 
signments, etc., is necessary. The program is 
driven by the predefined function S t ~ T o P o r t ,  
which writes stream elements to an output port 
whenever the port can accept data. 

Consider the stream processing system of fig. 4: 
A signal generator produces a stream of scalar 
elements. A functional block =ConstructVect " col- 
lects this sequence of scalar elements into blocks 
or vectors of, say, 256 elements. Each of these vec- 
tors is transformed into the frequency domain by 
a Fourier transformer. The transformed vectors 
(now o f  comp lex  type)  on the  stream1 are f i l t e red  
in the frequency domain by multiplying She am- 
plitude of each vector component by a co;'respond- 
ing attenuating coefficient and leaving the phase 
unchanged. The result is then transformed back 
into the time domain and consumed by further 
processing entities. Assuming the fun.~ions 

S~en 0 . . . .  ~ -  G~'m ,<~ 
FFT (aVector) . . . .  \ - ~ ~ v~t~', 

Ou~:~ut:Two real vec~s 
I;:FT (twoVectors) . . . .  
A m C c e ~  = [ c l , c2  ..... ] ~ -  Wct. of 25Ssp~r~coef f .  

have been defined and collected in a module 
cal led F r sqDomainF i l t .  Then,  the  complete  
ALDiSP program implement ing the  system ac- 
cording to fig. 4 looks as  shown in fig. 5. 

SigGcn Consm~Vect Transfccm 

Fig. 4: Network for filtering blocks o~ a scalar signal 
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import SigC-en, FFT, IFFT, AttnCoeffs from FreqDomainFilt 

\ -  Note that VectorizeStream and ListifyVectors are 
predefined ~nctions 

Net 
A = SigGen 0; 
B = VectorizeStream (A, 256); 
(Amp{, Phase) = FFT (B); 
D = Amp{ * AttnCoeffs; ~ -- Do the filtering by 

multiplying the 
vectors elementwise 

E = iFFT (D, Phase); 
F = UstifyVectors (E) ~ -- Now we have a 

stream of scalars 
in 

F 
E n ~ t  

Fig.5: ALDiSP program for the network of Fig. 4 

Note that FPT returns two separate vectors for 
amplitude and phase which are sent onto two dif- 
ferent streams Amp! and Phase. If these streams 
are kept separate, the manipulation of only the 
amplitude vector is very easy. Every ALDiSP 
function may generate m=:Itiple return values ob- 
viating the need to "sequentialize" compound re- 
snlto before sending them onto a stream. The au- 
tomatic mapping of functions on finite data struc- 
tures is employed by the program line doing the 
filter: The operator "*" is applied to all elements 
of the vectors Ampl and AttenuatingCoeffs yield- 
ing a new scalar vector. In general, if a function 
is not defined to manipulate an array, but is ap- 
plied to o~,e, i~ is applied automatically to all its 
dements. This holds for user-defined functions 
as well as for predefined functions. A compre- 
hensive set of f~nctions manipulating arrays as 
complete data units has been defined (see [6]); the 
need to manipulate single elements of arrays will 
hardly ever arise. 

This example clearly shows how well the applica- 
tive approach of progr~mmlng is intuitively com- 
patible with the DSP-engineer's block-diagram 
oriented way of thinking. The automatic map- 
ping of functions on stream elements and partic- 
nlarly the automatic mapping of functions on ar- 
rays makes the process of translating block dia- 
grams into progran~ extremely simple. The pro- 
gra~rner need not he concerned with breaking 
down complex data structures and subsequently 
manipulate their elements before reassembling 
them again. Instead, he will manipulate data ob- 
jects as a whole and the mapping process is done 
~plicif iy  by the compiler. 

Like other  modern  applicative languages,  
ALDiSP is pdymorphic, i.e. functions may accept 

parameters of different types. The compiler de- 
tects type inconsistencies by analyzing the type of 
operations applied to a given function parameter 
(see the following example). The evaluation strat- 
egy is call-by-value, for functions generating 
streams this may be changed to call-by-need by 
the delay operator (which is implicitly contained 
in the "::" operator used for assembling lists or 
streams). Like functions, operators may be over- 
loaded to accept different types of operands. 
Operators may also be defined to be used in pre-, 
post-, or infix-notation, whichever is more conve- 
nient. Operator precedence may also be specified. 
ALDiSP permits recursion and higher order 
functions, i.e. functions that have other functions 
as arguments and/or return other functions as 
results. Streams may be defined ~cursivaly and 
they may be delayed by an arbitrary nmnber of el- 
ements. Therefore the concept of stream process- 
ing lends itself ideally to the implementation of 
filter networks. The example IIR-filter of fig. 6 
may be realized directly by the ?LLDISP function 
shown in fig. 7. 

N} 

bl  

E 

b2 

~1 outp 

1t2 

Fig. 6: liP, filter network 

func IIR (b0,bl,b2,al,a2: number) (inp: stream) = 
let 

outp = delay (b0*inp + sl) 
sl = 0 :: (bl*inp + al*outp + s2) 
s2 = 0 :: (b2*inp + a2*outp) 

in 
outp 

endlet 

Fig. 7: Function implementing the Network of F;g. 6 

Here, the stream outp results from the addition of 
the streams inp (each element weighted by b0) 
and sl.  Stream s2 is the concatenation of the ele- 
ment "0" and the weighted sum of all the other 
streams. I f  necessary, delaying functions may be 
defined (recursivdy) that  delay streams by an ar- 
bitrary number of elements. Note that the IIR illo 



An applicative real-tlme tanguage for DSP programming ~ 5  

ter function will filter integer values of any type 
and real values as well because the operators 
"+", "*" and "::" are defined for all of these data 
types. A shorter program implementing this fil- 
ter is hardly conceivable! 

Asynchronous communication and ~/O 
Demand-driven (output-driven) streams are ade- 
quate in synchronous applications where the 
permanent availability of stream elements can be 
guaranteed. However, this concept of communi- 
cation is not suitable i n  situations where it can- 
not be specified when (if ever) the ~ x t  data item 
becomes awi l ab l e  (asynchro~,ous case). With 
streams i t  would be possible to continuously gen- 
erate "not available" elements if there is no item 
but this would be extremely inefficient; it would 
in fact be like constructing a ~busy-waiting ~ loop 
in imperative programming languages. To cope 
with this problem we have introduced the concept 
of pipes into ALDiSP. Pipes are syntactically 
similar to streams, but instead of being demand- 
driven they are data-driven. A pipe can be viewed 
as a buffer accepting and storing data elements 
as they become available over time. A consumer 
may make use of data held in pipes in exactly the 
same way as with streams; by reading from the 
pipe, the consumer successively empties the 
buffer. If there is no data available, the consumer 
is suspended. On pipes a predicate isAvailable is 
defined, which becomes true once there is at ]east 
one element in the pipe. 

In ALDiSP, synchronicity is considered a special 
case of asynchronicity. Since ALDiSP is an ap- 
plicative language, values cannot =change". Once 
an object is created it cannot be destroyed any 
more. Therefore, all I/O is handled through 
(virtually) infinite data structzures instead of pro- 
gram state. Hence, the distinction between syn- 
chronicity and asynchronicity is only important 
when-it comes to input/output. There are two 
kinds of I/O-devices: ports and registers. An ob- 
ject of t ~ e  register maps to a hardware register 
or memory location, i.e. i t  can be read or written 
to at  any time. Sinc~ its value can change a t  any 
time, the exact timing of register accesses is im- 
portant .  Ports, on the other hand, are asyn- 
chronous devices: They may generate and accept 
tokens at  arbitrary points in time, as soon as they 
become available. A process trying to access a 
port that  has no data available is s u s ~ e d .  It  is 
re-activated automatical ly once da ta  hecom~ 
available. 

Time management and the suspension construct 
In ALDiSP there is only a single language con- 
struct covering both synchronous and asyn- 
chronous timing of actions, the suspension con- 
struct : 

suspend exprl ul~l expr2 within drool, dm¢2 

When a suspension is evaluated, i.e. cal]ed by a 
function, an anonymous proems is created. This 
process is hibernated upon its creation. I t  re- 
mains dormant until expr2 becomes true. Once 
this happens, the process is guar~uteed to be ac- 
tivated after the period of time speci~ed by time1 
is over and before the time specified by ~me2 has 
elapsed. ARer activation, the p ~ s s  e v ~ u a ~  
exprl  ~nd then terminates. A simple e x a m ~  ~- 
lustrates the usage of this construc~ 

suspend OpenVa~,eO un~ Ove~esr~e ~ O ms, 0.5 ms 

Here, a safety valve controlled by an interrul~ 
OverPressure opens no la ter  than 0.5 ~ -  
onds after  an overpressure is signaled. Using 
suspend, macros covering all other relevant 
cases of scheduling are readily compesed~ 

~ - -  Synchronous ~ a y  
expr after ~me ~ suspend expr un~ true ~ ~me, 
time 

- -  Asynchronous, action [s taken [ m m s ~  
exprt when expr2 =su~=nd exprl unit exp~v~t~n 
Osec, Ose¢ 

- -  Asynchronous with ~ e ~ t  (SystemCbc]~ is a [~R-~ 
func~on re~mi~j the ctzrent t~me) 
when (exp~l. ex~ ,  ~ e ~ P e r i ~  - 
[~t 
SmKfime = SystemCl~k0 

in 
s~p~ex~ 
un~ (exp~ or S ~ C ~  - S~r~T~ne > 

tirneoutPer~) 
w~thin 0 sec, 0 sec 

enter 

~, ~ Synchronous, even when ~ of ~:~n v~es 
expr eqg~s~t  dura~n = 
let 

S~art'~me = SystemC~kO 
in 

pmc tmpO = 
suspend seq e ~ ;  tWO eneseq 
un~ (S~emC~P~) - Stanr~e) mad ~ = 0 
wi~n 0 ms, 0 ms 

em~ 

The times may be dynamic; however, if they are 
known at compile-time, a static sch~ule may be 
produced. Pipes are implemented using stmpen- 
sions: The last available element of a pipe is a 
suspension waiting for more inpu~ Thus, when 
a pipe is accessed, the accessing process is sus- 
pendod un t i l  data become available. 

Using suspend and the isAvailable predicate, 
processing of asynchronous pipes is very elegant. 
The ubiquitous merging of two pipes (where any 
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of the two may or may not have data available) 
takes on the following form: 

proc merge (pl, p2} = 
s ~  

if isAvai~bte{pl} then 
head{p1} :: merge{p2,pl) 

e~se 
head(p?.} :: merge(p1 ,p?.) 

endif 
until 

[sAvailable(pl) or isAvailable(p2) 
within gsec, {}sec 

This is an easy-to-understand counterpart of the 
ALT-construct used in Occam [11] for processing 
asynchronous data flowing through channels at 
different rates. Using this construct, interrupt 
handlers responding asynchronously to a condi- 
/don becoming true are also written easily. 

The ALD|SP Type System 
The type system of ALDiSP is based on predi-  
cates: An arbitrary set of values may constitute a 
type. For example, a type comprising all multi- 
ples of 3 may be defined as follows: 

func mult3p(x) = if islnt (x) then x rood 3 == O else false endif; 
type muir3 = muit3p 

Mnlt3p is a predicate testing whether its argu- 
ment is a multiple of 3; mnlt3 is a type defined by 
this  pred ica te .  

In most c~ses, however, such complex defini- 
tions are unnecessary. A rich set of frequently 
used types has been defined, many of which are 
parameterized. Type classes are: 

* Base types, necessary to construct a 
complete type system 

* Atomic types: Unstructured objects and 
numeric  t ypes  

o Arrays:  n - d ~ e n s i o n a l  co]iec~ons of objects 
of the  same type 

® Usar-defined abstract  types (Records, 
va r ian t  records) 

® Machine types: =Registers, Ports,  In ter rupts  

Examples of atomic types are parameterlzable 
numeric types: nBitlnteger (n), nBitCardlnal (n), 
F'Lxlnt (n,m), ShortReal, Real, Longreal, etc. All 
commonly used operations are available. For one- 
dimensional arrays (vectors), a great number of 
functions has been defined, some examples are 
listed below: 

® Selective Update: 
UpdVector ([1~,3], 1, 5) .--) [1,5,3] 

• Reduc~on: 
Reduce C-". [1,2,3,4])  ~ ((1 - 2) - 3) - 4 

® Create Subvector: 
SubVector ([1,2,3], 0, 2) -~ [1,2] 

e Compose Vector: 
CmpsVector ([1,2], [3]) -# [1,2,3] 

Because of the  au tomat ic  mapping  facility, al l  
functions defined on atomic types can be applied 
to the contents of arrays,  too: 

® [ 1 , 2 , 3 ]  + 10 --~ [11,12,13] 

S imi la r  functions exist  for two dimensional  ar-  
rays  (matrices),  moreover  functions a re  prede- 
fined tha t  select rows or columns of matrices,  ex- 
t ract  diagonals,  and reduce matrices.  

Exception Handling 
Expressions or functions may be guarded for er- 
rors t ha t  may  occur dur ing  thcdr evaluation.  I f  
an  error  occurs, a predefined or user-defined ex- 
cept ion-handler  (a special k ind of function) is  
called automat ical ly .  In  general ,  a guarded  ex- 
pression looks as  follows: 

guard expr 
on ExceptionDeflnition 

on ExceptionDeflnition 
endguard 

When an  error  occurs dur ing the evaluat ion of 
expr, an  exception is called. After  the evaluat ion 
of the exception the evaluat ion of expr is not  con- 
t inued;  instead,  the  value defined by the  excep- 
t ion-handler  i s  re turned  as  the resu l t  of the  en- 
t i re  guarded  ezpressi.:~n. Continuation within the 
expression is sometimes desirable and  therefore 
possible, too. Examples:  

\ .... DivisionByZero is a pr~efined exception name 

func reciprocalPlus3Versl (x) = 
guard (1Ix) + 3 
on Div;sionByZero 0 = 42 
endgoard 

func reciprocalPtus3Vers2 (x) = 
guard (1Ix) + 3 
on DivisionByZero 0 = continue(42) 
endguard 

In  the f i rs t  example,  the  resu l t  o f  the  function 
when called with 0 is  42, as  defined in the excep- 
tion handler ;  in  the  second example the expres- 
sion causing the  error  will continue to be evalu- 
ated, resul t ing in a re turn  value of 45. 

Exceptions are  the basis for actions to be taken  on 
overflows: Whenever  an  overflow occurs, a prede- 
fined exception handler  is  called. Overflow-reac- 
t ions a r e  user-def inable ;  the  most  commonly 
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used are predefined: Signallng, Ignoring, Realing, 
Complexing, Saturated, Wrapping. Exceptions are also 
used to define rounding modes with real num- 
bers. Predefined rounding modes are 
RoundToZero, RoundToPlus, RoundToMinus, Round'Po- 
Even, RoundToOdd. 

3 CONCLUSIONS 

We have presentel a modern applicative lan- 
guage featuring automatic mapping of functions 
on infinite and fi~:.~ data, overloadable operators 
for complex data ~t:?uctures, modularization and 
time management. Both synchronous and asyn- 
chronous data streams of different rates may be 
defined, which makes interprocess communica- 
tion in multi-rate-systems simple. Direct ma- 
chine access and hardware-interrupt handling 
are possible. An extremely flexible type system, 
an elaborate exception handling mechanism and 
a large number of predefined functions operating 
on structm'ed data as a whole make the language 
suitable for complex DSP applications. U~ this 
language, programs may be written at very high 
levels of abstraction, in many cases equivalent to 
the mathematical description of the problem. 
Expressing algorithms in an applicative lan- 
guage directs much of the work normany done by 
the programmer to the compiler. As a conse- 
quence, transforming applicative programs into 
code running on standard processor architec- 
tures is a much more complicated task than 
compiling an imperative program. On the other 
hand, parallelizing high-level applicative pro- 
grams is potentially easier than trying to re-par- 
alle]ize imperative programs written in von- 
Neumann languages. As compiler technology 
advances, the difference in execution time be- 
tween the languages will dlmlnish but the advan- 
tage of the compiler being able to match and op- 
timize applicative specifications to parallel archi- 
tectures will remain. 

A simulation program realizing most of the fea- 
tures of ALDiSP has been developed, which is 
rather  slow. Current work centers on transfor- 
mation techniques to stepwise simplify ALDiSP 
programs to reduc~ the run-time requirements 
for ALDiSP programs. The long-term goal is to 
generate optimized code directly executable on 
digital signal processors. 
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