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Abstract

The realization of nonlinear systems able to mediate strong interactions be-
tween light fields at the few photon level in an environment with minimal
absorption represents a cornerstone for future developments of quantum infor-
mation science and photonic quantum technologies. One approach to reach this
goal is via strong coupling of single emitters to optical cavities as provided by
cavity quantum electrodynamics (QED). The other one is via electromagnet-
ically induced transparency (EIT) with single atoms or with atomic ensembles.

This thesis reports on a system which merges both single-atom cavity QED
in the strong coupling regime and EIT. First, we characterize this system theo-
retically and show that its energy eigenstates are very similar to the well known
Jaynes-Cummings ladder of eigenstates. However, here, the eigenstates are op-
tically controllable via the control field Rabi frequency provided by EIT. We
show that increasing the control field Rabi frequency enhances the normal-
mode splitting, and therefore the effective light-matter coupling. Moreover,
with this system we are able to observe photon blockade and a two-photon
gateway for the same input probe field and to tune the behavior of the second-
order correlation function optically. Thanks to the long coherence times of
EIT, photon blockade can be prolonged in time for longer times than the de-
cay rates of the system. We refer to this effect as photon blockade with memory.

Next, we verify our theoretical findings experimentally. By performing spec-
troscopy measurements on the single-atom cavity EIT system, we show an
unprecedented EIT on/off contrast of about 80 % thanks to our strong atom-
cavity coupling rate. Later, we show experimentally, the ability to generate
both, photon blockade and a two-photon gateway, for the same input field by
just varying the control field Rabi frequency. Finally, by performing time-
dependent second-order correlations we observe strong oscillations in the cor-
relations which are a result of the creation of a new light field in the cavity
which beats with the impinging probe laser. We show experimentally that
this new field has a coherence time longer than the decay rates of the system,
confirming its EIT origin.

In a final experiment, we take advantage of the strong atom-cavity coupling
achieved to induce a group delay on probing pulses. Delays up to approxi-
mately 200 ns are measured. This is the first time a group delay is observed
with a single atom as the delaying medium.
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1. Introduction

1.1. Cavity quantum electrodynamics

Human understanding of the nature of light and its interaction with matter
has changed dramatically over human history. Nearly one thousand years ago,
Ibn Al-Haytham, interrogated in his Book of Optics [1] the theories of light
put forward by Plato and Euclid, who argued that the way we see objects is by
shining light out of our eyes onto them. Ibn Al-Haytham argued instead, that
an object being viewed emits rays of light from every point on the object which
travel to the viewer’s eye. This understanding remained unchanged through
time and is at the origin of the Lorentz model developed in the 19" century.
The Lorentz model was the first to describe light-matter interaction at the
fundamental level where atoms are modeled as oscillating dipoles interacting
according to Newton’s and Maxwell’s laws with electromagnetic light waves.
By the beginning of the 20 century, quantum mechanics refined our under-
standing of light-matter interaction. In the context of black-body radiation [2],
Planck was the first to heuristically introduce the quantization of the energy
exchange. Few years later, Einstein extended Planck’s quantum hypothesis
and was able to describe the photoelectric effect [3]. In 1926, Schrodinger, in
his semi-classical theory [4], treated only the atomic structure quantum me-
chanically while the light field was treated classically. The interpretation of
electrodynamical processes between matter and light was formalized by Dirac,
Pauli, Heisenberg, Feynman, Tomonaga and others leading to the sophisticated
theory known as quantum electrodynamics (QED) [5]. QED has enabled the
calculation of spontaneous emission [6] and of Lamb shifts [7, 8]. However,
those predictions were made exclusively in a perturbative way, and exact cal-
culations remained difficult since an infinity of modes of the electromagnetic
field have to be taken into account.

This led Jaynes and Cummings to consider the simplest possible model of light-
matter interaction: a single two-level atom interacting with a single mode of
the electromagnetic field [9]. This system became a model system for the fun-
damental study of QED. Although first considered as a Gedankenexperiment,
it was experimentally realized in the field of cavity QED by placing a single
two-level atom in a small mode volume cavity. By exploiting the modified
mode density between the cavity mirrors, the atom-light interaction can be
resonantly enhanced. In the so-called strong-coupling regime, the interaction
strength surpasses both the spontaneous emission rate of the atom and the
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decay rate of the cavity. Strong-coupling can be demonstrated by either the
observation of normal-mode splitting, or by the observation of the vacuum Rabi
oscillations showing the coherent exchange of energy between the atom and the
cavity [10]. Experimentally, these phenomena have been observed in both the
optical and microwave domain. Experiments using Rydberg atoms coupled to
microwave cavities [11, 12] or to microwave resonators [13] have shown sig-
natures of strong-coupling. More recently, systems based on superconducting
qubits coupled to microwave stripline resonators were used to achieve strong-
coupling [14, 15, 16, 17]. In the optical regime, signatures of strong-coupling
were observed in systems using alkali atoms coupled to Fabry-Perot cavities
[18, 19, 20, 21], to microtoroidal resonators [22] , or to bottle resonators [23].
Also quantum dots coupled to microcavities [24, 25, 26, 27] or photonic crystal
cavities [28] showed similar behavior.

Reaching the strong-coupling regime of cavity QED has paved the way for
the realization of various effects and experiments. These include quantum
non-demolition measurements [29, 30, 31, 32, 33], quantum feedback [34, 35|,
quantum gates [36, 37, 38], Observation of squeezed light from one atom [39]
and new cooling techniques for atoms [40, 41, 42, 43, 44] just to cite a few
examples.

This thesis studies a system which is based on a single atom coupled to a
cavity mode in the strong coupling regime, however, contrary to previous re-
lated works, the cavity mode is strongly coupled to an open transition of
the atom, opening a way for the phenomenon of electromagnetically induced
transparency (EIT) to be incorporated in the strong coupling regime of cavity

QED.

1.2. Electromagnetically induced transparency

EIT is a technique for making a normally opaque medium transparent by
means of quantum interference [45]. Under certain conditions, EIT can be ac-
companied by a large change in the group velocity of the signal field traveling
through the EIT medium, making the generation of slow and fast light possible.
Although closely related to some early studies on laser-induced coherent phe-
nomena in three-level atoms [46, 47, 48], the experimental observation of EIT
was only achieved in 1991 [49, 50]. Since then, EIT has been the building block
for many proposals predicting large optical nonlinearities and photon-photon
interactions [51, 52, 53, 54, 55, 56, 57], which were later partially experimen-
tally implemented for few photon all-optical switching [58, 59]. Moreover, it
was realized that EIT can be used to map the properties of Rydberg atoms onto
light fields [60], opening the path for the realization of deterministic quantum
gates based on Rydberg blockade in EIT media [61, 62, 63, 64] and strongly
correlated states of light [65, 66]. It was also realized that EIT could have a
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potential for cooling the atomic motion to the ground state [67, 68]. By appro-
priately designing the absorption profile of the atoms using EIT, the cooling
transitions induced by a cooling laser could be enhanced while heating by res-
onant absorption is suppressed. This technique was successfully used to cool
the motional modes in an ion chain [69], the motion of a neutral atom to its
motional ground state [70] and more recently has enabled single-site imaging
of fermions in a quantum-gas microscope [71].

As already mentioned earlier, EIT can be used to reduce the group velocity
of a propagating field due to the large normal dispersion of the EIT medium.
Experiments have shown a slow down of optical pulses up to seven orders of
magnitude [72, 73]. Demonstration of EIT-based slow light was not only lim-
ited to atomic physics but has also been realized in optomechanical systems
both in the optical domain [74] and later in the microwave domain [75]. This
slowdown of light can serve as a basis for a quantum memory. In fact, a light
pulse resonant with the EIT window can be slowed down to zero velocity if
the control field is switched off in the appropriate way. The light excitation
can therefore be transformed into an atomic excitation and be stored in the
medium thanks to the long coherence times of the two ground states of the
EIT medium. When the pulse needs to be retrieved, the control field is turned
back on, allowing the light pulse to resume its propagation. Quantum memo-
ries based on EIT have been experimentally demonstrated for coherent pulses
[76, 77] and also for squeezed vacuum states [78, 79, 80, 81].

Most of the experiments mentioned above were carried out with systems in-
volving large atomic ensembles with only few exceptions [82, 83, 84| where
EIT was demonstrated for a single emitter but the strong coupling condition
of cavity QED was lacking.

1.3. This work: Merging cavity QED with EIT

This thesis studies a system which merges single-atom cavity QED in the
strong-coupling regime with EIT. The considered system has been predicted
to improve the photon blockade effect [85] compared to the standard cavity
QED system with a two-level atom. Furthermore, EIT gives the possibil-
ity of optically tuning the eigenstates of the system [86]. Measurements of
second-order correlation functions are a powerful tool to study the quantum
dynamics of the system from the photon stream emitted from the cavity. Pre-
viously, measurements of the second-order intensity correlation function have
been used to investigate the dynamics of atomic ensembles [87] or single atoms
[85, 88, 22, 89, 90, 91, 92] coupled to optical cavities. In contrast to these pre-
vious experiments, we investigate the possibility of coherently controlling the
quantum dynamics of the system profiting from the optical control provided
by the EIT control field. We verify experimentally our theoretical predictions
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in reference [86], and observe a transition from a photon blockade behavior
[85] to a two-photon gateway behavior [88] by only changing the control field
Rabi frequency and keeping the input field parameters unchanged. Moreover,
EIT, with its quantum memory potential, enables us to engineer non-classical
states of light which can last for long times, beyond the decay rates of our
system. By measuring time-dependent second-order correlation functions, we
show that the timescale on which our system blocks subsequent photons could
in principal be extended in time thanks to the long coherence times of the two
ground states of the atom.

Finally, we conclude by performing slow light experiments using a single atom
in the cavity. As mentioned above, an EIT medium can induce a reduction in
the group velocity of traveling pulses. Using our single-atom-cavity system as
the EIT medium we observe delay times up to about 200 ns. This is to our
knowledge the first time slow light is generated from a medium composed of a
single emitter.

The content of this thesis is organized as follows. Chapter 2 briefly describes
the theoretical concepts of a cavity QED system composed of a single two-level
atom coupled to a single mode of an optical cavity. Chapter 3 describes the-
oretically and in detail a single three-level atom strongly-coupled to a single
mode of an optical cavity in an EIT configuration. We calculate the eigenstates
of the system and show their dependence on the control field Rabi frequency.
We show the implications of this dependence on the transmission spectrum
of the system and perform numerical simulations of the equal-time second-
order correlation function ¢g®(0). By comparing the ¢ (0) in the cavity EIT
case with the standard cavity QED case comprising a two-level atom, we show
that EIT enhances the photon blockade effect and enables the optical tuning
of ¢?(0) from a strongly antibunched and sub-Poissonian field to a bunched
super-Poissonian field for the same input probe field. Finally, numerical simu-
lations of the time-dependent second-order correlation function ¢ (7) reveal
the generation of a new field inside the cavity with a long coherence time.
This new field helps to extend the non-classical behavior of ¢(? (1) in time,
beyond the decoherence time of the system. Chapter 4 briefly describes the
experimental apparatus and the experimental implementation of the single-
atom cavity EIT setup. Chapter 5 shows the experimental realization of the
theoretical proposal discussed in Chapter 3. Transmission spectra along with
correlation measurements show a good agreement with our theoretical predic-
tions. Moreover the memory effect on the behavior of g (7) is clearly visible
in the experiment. Chapter 6 shows results of slow light with the single-atom
cavity EIT system. Also, results from theoretical simulations are discussed.
We conclude with a summary of this work and an outlook on future directions
in Chapter 7.



2. Cavity Quantum
Electrodynamics

2.1. Introduction

The ideal cavity quantum electrodynamics (QED) system is essentially com-
posed of two components: a single two-level atom which is coupled to a single
mode of a high finesse resonator (Fig. 2.1).This system allows research of light
matter interaction at the fundamental level and has offered different applica-
tions over the last years such as cooling of the atomic motion, generation of
non-classical fields and quantum networks [93, 94, 95, 96, 97] .

In this chapter we briefly review the quantum model which describes this sys-
tem. We first derive the energy-level structure of the closed system, and then
we discuss its interaction with the environment by including the driving and
the dissipation. For a more careful treatment of this topic, the reader could
check the following references [98, 99, 100, 10].

A AVAYAVATELS
\ ! \
RV VY >

U AVAVAVAVAR

Figure 2.1.: Schematic of a single-atom cavity QED system. A two-level atom
(resonance frequency wy,) is strongly coupled to a single mode of the electromagnetic
field of a Fabry-Perot cavity (resonance frequency w.) with a coupling strength g.
The system is coherently driven by an impinging probe laser with a frequency w),
and a driving strength 7. Photons can escape from the system either through the
cavity, with a decay rate k, or through the atom, with a decay rate ~.
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2.2. Quantum theory of the atom-cavity system

2.2.1. Hamiltonian

A two-level atom (with ground state, |g), and excited state, |€)) interacting
with a single mode of the electromagnetic field (with Fock states, |n), n € N>g)
without losses, in the dipole and rotating wave approximations, is given by the
Jaynes-Cummings Hamiltonian [9]:

Hjo = hw,o T~ + hwea'a + hg(a’o™ 4+ oTa). (2.1)

where a', a are the creation and the annihilation operators of a photon in the
cavity mode, respectively. ot and o~ are the creation and the annihilation
operators for an atomic excitation respectively. The resonance frequencies of
the cavity and the atom are w,. and w, respectively (Fig. 2.1). The exchange of
one quantum of excitation between the atom and the cavity mode is described
by the third term of the Hamiltonian (Eq. 2.1). The coupling constant go
determines the exchange rate of the excitation between the atom and the

cavity mode:
[ w
= | ——d. 2.2
g 260Vh g ( )

where dge is the atomic dipole matrix element of the atomic transition, V' is
the cavity mode volume and ¢, is the vacuum permittivity.

2.2.2. The dressed states

The eigenstates of the Jaynes-Cummings Hamiltonian can be calculated ana-
lytically. The ground state |0, g), which is an eigenstate of the system, remains
unchanged. The other eigenstates |n, £), which are called the dressed states,
are arranged in doublets and are superpositions of the states |n, g) (with the
atom in the ground state and n photons in the cavity) and |[n — 1, e) (with the
atom in the excited state and n — 1 photons in the cavity):

In,+) = cosf|n—1,¢e) +sinf |n, g) (2.3)

In,—) = —sinf|n —1,¢e) + cosf|n,g), (2.4)
with 6 the mixing angle:

tan(0) — 20V | (2.5)

(Wa — we) + V49?1 + (wg — we)?

The energy eigenvalues of the system are given by:
h(w, — we h
(=) D
2 2

E,+ = nhw. + V(We — we)? +4g2n (2.6)
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E,_ =nhw. + M — g\/(wa — we)? +4¢°n (2.7)

and the energy splitting of the doublets is:

Eny — E,_ = /(W — we)? +4g°n (2.8)

When the atom is on resonance with the cavity (i.e. w, = w.), the splitting
increases with the square root of the number of excitations, see Fig. 2.2.

atom cavity coupled system
Rt N |n, +)
no, ) .:::;;;;;gyagI

° o ° |n' _>

R 2, +

® 2w |2>:::::ZIZZZ,___2_ﬁgI :2 _i
----------------------- — L+
wa |e> wc |1> -------------- 2 gi “: _>
9) 0) 0,9)

Figure 2.2.: The Jaynes-Cummings ladder of eigenvalues. A single two-level atom
is coupled to a cavity mode which is resonant to the atomic transition (w, = we).
The cavity electromagnetic field is represented by a harmonic oscillator with an
infinite number of equally spaced levels. The coupled system forms a ladder of
energy levels which are arranged in doublets and with the splitting between the
doublets increasing with the square root of the principal quantum number of the
mode n.

2.2.3. Open quantum system
Driving and dissipation

So far we have presented the Jaynes-Cummings Hamiltonian which describes a
closed system without losses. This simple model has allowed us to understand
the basic concepts of a coupled atom-cavity system. However, in real exper-
imental situations the interaction of the system with its environment has to
be taken into account. This requires namely two steps: (a) coupling to modes
other than the cavity mode to describe the decay of the atomic excitation and
of the cavity mode and (b) including a pump term in order to drive the system
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and to compensate for the losses. The pump term, which describes the exci-
tation of the cavity mode by a coherent near-resonant probe field of frequency
wp, is added in the following form to the Jaynes-Cummings Hamiltonian:

Hp = hn(ae™r' + e ™) (2.9)

where 7 is the driving strength which is proportional to the amplitude of the
probe laser. The time dependence of the Hamiltonian reflects that the energy
of the system is not conserved. This is expected since photons are exchanged
with the probe laser.

Moreover, the system couples dissipatively to its environment which allows for
the observation of its dynamics. This interaction gives rise to spontaneous
emission of photons from the atom with the atomic polarization decay rate ~,
or from the cavity with the cavity field decay rate x (Fig. 2.1). Both decay
channels have to be included in the theoretical model as loss processes. The
strong-coupling condition is met when the internal dynamics of the atom-cavity
system predominates over the losses which corresponds to:

9>, K (2.10)

Master equation

In quantum optics, different approaches exist to describe the time dependence
of an open system and its interaction with the environment [101, 102, 103].
Here we briefly present a method based on the derivation of a master equa-
tion which describes the time evolution of the system’s density matrix. For a
detailed description the reader could check references [104, 99].
The density matrix p;, includes all degrees of freedom and describes the sys-
tem and its environment. It contains vectors from the combined Hilbert space
Hiot = Hs @ Hp, with Hg the Hilbert space of the system and Hg the Hilbert
space of the environment. The von-Neumann equation for the density operator
Pror gives the time evolution of the total system:

1

h
where H;,; is the total Hamiltonian consisting of the system and environment
Hamiltonians Hg and Hpy plus the Hamiltonian H;,; which describes their
interaction:

(Hyots Prot] (2.11)

Ptot =

Htot - HS+HR+Hint (212)

We assume that the environment is not influenced by the system and that it
remains in thermal equilibrium. Then, since only the system’s density matrix
ps is of interest, it can be obtained by partially tracing over the eigenstates of
the reservoir

ps(t) = Trr(pu(t)) (2.13)
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Applying the Born and Markov approximations [99] yields the master equation
for the reduced density operator of the system pg = p:

O = _%[HS7 pl+K(2apa’ —atap—pata)+v(20" poT —oto p—potoT) (2.14)

with the second term describing the cavity field decay and the third term
describing the spontaneous emission of the atom. The master equation 2.14
can also be expressed in terms of the Liouville super operator L:

p=2Lp (2.15)

The time evolution of the expectation value of any system operator 6 can
then be calculated via:

(0) = Trlop] = Trlo(Lp)) (2.16)

2.3. Observation and characterization

We saw previously that the system exchanges energy with its environment via
mainly two channels: the atomic decay and the cavity decay.

Experimentally we only have access to the photons escaping from the cavity
to get information about the system’s dynamics. We characterize the photon
stream emitted from the cavity by photon counting techniques. Moreover, by
evaluating second-order correlation functions we gain information about the
photon statistics of the transmitted field.

In the following, we briefly discuss the two methods and present some key
features of a strongly coupled atom-cavity system.

2.3.1. Photon counting

All experiments performed through this thesis were carried out by driving
the atom-cavity system with weak coherent fields which contain less than one
photon on average per cavity lifetime. Using single photon counting modules
(SPCM), we measure the mean photon number of the intracavity field (afa)
via photon counting of the output cavity field. Photons are emitted from the
cavity at a rate 2k, and the photon flux at the output cavity mirror is given
by:

I = 2knoueTiw{a’a) (2.17)

where 1,,; is the outcoupling efficiency which takes into account that pho-
tons can be lost in the mirror substrates or transmitted through the input
mirror. By monitoring the transmission of a weak probe beam as a function of
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Figure 2.3.: A normal-mode spectrum showing the minimal splitting of 2¢g for the
symmetric case w, = w.. Parameters are {g,k,v}/2r = {20, 2, 3} MHz, and a
driving strength of n = 0.1 x. The dashed red line is the relative transmission of the
probe beam for an empty cavity for the same driving strength and as a function of
the probe-cavity detuning A,./2m = (w, — w.)/27.

its frequency a spectrum showing the normal-mode splitting can be obtained
confirming that the system is in the strong coupling regime as shown in a
numerical simulation in Fig. 2.3 [19, 20].

2.3.2. Photon-photon correlations

The second-order correlation function is a powerful tool to study and observe
the quantum dynamics of the atom-cavity system. It shows the temporal
evolution of the mean intracavity photon number (a'a) after a photon has been
detected. The quantum regression theorem [105, 99] enables the calculation of
correlation function of system operators based on the solution of the master
equation. The normally ordered [106] second-order correlation function can
then be calculated via:

(a’a’(T)a(T)a) = Tr{atae* [apsa’]} (2.18)

which can be understood in the following way:

the system starts in the steady state pg, and the detection of the first photon
projects the system into apgsa’. The term e [apga'] reflects the time evolution
of the mean photon number back to the steady-state expectation value.

In the experiments performed through this thesis, we measure the normalized
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second-order correlation function defined by:

@ () = (a'a’(T)a(T)a)
g7 (7) afa)?

(2.19)

For a coherent laser beam with Poissonian photon statistics, ¢(® () is in-
dependent of the delay time and ¢ (7) = 1 for all 7. Thus photons arrive
randomly. Thermal light on the other hand, shows super-Poissonian photon
statistics with ¢ (0) = 2 and photon bunching with ¢®(0) > ¢ (7). Photon
bunching is the tendency of photons to distribute themselves preferentially in
bunches rather than at random [107]. Photon antibunching is the opposite
effect. It is characterized by ¢®(0) < ¢®(7), which means that fewer photon
pairs are detected close together than further apart. Antibunching is a quan-
tum effect which cannot be predicted using a classical analysis [98]. While it
was first observed in a resonance fluorescence experiment [108], photon anti-
bunching is also expected for a strongly-coupled single-atom-cavity system as
shown in Fig. 2.4.

9%()

0.2 . I . I . I . I .
0 100 200 300 400 500

T (ns)

Figure 2.4.: A numerical simulation of g(® () showing the photon blockade effect
with g2 (0) ~ 0.5 < ¢ (7). Parameters are {g, k,v}/27 = {20, 2, 3}MHz, a driving
strength of n = 0.22 k and a probe-cavity detuning of A,./2m = —20 MHz.

The underlying mechanism originates from the anharmonicity of the Jaynes-
Cummings ladder. Tuning the probe beam frequency to the first manifold
eigenstates |1,+) blocks the absorption of a second photon at the same fre-
quency because transitions to |2, +) are detuned from resonance, resulting in
the so-called photon blockade effect [85]. When the atom-cavity coupling ¢ in-
creases the detuning of the second photon to the second dressed states |2, 4),
given by: § = 2(g—+/2/2g), also increases which enhances the photon blockade
effect and makes the g (0) go to smaller values. Another interesting aspect in



12 Cavity Quantum Electrodynamics

measuring the second-order correlation function ¢ (7) in cavity QED is that
it reveals internal quantum dynamics of the atom-cavity system [92]. In Fig.
2.4, we clearly see the vacuum-Rabi oscillations with a period of 27 /2¢g which
is a result of the coherent exchange of a single excitation between the atom and
the cavity. As explained in reference [109], even if the probe beam frequency
is resonant with the first manifold eigenstates |1, %), there will always be some
off-resonant excitation to the second manifold eigenstates |2, +). Moreover,
since we are observing the behavior of the second-order correlation function
g? (1), which is a two-photon measurement, only the states |2, &) can give rise
to a two-photon emission in the weak driving regime. It is therefore reasonable
to assume that the behavior of ¢ (1) is dominated by the steady-state popu-
lation of the states |2, £). The ¢ (7) measurement is triggered by a detection
of a photon at time 7 = 0 which is equal to applying the annihilation operator
a to the states |2, ). This projects |2, ) into the states (v/2|1,g) +10,¢))/v/3
which are more absorptive states than emitting since the amplitude of |1, g),
a state where the atom is in the ground state, is larger than the amplitude of
|0, e), a state where the atom is in the excited state. This explains the fact
that ¢ (0) represents a local maximum for short times (7 < 20 ns in Fig. 2.4)
which is due to a higher absorption probability of a cavity photon by the atom
after a photon has been detected at 7 = 0.
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It is a well known fact that photons traveling through a vacuum do not interact
with each other. On the other hand, light fields can interact inside nonlinear
optical media, although the nonlinearity remains weak in conventional ma-
terials specially at the few photon level [110]. Achieving strong interaction
between individual photons in an environment with minimal absorption rep-
resents a cornerstone for future developments of quantum information science
and photonic quantum technologies [111, 112, 53, 57, 113]. One way to reach
this goal is via electromagnetically induced transparency (EIT) [114, 49] ei-
ther with single atoms [83, 82, 84|, or with atomic ensembles [115, 116]. In the
previous chapter, we reported on some fundamental characteristics of the ele-
mentary cavity QED system, namely a single-atom coupled to a single cavity
mode. This chapter theoretically describes a system which combines single-
atom cavity QED in the strong coupling regime with EIT. It is shown that
using such a system it is possible to convert an incoming laser beam into an
outgoing light field with photon number fluctuations above or below the shot-
noise level. Moreover, it enables the generation of multiple non classical states
of light and to optically control their characteristics.

The content of this chapter has partially been published in [86]:

J. A. Souza, E. Figueroa, H. Chibani, C. J. Villas-Boas, and G. Rempe, “Co-
herent Control of Quantum Fluctuations Using Cavity Electromagnetically In-
duced Transparency”, Physical Review Letters 111, 113602 (2013).

3.1. Electromagnetically induced transparency

Electromagnetically induced transparency is a technique for making a resonant
opaque medium transparent by means of quantum interference [117, 49, 115].
To illustrate how EIT works, let us consider a medium composed of three level
atoms as in Fig. 3.1, with each atom having two long-lived ground states |1)
and |2), in a A configuration. One could cancel the absorption of a resonant
“signal” field which couples the ground state |1) to the excited state |3), by
applying another “control” field driving the transition |2)—|3). The combi-
nation of the two fields stimulates the atoms into a dark superposition of the
two ground states |1) and |2) which is a result of the two absorptive pathways
(the direct pathway |1)—|3) or the indirect one |1)—|3)—|2)—|3)) interfering

13
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destructively with each other. The atoms are said to be in a “dark state”
where none of them can be promoted to the excited state, resulting in a van-
ishing light absorption [118]. This transparency window in the spectrum of the
atomic medium, is dependent on the control field parameters. Precisely, the
transparency window position in the spectrum depends on the control field fre-
quency, whereas its amplitude and width depend on the control field strength.
This results in an optical tunability of the optical properties of the medium
which can be seen in the dependence of the linear susceptibility of the EIT
medium given by [117]:

Y12 + tw
(’}/13 + iw)(’le + z'w)—i— | Q. |2

X(w) = g°N (3.1)

13)
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>

—_— 12
—r M)

Figure 3.1.: Prototype atomic system for EIT. |1) and |2), two long-lived ground
states, |3), the excited state.

where v;; corresponds to the coherence decay rates of the ¢ — j coherence, (2.
is the Rabi frequency of the control field, N is the total number of atoms in the
medium, ¢ is the atom-field coupling constant and w is the detuning between
the signal field frequency and the frequency of the atomic transition [1) — |3)
(with w = 0 corresponding to the atom and signal field being on resonance).
The absorptive properties of the medium is described by the imaginary part
of the susceptibility, with the intensity transmission through the EIT medium
given by:

T(w) = exp(Imyx(w)ksL) (3.2)

with A = 27/ks the wavelength of the signal field and L the length of the
medium.

The EIT phenomenon has been used in different experimental works and has
resulted in the observation of different effects. Examples include storage and
controlled read-out of light pulses [119, 120, 121, 122, 123], observation of slow
light [72, 124] and optical switching of light fields [116, 125, 58, 59]. Moreover,
different theoretical works have emphasized the potential of single atom EIT for
nonlinear optics and quantum information processing [126, 127, 55, 128, 56, 53].
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3.2. Cavity EIT

Here, we show how a cavity EIT system [129, 130, 131] with a single atom
provides the optical tunability offered by EIT and at the same time preserves
the main characteristics of a cavity QED system.

3.2.1. Hamiltonian

We consider a three-level atom in a A configuration positioned inside an optical
cavity as shown in Figure 3.2. The cavity mode of frequency w.,, couples to
the atomic transition |1) — |3) with a coupling strength g. A probe field of
frequency w, and strength 7 drives the cavity. A classical coherent field with
a frequency w,. drives the atomic transition |2) — |3) with a Rabi frequency
Q.. This field is the control field.

The time-independent Hamiltonian which describes this system in the electric
dipole and rotating-wave approximations reads:

HCEIT = h{AlO'gg —+ (Al — AQ)O'QQ + AO’H — ACLTCL
+n(a" + a) + gla'ors + 0310) + Qe(023 + 032)} (3.3)

where a, a' are photon annihilation and creation operators, o;; = |i) (j| 4,7 =
1,2,3 are the atomic raising and lowering operators for ¢ # j, and atomic
energy-level population operators for ¢+ = j. The detunings are given by
A = Wy — Weay, D1 = W31 — Weay, and Ay = w3y — w,. Similar to the two-

a) b)
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Figure 3.2.: a) Schematic of a single-atom cavity EIT system. b) The three-level
atom in A configuration, with the transition |1)—|3) coupled to the cavity field of
frequency weq, with a coupling strength g, and the transition |2)—|3) coupled to the
control field of frequency w. and Rabi frequency .. A; 5 are the relevant detunings.
I';; radiative decay rates from state |i) to state |j). 72 the dephasing rate of state
[2).



16 Merging cavity QED with EIT

level atom case presented in the last chapter, the dynamics of the system is
obtained numerically by solving the master equation for the atom-cavity den-
sity operator:

) J T T T

p= _ﬁ[HCEITa pl + K(2apa’ — a'ap — pa'a)+

> Tom(20m3posm — 033p — poss) + Y 75(204;0055 — 045p — po;) (3.4)
m=1,2 j=2.3

where k is the cavity-field decay rate, I's,, the polarization decay rates of
the excited level |3) to the ground states |m) (m = 1,2) and ~, the atomic
dephasing rate of the state |j) (j = 2, 3).

We solve for the steady state of p by truncating the Fock basis of the cavity
field according to the probe strength following the method presented in [132].

3.2.2. The dressed states

The eigenstates of the single-atom cavity EIT system can be calculated ana-
lytically. For simplicity, we assume that the atom is on resonance with both
the cavity and the control field, i.e., A; = Ay = 0. With this assumption the
system’s Hamiltonian becomes:

Hepr = M{Aoy; — Aa‘a + 77(chr +a)+ g(aTalg +0310) + Qe(023 + 032)} (3.5)

If we assume that n = A = 0, this Hamiltonian can be rewritten in a new
atomic basis {|1),|+), [—)}, with |[£) = (|2) £[3))/+/2, in the following matrix

form:

0 g\/n/2 —gy/n/2
HCEIT: g\/n/2 Qc 0
—g\/n/2 0 —Q.

with n the number of excitations in the system and with the following eigen-
values:

(3.6)

A9 = (3.7)

n

A = 48, = +£/02 + ¢2n (3.8)

and their respective eigenstates:

0)\ _ 0 _g\/ﬁ |+’n_1>+|_7n_1>
\\P;’>—Né>[|1,n> Q< 7% )] (3.9)
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(T = N [1,n) + g\/_ ) - IS g\/_ —n—1)| (3.10)

" " iﬁn - Q iﬁn c

where N\” and N are normalization factors. The eigenstates |\I/,(10)>,n =

0,1,2,... or any combination of them with eigenvalues A0 are the intracavity
dark states of the cavity EIT system, causing an empty-cavity-like transmis-
sion. Additionally, the dressed states ‘\I/ff> with eigenvalues AS?), represent a
single-atom cavity EIT system sharing n excitations.

3-level atom cavity cavity EIT
‘__.--‘A |\Pn(+)>
D J— Zgn(efﬂ _______ |lI/n(o)>
Ty 0

. ¥

[ ]

—13) ®
e — |1P](+)>
S e
D :_Jr Weay |1 >'-'--.-_ 291(eﬁ) ------- |lP1(O)>
o T T e oy
ﬁ‘— |2> 1

1) — 0 S

Figure 3.3.: The cavity EIT ladder of eigenvalues. A single three-level atom is
coupled to a cavity mode which is resonant to the atomic transition (w31 = weay)-
A control field drives the other atomic transition wse with a Rabi frequency 2.
I';; radiative decay rates from state |i) to state |j). 72 the dephasing rate of state
|2). The cavity electromagnetic field is represented by a harmonic oscillator with
an infinite number of equally spaced levels. The combined system forms a ladder of
energy levels which are arranged in doublets, with the splitting between the doublets
depending on the principal quantum number of the mode n and on the control field
Rabi frequency: 2g,(ff N =9y ng? + Q2. The states ’\II%O)> which lie between the
doublets are the intracavity dark states of the cavity EIT system.

Similar to the usual cavity QED system with a two-level atom presented in
the previous chapter, the dressed states of the cavity EIT system compose an
anharmonic ladder structure. However, in the cavity EIT case, the energy-
level splitting between the states depends on the control field Rabi frequency
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Q., with Qgﬁfff) = 2y/ng? + 2 as shown in Fig. 3.3. This dependence of the
splitting on the control field Rabi frequency gives an optical tuning knob on
the energy eigenstates of the system. This will have important consequences
on the dynamics of the system as we will see in the next paragraphs.

3.3. Cavity QED vs cavity EIT: a comparison

3.3.1. Transmission spectra

Before studying the optical control and quantum dynamics offered by the con-
sidered cavity EIT system, it is instructive to emphasize the main differences
between a cavity EIT system and the standard two-level cavity QED configu-
ration. Considering perfect cavity and control field resonance (A; = Ay = 0),
we calculate the relative transmission spectrum for both cases vs the nor-
malized probe-cavity detuning A/k. We consider both systems to be in the
strong-coupling regime with g > (k, 32, '31) and we set the driving strength
of the probe field to n = 1.0 k, enough to sufficiently populate the energy
levels associated with multiphoton transitions [133]. For the cavity QED sys-
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Figure 3.4.: Transmission spectra (on a logarithmic scale) vs normalized probe-
cavity detuning A /k for the two-level system (Cavity QED, solid red line) using the
parameters: g = 50 k, n = 1.0 k, v = 0.1 k. For the cavity EIT case (solid blue
line) the parameters are: g =50 k, 7 = 1.0 K, I'31 =30 = 0.1 &, and Q. =40 k. g
and a9 are the frequency differences between the first and second doublets for the
cavity EIT and cavity QED case, respectively.

tem (Fig 3.4, solid red line), we observe a pronounced vacuum Rabi splitting
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with side peaks at smaller detunings corresponding to two-photon transitions
10, 9)—|2,+£), [133] between two different Jaynes-Cummings manifolds. All
these transitions occur at different frequencies due to the anharmonic energy-
level splitting, 2/ng, n = 1,2, ...[134].

The solid blue line of Fig. 3.4 shows the transmission spectrum for the cavity
EIT case for similar parameters and with a control Rabi frequency of 2. = 40k.
We directly distinguish the larger vacuum Rabi-splitting (corresponding to
+./9%+ 2) and a second resonance corresponding to the first multiphoton

transition ’\IJ(()O)>—> ‘\Ifgi)>. In addition, we see a narrow transmission win-
dow at zero detuning referred to as the intracavity dark state [83, 130, 131].
Moreover, we notice that the frequency difference between the first and sec-
ond doublets |1, —>(|\IJ§_)>) and |2, —>(|\I/g_)>) for the cavity EIT case is al-
ways larger than its cavity QED counter part, as a; = g(1 — 1/v/2) < ay =
VG2 + Q2 — /29> + Q2/2 for any Q. # 0.

Therefore, thanks to the dressing of the atom by the control field, cavity EIT
helps to resolve the eigenstates of the system better than the usual two-level
cavity QED system. This will induce important consequences on the photon-
photon correlations as will be shown in the next paragraph.

3.3.2. Equal-time photon-photon correlations

To characterize the quantum nature of the cavity EIT system, we evaluate
the equal-time photon-photon correlation function: ¢®(0) = (afafaa)/{a’a)?,
which we calculate numerically for the steady state p = 0 of the system’s
density operator.

In Fig. 3.5 (a) we compare between the equal time photon-photon correlation
g®(0) behavior in the cavity QED (solid red line) and the cavity EIT (solid
blue line) cases. We show the g?(0) correlation in both cases as a function
of the normalized probe-cavity detuning A/x. The minima in ¢‘®(0) for the
cavity EIT case are associated with the one photon transitions A(1), A(3)
and the two-photon transitions E(1), E(3) (see Fig. 3.6). This is similar to
our previous observations in the transmission spectrum which we saw is also
sensitive to these transitions. The photon-photon correlation, however, also
shows signatures of other transitions. For example, the maxima are associated
with the one photon transitions C(1), C(3), B(1), D(2) and the multiphoton
transition ’\Ifgo)> — |\I/§i)> (marked with asterisks in Fig. 3.5 (a)). Another key
aspect of the cavity EIT system is the presence of a coherent field (¢ (0) = 1)
at A = 0 (dashed line in Fig. 3.5 (a)) and photon bunching around A = £80k.
This is in stark contrast to the strong photon-bunching behavior (¢®(0) > 1)
[135] and an almost coherent field for the respective detunings in the cavity
QED case. The behavior of ¢?(0) is strongly correlated to the maxima in
the frequency spectrum of the eigenstates populations (shown in Fig. 3.5
(b); see vertical dashed lines). A prominent feature is the improvement of the
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Figure 3.5.: (a) g®(0) correlation vs normalized probe-cavity detuning A/x for
the cavity QED case with g = 50 k,n =1 k, and v = 0.2 £ (red line) and for the
cavity EIT configuration for the same g and 7, I's; = I'sa = 0.1 x and Q. = 40 k.
(b) Population of the cavity EIT eigenstates ‘Wg})> for A < 0, |\IJ§+2)> for A > 0,

and respective darks states ‘\II§O%> The vertical dashed-dotted lines connect the

maxima and minima in the g(?(0) correlation with the populations of the relevant
eigenstates.

maximum achievable photon antibunching (photon blockade) in the cavity EIT
case compared to the cavity QED case. This is due to the larger frequency
difference between the first and second doublets offered by the cavity EIT
system, which results in a decreased probability of exciting the second manifold
compared to the situation in the cavity QED system.
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B 1 photon process
CEIT €2 2 photon process
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Figure 3.6.: Diagram of the eigenstates of the cavity EIT system with the relevant
one-photon and two-photon transitions.

3.4. Coherent control of photon statistics using
cavity EIT

We have shown in the last paragraph that it is possible to tune the photon
statistics of the outgoing field by varying the frequency of the input field. In
order to design a quantum control device, this possibility has to be provided
by an external control field. We use the fact that in a cavity EIT system the
eigenstates can be optically “moved” in the spectrum via the control field Rabi
frequency to achieve this goal.

3.4.1. Optical switching from photon blockade to a
two-photon gateway

In Fig. 3.7(a), we show how the equal-time photon-photon correlation g (0)
changes when we tune the control Rabi frequency €2, for different probe-cavity
detunings. By keeping A constant and varying (2., we probe the system over
regions in which sub-Poissonian (¢‘®(0) < 1) and super-Poissonian (¢®(0) >
1) light is created. This is the first time optical control of photon statistics
is predicted, a unique feature provided by the strongly coupled single-atom
cavity EIT system. Similar to our analysis of Fig. 3.5(a), the first (left-most)
super-Poissonian peak seen in Fig. 3.7(a) for each detuning A is associated
with a local maximum in the population of the second dark state ‘\Ifgo)> and

the multiphoton state ‘\If§+)>, corresponding to the transition C(3), as depicted



22 Merging cavity QED with EIT

1025 ! ' 3

10" | E

E 3

3 ]

—~ i ]
o i )
~ 10° b s
) E E
(o)) - 1 ]
10'F [ Y I -
] " A=T0x

: \ ——A=85¢ ]

0L ;. B e A=100|<_:

= 1 | 1 1 1 3

I

Eigenstate Population

Figure 3.7.: (a) ¢ (0) correlation vs normalized Rabi frequency Q./x of the con-
trol field for the cavity EIT system for different probe-cavity detunings A using
the same parameters as in Figure 3.5. (b) Population of the cavity EIT eigenstates

‘\Ifgg)> and respective dark-states ‘\Ilgog> for A = 85 k. The vertical dashed dot-

ted lines connect the features in the ¢ (0) correlation with the populations of the
relevant eigenstates.

in the eigenstate population (Fig. 3.7(b)) for A = 85 k.

When further increasing €2, the first and most pronounced minimum of g (0)
is obtained when the transition A(3), |\I/(()O)> — ‘\If§+)>, is resonantly driven by
the probe field, resulting in sub-Poissonian light as a consequence of photon
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blockade [85]. Once this resonance condition is violated for some larger €.,
a super-Poissonian field is generated [135]. We emphasize that in contrast to
the first super-Poissonian peak discussed before, no maxima are observed in
any of the eigenstate populations. A similar scenario occurs when the control
Rabi frequency is increased to a value 2. = 150k (for A = 85k). Here a
pronounced sub-Poissonian minimum is observed with ¢®(0) = 0.2, without
any maxima in the eigenstate populations. The situation changes drastically
when €. is slightly increased so that the two-photon transition E(3), \I/(()O)> —

|\If§+)>, is resonantly driven. This induces an increase in the population of

state ]\1/§+)> and therefore a higher two-photon emission probability or a two-
photon gateway [133, 88]. However, contrary to what happens on the single-
photon resonance A(3), |\Iléo)> — \I/§+)>, we now observe super-Poissonian
photon statistics. Note that if only two-photon transition would be allowed, the
light would exhibit sub-Poissonian statistics. The observed super-Poissonian
statistics on the two-photon resonance results from the presence of single-
photon transitions in both, the excitation and deexcitation of the system.
Another remarkable characteristic of our system is the presence of a broad
region with ¢®(0) < 1, independently of .. The width of this plateau region
can be extended by increasing the probe-cavity detuning A, although at the
expense of a less pronounced sub-Poissonian statistics.

3.4.2. Quantum dynamics of the single-atom cavity EIT
system

Further insight into the studied cavity EIT system can be gained by studying
the time-dependent second-order correlation function ¢®(7) of the emitted
field. Figure 3.8 shows numerical simulations of ¢®(7) for different control
field Rabi frequencies €).. The control field is set to be on resonance with the
atom (i.e. Ay = 0) and the probe field is being close to resonance with the
state ]\115‘)> of the first manifold (i.e. A ~ —gfff)).

As a general first remark, we notice that independently of the control field
Rabi frequency ., the behavior of ¢ (7) is dominated by a strong oscillation
at the probe-cavity detuning frequency A. This oscillation is due to a new field
being generated at the empty cavity frequency: wpew fictda = Wp — A = Weaw, Via
a four-wave mixing process based on EIT [136, 137]. The fourth field involved
in the process is generated at a frequency w.+ A and is not detected. This new
EIT field interferes with the impinging probe field inducing the interference
pattern at frequency A observed in the ¢g® (1) behavior. Also, we notice that
the oscillation lives for a longer duration than the decay rates of the system,
I'31, '3 and k. This is in stark contrast with the behavior observed in a cavity
QED system with a two-level atom, where g(®)(7) reaches the steady state after
a duration of 7 = 2/(y + k) [85].
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Figure 3.8.: Second-order intensity correlation functions vs. time delay for different
values of the control field Rabi frequency €2, and for g = 20 k, I'3; = I'30 = 2 x and
17 =1 k. The control field is set to be on resonance with the atom (i.e. Ag = 0) and
the probe field is being close to resonance with the state ‘\Ilg_)> of the first manifold
(le. Ax —ggef f )). Shaded areas denote classically allowed values, calculated from
Equation 3.13.

In order to understand these observations, it is useful to remember that
g®(7) is a two-photon measurement, and in the weak driving regime only the
states ‘\Ifgo)> and }\Ifgi)> can give rise to a two-photon emission. However, since

in Fig. 3.8 the probe field is set to be close to resonance with the state |\I/§_)>,
it is reasonable to assume that the behavior of ¢ (7) will be dominated by
the steady-state population of the state ‘\Ilg_)>. The ¢®(7) measurement is
triggered by a detection of a photon at time 7 = 0 which is equivalent to
applying the annihilation operator a to the state |\I/§7)>. The obtained state
is not an eigenstate of the system, therefore, at 7 = 0, the system will be in
a coherent superposition of all the states in the first manifold of the cavity
EIT ladder, ‘\Ifgﬂ)> and \w§i>>. Using Fermi’s golden rule, we can calculate the
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decay rates of all those states:

Cyggey = - Ol W)+ Tan (0ol 57D+ D« |04 )

1 9’k
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We clearly see that the decay rates of the eigenstates of the single-atom cavity
EIT system are dependent on both the control field Rabi frequency 2. and the
coupling strength g, unlike the decay rates of the eigenstates of a cavity QED
system with a two-level atom which are only dependent on the decay rates of
the system. Since for the parameters used in Fig. 3.8 we have F|\p§i)> > F|\p§°)>’

the EIT state }\Ifgo)> will live for a longer time than the dressed states |\If§i)>.
This explains why the oscillation observed in ¢®(7) is at the probe-cavity
detuning frequency A since the state “IJSO)> is generated at the empty cavity
frequency. Moreover, increasing the control field Rabi frequency (2. increases
the decay rate of the EIT state FN]%O)), which explains the damping of the

g? (1) oscillation in Fig. 3.8 for large values of (...

Another interesting aspect is the fact that for a certain control Rabi frequency
Q., the ¢®(7) can show a non-classical behavior as in Fig. 3.8 (a) where it
clearly violates the Cauchy-Schwartz inequality, given by:

| g®(r) = 1] < | g®(0)— 1] (3.13)

and which holds for classical fields [138, 139]. Values above those allowed
classically are called overshoots, while values below are called undershoots.
Overshoots have been observed in a cavity QED system with two-level atoms
[140], however only for short times, typically below the cavity decay time 1/x
and the atomic decay time 1/7. Figure 3.8 (a) shows that overshoots can be
prolonged in time using a single-atom cavity EIT system for a longer period,
therefore introducing a memory effect on the non-classicality of the g (7).
This also holds for the photon blockade, shown in Fig. 3.8 (b), where ¢®(7)
2

stays below one for 7 > por ol much longer than in the standard cavity QED

case.
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3.5. Conclusion and outlook

To conclude, we theoretically demonstrated that by means of a single three-
level atom in a high-finesse cavity it is possible to optically control the quan-
tum fluctuations of a probe beam via a fruitful combination of single-atom
cavity QED in the strong coupling regime and EIT. By studying the equal-
time photon-photon correlation ¢(®(0), we showed that photon blockade can
be enhanced in a single-atom cavity EIT system compared to the standard
single-atom cavity QED system with a two-level atom. Moreover, we showed
that the photon blockade could be changed optically to a two-photon gateway
only by tuning the control field Rabi frequency €., and this for the same input
field frequency.

The ability to produce sub-Poissonian and super-Poissonian outgoing light
fields for the same Poissonian input field could be used in a network of cascaded
atom-cavity systems, with the goal to control the predicted phase transition
of light into an ordered Mott-insulator-like state of photons [141, 142, 143].
Our analysis of the time-dependent second-order correlation function g (7)
revealed a memory effect on the photon statistics of the emitted fields [144].
This memory is an EIT based memory [145, 146], since it is due to most of
the atomic population being in a superposition between the two ground states.
Furthermore, we showed that a single-atom cavity EIT system in the strong
coupling regime could be used to engineer a plethora of non-classical fields with
a longer lifetime than any decay rate of the system. This feature could open
new possibilities for new quantum information protocols, where the photon
statistics of the emitted field could be preserved by turning off the control and
probe fields simultaneously and turning them back on later in time to recover
the ¢®(7) behavior.

Finally, future avenues include extending our analysis to configurations in
which both the probe and the control fields are quantized, thus, providing
optical control using single photons as gate fields. This might allow the real-
ization of photonic quantum gates in which the interaction between photons
is controlled with single atoms.



4. Experimental setup

In the course of this thesis, the experimental apparatus had to be moved from
one lab to another. After the move, different parts of the setup had to be
rebuilt, these includes the laser system which had to be rebuilt to address the
8TRb isotope instead of the previously used 8°Rb isotope. Also a new trapping
and cooling scheme for the atoms was implemented. The aim of this chapter
is to explain these new developments. Further details of the apparatus can be
found in [109].

4.1. Laser system and cavity parameters

For the realization of the cavity EIT experiment described in the previous
chapter, we decided to use the 8"Rb isotope because of its less complicated
hyperfine structure of the D, line with less Zeeman substates compared to ®Rb
[147, 148]. Two diode lasers, addressing the D, line, are required for preparing
and probing the atoms. We use two other diode lasers at 784 nm and 786
nm to trap atoms inside the cavity. Finally, a diode laser addressing the D,
line of 8"Rb is used in some measurements as a repumper. The operation of
a rubidium magneto-optical trap (MOT) and an atomic fountain requires two
lasers running on two different hyperfine transitions of the D, line of 8"Rb as
shown in Fig. 4.1. A laser beam generated by a commercial tapered amplifier
(TA pro, Toptica) driving the closed F' = 2 — F' = 3 transition is used to
laser-cool the atoms. To compensate for off-resonant scattering to the dark
F = 1 hyperfine ground state, a repumping laser (DL 100 pro, Toptica) on
resonance with the F =1 — F’ = 2 transition of the D, line is applied to the
atoms.

Those two lasers, the TA pro and the DL 100 pro, operate at a wavelength
of 780 nm and are both locked to a commercial frequency comb reference
(Menlo Systems, FC 1500-250) using a beat-lock scheme (linewidth ~ 200 kHz
[149, 150]). The light from the two lasers is frequency-shifted and intensity-
controlled using acousto-optic modulators (AOM) to address each transition of
the 8"Rb D line. In addition to the operating the MOT, the generated beams
are used to probe the atoms inside the cavity either on the closed cycling
transition or on the open FF = 1 — F’ = 2 transition for the cavity EIT
measurements (Fig. 4.1 ¢)). Moreover, some beams are used for repumping
the atom inside the cavity. Further details about the configuration of those
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Figure 4.1.: a) Relevant hyperfine transitions of the Dj line of 8’Rb. The transi-
tions driven by the cooler and the repumper for the operation of the MOT are shown.
b) For cavity QED experiments with two-level atoms, a circularly polarized probe
laser coupled to the cavity drives the closed FF = 2,mp = +2 to F' = 3,mp = +3
transition justifying the two-level approximation of the atom. c¢) For cavity EIT
experiments, the atomic level scheme used is shown. A circularly polarized probe
laser (red color) with a frequency wpyrope is coupled to the cavity and drives the
F =1 — F' = 2 transition of the Dy line of 3’Rb. The control laser (light green),
drives the atom resonantly with the F' = 2 — F’ = 2 transition of the D line of

87Rb in a lin L lin polarization configuration.

two lasers can be found in [151].

Trapping lasers
For trapping the atom and stabilizing the cavity length two other diode lasers
are used. The light provided by a commercial grating stabilized diode laser
(DL 100 pro, Toptica) at 786 nm is split into two parts. The first part passes
through an AOM in double-pass configuration and is superimposed with a fre-
quency comb in a fiber beamsplitter (BS). The beat signal is focused through a
785 nm interference filter onto a fast, AC-coupled photodiode (FDP510, Menlo
systems) and is used for the cavity lock as described in reference [109]. The
second part of the light also passes through an AOM double-pass configuration
and is coupled into a fiber that guides the light to the cavity.
The other laser (TA100, Toptica) runs at 784 nm and serves as a transverse
dipole trap. This laser is not frequency stabilized and delivers a single mode
(spatial and frequency) beam at a power of 0.5 W, which is intensity controlled
using an AOM. The transverse dipole trap is necessary for the implementation
of the new cooling and trapping scheme which was developed in the course of

this thesis and which will be briefly described in the next section.
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Mirror curvatures Ry =20cm, Ry =1 cm
Mirror transmittances Ty = 2.5 £+ 0.5 ppm,
T, = 17.8 £ 0.5 ppm
Mirror losses Ly + Ly =11.0+£ 0.5 ppm
Cavity length 1 =200 pm
Cavity finesse ' =195000 + 2000
Cavity decay rate k/2m =2 MHz
Mode waist wo =19 pm
Coupling constant (F' =2 — F' = 3) | go/2m = 20 MHz
Coupling constant (F =1 — F' =2) | g/ =100 90 — (58,9.2,14.3} MHz

Table 4.1.: Summary of the most important cavity parameters.

Cavity parameters

At the heart of the experimental setup is a high-finesse optical cavity. We
choose the cavity parameters such that the regime of strong atom-cavity cou-
pling is achieved both when the cavity is resonant with the closed cycling F' =
2 — F’ = 3 transition and when it is resonant with the open F' =1 — F' =2
transition. Table 4.1 summarizes the main cavity parameters used for the
different measurements performed in this thesis.

4.2. Cooling and trapping single atoms in the
cavity

In previous experiments with our setup [152, 43|, we relied on feedback cooling
[40, 44, 43] to trap single atoms inside the cavity. The implementation of
feedback cooling requires constant observation of the atomic motion in real
time in order to be able to react to it. This is possible with the usual two-level
cavity QED system, where the probe laser drives a closed cycling transition.
However, for a cavity EIT system one needs to drive an open transition where
the excited state can decay to two possible ground states. Therefore, the
requirement of feedback cooling to constantly “observe” the atom is no longer
fulfilled with an open transition. If the atom decays to the ground state that
is not coupled to the cavity, the light transmitted through the cavity will no
longer carry information about the atom. Moreover, driving an open transition
requires constant repumping of the atom to the right ground state, which
induces large heating rates.

To solve this issue, we developed a new cooling and trapping scheme based
on previous work [153, 154] which is independent on which of the atomic
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Figure 4.2.: Sketch of the experimental setup. A cloud of cold 8Rb atoms is
prepared in a MOT below the cavity. The cloud is later pushed towards the cavity
by means of an atomic fountain. The presence of the atoms is detected by measuring
the transmission of the near-resonant probe laser (red) via 4 single-photon counting
modules (SPCM). A single 8" Rb atom (pink dot) is trapped inside the cavity within
a TEMgy mode of the cavity, at the focus of a standing wave dipole trap (green) at
786 nm with a trap depth of 150 K. A second standing wave dipole trap at 784
nm (violet) and with a trap depth of 1.4 mK, is applied at +45° with respect to the
cavity mode and perpendicular to the cavity axis. This diagonal trap serves as a
second trap for the atom. Another diagonal beam path at —45° is used to apply a
resonant push-out beam (driving the F' = 2 — F’ = 3 transition and not shown) few
micrometers below the cavity mode to make sure that not more than a single atom
is trapped. Finally, a transverse beam path on the same plane of the cavity axis and
perpendicular to it, is used to apply the cooling beam (driving the FF =2 — F' =3
transition), the cooling beam repumper (driving the F = 1 — F’ = 2 transition), the
EIT control field (driving the F' = 2 — F’ = 2 transition) and the open transition
repumper (driving the F = 2 — F’ = 1 transition) all in a lin L lin polarization
configuration. BS, beamsplitter.

transitions is coupled to the cavity mode. This cooling scheme requires two
dipole traps to form a 2 dimensional lattice structure as shown in Fig. 4.2.
The intracavity trap at 786 nm with a trap depth of 150 uK is constantly
turned on. The diagonal trap at 784 nm with a trap depth of about 1.4 mK is
perpendicular to the cavity axis and applied with a 45° angle with respect to
the transverse axis of the cavity. This trap is only turned on upon a detection
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of a transiting atom. A cooling beam with a power of about 4 W, applied
vertically to the cavity axis in a lin L lin polarization configuration, drives
the atom and is red detuned by 40 MHz from the F' = 2 — F’ = 3 atomic
transition of the Dy line. In order to compensate for off-resonant scattering to
the dark F' = 1 hyperfine ground state, a repumping beam originating from a
DL 100 pro laser and above the saturation intensity, drivesthe F =1 — F/ = 2
transition of the D; line along the same beam axis. Trapping times of up to
10 s were within reach after optimization of all cooling parameters. We believe
that the main cooling force which is responsible of the long observed storage
times is a Sisyphus-like cooling force along the diagonal trap axis [153]. A
more detailed description on the implemented cooling scheme can be found in
[155].

4.3. Experimental implementation of cavity EIT

This section gives some details on the experimental realization of the cavity
EIT experiment described theoretically in the previous chapter. Figure 4.1
(c) shows the atomic level scheme which was chosen for observing single-atom
cavity EIT. The cavity was put at a frequency A,./2m = (Weavity — Watom ) /27T
= 16 MHz from the bare atomic transition F' = 1 — F’ = 2 transition of the
D5 line of 8Rb to compensate for the AC-Stark shift due to the dipole traps
for an atom at the center of the cavity mode. For the same reason, the control
field is put 16 MHz to the blue of the FF = 2 — F’' = 2 transition of the D,
line and drives the atom in a lin L lin polarization configuration (Fig. 4.2).
The probe laser is circularly polarized and drives the atom-cavity system with
a driving strength 7.

From the atomic level scheme, we see that our experimental cavity EIT sys-
tem is a multilevel one with three ground states F' = 1, mp = {—1,0, 1}, giving
rise to three different maximal coupling strengths for an atom at the center
of the cavity mode ggLF:{_l’O’l}/QW = {5.8,9.2,14.3} MHz, respectively. Since
the cavity field decay rate x/2m = 2 MHz and the atomic polarization decay
rate v/2m = 3 MHz are much smaller than the coupling to the cavity mode
(90" Lo S ~) fulfilling the strong coupling condition of cavity QED for
all of the three ground states.

The spectral properties of the system are investigated by modifying the probe
frequency and observing the transmitted field intensity versus the probe cavity
detuning Apc = Wprobe — Weawity-

In order to guarantee that a fixed phase relationship exists between the con-
trol laser and the probe laser, which is a prerequisite for EIT, we derive both
fields from the same laser (TA pro, Toptica). As mentioned before, this laser is
locked to a frequency comb and is near resonant to the F' =2 — F’' = 3 tran-
sition. Part of this laser light goes through an AOM and is frequency-shifted
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to the FF = 2 — F’ = 2 transition to generate the control field. Another
part of the light goes through a fiber coupled electro-optic modulator (NIR-
MPX800, Photline technologies) through which we apply a microwave signal,
from a signal generator (Rohde & Schwarz SMA100A), of about 6.8 GHz to
generate sidebands on the light. We send this light through an optical fiber to
the cavity. Since the cavity linewidth is x/2m = 2 MHz, it acts as an efficient
frequency filter for the carrier and for all other sidebands. Only the +1 order,
which is near-resonant with the F = 1 — F’ = 2 transition, can enter the cav-
ity. This is our probe field. For measuring slow light (Chapter 6), we use an
arbitrary waveform generator to send in Gaussian electrical pulses to modify
the amplitude of the microwave signal and generate Gaussian pulses of light.
We characterize the system by performing transmission and correlation mea-
surements using single-photon counting modules (SPCM). As shown in Fig.
4.2, our setup contains four SPCMs. For the correlation measurements, unlike
in a Hanbury Brown and Twiss (HBT) configuration [156] where only two de-
tectors are used with one providing the “start” signal and the other providing
the “stop” signal, we cross-correlate the photon clicks measured on all SPCMs.
Therefore, in our case g (1) = ¢ (—7) for all 7.

Experimental sequence

The measurements performed in the course of this thesis require a well-defined
switching of a number of analog and digital channels in time. These chan-
nels typically control laser frequencies, intensities and magnetic fields. The
experimental sequence is programmed in a home-made Labview program and
is executed by an Adwin real-time system (Adwin Pro, T9). A measurement
sequence starts by loading 8"Rb atoms in a magneto-optical trap similarly to
reference [109]. Depending on the desired number of atoms, we load the MOT
for 1-1.5 s. During the loading phase a current of 4 A runs through the MOT
coils and causes a magnetic field gradient of 10 G/cm along the coil axis. Later,
we start the molasses phase by ramping up the detuning of the cooling light
to 40 MHz within 50 ms and decreasing its power to 6 mW. At the end of the
ramp, the magnetic coils are switched off. After 5 ms of molasses cooling, a
temperature of about 6 uK is reached. The current through the compensa-
tion coils is adjusted to minimize the temperature after the molasses. Later,
the cooled atomic cloud is launched towards the cavity by detuning the upper
MOT beams with respect to the lower beams within 5 ms. For a detuning of
about -3 MHz, the turning point of the trajectory of the atomic cloud is ap-
proximately located on the cavity axis. We detect the presence of atoms in the
cavity by monitoring the transmission of a resonant probe laser through the
cavity. A passing atom induces a drop in the transmission signal of the probe
laser through the cavity which is detected via the SPCMs behind the cavity.
By adjusting the horizontal magnetic field during the acceleration phase, the
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horizontal velocity of the atomic cloud can be fine tuned. During the time of
flight of the atoms to the cavity, we change the current in the compensation
coils to minimize the magnetic field in the science chamber. In order to ensure
that only single atoms are being trapped a “push-out” beam, resonant with
the F = 2 — F’ = 3 transition located few micrometers below the cavity
mode, is constantly turned on at the beginning of the sequence to prevent the
remaining atoms in the cloud from reaching the cavity. After detecting an
atom in the cavity, the measurement sequence can be started. As shown in
Fig. 4.3, the sequence is composed of four intervals which are continuously
repeated in time until the atom is lost from the cavity. The first interval is
the cooling interval in which the diagonal trap at 784 nm is turned on at its
full power (trap depth of 1.4 mK) along with the cooling beam driving the
F =2 — F’ = 3 transition and its repumper driving the FF =1 — F' = 2 as
explained previously. The duration of the cooling interval was varying in our
measurements from 10 ms to 25 ms depending on the experimental parameters.

Cooling & trapping interval: Check interval 1: Probing interval: Check interval 2:
Cool. beam: Probe: |[F = ‘ﬂ)*»ﬂ[F’ = 2)|| Probe: ||F = ‘ﬂ)—>|F’ = 2)||Probe: [F=1)—|F=2)

Repumper:  |[F=1)—>|F'=2) |[Repumper: |F =2)—>|F"= 1) |control field:|F = 2)—>|F" = 2)||IRepumper: |F =2)—|F'=1)

» time
»

10ms-25ms 200 ps - 400 us 100 ps - 500 pus 200 s -400 us

200 s

100 %

Diagonal trap
power (%)

25 %
time

Figure 4.3.: The experimental sequence used for single-atom cavity EIT measure-
ments. The sequence starts with a cooling and trapping interval where the atom is
trapped for further processing, with the diagonal trap being at its full power (trap
depth of 1.4 mK). The probe interval where the atom is in an EIT configuration lies
between two check intervals where we check whether the atom is well localized in
the center of the cavity while being probed. The trap depth is reduced to 340 uK
within 200 us before the first check interval to reduce the atomic stark shift and to
bring the atom on resonance with the cavity. The sequence is continuously repeated
in time as long as the atom is still trapped.

The cooling interval is followed by a check interval where the probe beam,
resonant with the F' =1 — F’ = 2, transition drives the atom-cavity system
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and where the diagonal trap power is reduced linearly to 25 % of its initial
power within 200 us. At the same time a repumper driving the atom on the
F =2 — I’ = 1 transition is applied perpendicular to the cavity axis in a
lin L lin polarization configuration. The check interval is used to check how
well the atom is coupled to the cavity mode and typically lasts 200 us to 400
pus. The lower the transmission of the probe beam through the cavity is, the
better the atom is localized at the center of the cavity mode implying a higher
coupling rate [157]. The first check interval is followed by a probing interval
where the probe beam is kept on and where the repumper resonant with the
F =2 — F’ = 1 transition is exchanged by the control field resonant with
F =2 — F’' = 2 transition to be in an EIT configuration. Finally, another
check interval similarly to the first one is applied after the probing interval,
to ensure that the atom is still well coupled after it has been probed. For
spectroscopy measurements, only atoms reducing the cavity transmission to 7
% of its empty cavity value and below, in both check intervals, were taken into
account. For the second-order correlation measurements atoms reducing the
cavity transmission to 40 % and below were taken into account to have enough
statistics.



5. A cavity EIT-based photon
blockade with memory

In this chapter, we present the experimental realization of the theoretical pro-
posal described in Chapter 3. We start by making sure that the system is
in the strong coupling regime of cavity QED by performing a normal-mode
spectrum on the considered transition. Then, we show different transmission
spectra of the single-atom cavity EIT system showing the optical control of
the eigenstates of the system. Finally, results of the second-order intensity cor-
relation function are presented. They show the optical control of the photon
statistics of the emitted field and a photon blockade with a memory effect.

5.1. Spectroscopy results

5.1.1. Normal-mode spectroscopy of an open transition

The normal-mode splitting constitutes the benchmark of strong coupling in
cavity QED. It is a manifestation of the avoided crossing of the cavity resonance
and the atomic resonance. In the optical regime, first experiments investigat-
ing the normal-mode spectrum were with atoms from a thermal beam passing
through the cavity [158, 18, 159]. Later, it was also measured using a cold
atomic cloud transiting the cavity [160]. Finally, the normal-mode splitting
was shown using single atoms [19, 20]. In the microwave regime, normal-mode
splitting was also shown using artificial atoms [15, 17]. All those experiments
were achieved using two-level atoms were the excited state can only decay to
the ground state which is coupled to the cavity.

In contrast to this, the realization of the single-atom cavity EIT system de-
scribed in Chapter 3 requires the cavity field to be strongly coupled to an
open transition which can decay to two different ground states. Driving an
open transition makes the normal-mode spectroscopy measurement more diffi-
cult to realize, since the constant repumping induces large heating rates which
have to be compensated. We start by performing normal-mode spectroscopy
on the F =1 — F’ = 2 transition of the D, line of 8Rb. This requires con-
stant repumping of the atomic population decaying to the hyperfine ground
state ' = 2 back to the ground state F' = 1. The repumper drives the
F =2 — F’ =1 transition of the D, line of ¥Rb in a lin L lin polarization
configuration. The cavity was put blue with respect to the atomic transition

35
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Figure 5.1.: Normal-mode spectroscopy of the open (F = 1,mp) — (F' =2, mp =
mp + 1) transition for a driving strength of 7 = 0.16 . The observed normal-mode
splitting is about 2g/2m = 2 x 9.5 MHz. The slight asymmetry is caused by a
residual small atom-cavity detuning A,./27. The solid red line is a theoretical fit
based on the steady-state solution of the master equation for each Zeeman sublevel
involved in the considered transition (see text).

Nge/2m = (Weavity — Watom)/2m = 16 MHz, so that the Stark shift induced by
the 786 nm intracavity trap (5 MHz) and the 784 nm diagonal trap (11 MHz)
compensates the initial atom-cavity detuning.

Similar to the cavity EIT experimental sequence shown in Fig. 4.3, the
sequence used to measure the normal-mode spectrum on the open transition
also contains a probe interval which is precedented and followed by a check
interval, making sure that the probed atoms are strongly coupled to the cav-
ity mode. The only difference here is that the control field is replaced by a
repumper driving the F' = 2 — F’ = 1 transition. The repumper ensures
that the atomic population which has decayed to the F' = 2 ground state is
redistributed in all the three Zeeman sublevels of the F' = 1 ground state. As
explained in Chapter 4, these sublevels will result in different maximum cou-
pling strengths for the atom due to the different Clebsch-Gordan coefficients
with gOszfl’O’l}/27r = {5.8,9.2,14.3} MHz depending on where the atomic
population is.

In Fig. 5.1, the measured transmission spectrum (blue circles) with a driving
strength of n = 0.16 & is shown. It shows normal-mode splitting of about
2g/2m = 2 x 9.5 MHz, which we extract from a fit of a Voigt function to
each normal mode. The measured coupling strength confirms that the system
is in the single-atom strong-coupling regime of cavity QED. Since the atom
can move axially and radially during the probing interval, it will see different
polarizations of the repumper depending on its localization with respect to the
repumper polarization pattern. This will lead to a changing atomic population
in the I/ = 1 ground state Zeeman sublevels each time the atom is optically
pumped. Moreover, there will be a nonzero probability for the atom to be
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in a dark state if, for example, the atom is in a point in space where the
repumper is o -polarized and the atomic population is in the F' = 2, mp = 2
or vice versa. A full time-dependent model simulating the real experimental
situation is beyond the scope of this thesis. However, in order to have a
qualitative comparison with theory, we perform a theoretical calculation of
the transmission spectra T'(gy'") based on the steady-state solution of the
master equation for each of the three (F' = 1,mp) — (F' =2, mp = mp + 1)
transitions and their respective coupling strengths g;'*. In the simulation
we take only 80 % of the values of gy'" to account for te atomic motion.
We assume an atom-cavity detuning of A,./27 = +1 MHz for the Zeeman
sublevels F' = 1,mp = +1, due to the differential Stark shift, and use the
same driving strength used in the experiment n = 0.16 k. We then add the
calculated spectra with a weighting coefficient as follows:

T(ge ™= "N = e T(gg™= ") + 2T(gg" ") + 3T (95" =") + caTwe (5.1

where ¢;,7 = 1,2, 3 are the weighting coefficients for each transmission spec-
trum of the three Zeeman sublevels, and ¢, the weighting coefficient of the
empty cavity spectrum Tge, which would be the case if the atom is in a dark
state for the repumper. We fit the data with the weighting coefficients as
the only fit parameters. The solid red line in Fig. 5.1 shows the result with
(c1,c9,c3,¢c4) = (0.3,0.3,0.38,0.02), which agrees pretty well with the mea-
surement.

5.1.2. Single-atom cavity EIT in the strong coupling regime

So far, we have shown in the previous section that we achieved single-atom
strong coupling in cavity QED using an open transition, a prerequisite for ob-
serving strongly coupled single-atom cavity EIT. Next, we demonstrate single-
atom cavity EIT in the strong coupling regime and show how such a system
can be used to optically tune the eigenstates of the system. To achieve this,
we keep all experimental parameters the same as in the normal-mode spec-
troscopy measurement except of the repumper driving the FF = 2 — F' =1
transition, which is replaced by a control field driving the FF = 2 — F' = 2
transition (see Fig. 4.1 (c)).

Figure 5.2 (a) shows the obtained cavity transmission spectra obtained for
different control field Rabi frequencies €2.. Compared to the normal-mode
spectrum shown in Fig. 5.1, we notice the appearance of an EIT trans-
mission window at the empty cavity resonance. This window grows in am-
plitude to almost full transmission as the control field Rabi frequency is in-
creased. Another remark concerns the normal-mode splitting which also grows
as the control field Rabi frequency is enhanced as predicted by theory, with
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Figure 5.2.: (a) Single-atom cavity EIT transmission spectra for different control
field Rabi frequencies (from top to bottom: Q./27 =14 MHz, 10.5 MHz, 7.6 MHz, 5.4
MHz, 2.8 MHz with offsets of 0 %, -10%, -20 %, -30 %, -40% respectively for clarity)
and for a driving strength of = 0.16 . The solid lines are theoretical fits based on
the steady-state solution of the master equation for each Zeeman sublevel involved in
the considered transition. Fit parameters are: (cq,co,c3,¢4) = (0.3,0.3,0.4,0) (see
equation 5.1), Dephasing rate: ~21/2m = 0.2 MHz. (b) The effective atom-cavity
coupling g.rs/2m is enhanced as the control Rabi frequency €)./7 is increased. (c)
The on/off contrast of the single-atom transparency window at the empty cavity
resonance increases with the control Rabi frequency to about 80 % for Q./27 = 14
MHz.
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2g'¢1) = 2,/¢g% + Q2 (see Chapter 3). The theoretical simulations, showing ex-
cellent agreement with the data, are based on a similar model as the one used
for the normal-mode spectroscopy in the previous section. However, here, it is
based on the steady-state solution of the master equation of three single-atom
cavity-EIT systems with three-level atoms with maximum coupling strengths
gémF:fl’O’l}/%r = {5.8,9.2,14.3} MHz corresponding to the three Zeeman sub-
levels FF = 1,mp = {—1,0, 1}. Also, the atomic motion will lead to fluctuations
in the differential Stark shift of the ground states leading to a non negligible
dephasing rate between the ground states estimated at: -, /27 = 0.2 MHz.
Another source of dephasing is the magnetic field fluctuations observed by the
atom.

Figure 5.2 (b) shows how the effective atom-cavity coupling g.ss/2m follows
a square root behavior with Q2 as predicted from theory: g.rr = 1/g* + €
with ¢g/27m = 9.5 MHz the atom-cavity coupling for 2. = 0 (see Fig. 5.1). This
confirms the optical control of the eigenstates of the system. The values of gy
are again determined from a fit of a Voigt function to each of the normal modes
for the respective control field Rabi frequency €2.. The error bars are standard
errors obtained from the peak positions of the Voigt fit. g.ss for Q./27 = 14
MHz is not shown because for such a large value of the control Rabi frequency,
the normal modes tend to vanish, leading to large error values in the fit. The
dependence of the on/off contrast at the empty-cavity resonance on the control
field is shown in Fig. 5.2 (c). It grows to about 80 % for a control field Rabi
frequency of Q./2m = 14 MHz, which is unprecedented for a single emitter
EIT medium [83, 82, 84].

5.2. Photon-photon correlations

In the previous section, we experimentally demonstrated that merging single-
atom cavity QED with EIT in the strong coupling regime enables the optical
control of the transmission of probe photons through the cavity and at the
same time gives a possibility to tune the system resonances in the spectrum
by simply varying the control field power. With these capabilities at hand,
we show next the impact of these new features on the time-dependent second-
order intensity correlation function ¢ (7) of the light transmitted through the
single-atom cavity EIT system.

5.2.1. From photon blockade to two-photon gateway

For the measurements depicted in Fig. 5.3, the probe laser was detuned by
Ap./2m = —14 MHz with respect to the cavity. This is to guarantee that it
is red-detuned with respect to the normal mode even when the atom is at the
Zeeman sublevel with the highest coupling strength gy'" =1 /27 = 14.3 MHz.
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The driving strength was set to n = 0.4 x, which is still in the low driving
regime but high enough to have relevant statistics. The measurements were
performed in a similar way as in Fig. 4.3. Figure 5.3 (a) shows the result for
a control Rabi frequency of €./2m = 4.3 MHz, which results in an effective
coupling strength of about g.sr/2m = 10.5 MHz.
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Figure 5.3.: (a) ¢® () over an interval of | 7 |< 5 s for Q./27 = 4.3 MHz. The
transmitted field exhibits photon anti-bunching and photon blockade. (b) g(®(7)
over an interval of | 7 |[< 5 ps for Q./2m = 12.3 MHz. The transmitted field exhibits
super-Poissonian photon statistics with g(®(0) = (1.4 + 0.1) > 1 due to a higher
probability of photon pair emission. The binning time for both measurements is
At =10 ns.

We see that the second-order correlation function at 7 = 0 is smaller than
its asymptotic values, which is an indication of a photon blockade effect and of
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photon anti-bunching [85, 161, 162, 89, 22]. However, due to the atomic motion
the photon distribution is super-Poissonian (¢®(0) = (1.09 £ 0.06) > 1) and
the asymptotic values are larger than 1 [163, 87, 89, 85, 164]. The values of
g (7) in the times 0.1 us <| 7 |< 2 us are larger than its values at later times
due to the axial motion at a frequency of about fy ~ 125 kHz (see Appendix
A for details).

The observed photon anti-bunching in the ¢®(7) behavior is a result of the
probe laser being near-resonant to the lower normal-mode thereby increasing
the steady-state population in the |\II§_)> state and thus the single photon
emission probability (see Fig. 3.3), while suppressing the steady-state popula-
tion in the ‘\Ilé_) ) state, much like the situation in a standard photon blockade
from a Jaynes-Cummings system [85, 161].

Increasing the control field Rabi frequency to Q./2m = 12.3 MHz leads to an
effective coupling strength of about g.ss/2m = 15.5 MHz. This would bring
the probe laser frequency closer to the second manifold of the cavity EIT lad-
der and therefore increase the steady-state population in the eigenstate |\I’§_)>,
leading to a higher probability of photon pair emission in the transmitted field.
Figure 5.3 (b) shows the resulting photon statistics, where we clearly see pho-
ton bunching with ¢ (0) = (1.4 £0.1) > 1 and ¢®(0) > ¢®?(r) for 7 > 0.
The observed behavior is closely related to the two-photon gateway which was
measured in our group with a standard two-level atom-cavity QED system
88].

A final remark concerning the measurements in Fig. 5.3, is that the steady-
state value of g@(7) for 7 > 2 us in Fig. 5.3 (a), with ¢®(r) ~ 1.15, is
slightly larger than its counterpart in Fig. 5.3 (b), with ¢®(7) ~ 1.05. In
fact by taking a closer look to the spectra shown in Fig. 5.2 (a), we see that
the normal modes amplitude decreases for high control field Rabi frequencies.
Therefore, a moving atom for small €2, values will induce larger intensity fluc-
tuations than a moving atom for larger €2.. This explains why the steady-state
value of ¢g®(7) get closer to 1 for higher €.

5.2.2. A memory effect in the time-dependent second-order
correlation function

We showed in the theoretical Chapter 3, that the time-dependent second-
order correlation function ¢® (1) of a strongly coupled single-atom cavity EIT
system can reveal a memory effect which is due to the long coherence times
provided by EIT. This memory effect can lead to a quantum behavior of ¢(® (1)
which can last longer than the decay rates of the atom-cavity system, I'sy,
I3, k. Figure 5.4 (a) shows a measurement of g (7) over an interval time
of 500 ns with a probe-cavity detuning of A,./2r = —14 MHz and for a
control Rabi frequency of ./2m = 4 MHz. We clearly see that the dynamics
of the average photon number, (afa), given by ¢®(7), is dominated by an
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oscillation at exactly the probe-cavity detuning A,./27. This is a result of
the new EIT field being generated at the empty cavity frequency beating with
the impinging probe laser (see Chapter 3). The new field frequency is given
by: Whew field = Wprobe + Weontrol — (wcontrol + Apc) = Wprobe — Apc = Weavity-
To verify this, we perform a similar measurement at a different probe-cavity
detuning A,.. Figure 5.4 (b) depicts a ¢ (7) measurement with A,./27 = —12
MHz over an interval time of 500 ns. It shows a beating pattern at 12 MHz
confirming our understanding of the origin of this oscillatory behavior.
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Figure 5.4.: (a) ¢ (r) at Ap./2r = —14 MHz and Q./27r = 4 MHz for the
experiment (black solid line) and theory (blue solid line). (b) g®(7) at Ap./27 =
—12 MHz and Q./27 = 4.3 MHz for the experiment (black solid line) and theory (red
solid line). The theoretical fits have been scaled to match the asymptotic value of
¢@(7) in both measurements. The binning time for both measurements is At = 10
ns.

In both measurements we can directly notice that the observed oscillations
have a longer coherence time than the dissipation rate of the system &, I'3; and
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['s. In fact by performing a Fourier transformation of the data, we find a width
of = 0.8 MHz corresponding to a decay time of 200 ns for the observed oscil-
lations. This is more than a factor of 3 larger than the coherence time obtained
with a usual two-level cavity QED system with similar parameters, where the
relaxation time of the correlation function would be 2/(27(k+7)) = 63 ns. The
observed decay time could in principle be enhanced by an order of magnitude
by further cooling the atomic motion and reducing the dephasing between the
ground states of the atom. The solid lines in Fig. 5.4 are theoretical calcula-
tions of the time-dependent second-order correlation function of a single-atom
cavity EIT system with a three-level atom, with a dephasing between the
ground states of y91/2m = 0.2 MHz and where the coupling strength ¢ is a fit
parameter via the weighting coefficients (c1, ¢z, ¢3, ¢4) = (0.3,0.55,0.15,0).
Unlike the results obtained in the numerical simulation in Fig. 3.8, where the
non-classical behavior in the ¢®(7) could be prolonged in time by at least an
order of magnitude beyond the dissipation rates of the system, we are limited
in the experiment by our coupling strength ¢g/27 = 9.5 MHz (see Fig. 5.1).
Enhancing the coupling strength would in principle allow for the observation
of a long lived photon blockade such as the one observed in Fig. 3.8 for (2.
= 4 k. Nevertheless, the observed oscillations in the ¢(®(7) measurements,
confirms that although we are limited by the coupling strength ¢ and by the
atomic motion, the coherence time of EIT is robust enough and lives beyond
the decay times of both the cavity and the atom.

5.2.3. Time-dependent second-order correlations at the EIT
resonance

Further insight into the quantum dynamics of the single-atom cavity EIT sys-
tem can be gained by performing ¢(® (1) measurements at the EIT resonance
for different control field Rabi frequencies.

As mentioned before, since the dephasing rate of our cavity EIT system is non
negligible (721/27 = 0.2 MHz), the EIT window does not reach 100% of the
empty cavity transmission (see Fig. 5.2), and the EIT amplitude will depend
on the strength of the control field [115]. Moreover, the coherence of the EIT
state depends on the dephasing v9;. The higher the dephasing, the faster the
decay of the EIT state. For a fixed dephasing rate, it is mainly the control field
Rabi frequency €2, which determines how fast the system reaches the steady-
state [165]. Larger values of €. will lead the system to reach the steady-state
faster. Fig. 5.5 shows measurements of ¢®)(7) at the EIT resonance for dif-
ferent control field Rabi frequencies with 2. > 79 for all measurements.

A first general remark for the three measurements is the disappearance of the
oscillatory behavior observed in Fig. 5.4 which was due to the new EIT field
beating with the probe field. The reason for this is that in Fig. 5.5, the
probe field frequency is the same as the cavity frequency since we are sitting
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t(us)

Figure 5.5.: ¢(®(7) measurement at the EIT resonance (A,. = 0) with a driv-
ing strength of n = 0.16 k and a control Rabi frequency of (a) 2./2r = 3.3 MHz
(blue, o), (b) Q./2r = 6 MHz (green, o) and (c) Q./2r = 7.5 MHz (pink, o).
The red solid lines are theoretical simulations where the coupling strength g via
(c1,c2,c3,c4) = (0.015,0.96,0.025,0), the atom-cavity detuning A,./27m = 0.5 MHz
and the dephasing 721/27 = 0.2 MHz are the only fit parameters. The only pa-
rameter changed from one fit to the other is the corresponding control field Rabi
frequency €2.. The binning time for all measurements is At = 100 ns.

at the EIT resonance. Moreover, all measurements show a value of ¢®(0) > 1,
whereas we know that EIT induces a coherent field to be transmitted through
the cavity with g (0) = 1 as shown in Chapter 3. This can be explained by
the non negligible dephasing rate v2; which makes the system behave similarly
to a cavity QED system with a two-level atom for short timescales and before
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the control field enters into play.

We remind the reader that in a cavity QED system with a single two-level
atom, ¢ (0) can reach very high values at the empty cavity frequency due
to quantum interference between the probe field and the atomic polarization
[138, 135]. Increasing the control field Rabi frequency 2. while keeping all
other experimental parameters unchanged, brings the value of g(2)(0) closer
to one, as large control field Rabi frequencies compensate for the dephasing
Y21. We can also notice that as €, is increased, g (7) reaches its steady-state
faster. The steady-state value of g®(7) also depends on Q.. It gets closer to
one for the highest value of 2. where the atom becomes more transparent to
the probe field.

5.3. Conclusion and outlook

In conclusion, we experimentally demonstrated single-atom cavity EIT in the
strong coupling regime. We showed that such system can be used to optically
control the photon statistics of the transmitted field through the cavity. For
the first time, we showed that a photon blockade behavior could be changed to
a two-photon gateway behavior just by altering the control field power and this
for the same input field frequency. The memory effect in the ¢(®(7) which we
theoretically predicted in Chapter 3 was experimentally observed, revealing
the creation of a new field inside the cavity. Finally, the measurements of
g® (1) at the EIT resonance show the dynamics of the EIT state. Our results
represent a first step towards the realization of a cavity QED system based
on an N-type level scheme where two atomic transitions are simultaneously
strongly-coupled to two different cavity modes. Such a system, which requires
EIT, would enable the optical control of the ¢'® (7) behavior observed here, at
the few photon level.



6. Slow Light with a Single Atom

So far, we showed in the previous chapters how EIT can be used to optically
control the propagation of a cw laser field through an atom-cavity system.
However, an EIT medium also provides the possibility of reducing the group
velocity of a light pulse traveling through the medium. In this chapter we will
show that by means of our single-atom cavity EIT system, light pulses can be
delayed in time by about 200 ns. After an overview of slow light, we present
briefly some theoretical aspects of slow light based on cavity EIT and later
show the experimental results.

6.1. Overview of slow light

When going through a medium, a wave packet composed of different frequency
components may travel at a different velocity than that of any of the individual
waves making up the packet. Already at the beginning of the 20th century,
Brillouin, in the context of his study of a periodic array of coupled harmonic
oscillators, found solutions for the displacement of each oscillator in the form
of waves propagating along the array [166]. Under the condition that the
individual waves must not all propagate at the same speed, these waves could
be added together to form solutions with a dramatically different propagation
velocity, called group velocity. Since a pulse of light is a wave packet which
is composed of an infinite number of monochromatic component waves, the
group velocity gives the velocity at which light pulses propagate through a
dispersive material. It is given by:

vy = — = Ldn (6.1)
ng ntwg

where c is the speed of light in vacuum, n, is the group index, w the angular
frequency of light and n is the refractive index of the material. One refers to
light as being slow for v, << ¢ or fast for v, > ¢ or v, < 0 [167]. By inspection
of Eq. (6.1), we see that v, may be largely reduced by finding a material with
either a large refractive index n or a large derivative in the refractive index

with respect to the optical frequency.
First experimental observations of slow light were performed in the context
of the effect of self-induced transparency (SIT) in 1967 [168], where optical
pulses were sent through cooled rods of ruby. Later, delayed pulses were mea-
sured in gases [169] and atomic vapors [170, 171] using the same effect. Later

46
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experiments showed slow light based on the dispersion associated with elec-
tromagnetically induced transparency [124, 172, 73, 72, 77, 76, 173]. More
recently, other resonances have been explored, including spectral hole burning
[174], stimulated Raman scattering [175, 176], coherent population oscillations
(177, 178, 179] and stimulated Brillouin scattering [180, 181, 182, 183].

All the aforementioned experiments were performed using highly dense atomic
systems where a significantly large number of atoms interact with the optical
pulse. To our knowledge, there has been no experiment where the delay in-
duced by a single atom on a probe pulse is studied. We show next how our
single-atom cavity EIT system can be used to enhance the dispersive prop-
erties of an individual atom resulting in a non negligible group delay on a
propagating optical pulse.

6.2. Slow light in cavity EIT

The linear susceptibility X(l)(wp) of a medium, describes its optical response
when it is excited by a weak probe beam with an angular frequency w,. The
imaginary part of the susceptibility, Im x(!), determines the absorption of the
exciting probe beam, while the real part, Re x"), determines the refractive
index of the medium. Although considered as being intrinsically a macroscopic
quantity, one may derive the linear susceptibility of a single-atom cavity EIT
system using a semiclassical model [117, 184, 185]:

(1) _ gQ Apc - Aac + Acon + Z./721
_<Apc - Aac + ZF)(Apc - Aac + Acon + Z.f)/21> + ng

X (6.2)

where g is the coupling strength between the atom and the cavity field, A,
is the probe-cavity detuning, A,. is the atom-cavity detuning, (). the control
field Rabi frequency, A.,, is the atom detuning from the control field, I' is the
decay rate of the atomic excited state to the two ground states and ~9; is the
dephasing rate. Figure 6.1 shows the dependence of Im y™ and Re y") on the
probe cavity detuning A, for a single-atom cavity EIT system using a real set
of parameters. We see that, at the EIT resonance, the narrow transparency
window (Im x(!) = 0) is accompanied by a very steep variation in Re x(*). This
results in a large reduction of the group velocity v, of light pulses traveling
through the medium at the EIT resonance compared to vacuum speed of light
¢ where:

C
22
92(76_731)

p)
2(%+F721)2

(6.3)

Vg =
1+

To have an idea about the expected delay in our system, we perform theoret-
ical simulations following the Master equation approach for a time-dependent
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Susceptibility y"
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Probe-cavity detuning Apc/Zn (MH2z)

Figure 6.1.: Linear susceptibility x(!) of a three-level atom coupled with g/2t =5
MHz to the mode of an optical cavity. Solid line: real part of xV); dashed line:
imaginary part of x(!). The control laser Rabi frequency and detuning are /2w =2
MHz and A.,, = 0, respectively. The atom is put on resonance with the cavity:
Age = 0 and the dephasing rate is set to y21 = 0. At A,. =0, both Im ¥ and Re
1) vanish due to EIT.

Hamiltonian. The difference now with respect to the method presented in
Chapter 3 is that the driving field is time dependent 7(¢) and corresponds to
a Gaussian function with a variable width to simulate Gaussian laser pulses.
Figure 6.2 shows numerical simulations for a pulse, containing on average 0.1
photons and of a duration of approximately 2 us FWHM, traveling through
a single-atom cavity EIT system for different values of the coupling strength
g. The delay is defined as being the difference in time between the maximum
of the input Gaussian pulse (empty cavity) and the maximum of the delayed
pulse when the cavity contains a single atom. We notice that increasing g has
mainly two consequences. First, it increases the delay as it reduces the group
velocity v, as can be predicted from Eq. 6.3. Second, it reduces the transmis-
sion intensity of the delayed pulse. This is due to the fact that increasing g,
while keeping the control Rabi frequency constant, reduces the EIT linewidth
(see Eq. 3.12 in Chapter 3). Therefore, the pulse duration would have to be
increased in order to fit spectrally in the EIT window, otherwise only parts
of it will be transmitted. It is also interesting to notice that although for the
highest coupling strength, g = 10 &, the center of the pulse is delayed by about
450 ns, its back end is delayed by more than 1 us. This is due to the increased
EIT coherence time (or memory) for higher coupling strengths. A final remark
is that the delayed pulse cannot be completely outside of the input pulse even
for high values of g. Ideally, an optical delay line would delay optical pulses
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by many pulse widths, however this is not possible when using a single atom
as the delay medium. In fact, when a pulse enters the cavity, part of it will
be instantaneously transmitted without interacting with the atom. This effect
cannot be avoided even for high coupling strengths.
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Figure 6.2.: Numerical simulations of delayed pulses traveling through a single-
atom cavity EIT system for different values of the coupling strength ¢g. The input
pulse contains 0.1 photons on average and has a duration of approximately 2 us
FWHM. Control Rabi frequency 2. = 2 k, dephasing 721 = 0. The dashed lines
indicate the maximum amplitude of the corresponding pulse.

As in the real experiment the dephasing rate 7,; cannot be neglected, we
need to investigate its influence on the delayed pulses. Figure 6.3 shows nu-
merical simulations with similar input pulse duration and photon number as
in Fig. 6.2 and for different values of 75;. We see that an increase in vy
reduces both, the delay time and the transmitted intensity. Since increasing
the dephasing reduces the coherence of the EIT state this is not unexpected.
Moreover, we see that the dephasing has a strong influence on the back end of
the delayed pulse. Even for values as small as 751 = 0.05 £ (magenta curve in
Fig 6.3) the back end of the pulse is almost within the input pulse (black curve)
although the center of the pulse is delayed by about 250 ns. The reason for
this is that since the EIT coherence time decreases for larger 21, the back end
of the pulse will have smaller chances of being delayed. This also explains why
the width of the delayed pulse is always smaller than the reference pulse except
when 9, = 0, where it is larger as explained by linear theory [186, 124], which
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predicts that higher Fourier frequency components are attenuated, causing the
probe pulse to lengthen.
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Figure 6.3.: Numerical simulations of delayed pulses traveling through a single-
atom cavity EIT system for different values of the dephasing rate ;. The input
pulse contains 0.1 photons on average and has a duration of approximately 2 us
FWHM. Control field Rabi frequency €2, = 2 &, coupling strength g = 5 x. The
dashed lines indicate the maximum amplitude of the corresponding pulse.

Next, we investigate the effect of the control field on the delayed pulses.
Keeping the pulse duration and the photon number the same, we show in Fig.
6.4 numerical simulations for delayed pulses with different values of the control
field Rabi frequency {2.. We see that increasing (2. induces a reduction in the
delay as predicted from Eq. 6.3. Moreover, for 2. = 0.5 k, the back end of
the pulse is delayed by several microseconds due to the higher coherence of the
EIT state. Finally, increasing 2. enhances the transmission intensity of the
delayed pulses as it increases the width of the EIT window and therefore more
Fourier components of the pulse can be transmitted.
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Figure 6.4.: Numerical simulations of delayed pulses traveling through a single-
atom cavity EIT system for different values of the control field Rabi frequency 2.
The input pulse contains 0.1 photons on average and has a duration of approximately
2 pus FWHM. Coupling strength g = 5 x, dephasing 721 = 0. The dashed lines
indicate the maximum amplitude of the corresponding pulse.

Figure 6.5 shows a numerical simulation showing the expected delay for our
system when optimizing the experimental parameters and for no dephasing
(721 = 0). The average photon number in the pulse was decreased to 0.001
photons and the control field Rabi frequency to 2. = 0.65 k. The pulse
duration was increased to 10 us FWHM in order to spectrally fit the EIT
window. We see that the delay achieved is approximately 2 us. If we consider
our cavity length of L. = 200 pum, and our cavity finesse of F' = 195000, the
pulse should undergo N = £ round trips in the cavity before leaving it [187].
However, the pulse length is too long (hundreds of meters) compared to the
cavity length L.. To estimate the delay predicted from Eq. 6.3, we consider
that the EIT medium length is L = %Lc as if the EIT medium is composed
of a number of single-atom cavity EIT systems equal to two times the number
of round trips of a pulse inside the cavity. With the experimental parameters
used in Fig. 6.5 and from Eq. 6.3, we get v, ~
of:

167> resulting in a group delay
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Figure 6.5.: A numerical simulations showing a delayed pulse traveling through
a single-atom cavity EIT system for our best experimental parameters. The input
pulse contains 0.001 photons on average and has a duration of 40 us FWHM. Cou-
pling strength g = 4.75 x, dephasing v21 = 0, control field Rabi frequency €2, = 0.65
k. The dashed lines indicate the maximum amplitude of the corresponding pulse.
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which agrees pretty well with the delay observed in the numerical simulation
shown in Fig. 6.5. Therefore, under weak excitation, the semiclassical model
on which Eq. 6.3 is based, can predict the result of the full quantum model

used in the simulation of Fig. 6.5.

6.3. Experimental results

The experiment is performed using the same experimental sequence as the
one used for single-atom cavity EIT transmission spectra measurements (see
Fig. 5.2) presented in Chapter 5, however, here, the probe beam is pulsed
during the probing interval while the control field is constantly turned on. We
use Gaussian light pulses with a duration of approximately 2 us FWHM and
measure the time delay by comparing the time arrival of the pulse when the
cavity is empty with the time arrival of the pulse when the cavity contains a
single atom which is strongly coupled to the cavity mode in EIT configuration.
Figure 6.6 shows the measured light pulses versus time. The time delay of the
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single-atom cavity EIT pulse relative to the reference pulse propagating in the
empty cavity is determined by fitting the detected light pulses with a Gaussian
function. We observe a probe pulse delay of 191 + 5 ns and a transmission of
~ 50% of the incident pulse amplitude. The observed delay corresponds to a
group velocity of approximately v, = ¢ (see Equation 6.4). However, using
our experimental parameters Eq. 6.3 gives v, ~ o;. This is due to the high
photon number per pulse used in the experiment. Similar delay times have
been observed in experiments involving many atoms in high-finesse cavities
[188, 189], whereas here only a single atom is sufficient thanks to its strong
coupling to the cavity mode. We find excellent agreement with theory, shown
as solid lines in Fig. 6.6, when using real experimental parameters and a
dephasing rate of 51 /27 = 0.1 MHz. This is to our knowledge the first time
that slow light is observed with a single emitter as the delaying medium.
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Figure 6.6.: Measurement of slow light with single-atom cavity EIT. A Gaussian
probe pulse containing 0.3 photons on average with a duration of 2 us FWHM, is
delayed by 191 + 5 ns with a transmitted intensity of about 50 % of the the incident
pulse amplitude. The solid lines show theoretical simulations for a three-level atom
in cavity EIT configuration using the following experimental parameters: §2./2r = 2
MHz, g/27 = 9 MHz, Ape = Age = Acon = 0, and 721/27 = 100 kHz. The inset
shows the delayed pulse being rescaled by a factor of 2 for easier visualization of the
group delay.
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The dependence of the delayed pulses on the control field Rabi frequency (2.
is shown in Fig. 6.7 which shows several measurements of delayed pulses with
the same incident pulse duration and intensity and for different values of 2.
We notice that increasing (). increases the transmitted pulse intensity at the
expense of smaller delay times as expected from equation 6.3. The transmission
increases from 30 % for ./27 = 2 MHz to about 70 % for Q./2m = 5.4 MHz
while the delay time is reduced from about 175 ns to 82 ns respectively. We
find a good agreement between data and theory for all measurements. For the
theoretical fits, all experimental parameters were kept constant and only 2.
was varied from one measurement to the other as in the experiment.
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Figure 6.7.: Measurement of slow light with single-atom cavity EIT for different
values of (2.. The impinging Gaussian probe pulse contains (.14 photons on average
with a duration of 2 us FWHM. For Q./2m = 2 MHz (blue data points) the pulse is
delayed by 175+ 8 ns with a transmitted intensity of about 30 %. With Q./27 = 3.4
MHz (red data points) the pulse is delayed by 157+6 ns with a transmitted intensity
of about 50 %. Finally, Q./27 = 5.4 MHz (green data points) induces a delay of
8246 ns with a transmitted intensity of about 70 % The solid lines show theoretical
simulations for a three-level atom in cavity EIT configuration using the following
experimental parameters: g/2m =9 MHz, Ay = Aye = Acon, = 0, and 721 /27 = 160
kHz which were kept constant for all measurements. Only the corresponding control
field Rabi frequency €2, was changed from one measurement to the other to fit the
data.The dashed lines indicate the maximum amplitude of the corresponding pulse.
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6.4. Conclusion and outlook

To conclude, we have shown both, theoretically and experimentally, that an
optical pulse can be delayed using a single atom which is strongly coupled to
a cavity mode in an EIT configuration. We discussed the main parameters
which have a strong influence on the delay time. The observed group delay
depends on the EIT resonance width, which depends mainly on the coupling
strength g, the control field Rabi frequency (2. and the dephasing rate ~o;.
In the experiment, the delay is limited by the large dephasing rate. In the
future, this can be improved by cooling the atomic motion even further and
by optically pumping the atom to the Zeeman sublevel F' = 1, mp = 1 with
the highest coupling strength, before sending the probe pulse.



7. Conclusion and outlook

This thesis reported on the implementation of a strongly-coupled single-atom
cavity EIT system. This system was investigated both theoretically and exper-
imentally. All theoretical predictions were verified in the experiment. The suc-
cessful combination of single-atom cavity QED in the strong-coupling regime
with EIT enabled us to observe different new features. These include a record
EIT on/off transmission contrast for a single emitter of 80 %, an optical tun-
ability of the eigenstates of the system while still conserving the features of
a standard cavity QED system with a two-level atom in the strong coupling
regime, such as photon blockade and two-photon gateway. Furthermore, ana-
lyzing the time-dependent second order correlation function revealed the gen-
eration of a new field at the empty cavity frequency. The new field is an
ElT-related field with a high coherence time. This results in a memory effect
observed in the behavior of the correlation functions which can be used to ex-
tend the nonclassicality of the emitted fields from the cavity beyond the decay
rates of the cavity EIT system. These findings pave the way towards the real-
ization of a cavity QED system with a N-type level scheme where two atomic
transitions are simultaneously strongly-coupled to two different longitudinal
modes of the cavity. If realized, this system can exhibit large interactions be-
tween two optical beams at the level of individual photons [52, 111, 54], opening
up a new regime in optics and in all-optical quantum information processing
[113]. The high nonlinearity which would be provided at low light powers,
where individual photons interact so strongly with one another, could improve
the performance of classical nonlinear devices, enabling fast energy-efficient
optical transistors that avoid Ohmic heating [190, 110], as well as other ap-
plications that rely on the generation and manipulation of non-classical light
fields [191, 192]. Finally, the observed memory in the photon statistics of the
emitted light fields could be used to engineer a quantum memory for nonclas-
sical states [79, 145], or for quantum simulation with a cavity QED system
[193].

In a second experiment, we demonstrated slow light using a single atom in the
cavity as the EIT medium. We have used the fact that the atom is strongly
coupled to the cavity mode to observe pulse delays of up to 200 ns. We saw that
the decoherence of the EIT state, mainly characterized by the dephasing rate
of the ground states, strongly limits the delay we observe in the experiment.
A possible solution to this could be the implementation of a three-dimensional
trapping scheme [194], which should reduce the atomic motion, the main cause
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of dephasing in our measurements. In the future, we could implement a quan-
tum state filter which can be employed to build a deterministic single-photon
source [195]. The basic idea is that the group delay of the probe pulse is made
quantum state dependent, using the fact that the observed group delays will be
photon-number dependent. In such a scheme, the strong coupling of the atoms
to the cavity mode in an EIT configuration achieved here, is a prerequisite.



A. Photon blockade with a
two-level atom

We have shown theoretically in Chapter 3, and experimentally in Chapter 5
that a single-atom cavity EIT system in the strong coupling regime can be
used to achieve photon blockade. However, the standard cavity QED system
with a two-level atom strongly coupled to the cavity mode can also exhibit
photon blockade as shown theoretically in Chapter 2.

To achieve this experimentally, we put our cavity on resonance with the F' =
2. mp = 42 — F = 3,mp = +3 transition of ’Rb. We measure the time-
dependent second-order correlation function ¢(®(7) using the same experimen-
tal sequence as the one shown in Fig. 4.3. However, here, the probe laser is cir-
cularly polarized and is driving the closed F' =2, mp = +2to F ' =3, mp = +3
transition of 3’Rb. Moreover, a laser beam applied perpendicular to the cavity
axis and driving the F' = 1 — F’ = 2 transition serves as a repumper during
the probing interval. In this configuration, a maximum coupling strength of
go/2m = 20 MHz is expected for an atom placed at the center of the cavity
mode, putting the system in the strong coupling regime.
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Figure A.1.: g®®(7) at a probe-cavity detuning of A,./27r = —20 MHz and a driv-

ing strength of n = 0.4 k for the experiment (black solid line) and theory (red solid

line). The fit parameters for the theoretical simulation are the coupling strength:

g/2m = 18 MHz and the atom-cavity detuning: A,./2m = —2 MHz. The binning
time for the measurement is At = 5 ns.
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Figure A.1 shows the experimental result of ¢®(7) for a probe-cavity detun-
ing of A,./2m = —20 MHz. We notice that ¢*(0) = 0.6740.04 is smaller than
the asymptotic value of ¢ (1) of about 1.12 which indicates photon blockade.
Since ¢ (0) < 1, the transmitted field shows sub-Poissonian statistics. More-
over, the vacuum-Rabi oscillation with a period of about 25 ns is clearly visible.
The theoretical simulation is scaled to match the asymptotic value of ¢®(7)
which is larger than 1 due to the atomic motion.

Photon blockade using a strongly coupled cavity QED system with a two-
level atom was already observed in the microwave regime [161], however, in
the optical regime photon blockade was only measured using a multilevel atom
[85]. Moreover, in our measurement of photon blockade, the incident probe
field has the same polarization as the detected field contrary to the experiment
in [85] where the two fields had orthogonal polarizations.
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Figure A.2.: Zoom out of Fig. A.1 up to 20 us. The axial motion of the atom
inside the intracavity trap is clearly visible.

Figure A.2 shows a zoom out of Fig. A.1 up to 20 us. It clearly shows a
modulation of g®(7) at a period of about 4 us. This modulation is due to the
atomic motion along the cavity axis at half the oscillation frequency of ¢(®(7),
i.e. at a frequency of 125 kHz, which is in the same frequency range expected
for the axial oscillation inside the intracavity trap depth of 150 pK used in
the experiment.
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