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Abstract

Testing is one of the most common ways to assess the correctness of software, but also one
of the most effort-consuming activities in software development. System testing, as one type
of testing, is an extraordinary effort driver. Expenses arise while creating, executing and
maintaining test cases, which are the key artifacts in testing. The goal of testing is to execute
a software system in many possible ways to improve our confidence that there are no errors
in the system. This leads to one outstanding characteristic of test cases: The inherently high
commonality in the flow of test steps (the test procedures). However, this commonality often
results in redundant parts of test cases, so called test clones. To understand this phenomenon,
we performed a study analyzing clones in industrial system test suites. We uncovered two
consequences to testing activities: First, clones in tests directly lead to similar test execution.
Since this strongly influences whether test automation pays off, clones should be considered
when making a decision for or against test automation. Second, clones increase maintenance
costs of test artifacts since changes in cloned parts have to be done multiple times.

This thesis addresses these consequences by proposing three ways to reduce effort for
creating, executing, and maintaining system test cases: First, we support test engineers in
choosing between execution modes at hand (even in the presence of clones). We propose
an effort estimation model to balance advantages and disadvantages of test automation and
manual testing. An industrial case study (41 test cases) demonstrates that our approach is
applicable in practice and that the overall effort of system testing can differ strongly between
execution modes. A coarse benefit estimation indicated that, in our case study, an adequate
execution will reduce the overall system testing costs up to ~20 — ~30% (within two years).

Second, we present an constructive approach to make tests easier to execute and maintain.
Test clones often overlap and can be complex to understand which makes it difficult to extract
them. Using grammar inference techniques, we identify how to cut clones into suitable units
for reuse. In two industrial case studies (97 test cases in total), we demonstrate the relevance of
the problem and the effectiveness and applicability of our approach (in 16 out of 18 cases, test
engineers considered our approach useful). In our cases, a coarse benefit estimation showed
that our approach pays off after the test suites are maintained 2 — 3 times. If maintained
more often (5 — 10 times), the overall system testing costs will shrink up to ~10%.

Third, in addition to constructive quality improvements, we introduce Natural Language
Test Smells, an analytic approach to identify quality problems in test cases regarding test
executability and maintainability. We applied our approach to 9 industrial test suites (5,433
test cases in total) and found out that our approach has a precision of 73.8% and uncovered
~80,000 correct findings in total. Test engineers considered 75% of the inspected findings
as relevant enough to fix them either immediately or at next opportunities. In our cases, a
coarse benefit estimation showed, that removing smell findings can reduce the overall system
testing costs up to ~10%.
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Chapter 1

Introduction

Testing is a central activity of quality assurance in software development. The goal is to
find errors as well as to gain confidence that a system works as intended. However, this
confidence has to be paid with a high price: Testing consumes huge parts of the overall
software development effort. In The Art of Software Testing, Myers and Sandler [2004] state
that testing is a major effort factor not only in recent software projects, but ever since:

“In 1979, it was a well-known rule of thumb that in a typical programming project
approximately 50 percent of the elapsed time and more than 50 percent of the total
cost were expended in testing the program or system being developed. Today, a
quarter of the century later, the same is still true.”

Those numbers are supported by earlier work, too. Beizer [1990] estimates the effort for
testing at 50% labor expenses minimum. More recent work confirms the role of testing as
major effort driver: Ramler and Wolfmaier [2006] support the estimation that testing accounts
for at least 50% of project costs. In the year 2000, Harrold [2000] states similar estimations
and furthermore adds that, in some application domains such as avionics systems, testing
expenses are even higher. Blackburn et al. [2004] go one step further by not only supporting
those well-known effort estimations, but also by adding that those estimations are independent
from the experience and development competence of software development companies.

Software Testing

Testing comprises different parts, each takes place at different stages of the development
process and has different goals: Unit testing, for example, verifies that units of source code
are correctly implemented, whereas integration testing checks the interaction of several (not
necessarily all) software units and therefore verifies the implementation of software designs.
In contrast, system testing, tests completely integrated systems as a whole verifying whether
a completely integrated software system corresponds to its functional requirements.
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Focus of this Work:

To make the contributions of this thesis more specific, we make the following restrictions:

System Testing/Functional Testing:

We focus on system testing: Testing conducted on a complete, integrated system to evaluate
if it complies with its specification. Hence, we use the terms test and testing synonymously
for system test and system testing. We focus on tests verifying mostly functional aspects of
systems (called functional testing). In Section 2.1 Functional System Testing, we introduce
terms and definitions of software testing in more detail.

Application Domain:

We focus on testing of interactive systems, such as business information systems. More
specifically, we focus on those types of software systems that can be tested in both ways,
manually as well as using automatic testing techniques. This covers software systems
that are primarily operated by human users having dedicated human-computer interfaces
(e.g., graphical user interfaces) and therefore are also tested using these interfaces. We
explicitly exclude software systems that have primarily technical user interfaces (such as
programming interfaces or web services) since they can only be tested in automated ways.
For the same reason, we also exclude systems having strict timing constraints, such as
real-time systems.

System Testing Effort

In industry, system testing is considered as an extraordinary effort driver. However, little
scientific evidence of the amount of expenses for different types of testing exist. Most published
reports are rather imprecise and report data without going into detail for which test activities
time and money is actually spent.

A survey of the U.S Department of Commerce, for example, shows that the effort spent
on integration and system testing grew from the 1960s and 70s to the 1980s from 10% up to
20% of the overall development costs [Tassey, 2002]. However, that survey has been published
in the year 2002 and has not been updated with new data since. Nor does it explain on what
specific system testing activities effort is spend.

Based on industrial experiences, Ramler and Wolfmaier [2006] give an explanation for
high system testing effort in industry. They state that practitioners often miscalculate the
abilities and efforts of automated system testing:

“Practitioners frequently report disastrous failures in the attempt to reduce costs
by automating software tests, particularly at the level of system testing.”

While performing the case studies of this thesis, we were able to gather some own anecdotal
evidence about testing effort in industry. We got a coarse-grained split-up of development
effort (in terms of project budget) of a business information system of our industry partner
Munich Re (see Section 1.5 Case Study Partners). The software system is 12 years old and
is still actively used and maintained. Testing is performed by engineers of Munich Re and of
external subcontractors. The data we got is reconstructed using internal time tracking and
billing information of the project teams.
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~13.5% Unit and Integration Testing

(Source Code Level)
~14% Functional Regression Testing
(System Level)

Figure 1.1: Testing share of the overall budget of a software project of Munich Re.

In the mentioned project, ~27.5% of the annual project budget is spent on testing the
developed software. Those testing expenses split up into two different types of testing: Ap-
proximately half of the testing effort (~13.5% of the overall project budget) is spent on unit
and integration testing on the source code level. The other half (~14% of the overall project
budget) is spent on functional regression testing on the system level (see Figure 1.1). How-
ever, this data represents just one project of Munich Re. Based on interviews with engineers
of Munich Re, the testing expenses of the mentioned project is on the lower border of what
typical projects of Munich Re spend on testing. In other projects of Munich Re, a larger
share of the project’s budget is spent on testing.

1.1 System Test Cases

To understand how system testing effort arises as well as how to find ways to reduce it, we
focus on the central artifact of system testing, namely (system) test cases. In the following
section, we discuss the activities that are applied to system test cases (system test case life-
cycle). Additionally, we describe one particular characteristic of test cases: Commonality in
test procedures. Finally, we give a preview of the results of our study (Chapter 4 Clones in
Manual System Tests) and illustrate the consequences of commonalities, which increase the
effort for the system test case life-cycle activities.

1.1.1 The System Test Case Life-Cycle

To understand the influence of test cases to testing expenses, we describe how they are used in
system testing. Concretely, we describe the activities that are applied on them while testing
software systems. Test cases, the key artifacts in system testing, undergo a certain life-cycle
of the activities: They are created, executed and maintained (see Figure 1.2).

Activity: Activity: Activity:
Test Creation Test Execution Test Maintenance

Figure 1.2: The system test case life-cycle.
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Test Creation: First, test cases are created. In literature, there is often no clear distinc-
tion between test derivation (identifying test ideas) and test implementation (writing test
artifacts). In the context of this work, we focus on the latter, the transition of abstract to
executable concrete test cases such as automated test scripts or test descriptions used for
manual execution.

Test Execution: Second, tests are executed. This covers the execution of tests either
manually by human testers or automatically by running test scripts. During the actual test
execution, the strengths and weaknesses of the chosen execution techniques pay off.

Test Maintenance: Third, over time, tests are adapted to changed project needs such as
changed testing goals and new or modified functionality of the system under test.

1.1.2 Commonalities in Test Procedures

The goal of testing is to execute a software system extensively in order to find errors. This
leads to one particular characteristic of test cases: The inherently high commonality in the
flow of test steps (their test procedures). In the following, the cause for this characteristic is
explained in more detail by giving some reasons explaining how test commonality originates:

Test Coverage: The creation of test cases is often aligned to test coverage criteria, such
as the execution of all possible (exceptional) cases of the specified functionality. The test
derivation technique equivalence class partitioning [Spillner et al., 2007], for example, aims
at finding relevant classes of test data to create test cases. Boundary-value-analysis [Spillner
et al., 2007], as another example, builds up on these equivalence classes and proposes addi-
tional test cases that test the system’s correct behavior at the boundaries of the equivalence
classes. All these techniques lead to large numbers of test cases, which are very similar but
differ in minor aspects such as their input data, the expected response of the system, or minor
parts of test procedures.

Commonality of Functionality: Another reason for commonality in test procedures might
be the functionality that is tested. Often, functionalities contain parts that occur in several
functions throughout a system, such as handling errors or loading default data records. This
leads to test procedures which will inevitably contain similar parts while actually testing
different functionalities.

Function Dependencies: Similarly to identical parts in functionality, dependencies between
functionalities (such as preconditions or inheritance of functions) also lead to commonality in
test procedures. For example, if a system requires users to authenticate first, all test cases
have to run through the login functionality first to reach their desired functionality.

Example

We briefly illustrate this phenomenon of commonality in test procedure using the example of
an online software shop. Figure 1.3a shows the functionality cart checkout outlined in form
of an activity diagram. Customers can choose between two ways of payment. By credit card
or using a gift card. Furthermore, they can decide whether they want to get the product
shipped by mail or download it immediately.
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Customer Entersw
Credit Card

Customer Enters
Shipping Address

Details

[credit card)]
Customer Selects

Payment Option

|gift card]

Customer Selects
Shipping Option

[download)|

[DVD shipment|

A4

System Shows
Order ID

4

Customer Enters System Shows Syst Sh Customer
Gift Card F Gift Card }7 KA C°§"SH Downloads }7
Number Balance icense Lode Software

(a) The functionality cart checkout outlined as activity diagram.

Credit Card + DVD Shipment
Precondition: Cart contains a product.

1 **¥*Test Cases **¥

2 Card Checkout with Credit Card and DVD Shipment

3 Open Web Shop

4 Search For Product 12345
5 Add Product to Cart
o l—-5 L:}-o —® 6 Checkout cart
7 Select Payment Option creditcard
8 Enter Credit Card Details VIS4, 4263...
9 Select Shipment Option dvd shipment
10 Enter Shipment Address TUM, Munich,
11 Verify Order ID
12
Credit Card + Download 13Card Checkout with Credit Card and Download
Precondition: Cart contains a product. 14 Open Web Shop
15 Search For Product 12345
(—Kw—\ 16 Add Product to Cart
m —p 17 Checkout cart
:}DJD‘O 18 Select Payment Option creditcard
19 Enter Credit Card Details VIS4, 4263...
20 Select Shipment Option online download
21 Verify License Code
22 Verify Download Link
23 Verify Order ID
24
Gift Card + DVD Shipment 25Card Checkout with Gift Card and DVD Shipment
Precondition: Cart contains a product. 26 Open Web Shop
27 Search For Product 12345
(KN—\ 28 Add Product to Cart
29 Checkout cart
30 Select Payment Option giftcard
31 Enter Gift Card Number 123...
32 Verify Remaining Balance
33 Select Shipment Option dvd shipment
34 Enter Shipment Address TUM, Munich,
35 Verify Order ID
36
Gift Card + Download 37Card Checkout with Gift Card and Download
Precondition: Cart contains a product. 38 Open Web Shop
39 Search For Product 12345
40 Add Product to Cart
— 41 Checkout cart
42 Select Payment Option giftcard
43 Enter Gift Card Number 123...

44 Verify Remaining Balance
45 Select Shipment Option
46 Verify License Code

47 Verify Download Link

48 Verify Order ID

online download

(b) Four test cases covering different paths through the cart checkout functionality. The left side shows
the basic idea of each test case on a conceptual level. On the right side, each test case is manifested
in form of an automated test.

Figure 1.3: An example of an online software shop demonstrating commonality in tests.
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Figure 1.3b shows four test cases, each testing a different combination of payment and
shipping option. The left part of the figure outlines the test cases on the conceptual level, by
showing which parts of the functionality each tests runs through. On the right part of the
figure, each conceptual test case is materialized as an automated test case!.

This example shows that test cases contain commonality on both, the conceptual as well
as on the artifact level. On the conceptual level, all four test cases are very alike since
they are testing just different variants of the same functionality. They furthermore have the
same precondition since they all require that a product has been added to the cart before.
We call commonality on this level conceptual commonality. However, in our example, this
commonality has been carried over to the artifact level: The automated tests contain parts
that are the same. We call commonality on this level artifact redundancy or cloning (we
discuss both in Section 2.4).

1.1.3 Consequences of Commonality to the System Test Case Life-Cycle

Based on evidence and observations of practitioners and researchers [Marick, 1999; Persson
and Yilmazturk, 2004; Ramler and Wolfmaier, 2006] as well as on our own experiences and
studies (see Chapter 4 Clones in Manual System Tests), we see that commonality in test
procedures leads to the following consequences, negatively influencing the system test case
life-cycle: First, commonality complicates the decision when to automate tests and when
to rely on manual execution. Second, commonality causes cloning in test artifacts which
hampers executing and maintaining them. In the following, both consequences are explained
in more detail (see Figure 1.4).

Activity: Activity: Activity:
Test Creation Test Execution Test Maintenance

Challenge: Challenge:
Choosing Quality of
Execution Modes Test Artifacts

Figure 1.4: Consequences of commonality to the system test case life-cycle.

Choosing Execution Modes

To execute system tests, two basic execution techniques exist, manual and automated exe-
cution. Both techniques have advantages and disadvantages: In manual test execution, the
initial costs are low, but the variable costs can grow tremendously the more often tests are
executed. Automated test execution relies on test scripts which are expensive to create and
maintain, but promise cheaper and faster test execution. For each test suite, one has to de-
cide when to use either execution technique. We call this decision determining the execution
mode. However, defining execution modes is not a trivial task and involves risks: If they are
chosen inappropriately, testing budgets can be wasted easily. Kaner et al. [2002] state:

!The tests are denoted in a keyword-driven style [Fewster and Graham, 1999] (cf. Section 2.2.2).
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“[...], behind the decision to automate some tests is a cost and benefit analysis.
If you get the analysis wrong, you’ll allocate your resources inappropriately.”

The adequacy of execution modes depends on a variety of information [Dustin et al., 1999;
Fewster and Graham, 1999; Linz and Daigl, 1998; Ramler and Wolfmaier, 2006; Schwaber
and Gilpin, 2005] such as test script and test description development costs, or the expected
changes to the system under test, but also the execution frequency of each part of a test
suite. The latter does not only depend on the number of planned test runs, but also on how
often parts of test scripts are reused among test suites (commonality of the test procedures)
[Greiler et al., 2012; Hauptmann et al., 2012b]. For example, the study presented in Chapter 5
Choosing FExecution Modes revealed that by executing a test suite of 42 test cases once, some
test steps were executed more than 150 times.

In practice, there are often no structured approaches to cope with this variety of infor-
mation. Execution modes are determined based on best practices, experiences from similar
projects, rules of thumb and gut feeling. Although experts make decisions mostly leading
to tolerable results, there are still severe drawbacks: Determining execution modes in an
ad-hoc style may result in solutions that might not be cost-efficient. Furthermore, a once
determined selection of manual and automated tests can hardly be changed when a system
or the development context evolves as it is unclear on what basis the decision was made.

To keep testing efforts low, we need methods and tools to support test engineers in choosing
appropriate execution modes. This evaluation has to cover all relevant types of information
including the commonality throughout test procedures.

Quality of Test Artifacts

In addition to test execution, the creation and maintenance of test artifacts are further ef-
fort drivers. Ramler and Wolfmaier [2006] state that those drivers are often misunderstood
beforehand:

“In most cases, reasons for failed [software] projects include a gross underestima-
tion of the effort required to develop and maintain automated tests.”

To reduce testing effort, test artifacts have to be of high quality. From other areas of
software development, we know that the quality of artifacts strongly influence how expensive
it is to maintain them. The same is true for system tests: If test artifacts are inappropriate
to support execution and maintenance of test cases, testing effort increases.

Redundancy in software artifacts (also known as cloning) is considered as a major quality
factor since it can lead to failures and increased maintenance effort [Juergens et al., 2009].
Due to the nature of testing, test cases often contain redundancy that is caused by conceptual
commonality which has been carried to the artifact level (see Section 1.1.2).

To support the executability and maintainability of tests, we need ways to detect and
eliminate quality defects such as clones in test procedures. Furthermore, we need ways to
perform quality analysis continuously to prevent degradation and to maintain quality over
time.
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1.2 Problem Statement

Summarizing the consequences of commonality, we formulate the following problem statement
which we address in this thesis:

Functional system testing is an effort consuming task in software development. We see
two reasons for this high effort: (1) There are no structured methods to choose between
manual and automated test execution, which leads to execution modes that are not cost-
effective. (2) Poor artifact quality leads to test cases that are inappropriate to be executed
and maintained, which increases testing effort.

1.3 Approach of this Thesis

This section first introduces two basic principles this thesis is based on. Afterwards, we
describe the research methodology of this work.

1.3.1 Key Principles

While addressing the problem statement, we adhere to the following two key principles:

Principle 1: Non-Invasiveness

Based on our experiences, established processes and tools of organizations are hard to change.
Software development and testing processes of companies have often been developed based
on experiences of previous projects and are optimized to fit in existing project settings and
development strategies. Furthermore, tools are often centrally selected and predefined for
whole companies to fit to existing processes and surrounding tool chains. This makes it
difficult to change company-wide standards, despite the existing evidence of other, more
promising solutions.

To circumvent these obstacles, we design our contributions to be as little invasive as
possible. To make them easier adoptable in practice, we try not to interfere with established
processes and existing tools whenever possible. Instead, we complement existing processes and
tools, compensate their disadvantages and support test engineers in performing established
testing activities more efficiently.

Principle 2: Test Cases as Starting Points

Test cases are the key artifacts for all system testing activities and are therefore directly
related to testing effort: They have to be created (mostly) manually by test engineers. They
are key drivers for test execution and therefore determine the effort for test runs. For long
living systems, the number of test cases and the way they are manifested determines the effort
maintenance and adaptation to changed functionality makes.

We address the problem of high system testing effort by taking test cases and the activities
that are related to them as starting points for our contributions. More specifically, we focus
on the system test case life-cycle, namely the activities of test case creation, execution and
maintenance, and aim at supporting test engineers in performing those activities.
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1.3.2 Research Methodology

In this thesis, we apply the industry-as-laboratory approach as suggested by Potts [1993]: Fol-
lowing this approach, “researchers identify problems through close involvement with industrial
projects, and create and evaluate solutions in an almost indivisible research activity”.

Phase 1: Problem Analysis

Following this philosophy, we first gain better understanding of the problem we want to
address. Together with one of our industry partners, we investigate the phenomenon of
commonality in real-world test suites and its impact to system testing effort (see Chapter 4
Clones in Manual System Tests). Performing this initial study closely with companies does
not only lead to a deeper understanding of the problem domain but also helps to ensure, that
the identified challenges are relevant and worth to be addressed (parts of the results have
already been mentioned in Section 1.1.3 Consequences of Commonality to the System Test
Case Life-Cycle).

Phase 2: Addressing the Problem

In the second phase, we pick up the challenges that have been identified in the first phase and
propose three ways to reduce system testing effort (Chapter 5 Choosing Ezecution Modes,
Chapter 6 Test Refactoring Using Grammar Inference, and Chapter 7 Natural Language Test
Smells). Each of the proposed contributions follows our key principles by being as less invasive
as possible to existing processes and tools (principle 1) and by tackling the problem at the
artifact level (principle 2). Having the daily work of test engineers in mind, we develop ways of
reducing testing effort by optimizing and supporting existing testing tasks. Each contribution
is developed closely together with our industry partners. Thereby, we make sure that our
contributions are realistic to implement and apply in practice. We use the close contact to
industry to evaluate our approaches in real-life settings. According to Mcgrath [1995], research
evidence should always try to maximize the following three criteria: Generalizability, precision
and realism. We address those criteria by mixing different research methods: We combined
techniques, such as expert interviews, controlled experiments, and experimental simulation
and applied them together with two companies.

1.4 Contributions

This section summarizes the contributions of this thesis (see Figure 1.5).

Relevance and Understanding: Clones in Manual System Tests

To get a better understanding of commonality in system tests and their influence on the
system test case life-cycle, we present an empirical study analyzing redundancy in manual
system test case documents (so called clones in test artifacts). We performed clone detection
on seven test suites from our industry partners (72 — 1800 manual test cases each test suite).
All test suites contained 43% to 86% recurring text passages, some of which appeared more
than 30 times within a test suite. The study lets us draw the following conclusions:



10 CHAPTER 1. INTRODUCTION

Activity: Activity: Activity:
Test Creation Test Execution Test Maintenance

Phase 1:
. Problem Analysis

Contribution: Challenge: Challenge:
Relevance and Choosing Quality of
Understanding Execution Modes Test Artifacts

Phase 2:
- Addressing the Problem

Contribution:
Analytical
Quality

Contribution:
Constructive
Quality

Contribution:

Optimizing
Execution Modes Assessment of

Test Artifacts

Improvement of
Test Artifacts

Figure 1.5: Contributions of this thesis.

Consequences to Test Execution: The more often a certain part of a test is cloned, the
more often it will be executed and the earlier test automation will pay off. In our case
study, we found large portions of cloned parts indicating that test automation will pay
off here. But we also found many uncloned parts for which automation will not pay
off. This demonstrates the challenge in choosing between manual and automated test
execution.

Consequences to Test Maintenance: Cloning can negatively affect the maintainability
of software artifacts [Juergens et al., 2009]. Since all analyzed test suites were affected
by cloning, it demonstrates the need for methods and tools for quality control.

Optimizing Execution Modes

We propose an effort estimation model that can be used by test engineers to support choosing
execution modes. Our model estimates testing effort in form of abstract costs and is based
on static analysis of the structure of a test suite as well as on expert estimations. Goal of the
model is to compute the estimated total costs for creating, executing and maintaining a given
execution mode. Our model allows test engineers to balance advantages and disadvantages
of execution modes at hand and thereby enables a more solid decision making process. With
this contribution, we address the challenge of choosing execution modes (see Figure 1.5).

To demonstrate the consequences (w.r.t. costs of execution modes), we applied our es-
timation model to an industrial test suite (containing 41 system tests) and compared the
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overall estimated costs of several common execution modes, such as performing all test cases
manual, or performing all test cases automatically, or mixing both execution techniques. The
results of our case study show that the overall estimated efforts differ strongly based on the
chosen execution mode. In our case, costs differed by the factor of four. Although having
the smallest overall costs in some situations, the combination of manual and automated test
execution, if applied in the wrong way, can lead to costs that are far above all other execution
modes. Only a small window exists where this strategy is considerably cheaper than fully
manual or fully automated test suites. This leads to the conclusion that finding an appro-
priate execution mode is a challenging task that, if done wrong, can have time and money
wasting consequences. This underlines the need for a structured way of choosing them.

To understand the benefit of our approach, we perform a coarse benefit estimation. For our
industrial test suite, choosing an adequate execution mode would reduce the overall system
testing costs up to ~20% — ~30% within two years compared to the originally planned pure
manual execution.

Constructive Quality Improvement of Test Artifacts

To support test maintenance, we present an approach to constructively improve the quality
of test cases. The presented approach builds upon the clone findings from our first study.
However, instead of just identifying commonality in test cases, we now support test engineers
in improving the maintainability of tests by removing clones. Using grammar inference tech-
niques, we identify parts of tests that are suitable for extraction to reuse components. Our
approach considers overlapping clones and suggests how to cut them into parts which are
suitable for extraction and thereby leverages reuse mechanisms best. With this contribution,
we address the challenge of poor quality of test artifacts (see Figure 1.5).

We surround our approach by two industrial studies: Each of the studies is applied to
two test suites (97 test cases in total). A pre-study shows that test clones often overlap and
can be complex to understand. Up to 31.7% of all test steps that were affected by cloning
were overlapped by up to five clones at the same time. This makes it challenging to find good
strategies to remove clones by refactorings. A evaluation study reveals that our approach
helps test engineers in refactoring clones to avoid duplicated maintenance in cloned parts. In
16 out of 18 cases, test engineers would implement our refactorings (as is or slightly modified).
Furthermore, our refactorings uncovered further conceptual problems of the test suite leading
to more far-reaching quality improvements of the test suite.

To find out if and when it pays off to remove test clones, we perform a coarse benefit
estimation of our approach: For our two study objects, implementing our refactorings has a
positive benefit if the test suite is subject to maintenance for at least 2 — 3 times. If maintained
more often (5 — 10 times), the overall system testing costs will shrink up to ~10%.

Analytical Quality Assessment of Test Artifacts

In addition to constructive quality improvement methods, we also introduce an analytical
quality assurance method for test artifacts. We identify quality defects in tests w.r.t. their
executability and maintainability, such as redundancy or ambiguity in test procedures. Being
able to uncover quality defects enables improving a test suite’s executability and maintain-
ability and, if applied continuously, helps to maintain both in the long run. We introduce
Natural Language Test Smells, a technique to identify quality defects concerning executabil-
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ity and maintainability of manual tests in natural language. Furthermore, we present tool
support to automatically detect test smells. With this contribution, we address the challenge
of poor quality of test artifacts (see Figure 1.5).

We evaluate our approach in an industrial case study using 9 test suites (5,433 test cases
in total). To demonstrate the quality of our automated smell detection techniques and the
relevance of smell findings, we manually assess smell findings and perform interviews with test
engineers. The study reveals that our smell detection techniques have an average precision
of 73.8% and were able to uncover ~80,000 correct quality findings in total. The interviews
reveal that test engineers consider 75% of the findings relevant enough to fix them either
immediately or at next opportunities.

We perform a coarse benefit estimation to find out if and when the costs for removing smell
findings are paid off. For our 9 study objects, removing smell findings will provide a positive
benefit, if the test suite is executed at least ~40 — ~100 times and is subject to maintenance
for more than 2 — 4 times. Removing smell findings can reduce the overall system testing
costs up to ~10%.

1.5 Case Study Partners

This section gives an overview of the companies that participated in our studies:

Munich Re: Munich Re is one of the world’s leading reinsurance companies and employs
about 43,000 employees throughout the world. For their insurance business, they operate a
variety of individual supporting software systems.

Airbus Defence & Space: Airbus Defence & Space (formally Cassidian, an EADS com-
pany) is a worldwide leader in global security solutions and systems, providing products and
services to civil and military customers around the globe. The systems we analyzed here stem
from ground support systems used, for example, for mission planning.

Both companies are not software producers in the first place, they are neither software vendors
nor is software development part of their main business. However, both develop a variety of
business information systems to support their own core business processes. In many cases,
they employ sub-contractors to develop the software. System tests are used to verify the
correct implementation of the software. Furthermore, system testing is used for regression
testing after feature improvements and bug fixing. Both companies have experience in system
testing for many years.

1.6 Outline

The remainder of this thesis is structured as follows:

Chapter 2 Fundamentals, Terms, and Definitions introduces the terms and concepts
that are used in the following chapters.

Chapter 3 State of the Art presents related work from the area of test execution, effort
estimation modeling and test quality. It summarizes the state of the art and the state of the
practice.
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Chapter 4 Clones in Manual System Tests presents a study on clones in manual sys-
tem tests. This study motivates that finding an appropriate execution mode is a common
problem in software testing and is not limited to certain test suites. Furthermore, it demon-
strates the need for methods and tools to improve the quality of test artifacts.

Chapter 5 Choosing Execution Modes introduces a cost estimation model to estimate
the overall effort for test execution modes. We furthermore present an industrial case study on
consequences of test execution modes. Our study motivates that inappropriate test execution
modes can have tremendous effort wasting consequences.

Chapter 6 Test Refactoring Using Grammar Inference introduces an approach to con-
structively improve the quality of test cases by removing clones from test artifacts. We fur-
thermore present a case study applying our constructive quality improvement approach to
industrial test cases demonstrating its effectiveness and applicability.

Chapter 7 Natural Language Test Smells introduces a technique to identify quality de-
fects concerning executability and maintainability of manual system tests. Furthermore, we
present a case study demonstrating its effectiveness and benefit in industry.

Chapter 8 Summary resumes this thesis by presenting its contributions, their limitations
and directions for future topics.

Previously Published Material

Parts of the contributions presented in this thesis have been published in:

[Hauptmann et al., 2012a] Benedikt Hauptmann, Veronika Bauer, and Maximilian Junker.
Using edge bundle views for clone visualization. Short paper in Proceedings of IWSC"12,
2012, pages 86 — 87. IEEE.

[Hauptmann et al., 2012b] Benedikt Hauptmann, Maximilian Junker, Sebastian Eder, Elmar
Juergens, and Rudolf Vaas. Can clone detection support test comprehension? Full paper
in Proceedings of ICPC"12, 2012, pages 209 — 218. IEEE.

[Hauptmann et al., 2013] Benedikt Hauptmann, Maximilian Junker, Sebastian Eder, Lars
Heinemann, Rudolf Vaas, and Peter Braun. Hunting for smells in natural language
tests. NIER track in Proceedings of ICSE’13, 2013, pages 1217 — 1220. IEEE.

[Hauptmann et al., 2014] Benedikt Hauptmann, Maximilian Junker, Sebastian Eder, Chris-
tian Amann, and Rudolf Vaas. An expert-based cost estimation model for system test
execution. Short paper in Proceedings of ICSSP’14, 2014, pages 159 — 163. ACM.

[Hauptmann et al., 2015] Benedikt Hauptmann, Sebastian Eder, Maximilian Junker, Elmar
Juergens, and Volkmar Woinke. Generating Refactoring Proposals to Remove Clones
from Automated System Tests. Full paper in Proceedings of ICPC’15, 2015, pages 115 —
124. IEEE.






Chapter 2

Fundamentals, Terms, and
Definitions

This chapter introduces the fundamentals of this thesis. The first part introduces terms
and definitions of system testing and integrates this work into common testing terminology.
In the second part of this chapter, different ways of system test execution are introduced.
We furthermore introduce the system testing process this work is based on. The later part
introduces basic concepts and notions of similarity in test cases.

2.1 Functional System Testing

We integrate our perspective on the field of software testing into the terminology of the
IEEE Standard 829 for Software and System Test Documentation [IEEE, 2008], the Interna-
tional Software Testing Qualifications Board (ISTQB)! and its Standard Glossary of Terms
used in Software Testing [International software testing qualifications board, 2011], and the
ISO Standard 29119 Software and Systems Engineering — Software Testing [ISO/IEC/IEEE,
2013a,b].

Our definition of system testing is based on the IEEE Standard 829 defining it as “test-
ing conducted on a complete, integrated system to evaluate the system’s compliance with its
specified requirements” [IEEE, 2008]. We accord with this definition, however, we focus on
system testing verifying mostly functional aspects of systems (called functional system test-
ing). Furthermore, since the definition of IEEE is still vague, we concretize it by clarifying
the test level, the test type, and the tests’ formality:

2.1.1 Test Level — Software Development Activities

Testing is commonly divided into test levels (also called test phases [ISO/IEC/IEEE, 2013al),
which are structured along basic software development activities [International software test-
ing qualifications board, 2011; ISO/IEC/IEEE, 2013a; Pol et al., 2001]. The V-model [Boehm,
1979; Sommerville, 2010] illustrates the relationships of software development activities and
their corresponding testing activities (see Figure 2.1).

"http://www.istgb.org
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‘ Specification % ffffffffffffffffffffffffffffffffffffffffff { System Testing ‘
R /
‘ Architectural Design P ffffffffffffffffffffff + Integration Testing ‘
. /
‘ Detailed Design ‘4{ Unit Testing ‘
R /S
‘ Implementation ‘

Figure 2.1: Development and testing activities illustrated in the V-model [Boehm, 1979;
Sommerville, 2010] (simplified).

In this work, we neither focus on software development activities nor on responsibilities
of certain roles within these activities. Instead, we focus just on how far the system under
test is assembled: Our definition of system testing addresses all tests that are executed on
a complete, integrated system independently from the development life-cycle activity or for
what purpose they are conducted.

Our definition of system testing may also include acceptance testing which “determinefs/
whether or not a system satisfies the acceptance criteria and [...] enable[s] the user [...] to
determine whether or not to accept the system” [IEEE, 1990] as long as it is conducted on a
complete, integrated system.

Furthermore, decoupling the definition of system testing from test levels and hence from
development activities enables its application in development settings in which strict separa-
tions of development activities do not exist, such as agile software development (see [Interna-
tional software testing qualifications board, 2014a).

2.1.2 Test Type — The Objective of Tests

Testing is divided into test types based on test objectives (or quality characteristics
[ISO/IEC/IEEE, 2013al), such as functional test, usability test, portability test, etc. [In-
ternational software testing qualifications board, 2011; ISO/IEC/IEEE, 2013a; Pol et al.,
2001]. System testing is commonly considered as functional testing, which aims at testing
the implementation of “/...] functions and features (described in documents or understood
by the testers) [...]” [International software testing qualifications board, 2011]. According
to this definition, we focus but explicitly do not limit ourselves to functional testing.

Furthermore, we expect functional testing to be applied for both, to verify the correctness
of newly implemented functionality and for regression testing aiming at testing “/.../ a
previously tested program following modification to ensure that defects have not been introduced
or uncovered in unchanged areas of the software, as a result to changes made” [International
software testing qualifications board, 2014b].
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2.1.3 Formality — Formal Testing vs. Informal Testing

Testing is furthermore divided into formal and informal testing: In formal testing (also scripted
testing [ISO/IEC/IEEE, 2013a]) all test cases are “conducted in accordance with test plans
and procedures that have been reviewed and approved by customer, user, or designated level of
management” [IEEE, 1990]. This requires test cases to be specified in form of test case spec-
ifications, which specify test objectives, inputs, test actions, expected results, and execution
preconditions [International software testing qualifications board, 2014b].

On the contrary, informal testing (also called ad hoc testing or exploratory testing) [Inter-
national software testing qualifications board, 2014b; ISO/IEC/IEEE, 2013a] is “simultaneous
learning, test design, and test execution” [Bourque and Fairley, 2014]. This means, no detailed
pre-specified test cases exist [Itkonen and Rautiainen, 2005] but manual testers spontaneously
designs and execute tests.

Following our key principles (see Section 1.3.1 Key Principles), we take test cases and the
activities that are related to them as starting points for our work. Therefore, in the remainder
of this thesis, we focus on formal testing only.

2.2 System Test Execution and Corresponding Artifacts

The contributions presented in this work are based on the concept of separating fundamental
techniques to execute test cases (test execution techniques) and how those techniques are
applied to execute a test suite (test erecution modes). In the following, we introduce both
concepts and the required types of test case representations (artifacts).

2.2.1 Test Execution Techniques

To execute system tests, two fundamentally different test execution techniques exist: manual
and automated test execution.

Manual Execution

In manual execution, tests are performed by humans (the tester). This means that all in-
puts, the analysis of the output as well as the evaluation are performed manually without
any significant tool support. Basis for manual test execution are test descriptions (see next
section). Test descriptions act as manuals that are guiding the tester and describing how to
stimulate the system and how to verify whether the system responds correctly. The specific
information and the level of details that is contained in the test descriptions depends on the
domain knowledge of the manual tester.

Automated Execution

In contrast to manual execution, automated execution refers to performing test cases automat-
ically, without manual interaction. This requires tests to be implemented as autonomously
executable test scripts (see next section). In order to be automatically executable, test scripts
have to be very detailed, containing precise information on how to stimulate the system (e.g.,
by having detailed information of the user interface).
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2.2.2 Test Case Representations

A test case is the primary artifact that drives test execution. It describes how to stimulate a
software system to reach a test objective (e.g., to execute a certain functionality), and how
to verify that the system under test reacts appropriately. The goal of a documented test case
is to make test execution reproducible, deterministic, and plannable (in contrast to ad hoc
testing where manual testers spontaneously design tests along the way while performing it —
see Section 2.1.3 Formality — Formal Testing vs. Informal Testing). We describe test cases
by the following model (see Figure 2.2):

Test Case setup procedure | Action
*
. test procedure
+ precondition " Test Step
+ postcondition
teardown procedure | *
+ test data Check

Figure 2.2: Parts of test cases.

Test Steps: Test steps are commands that describe how to interact with the system under
test. They are commonly divided into actions that are describing how to stimulate the
system under test and checks that describe how to verify whether it responds correctly.

Test Procedures: The main part of a test case is its test procedure, a sequence of test steps
(actions and checks).

Test Data: If necessary, test cases are equipped with test data, which is used as input values
for the software system (in actions) or as reference values to verify the response of the
system under test (in checks). Test data may be embedded in test steps (in manual
test cases, for example, in the text of a test step) or kept as attachments of test cases,
which are referenced in test steps.

Pre-/Postconditions: Test cases may have preconditions and postconditions, which de-
scribe the state of the system (or context of the system) before the test can be per-
formed, respectively after the test finished. If preconditions (or postconditions) are
defined, it is job of the test engineer to make sure that the conditions hold.

Setup/Teardown Procedures: Alternatively, preconditions can be described in form of
setup procedures (prefixes of test procedures), which ensure that all necessary precon-
ditions hold. For example, by bringing the system in a certain state. Those prefixes
of test procedures are also called setup procedures. Accordingly, teardown procedures
describe postfixes of test procedures, for example, to return the system to its original
state.

The aforementioned aspects are parts that exist in almost all test cases. However, their
specific representation in test artifacts strongly depends on the way test cases are executed.
For each execution technique, fundamentally different description techniques for test cases
are required. In the following, we present two specific test case formats: Test descriptions for
manual test execution and test scripts for automated test execution.
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Manual Execution: Test Descriptions

We call test case representations that are used for manual execution Test descriptions: Test
descriptions are the primary artifact for manual test execution (see Section 2.2.1 Test Execu-
tion Techniques). They act as manuals to guide testers step by step through the execution
of a test case. Test descriptions tell the tester how to stimulate the system under test and
how to verify whether it responds correctly. Since test descriptions are meant to be read by
humans, they are often written in natural language or other, for humans easy understandable
notation.

The level of detail of test descriptions may differ and depends on many properties such
as the experience or domain knowledge of the tester. Descriptions of test steps may consist
of just a few keywords indicating the rough idea of a test step (leaving it to the tester to
decide what specifically to do) up to a detailed explanation of what exactly the tester has
to do referencing precise details of the user interface. Checks can also be on different levels
of abstractions: Decisions whether the response of the system under test is correct may be
vague, in form of plausibility checks that are performed by the manual tester, up to very
detailed containing exact values.

Table 2.1: Example: Test description.

Wrong PIN Entered Twice

Step Description Expected Result
Step 1 | Put the ATM card into the card-reader. The ATM asks for the card’s PIN.
Step 2 | Enter the wrong PIN ’1234’. The ATM responds that the PIN you entered

is wrong and that you have only two more at-
tempts left. Afterwards, the ATM asks for the
card’s PIN again.

Step 3 | Enter the wrong PIN ’1234’ again. The ATM responds that the PIN you entered
is the same wrong PIN again and that now you
have only one attempt left. Afterwards, the
ATM asks for the card’s PIN again.

Table 2.1 shows a fictive example of a manual system test for an ATM. Goal of the test
case is to verify whether an ATM grants just three attempts to authenticate with the card’s
PIN, despite the same wrong PIN is used for all attempts. The test procedure is denoted in
a table notation. Each line represents one test step, consisting of two parts. The column step
description tells what to perform with the system under test. On the contrary, the column
expected result describes how to verify the system’s correct response.

In this example, it is expected that the manual tester has sufficient domain knowledge to
be able to operate the ATM. The test steps are just indicating the actions to perform (e.g.,
entering a PIN) without specifying what exact interactions the tester has to do to perform the
action. Furthermore, test data is embedded in the test description which is on different levels
of abstraction: Input values are embedded in the text as precise values (e.g., PIN >1234°)
whereas the expected response of the ATM is described in an abstract way (e.g., The ATM
asks for the card’s PIN).
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Automated Execution: Test Scripts

Test scripts are the primary artifact for automated test execution (see Section 2.2.1 Test Ez-
ecution Techniques). Similarly to test descriptions, test scripts define the individual actions
that have to be performed to execute a test. However, the goal of a test script is to perform a
test case automatically without manual intervention. Therefore, test scripts must automati-
cally interact with the system interface of the system under test and must be able to observe
its reactions. Test scripts are denoted in a machine readable format to be executed directly
or to be interpreted by a testing framework. All information that is necessary to execute a
test case, such as user interface details, have to be available during runtime, while executing
the test script.

Listing 2.1 shows an example of a test script written using the open source testing frame-
work Robot Framework?. The example is taken from the official Robot Framework Demo Test
Suite® and shows a test case testing the login functionality of a demo web application (test
case Valid Login, lines 12 — 18). The Robot Framework test definition language follows a
keyword-driven approach [Fewster and Graham, 1999]. Each test step (lines 13 — 18) is ei-
ther a reference to a keyword (a reuse component for test procedures, e.g., Open Browser To
Login Page at lines 21 — 25) or to a base function of Robot Framework (e.g., Open Browser,
line 22). The example defines reusable test data at the beginning of the test (lines 5 — 9),
which is referenced within the test procedure to parameterize test steps. Furthermore, the
test cases and keywords contain precise values about user interface elements, for example the
technical ids of the text fields for username and password (lines 32 — 36).

2.2.3 Test Execution Modes

We consider a test execution mode as the decision which execution techniques are applied
to execute which parts of a test suite. More concretely, it defines which test cases or test
steps of a test suite are executed manually and which are executed automatically. Execution
modes can range from executing all test cases manually to any combination of manual and
automatic test execution up to fully automated test suites. In semi-automated test execution,
as an example, both execution techniques are mixed even within executing single test cases.
This means that test scripts as well as manual testers execute test cases collaboratively.

In Figure 2.3, we summarize the concepts and relations between execution techniques,
artifact types and execution modes.

2.3 A Generic System Test Process

This section describes a generic system test process as we have seen it in industry. It is
based on our experiences of five years of close cooperation with companies developing and
maintaining business information systems. Although we do not address each activity in
our work, the process shows the big picture describing which system testing activities are
performed and which artifacts are created thereby.

2http://www.robotframework.org
3https://bitbucket.org/robotframework/robotdemo/wiki/Home
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2.3. A GENERIC SYSTEM TEST PROCESS

Listing 2.1: Example test script written using the testing framework Robot Framework.

*kx Settings *kk
Documentation

**%x Variables ***
${SERVER}
${BROWSER}
${DELAY}

${LOGIN URL}
${WELCOME URL}

**xx Test Cases ***

Valid Login
Open Browser To Login Page
Input Username
Input Password
Submit Credentials
Welcome Page Should Be Open
[Teardown]

**x Keywords

Open Browser To Login Page
Open Browser
Maximize Browser Window
Set Selenium Speed
Login Page Should Be Open

Login Page Should Be Open
Title Should Be

Input Username
[Arguments]
Input Text

Input Password
[Arguments]
Input Text

Submit Credentials
Click Button

Welcome Page Should Be Open
Location Should Be
Title Should Be

A test suite with a single test for wvalid login.

localhost: 7272

Firefozx

0

http://${SERVER}/
http://${SERVER} /welcome.html

demo

mode

Close Browser

${LOGIN URL} ${BROWSER}

${DELAY}

Login Page

${username}
username_field ${username’}

${password}
password_field ${password}

login_button

${WELCOME URL}
Welcome Page

21
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defines way of execution Test Execution defines application of
Mode
SN A . . yr
. Test Artifact dictates artifact type Test Execution
Test Suite .
Type Technique
. - A.
consists of Isa Isa
R implements .
. Test requires Manual
Test Case execution of . .
Description Execution
i test case or
consists of v test step
requires Automated
Test Step .
Execution

Figure 2.3: An ontology showing concepts and relations of system test execution.

We aligned our terminology on the fundamental test process and its terminology, which
has been introduced by the International Software Testing Qualifications Board (ISTQB) [In-
ternational software testing qualifications board, 2011], and the dynamic test process defined
in the ISO Standard 29119 [ISO/IEC/IEEE, 2013b]. We build up on terms and definition of
both sources and complement them with concepts that are important for our work. Figure 2.4
gives an overview of our generic system test process. In the following, all steps are described
in detail and we give a running example of all steps:

Test Test Test Test
Analysis Design Implementation Execution

> Test

Test ’ High-Level ’ Low-Level
» Result

Test Case —®|||| Test Case

Focus on Specification Focus on Ezecution
Ezecution Mode Specific

Figure 2.4: The generic system testing process.

2.3.1 Test Analysis

Goal of test analysis is to identify test conditions [International software testing qualifications
board, 2011; ISO/IEC/IEEE, 2013b] created by the test analyst based on analysis of the
system specification. A test condition is a “testable aspect of a component or system, such as
a function, transaction, feature, quality attribute, or structural element identified as a basis
for testing” [ISO/IEC/IEEE, 2013b]. Once test conditions are defined, those parts of the
specification can be identified that are relevant to satisfy the test conditions: Test slices.
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System Specification:
Functionality cart checkout.

Customer Enters
Credit Card
Details

Customer Enters
Shipping Address

[credit card] v |DVD shipment| v
Customer Selects| Customer Selects| System Shows
Payment Option Shipping Option Order ID

[gift card] |download|

Customer

System ShowsH Downloads

Gift Card Gift Card License Code
Software

Customer EntersH System Shows
Number Balance

Test Condition 1: Test Condition 2:
Payment with credit card and DVD shipment. Payment with credit card and download.
Test Slice 1: Test Slice 2:

o@glmgj—m o 1 DJC%O

Figure 2.5: Running example of the generic system test process: Test analysis.

Running Example: Figure 2.5 shows an example of a fictive online shop software (same
as in Section 1.1.2 Commonalities in Test Procedures). The upper part of the figure shows
the specification of the functionality cart checkout in form of an activity diagram: The online
shop allows users to choose from two different payment and two different shipment option.
The middle of the figure shows two test conditions covering different parts of the cart check-
out functionality: Test condition 1 aims at testing the combination of credit card payment
combined with DVD shipment. The second test condition combines credit card payment
with online download of the chosen software. Applying both test conditions to the system
specification will lead to the two test slices indicated at the bottom of the figure.

2.3.2 Test Design

In the next step, the test analyst extends each test slice to high-level test cases [International
software testing qualifications board, 2011] by enriching them with further information such
as test procedures and test data. The goal of high-level test cases is to focus on the opera-
tionalization of test slices and to define the conceptual structure of test cases especially their
test procedures. However, high-level test cases are just outlines of test cases and are still
abstract and lack implementation aspects, which are necessary for test execution.

Remark: Based on our experiences, test conditions and high-level test cases are often just
intermediate artifacts and are not necessarily written down and persisted. In many cases,
high-level test cases are just intermediate artifacts that exist just in the head of test engineers
during test analysis but are not written down in form of (textual) documents.
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Running Example: Figure 2.6 sketches how high-level test cases for our running example
could look like. For both test slices from Figure 2.5, operationalized test procedures have
been outlined in form of abstract actions that have to be performed in order to walk through
the corresponding slices. Additionally, preconditions have been satisfied: Before both test
slices can be verified, at least one product has to be added to the cart of the web shop.

High-Level Test Case 1: Cart Checkout High-Level Test Case 2: Cart Checkout

with Credit Card and DVD Shipment with Credit Card and Online Download
Satisfy precondition: Satisfy precondition:

1. Open application 1. Open application

2. Search for a random product 2. Search for a random product

3. Add product to cart 3. Add product to cart

Test: Test:

. Checkout the cart
. Select credit card as payment option
. Enter credit card details

4. Checkout the cart
5. Select credit card as payment option
6. Enter credit card details

O U

7. Select shipment of DVD as shipping option 7. Select download as shipping option
8. Enter address for shipment 8. Verify the license code
9. Verify that order has been accepted 9. Verify the download link

10. Verify that order has been accepted

Figure 2.6: Running example of the generic system test process: Test design.

2.3.3 Test Implementation

Since high-level test cases just give a coarse outline of the steps that have to be performed
in a test case, they have to be enriched with execution specific information such as user
interface details or concrete test data. Those enriched and executable test cases are called
low-level test cases [International software testing qualifications board, 2011]. At this point, a
decision for a test execution mode has to be made since manual and automated test execution
require different types of low-level test cases (see Section 2.2.2 Test Case Representations):
For manual test execution, test descriptions are created to guide manual testers (see Section
2.2.2). These test descriptions contain instructions for manual testers and form the basis for
manual test execution. For automated test execution, high-level test cases serve as the basis
for test programmers to program test scripts (see Section 2.2.2).

Running Example: Table 2.3 gives an example for low-level test cases for our running
example. In this example, both test cases have been realized as manual test cases in form of
test descriptions (see Section 2.2.2).

2.3.4 Test Execution

The activity of test execution covers the actual test execution by means of running each test
case against the system under test. The concrete proceeding of this activity strongly depends
on the chosen execution mode since each execution technique executes differently and is
based on different types of artifacts: In manual test execution, test cases are performed by
human beings: the manual testers. Test descriptions form the basis for manual execution and
guide the manual tester to execute the test procedures and evaluate the system’s responses
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Table 2.3: Running example of the generic system test process: Test implementation (manual
test descriptions).

Test 1: Cart Checkout with Credit Card and DVD Shipment
Step Description Expected Result
Step 1 Open the webshop application in a | The welcome screen of the web shop is shown.
new web browser. Use the URL
http://test-server/webshop

Step 2 Use the search field to search to search for a | The system shows a list of found products.

random product.

Step 3 Select a random product. The system shows the product details page for
the selected product.

Step 4 Add product to shopping card. The system shows the shopping card contain-
ing the selected product.

Step 5 Trigger the checkout of the shopping cart (use | The system offers different payment options.

the checkout button).

Step 6 Select credit card as payment option. The system requests credit card details.

Step 7 Enter credit card details. Use random credit | The system asks for shipment option.

card number startin with VISA, 4263 ...
Step 8 Select DVD shipment. The system asks for shipping address.
Step 9 Enter random address, e.g., TUM, Munich, | The system confirm, that the order has been
cen received and shows the order ID.
Step 10 | Verify that an order ID is shown (ten-digit and | (nothing to do)
numeric).
Test 2: Cart Checkout with Credit Card and Online Download
Step Description Expected Result
Step 1 Open the webshop application in a | The welcome screen of the web shop is shown.
new web browser. Use the URL
http://test-server/webshop

Step 2 Use the search field to search to search for a | The system shows a list of found products.

random product.

Step 3 Select a random product. The system shows the product details page for
the selected product.

Step 4 Add product to shopping card. The system shows the shopping card contain-
ing the selected product.

Step 5 Trigger the checkout of the shopping cart (use | The system offers different payment options.

the checkout button).

Step 6 Select credit card as payment option. The system requests credit card details.

Step 7 Enter credit card details. Use random credit | The system asks for shipment option.

card number starting with VISA, 4263 ...

Step 8 Select online download as shipping option. The system shows a page listing the download
link, the license key for the selected product,
and the ID of the order.

Step 9 Verify that the download link is shown. -

Step 10 | Verify that the license key is not null. -

Step 11 | Verify that the order 1D is between 0000000000 | —

and 9999999999.
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(see Section 2.2.2). In automated test execution, tests are programmed as autonomously
executable test scripts. Those test scripts stimulate the user interface of the system under
test to process the test procedures. Test scripts run autonomously without intervention by
manual testers (see Section 2.2.2).

2.3.5 Maintaining System Test Artifacts

In long-living systems, requirements will likely change over the system’s life-span. This leads
not only to modifications of the specification and the system under test but also to adaptions of
system tests. Reasons for changes are manifold: If the requirements change, high-level as well
as low-level test cases have to be adapted to be able to verify the changed implementation as
well as to verify that no other functionality has been altered accidentally (regression testing).
But also changes, such as simple modifications of the user interface, might cause adaptions
of low-level or even high-level test cases.

All this is not only leading to repeated test analysis, design, and implementation (including
adaptions of existing tests) but also to repeated test execution. We call this sequence of
test implementation, test execution and test maintenance the system test case life-cycle (see
Section 1.1.1 The System Test Case Life-Cycle).

2.4 Similarity of Test Cases

This section gives an overview of similarity in system testing artifacts. Using a running
example, we explain step by step how similarity arises in test slices and is carried over to
semantical and syntactical similarity in test cases.

2.4.1 Similarity in Test Slices — Commonality of Test Procedures

In the previous section, we presented a running example of an online shop and exemplarily
showed how two test cases are derived for the functionality cart checkout: One test case
shall test the cart checkout functionality with DVD shipment, the other shall test the same
functionality with online download as shipment option. During test analysis, two test slices
have been derived, showing those parts of the specification that are affected. At this stage,
the actual test case documents do not exist since the tests are still on the conceptual level
in form of test slices. Nevertheless, similarity between the future (high-level and low-level)
test cases is already visible: They will execute identical parts of the functionality, which will
result in similar sequences of test steps.

Figure 2.7 shows both test slices of our running example and highlights the overlap between
them (gray highlighted). In this example, the overlap results in a common prefix and suffix
in both paths through the activity diagram.

In the remaining of this work, we call similarity of test cases that origins from overlap
in test slices as commonality of test procedures. With this term, we refer to similarity on
the conceptual level of test cases that is independent from any artifactual representation (see
Figure 2.8).
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Test Slice 1: Cart Checkout with Test Slice 2: Cart Checkout with
Credit Card and DVD Shipment Credit Card and Online Download
H:E?]—\—D%)ID»O .*Dg—\—[:]—“Q F[:]O
A A
e —— Overlap in Test Slices ------------------- 3

Figure 2.7: Example: Overlap in test slices.
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Figure 2.8: Test similarity on the conceptual and artifact level.

2.4.2 Similarity in Test Cases — Semantical Test Clones

Figure 2.9 shows two manual test cases from the running example, which we introduced in the
previous section. The test cases realize the test slices shown in Figure 2.7. Since the first parts
of both test slices are similar (highlighted parts in Figure 2.7), both test cases will execute
similar parts of the functionality. Hence, the beginning of the test case’s test procedures will
be similar too. More specifically, the test steps 1 to 7 and the last test step of both test
cases (see Figure 2.9) describe identical tasks: The description and the expected result guide
testers to perform the same tasks (respectively validations) with the system under tests.

In the remaining of this work, we call sub-sequences of test procedures (test steps or
sequences of test steps), that lead to identical behavior of manual testers respectively test
scripts as semantical test clones*. With this term, we refer to similarity on the artifact level
of test cases (see Figure 2.8).

2.4.3 Similarity in Test Cases — Syntactical Test Clones

When test engineers create test artifacts that have common parts, they often reuse parts of
already existing test cases, for example, by copying and pasting them. This leads to test
procedures that are partly not only semantically but also syntactically similar. Looking at
our running example in Figure 2.9, Step 1 to 7 of both test cases are syntactically identical:
Each test step has exactly the same text within its step description and expected result. On

4For source code, semantical clones are also called simions [Deissenboeck et al., 2012; Juergens et al., 2010b]
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ERRRREREEEEEE Syntactical Test Clone ------------- )

Test 2: Cart Checkout with bredit Card and Online Download
Step Description | Expected Result

Test 1 d Step 1 Open  the  webshop applicationv in a | The welcome screen of the web shop is shown.
- new web  browser. Use the URL
http://test-server/webshop

Step Descr
Step 1 Open Y the
new web

http://test
Step 2 Use the sear|
random pro.

Step 2 Use the search feld to search to search for a | The system shows a list off ound products.
random product.

Step 3 Select a random product. The system shows the product details page for
the selected product.

Step 4 Add product to shopping card. The system shows the shopping card contain-
Step 3 Select a ranc ing the selected product.

Step 5 Trigger the checkout of the shopping cart (use | The system of ers dif erent payment options.
Step4 Add prodics the checkout button ).

Step 6 Select credit card as payment option. The system requests credit card details.

Step 5 Trigger the ¢
the checkout
Step 6 Select credit
Step 7 Enter credit
card number

Step 7 Enter credit card details. Use random credit | The system asks for shipment option.
card number startin with VISA, 4263 ...

Step 11 | Verify that the order ID is between 0000000000

and 9999999999. A
Step 10 | Verify that an order ID is shown (ten-digit and | (nothing to do)
numeric). A
R Semantical Test Clone -----------

Figure 2.9: Example of semantical and syntactical test clones.

the contrary, the last steps of both test cases are semantically identical too, however, both
steps have been phrased differently (their syntactical representation differs).

In the remaining of this work, we call sub-sequences of test procedures (test steps or
sequences of test steps), that are syntactically identical as syntactical test clones. With this
term, we refer to similarity on the artifact level of test cases (see Figure 2.8).

More formally speaking, we define a non-empty sub-sequence sp1 of a test procedure as a
syntactical test clone if another sub-sequence sp2 of any test procedure exists for that a given
similarity predicate syntacticalsimilarity(spl,sp2) — {true, false} is true. However, the
characteristic of the similarity predicate syntacticalsimilarity(spl,sp2) strongly depends on
the description technique that is used: For manual test cases, for example, two sub-sequences
of test procedures might be similar if the natural language text of the test steps is syntactically
identical. For test scripts, for example in keyword-driven style (as the example in Listing 2.1),
two sub-sequences might be similar if they consist of identical sequences of similar keyword-
calls and parameters.

2.4.4 Clone Terminology and Metrics

In the following, we introduce common terminology and metrics that are used in our studies.

Clone Pairs and Clone Classes

We define the terms clone pair and clone class for testing artifacts by adapting the corre-
sponding definitions from the survey of Roy and Cordy [2007]: “A clone pair is a pair of
portions or fragments of artifacts which are identically or similar to each other”. A clone
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class (often called clone group) is “the mazimal set of artifact fragments in which any two of
the fragments form a clone pair”.

Ungapped and Gapped Test Clones

Koschke [2006] and Roy and Cordy [2007] introduce four levels of similarity predicates, which
define similarity on different levels of rigorousness. However, both authors focus on source
code clones. We adapt their idea of hierarchical levels of similarity to system test artifacts
and define two types of test clones: Ungapped test clones and gapped test clones.

Ungapped Test Clones: We define ungapped test clones as identically sub-sequences of test
procedures. However, in our definition, ungapped test clones may differ in formatting
aspects that do not change the semantics of the artifacts. To what extent those parts
differ depends on the language in which the artifacts are written, however, we expect
that the meaning of artifact fragments is not affected by the changes.

For test descriptions in natural language, this may cover sentences, paragraphs or parts
of both that are syntactically identical apart from formatting aspects such as white
spaces or line breaks. For test scripts, this covers test scripts or parts of test scripts
that are syntactically identical apart from aspects that do not influence the semantics
of the test execution, such as different code formatting or added or removed comments.

Gapped Test Clones: We define gapped test clones as ungapped test clones that, addition-
ally, may differ in changed, added, or removed parts of the clone, for example, changed,
added, or removed test steps.

A common phenomena in test artifact is, that (parts of) test cases differ only in test
data, which is embedded in test cases (see Chapter 4 Clones in Manual System Tests for
more information). Using gapped clone detection techniques, those parts can be found.

Clone Metrics

In the following, we introduce common clone metrics that are used in our studies:
Number of Clone Classes: The number of clone classes detected within a set of artifacts.
Size of a Clone Class: The number of clones within a clone class.

Cloned Size: The size of those parts of artifacts that are affected by cloning. The unit of
this metric can be, e.g., number of natural language words, number of text or script
lines, or number of script statements.

Redundancy Free Size: The absolute size of a set of artifacts, in which cloned parts are
counted just once®. Assuming that all clones can be removed perfectly, this metric
indicates the minimal size a set of artifacts could have.

Clone Coverage: The probability that an arbitrarily chosen part of an artifact is affected
by cloning. It is calculated by dividing the artifacts cloned size by its actual size.

Relative Blow-Up: The relative enlargement of a set of artifacts that is caused by cloning.
It is calculated by dividing the actual artifact size by its redundancy free size.

°In code clone detection, this metric is often called redundancy free source statements (RFSS).
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2.5 Summary

This chapter integrated this work into common terms and terminology of system testing. We
introduced the system testing process this work is based on and defined all relevant artifacts of
this process. The later part of this chapter introduced basic concepts and notions of similarity
and cloning in test artifacts.



Chapter 3

State of the Art

In the following sections, we discuss existing approaches that address the same problem as
we do in this thesis, namely, reducing the effort for the system test case life-cycle activities
test creation, test execution, and test maintenance (see Section 1.1.1 The System Test Case
Life-Cycle and Section 1.4 Contributions).

We start with approaches that follow the most obvious way by performing testing activities
automatically and thereby making them more efficient. In Section 3.1 Automating Testing
Activities, we describe the state of the art of automated test derivation and test execution
techniques.

Automated testing techniques have advantages and disadvantages though. In Section 3.2
Balancing Automation in Testing, we present approaches that help balancing the costs and
benefits of automated testing techniques. More specifically, we present the state of the art of
effort estimation techniques, which form the basis for cost-benefit estimations.

However, additional to using automation to perform testing activities more efficiently,
there are also approaches that follow a complementary approach to reduce testing effort,
namely, by identifying and minimizing unnecessary testing tasks. In the third part of this
chapter (Section 3.3 Optimizing Goals of Test Suites), we present the most influential ap-
proaches to optimize and reduce test suites by avoiding unnecessary testing tasks.

Once automated techniques are implemented, and unnecessary tasks have been reduced,
at the end of the day, test cases have to be executed and maintained. In the last part of this
chapter (Section 3.4 Optimizing Representations of Test Suites), we present approaches to
optimize the representation of test artifacts so that they avoid unnecessary additional costs.
We present the concepts of refactorings and smells, which help to reduce unnecessary overhead
while executing and maintaining tests.

3.1 Automating Testing Activities

The following subsections present approaches aiming at making test activities more efficient
by automating them. We distinguish those approaches based on the testing activity that
are automated. Subsection 3.1.1 briefly summarizes approaches that automate the creation
of high-level test cases by applying automated test derivation techniques. Subsection 3.1.2
summarizes approaches and design techniques that automate the execution of test cases.

31
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3.1.1 Automated Test Derivation

Automated test derivation aims at applying techniques to derive test cases, test input data,
or expected test results (output data) automatically. The most common approach is model-
based testing;:

Model-Based Testing

In their book Practical Model-Based Testing, Utting and Legeard [2010] describe model-based
testing as “automation of the design of black-box tests”. It relies on explicit behavior models
in which the intended behavior of the underlying software and its environment is encoded
[Utting et al., 2012]. Common types of models are finite state machines or data-flow graphs.
Using those models, a variety of algorithms exist that derive test procedures as well as input
and output data from those models [Broy et al., 2005; Lotzbeyer and Pretschner, 2000]. The
types of algorithms range from random input data generation up to search-based algorithms
or model-checking approaches [Utting et al., 2012].

Using automated test derivation techniques, large numbers of test cases can be generated
without spending much effort on each individual test case. The main effort is spend on the
creation of the underlying data bases from which the test cases are generated (e.g., behavior
models and coverage criteria). As a consequence, automatically generated test cases will never
be subject to maintenance since they can simply be regenerated whenever the underlying
models change. Using automated test derivation techniques, test maintenance shifts from the
actual test cases to the underlying data bases from which tests are generated.

The goal of automated test derivation approaches is to efficiently derive (abstract) test
cases. The contributions presented in this thesis are aiming at a different goal and do not
change existing test derivation processes. Instead, we are supporting the following testing
activities, such as, creating concrete test cases, as well as executing and maintaining them.
However, we consider our contributions as complementary to existing and established test
derivation processes.

3.1.2 Maintainable Automated Test Execution

Automated test execution aims at applying automated techniques to run test cases without
manual interaction. Thereby, test execution effort can be reduced. However, a big challenge
is to create automated test cases efficiently but also in a way that they are easy to maintain.
Several approaches exist addressing this challenge in different ways:

Capture/Replay

Test scripts form the basis to execute test cases automatically. They consist of sequences
of low-level interactions with a system’s user interface, for example, clicking on buttons or
typing concrete test data into a text field (see Section 2.2.2 Test Case Representations). Cap-
ture/replay tools [Hicinbothom and Zachary, 1993] aim at creating test scripts automatically
by recording all low-level user interface interactions a tester is doing while performing a test
case manually once. Afterwards, the recorded test scripts can be executed automatically as
often as desired. Although this approach allows fast creation of test scripts, it reveals dis-
advantages on the long run: Generated test scripts are poorly maintainable and tend to be
brittle.
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Memon and Soffa [2003] report on a study in which they created a large number of
capture/replay test scripts for two software systems. After switching both systems to newer
releases, 74% of all generated test scripts did not work anymore due to changes in the graphical
user interfaces.

Leotta et al. [2013b] performed experiments comparing creation and maintenance effort
for manually programmed and capture/replay test scripts. They generated test scripts in
both ways for six open-source software systems. Similar to Memon and Soffa [2003], they
used the systems’ release history to simulate the systems’ evolution and reproduce realistic
maintenance activities. The experiments have shown that capture/replay tools speed up test
script development up to 112%. However, up to 51% of maintenance effort could be saved
by programming test scripts manually. Furthermore, it turned out that the break-even point
for creating test scripts manually is reached rather early: After one to three releases, creating
test scripts manually pays off.

Page Object Pattern and Component Abstraction

A common design technique to ease maintenance of test scripts is the page object pattern.
Goal of this pattern is to make test scripts flexible to user interface changes by encapsulating
user interface details using object-oriented programming techniques. The pattern dictates to
program page objects for each dialog of a user interface. Each of those page objects shall
provide services that encapsulate the low-level test script code to interact with user interface
elements. The actual test cases are thus free of low-level script code since they are interacting
just with page objects.

Leotta et al. [2013a] report on a study comparing the impact of the page object pattern to
the maintenance effort of test scripts. For a given web-application, the authors implemented
a test suite twice, with and without applying the page object pattern. Afterwards, both test
suites have been adapted to a newer release of the same software system. The results of the
study imply that the adaption time could be reduced using the page object pattern by the
factor of three.

Chen et al. [2008] enhanced the idea of page objects by introducing component abstraction.
Instead of using page objects only to encapsulate low-level test script code, Chen et al. propose
to use page objects also for higher level application functionality by creating hierarchically
composed service objects. Therefore, not only low-level test script code, but also calls of
object services can be reused.

Keyword-Driven Testing (KWD)

Another design technique for test scripts is keyword-driven testing (KWD) [Fewster and Gra-
ham, 1999]. Goal of this technique is to make test scripts efficient to maintain and ease
creation of test cases.

The fundamental concept of keyword-driven testing is to add an additional level of ab-
straction in automated test cases. Test automation is separated into two parts: (1) A set of
reusable snippets of test scripts. Each snippet is identified by a unique name, the so called
keyword. (2) Test cases which do not contain test script code themselves. Instead, they are
described by sequences of keywords. To execute a keyword-driven test suite, an interpreter
reads each test case and executes the referenced keyword snippets.
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Keyword-driven testing promises to have two major advantages: (1) Since test cases
are free of implementation details, new test cases can be easily created by non-technical
staff. (2) The concept of keywords acts as an explicit reuse mechanism for test script code.
This allows reducing cloning in test scripts and therefore reduce unnecessary duplication of
maintenance effort. However, key challenge of keyword-driven testing is to identify the right
abstraction level for keywords [Fewster and Graham, 1999].

Test Cases as User Stories in Behavior-Driven Development (BDD)

In behavior-driven development (BDD) [North, 2006], a special kind of the software develop-
ment philosophy test-driven development (TDD) [Beck, 2003], early and continuous testing
is used to support short development cycles. Key aspect of behavior-driven development is
to write acceptance test cases in natural language in a similar way as user stories are writ-
ten. North [2006] proposes a semi-structured notation for acceptance test cases in which all
test cases follow a similar structure. He proposes to use a template to construct test cases
containing just three parts: “Given [initial context], when [event occurs], then [ensure some
outcomes]”. To make test cases automatically executable, similar to keyword-driven testing,
there is a test script snippet for each constituent of a test case.

Model-Based System Test Instantiation by Hauptmann and Junker

Hauptmann and Junker [2011] proposed an approach to constructively design test scripts that
are easy to maintain. The presented approach strictly separates test logic from user interface
details: System interfaces are modeled as abstract system models having abstract system
interactions acting as input and output channels to exchange data with the environment.
Consequently, test cases are denoted just as sequences of inputs and outputs using those
abstract system interactions. Additionally, a test suite is equipped with a GUI model in
which information about the user interface is encoded. The GUI model consists of several
sub-models dealing with different aspects of graphical user interfaces, such as navigation
between dialogs, the layout of dialogs or concrete user interface widgets. To execute a test
suite, a virtual machine interprets each test case and uses the information from the GUI
model to concretize abstract system interactions to concrete test script code.

By separating test logic and user interface information, both can be stored in different
locations instead of being spread among both artifacts. Thereby, redundancy in test cases
is avoided. Therefore, changes to test logic and adaptions of GUI design details can be
performed efficiently.

3.1.3 Discussion and Relation to this Thesis

Automated test execution promises to save testing effort by automating the labor intensive
activity of executing test cases. However, automated test scripts are expensive to create
and maintain. Whether automated test execution will pay off depends on a variety of project
specific factors. In Chapter 5 Choosing Execution Modes, we present a effort estimation model
that can be used to find out whether automation will pay off for concrete project settings.
One of the major challenges of automated test execution is to design test scripts in a
way that they are easy to adapt and to maintain. Most existing approaches address this by
dictating certain design patterns to implement maintainability in a constructive way. The
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contributions presented in this thesis follow a fundamentally different approach: We strictly
do not change existing design patterns. Instead, we propose analytical methods to support
creating high quality test artifacts: In Chapter 6 Test Refactoring Using Grammar Inference,
we present an approach that helps test engineers in extracting clones from automated test
cases. Goal of this approach is to enable efficient clone removal and thereby make test cases
easier to maintain. In Chapter 7 Natural Language Test Smells, we present an approach
to identify quality defects in natural language test cases regarding test maintenance and
executability.

3.2 Balancing Automation in Testing

In the following section, existing approaches are presented that support test activities by
applying structured techniques for test planning and effort estimation. These approaches can
be used to balance different testing approaches (e.g., test automation). First, existing effort
and cost estimation approaches for software development in general (Subsection 3.2.1) and
for software testing (Subsection 3.2.2) are discussed. Afterwards, the state of the practice in
choosing test execution modes is presented (Subsection 3.2.3).

3.2.1 Basic Software Effort Estimation Approaches

Several basic approaches exist to estimate overall software development effort: A widely
known approach is the function point analysis (FPA) [Garmus and Herron, 2001], which
measures the amount of business functionality a software system provides to users. Function
points are used as unit of measurement by domain experts to estimate the complexity of each
user requirement. This allows estimating relative differences of implementation effort between
requirements.

Mohagheghi et al. [2005] introduce the use case point analysis (UCP) as an extension of
function point analysis. Similarly to FPA, goal is to predict software development effort in
a top-down way. The main difference to FPA is that UCP is applied on requirements being
written as use cases. UCP is commonly used as part of the rational unified (development)
process (RUP) [Kruchten, 2003] and is applied on specifications using the unified modeling
language (UML) [Rumbaugh et al., 2004].

A conceptually similar method are story points [Cohn, 2004]. Similar to FPA and UCP, an
abstract metric (story points) is used to determine implementation effort. Story points are a
relative measure for user stories, which are commonly used in agile methods. However, story
points are not used to be directly translated to actual effort, such as working hours. They
are mainly used to plan sprints by comparing efforts of future stories against the historical
data in past stories.

Another common approach is the constructive cost model (COCOMO) initially introduced
by Boehm et al. [2000]. COCOMO uses parameters from historic projects and characteristics
from the current project to estimate effort for software projects in form of costs.
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3.2.2 Estimating System Test Effort

Several approaches exist to estimate test effort and costs using techniques very similar to
function point analysis:

Execution Points by Aranha and Borba

Aranha and Borba [2007] propose a technique to estimate execution effort of manual test
specifications similar to the ones specified in Section 2.2.2. Every step within a test suite is
analyzed based on a set of characteristics to obtain its execution complexity. This complexity
is expressed in form of execution points, which are assigned to the test cases. Having the
overall number of execution points of a test suite and historical data or expert estimations of
the effort to execute the whole test suite allows breaking down the overall effort and estimating
execution effort for individual test cases.

Compared to our effort modeling approach (Chapter 5 Choosing Execution Modes), Aranha
and Borba [2007] focus just on test execution and do not take into account efforts for creating
and maintaining test cases. Furthermore, the approach does not allow comparing manual
execution with automated execution or mixes of both techniques.

Similar Tests have Similar Costs by Zhu et al. and Xiaochun et al.

Zhu et al. [2008] and Xiaochun et al. [2008] estimate test execution effort based on the
principle “similar tests have similar costs”. They propose to build up a database storing
historical values about test runs grouped by test execution complexity and the skill levels of
the corresponding testers. Using machine learning algorithms, they predict execution effort
for new test cases.

Similar to Aranha and Borba [2007], Xiaochun et al. [2008]; Zhu et al. [2008] use historical
test execution data to predict execution effort for other tests. However, also this approach
does not consider test creation and maintenance effort.

Adjusted Use Case Points (AUCP) by de Almeida et al.

De Almeida et al. [2009] propose to estimate test effort based on underlying use cases. For
each use case, the authors rank the number of actors of the use cases, the number of scenarios,
as well as each use case’s technical and environmental factors, each, based on a set of ranking
schemes. Having this information, they calculate adjusted use case points (AUCP) for each
use case on which overall testing effort can be predicted. The proposed method predicts
testing effort for a whole test suite including test planning, test design, test execution and
report as whole.

The effort estimation method we propose in Chapter 5 Choosing Ezecution Modes follows a
similar approach, but focusses only on effort that influence the decision for or against execution
modes, namely, expenses for creating test cases, executing them and maintaining them (see
Chapter 1 Introduction). Furthermore, our approach relies on a simplified classification of the
effort of a single test step. Thereby, we expect to achieve easier application.

G-0O Model based Model by Pham and Zhang

The approach of Pham and Zhang [1999] relies on a different type of model. The authors
propose an effort estimation model to determine when to stop testing and to release the
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software instead. The proposed model is based on a Goel-Okumoto NHPP model (G-O model)
as a software function to extrapolate the reliability of a software system. The approach is
based on the idea that the more time is spent on testing, the more errors will be found and
removed which in turn leads to a more reliable software system in terms of risk of failures. The
proposed model considers testing costs, error removal costs and risks of failures, each based
on empirical data of previous experiments and approximated by mathematical functions.

The presented approach considers testing effort on a rather coarse-grained level since it is
just one factor among others. The effort estimation method we are presenting in Chapter 5
Choosing FExecution Modes explicitly focusses on all system test execution life-cycle activities
(see Chapter 1 Introduction).

3.2.3 Choosing Test Execution Modes

Several guidelines and best practices exist to decide how to apply manual and automation
execution beneficially:

Lessons Learned in Software Testing by Kaner et al.

Kaner et al. [2002] agree, that the decision when to rely on manual and when to use automated
test execution should be based on a cost benefit analysis. As a general idea, Kaner et al.
propose to balance test preparation costs, such as test script development or preparation of
manual test cases, with the actual test execution costs which grow linearly with the number
of test runs. However, the authors emphasize the different capabilities of both execution
techniques: Whereas manual testing has its strength in exploratory testing by uncovering
unexpected flaws of the software system, automated test execution has the advantage of
replicable test cases.

We agree on the conceptually different concepts of exploratory testing and formal testing
(see Chapter 2). However, following our key principles (see Section 1.3.1 Key Principles), we
take test cases and the activities that are related to them as starting points for our work.
Therefore, in the remainder of this thesis, we focus on formal testing only. Furthermore,
in our context, we consider both execution techniques as substitutable for formal regression
testing.

Economics of Test Automation by Forrester Research

In the year 2005, Forrester Research published a report on experiences in automated functional
testing tools (Schwaber and Gilpin [2005]). In this report, the authors proclaim to consider
the overall costs for automated test execution as the sum of the costs of the testing tools,
the labor to create and maintain test scripts. The authors furthermore proclaim to automate
tests just if the costs for test automation are smaller compared to the overall costs of manually
executing the same tests similarly often.

We believe that test automation opens up new possibilities in software development which
are difficult to cover in an pure economic comparison. For example, to enable continuous de-
ployment strategy, tests are required to run automatically after each build. Nevertheless,
Schwaber and Gilpin support the general idea of weighing up costs for manual and for auto-
mated test execution in order to support decision making for execution modes. However, the
authors are not proposing a structured process nor a tool (such as a cost model) to support
reasonable and replicable decision making.
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Cost Benefits of Test Automation by Hoffman

Hoffman [1999] reports on experiences introducing test automation in industry. Based on this
report, to introduce test automation successfully, it is important to understand the potential
benefit as well as the costs and risks of test automation before introducing them. Based on the
experience of the authors, realistic expectations are key to success. The authors emphasize
the difference in developing and maintaining automated and manual tests. Both execution
techniques have positive and negative aspects that have to be considered. Hoffman proposes
to consider the return on invest (ROI) to make decisions for or against test automation. The
author divided testing costs into fized automation cost factors and wvariable automation cost
factors. The author furthermore introduces a simple cost model to calculate the ROI in order
to choose manual or automated test execution.

In contrast to our approach, Hoffman [1999] suggests to automate the whole test suites,
while we let the test engineer decide which parts of a test suite to automate and which
additional parameters to take into account.

Opportunity Costs by Ramler and Wolfmaier

Ramler and Wolfmaier [2006] furthermore support that a gross underestimation of develop-
ment and maintenance effort of automated test execution is the reason for failed projects.
However, the authors state that oversimplified cost models as the only decision base for se-
lecting execution modes are not suitable, since often, contextual project information is not
included in the calculation. Instead, they propose to consider opportunity costs in selecting
execution modes. Ramler and Wolfmaier introduce an alternative cost model based on linear
optimization. The presented approach is based on the existence of a fixzed testing budget,
which covers costs for manual and automated testing. Based on the author’s experience,
testing budgets tend to be too small for both, to automate all test cases as well as to execute
all test cases manually. The presented cost model finds the optimal trade-off between manual
and automated test execution with the goal to get the optimal number of executed test cases
from a given testing budget.

In our work, we do not aim at dictating the test engineer what to automate, since the
goal of our approach is to provide a more solid basis for decision-making. Additionally, our
cost modeling approach explicitly supports execution modes in which manual and automated
execution can be mixed beneficially.

3.2.4 Discussion and Relation to this Thesis

Cost-estimation techniques are widely applied for planning and managing software projects.
In the area of testing, many approaches exist to predict the effort of testing or to manage
testing activities. For example, they are used as test-end criteria. However, to choose be-
tween manual or automated test execution, existing approaches focus on guidelines and best
practices. None of them provide methods or tools that can be used by test engineers and
support choosing execution modes.

In Chapter 5, we introduce an approach using cost-estimation techniques to support choos-
ing between manual and automated test execution. We present a cost-model that enables
comparing execution modes and can be used by test engineers as quantitative input to bal-
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ance between different execution modes at hand. Additionally, compared to other approaches,
we focus on all relevant costs of the system life-cycle activities test case creation, execution
and maintenance.

3.3 Optimizing Goals of Test Suites

The following section presents approaches that reduce testing costs by optimizing test suites.
We distinguish between two general approaches: Test suite reduction, aims at shrinking test
suites by removing obsolete test cases. Thereby, test execution and maintenance effort can
be reduced. Another common approach is test suite optimization, which aims at making
test suites more effective by reordering test cases to satisfy test coverage criteria early. Both
approaches share a number of common properties: They automatically transfer a given test
suite in a new, optimized test suite.

Test Suite Reduction with Representative Sets by Harrold et al.

Harrold et al. [1993] and Rothermel et al. [1998] propose a heuristic approach to select a
representative subset of test cases from a test suite that provide the same coverage as the
initial test suite. The basic idea of the presented approach is to remove unnecessary test cases
from the test suite, which are either obsolete or redundant. Harrold et al. consider test cases
as obsolete once the reason for the test case’s inclusion in the test suite has been removed.
On the other side, a test case is considered as redundant if other test cases in the test suite
provide the same coverage of the program. Both definitions are based on the existence of a
test coverage criteria. Concretely, their approach is built on the existence of a set of testing
requirements and on the information which test case satisfies which testing requirements.
Harrold et al. propose a heuristic algorithm to categorize test cases based on their degree of
essentialness and select test cases starting from most essential to least essential.

Test Suite Reduction with Representative Sets by Chen and Lau

Chen and Lau [1998, 1996] propose a technique to find subsets of test cases that are as
powerful as the initial set of tests concerning their ability to satisfy testing requirements.
Similarly to Harrold et al. [1993], their approach is based on the existence of the information
which test case satisfies which testing requirement. They furthermore build up on the idea
of redundancy of test cases by which they refer to test cases having testing objectives that
are already satisfied by other test cases of the test suite. Chen and Lau propose a greedy
strategy to find a subset of test cases that is still able to satisfy the same test requirements as
the initial test suite. Similar to Harrold et al. [1993], this subset is called representative set.
Their approach consists of three steps: First, all test cases of the initial test suite are selected
which are considered as essential, which means, test cases that cannot be replaced by other
test cases. Second, test cases are reconsidered having a 1:1 redundancy relation. Third, a
greedy strategy is used to select test cases that satisfy a maximum number of requirements.
The greedy algorithm follows the strategy of finding a global optimum by a series of local
optima.
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Vector-Based Test Suite Reduction by Yu et al.

Based on Yu et al. [2008], existing test suite reduction approaches are mostly statement-based
and define test case requirements as coverage of statements. Yu et al. present an approach that
reduces test suite by selecting a subset of test cases that are executing the same statements
as the initial test suite. Yu et al. propose a vector-based approach to reduce test suites which
uses statement vectors as basis to define test requirements. Hence, their test suite reduction
approach selects subsets of test cases that are executing the same statement vectors as the
initial test suite would. Yu et al. furthermore report on an empirical study in which they
analyze the effect of test suite reduction techniques on fault localization algorithms.

Reducing and Prioritizing Mutation Testing by Offutt et al.

Offutt et al. [1995] propose test suite reduction and prioritization algorithms for mutation
testing, which is a common technique to measure the ability of a test suite to identify changes
of a software system: Variants of the system under testing are derived automatically, differing
just in minor aspects. Goal of testing is to identify (kill) as many mutations as possible.
Algorithms, such as constraint-based test data generation (CBT), aim at generating test cases
which explicitly address one mutation each. Using such approaches, the number of test cases
is limited to the number of mutants. Offutt et al. propose an approach based on experiments
to identify redundant test cases for test suite reduction. The authors propose to run tests in
different orders with the goal to increase the difference by means of number of killed mutants.
Offutt et al. [1995] furthermore report on an empirical study in which they applied their
approach. In their study, test suites could be reduced by 33% in terms of number of test
cases.

Reducing and Prioritizing MC/DC Test Suites by Jones and Harrold

Jones and Harrold [2003] propose test suite reduction and prioritization algorithms for test
suites targeting at modified condition/decision coverage (MC/DC). Existing test reduction
and prioritization approaches cannot be applied directly for MC/DC test suites. Compared
to conventional testing, the benefit of test cases for a test suite cannot be judged by looking
at individual test cases; other test cases have to be included in this decision too: MC/DC is
a coverage criteria, which analyzes conditions of branches. However, compared to common
branch coverage, MC/DC requires every individual part of a condition to be covered by both
truth values: true and false. Therefore, for each part of a condition, a pair of test cases has
to be known leading to both truth values.

Jones and Harrold propose a test suite reduction and a test suite prioritization algorithm
for test suites following MC/DC coverage. The presented algorithm splits a test suite into
essential and redundant test cases. However, compared to existing approaches, the definition
of essentialness is more complex: a test case is considered as essential if it uniquely covers a
truth value of a covered condition after removing any uncovered MC/DC pairs. To reduce
a test suite, the proposed approach identifies the weakest test case that is not essential (the
test case that contributes the least to the testing requirements), removes it and identifies the
next weakest test case. The algorithm halts so that the modified test suite still covers all test
requirements. To prioritize test cases, the approach recomputes the contribution of test cases
after each test case is selected. However, compared to the test suite reduction algorithm, this
time the strongest test case is selected.
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Effectivity of Test Case Prioritization by Elbaum et al. and Rothermel et al.

Elbaum et al. [2001, 2000] and Rothermel et al. [2001] report on empirical studies in which
they evaluate the effectivity of a variety of test case prioritization strategies. In their study,
the authors evaluate the quality of the analyzed strategy to sort test cases based on their fault
detection rate: The goal is to arrange the order of test cases to reach high fault detection
rates early. Elbaum et al. distinguish between general prioritization approaches, which sort
test cases to reach good results over multiple versions of a software system and wersion-
specific prioritization, which focuses on effective ordering of test cases relative to versions
that contain multiple faults. They furthermore distinguish fine-granular approaches, which
base their prioritization on the level of source code statements and coarse-granular approaches
which operate on the function level. To compare test case prioritization strategies, the authors
introduce the metric average percentage of faults detected (APFD), which ranges from 0 to
100 (higher numbers mean faster fault detection coverage). The metric relates the degree of
fault detection coverage with the degree of test cases necessary to reach that coverage. The
study the authors report on has been performed using the source code and test suites of eight
industrial software systems. The results indicate that both types of strategies, fine-grained
(on statement level) as well as coarse grained (on functional level), were able to improve
the rate of fault detection of test suites. Fine grained strategies tend to be more effective,
however, are more costly to realize.

3.3.1 Discussion and Relation to this Thesis

Test suite reduction and optimization are both common techniques to reduce test execution
and maintenance effort. The basic idea of both approaches is to identify and exploit opti-
mization potential within the test cases’ sequences of test steps. Both approaches result in
test suites in which test cases have been removed or merged.

The contributions presented in this thesis follow a fundamentally different approach by not
trying to change test procedures or the order in which test steps are executed. Following this
fundamental guideline, the contributions of this thesis are not leading to changed behavior
of test suites. Instead, they are improving just the artifact representation of test cases.
Thereby, we expect our contributions to be easier adoptable in practice since they are not
in conflict with surrounding activities such as test derivation. More specifically, in Section
5, we propose an approach to optimize the way test cases are executed without changing
the test procedures themselves. In Section 6 and Section 7, we are aiming at improving test
artifact quality, such as maintainability or executability without changing the order of test
steps during test execution.

3.4 Optimizing Representations of Test Suites

In the following subsections, existing approaches are presented that support test activities by
improving the quality of testing artifacts. Well-known techniques to constructively improve
the quality of software engineering artifacts are refactorings. For example, removing clones
by extracting them to reuse components. Common techniques to identify opportunities to
apply refactorings are bad smells. In the following section, we are discussing foundations and
applications of refactorings and smells in software engineering artifacts in general as well as
on specific test artifacts.
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Origin of Restructuring and Refactoring Software Engineering Artifacts

Chikofsky and Cross [1990] define restructuring as transformation of software engineering arti-
facts from one representation form to another while preserving the same relative abstraction
level. Refactorings furthermore preserve functionality and semantics of artifacts, however,
may lead to improvements of the artifacts’ representation. The term refactoring was orig-
inally introduced by Opdyke [1992] and refers to restructuring on object-oriented artifacts
particularly source code in object-oriented programming languages. The basic idea is to re-
arrange classes, methods and variables to support future modifications [Mens and Tourwe,
2004].

In the context of software maintenance and evolution, both, restructuring and refactoring
ailm at improving the quality of software engineering artifacts to support engineering tasks,
such as, extensions, reuse and understandability [Mens and Tourwe, 2004]. In software reengi-
neering, restructurings and refactorings are used to bring a software system in a new form,
for example, to reimplement a system in a different programming language or a different
programming paradigm [Chikofsky and Cross, 1990; Demeyer et al., 2002; Fanta and Rajlich,
1999).

3.4.1 Refactoring and Smells of Source Code and Unit Tests

Refactorings and smells have initially been applied on source code and soon after been used
to improve programmed unit tests:

Refactoring Source Code based on Bad Code Smells by Fowler

Refactoring is a well-known technique applied in the context of software aging [Parnas, 1994].
In this context, Fowler defines refactoring as “a change made to the internal structure of
software to make it easier to understand and cheaper to modify without changing its observable
behavior” [Fowler, 1999]. In his book Refactoring [Fowler, 1999], he defined 22 refactorings
for Java source code. Fowler furthermore initially introduced the concept of bad smells in
code as an indicator when (and where) to apply refactorings. We define smells in source code
as “certain structures in the code that suggest (sometimes they scream for) the possibility of
refactoring” [Fowler, 1999]. Prominent examples of smells are Duplicated Code and Long
Methods.

The definition of smells clearly distinguishes smells from defects, since defects cannot be
removed by performing semantic preserving refactorings. Therefore, smells indicate internal
quality problems of the source code such as maintainability, understandability or reusability.
Furthermore, smells are not considered as absolute accurate but are treated as indications for
quality problems. They are always subject to evaluation by experts.

Refactoring Unit Tests using Bad Test Code Smells by van Deursen et al.

Unit testing is one of the basic concepts of extreme programming (XP) [Beck, 1999]. The XP
process dictates to write unit test cases for each piece of application code that is produced.
In XP, unit tests are not only used to verify the source code’s correct behavior but also to
document the application by giving usage examples [Beck, 2000]. This leads to a huge number
of unit test cases, which have to be maintained when the system under test evolves.



3.4. OPTIMIZING REPRESENTATIONS OF TEST SUITES 43

Van Deursen et al. [2001] state, that refactoring test code differs from refactoring applica-
tion code since unit test code has a distinct set of bad code smells that differs to application
code. Furthermore, existing refactorings are not sufficient to remove those smells. Conse-
quently, van Deursen et al. introduce bad [unit] test code smells, a set of 11 bad code smells
that are specific for unit test code. The smells cover quality aspects that are specific to au-
tomated and frequently executed unit test cases, such as, test resource handling or correct
usage of test assertions. An example is the smell general fixture that identifies test cases
that erroneously use the same setup methods (often referred to as test fizture) for the wrong
reasons, for example, just because it is located in the same unit test class. For each of the
smells, van Deursen et al. either reference an existing general purpose refactoring of Fowler
[1999] or propose an individual unit test code specific refactoring. In overall, van Deursen
et al. present 6 test refactorings for unit test code. Each of the introduced refactorings aims
at improving the understandability and maintainability of unit test code.

The Test Automation Manifesto by Meszaros et al.

In their paper The Test Automation Manifesto [Meszaros et al., 2003], Meszaros et al. build
up on bad unit test code smells introduced by van Deursen et al. [2001]. The authors classify
each smell of van Deursen et al. into the two categories: Code smells, which are based on
the source code of the unit test and behavior smells, which appear when executing the tests.
The first class is similar to the original code smells by Fowler [1999] and represents parts of
the unit tests’ source code that might affect maintenance costs, such as the smell hard coded
test data or conditional test logic. The latter class stands for smells that have negative effect
while running tests, such as fragile tests or interdependent tests. Later, in his book xUnit test
pattern [Meszaros, 2007], Meszaros furthermore adds the category of project smells, which
indicate the state of the overall health of a project.

Meszaros et al. proclaim the test automation manifesto, which defines 12 properties each
automated unit test should fulfill, such as conciseness, robustness or traceability. The authors
furthermore state that smells may help to improve the quality of unit tests that already
exist, however, do not help to guide creating new test cases having high quality. Therefore,
the authors introduce 22 rules for test automaters to create high quality artifacts from the
beginning. The rules are separated into 4 categories of patterns covering aspects such as
readability, robustness, or reuse.

3.4.2 Refactoring and Smells of System Tests

The concept of bad smells has also been transferred to other types of artifacts such as system
test cases:

Refactoring TTCN-3 Tests using Metrics by Zeiss et al. and Neukirchen et al.

Zeiss et al. [2006] and Neukirchen et al. [2008] propose refactorings to improve the quality of
test suites denoted in the testing and test control notation (TTCN-3) [ETSI, 5 06; Grabowski
et al., 2003], a programming language for test scripts which is primarily used in the domain of
communication systems. In their papers, the authors introduce 48 refactorings to improving
the readability, usability, and maintainability of TTCN-3 test cases. 28 of which are adapted
from Fowlers initial refactorings for Java source code. Another 21 refactorings are specific
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to TTCN-3 language characteristics. Fach of the proposed refactorings focuses either on the
test’s behavior, test data descriptions or on the improvement of the overall structure of the
test suite.

Similar to Fowler [1999], Zeiss et al. and Neukirchen et al. also define measures to identify
opportunities for refactorings. However, instead of defining a smell for each refactoring, code
metrics are used to find out where to apply refactorings. Metrics are divided into size metrics,
such as the number of operators or operands and structural metrics, such as the McCabe
complexity [Watson et al., 1996] and object-oriented code metrics. In addition to the metrics
and the refactorings, Zeiss et al. and Neukirchen et al. report on an implementation of the
tool TTCN-8 refactoring and metrics (TRez), which automatically calculates the presented
metrics and provides automatic refactoring features.

Similar to our approaches (Chapter 6 Test Refactoring Using Grammar Inference and
Chapter 7 Natural Language Test Smells), Zeiss et al. and Neukirchen et al. do not suggest
to perform refactorings automatically and unattended. However, they propose to use both in
a semi-automated approach, which guides testers to perform refactorings.

Refactoring TTCN-3 Tests using Code Smells by Neukirchen and Bisanz

Neukirchen and Bisanz [2007] extend the work of Zeiss et al. [2006] and Neukirchen et al.
[2008] and build up on their refactorings to remove internal quality problems of TTCN-3
tests. However, Neukirchen and Bisanz state that the basic metrics introduced by Zeiss et al.
[2006] and Neukirchen et al. [2008] are not sufficient to detect problematic test code that is
error-prone or may lead to quality problems. Instead, they introduce 38 TTCN-38 code smells
as a more powerful approach to identify where to perform refactorings.

They implement the proposed smells in the tool TTCN-3 refactoring and metrics (TRex)
just as Zeiss et al. [2006] and Neukirchen et al. [2008]. The authors’ ambition is to provide
tooling to perform push-button detections, which enables an “everyday usage of an automated
issue detection” to testers. [Neukirchen and Bisanz, 2007]

Refactoring Keyword-Driven Tests (and Component Abstraction) by Chen et al.

Chen et al. [2008] address quality issues in automated system tests (referred to as GUI test
scripts [Chen et al., 2008; Chen and Wang, 2012]). They focus on test cases following the
test script design pattern component abstraction (CA) [Chen et al., 2008].

To identify poor quality of test scripts, Chen et al. [2008] introduce a set of 11 bad test
smells. Some of the smells are taken from Fowler [1999] and transferred to the context of
test scripts, for instance, the java code smell long method was used as inspiration for the test
script smell long keyword. Other smells have newly been introduced by Chen et al. [2008],
for example, the smell lack of macro events, which indicates absence of assertions in test
procedures. 6 out of the 11 presented smells are specific to CA test scripts, the remaining 5 can
be applied to common KDT as well. Chen et al. [2008] furthermore introduce 16 refactorings
to correct quality defects identified by smells. Similar to the smells, the refactorings have
been inspired by the Java code smells of Fowler [1999]. Half of the presented refactorings are
limited to test scripts using component abstraction. The refactorings have been implemented
using the testing tool GTT and are automatically executable. However, the tooling does not
provide techniques to detect smells automatically in test cases. Therefore, the approach can
only be applied in a semi-automated quality improvement setting.
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3.4.3 Refactoring and Smells Beyond Source Code and Tests

The concepts of bad smells and refactorings have also been applied to a variety of other types
of software engineering artifacts:

Smells in Requirements Engineering Artifacts

Wilson et al. [1997] proposed a technique to analyze requirements specifications in natural
language for quality defects. As a model for good quality, the authors define 8 quality char-
acteristics that shall be fulfilled by requirements. The characteristics are based on the IEEE
Standard 830-1993 [IEEE, 1993] and cover quality aspects, such as, completeness, correct-
ness, modifiability, and unambiguousness. To identify violations of these characteristics, the
authors propose to search for terms that indicate quality defects, such as weak phrases. Those
quality indicators are grouped on their manifestation in individual specification statements,
such as imperatives, weak phrases, or continuances, or entire requirements document, such as
the document’s size or text structure. Furthermore, the authors present a study investigating
the appearance of each quality factor in a set of requirements documents at NASA.

Fabbrini et al. [2001] define a quality model against which requirements specifications in
natural language can be checked to identify quality defects regarding the high-level proper-
ties testability, completeness, understandability, and consistency. Similar to the approach of
Wilson et al. [1997], those properties can be evaluated automatically using tangible quality
indicators, which are syntactical or structural aspects of the requirements documents. Fur-
thermore, Fabbrini et al. developed a tool to find appearances of quality indicators based on
techniques from the research field of natural language processing (NLP) [Jurafsky and Martin,
2000].

Hussain et al. [2007] follow the idea to use NLP techniques to automatically asses the
quality of textual requirements documents. However, instead of programming a tool manu-
ally, Hussain et al. apply machine learning algorithms to find quality defects in requirements
documents. The authors trained a machine learner to identify ambiguity based on manu-
ally classified text samples. The authors implemented their approach in form of the tool
Requirements Specification Ambiguity Checker (ReqSAC).

Femmer et al. [2015] propose an activity-based requirements model. The authors propose
to tailor quality models context-specific by adapting it to the individual needs of software
project. Thereby, stakeholders and the activities performed by them are used to derive
quality factors for requirements artifacts. Those quality factors can then be used to identify
bad smells in requirements documents by using NLP detection techniques [Femmer, 2013;
Femmer et al., 2014].

Domann et al. [2009] and Juergens et al. [2010a] analyzed requirements specifications
searching for appearances of cloning, which is a smell appearing in many software engineering
artifacts. They adapt existing clone detection techniques from the area of source code clone
detection to find duplicated text passages in natural language requirements specifications.
The authors report on a study in which they apply their clone detection techniques on 28
requirements specifications from three different companies. The study revealed that in all
analyzed specifications, the probability that an arbitrary sentence is duplicated is greater
than 10%. Furthermore, cloning is not limited to a specific kind of information since all parts
of the documents were equally affected by cloning.
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Smells in Spreadsheets

Hermans et al. [Hermans et al., 2012a,b, 2014, 2013] proposed bad smells for spreadsheets.
Spreadsheets are commonly used by non-professional programmers and, in contrast to soft-
ware, are rarely subject to quality control. Initially, the authors adapted existing code smells
by Fowler [1999] to spreadsheets. Starting with translating Fowlers inter class smells to inter
worksheet smells [Hermans et al., 2012a], more smells followed [Hermans et al., 2012a, 2013].
Furthermore, Hermans et al. introduced an approach to detect smells creating data-flow
graphs from spreadsheets. The detection techniques have been implemented in the spread-
sheet analysis toolkit Breviz and are automatically performable. However, Hermans et al. do
not propose how to deal with detected spreadsheet smells, for example, by listing refactorings
that remove the quality problem.

Cunha et al. [2012] introduce a methodology to define catalogs of bad smells for spread-
sheets. Besides the actual smell definition, the method furthermore contains steps such as
validation and evaluation. In contrast to Hermans et al., Cunha et al. propose to group smells
in different categories inspired by Méntyld and Lassenius [2006]. Cunha et al. define statis-
tical smells such as standard deviations between related spreadsheet cells, type smells such
as cells that do not follow a certain pattern, content smells such as typographical errors, and
functional dependencies based smells, which can be detected using data mining techniques.

Smells in Software Models

Deissenboeck et al. [2008] adapted existing clone detection techniques to identify cloned parts
(a common smell in software engineering artifacts) in Matlab/Simulink models, which are
used in model-based development of control systems. The presented approach extracts the
underlying graph structure of Matlab/Simulink models and applied clone detection techniques
on them. In a study, the authors analyzed models having 20,000 elements in total. The results
of the study showed that over a third of the models were affected by cloning.

3.4.4 Discussion and Relation to this Thesis

Smells are a widely applied technique to identify potential quality defects in a variety of arti-
fact types. They point at concrete locations in artifacts where quality defects are manifested.
Smells and refactoring are often applied together: Whereas smells are applied to uncover
quality defects, refactorings are used to remove those quality defects. In many cases, a con-
crete set of refactorings exists to remove certain quality defects identified by smells. However,
since most smell detection techniques are inherently imprecise, their results are just indica-
tors for potential quality defects. Therefore, smells are not sufficient to trigger automated
smell removal by performing refactoring automated but are just starting points for manual
assessment and removal.

In the following chapters, we make use of smells and refactorings in two different ways:
In Section 6, we propose a technique to support test engineers in performing refactorings to
remove clones in automated test cases. Concretely, we are using grammar inference techniques
to propose ways to design reuse components to extract overlapping clones. In Section 7, we
are defining smells for manual test cases written in natural language for the first time. Our
smells are sufficient to identify quality defects in test cases written in natural language.



Chapter 4

Clones in Manual System Tests

To reduce system testing life-cycle effort effectively by exploiting commonality in test proce-
dures, we need a better understanding of the phenomenon of commonality in system tests.
We need to know to what extent commonality exists in system tests as well as how it affects
system testing life-cycle activities. Commonality in test procedures is reflected in the cor-
responding test artifacts. A common symptom of commonality to test artifacts is cloning:
Parts of test scripts or test descriptions that are syntactically identical.

The study presented in this chapter investigates the phenomenon of cloning in system
test artifacts. We report on an empirical study in which we analyze clones in seven industrial
system test suites containing more than 4000 manual tests. Parts of the content of this
chapter have been published in Hauptmann et al. [2012a,b].

4.1 Research Goal

We define the goal of our study using the goal definition template of Wohlin et al. [2000]:

We analyze cloning in manual system tests
for the purpose of characterization and understanding
with respect to impact on system test life-cycle activities
from the viewpoint of test engineers

in the context of industrial software projects.

4.2 Research Questions

The study is structured by five research questions: RQ 1 to RQ 3 investigate the extent
and nature of cloning in manual system tests. Answering these questions enables to better
understand the phenomenon of cloning in manual test cases. RQ 4 and RQ 5 investigate if
clone detection can be used to support test life-cycle activities. We focus on the activities
of execution and maintenance by using the examples of test suite optimization and test
automation.

47
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RQ 1: To What Extent Exists Cloning in Manual System Tests?

The goal of this question is to assess if cloning is actually a significant phenomenon in the
current practice of manual system testing. The more cloning exists, the greater is the main-
tenance effort of a test suite. However, the quantity of cloning is not enough to determine the
nature and severity of the problems caused by cloning. Hence, RQ 2 and RQ 3 investigate
the characteristics of clones in tests.

RQ 2: What Kind of Information is Cloned in System Tests?

Tests contain several types of information, e.g., instructions for the tester or test data. Cloning
different types of information might lead to different challenges. To better understand test
cloning and estimate its problems, we investigate what type of information is actually cloned.

RQ 3: Are Clones in System Tests Locally Restricted?

Use cases are usually tested by several tests, for example, under different conditions, using
different parameters or checking different exceptional cases. Tests of the same use case are
usually more alike and share common parts. Test management tools allow structuring test
suites hierarchically storing tests in folders and subfolders. If tests which exercise the same
use case are stored closely together (e.g. in the same folder), it is more likely that maintenance
tasks will be performed consistently in all cloned parts since it is obvious what other tests to
change too. The aim of this research question is to find out if tests share common parts only
with closely related tests or also with tests testing different use cases.

RQ 4: Do Clones Indicate Candidates for Test Suite Optimization?

If several tests contain large common parts, it might be beneficial to combine those test cases
to a single test that accomplishes the goals of all combined tests. Clones in test cases can
indicate candidates for such a test suite optimization. Combining test cases reduces the overall
size of the test suite and thereby reduces the amount of tests that have to be maintained.
Furthermore, merging tests together to fewer shorter tests will also make test execution more
efficient.

However, test suite optimization is a complex topic that has to be performed carefully
considering domain knowledge. Therefore, this research question just estimates the potential
of test suite optimization. The results of this research question can be seen as an upper bound
of test suite optimization by combining tests having similar beginnings.

RQ 5: Do Clones Indicate in Which Order Tests are Automated Most Efficiently?

The success of test automation depends on the effort it takes to create test scripts. This effort
can be reduced by reusing test scripts for identical test steps. In this RQ, we quantify the
benefit of test script reuse by determining how often identical test steps appear: The execution
frequency of (identical) test steps. Based on these execution frequencies, we extrapolate the
growth of overall test suite automation by creating test scripts for steps with high execution
frequency first. This research question is based on the idea of semi-automatic test execution,
in which automated test execution and manual test execution are combined.



4.3. STUDY DESIGN 49

4.3 Study Design

Whereas RQ 1 to RQ 3 can be answered directly using the results of the clone detections,
we will not provide quantitative answers to RQ 4 and RQ 5. Instead, we use our findings to
enable a discussion about how manual test suites can be optimized and efficiently automated
based on clone analysis results.

4.3.1 Study Objects and Case Study Context

Our study objects are manual system tests of seven projects from Munich Re (see Section 1.5).
The systems of the analyzed tests provide substantially different functionality, ranging from
damage prediction, over pharmaceutical risk management to credit and company structure
administration. They support between 10 and 150 users each.

We chose tests written in different languages (German and English), by different teams
(internal employees and external suppliers), and testing different functionalities to increase
the generalizability of the study results. We included systems with web front-end, Windows
fat client interface, and SAP systems. The analyzed tests included regression tests, tests for
planned features, and tests of change requests. All systems as well as the corresponding test
suites are in productive use. For non-disclosure reasons we named the systems, from which
we took the tests, system A to G (respectively test suite A to G). Table 4.1 summarizes the
sizes of the test suites. The number of tests differs from less than 100 (test suite C) to more
than 1,800 (test suite E) per test suite. In total, we analyzed 741,138 lines of natural language
test description containing more than 1.4 million words.

Table 4.1: Study objects.

Length of all Tests
Test Suite #Tests (#lines) (#words)
A 266 37,027 79,114

B 1,059 165,547 346,135
C 72 12,918 27,450
D 180 67,598 102,991
E 1,804 307,760 529,122
F 135 22,903 34,136
G 605 127,385 317,205
total 4,121 741,138 1,436,153

4.3.2 Data Collection

In this section we describe how we collected the data in order to answer the research questions.
Most data was collected by automated analyses on the manual system tests. We performed
the analyses using the open source quality assessment toolkit ConQAT! [Juergens et al., 2009],
which includes, among others, a rich toolkit for clone detection.

"http://www.congat.org
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RQ 1: To What Extent Exists Cloning in Manual System Tests?

To answer RQ 1, we performed clone detections on all our study objects. In the beginning,
we transformed the tests into plain text, which is easier to analyze by our tooling. Using
whitespaces and line breaks, we tokenized the tests into sequences of words. ConQAT has
been used to find clones of at least 30 sequential words (in natural language) in these token
streams. To find clones which differ slightly (gapped clone detection. See Chapter 2) to cover
test data or ignore inconsistent typos. The overall volume of the gaps were allowed to be up
to 10% of the length of a clone.

We performed additional manual inspections of the clone detection results to find and
exclude false positives such as different versions of the same test or stereotypical parts of tests
(e.g., description templates). Those inspections were performed based on visualizations of the
structure of the clones, manual inspections of clones, and interviews with project members.
False positives were then excluded by configuring filters in ConQAT.

Apart from qualitative results about the structure and distribution of clones in the test
suites, the main metric we gained here was the clone coverage, which is the percentage of the
test suite that is subject to cloning. Furthermore, we calculated the relative blow-up of the
tests introduced by cloning as well as the length of clones and the cardinality of clone classes
(see Section 2.4 for details on the metrics).

RQ 2: What Kind of Information is Cloned in System Tests?

To answer RQ 2, we manually classified the content of the detected test clones. We randomly
selected samples of 10 complete tests and 20 clones of each test suite. We developed a
simple categorization scheme which is based on the IEEE-829-2008 standard [IEEE, 2008] for
system test documentation. It describes, among others, the type of information that should
be included in system tests. We designed the scheme to be detailed enough to capture the
most important types of information as well as simple enough that it can be applied to a
large sample of text in acceptable time. The categories of our scheme are:

Actions: Description how the tester has to stimulate the system. Actions are usually located
in the step description parts of tests. The granularity ranges from abstract (e.g., Execute
function XY') to concrete (e.g., Click on the button ABC).

Checks: Expectation of the system’s behavior which has to be verified by the tester. Checks
are usually located in the expected result part of the tests. The granularity ranges from
abstract (e.g., The result is positive) to exact values (e.g., Expect message 'Everything
has been performed successfully.”).

Input Data: Input required to execute the test. The granularity ranges from abstract (e.g.,
a date maz. three month ago) to exact values (e.g., '03/23/1983").

Output Data: Output expected by the system. The granularity ranges from abstract (e.g.,
between 1 and 2) to exact values (e.g., '1.4").
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References to Other Tests: References within the same test or between different tests
such as prerequisite (e.g., Test XY has to be executed before) or jumps to other test
steps (e.g., execute step 3-5 from test XY').

Environmental Needs: Test environment needed for the execution such as hardware, soft-
ware, or test data.

The aim of the inspections was to compare the categorized information from both groups
of samples. Using the scheme, we went through the samples (tests and clones) and counted
what types of information has been covered. To compare both values, we normalized the
assignments to a per word base. We calculate the absolute appearance of each category for
both sample groups as well as the relative difference between both sample groups per category.

RQ 3: Are Clones in System Tests Locally Restricted?

To figure out if cloning only exists between tests of the same use case or also appear between
tests of different functionalities, we analyzed the relationships of clones found in RQ 1.

The tests of our study objects are organized in a hierarchical structure similar to the
structure of the functionality of the system under test. Starting by main function groups,
the tests are further grouped by their sub-functionalities. The lowest hierarchy level always
represents a specific use case or scenario. Therefore, tests which are stored in the same
directory always test the same functionality whereas tests in different directories test different
functionalities. We categorize clone dependencies into two categories:

Intra Use Case Dependency: If tests that are testing the same functionality are in a clone
relationship, we classify this relationship as an intra use case dependency.

Inter Use Case Dependency: On the contrary, inter use case dependencies are clone re-
lationships between tests which are testing distinct functionality.

To investigate if clones between tests are locally restricted, we calculate the absolute and
the relative number of intra as well as inter use case dependencies for each test suite.

RQ 4: Do Clones Indicate Candidates for Test Suite Optimization?

This research question investigates whether clones indicate tests which can be combined.
During manual inspections of the tests, we noticed that cloned parts are often located at the
beginning of tests and cover actions to bring the system into a certain state, for example, by
creating a defined set of test data.

In order to obtain an estimation of the minimization potential of clone information, we
adapted our clone detection tooling to find just clones at the beginning of tests having a
significant length (at least 50 words). We inspected such clones, as well as corresponding
tests, to assess if the tests could be merged.

To quantify how many candidates for test suite optimization can be found using clone
detection, we calculate the metrics #clone groups and clone group size (maz. and avg.).
The metric clone length (maz. and avg.) furthermore shows the size of text parts which
are affected. We furthermore calculated the potential saving in artifact size that could be
achieved by combining all found clones?.

2In source code clone detection, a similar metric is used: RFSS - redundancy free source statements.
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RQ 5: Do Clones Indicate in Which Order Tests are Automated Most Efficiently?

To answer RQ 5, we performed an adapted clone detection to determine the execution fre-
quency of identical test steps. We modified our clone detection tooling to group test steps
which are completely cloned and thereby identical. The number of clones of each group tells
how often the same test script can be reused for all members of the corresponding group.

However, in manual inspections, it turned out that not all clones span over complete test
steps. Some clones affect just parts of a test steps which is usually the case if test steps are
created by merging or cutting test steps. As a consequence, these test steps are not suitable
to directly create test scripts for. To solve this problem, we adapted our clone detection
tooling again to find clones of either whole test steps or at least significantly large parts of
test steps. We use the results of the clone detection to suggest how to break up test steps
into parts which are more suitable for automation.

To quantify this research question, we compute two metrics: First, based on the results of
the clone detection, we compute test step execution frequencies for each group of identical test
steps. This tells how often identical test steps are executed by running the whole test suite
once. Second, based on the execution frequencies, we create an extrapolation of automation
efficiency: We sort all groups of identical test steps based on their execution frequency. Our
extrapolation shows to what degree the complete test suite will be automated by creating
test scripts one by one sorted by execution frequency.

This extrapolation indicates the efficiency of a stepwise implementation of semi-automatic
test execution. It does not only specify the order of steps to automate, but also indicates the
sweet spot’ of semi-automatic test execution at which the proportion between the number of
automated test scripts and the degree of test automation is optimal.

4.3.3 Study Execution

The case study was performed on PCs with Windows and Linux operating systems equipped
with Intel Core 2 Duo CPUs with 2.4 GHz, and 4 GB of RAM each. The time for the clone
detection was between a few seconds up to one hour per test suite.

4.4 Results

This section presents the results based on the research questions.

RQ 1: To What Extent Exists Cloning in Manual System Tests?

The first research question investigates the extent of cloning. The quantitative results are
summarized in Table 4.2.

Clone Coverage: The clone coverage varies from 43.3% (test suite C) to 85.9% (test suite
G). 6 out of 7 test suites have a clone coverage over 50% (every test suite except C).

Relative Blow-Up: The relative blow-up varies from 50% (test suite C) to 258% (test suite
G). 4 out of 7 test suites have a relative blow-up over 100% which means that the test
artifacts have more than double the size they could have. The tests containing the most
clones are more than two and a half times longer as they could be (test suite G with a
relative blow-up of 258%).
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Table 4.2: Clone detection results. (RQ 1)

#Clone #Cloned Clone
Test Suite Groups #Clones Words  Coverage Blow-Up
A 674 2,113 51,749 65.4% 114%
B 2,513 7,774 201,575 58.2% 75%
C 175 563 11,890 43.3% 50%
D 804 2,797 57,362 55.7% 78%
E 4,424 24,816 381,120 72.0% 138%
F 309 1,028 20,146 59.0% 82%
G 1,754 11,594 272,628 85.9% 258%
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Figure 4.1: Distribution of clone lengths. (RQ 1)
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Length of Clones: Figure 4.1 shows the distribution of lengths (in words) of all clones
found. Short clones are more frequent than long clones. However, 503 clone groups
have a length greater than 250 words. The longest clone group has a size of 1019 words
spanning 8 test steps.

Cardinality of Clone Classes: Figure 4.2 shows the distribution of the number of clones
per clone group. Small clone groups with two clones are more frequent than clone groups
with the size of 3 or higher. However, 104 clone groups containing more than 30 clones
were detected.

RQ 2: What Kind of Information is Cloned in System Tests?

This question investigates which type of information is affected by cloning. We subjected
the sample of 70 test cases (24,880 words) and 140 clones (6,998 words) to our categorization
scheme. Since the size of both samples differed, we report on the relative frequencies. Table 4.3
shows the assignment rates per 10,000 words.

Absolute Appearance: Checks occurred the most often (446.9 for all tests and 694.5 for
the clones) followed by actions (445/557). Inputs and outputs have been rated as
176.8/137.2 and 121.8/101.5. The categories with the least number of cases are envi-
ronmental needs (32.2/50) and references (28.5/5.7).

Relative Difference: The highest relative difference between the two samples is in the cat-
egory references with 80% less cases in the clone sample as in the overall sample. The
numbers for checks and environmental needs are slightly more than 50% higher for
clones as for the overall sample (4+55.4% and +55.3%) whereas actions have 25% more
cases in the clone sample. Input and output values have been assigned 22.4% and 16.7%
less to cloned as to the overall sample.

RQ 3: Are Clones in System Tests Locally Restricted?

This question investigates if test clones are restricted to tests of the same functionality. Ta-
ble 4.4 shows the quantitative results for all test suites.

The relative amount of inter use case dependencies varies between 4.26% (test suite E)
and 90.93% (test suite C). 2 out of 7 test suites have inter use case dependencies around 5%
whereas 4 out of the remaining test suites are between 80% and 90% in the same category. Just
one test suite had almost as much intra as inter use case dependencies (49.17% to 50.83%).
The average of inter use case clones (based on the sum of the absolute values) is 87.75%.

Additionally to Table 4.4, we created a visual representation of the structure of the test
suites and their clone dependencies as edge bundle view [Hauptmann et al., 2012a; Holten,
2006]. Figure 4.3 exemplarily visualizes the dependencies of test suite A. The rings on the
outside reflect the hierarchical structure of a test suite. The innermost level of rings represents
the directories in which the tests are stored whereas every pin on the inside of the ring
represents a single test. Dependencies between tests are indicated by lines.
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Table 4.3: Classification of information (per 10,000 words). (RQ 2)

Absolute Appearance Relative Difference

Category Overall Clones
Actions 445.7 557.3 +25%
Checks 446.9 694.5 +55.4%
Input Values 176.8 137.2 -22.4%
Output Values 121.8 101.5 -16.7%
Environmental Needs 32.2 50 +55.3%
References 28.5 5.7 -80%

Table 4.4: Clone dependencies between tests. (RQ 3)

Intra Use Case Inter Use Case

Test Suite (absolute) (relative) (absolute) (relative)

A 290 94.77% 16 5.23%
B 1,300 19.97% 904 80.03%
C 90 95.74% 4 4.26%
D 792 19.97% 3,173 80.03%
E 4,237 9.07% 42,475 90.93%
F 118 49.17% 122 50.83%
G 248 10.76% 2,056 89.24%
total 6,805 12.25% 48,750 87.75%

Test cases

Hierarchical structure
of the test suite

Clone dependencies
between test cases

\\ \\\

I\\\

Figure 4.3: Clone dependencies between tests (test suite A). (RQ 3)
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RQ 4: Do Clones Indicate Candidates for Test Suite Optimization?

This questions investigate if clone detection supports test suite optimization. Table 4.5 shows
the results of the adapted clone detection we performed to find clones as indicator for test
consolidation.

Table 4.5: Clone detection results for test suite optimization. (RQ 4)

#Clone Clone Group Size  Clone Length  Savings

Test Suite Groups (max) (avg) (max) (avg) (relative)

A 25 4 2.24 224 93 2.88%
B 1154 14 2.98 2043  117.05  24.63%
C 3 3 2.33 146 45 0.99%
D 10 13 4.3 127 44.7 1.19%
E 377 49 4.56 1391  73.35 10.78%
F 4 2 2 86 36.886 0.82%
G 191 13 2.96 6303  218.6 13.29%

#Clone groups and clone group size: The number of clone groups varies from 3 (test
suite C) to 1154 (test suite B). The maximum cardinality of the clone groups varies
between 2 and 49 clones (test suite F' and E) whereas the average cardinality is between
2.24 and 4.56 (test suite A, E).

Clone length and relative savings: The possible relative artifact size reduction indicated
by these results varies between 0.82% (test suite F) and 24.63% (test suite B). The
relative savings of 3 test suites are around 10% and 25% whereas the remaining 4 test
suites’ relative savings were around 3% and lower.

RQ 5: Do Clones Indicate in Which Order Tests are Automated Most Efficiently?

This question investigates if clone detection supports efficient test automation. To answer
this question we performed a tailored clone detection that finds clones of whole test steps or
significant parts of test steps. The size of the clone groups indicate how often the according
test step would be performed by executing the tests.

Test Step Execution Frequency: Figure 4.4 exemplarily shows the potential test steps of
test suite A sorted based on their execution frequency. We found 2761 test steps of
which 39.3% are occurring twice or more often. The most frequent test step occurs 52
times.

Extrapolation of Automation Efficiency: Figure 4.5 exemplarily shows the extrapola-
tion for test suite A. The x-axis lists the test steps sorted based on their execution
frequency (similar to Figure 4.4). The y-axis shows the share of overall test suite au-
tomation. In this example, by automating the 5.3% of the most frequently executed
test steps, 25% of all test executions could be performed automatically. 50% of the
test executions could be performed automatically after automating the top 18.3% of all
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Figure 4.4: Distribution of the test step frequency for test suite A. (RQ 5)

\ I
0 146 505

(18.3%)

2761
(100%)

Number (percentage) of automated test steps (sorted by step frequency)

Figure 4.5: Extrapolation of the automation efficiency for test suite A. (RQ 5)

Table 4.6: Extrapolation of automation efficiency. (RQ 5)

Percentiles Start of lin. growth
Test Suite  (25%) (50%) (75%) (at steps automated)
A 53% 18.3%  46% 71.9% (39.3%)
B 3%  135% 39.7% 78.5% (43.3%)
C 4.3% 15%  45.2% 69.8% (33.8%)
D 14%  9.7%  42.6% 68.2% (72%)
E 0.6% 5.9%  26% 48.5% (43%)
F 4.1% 15.4% 44.5% 71.5% (36.6%)
G 25% 10.8% 31.3.%  87.9% (53.4%)
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steps. To automatically perform 75% of all necessary step executions, 46% of all test
steps have to be automated. Since 60.7% of all test steps are unique and therefore have
to be executed just once, the growth of automatically executed test steps starts to grow
linearly after 39.3% of all test steps have been automated.

Table 4.6 summarizes the same metrics for all study objects. The columns Percentiles
(25%), Percentiles (50%) and Percentiles (75%) show the relative amount of test step
executions automated by automating 25%, 50% or 75% of the test steps. The column
Start of linear growth shows at which relative test step automation degree (at steps
automated) the additional value of test step automation will start to grow linearly.

The 25% percentile differs from 0.6% to 5.3% of the test step automations. The 50%
percentile (the median) ranges from 5.9% to 18.3%. The 75% percentile of test step
execution automation is reached between 26% and 46% (test suite E and A each time).
The start of linear growth ranges from 48.5% automated test step executions (at 43%
steps automated of test suite E) to 87.9% (at 53.4% steps automated of test suite G).

4.5 Interpretation and Discussion

This section discusses the results based on the research questions.

RQ 1: To What Extent Exists Cloning in Manual System Tests?

The results show that cloning is a common phenomenon in real-world system tests. Although
the amount of cloning differs, clones appeared in all analyzed test suites in a significant amount
(clone coverage >40%). Furthermore, we found many clone groups with a size greater 5 (see
Figure 4.2). As a consequence, when maintaining one of those cloned parts, at least four other
parts need to be changed, too. Finding out where to perform changes can be challenging if
clones are spread across multiple tests (see RQ 3). Therefore, depending on the locality of
the cloned regions, clones can be a threat for test comprehension.

In the interviews we conducted to adjust the clone detection results, we noticed that the
tools with which the tests have been created and maintained have a substantial influence
on the amount of cloning. In several test suites, the tools did not provide the necessary
abstraction capabilities to avoid cloning or the test creators were not trained to use these
mechanisms properly.

RQ 2: What Kind of Information is Cloned in System Tests?

Action and check commands appear significantly more often in clones than in tests in general.
In contrast, inputs and outputs appear less often in clones. The reason for this is that test
data is frequently covered by the gaps of clones. Hence, clones of one clone group often differs
in the input and output data whereas the sequences of commands is mostly alike. We draw the
following two conclusions from that: First, it shows the need for suitable reuse mechanisms
for test sequences. However, those reuse mechanism have to provide proper parameterization
facilities to handle differences in test data. Second, test data is not explicitly managed but
embedded in test procedures. This indicates potential maintenance and comprehensibility
problems since it is difficult to assess what a test is actually testing.
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Our results show further differences in the cloning of different types of information. For
example, the category checks appear noticeably more often in clones than the category actions.
However, we could not find an explanation for that.

Furthermore, environmental needs appear frequently in clones. This indicates a similar
problem as with the test data. For a consistent handling of such needs across tests, this
information should be managed separately from the test step description.

The fact that references are cloned rarely is not surprising, as common information has
already been externalized in such cases.

RQ 3: Are Clones in System Tests Locally Restricted?

In twice as much test suites, clones are not limited to tests of the same functionality but
are most often between tests which are testing different functionality. This fact complicates
performing maintenance tasks in cloned parts consistently since it is not obvious to find all
clones of a clone class.

In interviews with domain experts, we figured out that many inter use case dependencies
in our study objects can be traced back to dependencies in the requirements of the corre-
sponding use cases. If there was a dependency between two use cases (e.g., use case A must
be executed before use case B), there were also clones between the corresponding tests. This
supports our hypothesis that commonality and dependencies within requirements inherit to
their corresponding tests.

Furthermore, clones that are spread across many tests often addressed the creation of test
data. Many cloned parts of tests guide the tester in creating a certain type and amount of
data which is used in the subsequent test steps. This implies that, if tests require the same
type of test data, it is very likely that they have cloned test steps for the data creation.

The same is true for test steps dealing with the system interface. Independent of the use
case under test, many clones that affected more than one use case contained system interface
related information, such as navigation within the user interface. Therefore, if several tests
require the usage of the same parts of the system interface, they are likely to have clones.

RQ 4: Do Clones Indicate Candidates for Test Suite Optimization?

In at least three test suites, we found significant portions (>10%) of cloning at the beginning
of test cases which indicate that the test suite might be optimized by consolidating the affected
test cases. However, not in every case such an optimization is possible or reasonable. There
might be good reasons why specific tests are kept separate and redundancy and inefficiency
are tolerated. For example, those tests might be part of different test sets which are executed
at different times. On the other hand, there might be several other opportunities for test
suite optimization that are not captured by our analysis (e.g. because the common part is
not at the beginning).

In the remaining four test suites, the amount of cloning at the beginning of tests was
rather low (<3%). The tests of those test suites were also smaller than the others. A possible
explanation for the discrepancy in the results is that those tests are more diverse and do not
include as many tests per use case as the other test suites. Thus, they do not have as many
similar starting sequences.
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Nevertheless, at least for the three test suites B, E, and G, the clone detection can be
helpful in identifying many possible candidates for an optimization. The cloning information
is especially helpful in the context of large test suites where information about redundancies
and optimization potentials is otherwise hard to retrieve.

RQ 5: Do Clones Indicate in Which Order Tests are Automated Most Efficiently?

The execution frequency of test steps varies considerably among different steps. By executing
test suite A, some steps are executed just once, others over 50 times.

Assuming that all tests are executed equally often, the overall degree of test suite automa-
tion can be quickly increased by automating frequently executed steps before infrequently
executed steps. Although the benefit is different across the test suites, to reach 50% of au-
tomation no more than 18.3% of the steps need to be automated (in test suite E only 5.9%).
To reach 75% test automation of test suite E, just 26% of the steps need to be automated.
However, to benefit from such an approach, a testing framework which allows implementing
semi-automated tests is required.

Since our study objects are written in natural language, not all semantically identical test
steps might be found using syntactic clone detection. Thus, the values have to be regarded
as a lower bound.

4.6 Threats to Validity

In this section, we discuss threats to the internal and external validity of the study and
describe how we mitigated them.

Internal Validity:

The results of the clone detection might be biased by individual experiences and preferences of
the researcher that tailored the clone detection. We mitigated this risk by inspecting random
samples of some results by at least two researchers.

The categorization in RQ 2 has not been performed on all tests but just on samples of
the tests and clones. Selecting samples can potentially introduce inaccuracy. However, we
addressed this issue by selecting the samples randomly.

Since the categorization in RQ 2 has been performed manually, it is subjective to some
degree. We addressed this risk by performing the categorization by three researchers which
worked in close cooperation. Borderline-cases have been discussed between all researchers to
compensate deviant interpretations.

To validate the results of RQ 4 and RQ 5, random samples of the findings have been
manually inspected by researchers. However, the researchers have not been particular domain
experts nor have they been users of the systems under tests. To substantiate the results, the
findings have to be inspected by dedicated domain experts. Therefore, we consider the results
of RQ 4 and RQ 5 as basis for domain experts to target their work.

In RQ 5, we calculated the automation efficiency based on the execution frequency of
test steps. However, the execution frequency is just one factor to determine the automation
efficiency. There are additional factors that have to be considered, such as the execution time
of a test step or its individual automation effort. Therefore, we consider the results of RQ 5
as a first step towards a comprehensive effort estimation model for test automation.
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External Validity:

All tests we analyzed originated from the same company testing applications of the same ap-
plication domain, namely business information systems having web or rich client interfaces. It
is possible that tests look different in other application domains or other companies because
they use different tools and processes to create and maintain their tests. To make our results
more generalizable, the study has to be repeated using tests of different application domains
created by different organizations. To make our study repeatable, we used a publically avail-
able clone detection tooling and described the configuration we used (see Section 4.3 Study
Design) so our study can be repeated by other researchers in different companies.

4.7 Summary

This chapter presented an industrial study analyzing clones in manual system test artifacts.
We analyzed more than 4000 manual system tests written in natural language. The study
revealed significant amounts of clones in all seven analyzed test suites. All test suites have
a clone coverage between 43.3% and 85.9%. Many clones occurred even more than 30 times
within a test suite. Detailed inspections of the cloned parts revealed that cloning does not
affect all type of content the same way. Clones often cover just test procedures but differ in
test data which is embedded in test procedures. Furthermore, cloning does not only occur
between tests of the same functionality. Tests significantly share parts with other tests testing
different functionality. 5 out of 7 test suites have far more (>50%) clone dependencies to tests
of other use cases as to tests of the same use cases. In manual inspections, those dependencies
could often be traced back to dependencies between the corresponding requirements. Using
clone detection to support test suite optimization does not work for all test suites. In 3 out
of 7 test suites, candidates for test consolidation could be found. However, in those cases,
the results are promising. Our data indicate a potential reduction of the overall test suite
between 10.78% and 24.63%. Finally, clone detection can provide helpful information to
efficiently mix manual and automated test execution techniques. Using information about
clone cardinalities, 50% of all test suites could be executed automatically by automation just
the most frequent 5.9% to 18.3% test steps.

4.8 Conclusions to System Testing Life-Cycle Activities

In this study, cloning in manual system tests has been investigated as on example of common-
ality in system test procedures. The results of this study show the following consequences to
system testing life-cycle activities:

Commonality in Test Procedures Can Be Used to Optimize Test Execution

Clones in test artifacts directly result in duplicated execution effort. To execute tests, two
execution techniques exist: manual and automated execution, both showing their advantages
and disadvantages in different settings. Duplicated execution effort strongly influences if
execution techniques will play out their strengths. If not, execution techniques will not pay
off and will lead to unnecessary implementation (creation) and execution expenses.
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This fact leads to the consequence that information about commonality in tests can be
used to optimize the selection of test execution techniques. Commonality in test procedures
can be used to choose execution modes which reduce implementation and execution efforts.

Commonality in Test Procedures Hampers Maintenance of Test Artifacts

All analyzed test suites were strongly affected by cloning. Many tests contained considerable
amounts of text passages which exist multiple times within a test suite. Cloning in test doc-
uments is not lead to problems per se. For a test case’s understandability, for example, a
self-contained test case without references to other documents might even be a good thing.
However, when tests have to be modified for maintenance reasons, test clones lead to ef-
fort that has to be done unnecessarily multiple times. Furthermore, it increases the risk of
inconsistently applied changes since clones are spread over whole test suites.

These facts lead to the conclusion that commonality in test procedures which is manifested
in test artifacts in form of clones negatively influences maintenance costs.



Chapter 5

Choosing Execution Modes

The study in the previous chapter (Chapter 4 Clones in Manual System Tests) has shown
that industrial test suites contain both parts (test cases or sections of test cases) for which
manual test execution is the execution technique of choice and parts for which automated
test execution will pay off easily. When setting up a system testing strategy, one must define
an appropriate execution mode, which determines whether a test suite should be executed
either fully manual, fully automated or partly manually and partly automated.

In every software development project, fixed testing approaches, strict quality goals and
established development philosophies already narrow down the range of execution modes.
However, most projects still provide a wide spectrum of reasonable execution modes from
which a test engineer can choose.

Based on our industrial experience, experts often choose execution modes in an ad-hoc
style using rules of thumb, best practices or by relying on experience from similar projects.
Although those decisions lead to tolerable results, we have perceived the following challenges
in the state of the practice of finding and maintaining execution modes:

Finding Optimal Execution Modes:

Choosing execution modes in an ad-hoc style may result in solutions that are possibly not
cost-effective and makes it hard to predict the effort of test-execution beforehand. Once
determined, execution modes can hardly be altered as the basis of decision-making is often
unclear.

Justifying Execution Modes:

Even though an economically optimal execution mode has been found, one might deviate
from it for reasons that are economically not graspable, for example, because of company-
wide testing strategies. In such cases, quantifying the impact of deviation from optimal
execution modes is challenging.

!The previous study has been performed on interactive business information systems, which are built to
be used by human users and therefore have dedicated graphical user interfaces. However, software systems
that are having primarily technical user interfaces (e.g., programming interfaces or web services) can hardly
be tested manually. Similarly, systems that have strict timing constraints (such as real-time systems) can also
be tested only automatically. This chapter focusses on software systems that can (principally) be tested in
both ways, manually as well as automatically.
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Understanding the Impact of Factors:

The reason why decisions for and against execution modes are made ad-hoc is that there is
no solid understanding of individual factors of impact. Knowledge of the impact of individual
factors to the overall system test execution effort supports arguing for and against execution
modes.

Predicting Changes:

Without a solid data-basis on that the determination of execution modes is grounded, pre-
dicting the effort of changes (e.g., because the functionality of a software system changed) is
difficult.

Approach and Contributions of This Chapter:

In this chapter, we introduce a method to put the decision-making process on more solid
ground. We propose an estimation model to predict the effort for the activities of test imple-
mentation, execution and maintenance. We use the concept of costs to model efforts of test
activities. The model is based primarily on expert estimates and calculates the estimated
overall effort for a given execution mode in form of total costs. The estimation model gives
additional input for test experts for balancing pros and cons of execution modes under consid-
eration and thereby enables a more solid decision-making process. Our approach furthermore
documents decisions during the lifetime of a test suite. Additionally, we report on an indus-
trial case study in which we evaluated the applicability of our estimation modeling approach.
Parts of the content of this chapter have been published in Hauptmann et al. [2014].

5.1 Test Meta-Model

Our approach is not restricted to certain testing approaches, languages or tools. We never-
theless have some basic requirements on testing languages. In the following, we present our
test meta-model (see Figure 5.1) illustrating those requirements to testing languages 2.

High-Level Low-Level
(Independent of Ezxecution Technique) P (Dependent of
‘ Ezxecution Technique)

€ Test Suite @——
; 1 .
* | test cases test steps| « 1 : Test_ Description

* * :
Test Case Test _ Step :
- test _procedure - }
1 )

0.1 Test _Script

Figure 5.1: Test meta-model as UML diagram.

2This meta-model is a concretization of the ontology presented in Section 2.2 (Figure 2.3 on page 22) with
a focus on those aspects that are important in this chapter.
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Reusable Test Steps:

Similar to keywords in keyword-driven testing (KWD) [Fewster and Graham, 1999], we con-
sider test suites to provide a set of reusable test steps (Test_Step), which act as basic building
blocks to create test cases. Test steps act as placeholders for isolated activities and consist
just of a unique name such as ’start the application’ or ’initialize calculation’.
Furthermore, to be integrable into several test cases, they may define parameters, for exam-
ple, a test step named ’login to the system’ might have the two parameters ’username’
and ’password’.

Test Procedures

The procedures of test cases (Test_Case) are hence created by assembling sequences of existing
test steps (test_procedure). However, test steps are not copied but referenced at this point.
This support maintainability of test steps. Furthermore, test cases might define concrete
values to be passed to test steps.

Implementation and Execution:

To make test steps executable, each of them is realized using (at least) one execution technique.
Therefore, each test step is linked to a Test Description (Test Description) for manual
execution and/or a Test Script (Test_Script) for automated execution.

Test steps, form the level on which execution techniques are defined. Ezecution modes can
hence be realized on a per-step basis by determining which test step shall be executed manually
and which automatically. Furthermore, this approach provides flexibility in implementing
more complex execution modes: For example, if a test step is referenced by several test cases,
which shall be executed using different execution techniques, several implementations can be
provided.

5.2 Relative Cost-Benefit Analysis

We present an analytic estimation model that quantifies the impact of execution modes on
testing efforts. It thereby provides a solid base for test experts to argue in favor or against
execution modes. Our estimation model models effort by making use of an abstract concept of
costs. However, costs do not necessarily have to be represented in form of a financial currency
but can also be budget shares or time.

The goal of our estimation model is not to calculate the absolute effort of testing but to
provide quantitative evidence to compare execution modes. Therefore, just the cost factors
in which execution modes differ have to be considered. For example, efforts for deriving test
conditions (see Section 2.3) do not have to be considered as they incur independently from a
selected execution mode. Since we are also focussing on comparing different mixes of manual
and automated test execution?, initial costs, such as for setting up automation infrastructure
or for populating databases, do not have to be considered in our calculation too. Since our
estimation model only regards those factors in which execution modes differ, we consider it
as a model for relative cost-benefit analysis.

3More about mixes of manual and automated test execution can be found in the case study in Section 5.4.2
Study Object and Case Study Context
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Testing Activities:

Basis for our cost-benefit analysis are the system testing activities as defined in the generic
system test process (Section 2.3): Test implementation, execution and maintenance.

Test Implementation

The activity of test implementation includes all tasks necessary to transfer test steps into
executable low-level test steps, such as, test descriptions or test scripts.

Manual Test Execution: For manual test execution, this includes the effort for writing test
descriptions for the manual tester, crosschecking the test descriptions with the system
requirements, and testing them with the actual system under test.

Automated Test Execution: For automated testing, this includes effort for programming
test scripts, quality assurance of the created source code, and trying out the test scripts
with the actual system under test.

Since we just want to compare execution modes, tasks that are independent from a certain
execution techniques, such as setting up testing environments do not have to be considered.

Test Execution

Executing addresses all tasks necessary to run a test suite against the system under test. This
includes all test runs during a certain time period under observation.

Manual Test Execution: For manual test execution, this includes all efforts arising during
the time period under observation for running test cases by a human tester as it is
explained in the test description.

Automated Test Execution: In automated testing, this includes efforts for executing the
test scripts during the time period under observation.

Similar to test implementation, the activities that do not differ between execution techniques
can be ignored (e.g., preparing the system under test for execution).

Test Maintenance

Maintenance includes all changes of the test suite that can be predicted beforehand. This
includes adaptions of the test suite because of planned changes of the system under test as
well as estimated adaptions due to technical reasons. Similar to test execution, the efforts for
test maintenance have to be approximated for a given time period under observation.

Manual Test Execution: For manual test execution, this includes approximations for the
effort of adaptions of the test descriptions during the time period under observation.
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Automated Test Execution: For automated test execution, this includes approximations
for the efforts for maintaining and reprogramming test scripts during the time period
under observation.

Similar to test implementation and test execution, tasks that have to be done equally for each
execution techniques do not have to be considered.

5.3 Cost Estimation Model

In the following, we present our analytic cost estimation model to quantify the impact of
execution modes on overall testing expenses. We align the basic structure of the cost model
along the activities of the system test case life-cycle (see Section 1.1.1 The System Test Case
Life-Cycle):

The total costs C(test_suite) of the execution mode of a test suite test_suite consist of the
total costs of the activities implementation (Cimpi(test_suite)), execution (Cexec(test_suite))
and maintenance (Chaint (test_suite)) of a test suite:

C(test_suite) = Cimpi(test_suite) 4+ Cexec(test_suite) + Caint (test_suite)

Activity Costs — Implementation

The total costs of implementation Cimpi(test_suite) sums up the costs for implementing
Cimpl (step, exectech(step)) for each test step step with an execution technique exectech(step)
as defined in the execution mode:

Cimpl (test_suite) = Z Cimpl (Step, exectech(step))
step € test_suite.test_steps

Activity Costs — Execution

The total costs of execution Cexec(test_suite) sums up the costs for executing each test
step step in the period under observation. The total costs of executing a test step consists of
its costs for a single execution Cexec(step, exectech(step)) using a given execution technique
exectech(step) multiplied by the number of references to it within the test suite #refs(step)
and the expected number of test runs #testruns of the test suite:

( Cexec (Step, exectech(step)) x

Ceoxec(test_suite) = Z #refs(step) x

step € test_suite.test_steps #testruns (test,suite) )

Activity Costs — Maintenance

The total costs of maintenance Craint (test_suite) sums up the costs for maintaining each test
step test cmaint (Step, exectech(step)) using a given execution technique exectech(step) within
the period of consideration:

Crnaint (test_suite) = Z Cmaint (Step, exectech(step))

step € test_suite.test_steps

Table 5.1 summarizes all cost factors of our cost model.



68 CHAPTER 5. CHOOSING EXECUTION MODES

Table 5.1: Basic cost factors.

Depends on

Execution
Cost Factor Test Suite Test Step Technique
Implementation Cimpl X X
Execution Cexec X X
Maintenance Cmaint X X
No. of References #refs X
No. of Test Runs  #testruns X

5.4 Evaluation

In the following, we report on an industrial case study in which we applied our cost estimation
model to a real-world test suite having the following goals: (1) To evaluate the applicability of
the estimation model to real-world test suites. (2) To quantify the consequences of execution
modes on test execution efforts.

5.4.1 Research Goal
We define the goal of our study using the goal definition template of Wohlin et al. [2000]:

We analyze ezxecution modes of system test suites
for the purpose of characterization and quantification
with respect to consequences to system testing efforts
from the viewpoint of test engineers
in the context of industrial software projects.

Concretely, we want to find out how much the decision for a certain execution mode affects
the overall testing efforts (with respect to the overall costs calculated by our cost estimation
model). We show to what extent system testing effort can be reduced by choosing optimal
execution modes.

5.4.2 Study Object and Case Study Context

Our study object is a test suite from Munich Re (see Section 1.5 Case Study Partners).
The test suite consists of 41 manual system test cases testing a rich client-based business
information system. The test cases have been created along the system’s use cases. Besides
some exceptions, every test case is testing one use case flow. However, for one flow, several test
cases might exist. The test suite is designed following our test meta-model as we presented
it in Section 5.1. All test cases are composed of 194 reusable test steps each covering parts
of the business processes under test. Most test steps involve complex user interface handling
covering simple user interface interactions such as clicking a single button up to performing
more complex tasks involving several Ul widgets and dialogs.
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Originally, the test suite implements a full manual execution mode since all test steps
are equipped with a test description in natural language. Goal of this case study is to find
out whether it pays off to switch from the existing manual execution to a different execution
mode. We took into consideration the following execution modes:

Execution Modes on the Level of Test Suites

We took into consideration two execution modes that define a single execution technique for
the whole test suite:

Fully-Manual: Each test case is executed completely manual; no automated execution is
involved (this reflects the currently implemented execution mode and works as a baseline
for comparison).

Fully-Automated: Each test case is executed completely automatically executable. Each
test step is realized by a test script. This execution mode is the opposite of fully-manual.

Execution Modes on the Level of Test Cases

We took into consideration another execution mode that defines individual execution tech-
niques for each test case:

Manually-or-Automated: In this coarse-grained automation-decision, one must decide for
each test case to execute it either completely automatically or completely manually.
Since many solutions are possible, manually-or-automated actually represents a group
of configurations of this execution mode.

Ignoring the two border cases fully-manual and fully-automated, in our case study, 24! —2
different configurations of this execution mode are theoretically possible (ignoring the
two border cases fully-manual and fully-automated). As a simplification, we focus on the
configurations that cause the minimal costs (manually-or-automated-min) and maximal
costs (manually-or-automated-maz).

Execution Modes on the Level of Test Steps

Finally, we took into consideration another execution mode that defines execution techniques
for each test step individually:

Semi-Automated: In this fine-grained automation-decision, test cases are executed in a
hybrid format since each test case may contain manual and automated parts. In this
execution mode, the selection for an execution technique is made for each test step. If a
test step is set to be automated, it will be executed automatically whenever it appears
in a test case.

Similar to manually-or-automated, 2'°* — 2 configurations of this execution mode are

theoretically possible (ignoring the two border cases fully-manual and fully-automated).
However, this is just a theoretical number and not each of them may be feasible to im-
plement (or reasonable). Furthermore, we focus on the solutions which causes minimal
costs (semi-automated-min) and maximal costs (semi-automated-maz).
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The execution modes considered in this study represent a small selection of possible execution
modes. Other conceivable execution modes might include different selections of cost factors,
which have to be integrated in the calculation. For example, in our case study, we assumed
that even in the execution mode fully-automated, tests are not executed unattended but
a person must supervise the automated execution. Therefore, we include the automated
execution time as labor time in the calculation. However, in other scenarios, automated test
cases might be executed totally unattended without supervision.

5.4.3 Data Collection

To apply our cost estimation model to the test suite of our case study, we define a set of
cost factors to capture the differences between the execution modes we want to compare.
Furthermore, we define elicitation methods for each cost factor and perform the actual data
collection.

Precise values for most cost factors can hardly be obtained in advance. Real values
can only be obtained in retrospect. Therefore, we rely on expert estimation techniques to
assess the value of those cost factors for which concrete measurement techniques cannot be
applied. All estimations have been made by a trainee employed at Munich Re unless otherwise
stated. The trainee has a solid background in programming and acts in this case study as test
engineer, test script developer and manual tester. The trainee received training by domain
experts of Munich Re to get familiar with the application domain and the system under test.
Furthermore, he executed the whole test suite manually as well as exemplarily implemented
test scripts for randomly selected test cases to get used to the role of a manual tester and
test script developer.

In this study, we use working time to express the cost factors whenever possible. We
assume that manual testers and test script developers are paid equally. If otherwise, working
time can be corrected with factors representing the difference. In the following, we describe
how we collected the data for each cost factor sorted by activity (Table 5.2 shows the data
collection methods for all cost factors of the case study.):

Implementation Time:

The elicitation technique for the implementation time of test steps depends on the chosen
execution technique. For automated execution, we estimate the time necessary to program
test scripts. For manual test execution, we approximate the time for writing test descriptions:

Programming Test Scripts — cimpi(step, (AUTOMATED)): The test script develop-
ment strategy in our case study was a capture-replay-plus-adaption like style. This
means, that each test step has been automated using capture-replay facilities of the test
automation tool. If capture-replay was not sufficient to automate a test step, the test
scripts that have been generated by the capture-replay tool have been manually mod-
ified. This was the case, for example, if test scripts had to be parameterized. Just in
exceptional cases in that the capture-replay facilities of our testing tool were by far not
sufficient, test scripts have been programmed manually. We estimated the automation
time in a two-step process: First, we manually classified all test steps based on their
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Table 5.2: Cost factors and their data collection methods within the case study.

Data Collection Method

Cost Factor (AUTOMATED) (MANUAL)

Cimpl Manual classification based on esti- | Manual classification based on esti-
mated test script development effort; | mated creation time; expert estima-
experiments with random samples to | tion to determine the average devel-
determine average values. opment time for each class.

Cexec Manual classification based on esti- | Experiments to determine average
mated execution time; experiments | execution time.
with random samples to determine
average values.

Cmaint Interviews with the test manage- | Interviews with the test manage-
ment: Same values as programming | ment: Same values as creation of step
test scripts. descriptions.

#refs Static analysis: Number of references to each test step.

H#testruns Interviews with the project’s test management.

expected automation effort into the following classes: capture-replay; capture-replay +
minor adaptions; capture-replay + major adaptions; custom-time. In a second step,
we took several random samples from each class, created test scripts and tracked the
development time. Since there were no outliers, we used the average development time
of the random samples as representative values for each class.

Writing Test Descriptions — cimpi(step, (MANUAL)): Similar to the implementation
time for automation, we manually classified each test step based on the expected effort
to write test descriptions in natural language for them. We defined three classes based
on how labor intensive we estimate the creation. Based on own experience in writing
test descriptions, we defined representative values for each class.

Execution Time:

To estimate the execution time, we estimate the run time of test scripts and the time testers
need to perform test steps manually.

Automated Execution Time — cexec(step, (AUTOMATED)): To estimate the execu-
tion time for automated execution using test scripts, we classified each test step based
on their test scripts’ expected execution time. We created six classes based on how
many Ul elements and dialogs are involved in executing them. For each class, we took
several random samples, exemplarily implemented test scripts, and executed them to
measure their execution time. Based on the measured execution times, we took the
average execution time over all samples of a class as its representative value.
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Manual Execution Time — cexec(step, (MANUAL)): Compared to other cost factors,
we were able to gather exact values for the manual execution time of each test step. We
executed the whole test suite manually once and tracked the execution times for each
step. Thereby, we received multiple measured values for each test step*. Subsequently,
we used the average time for further calculation.

Number of Invocations per Step — #refs(step): We automatically counted how often
each test step is referenced within the test suite. By this, we figured out how often each
test step is executed during one test run.

Number of Planned Test Runs — #testrun: To receive the number of expected test runs
during the system’s life cycle, we performed interviews with the system’s test manage-
ment. The interviews revealed, that the test suite is planned to be executed 40 — 60
times within the next two years.

Maintenance Time:

Based on interviews with the test management, we did not find a universal way of reliably
predicting how often and to what extent each test step will be affected by maintenance tasks.
However, the test management agreed that each test step will be affected by maintenance
tasks during the time of consideration. In agreement with the test management, we applied a
simple heuristic to predict maintenance costs of test steps: We assumed that every test step
is changed once within the time of consideration.

Maintaining Test Scripts — cmaint(step, (AUTOMATED)): Since the test scripts are
created in a capture-replay-plus-adaption like style, we assumed that maintaining them
will most likely lead to creating them from scratch. Therefore, we took the script’s
creation time also as an approximate value for their maintenance effort®.

Maintaining Test Descriptions — cpaint (Step, (MANUAL)): Similar to the maintenance
costs for test scripts, we also used a step description’s creation time as the value for
maintenance time.

5.4.4 Study Execution

For fully-manual and fully-automated, calculating the overall costs is straightforward since
just one configuration exists implementing those execution modes. However, for manually-or-
automated and for semi-automated, multiple configurations exist since one must decide which
parts of the test suite to execute manually and which automatically. We found configurations
for each execution mode with minimal and maximal costs using the linear programming
solver from GLPKS. We created solver models for each execution mode and thereby received
the overall costs for an optimal configuration (min) as well as for the worst configuration
(max). For each configuration, the solver also stated which test steps to execute automatically
and which manually. However, as we were solely interested in the economic impact of each
execution mode, we will only discuss the overall cost.

4The number of measured values per step depends on the factor #invoc(ts).
5If the test scripts would follow a different programming style, other estimation approaches can be applied.
SGNU Linear Programming Kit http://www.gnu.org/s/glpk


http://www.gnu.org/s/glpk

5.4. EVALUATION 73

5.4.5 Results

Figure 5.2 illustrates the results of our calculations. We used the cost factor #testruns
(total number of test suite runs) as a independent variable to get more insights on how
costs of execution modes develop: We ran each calculation several times changing the value
of #testruns from 0 to 300 test runs’. The x-axis of Figure 5.2 shows different values for
#testruns. In this case study, the actual number of planned test runs is 40 — 60 (indicated
by the gray area).

The y-axis of Figure 5.2 shows the total costs C' for each execution mode. For fully-
manual and fully-automated, the costs increase linearly based on the number of test suite
runs. However, for manual-or-automated and semi-automated, several solutions exist (as
explained in Section 5.4.2). For both types of execution mode, Figure 5.2 shows two values:
One solution resulting in minimal and one resulting in maximal total costs C. The difference
between the minimal and maximal costs (highlighted as patterned area between minimal and
maximal values) indicates the continuum of possible solutions of execution modes.

7 Although this case is unrealistic, we included it to see the fixed costs for each execution mode.
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Figure 5.2: Total costs for each execution mode (based on the number of test runs).
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Fully-Manual and Fully-Automated:

Although the fully-manual execution mode has rather low fixed costs, the total costs rapidly
increase the more often the test suite is executed. In contrast, the fully-automated execution
mode has high fixed costs, but the increase of costs is low the more often the test suite is
executed®. Based on our calculation, the higher creation and maintenance effort of a full test
automation will pay off, compared with fully-manual, after 110 test runs in this study.

Manually-or-Automated:

Looking at the optimal solutions for the execution mode manually-or-automated, separating
a test suite into manual and automated test cases will not pay off until 60 test runs in
comparison with full manual test execution. Starting at ~80 test runs, there is a small range
where the execution mode manually-or-automated causes fewer costs than fully-manual or
fully-automated execution. However, if executed more often, the difference to fully-automated
decreases quickly.

In contrast, if the separation into manual and automated test cases is done the wrong
way, costs can be far above all other execution modes. Although it is unrealistic that an
experienced test engineer would choose such unsuitable execution modes, it shows the range
of consequences.

Semi-Automated:

Selecting the optimal allocation of test steps to execute manually and steps to execute auto-
matically, Semi-Automated execution will start to pay off early (after ~20 test suite runs).
Similar to manually-or-automated, the costs converge to the costs for fully-automated if the
test suite is executed more often. However, compared to manually-or-automated, the conver-
gence is slower. Between ~60 and 300 test suite runs (the maximum we calculated), the costs
for semi-automated are ~20% — 30% lower compared with all other execution modes.

Similar to manually-or-automated, if semi-automation is implemented the wrong way, the
costs can be high. However, due to the experience of test engineers, we consider this upper
bound as unrealistic to reach.

5.4.6 Interpretation and Discussion

With this case study, we wanted (1) to evaluate if the estimation model is applicable in a
real world context and (2) to describe the impact of execution modes to the test execution
expenses. Regarding (1), we found that data for the relevant factors can be collected with an
acceptable effort. Where we had to estimate values, we used a combination of classification,
sampling and experimentation. As we did not evaluate the accuracy of our estimation, we
can only discuss (2) on a qualitative basis.

Figure 5.2 shows the estimated costs for multiple numbers of test runs. One can perceive
that the costs for different execution modes differ strongly. Hence, selecting execution modes
pays off: A common test execution strategy is to decide per test case whether to automate
it or not (manual-or-automated). Surprisingly, only a small window (~100 — ~140 test runs)

8Tn this study, we included the execution time for automated test cases in the calculation. In case of a
totally unattended automated execution of test cases, one could exclude this factor from the calculation. This
would lead to no increase of the total costs the more often the test suite is executed.
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exists where this strategy gives a considerable advantage over either fully manual or fully
automated test suites. In our case study, semi-automated test execution would be more cost
effective. The advantage of semi-automated test execution can be gained by deciding on
automation on a per-step basis. This advantage can be reached from just a few test runs on
(~20 test runs) and is maintained for all numbers of testruns (we calculated up to 300 runs).

However, in our calculation, we assumed that the number of test runs is known in advance
(or at least a reasonable estimation). In software development settings with fixed testing
plans, such estimations might be quite accurate. However, if system test suites are executed
in an ad-hoc style without strict testing plans, getting a reliable estimation of the number of
expected test runs is hardly possible.

Furthermore, all strategies that are neither fully automated nor fully manual bear the risk
of automating the wrong parts, which can drive costs heavily. Hence, it is crucial to find out
which parts to automate and which to execute manually. Additionally to the overall costs
of a test suite, our calculation also reveals the exact configuration of the execution modes
manually-or-automated and semi-automated in terms of detailed lists which test cases (or
test steps) to automate and which to execute manually. To help test engineers in gaining
more information of the results, our calculation can easily be extended to provide additional
information about individual parts of test suites, for example, by sorting the list of test cases
(test steps) based on their priority to be automated or manually executed. This information
can be used by test engineers to tailor execution modes individually based on project needs.

5.5 Benefit Estimation

In the previous section, we applied our effort estimation approach to an industrial test suite
and motivated the need to choose execution modes deliberately having the overall costs in
mind. The results showed that the costs can differ strongly between execution modes, however,
the actual influence to the overall system testing costs is unclear. In this section, we want
to discuss the benefit that is gained by our approach. More specifically, we perform a rough
benefit estimation to find out how much percent of system testing costs can be saved by our
approach.

5.5.1 Benefit Estimation Model

In the following, we present a simple model that enables a rough benefit estimation of our
approach. Goal of the model is to estimate how far the overall system testing costs can be
reduced by our approach. Generally, the focus of this thesis is on the testing activities of the
system test case life-cycle, namely test creation, test execution, and test maintenance (see
Section 1.1.1 The System Test Case Life-Cycle). These activities cover just tasks that focus
on test case artifacts, however, the overall process of system testing comprises more tasks
than just test case creation, execution, and maintenance. Hence, we use the generic system
test process presented in Section 2.3 A Generic System Test Process and extend our system
test case life-cycle with the missing activities (see Figure 5.3).
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Having this list of all activities that are involved in system testing, we assume that the
overall costs of system testing calculates by summing up the costs of each individual activity:

Test Analysis Costs
Test Design Costs
Test Creation Costs

Test Execution Costs

+ o+ + +

Test Maintenance Costs

Overall Costs of System Testing

Relations Between Test Activity Costs

Each of the contributions of this thesis focuses on directly reducing the costs of system test
case life-cycle activities (see Section 1.4 Contributions). Hence, for each system test case
life-cycle activity, we can give sufficient predictions of the average costs of these activities and
the benefit of our contributions regarding these activities. Unfortunately, for the activities
outside the system test case life-cycle (test analysis and test design), we have no empirical
data to perform accurate effort informations.

To overcome this lack of information, and to make our benefit estimation model as simple
and transparent as possible, we do not try to make precise cost estimations of each of those
activities, nor do we calculate the actual overall costs of system testing. Instead, we estimate
the relative size of each activity within our calculation (for example, Activity A is typically
three times more expensive than Activity B). Having the difference in size between all activities
allows making predictions without having exact values for each testing activity. Once we know
in as far individual activities are affected by our approach, we can use our relative model to
extrapolate the change of the overall costs. In the following, we describe how we use empirical
data and estimations to determine the proportions between testing activities.

Costs for Activity Test Analysis: The goal of this activity is to analyze the specification
of the system under test and to come up with test conditions (testable aspects of the system
under test) that shall be validated by test cases. Furthermore, test slices are identified that
satisfy the test conditions (see Section 2.3.1 Test Analysis).

Since none of our investigations or studies addressed these tasks in detail, we have no pre-
cise data on how much effort is spent on this activity in practice. To perform our calculation,
we estimate the costs for test analysis by comparing it with other activities for which we have
more precise data:

. Activities of System Testing N )
1 \ The System Test Case Life-Cycle P

Activity: Activity: 3 Activity: Activity: Activity:
i | Test Analysis Test Design i | Test Creation Test Execution Test Maintenance| |

Figure 5.3: Activities within the generic system test process (see Section 2.3).
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In the remainder of this thesis, we assume that the costs for test analysis are in the same
order as for the implementation of test cases. We argue, that the effort of both activities
scales linearly with the number of test cases that are developed. Furthermore, we expect that
the effort of coming up with a test condition and identifying test slices from specifications
(high-level test case) is similarly labor-intensive as implementing an executable low-level test
case (activity Test Creation).

Costs for Activity Test Design: The goal of this activity is to extend each test slice
to a high-level test case containing rough outlines of test procedures (see Section 2.3.2 Test
Design).

Similarly to the test analysis, we lack detailed information on test design costs in practice.
However, likewise to the activity of test creation, the effort for creating high-level test cases
from test slices grow linearly with the number of test cases. Therefore, (similarly to test
analysis) we assume that the costs for the activity test design is equal to the costs for test
creation.

Costs for Activity Test Creation: The goal of this activity is to enrich high-level test
cases with detailed information that is necessary to actually perform the test cases (see
Section 2.3.3 Test Implementation).

Throughout the case study of this chapter, we gathered detailed information to estimate
test creation efforts with reasonable precision. Therefore, we use the test creation costs as a
reference activity to define the costs of the other activities relatively to it ( TestCreationCosts).

Costs for Activity Test Execution: The goal of this activity is to actually run test
cases. Therefore, manual test cases are performed by testers or, in the case of automated test
execution, test scripts are started and supervised (see Section 2.3.4 Test Ezecution).

Similarly to the activity test creation, we gathered detailed information of test execution
effort throughout the case study of this chapter. However, to simplify the calculation, we
use empirical data from our studies to investigate average values of test execution costs. We
calculate a test execution factor (TextEzecFactor) that shows the average ratio between the
costs of creating a test cases and executing it once. To estimate the overall costs for test
execution, we multiply this estimated average value for one execution with the number of
planned test runs (#testruns)

Costs for Activity Test Maintenance: The goal of this activity is keep test case arti-
facts up to date and adapt them to changes of the system’s functionality or modifications
of the system interface (that is used for testing) (see Section 2.3.5 Maintaining System Test
Artifacts).

In the previous case study, interviews turned out, that there is no universal way of reliable
predicting how often and to what extent each test step will be affected to changes. Therefore,
we used a simple heuristic to perdict the maintenance effort of test steps: We assumed that
every test step is changed once within the time of consideration (see Section 5.4.3 Data
Collection). Building on this assumptions, we estimate that, for our benefit estimation, test
maintenance is causing similarl costs as test creation. Furthermore, we multiply this costs by
the number of expected maintenance tasks (#mainttasks).
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Relative Benefit Estimation Model

Using the relations between the testing activities of our model, we can approximate our
calculation of the overall system testing costs as follows:

TestCreationCosts (Test Analysis Costs)
+ TestCreationCosts (Test Design Costs)
+ TestCreationCosts (Test Creation Costs)
+ TestCreationCosts x TextEzxecFactor X #testruns (Test Execution Costs)
+ TestCreationCosts x #mainttasks (Test Maintenance Costs)

= Opverall Costs of System Testing

5.5.2 Quantitative Benefit

The contribution presented in this chapter addresses all three activities of the system test case
life-cycle (namely test creation, execution, and maintenance) (see Figure 5.4). To find out in
as far the overall system testing costs are reduced by applying our approach, we first calculate
in as far the activities test creation, execution, and maintenance benefit from our approach.
Having this information, we can use our relative benefit estimation model to calculate how
much our approach reduces the overall costs of system testing.

L Activities of System Testing TSI oSITIoIIIsIoToToooToiooioioiooos )
1 i The System Test Case Life-Cycle P

Activity: Activity: 3 Activity: Activity: Activity:
Test Analysis Test Design i | Test Creation Test Execution Test Maintenance| | |

Contribution:
Optimizing

Execution Modes

Figure 5.4: System testing activities that are addressed by our contribution.

Reduction of Test Creation, Execution, and Maintenance Costs

To estimate the benefit for the system test case life-cycle activities that is gained by applying
our approach, we compare the total costs for an optimal execution mode (as it has been
proposed by our approach) with the total costs of the original execution mode (fully-manual
or fully-automated in our case study). Furthermore, to consider the initial investment of our
approach, we add additional costs for performing our approach to the costs of an optimal
execution mode:
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Costs of optimal execution mode (system test case life-cycle activities)
+ Costs of performing cost estimation analysis

= Total costs of our approach (system test case life-cycle activities)
vS.

Costs of original execution mode (system test case life-cycle activities)

Data Elicitation: We apply our estimation model based on the calculations of the previous
case study. More specifically, we use the costs for optimal and for the original execution
modes as we calculated them in Section 5.4 Ewvaluation. The effort of performing our cost
estimation analysis splits up in two parts: Collecting all relevant data (manual classification,
expert estimations, static analysis, and interviews. See Section 5.4.3 Data Collection) and for
setting up the tooling to perform the actual calculation (see Section 5.4.4 Study Ezecution).
Based on the time we spent on performing the case study, we estimate the effort for both
parts to be ~100 working hours.

Results: Figure 5.5a gives an overview of the costs that are saved for the system test case
life-cycle activities (test creation, execution, and maintenance). In the figure, the number
of planned test runs have been used as independent variable (x-axis). The y-axis shows the
relative improvement (in percent) of test creation, execution, and maintenance costs compared
with the original execution mode fully-manual: Different execution modes are compared with
the original execution mode of our case study (fully-manual). However, this data is just an
intermediate result on the way to calculate the overall system testing effort that is saved.

100%

Fully-Automated ==+ 100%
90% Manually-or-Automated (min) ’ F ully—AutomaFed e
80% - Semi-Automated (min) 90% l\rIanually-or.-Automated (m}n)
=z 0 — 80% Semi-Automated (min)
[<5) +
S 70% g
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60% — L S g
= (]‘70 ﬁv.!‘.‘""ﬁ = 60%
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E 20% -+ 3 ‘ 4
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(a) Reduction of test creation, execution, and

maintenance costs (b) Reduction of overall system testing costs.

Figure 5.5: Reduction compared to execution mode fully-manual.
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Reduction of Overall Testing Costs

To estimate the benefit of our approach to the overall system testing costs, we use our relative
benefit estimation model (see Section 5.5.1 Benefit Estimation Model) to extrapolate the costs
for all system testing activities.

Results: Figure 5.5b shows the benefit for the overall system testing costs that is gained
by our approach (as extrapolated by our benefit estimation model). Similarly to the previous
figure, the number of test runs have been used as independent variable (x-axis). In this case
study, the actual number of planned test runs is 40 — 60 (indicated by the gray area).” The
y-axis of the figure shows the relative improvement (in percent) of the total system testing
costs (as extrapolated by our benefit estimation model).

Based on this calculation, we can get the following information for the test suite of our case
study: Similar to the results of the previous case study, the benefit of individual execution
modes differ strongly. Compared to the original execution mode fully-manual, the execution
modes manually-or-automated and fully-automated do not have a positive benefit until the
test suite is executed more than ~60 times resp. more than ~110 times. The execution mode
semi-automated has a positive benefit right from the beginning. In the relevant range of test
runs (40 — 60, see Section 5.4 Fvaluation), our calculation predicts that the execution mode
semi-automated has a clear positive benefit. Implementing a semi-automated execution mode
will lead to ~20% — ~30% reduction of the overall testing costs compared with the original
execution mode fully-manual.

5.6 Summary

We addressed the problem of choosing execution modes for system test suites. To support
this decision, we introduced a test effort estimation model that included expert estimations
for creation, maintenance and execution of system test suites. The model can be used by test
engineers to gain additional information about the test suite and helps to decide which parts
of test suites to automate and which parts to execute manually.

In an industrial case study (41 test cases), we applied this estimation model for different
test execution modes of the same test suite. We reported on how we estimated values for
the cost factors of the model and calculated the total effort (in form of costs) for different
execution modes and different numbers of test runs. The case study demonstrated that it is
feasible to collect the data needed for the estimation model and that the efforts for different
execution modes vary considerably. However, although our model uses the concept of costs to
model testing efforts, we do not claim to forecast precise costs. Rather, our aim is to provide
data that enables experts to compare different test execution strategies.

We furthermore performed a coarse estimation of the benefit that is gained by our ap-
proach. For our test suite of 41 test cases (40 — 60 planned test runs), performing our effort
modeling approach and choosing an adequate execution mode would reduce the overall system
testing costs by ~20% — ~30% (within two years).

9In this case study, one maintenance task is expected (see Section 5.4 Fvaluation, #mainttasks = 1).



Chapter 6

Test Refactoring Using Grammar
Inference

The study in Chapter 4 Clones in Manual System Tests has shown that industrial test suites
contain many clones (~43 — 85%). Clones make tests complex to understand since they blow
up test artifacts unnecessarily. Furthermore, they increase maintenance effort, since changes
have to be performed multiple times.

Refactoring tests by extracting cloned parts into reuse components (e.g., subroutines that
can be referenced) will avoid unnecessarily recurring maintenance tasks. In Chapter 4, we
demonstrated that the size of manual system test suites is up to two times larger than nec-
essary. However, test suites also have to be understandable in order to support maintenance
activities. Therefore, the call structure between tests and reuse components has to be sim-
ple. Furthermore, reuse components have to represent meaningful parts of tests to be un-
derstandable. Extracting the right parts of tests to reuse components is crucial to support
maintainability and understandability.

Example:

Figure 6.1 shows three automated test cases, which are testing the payment options of a web
shop. The test cases are denoted in a keyword-driven notation! [Fewster and Graham, 1999]
(a common notation for automated test). The test procedure of each test case consists of a
sequence of (parameterized) references to keywords. For each keyword, a test script exists that
will be executed automatically during test execution?. The idea of keyword-driven testing is
to reuse keywords whenever possible. However, since all three test cases in the example are
testing the same functionality, their test procedures contain large common (sub) sequences of
references to keywords — test clones (colored in gray).

Figure 6.2 illustrates two different attempts to extract clones: Whereas Figure 6.2a shows
the result of a naive clone extraction approach, the second attempt (Figure 6.2b), presents
an approach in which overlapping clones have been considered to define reuse components.
Both attempts result in clone free test suites, however, their quality differs: The second
decomposition is not only easier to understand, since its call structure is simpler (1 vs. 2
levels of indirections), it is also easier to maintain since it is smaller (20 vs. 23 steps in total).

!This example does not follow the concrete syntax of a certain testing language or tool.
2The test scripts are not part of the example.

81



82 CHAPTER 6. TEST REFACTORING USING GRAMMAR INFERENCE

Tests:
Test: funds-transfer disabled

. Trigger Cart check-out
. Accept Terms & Conditions
. Verify funds-transfer payment is not available

1. Login to System Admin Interface

2. Set funds-transfer setting Disabled
3. Logout

4. Login to Webshop userl/pw
5. Add Product to Shopping Cart 1234
6

7

8

Test: funds-transfer just one order

. Trigger Cart check-out
. Accept Terms & Conditions
. Select funds-transfer payment
9 Enter bank account accountl
10. Place Order
11. Verify: System rejects order

1. Login to System Admin Interface

2. Set funds-transfer setting just one
3. Logout

4. Login to Webshop userl/pw
5. Add Product to Shopping Cart 1234
6

7

8

Test: funds-transfer default setting

. Login to Webshop userl/pw
. Add Product to Shopping Cart 1234
. Trigger Cart check-out

Accept Terms & Conditions

. Select funds-transfer payment

. Enter bank account accountl
. Place Order

. Verify: Order successfully placed

o|~|o|a|s|w|n]-

Figure 6.1: An example of three test cases containing clones (cloned parts are highlighted).

Problem and Consequences:

Finding the right abstractions to create reuse components is challenging. Unfortunately,
knowledge about clones is not sufficient to remove them: Clones often overlap partly which
makes it difficult to decide which sections of test procedures shall be extracted. If this decision
is made wrongly, test suites will be difficult to understand since the call structure of test cases
and reuse components will be unnecessarily complex. Furthermore, reuse potential will not
be leveraged optimally which leads to test suites which will be larger than necessary and
therefor costly to maintain.

Approach and Contributions of This Chapter:

In this chapter, we present a method to support test engineers in manually extracting clones
from test cases to make test suites better maintainable and understandable. Our approach
focuses but is not limited to automated test cases denoted in keyword-driven like notations.
It complements existing clone detection techniques by presenting a proposal of how overlap-
ping clones can be efficiently extracted to reuse components. Key concept of our approach
is to apply grammatical inference algorithms to test procedures. We use the Sequitur algo-
rithm [Nevill-Manning, 1996], which infers a hierarchical structure from a sequence of tokens.
Sequitur creates a grammar in which recurring parts have been replaced by grammar rules.
Using this grammar, we propose a decomposition of a test suite in which all (overlapping)
clones have been efficiently extracted to reuse components. A visualization shows all test
cases, reuse components, and how they are referenced by each other.
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Tests: Reuse Components:
Test: funds-transfer disabled « Change funds-transfer payment settings
1. Change funds-transfer payment settings Disabled®= | 1. Login to System Admin Interface
2. Add Product to Shopping Cart 1234 2. Set funds-transfer setting <PARAM>
3. Initiate cart checkout [ 3. Logout
4. Verify funds-transfer payment is not available 4. Login to Webshop userl/pw
Test: funds-transfer just one order
1. Change funds-transfer settings just one® Initiate cart checkout
2. Check out cart with funds-transfer payment L 1. Trigger Cart check-out
3. Enter bank account and place order L 2. Accept Terms & Conditions
4. Verify: System rejects order

Check out cart with funds-transfer payment J

Test: funds-transfer default setting 1. Initiate cart checkout [
1. Login to Webshop userl/pw 2. Select funds-transfer payment
2. Add Product to Shopping Cart 1234
3. Check out cart with funds-transfer payment < Enter bank account and place order
4. Enter bank account and place order Ir—'a 1. Enter bank account accountl
5. Verify: Order successfully placed 2. Place Order

(a) Result of a naive approach to extract clones.

Tests: Reuse Components:
Test: funds-transfer disabled Change fund-transfer settings
1. Change fund-transfer settings Disabledd 1. Login to System Admin Interface
2. Checkout default cart q 2. Set funds-transfer setting <PARAM>
3. Verify funds-transfer payment is not available 3. Logout

Test: funds-transfer just one order Checkout default cart

1. Change fund-transfer settings just oneg 1. Login to Webshop userl/pw
2. Checkout default cart [ 2. Add Product to Shopping Cart 1234
3. Place order with funds-transfer [ 3. Trigger Cart check-out

4. Verify: System rejects order 4. Accept Terms & Conditions

Test: funds-transfer default setting Place order with funds-transfer
1. Checkout default cart 1. Select funds-transfer payment
2. Place order with funds-transfer 2. Enter bank account accountl

3. Verify: Order successfully placed 3. Place Order

WA

(b) A decomposition in which overlapping clones have been considered.

Figure 6.2: Two different ways of decompose a test suite to extract clones (the original test
suite is shown in Figure 6.1).

We surround our approach by two studies: In a pre-study (Section 6.2), we first show
the relevance of the problem by analyzing the extent and nature of overlapping clones in
automated system tests. The study revealed that significantly large parts of the test clones
overlap (up to 31.7%). In a evaluating study (Section 6.4), we challenge our approach and
demonstrate that it helps test engineers in practice in performing refactorings. The study
revealed not only that our approach is applicable in real world settings, but also that the
results help test engineers in refactoring clones. Both studies have been performed in an
industrial setting and were applied on real-world test suites. Finally, we present an estimation
of the benefit that is gained by applying our approach to industrial test suites. Parts of the
content of this chapter have been published in [Hauptmann et al., 2015].
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6.1 A Conceptual Test Meta-Model

The approach we present in this paper is not restricted to certain test automation approaches,
languages or tools. We nevertheless have some basic constraints on how automated test suites
are designed. In the following, we present our conceptual test meta-model (see Figure 6.3)
illustrating those constraints:

——— &  Test Suite @®——

* r* *

Test Case Reuse Component Step Definition

+ name + name + name
‘ ‘ + automation

I I

Container Composable

1 | call
* *

Step Reference
test procedure

-+ parameter

Figure 6.3: Conceptual test meta-model.

Test Procedures and Reusable Test Steps:

The essential part of test cases are test procedures which are sequences of steps. However,
the fundamental concept of our test model is that steps are reusable within the test suite.
Therefore, test procedures hold just references (step reference) to test steps, whereas the
actual steps are defined for the whole test suite (step definition). Furthermore, step references
can be equipped with parameters, which will be passed to the referenced steps during the
execution of the test suite.

Reuse Components:

To make recurring sequences of test steps reusable by multiple test cases, they can be ex-
tracted to reuse components. Similar to test cases, reuse components have test procedures. In
contrast, reuse components can be referenced by steps and thereby form a way to decompose
test suites. The examples in Figure 6.2 follows our conceptual test model and make use of
reuse components.

Test Automation for Test Steps:

To make test suites automatically executable, each step is equipped with an automation. A
common approach is to define step automations declaratively in form of sequences of inter-
actions with the system’s user interface. Those sequences are not executable themselves, but
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have to be interpreted by a testing tool. Many test automation tools provide reuse mechanisms
to extract parts of interaction sequences (similar to reuse components for test procedures).

Figure 6.4 shows an example of an interaction sequence in the test automation tool Ranorex?.
# Action
w1  Mouse Click Right  Center ¢ MewDatabase
%2 Mouse Click Left Center = AddGroup
443 Key Sequence Ranorex (Mo item)
§.4 Key Sequence {Return} (Mo item)

Figure 6.4: Example of a step automation in Ranorex.

6.2 Significance of Overlapping Clones

Before we present our approach to support test engineers in refactoring clones, we investigate
the significance of overlapping clones in the current practice of automated system testing.

6.2.1 Study Goal and Research Questions

We define the goal of our study using the goal definition template of Wohlin et al. [2000] and
break it down to three research questions:

We analyze overlapping test clones
for the purpose of characterizing and understanding
with respect to extent and complexity
from the viewpoint of test engineers

in the context of industrial software projects.

RQ 1: To what extent are test suites affected by cloning?

To understand the relevance of overlapping clones, we first need to know to what extent test
suites are affected by cloning in general. Therefore, the prevalence of cloning in test suites
constitutes the basis for the following investigations.

RQ 2: To what extent do clones overlap?
This question analyzes if overlapping clones are a common phenomenon in system tests. The
more often this phenomenon exists, the more extensive are its negative consequences.

RQ 3: How many clones overlap concurrently?

Whereas the previous research question analyzed to what extent clones overlap, this question
investigates whether overlapping clones are also a complex phenomenon. The more clones
overlap concurrently, the more complex it is to refactor those spots and extract them to reuse
components.

3http://www.ranorex.com
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6.2.2 Study Objects and Case Study Context

We answer the research questions by analyzing two automated system test suites of Munich Re
(see Section 1.5), which we named MR1 and MR2%. Both test suites are created using the test
automation tool Ranorex and consist of two conceptual parts, which we call test definition and
step automation: (1) The test definition, which contains test cases, reuse components, and
test procedures. (2) The step automation in which steps are automated in form of sequences
of interactions with the user interface. Since those step automation procedures provide reuse
mechanisms too, similarly as required by our conceptual meta-model, we consider them as
individual study objects on which we apply our approach too. Table 6.1 summarizes all parts.

Table 6.1: Study objects.

MR1 MR2

Test Step Test Step

Definition Automation  Definition Automation

No. Elements 77 Tests 91 Step Auto. 20 Tests 27 Step Auto.
Min. Length 2 Steps 1 Step 2 Steps 1 Step
Max. Length 35 Steps 68 Steps 5 Steps 66 Steps
Total Length 391 Steps 959 Steps 71 Steps 314 Steps

6.2.3 Data Collection

To answer the research questions, we perform automated clone detection to all four study
objects. We consider a test clone as a (consecutive) sequence of at least three steps within a
test procedure appearing at least twice in a test suite. A clone group contains all test clones
that have the same content. The detection of clones has been performed automatically using
the open source quality assessment toolkit ConQAT® [Juergens et al., 2009).

RQ 1: To what extent are test suites affected by cloning?

To determine to what extent test suites are affected by cloning, we calculate the clone coverage
CC for all study objects, which tells the relative amount of a test suite that is covered by
cloning.

RQ 2: To what extent do clones overlap?

To figure out whether overlapping clones are a common phenomenon, we measure the portion
of cloned sections that is affected by overlapping clones. We introduce a new metric overlap-
ping clone coverage (OCC[n>i]) which computes the relative amount of a test suite that is
covered by at least ¢ clones concurrently. Figure 6.5 illustrates this metric OCC.

4For non-disclosure reasons, we are not allowed to publish the actual names.
Shttp://www.congat.org
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Test 1 Test 2 Test 3 Clone Group BCDE
Clone Group CDE

/g/ (1) /; (1) :\f:}i 5 E Clone Group CDEGH
Te} E Overlapping Clone Coverage:
2 B 13 e |1 0oCcCu=0] - 100%
E H OCC[n=1] = 83.3%
F 0] & 1 0OCC[n=2| = 50%
H OCC[n=3] = 16.7%

Figure 6.5: Example of the metric overlapping clone coverage. Clones are marked as hatched
areas. The annotations next to the tests show the number of overlapping clones.

We first calculate the metric OCC[n>2] for all three study objects which shows the relative
sizes for a test suite that is covered by at least two clones concurrently. By dividing OCC[n>2]
by the clone coverage C'C' calculated in RQ 1, we get the share of by cloning affected test
steps that is covered by overlapping clones. In the example of Figure 6.5, 60% of all cloned
test steps are affected by overlapping clones.

RQ 3: How many clones overlap concurrently?

To figure out how complex the structure of overlapping clones is, we calculate the metric
OCC for all occurring numbers of concurrently overlapping clones (OCC[n>2], OCC[n>3],
OCCIn>4], ...).

6.2.4 Calculation of Overlapping Clone Coverage

In the following, we describe how we measured the metrics clone coverage and overlapping
clone coverage:

Step 1 — Transformation of tests to text files

As a first step, we transformed the test suite into a plain text format. We created a parser for
the test suite format of Ranorex. Since the goal of the clone detection is to find candidates
for clone refactoring, we ignored all parameters. Result of the transformation was a set of
text files for each study object. Each text file represents a single test case. The content of
each text file represents the test procedure, whereas each line represents a test step.

Step 2 — Perform clone detection

We performed automated clone detection and manually inspected random samples of clones
from each test suite to calibrate the transformation into text files and the configuration of the
clone detector. The result of the clone detection was, beyond some overview statistics and
figures, an XML file containing detailed information on the findings. The XML file contained
all detected clone groups and the included clones with their exact location.
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Step 3 — Cutting tests into clone snippets

Based on the clone detection result, we cut each text file into disjoint text snippets along the
boundaries of starting and ending positions of clones. Thereby, we got text snippets that are
entirely covered by either no clone, one clone, or several overlapping clones. Furthermore, we
annotated each snippet with the number of clones covering the snippet.

Step 4 — Calculate coverage

We grouped the text snippets of each test suite based on their number of overlapping clones.
By summing up the number of lines of each snippet from each group, we got the size of the
text bodies covered by each number of concurrently overlapping clones. The metrics clone
coverage C'C' and overlapping clone coverage OCC' can then be calculated by summing up
the text body sizes of the corresponding groups.

6.2.5 Results

During the study execution, it turned out that the tests in MR2 do not contain meaningful test
procedures, but just call a few steps. We did not find any clones in this study object, hence,
we ignore MR2 Test Definition in the remainder of the discussion. Table 6.2 summarizes the
clone coverage and the share of cloning that is affected by overlapping clones.

Table 6.2: Clone coverage and share of cloning that is affected by overlapping clones.

MR1 MR2
Test Step Test Step
Definition Automation Definition Automation

Clone Coverage 48.3% 44.3% - 36.1%

> 2 Conc. Overl. Clones 31.7% 25.2% - 18.0%

> 3 Conc. Overl. Clones 2.6% 7.8% - 5.8%
> 4 Conc. Overl. Clones 1.1% 2.4% - -
> 5 Conc. Overl. Clones — 0.5% - -

RQ 1: To what extent are test suites affected by cloning?

The share of the test suite that is affected by cloning in general (clone coverage) ranges from
36.1% (MR2 Step Automation) to 48.3% (MR1 Test Definition).

RQ 2: To what extent do clones overlap?

The share of cloning that is affected by at least two overlapping clones concurrently ranges
from 18% (MR2 Step Automation) to 31.7% (MR1 Test Definition).
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RQ 3: How many clones overlap concurrently?

The complexity of overlapping cloning ranges from three (MR2 Step Automation) to five
(MR1 Test Definition) concurrently overlapping clones.

6.2.6 Interpretation and Discussion

Based on the results, we draw the following conclusions:

Cloning is common in system test suites

We found considerable amounts of cloning in each test suite (up to 48.3%). This supports
our hypothesis from earlier studies [Hauptmann et al., 2013, 2012b] that cloning in industrial
system tests is a common phenomenon.

Clones commonly overlap in system tests

Significantly large parts of the test clones overlap (up to 31.7%). This supports our hypothesis
that overlapping clones are a common phenomenon in industrial system test suites.

Overlapping clones in system tests can be complex

Although the maximum number of concurrently overlapping clones differed among the test
suites, up to five test clones overlapped concurrently. This supports our hypothesis that
overlapping clones in system tests can complicate clone removal since clone relations are
difficult to grasp.

6.3 Approach: Supporting Test Engineers in Extracting Clones
from Automated System Tests

In the previous section, we investigated the significance of overlapping clones in system test
suites. In the following, we introduce an approach to support test engineers in extracting
clones to make test suites easier to understand and maintain. Existing clone detection ap-
proaches indicate which parts of a test suite are affected by cloning. This helps to extract
clones that do not overlap, however, if clones overlap, existing approaches reach their limits.
Our approach complements existing clone detection techniques by giving constructive help
for removing overlapping clones by extracting them to reuse components. We describe our
approach in two parts. We first describe the workflow in which we apply our approach. Sec-
ond, we describe in detail how we generate refactoring proposals, which is the key part in our
approach.
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6.3.1 Workflow

The workflow of our approach consists of the following three parts (see Figure 6.6):

@ generate refactoring proposal

Test extract understand

clones

Test Suite Test Refactoring
Engineer Proposal

Figure 6.6: The workflow of our approach.

Part I — Generate refactoring proposal

We automatically generate a refactoring proposal, which contains an outline of the test suite
that is free of cloning since all clones have been extracted efficiently to reuse components. It
therefore depicts a clone free version of the given test suite (see Section 6.3.3 for details of
the generation process).

Part IT — Understand clone relations

The generated refactoring proposal provides insights for test engineers to understand clone
relations within a given test suite. It shows how the cloned parts can be cut efficiently into
reuse components, as well as how they are connected by call structures.

Part III — Extract clones

The idea of clone removal is to make test suites easier to comprehend and maintain. However,
there are cases where adding reuse components introduces additional complexity that make
test suites more difficult to understand. Therefore, we consider clone removal as a creative
process that should not be done fully automatic. Instead, a test engineer should decide
whether it pays off to perform a refactoring or not. More specifically, we suggest that test
engineers use our generated refactoring proposal to gain better understanding about how the
cloned parts of tests are connected with each other and to decide if and how to refactor tests.
The size as well as the number of references of the proposed reuse components indicate the
refactoring potential for cloned parts and point out starting points for manual clone removal
by experts. We expect test engineers to build upon the refactoring proposal to develop own
ways of clone removal which suites the context of the test suite.

6.3.2 Foundation: Grammar Inference and Sequence Modeling

Grammar inference aims at acquiring grammars based on examples of a language. Our
approach makes use of sequence modeling, the subfield of grammar inference that examines a
single sequence of tokens and forms a model of it, for example as state machine or grammar.
This model can then be used to reproduce the original sequence [Nevill-Manning, 1996].
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Several approaches for sequence modeling exist. For our work, we use Sequitur [Nevill-
Manning and Witten, 1997], an algorithm and tool that infers hierarchical structures from
a given sequence of symbols and produces a context-free grammar that is able to reproduce
the original input sequence. Sequitur processes input sequences incrementally and replaces
repetitive phrases with references to grammatical rules that generate that phrases.

Example of Sequitur: Figure 6.7 shows an example of a sequence S (baabcabdabcabdab)
and a grammar that is generated by Sequitur. The input sequence S has been constructed
using the terminal symbols a, b, ¢,d. Recurring phrases within the sequence S are extracted
by Sequitur to production rules. For each production rule, a new nonterminal symbol (A, B)
is introduced that replaces the extracted phrase whenever it occurs. Furthermore, the body of
each production rule is subject to extraction, too: For example, the sequence abcabd appears
twice within the input sequence S and has been extracted to the production rule A. However,
both, the remaining input sequence as well as the newly created production rule A contain
the phrase ab which consequently has been extracted to a new rule B.

Input:
S — baabcabdabcabdab

Output:

S — baAAB (generates : baabcabdabcabdab)
A — BcBd (generates : abcabd)

B — ab (generates : ab)

Figure 6.7: A Sequitur example.

Goal and Strategy of Sequitur: The overall goal of Sequitur is to reduce the overall num-
ber of symbols within a context-free grammar. Unfortunately, finding the smallest (context-
free) grammar is a well-known NP-complete problem. Sequitur is a greedy algorithm that is
known to approximate good results [Nevill-Manning, 1996] and operates in space and time
that is linear to the input size [Nevill-Manning and Witten, 1997].

Sequitur pursues this goal by eliminating duplication in (the right parts of) production
rules. It processes input sequences symbol by symbol and updates the overall grammar when-
ever duplications are detected. The resulting grammar is uniquely defined by the following
two constraints [Nevill-Manning, 1996]:

Digram Uniqueness: No sequence of two consecutive symbols is allowed to appear more
than once in the grammar.

Rule Utility: Each production rule has to be used at least twice within the grammar.

Performance of Sequitur: To demonstrate the compressing effect of sequitur, we are
comparing two examples: The first example (Figure 6.8a) shows a minimal input sequence
and the result that is generated by Sequitur. In this example, a subsequence of the two
symbols ab appear twice in a row (the input sequences has a length of four symbols in total
plus one symbol for the name of the sequence). This subsequence is the smallest example that
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violates the constraint digram uniqueness, which will lead Sequitur to extract appearances
of this subsequence (production rule A). Furthermore, since the subsequence ab appears
twice, it satisfies the constraint rule wutility. Comparing the size (number of symbols) of the
input and output shows, that, in this minimal example, sequitur does not only miss its aim
to reduce the size of a given grammar, the size of the result is actually larger and grew by
20% compared to the initial grammar (6 symbols instead of 5). However, once we modify
the input sequence slightly (the redundant subsequence is longer and appears more often),
the Sequitur algorithm becomes more efficient resulting in an output grammar that is 20%
smaller (the overall size of the grammar reduced from 10 to 8 symbols — see Figure 6.8b).

Input: Input:

S — abab  (length : 5 symbols) S — abcabcabc  (length : 10 symbols)
Output: Output:

S — AA (length : 3 symbols) S — AAA (length : 4 symbols)
A — ab (length : 3 symbols) A — abc (length : 4 symbols)

(a) Number of steps: 6/5 = 120% (The result-  (b) Number of steps: 8/10 = 80% (The result-
ing grammar is 20% larger) ing grammar is 20% smaller)

Figure 6.8: Two minimal Sequitur example showing the performance of the algorithm.

Nevill-Manning [1996] reports on experiments that show that the compressing ability of
Sequitur can keep up with established general purpose compression algorithms and tools such
as gzip and ppm. Furthermore, Sequitur shows its strength on large input sequences. It
operates in space and time that is linear to the input size [Nevill-Manning and Witten, 1997].
For our studies, we build on its Java implementation available at the Sequitur website®.

6.3.3 Generating Refactoring Proposals Using Sequitur

The goals of Sequitur and of our approach are rather similar: Sequitur removes redundant
parts from production rules (sequences of terminal and nonterminal symbols) to reduce the
overall size of context-free grammars. Likewise, we want to remove redundant parts of test
procedures (sequences of test steps) to avoid unnecessary maintenance tasks. We make use
of this similarity and apply Sequitur to analyze recurring parts in test procedures. More
specifically, we transform a test suite into an input sequence for Sequitur and apply the
algorithm on the generated input sequence. Sequitur will identify recurring subsequences in
the generated input sequence and will generate a context-free grammar in that all recurring
parts have been extracted to production rules. We then use the optimized grammar to rebuild
the test suite and present it to test engineers as a proposal for refactoring. We expect this
approach to support test engineers in extracting clones as follows:

Clones in test procedures are identified: Our approach makes use of Sequitur’s ability
to identify recurring parts in sequences of symbols. By transferring a test suite into a
format that can be processed by Sequitur, sequences of test steps in test procedures will
be identified that appear multiple times (test clones).

Shttp://www.sequitur.info
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Test engineers learn how to extract test clones: Once Sequitur identified recurring se-
quences of symbols in the generated input sequence, it will extract them to production
rules — similarly as we want to extract clones to reuse components. By visualizing the
contents and structure of production rules of the resulting grammar, test engineers can
transfer this information to the original test suite and thereby learn how to extract test
clones to reuse component ideally.

Overlapping clones are handled automatically: Sequitur will furthermore identify re-
curring parts in existing production rules and will restructure rules if necessary — simi-
larly as we want to restructure existing reuse components to extract (overlapping) clones
to reuse components. This leads to the fact that clones that overlap und therefore are
difficult to extract manually are processed by our approach automatically.

In the following, we describe the generation of the refactoring proposal in detail:

Step 1 — Annotate clones in test suite

At first, we perform automated clone detection to identify clones in test procedures. We
annotate all those parts of the test suite that are affected by at least one clone. This step will
work as prefilter for Sequitur so it can focus just on those parts that are affected by cloning.

T1 T2 T3 @ annotate clones in test suite
A I C
B B D
C C E
g g IC; @ transform test suite to Sequitur input sequence
F G \
H S — (T1),(A),B,C,D.E,(F),(T2),(I),B,C,D,E,G,H,(T3),C,D.E,G,H
Test Suite @ Sequitur modeling
\j
S — (T1),(A),R1,(F),(T2),(I),R1,R3,(T3),R2,R3
T1 T2 T3 R1 — B,R2
R2 — CDE
A A R3 — GH
R1 yR1 R3I
‘ F R34
l l @ rebuild test suite
R1 R2 R3
B / c |a
R27 D H
E o
@ visualize reuse proposal

Refactoring Proposal

Figure 6.9: Example of the generation of refactoring proposal.
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Step 2 — Transform test suite to Sequitur input sequence

We then transform the whole test suite into a single input sequence for Sequitur. We transfer
the test procedures of each test case into sequences of text tokens, where each test step is
represented by a single token consisting of the name of the referenced step. Similar to our
pre-study, we normalized test steps by removing parameters.

We additionally add sentinel tokens at the beginning of each token sequence to mark the
start of the test case (see (T'1), (12), (T3) in @ in Figure 6.9). The sentinel tokens are
annotated with the name of the starting test cases and are necessary to rebuild the test suite
(see step 4). Furthermore, we annotated each step resp. the corresponding token if it is not
affected by cloning (see parenthesized symbols in Figure 6.9). The concatenation of all token
sequences is used as input sequence for Sequitur (see (@ in Figure 6.9).

Step 3 — Sequence modeling

Now, we apply Sequitur to our generated input sequence. Sequitur will identify recurring
sequences of tokens in the input sequence and will extract them to production rules. The
production rules themselves will be restructured again if they contain recurring sequences
of tokens. We adapt Sequitur slightly: Sentinel symbols and steps that are not affected by
cloning will never be extracted to production rules and therefore will always stay part of the
input sequence S.

The resulting grammar consists of a modified input sequence and a set of production rules.
Both do not contain any recurring sequences of tokens (see @ in Figure 6.9).

Step 4 — Rebuild test suite

We rebuild the test suite based on the grammar which has been generated by Sequitur. We
cut the modified input sequence S along the sentinels we added in step 2 and reconstruct the
test procedures of each test case.

Each production rule R of the generated grammar will be transformed into a reuse com-
ponent and added to the test suite. We name the reuse component based on the production
rules name (R1, R2, ...).

Since we abstracted some information from the test suite, the rebuilt test suite will just
be an outline of the initial test procedures. Details such as test data or comments will not be
part of the test procedures. However, since the goal of our approach is to provide an overview
of the new test suite’s structure, we consider this information as sufficient.

Step 5 — Visualize reuse proposal

As a last step, we visualize the new test suite to make it easily readable for experts. Goal of
the visualization is to understand which parts of a test procedure have been extracted to reuse
components, as well as how tests and reuse components are connected by calls. Therefore,
we visualize the rebuild test suite in a graph-like structure (see ¢ in Figure 6.9).
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6.4 Evaluation

To analyze the ability of our approach to help test engineers in practice, we apply our approach
in an industrial setting.

6.4.1 Study Goal and Research Questions

We define the goal of our study using the goal definition template of Wohlin et al. [2000]:

We analyze our approach
for the purpose of evaluation
with respect to its ability to support clone refactoring
from the viewpoint of test engineers
in the context of industrial software projects.

We define the research questions along the workflow of our approach: RQ 1 targets the
general idea of our approach to apply sequence modeling algorithm to test procedures. RQ 2
and RQ 3 evaluate the understandability of the results whereas RQ 4 investigates whether
our approach is helpful for test engineers.

RQ 1: Can sequence modeling be applied in our setting?

At first, we have to figure out whether sequence modeling is suitable to be applied in our
context. Crucial aspects are if Sequitur’s time and memory consumption is suitable to be
applied to give rapid feedback to test engineers.

RQ 2: Is the size of the refactoring proposals manageable by experts?

Formal grammars can be complex and difficult to understand. This question investigates
whether the size and complexity of the generated refactorings are understandable for test
experts.

RQ 3: Do the proposed refactorings result in meaningful reuse components?

Goal of clone refactoring is to make test suites easier to understand and maintain. Therefore,
the decomposition of test procedures into reuse components has to be comprehensible. Reuse
components have to cover meaningful and cohesive parts of test suites.

RQ 4: Do our refactoring proposals help test engineers?

Finally, we investigate whether our approach provides beneficial information to support test
engineers in improving a test suite’s quality regarding understandability and maintainability.

6.4.2 Data Collection

For this study, we use the same study objects as in the pre-study (see Section 6.2.2).
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RQ 1: Can sequence modeling be applied in our setting?

To investigate whether sequence modeling algorithms can be applied in our context, we mea-
sure the execution time as well as the memory usage of automatically generating refactoring
proposals using our approach.

RQ 2: Is the size of the refactoring proposals manageable by experts?

To investigate whether the generated refactoring proposals are understandable by test experts,
we measure their size and complexity. We indicate both using the following metrics: number of
reuse components, size of reuse components, and the depth of the structure of all refactorings.

RQ 3: Do the proposed refactorings result in meaningful reuse components?

To figure out whether our approach proposes understandable units of reuse, we rely on experts’
opinions. We consider a reuse component as understandable, if experts are able to give it a
short and concise name describing its scope.

RQ 4: Do our refactoring proposals help test engineers?

To figure out whether our approach provides valuable input for test engineers, we rely on
their decisions to implement the proposed refactorings. We perform interviews and ask test
engineers whether the proposed refactorings are technically feasible and if they will implement
them”. Additionally, we ask whether they generally consider our approach as beneficial to
support their daily work as a test engineer, and if yes, what concrete benefits they see.

6.4.3 Study Execution

In the following, we describe how we generated refactoring proposals as well as how we assessed
the quality of the outcome:

Generation of refactoring proposals

We used the tooling of our pre-study (see Section 6.2) to detect clones in the same study ob-
jects as in our pre-study (see Section 6.2.2). We automatically transformed the study objects
into input sequences for Sequitur. After the processing, we rebuild the basic structure of the
test suite based on the generated grammar and visualized it using the graph visualization
program Graphviz®.

Expert interview

We interviewed the lead test engineer of the study object MR2 for two hours. The interview
started with an introduction of our approach and the workflow how it is supposed to be used
by test engineers. We then guided the test engineer through all proposed reuse components
for study object MR2. The test engineer inspected the refactoring proposal’s visualization as
well as the corresponding clones in the actual test suite. For each proposed refactoring, the
test engineer answered the following questions:

7 Assuming that they have the necessary time to perform the refactoring.
Shttp://www.graphviz.org
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(Q1) Can you give this reuse component a short and concise name?
(Q2) Is it technically feasible to extract this reuse component?

(Q3) Would you implement this reuse component (slight modifications are allowed)?

At the end of the interview, the test engineer gave an additional assessment of the help-
fulness of the approach and results.

Action research

Since no test engineer of test suite MR1 was available for our study, we simulated an expert
evaluation by letting two researchers of our research group assess the understandability of the
generated refactoring proposals. Both researchers have been working in the field of system
test quality for several years and are experienced in test automation. However, since both
researchers are not part of the testing team of MR1, we focus just on Q1. Both researchers
went through all refactoring proposals collaboratively and tried to find short but comprehen-
sive names for the proposed reuse components based on the sequence of test steps. After each
reuse component was named, they went a second time through all proposed components to
double check the created names and ensure consistency.

6.4.4 Results

We present the results along the research questions:

RQ 1: Can sequence modeling be applied in our setting?

The generated Sequitur input sequence had a length of 1518 (MR1) and 432 tokens (MR2).
Generating refactoring proposals took ~9 seconds in total for MR1 respectively ~5 seconds
in total for MR2. However, the execution of Sequitur took less than half a second in both
cases. The memory usage of Sequitur was 8 Megabyte for MR1 and 1 Megabyte for MR2 (see
Table 6.3).

Table 6.3: Execution times and memory usage.

MR1 MR2

Length input sequence 1518 tokens 432 tokens

Load test suite 1,040 ms 493 ms
Clone detection 4,742 ms 2,556 ms
Transformation 29 ms 4 ms
Sequitur 317 ms 78 ms
Visualization 2,711 ms 1,927 ms
Total 8,839 ms 5,058 ms

Memory (Sequitur) 83,968 kB 1,024 kB
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RQ 2: Is the size of the refactoring proposals manageable by experts?

Our approach proposed between 18 and 50 reuse components covering 2 to 8 steps each. The
reuse components were structured in a maximum of 3 nested calls (see Table 6.4).

Table 6.4: Size and complexity of reuse components.

MR1 MR2
Test Step Test Step
Definition Automation Definition Automation
No. Elements 23 Comp. 50 Comp. — 18 Comp.
Min Size 2 Steps 2 Steps — 2 Steps
Max. Size 7 Steps 8 Steps - 8 Steps
Max. Nesting 3 Calls 3 Calls - 2 Calls

RQ 3: Do the proposed refactorings result in meaningful reuse components?

Both, the test engineer and the two researchers were able to find short and concise names for
all reuse components of MR2’s step automations resp. MR1’s test procedures.

RQ 4: Do our refactoring proposals help test engineers?

The test engineer we interviewed rated all presented reuse components as technically feasible
to extract. For 10 out of 18 reuse components, the test engineer claimed that he would imple-
ment the presented reuse component either as is or with slight modifications. In additional 6
cases, he would perform refactorings with a larger scope, for example, by restructuring parts
of the test suite to address several proposed reuse components at once. In the remaining 2
cases, the benefit that one would get would not justify the refactoring effort. In not a single
case, the test engineer did find our approach not useful (see Table 6.5).

Table 6.5: Consequences drawn by experts.

MR2

I will implement this reuse component (maybe modified). 10 (56%
I will address this reuse component by a bigger refactoring. 6 (33%
I appreciate this reuse component, but it will not pay off. 2 (11%
The proposed refactoring is not useful at all. 0 (0%
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During the interview, we also gathered qualitative results: Based on the test engineer’s
experience, the biggest challenge in test refactoring is understanding relations between tests
which was addressed well by our approach. Visualizing clone results helped the test engineer
to understand the commonalities of test cases. Many of the generated reuse components
uncovered reuse potential that was new for the test engineer. Additionally, the visualization
made quick wins of test refactorings easily visible.

Furthermore, the test engineer stated that our approach helps to uncover potential for
more far-reaching quality improvements since many of the presented refactorings indicated
conceptual problems of design of the test suite.

6.4.5 Threats to Validity

In this section, we discuss threats to the external and internal validity of the study and
describe how we mitigated them:

External Validity:

We conducted the pre-study and the evaluation study of this paper on a set of two automated
test suites. The limited number of study objects restricts the generalization of the results,
and thus threatens the external validity of the studies. However, the study objects are real-
world examples, since they are developed and applied in industry. Furthermore, we expect
these test suites to be representative for test suites in this domain regarding their size and
complexity.

Internal Validity:

In our studies, we presented measures for the complexity of the interdependencies between
clones (overlapping clones) and the complexity of the results generated by our approach.
These metrics might not cover all aspects of complexity. However, we interviewed the practi-
tioners who developed the test suites informally about the complexity of the interdependencies
between overlapping clones and the results generated by our approach and found that their
impression of the complexity matched our metrics.

In one part of our study, researchers acted as test engineers. They went through reusable
components that have been suggested by our approach and tried to find short and concise
names for them. As these researchers are not part of the project team of the study objects,
this might bias the results. We mitigated this threat by triangulating the findings among the
participating researchers. Furthermore, the researchers who conducted the study had several
years of experience in the field of software testing and software systems of Munich Re.

6.4.6 Interpretation and Discussion

We draw the following conclusions from our evaluation:

Sequence modeling is applicable for test refactoring.

The key concept of our approach, to apply sequence modeling algorithms to uncover refac-
toring potential of test suites seems technically feasible. The execution time as well as the
memory need enables our approach to be applied in online tools giving rapid feedback to test
engineers.
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Results of our approach are understandable by experts.

The refactoring proposals generated by our approach can be large in numbers, however, the
complexity seems to be understandable by experts. The proposed reuse components cover
cohesive units of test procedures (resp. step automations). Furthermore, the decomposition
proposed by our approach seems to make sense for test experts as well.

Results help test experts in clone refactoring.

In most cases, test experts would follow our recommendations and implement the proposed
reuse components. In some cases, our approach was even uncovering structural problems of
the test suite, which require far-reaching refactorings.

6.5 Benefit Estimation

In the previous section, we analyzed the ability of our approach to support test engineers in
making automated test suites easier to maintain by removing test clones. The results of the
study show that in 16 out of 18 cases, test engineers appreciate our refactoring proposals and
would implement them. However, performing refactorings to remove test clones requires an
initial invest that might not pay off. In this chapter, we perform a rough benefit estimation
showing how much overall system testing effort can be saved by our approach, and under
what circumstances our approach pays off.

6.5.1 Benefit Estimation Model

To estimate the overall benefit of our approach, we use the relative benefit estimation model
that we introduced in Chapter 5 Choosing Execution Modes (Section 5.5.1 Benefit Estimation
Model). This model is based on the idea, that the overall costs of system testing are composed
of the costs of each testing activity of system testing (see Figure 6.10). Furthermore, the
model defines the relative sizes of each activity within the whole calculation. Knowing these
proportions between system testing activities allows calculating how the overall system testing
costs develop when the costs for single testing activities change.

L Activities of System Testing T e )
1 \ The System Test Case Life-Cycle P

Activity: Activity: | Activity: Activity: Activity: |
Test Analysis Test Design | Test Creation Test Execution Test Maintenance|

Contribution:
Constructive
Quality

Improvement of
Test Artifacts

Figure 6.10: System testing activities that are addressed by the contribution of this chapter.
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The approach that we presented in this chapter addresses the activity test maintenance
(see Figure 6.10). The benefit of our approach for this activity can easily be estimated
by bringing together the maintenance effort that will be saved with the estimated overall
maintenance effort of a software system. To estimate how much costs can be saved in total,
we use our relative benefit estimation model to extrapolate the benefit for the overall system
testing costs.

6.5.2 Assumptions

In the remainder of this benefit estimation, we make the following assumptions:

Maintenance is equally distributed: To simplify the estimation of saved maintenance
effort, we assume that all parts of the test suite are similarly likely to be affected by
maintenance tasks. More specifically, we assume that one maintenance task affects all
reuse components.

Refactoring proposals are practical: We assume that the languages and tools with that
the test suites are created and maintained provide suitable refactoring and reuse mech-
anisms to extract clones. We expect that there are no cases in that refactorings cannot
be performed due to limitations of the test tooling.

All refactorings are similarly expensive to perform: Lastly, to ease the estimation of
clone removal effort, we assume that all proposed refactorings are similarly labor ex-
pensive to perform.

6.5.3 Calculation of the Benefit for the Activity Test Maintenance

We calculate the benefit of our approach for the activity test maintenance as follows: The
basic idea of our calculation is that we compare the effort of removing clones (performing
refactorings that extract cloned parts to reuse components) with the maintenance benefit
that is saved over time by having test cases with less redundancy. We estimate the costs
to remove test clones by the effort to perform the refactorings that have been proposed by
our approach. Assuming that all refactorings are similarly difficult to perform, we multiply
the average effort of performing a single refactoring with the number of accepted refactoring
proposals to calculate the overall refactoring effort:

Avg. effort to perform a single refactoring
x  Number of refactoring proposals (that have been accepted by engineers)

Overall effort of performing refactorings

The basic idea of our benefit estimation is that removing redundant parts of test cases
will lead to reduction of unnecessary maintenance effort. Hence, to estimate the maintenance
benefit that is gained by removing cloned parts of tests, we roughly calculate in as much the
test suite is getting smaller by removing clones. We estimate this by comparing the initial
number of test steps with the number of test steps of our overall refactoring proposal (as it
results from our approach). Since test engineers might not realize all proposed refactorings
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(see study in Section 6.4 Fvaluation), we multiply the number of reduced test steps with the
percentage of refactoring proposals that have been accepted (in one test suite within our case
study) by test engineers. Thereby, we get the actual reduction of test steps.

To make this value easier to compare with the refactoring effort, we use the average length
of a reuse component to calculate how many test reuse components correspond to the number
of reduced test steps:

No. of test steps (original test suite)
— No. of test steps (after performing all refactoring proposals)

Reduction of test suite (in no. test steps)
x  Percentage of refactoring proposals that have been accepted by engineers.

Actual reduction of test suite (in no. test steps)

=+ Avg. number of steps per reuse component

Actual reduction of test suite (in no. reuse components)
x Avg. maintenance effort per reuse component (for one maintenance task)

Maintenance benefit gained (for one maintenance task)

Finally, to calculate the overall benefit that is saved by removing test clones, we multiply
the maintenance benefit of one maintenance task with the number of expected maintenance
tasks. By subtracting the effort of performing refactorings from the overall maintenance
benefit, we get the overall benefit that is gained over time by applying our approach:

Maintenance benefit gained (for one maintenance task)
x  Number of expected maintenance tasks (per reuse component)

Maintenance benefit gained (over time)
— Overall effort for performing refactorings

Overall benefit gained by our approach (over time)

To estimate the extent to that the overall maintenance costs decrease by applying our
approach, we furthermore need an estimation of the overall maintenance costs of a test suite.
We calculate this value as follows:

Avg. maintenance effort per reuse component (one maintenance task)
X Number of expected maintenance tasks (per reuse component)

Maintenance costs without our approach (over time)

6.5.4 Data Elicitation

We apply our effort estimation model to the study objects that we used in the two previous
studies in Section 6.2 Significance of Overlapping Clones and Section 6.4 Evaluation. The
data that is missing for our calculation is substituted as follows:
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Number of Test Steps

We measure the size of the test suites by counting the number of test steps. For each test
suite (resp. part of the test suites), we counted the size of the original test suite and of the
modified test suite in that all refactoring proposal have been applied (see Table 6.6).

Table 6.6: Size of test suites.

MR1 MR2
Test Step Test Step
Definition Automation Definition Automation
Original Test Suite 391 Steps 959 Steps 71 Steps 314 Steps
All Refactoring Proposals Applied 314 Steps 805 Steps 71 Steps 274 Steps
Reduction (absolute) 77 Steps 154 Steps 0 Steps 40 Steps
Reduction (relative) 20% 16% 0% 13%

Accepted Refactoring Proposals

The second study of this chapter (Section 6.4 Evaluation) revealed that 16 out of 18 presented
refactoring proposals have been considered as candidates to be implemented by test engineers.
We use this estimation for our calculation and assume that, for all study objects, 89% of all
proposed refactorings are accepted by the test engineers and therefore will be implemented.

Average Number of Steps per Reuse Component

We calculate the average steps per reuse component using our study objects from Section 6.2
Significance of Overlapping Clones.

Average Maintenance Effort per Reuse Component (One Maintenance Task)

To estimate the effort that is necessary to perform a single maintenance task on a reuse
component, we adapt existing data that we elicited in the case study from Section 5.4 Evalu-
ation. Although those values have been elicited for manual test cases, we expect them to be
sufficiently precise to approximate maintenance of test scripts in our calculation.

Average Effort to Perform a Single Refactoring

We expect the implementation of a refactoring proposal as similarly labor intensive as a typical
refactoring task. Therefore, we use the average maintenance effort also to approximate the
average effort to perform a single refactoring.
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Number of Expected Maintenance Tasks per Reuse Component

Unfortunately, we have no detailed information on the number of maintenance tasks that are
expected for our study objects. We can only compare our cases with the study described in
Section 5.4 Fwvaluation. In that study, test engineers estimated that each test step will be
subject to maintenance once within a life span of two years. However, we believe that this
estimation cannot be transferred to our case directly. The test suites in our study are auto-
mated test scripts, which are far more detailed compared with the manual test descriptions
of our previous study. Compared with manual test cases, we expect automated test scripts to
be more brittle if it comes to minor changes, for example, modifications of the user interface,
leading to higher maintenance effort compared with manual test cases. Since we have no
detailed information, we leave the number of expected maintenance tasks as an independent
variable in our calculation.

6.5.5 Quantitative Benefit

The contribution presented in this chapter addresses the activity of maintaining test cases
(see Figure 6.10). To find out in as far the overall system testing costs are reduced by
applying our approach, we first calculate in as far the activities of test maintenance benefit
from our approach. Having this information, we can use our relative benefit estimation model
to calculate in as much the overall costs of system testing benefit.

Reduction of Test Maintenance Costs

Figure 6.11a gives an overview of the maintenance costs that are saved by applying our
approach. In the figure, the number of expected maintenance tasks are used as independent
variable (x-axis). The y-axis shows the relative improvement (in percent) for the activity test
maintenance (as calculated by our benefit estimation model) with respect to maintenance
costs. Each data series represents one test suite from our case study.

Results: We can get the following information for the maintenance costs in our case study:
Based on our assumptions about refactoring and maintenance costs of reuse components,
removing clones will pay off after two to three maintenance tasks only. The exact number
of maintenance tasks from that our approach starts to pay off is influenced by the relation
between implementation time for one refactoring, the maintenance effort for one maintenance
tasks, and the overall reduction of the test suite. However, this data is just an intermediate
result on the way to calculate the overall system testing costs that are saved by our approach.

Reduction of Overall System Testing Costs

We used our relative benefit estimation model to extrapolate the overall system testing costs
that are saved by applying our approach (see Figure 6.11b). Similar to the previous figure,
the number of expected maintenance tasks are used as independent variable (x-axis). The
y-axis shows the relative improvement of the overall system testing costs for each test suite.

Results: Similarly to the reduction of the maintenance costs, removing clones will have a
positive effect to the overall system testing costs after two to three maintenance tasks only.
However, in the context of our case study, the actual number of expected maintenance tasks
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is unknown. Therefore, we cannot decide whether our approach will pay off in this case.
However, assuming that the test suite is maintained 5 - 10 times ?, the overall system testing
costs will be reduced up to ~10%.

6.5.6 Qualitative Benefit

Besides the quantitative results, supporting test engineers in removing (overlapping) clones
in test suites does also have qualitative benefits:

Flexibility to adaptions: Removing redundant parts from test suites enables perform-
ing maintenance tasks faster since unnecessarily duplicated maintenance activities are
avoided. However, this increase in maintenance speed does not only reduce the costs to
perform changes, but also minimizes the time until a test suite is ready for operational
use again.

More resources for new test cases: The saving in test maintenance can be used to im-
prove existing system testing: More resources are available to perform further test
analysis and create additional test cases covering aspects that have not been tested yet.

Lower risk of inconsistent bug fixes: Cloning does not only unnecessarily raise mainte-
nance expenses, it also increases the risk of inconsistently performed changes [Juergens
et al., 2009]. In the case of bug fixes, inconsistent changes can leave some parts of the
test suite erroneous still having the original bug that should have been fixed. Hence,
supporting test engineers in removing clones also help to reduce the risk of uncompleted
bug fixes.

9In the previous study, just one maintenance tasks was expected. However, that test suite contained
(manual) test descriptions, which are rather abstract compared to the test scripts of our current test suite.
We expect test scripts to be more brittle to changes of the system under test and therefore leading to more
frequent maintenance activities.
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(a) Test maintenance costs. (b) Overall system testing costs.

Figure 6.11: System testing costs saved by our approach.
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6.6 Future Work

Some important questions are still unanswered.

Generalizability of the evaluation:

The evaluation study of this paper has been applied on a limited set of study objects which
have been taken from the same application domain and company. Replicating the study in
different industrial contexts, different companies and using different test automation tools
will enable to draw more generalizable conclusions of the abilities of our approach.

Benefits and limitations of clone refactoring in general:

In our evaluation, we were just able to indicate the benefit of test clone removal, but were
not able to gain a deeper understanding of its limitations. In further experiments, one has to
figure out to what extent tests are better understandable after clone removal as well as when
to stop refactoring, because tests may become less understandable by introducing reusable
components.

Rapid feedback for test engineers:

To support test engineers in their everyday work, our tool support is not sufficient. Our
tooling has to be extended so it can be used instantaneously by test engineers while they
are working with the test suites, for example, by extending existing test automation tools to
display clone information as well as possible refactorings directly within the test suites.

Continuous quality improvement:

To maintain the quality of automated test suites over time, a continuous quality assurance
process is essential. Based on our approach, metrics could be defined to indicate aspects of a
test suite’s understandability and maintainability. Together with predefined thresholds, such
metrics can be used to define quality goals that are used within a continuous quality assurance
process.

Refactoring for other types of artifacts:

Cloning is a relevant topic not only in system testing, but also for many other software
engineering artifacts. We think it is worthwhile to evaluate the application of our approach
to other artifacts such as source code or software design documents.

6.7 Summary

In this chapter, we addressed the challenge of improving the quality of test artifacts. We
proposed an approach to support test engineers in removal of overlapping clones in automated
test suites with the goal to make them better understandable and maintainable. The proposed
approach complements existing clone detection techniques by using sequence modeling to
analyze overlapping test clones and to propose suitable units of reuse. The visualized results
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can be used by test engineers in gaining understanding of the test suite and to perform
refactorings.

In two studies, we analyzed the phenomenon of overlapping clones and evaluated our
approach in industry. In a pre-study, we showed that test clones in practice often overlap and
can be complex to understand. This makes it challenging finding good strategies to remove
clones by refactorings.

Our evaluation study revealed not only that our approach is applicable in real world
settings, but also that the results help test engineers in refactoring clones. In particular,
test engineers would perform a large part of the refactorings to remove clones suggested by
our approach. Furthermore, they stated that the approach helps to understand the internal
structure of a test suite, in terms of cloning and the resulting dependencies between test
cases. This helps them not only to remove clones, but also gives them the possibility to reveal
deeper problems within existing reuse structures. Furthermore, they are able to identify larger
refactorings that improve the understandability and maintainability.

Furthermore, we performed a coarse benefit estimation to find out if and when removing
clones pays off. For our two study objects, performing our refactorings has a positive benefit
if the test suite is subject to maintenance for at least 2 — 3 times. Assuming that the test
suite is maintained for at least 5 — 10 times, the overall system testing costs will be reduced
by up to ~10%.
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Chapter 7

Natural Language Test Smells

In Chapter 5 Choosing FExecution Modes, we found out that in various situations manual
testing is the cheapest way of system testing. The alternative, test automation, has high
setup costs and therefore does not pay off in all situations.

Unfortunately, manual tests are often of poor quality and written without software en-
gineering best practices in mind. For example, the study presented in Chapter 4 Clones
in Manual System Tests revealed that natural language system test descriptions contain a
significant amount of cloning, which can considerably increase the costs for maintaining and
executing them. Other common quality problems result from the use of natural language in
manual test description. For example, ambiguity and incomprehensibility both affect the test
case’s executability and maintainability.

Example:

Table 7.1 shows two manual test descriptions that contain quality problems. Both examples
are taken from original test cases from our industry partners, however, we modified them
slightly for non-disclosure reasons. The first example (Table 7.1a) shows a snippet of a test
description that guides the tester to repeat the two preceding test steps. However, the number
of repetitions is not defined and therefore has to be chosen freely by the tester: Different testers
may perform a different number of repetitions. This ambiguity makes executing this test case
indeterministic since the outcome of the test case is not reliable. Thus, results of test runs
cannot be compared with each other. This threatens the expressiveness and usefulness of a
test suite in general.

The second snippet (Table 7.1b) guides the tester to verify the system’s response depending
on a decision that has been made in a previous test step. At this point, the test case contains
a branch of the test flow that has been phrased in natural language which may lead to two
problems: First, it is not clear if the condition for the branch is satisfied the same way in
each test run. Similar to the first example, this may lead to indeterministic test executions
and uncomparable test results. Second, since the condition is phrased in natural language,
it is not obvious to notice for the tester. This may lead to test cases that are difficult to
comprehend or even misapprehended, both negatively affecting the test case’s executability
and maintainability.

109
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Table 7.1: Example of two test descriptions.

(a) A manual test that is ambiguous which hampers its repeatability.

Step Description Expected Result

Step 6 Repeat Step 4 and Step 5 as long as you
want.

(b) A test that is difficult to comprehend since it contains a branch phrased in natural language.

Step Description Expected Result

Step 12 . The Entries differ depending on the chosen
View Mode (Step 3): ...

Problem and Consequences:

Tests written in natural language often do not obey well-established software engineering qual-
ity principles. This leads to problems affecting all system test execution life-cycle activities
such as, creating new test cases, executing test cases and maintaining them.

To improve the quality of test cases, we need ways to detect quality issues that negatively
affect testing activities. Furthermore, detecting quality problems has to be performed con-
tinuously to keep good test case quality on the long run. However, since test suites can be
large (>1000 test cases — see Chapter 4 Clones in Manual System Tests), manual quality as-
sessment techniques are not practicable. To assess the quality of large test suites continually,
quality issues have to be detected automatically.

Approach and Contributions of This Chapter:

Other software engineering artifacts, such as source code or unit tests, suffer from similar
problems (cf. Section 3 State of the Art). Time pressure or inexperience make developers
ignore well-known design rules. This results in source and unit test code that is less main-
tainable and understandable. As a countermeasure, for both source code and unit tests, so
called bad code smells [Fowler, 1999] and test smells [Meszaros, 2007; Meszaros et al., 2003;
van Deursen et al., 2001] have been established as indicators for design flaws. In the last
years, several studies have shown the negative effect of the existence smells in program code
and test code with respect to maintainability and code comprehension [Abbes et al., 2011;
Bavota et al., 2012; Khomh et al., 2009; van Deursen and Moonen, 2002].

In this chapter, we transfer the basic concept of bad smells from source code and test
code to system test artifacts. Adopting existing code and unit test smells, we define smells
for manual tests in natural language - Natural Language Test Smells (NLTS).
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We first present a smell definition template as a framework to support test engineers in
defining quality problems in form of natural language test smell. This template is connected
with a basic quality model which allows selecting smells fitting to individual project needs of
test suites. Furthermore, we define six natural language test smell for test cases written in
natural language. To perform smell detections continually in large test suites, we present tool
support to uncover smells automatically in test artifacts. In an industrial case study, we show
the ability of our approach in identifying relevant quality defects in test suites. Finally, we
present an estimation of the benefit that is gained by removing natural language test smells
from industrial test suites.

Parts of the content of this chapter have been published in Hauptmann et al. [2013].

7.1 Definitions and Terminology

In the following section, we define the concept of Natural Language Test Smells, an adaption
of bad code smells for test cases written in natural language. Furthermore, we introduce an
ontology connecting our smells with a basic quality model and propose a template to define
smells.

7.1.1 Definition: Natural Language Test Smells

Borrowing from the original idea of bad code smells [Fowler, 1999], we define Natural Language
Test Smells as indicators for quality violations in test case written in natural language (see
Section 2.2.2 Test Case Representations for an example of natural language test cases). We
define natural language test smells as way to describe quality issues having the following
characteristics:

Natural Language Test Smells are Automatically Detectable:

Since test suites can be large (>1000 test cases), manual reviews to find smell findings are
not practicable. Therefore, we focus on the subtype of automatically detectable smells for
that automatic detection techniques exist. Being able to detect smell findings in test case
descriptions automatically supports test engineers in improving the quality of test artifacts
continuously.

Natural Language Test Smell Findings have Concrete Locations:

Each smell finding points at a concrete location within a test case description where it occurs.
This concrete location is necessary to guide test engineers in removing quality problems since
it shows at which location to perform improvements.

Natural Language Test Smells Indicate Quality Defects:

Smell findings are often difficult to detect automatically which makes smell detection tech-
niques imprecise and leads to findings that are not always accurate. Therefore, we do not
necessarily consider smell findings as quality defects but only as indicators to quality problems
that have to be assessed by test engineers.
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Natural Language Test Smells are Traced to Activities:

Each natural language test smell is mapped to system test execution live-cycle activities
(or sub-activities) that are negatively affected by the smell. This mapping allows selecting
smells according to project specific requirements. Furthermore, the mapping helps to identify
impacts of smells and allows assessing finding’s severity.

7.1.2 Taxonomy and Quality Definition

To put the concept of natural language test smells on a solid base, we present an ontology
connecting the used terms. The ontology relates relevant items of the project context with
our general quality model. Furthermore, it shows how natural language test smells are defined
and how smell instances are linked to test cases (see Figure 7.1).

Our ontology has strongly been influenced by the Quamoco approach and its idea of
activity-based quality modeling [Deissenboeck et al., 2007; Lochmann, 2010; Wagner et al.,
2008, 2015, 2012]. The core idea of this approach is to aim at defining quality by how well
certain properties of a product support the activities that are applied on the product. We
transfer this fundamental ideal to the context of test cases written in natural language.

Project Context:

Central item of the project context is the Artifact Model which shows the structure of a Test
Suite and how it is broken down to (nested) Test Entities such as test cases or test steps (see
Section 2.2.2 Test Case Representations). Test suites are subject to Activities (see System
Test Ezxecution Life-Cycle in Section 1) which are performed by Stakeholders, such as test
engineer or test executors.

Quality Model:

Goal of the Quality Model is to form a clear picture of what is good and bad quality of a test
suite. Central point of the quality model are Quality Problems that have negative impacts
on activities. The quality model furthermore defines Quality Factors that declare the visible
manifestation of quality problems in test entities that have impacts on the stakeholder’s ability
to perform a certain activity [Femmer et al., 2015].

Natural Language Test Smell Definition:

In natural language test smells, we explicitly focus on quality problems. To detect natural
language test smells, a Detection Technique finds instances of quality factors in test entities.
To define all relevant aspects of natural language test smell, we propose a smell definition
template in the next Subsection (see Section 7.1.3 Smell Definition Template).

Natural Language Test Smell Instances:

For each appearance of a quality factor, a Smell Finding is created. Each smell finding is
equipped with a Finding Location pointing at the position within a test entity where a quality
factor has been identified by a detection technique. Furthermore, smell findings may cause
Quality Defects which are concrete instances of the quality problem that is caused by the
quality factor.
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Figure 7.1: An ontology relating terms and concepts of natural language test smells
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Precision of Detection Techniques and Relevance of Smell Findings:

The precision of a smell finding is determined by its detection technique’s ability to correctly
identify quality factors. A smell finding that has been identified by a smell detection technique,
but is not a correct instance of its quality factor is considered as a false positive. On the other
side, a smell finding that is a correct instance of the smell’s quality factor is considered as a
true positive. However, true positive smell findings do not necessarily lead to quality defects.
We consider just those smell findings as relevant that actually lead to quality defects (see

Figure 7.2)
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Figure 7.2: Precision and relevance of smell findings.

Figure 7.3 shows an example of all aspects of our ontology for the smell Ambiguous Tests.
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7.1.3 Smell Definition Template

We introduce a smell definition template as a framework to support quality engineers in
defining smells. Goal of the template is to precisely define all relevant aspects of smells.

Smell Name: A unique name to identify the smell.
Smell Category: Classification into a certain category to structure smells.
Quality Factor: Description of the visible characteristic of the smell.
Affected Activities Activities that are negatively affected by the smell.
Quality Problems: Description of the problem that is caused by the quality factor.

Example: FExzample of a smell finding. Optionally with a description of the qual-
ity defect and how to remove it in this example.

7.2 Approach: Natural Language Test Smells

In the following section, we present a list of natural language test smell as the result of our
experiences in quality evaluation of manual system test suites in industry for the last four
years. First, we describe the process how we selected the smells. Afterwards, we introduce
each smell in detail.

7.2.1 Selection of Natural Language Test Smells

The list of natural language test smell that are presented in this chapter have been developed
based on our experiences in quality evaluation of manual system test suites in the last years.
It is not complete but reflects a selection of natural language test smell that we developed
together with our industry partners. We designed the smells to address real-world challenges
regarding test execution and maintenance of our industry partner’s test projects. Although
this way of selecting smells makes our list not complete, it ensures that each smell addresses
relevant quality aspects of test cases. Furthermore, it allows us to evaluate our smells in
real-world settings. We developed the list of smells as follows:

Smells for Unit Test Cases

As a first starting point, we adapted existing unit test cases from van Deursen et al. [2001]
and Meszaros et al. [2003] (see Section 3.4.1 Refactoring and Smells of Source Code and Unit
Tests) and transfer them to test cases in natural language when possible. For each of the
proposed unit test smells, we checked two criteria:

First, we evaluated whether the existing unit test smells are applicable to tests written
in natural language. Since the smells by van Deursen et al. [2001] and Meszaros et al. [2003]
are designed for test cases that are programmed in source code (such as JUnit test cases),
many smells are not applicable in our context: For example, the smell Sensitive Equality
[van Deursen et al., 2001] proclaims to avoid using the toString()-method to compare Java
objects. Since the test cases in our context are written in natural language, this smells is not
applicable.
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Second, we focused on those smells that point at quality factors that are actually causing
problems in our context. For example, the smell Mystery Guest [van Deursen et al., 2001]
proclaims that test cases should be self-contained and do not reference external resources.
However, although this might be the case for automated unit tests, for manual system testing,
referencing to fixed sets of test data is not considered to lead to quality problems in our
context.

Characteristics of Natural Language Text

As another source for natural language test smell, we took into consideration the special
characteristics of manual test cases, namely the fact that they are written in natural language.
Based on the experiences of our industry partners, we identified characteristics of natural
language that lead to challenges for test execution and maintenance. For example, natural
language enables to phrase text in a way that is ambiguous or complicated to understand.
This makes test descriptions difficult to understand and can lead to misinterpretations and
can cause deviations in test execution.

Focus on Automatically Detectable Smells

Finally, we focused on those smells that are automatically detectable. We skipped smells for
that the implementation of automated detection techniques are enormous costly so that their
development costs will not pay off by the benefit of the smell.

Based on this selection, we came up with 6 natural language test smells. In the following, we
define the smells using our smell definition template (see Subsection 7.1.3) and group them
based on the manifestation level of their quality factors as Test Suite Structure Smells, Test
Case Structure Smells, and Textual Smells:

7.2.2 Test Suite Structure Smells

The category Test Suite Structure Smells summarizes natural language test smells indicating
quality problems that are affecting not only the part of a test suite it is manifested in. Instead,
the underlying problem affects the whole structure of a test suite.

Smell — Hard-Coded Test Data:

For most test cases, concrete input and output values are required for execution. A common
way to persist this test data is to embed it in the text of the test descriptions as they are
needed. However, although embedding test data directly into the text of test cases makes
them self-contained, it also makes them more labor intensive to maintain when test data has
to be adapted. To avoid unnecessary duplication of maintenance, concrete values should be
avoided when writing test descriptions. Instead, they should be extracted to dedicated test
data repositories storing typical sets of test data which can be referenced from within the text
of the test cases. Additionally, concrete values can be avoided by defining test data relatively.
We define the smell Hard-Coded Test Data as follows:
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Smell Name:
Smell Category:
Quality Factor:
Affected Activities
Quality Problems:

Example:

CHAPTER 7. NATURAL LANGUAGE TEST SMELLS

Hard-Coded Test Data

Test Suite Structure Smells

Test data is embedded in the text of test steps.
Maintenance

If test data has to be changed, it is difficult to find out which test
cases and test steps have to be adapted.

Text: “Load a contract that has been signed before '01/Jan/201]".”

Quality Defect: Absolute dates are outdated soon and have to be
adapted frequently.

Refactoring: Replace absolute dates with relative dates:

“Load a contract that has been signed a maximum of five months ago.”

7.2.3 Test Case Structure Smells

The category Test Case Structure Smells summarizes natural language test smells indicating
quality problems that are affecting not only the part of a test suite it is manifested in. Instead,
the underlying problem affects the whole structure of a test case.

Smell — Branches in Test Flow:

To make the results of test runs interpretable and comparable, test procedures have to be
predefined and deterministically executable. Therefore, test cases should be free of branching
logic, such as optional parts or indeterministic case differentiation. However, natural language
makes it easy to overlook branching logic phrased in the text of test procedures. We define
the smell Branches in Test Flow as follows:

Smell Name:
Smell Category:
Quality Factor:

Affected Activities
Quality Problems:

Example:

Branches in Test Flow
Test Case Structure Smells

The test flow contains branches or alternative flows that manifest
themselves through conditions in the test steps’ text.

Execution, Maintenance

Ezecution: In multiple test runs, conditions may be satisfied differ-
ently. Therefore, results of test runs are not comparable.
Maintenance: The test step’s intention is difficult to grasp. There-
fore, it is difficult to find out which parts to adapt.

Text: “If the field ’selected customer’ is empty, use the search function
to select an existing customer.”

Quality Defect: By looking at a test’s result, it is not clear whether
the tester had to search and select a new customer or not.

Refactoring: Make sure that the test procedure is predefined:
“Step 1: Verify that the field ’selected customer’ is not set.”
“Step 2: Use the search function to select an existing customer.”
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Smell — Merged Test Steps:

Writing test cases in natural language allows embedding multiple actions and checks in one
piece of text. When several independent tasks are merged to one test step, it is difficult
to gasp the actual intention of the test step. Furthermore, it makes test results difficult to
interpret since, if a test step failed, it is not clear which part of a test step caused a test case
to fail. We define the smell Merged Test Steps as follows:

Smell Name: Merged Test Steps
Smell Category: Test Case Structure Smells

Quality Factor: A test step comprises several tasks. Although these tasks are inde-
pendently from each other, they are combined to one test step.
Affected Activities Execution, Maintenance
Quality Problems: FEzecution: Reasons for failed test cases are difficult to localize since
it is not clear which part of a test step failed.
Maintenance: The test step’s intention is difficult to grasp. There-
fore, it is difficult to find out which parts to adapt.

Example: Text: “Load the detail view of the current transaction. Verify that
all fields are filled. Then open the master data dialog and open the
contract validation settings. Deactivate all validation setting options.
Close the validation settings dialog. Afterwards, verify that ...”

Quality Defect: By looking at a result of a failed test run, it is not
clear why it failed.

Refactoring: Break up the test step into several substeps:

“Step 1: Load the detail view of the current transaction and verify
that all fields are filled.”

“Step 2: Open the master data dialog. Then open contract validation
settings.”

“Step 3: ...”

7.2.4 Textual Smells

The category Teztual Smells summarizes natural language test smells indicating quality prob-
lems that are affecting just the parts of a test suite where they are manifested.

Smell — Complicated or Bloated Phrases:

Natural language allows describing even simple facts in complicated ways which are difficult to
understand. Furthermore, test steps are often overloaded with information that is redundant
or not necessarily needed, such as rationales or side information that do not help to understand
or execute the test case. This makes it difficult to grasp the initial idea of a test cases and to
understand how to execute it. Furthermore, it blows up test artifacts and therefore increases
maintenance effort unnecessarily. We define the smell Complicated or Bloated Phrases as
follows:
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Smell Name:
Smell Category:
Quality Factor:

Affected Activities
Quality Problems:

Example:

CHAPTER 7. NATURAL LANGUAGE TEST SMELLS

Complicated or Bloated Phrases
Textual Smells

A test step is complicated phrased or bloated with unnecessary infor-
mation and therefore difficult to understand.

Execution, Maintenance

FExecution: Testers have problems to understand what to do.
Maintenance: The test step’s intention is difficult to grasp. There-
fore, it is difficult to find out which parts to adapt.

Text: “To wverify the case in which the service desk employee cannot
perform the transaction directly while being on the telephone since

other jobs have to be done first which may take a longer time, the

service desk employee ends the current telephone call and saves the

current interaction so he can continue it later.”

Quality Defect: The sentence is difficult to understand since it has
many nested subclauses and contains irrelevant information.

Refactoring: Remove rationales from test descriptions and make sen-
tences easy to understand:

“End the telephone call. Save the current transaction.”

Smell — Ambiguous Phrases:

Using natural language, test descriptions can be written in ambiguous ways, leaving room
for multiple ways of interpretation. This leads to different expectations by the reader and
therefore may cause different test results, if a test case is executed by different persons. We
define the smell Ambiguous Phrases as follows:

Smell Name:
Smell Category:
Quality Factor:

Affected Activities
Quality Problems:

Example:

Ambiguous Phrases
Textual Smells

The description of a test step is not clear to understand. It can be
interpreted in different ways.

Execution

Different testers read different things from the text and form different
expectations. Therefore, results of test runs are not comparable.
Text: “Check whether the results of the calculation are plausible.”
Quality Defect: 1t is not specified how to verify the plausibility of
results. Different testers may use different criteria.

Refactoring: Clarify the criteria for plausibility: “Check whether

>

result-min’ is smaller than ’result-max’.
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Smell — Test Clones:

Many test cases contain common parts — so called test clones (see Chapters 4 Clones in
Manual System Tests and 6 Test Refactoring Using Grammar Inference). Test cases that
share large common parts are difficult to distinguish since it is not easy to understand their
initial intention. Furthermore, effort for adapting test cases to changes are unnecessarily
duplicated by clones. We define the smell Test Clones as follows:

Smell Name: Test Clones
Smell Category: Textual Smells

Quality Factor: A text passage of a test step (of considerable length) exists several
times within one or several test cases.

Affected Activities Maintenance

Quality Problems: Maintenance 1: Test sequences that are similar but not identical are
not easy to distinguish. It is not easy to grasp a test’s intention.
Maintenance 2: The effort to maintain duplicated parts of test cases
increases. Furthermore, it is difficult to find out which parts to adapt.

Example: Refactoring: Extract recurring text passages to reuse components,
such as, templates.

7.3 Automated Detection of Natural Language Test Smells

In the following, we present our heuristic approaches to automatically detect natural language
test smells in natural language. Similar to our smells presented in the previous Section, the
following detection techniques result from our industrial experiences of the last five years.
We first introduce basic methods to preprocess natural language text. Afterwards, generic
detection techniques are introduced, which are independent form concrete natural language
test smells. Finally, for each smell from Section 7.2, a concrete detection approach is presented.

Goal of detection techniques is to identify occurrences of quality factors in test artifacts
and reporting them as smell findings. Each smell finding must equipped with the exact
location where the quality factor is located in the analyzed text.

However, instances of quality factors are often difficult to find: Natural language enables
to write ambiguous text and provides many ways to express the same thing. Therefore,
techniques to identify smells in natural language text may not be absolutely precise or costly
to perform (such as manual reviews).

7.3.1 Natural Language Text Processing

In the following section, we summarize existing techniques to retrieve information from natural
language text. Concretely, we apply the techniques Text Segmentation and Part-Of-Speech
Tagging to preprocess the textual description of natural language test cases. The retrieved
information will then form the data basis for our generic detection techniques.
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Text Segmentation

Text Segmentation is a standard technique to divide natural language text into sequences of
meaningful tokens [Jurafsky and Martin, 2000]. To support our universal detection techniques,
we divide the input text into sequences of Sentences and Words. Figure 7.4 shows an example
of a segmented sentence.

Input: ’Repeat Step 4 and Step 5 as long as you want.’
Output: ’Repeat’, ’Step’, ’4’, ’and’, ’Step’, ’5°, ’as’, ’long’, ’as’, ’you’, ‘want’,

P

Figure 7.4: Example of Text Segmentation.

Part-Of-Speech Tagging

Another standard technique of natural language processing is Part-Of-Speech Tagging, a tech-
nique to markup tokens with their grammatical roles in a sentence [Jurafsky and Martin, 2000;
Schmid and Laws, 2008; Toutanova et al., 2003]. Each token is annotated with its part-of-
speech, such as noun, adjective, verb, or punctuation. A common annotation format for
part-of-speech information are POS-Tags defined by the Penn Treebank Project'. Figure 7.5
shows an example of a sentence annotated with POS-Tags.

Input: ’Repeat Step 4 and Step 5 as long as you want.’
Output: ’Repeat’” NN Noun, singular or mass: bicycle, earthquake, zipper
'Step’ NN Noun, singular or mass: bicycle, earthquake, zipper
4’ CD Cardinal number: one, two, twenty—four
‘and’ CC Coordinating conjunction: and, or, either, if, as,
since , once, neither, less
'Step’ NN Noun, singular or mass: bicycle, earthquake, zipper
5’ CD Cardinal number: one, two, twenty—four
‘as’ RB Adverb and negation: easily , sunnily , suddenly,
specifically , not
RB

long’ Adverb and negation: easily , sunnily, suddenly,
specifically , not

‘as’ IN Preposition/subordinate conjunction: except, inside,
across , on, through, beyond, with, without

you’ PRP Personal pronoun: everyone, I, he, it, myself

7,

want’ VBP Verb, non—3rd ps. sing. present: eat, jump, believe,
am (as in I am’), are
Sentence—final punctuation

Figure 7.5: Example of Part-Of-Speech Tagging.

"http://www.cis.upenn.edu/~treebank/
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7.3.2 Generic Detection Techniques

In the following section, we present generic detection techniques. Each of them is able to
find occurrences of quality factors in natural language text. However, generic detection tech-
niques are independent form any natural language test smell and are used to create detection
techniques for concrete natural language test smell.

Word Lists:

The generic detection technique Word List identifies occurrences of single words within a
given natural language text. This technique is configured using a word list defining the words
to identify in a given text. It builds up on the natural language text processing technique
Text Segmentation. Figure 7.6 shows an example searching for the words long and want.

Text : "Repeat Step 4 and Step 5 as long as you want.’
Word List: ‘long’, ’want’
Output: "Repeat Step 4 and Step 5 as long as you want.’

Figure 7.6: Example of the generic detection technique Word List.

Text Patterns:

An extension of the generic detection technique Word List is Text Patterns, which is able
to identify more complex text phrases. This generic detection technique is configured using
patterns defining sequences of words having certain POS-Tags to identify in a given text.
This generic detection technique builds up on the natural language text processing technique
Part-Of-Speech Tagging. Figure 7.7 shows an example of this generic detection technique iden-
tifying appearances of the word Step with an arbitrary POS-Tag but followed by a cardinal
number (a random word with POS-Tag CD).

Text : "Repeat Step 4 and Step 5 as long as you want.’
Pattern: ’Step’(x) *(CD)
Output: ’'Repeat Step 4 and Step 5 as long as you want.’

Figure 7.7: Example of the generic detection technique Text Patterns.

Word Counting:

Another generic detection technique is Word Counting, which gives access to the number
of words of a given piece of text. It counts just tokens which are real words and ignores
other tokes, such as numbers, quotation marks, or punctuation characters. This generic
detection technique builds up on the natural language text processing technique Part-Of-
Speech Tagging and enables creating customized smell detection techniques that are based
on the length of the text.
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Clone Detection:

Clone Detection summarizes techniques to identify similar sequences of elements in token
streams. We use these techniques as generic detection technique building up on Text Seg-
mentation to find clones in the text of test descriptions. Input for this generic detection
technique is the parameter minimal clone length defining the minimal number of similar to-
kens to be considered as clone (cf. Chapter 4 Clones in Manual System Tests and 6 Test
Refactoring Using Grammar Inference).

7.3.3 Detecting Natural Language Test Smells

In the following subsection, we describe how the generic detection technique can be used to
detect the smells defined in Subsection 7.2.

Smell Hard-Coded Test Data:

To identify test data that is hard-coded in the text of test steps, we use the generic detection
technique Text Patterns. We search for text in quotation marks and tokens consisting of just
numbers and special characters.

Smell Branches in Test Flow:

To identify branches of the test flow, we perform a two-fold process combining the techniques
Word List and Text Patterns. First, we search for words that potentially phrase case differ-
entiations, such as, “if”, “whether”, “when”, or “depending”. In a second step, we eliminate
incorrectly found phrases (false-positives) that do not indicate branches and them if they
match a list of anti-patterns. For example, sentences starting with “Check whether, ...” do
not indicate conditions.

Smell Merged Test Steps:

To find test steps comprising several tasks, we use a heuristic approach based on the technique
Word Counting. Based on our experiences, we defined a threshold of 130 real words and report
test steps if their text contains more words.

Smell Complicated or Bloated Phrases:

To identify test steps that are complicated phrased or bloated up with irrelevant information,
we use a heuristic approach that builds up on the generic detection technique Word Counting.
Similar to the smell Branches in Test Flow, we defined a threshold based on our experiences:
We report sentences if they contain more than 45 real words.
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Smell Ambiguous Phrases:

To identify ambiguous phrases, we perform a two-fold process combining the techniques Word
List and Text Patterns. First, we search for words that are likely ambiguous to interpret,
such as, “should”, “most”, “any”, “more”, or “appropriate”. In a second step, we eliminate
incorrectly found phrases (false-positives) in which those words have a clear interpretation by
filtering out our findings if they match a list of anti-patterns. For example, phrases as “most
recent ...” or “more than (NOUN)”.

Smell Test Clones:

To identify clones in the text of test descriptions, we use Clone Detection techniques. We
consider a substring of a test description as clone, if it is at least 10 sentences long and appears
at least twice in the test suite. Furthermore, we perform clone detection on the whole text of
a test case by stringing together the text of each test step. Thereby, we identify clones that
span over several test steps within a test case.

Figure 7.8 summarizes the dependencies between the natural language text processing tech-
niques, the generic detection technique, and the concrete techniques used to detect natural
language test smells.

7.4 Evaluation

To analyze the ability of our natural language test smells to identify quality problems in test
suites, we apply our approach in an industrial setting.

7.4.1 Study Goal and Research Questions

We define the goal of our study using the goal definition template of Wohlin et al. [2000]:

We analyze the concept of natural language test smells
for the purpose of evaluating
with respect to their ability to identify relevant quality defects
from the viewpoint of test engineer

in the context of industrial software projects.

We define the research questions along our ontology (see Section 7.1). In a first part, we
investigate the ability of our detection techniques (Section 7.3.3) to identify actual quality
factors. In a second part, we use our detection techniques to investigate the relevance of smell
findings. Figure 7.9 aligns both parts of this study with our ontology (Figure 7.1).
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Figure 7.8: Dependencies between the natural language text processing techniques, the generic
detection technique, and the concrete techniques used to detect natural language test smells.
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Figure 7.9: Goal of the study aligned with our smell ontology (see Section 7.1).
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Part I — Quality of the Detection Techniques

In the first part of this study, we evaluate the quality of the smell detection techniques we
presented in Section 7.3.3.

RQ 1: How precise are our detection techniques?

Many natural language test smells are difficult to detect automatically which makes detection
techniques imprecise. Since the detection techniques we introduced in Section 7.3.3 are the
basis for the rest of this study, their quality is of crucial importance. This research question
investigates the ability of our smell detection techniques to identify correct smell findings.

Part IT — Relevance of Smell Detection Results

In the second part of this study, we investigate the relevance of smell detection results. We
approximate the relevance of the results by the number and severity of smell findings.

RQ 2: How many correct findings are identified by our detection techniques?

In order to indicate whether the effort of performing smell detection pays off, the number of
revealed relevant smell findings is significant. This research question investigates how many
correct smell findings of each natural language test smell are identified by our smell detection
techniques.

RQ 3: How severe are uncovered quality problems?

To detect the relevance of the quality problems that can be uncovered with natural language
test smell, this research question investigates the importance of smell findings that are found.

7.4.2 Study Objects and Case Study Context

Our study objects are manual system tests of nine projects from Munich Re and Airbus
Defense & Space (see Section 1.5 Case Study Partners).

The systems of the analyzed test suites are business information systems having web
front-ends, Windows fat client interfaces, or are SAP systems. All test cases are written all
in English, by different teams (internal employees and external suppliers), and are testing
different functionalities. This increases the generalizability of the study results. The analyzed
test cases include regression tests, tests for planned features, and tests of change requests.
All systems as well as the corresponding test suites are in productive use. For non-disclosure
reasons we named the test suites A to I. Table 7.9 summarizes the sizes of the test suites. The
number of test cases differs from 72 (test suite A) to more than 1,000 (test suites B, H, and
I) per test suite. In total, we analyzed 19,000 sentences of natural language test description
containing more than 1,8 million words.
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Table 7.9: Study objects.

All Tests

#Tests #Test Steps  #Sentences  #Words
Test Suite A 72 628 2,611 30,512
Test Suite B 1,786 17,983 68,808 586,454
Test Suite C 298 2,409 7,353 65,160
Test Suite D 627 8,179 28,257 378,405
Test Suite E 152 4,896 17,732 162,127
Test Suite F 115 3,788 9,452 82,902
Test Suite G 114 4,771 5,263 39,661
Test Suite H 1,104 13,151 31,598 264,483
Test Suite I 1,165 7,132 23,138 223,073
Total 5,433 62,937 194,212 1,832,777

7.4.3 Data Collection

To answer the research question, we perform automated smell detection using our smell
detection techniques on all nine study objects.

RQ 1: How precise are our detection techniques?

To determine whether the smell detection techniques presented in Section 7.3.3 are able to
identify quality problems, we are manually assessing smell findings from our study objects.
To quantify the quality of our detection techniques, we use the metric Precision defined as
follows:
no. of True Positives
no. of All Smell Findings

Precision =

RQ 2: How many correct findings are identified by our detection techniques?

To determine how many correct Smell Findings are uncovered, we manually assess the smell
findings that are produced by our smell detection techniques. We use the metric Number of
True Positives to measure the number of correct smell findings.

RQ 3: How severe are uncovered quality problems?

To investigate the severity of the quality problems that are revealed by smell findings, we
perform expert interviews. In this study, we approximate the severity of quality problems by
the consequences test engineers draw from smell findings. We use a multi-level classification
schema to let experts rate the severity of smell findings.
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7.4.4 Study Execution

In the following, we describe how we performed the automated smell detection, the manual
assessment of smell findings, and the expert interviews. Figure 7.10 summarizes which study
objects have used for which data collection technique.

Table 7.10: Study objects used for data collection techniques.

Test Suite

Data Collection Technique A B C D E F G H 1

Automated Smell Detection (RQ 1,2,3) x x
Manual Assessment of Findings (RQ 2) x x x X X X X X X
Expert Interviews (RQ 3)

Automated smell detection

We created prototypical tooling in that we implemented our smell detection techniques (see
Section 7.3.3). Our tooling consists of three consecutive phases:

Phase 1 — Reading test suite: As a first step, the tool reads the test suite from its original
format, such as word files or database exports. The reader transfers the test suite into
our basic artifact model consisting of Test Cases having Test Steps. Each test step
has two fields: A Step Description and an Ezxpected Result, both described in form of
natural language text (see Figure 7.10).

Manue.d ® " Test Case 4  Test Step
Test Suite

t Step Description
t Expected Result

Figure 7.10: The artifact model of our smell detection tooling.

Phase 2 — Smell detector pipeline: As a second step, the tool processes an extensible
pipeline of smell detectors. Each smell detector gets access to artifact model and is able
to annotate smell findings to any part of the test suite.

Phase 3 — Visualization: As a third step, the tool generates an HTML dashboard that
allows browsing through content of artifact model and the annotated smell findings.

The case study was performed on a PC with Linux operating system equipped with an
Intel Dual Core 2.9 GHz CPU and 8 GB of RAM. The time for the smell detection was
between 30 seconds up to a 5 minutes per test suite.
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Manual assessment of findings

To assess the quality of the smell detection techniques, two researchers manually assessed
smell findings of our test smells. Both researchers have been working in the field of system
test quality for several years and are experienced with natural language text processing. We
selected up to 10 random smell findings per smell from each test suite and classified them
either as true positive or false positive depending on whether the smell finding is an actual
instance of the quality factor of a smell. The classification took part in three phases for each
test smell:

Phase 1 — Alignment: As a first step, the selected smell findings of one test suite were
assessed collaboratively by both researchers to get a common understanding of the
smell and its quality factor. Each smell finding was discussed between both researchers
and criteria to determine the quality factors were defined.

Phase 2 — Individual Assessment: As a second step, smell findings of another seven test
suites have been split up into two parts and have been assessed independently by one
researcher each.

Phase 3 — Inter Rater Agreement: As a third and final step, the smell findings of the
remaining test suite were assessed by both researchers independently to get data points
to calculate the inter rater agreement using the metric Cohen’s kappa [Cohen, 1960].

In total, we manually assessed 420 smell findings. 50 of which have been used to determine
the inter rater agreement (Phase 3). The remaining 370 smell findings have been used to
calculate the precision of the smell detection techniques (Phase 1 and 2). Table 7.11 shows
the concrete number of smell findings that have been manually assessed.

Table 7.11: Number of smell findings that have been manually assessed.

Sample Size (no. smell findings)

Smell Precision Inter Rater Agreement Total
Hard-Coded Test Data 79 10 89
Branches in Test Flow 80 10 90
Merged Test Steps 61 10 71
Complicated or Bloated Phrases 71 10 81
Ambiguous Phrases 79 10 89

Test Clones - - -
Sum 370 50 420
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Expert interviews

Goal of the expert interview was to identify the severity of correct smell findings. Therefore,
we discussed randomly selected smell findings of test smells with the test engineers of the
corresponding test suites. To be independent of the precision of the used smell detection
techniques (see RQ 1), we filtered the random selection and removed false-positive smell
findings that do not satisfy the smell’'s quality factor. We asked for the consequences test
engineers draw from the smell findings. Concretely, the test engineer was asked the following
questions for each presented finding;:

(Q1) What consequences do you draw from this smell finding?

The test engineer was asked to answer the question by rating the smell finding using our
four-staged classification schema (see Figure 7.11) and to give a short rational for the decision.
We performed one interview for each of the test suites G, H, and I. In each of the interviews,
we talked to 1 — 2 test engineers of the corresponding test suite for about 60 — 90 minutes.
Because of time constraints of the interviews and since not every smell occurred in each test
suite, it was not possible to discuss smell findings of each smell in each interview. In total,
109 smell findings have been assessed by test engineers of all three test suites. Table 7.12
shows the concrete number of smell findings that have been discussed in the interviews.

Does it
cause a quality
problem?

no yes

Will you
draw
consequences?

Will you react \ Y¢S

immediately?

Class A: Class B: Class C: Class D:
Correct finding, Correct finding, The quality The quality
but does not cause but the quality problem will be problem will be

a quality problem. problem will not fixed at a suitable fixed at the
be fixed. opportunity. next opportunity.

Figure 7.11: Classification schema for manual assessment of the severity of findings.
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Table 7.12: Number of smell findings that have been assessed in the expert interviews.

Test Suite
Smell G H 1 Total
Hard-Coded Test Data - - 12 12
Branches in Test Flow 3 8 12 23
Merged Test Steps 3 5 13 21
Complicated or Bloated Phrases - - 10 10
Ambiguous Phrases 7T 14 7 28
Test Clones - - 15 15
Sum 13 27 69 109

7.4.5 Results

We present the results along the research questions:

RQ 1: How precise are our detection techniques?

Our detection technique to uncover Test Clones builds up on existing clone detection algo-
rithms from the area of source code clone detection. Since those algorithms are very accurate,
we assume that the Smell Test Clones has a precision of 100%. Therefore, we did not manually
assess the precision of any Test Clones smell findings.

From the other smells, we manually assessed 370 smell findings (see Table 7.11). The
detected precision of our smell detection techniques was between 56.3% (Smell Complicated
or Bloated Phrases) and 97.5% (Smell Hard-Coded Test Data) with an average of 73.8%
(calculated over all assessed smell findings). The inter rater agreement over all smell findings
that have been assessed by both researchers was k = 0.76 (values between 0.61 and 0.80 are
considered as substantial [Altman, 1990; Byrt, 1996; Fleiss et al., 2013; Landis and Koch,

1977]). Table 7.13 summarizes the results of the manual assessment.

Table 7.13: Precision of smell detection techniques (summary of all test suites).

Smell Precision
Hard-Coded Test Data 97.5%
Branches in Test Flow 82.5%
Merged Test Steps 65.6%
Complicated or Bloated Phrases 56.3%
Ambiguous Phrases 63.3%
Test Clones (100%)
Overall (w/o Test Clones) 73.8%
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RQ 2: How many correct findings are identified by our detection techniques?

We extrapolate the number of correctly identified smell findings by correcting the number of
all found smell findings with the precision of our detection techniques (see RQ 1). Hence,
we assume that 79,424 smell findings have been correctly detected by our smell detection
tooling. The number of correct smell findings per Smell ranges from 302 of Smells Merged
Test Steps to 62,848 of Smell Hard-Coded Test Data. Table 7.14 shows the number of correct
smell findings for each Smell and each test suite.

Table 7.14: Number of correct findings of all test suites (extrapolation).

Test Suite

Smell A B C D E

Hard-Coded Test Data 1,674 17,843 1,749 19,732 1,788
Branches in Test Flow 28 1,286 162 794 100
Merged Test Steps 5 58 1 171 0
Complicated or Bloated Phrases 7 63 3 340 23
Ambiguous Phrases 74 1,947 225 1,593 235
Test Clones 59 2,844 61 1,250 677
Sum 1,847 24,041 2,201 23,879 2,823

Test Suite

Smell F G H I Total
Hard-Coded Test Data 2,209 1,912 6,569 9,371 62,848
Branches in Test Flow 78 87 360 489 3,383
Merged Test Steps 1 10 40 18 302
Complicated or Bloated Phrases 38 3 62 17 557
Ambiguous Phrases 133 74 731 641 5,653
Test Clones 107 65 995 623 6,681
Sum 1,565 2,268 8,757 11,159 79,424

RQ 3: How severe are uncovered quality problems?

Except for the smell Hard-Coded Test Data, the majority of the Smell Findings have been
classified as leading to quality problems (Classes B, C, and D). In average, ~75% of the smell
findings have been classified as to be fixed at suitable or even next opportunity (Classes C
and D). In the case of Merged Test Steps and Test Clones, even more than 50% smell findings
are to be fixed at next opportunity (Class D). Table 7.15 shows the classification results for
each smell.
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Table 7.15: Severity of smell findings.

Smell Class A Class B Class C Class D
Hard-Coded Test Data 50% 25% 8.3% 16.7%
Branches in Test Flow 26.1% 4.3% 47.8% 21.7%
Merged Test Steps - - 47.6%  52.4%
Complicated or Bloated Phrases - 20% 30% 50%
Ambiguous Phrases 25% 7.1% 60.7% 7.1%
Test Clones - - 40% 60%
Overall 17.4% 7.3% 44% 31.2%

7.4.6 Threats to Validity

In this section, we discuss threats to the external and internal validity of the study and
describe how we mitigated them:

External Validity:

In our study, we analyzed test suites 9 two business information systems of 2 companies from
two different application domains. It is possible that test cases are designed differently in
other application domains or other companies because they use different tools and processes
to create and maintain test cases. To make our results more generalizable, the study has to be
repeated using test cases of different application domains created by different organizations.

Internal Validity:

Since the categorization in RQ 1 and RQ 3 has been performed manually, the results might
be subjective to personal bias due a metric’s subjectivity. For RQ 1, we addressed this risk
by starting the assessment for each smell with an alignment phase in that both researchers
did together to form a common understanding of the smells and their quality factors. We
measured the inter rater agreement to quantify in as much the assessment of both researchers
differs. The resulting Cohen’s kappa value of k = 0.76 considers the agreement of both re-
searchers as substantial (0.61 —0.80). For RQ 3, we were interested in the actual consequences
that test engineers draw from smell findings. Since the test engineers that took part in our
interviews were responsible for executing and maintaining the corresponding test suite, we
consider the results as realistic and significant.

To answer RQ 1, two researchers manually assessed the quality of smell findings. As these
researchers are not part of the project team of the study objects, this might bias the results.
However, the researchers who conducted the study have worked with Munich Re for several
years and are experienced in the field of software testing.

The categorization in RQ 1 and RQ 3 have not been performed on all identified smell
findings but just on small samples. Selecting samples can potentially introduce inaccuracy.
However, we tried to reduce this issue by selecting the samples randomly.
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7.4.7 Interpretation and Discussion

Goal of this study was to evaluate the concept of natural language test smell regarding its
ability to identify quality problems in industrial test suites. We split up this goal into two
parts:

Part I — Quality of detection techniques

In the first part of the study, we evaluated the quality of the smell detection techniques that
have been presented in Section 7.3.3. The precision of the smell detection techniques is a
crucial criterion to user acceptance. If smell detection tooling leads to many smell findings
without relevance for test engineers, its chances to get accepted decreases easily.

In RQ 1, we analyzed the precision of our detection techniques. Some detection tech-
niques have shown to be quite accurate with a precision >95%, such as Hard-Coded Test
Data and Test Clones. However, other smell detection techniques, such as Complicated or
Bloated Phrases, have a moderate precision leading to many false positives. However, the
implementation or our detection techniques that have been used in this study was a prototyp-
ical implementations and still provide many ways for improvement. Therefore, we consider
the measured precision as a lower bound.

Part IT — Relevance of findings

In the second part of the study, we evaluated the relevance of smell findings. We approximated
the relevance in two ways: The number of (correctly) identified smell findings (RQ 2) and
their relevance for test engineers (RQ 3).

Although the number of findings per smell differs strongly, our manually assessed samples
indicate that our smell detection techniques correctly identified ~1,500 up to ~24,000 smell
findings per test suite (~80,000 in total). Based on our interviews, in ~75% of the cases
(severity class C+D), test engineers consider them as relevant enough to fix the identified
quality problems.

Although the data of this study is not detailed enough to allow precise predictions, combining
the assessment of the test engineers with the number of correct smell findings indicates that
our approach revealed quality problems to be fixed in the order of ~1,000 to ~19,000 in each
test suite.

7.5 Benefit Estimation

In the previous study, we have shown that natural language test smells are able to identify
relevant quality defects in industrial software projects. However, so far it is unclear how much
benefit will be gained by removing smell findings as well as if and when the effort of removing
them will pay off. To address these questions, we present a rough estimation of the benefit
of removing smell findings in natural language test cases. Goal of this calculation is not to
present a precise cost model but to learn in what settings the usage of natural language test
smells pays off and how much testing costs can roughly be saved.
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7.5.1 Benefit Estimation Model

To estimate the overall benefit of our approach, we rely on our relative benefit estimation
model that we introduced in Chapter 5 Choosing Execution Modes (see Section 5.5.1 Benefit
FEstimation Model). This model is based on the idea, that the overall costs of system testing are
composed of the costs of each testing activity of system testing (see Figure 7.12). Furthermore,
the model defines the relative sizes of each activity within the whole calculation. Knowing
these proportions between the system testing activities allows calculating how the overall
system testing costs develop when the costs for single testing activities change.

| Activities of System Testing T ?
: { The System Test Case Life-Cycle P

Activity: Activity: ! Activity: Activity: Activity:
i | Test Analysis Test Design i | Test Creation Test Execution Test Maintenance| : !

Contribution:
Analytical Quality
Assessment of
Test Artifacts
(Natural Language
Test Smells)

Figure 7.12: System testing activities that are addressed by the contribution of this chapter.

The approach that we presented in this chapter addresses the activities of test execution
and test maintenance (see Figure 7.12). In the following sections, we estimate the benefit of
our approach for these two activities. Furthermore, to estimate how much costs can be saved
in total, we use our relative benefit estimation model to extrapolate the benefit for the overall
system testing costs.

7.5.2 Assumptions
To ease the estimation, we make the following assumptions:

Just one smell per test step: To simplify the estimation of execution and maintenance
benefits of smell removal, we assume that there is a maximum of one smell finding per
test step. Thereby, we can estimate the effort and benefit of removing findings on a per
test step base.

Independent benefit: We assume that removing findings from one test step does not in-
fluence the execution and maintenance of other test steps. Furthermore, removing a
finding does not influence the benefit that is gained from removing other findings.

Findings of same smell have similar removal costs and benefit: To avoid assessing
costs and benefits of each finding individually, we assume that all findings of the same
smell require the same effort to be removed and provide the same execution and main-
tenance benefit once they are removed. We just estimate the costs and benefit for each
smell once.
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Each test step is executed exactly once: We assume that each test step is executed ex-
actly once per test run. Thereby, we do not have to consider test cases that are executed
several times or parts of test cases (for example, individual test steps) that are called
by other test cases and are therefore executed several times.

No setup costs: Lastly, we ignore the costs for performing automated smell detection, such
as installation, configuration and execution costs.

7.5.3 Calculation of Benefit for the Activities Test FExecution and Test
Maintenance

We calculate the benefit of our approach for the activities test execution and test maintenance
as follows: The benefit is approximated by comparing the benefit that is gained from removing
findings with the costs to remove them. Concretely, we subtract the removal costs of findings
from their execution and maintenance benefits:
Execution benefit for one execution x No. of planned test runs
+ Maintenance benefit for one maintenance task x No. of expected maintenance tasks
— Costs of findings removal

= Benefit of findings removal

To estimate the overall benefit that is gained from removing all smell findings, we sum up
the benefit from each individual smell finding:

Z No. of findings (per smell) x Benefit of removing one finding (per smell)

smell € Smells

= Benefit of removing all findings

To estimate the extent to that the activity costs decrease by applying our approach, we
furthermore need an estimation of the overall test execution and maintenance costs of a test
suite. We calculate these values as follows:

Avg. execution effort per test step
Number of test steps
Number of planned test runs

Execution costs without our approach (over time)

Avg. maintenance effort per test step
Number of test steps
x Number of expected maintenance tasks

Maintenance costs without our approach (over time)

7.5.4 Data Elicitation

We apply our cost estimation model to the study objects of the previous study (Section 7.4
Evaluation). However, since for this study not all necessary data is available, we substitute
the missing data with data from our previous study (Chapter 5 Choosing Ezecution Modes)
and with own estimations.
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Number of Findings

To estimate the number of relevant findings, we multiply the number of correctly identified
findings from Section 7.4 Ewvaluation with the relevance that has been determined in the same
study. Table 7.16 summarizes the calculation.

Table 7.16: Number of correct and relevant findings (summary of all study objects of the
previous case study).

Correct Relevance Relevant
Smell Findings (Classes C+D) Findings
Hard-Coded Test Data 62,848 25.0% 17,712
Branches in Test Flow 3,383 69.5% 2,351
Merged Test Steps 302 100.0% 302
Complicated or Bloated Phrases 557 80.0% 446
Ambiguous Phrases 5,653 67.8% 3,833
Test Clones 6,681 100.0% 6,681
Sum 79,424 29,325

Execution Benefit of Finding Removal

For simplification, we assume that all findings of the same smell provide the same benefit
for test execution when they are removed (see Section 7.5.2 Assumptions). To estimate the
execution benefit for findings of a certain smell, we assign each smell to an execution impact
class. Each class represents a certain type of execution benefit that is gained by removing
smell findings. Furthermore, each class is assigned to a speedup factor by which the execution
of a test step is improved once a smell has been removed from a test step. Tables 7.17 and
7.18 summarize the execution impact classes and our assignments to natural language test

smells.
Table 7.17: Classes of smell impacts on test execution.
Execution

Execution Impact Class Speedup  Description

None 0% No impact on test execution.
Comprehension by Tester (low) 15% Tester understands test step easier and

needs less time to clarify questions.

Comprehension by Tester (high) 30% Tester understands test step easier with-

out the need to clarify questions.




140 CHAPTER 7. NATURAL LANGUAGE TEST SMELLS

Table 7.18: Classification of smell impact on test execution.

Smell Execution Impact Class
Hard-Coded Test Data None

Branches in Test Flow Comprehension by Tester (low)
Merged Test Steps Comprehension by Tester (high)
Complicated or Bloated Phrases Comprehension by Tester (high)
Ambiguous Phrases Comprehension by Tester (high)
Test Clones None

To estimate the actual execution time that is saved by removing a smell finding, we build
up on concrete values from our case study presented in Chapter 5 Choosing Fxecution Modes.
We take the average execution time of a test step of the case study and calculate the actual
time that is saved based on the speedup factor of the assigned execution impact class.

Maintenance Benefit of Finding Removal

Similar to the execution benefit of removed findings, we assume that findings of the same
smell provide the same benefit for maintenance tasks when they are removed (see Section 7.5.2
Assumptions). We assign each smell to a maintenance impact class, which represent classes of
benefits that are gained by removing findings. Similar to execution impact classes, we assign
to each maintenance impact class a maintenance speedup factor by which we assume that
maintenance tasks are are performed faster once smell findings are removed. Tables 7.19 and
7.20 summarize the maintenance impact classes and the assignments to natural language test
smells.

Table 7.19: Classes of smell impacts on test maintenance.

Maintenance

Execution Impact Class Speedup Description

None 0% No impact on test maintenance

Comprehension by Maintainer (low) 20% Maintainer understands test case
easier and needs less time to clar-
ify questions.

Comprehension by Maintainer (high) 40% Maintainer understands test case
easier without the need to clarify
questions.

Global Maintenance Improvement 50% Maintenance is performed -easier,

since changes are locally and lim-
ited to a single test case.
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Table 7.20: Classification of smell impact on test maintenance.

Smell Maintenance Impact Class
Hard-Coded Test Data Global Maintenance Improvement
Branches in Test Flow Comprehension by Maintainer (low)
Merged Test Steps Comprehension by Maintainer (high)
Complicated or Bloated Phrases Comprehension by Maintainer (high)
Ambiguous Phrases Comprehension by Maintainer (high)
Test Clones Global Maintenance Improvement

To estimate the actual maintenance time that is saved by removing a smell finding, we
build up on concrete values that we elicited in the case study from Chapter 5 Choosing
Ezecution Modes. We take the case study’s average maintenance time for test steps for one
maintenance task and use the maintenance speedup factor to calculate the actual maintenance
time that is saved.

Costs of Finding Removal

To ease the approximation of finding removal effort, we assume that findings of the same smell
cause similar effort to be removed (see Section 7.5.2 Assumptions). We introduce removal
effort classes that define classes of efforts to remove findings. Since we lack concrete values of
efforts to remove smells from test cases, we define them relatively to the effort of maintenance
tasks. Each class has a factor that defines the effort to remove smell findings of that class
relatively to the effort of general maintenance tasks. Tables 7.21 and 7.22 summarize the
remval cost classes and the assignments to natural language test smells.

Table 7.21: Classes of smell removal effort.

Removal Effort
Removal Effort Class (relative to maintenance) Description

None 0% No removal costs.

Quick Fix 25% Finding can be removed by making a
small, local change in a test step.

Scope: Test Step 50% Finding can be removed by changing a
test step

Scope: Test Case 5% Finding can be removed by changing
several test steps within the same test
case.

Scope: Test Suite 125% Finding can be removed by changing

several test cases within the test suite.
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Table 7.22: Classification of smell removal effort.

Smell Removal Effort Class
Hard-Coded Test Data Quick Fix
Branches in Test Flow Quick Fix
Merged Test Steps Scope: Test Case
Complicated or Bloated Phrases Scope: Test Step
Ambiguous Phrases Quick Fix

Test Clones Scope: Test Suite

Similar to the execution and maintenance benefit, we build up on concrete values of the
case study of Chapter 5 Choosing Execution Modes. We take a test step’s average maintenance
effort for one maintenance task and use the factor of the removal effort class to calculate actual
values for removing single smell findings.

7.5.5 Quantitative Benefit

Our approach addresses the activities of test execution and test maintenance (see Figure
7.12). To assess to what extent the overall system testing costs are reduced by our approach,
we first calculate the benefit of removing individual smell findings. From that, we calculate
how much the activities of test execution and test maintenance benefit from removing those
findings from our study objects. Afterwards, we use our relative benefit estimation model to
calculate the overall cost benefit for system testing that is gained by our approach.

Benefit of Single Smell Findings

As a first step towards a benefit analysis of natural language test smells, we quantify the
benefit of removing single smell findings. Figure 7.13 gives an overview of the time savings
that are gained from removing a single smell finding. In each subfigure, the number of planned
test runs and the number of expected maintenance tasks have been used as independent
variables: The x-axis shows different numbers of planned test runs. Each subfigure contains
several data series for different numbers of expected maintenance tasks. The y-axis shows the
time that is saved by removing a single smell finding.

Results: From this data, we can get the following information about the benefit of smell
removal: First, for most smells, the benefit increases the more often a test suite is exe-
cuted. This is because most smells negatively affect the activity of test execution (except for
smell Hard-Coded Test Data and smell Test Clones). Second, the more often a test suite is
maintained, the larger is the benefit of removing smell findings. Similar to the previous ob-
servation, all of our smells negatively affect the activity of test maintenance. Third, removing
smell findings does not pay off in each situation. Removing findings of the smell Hard-Coded
Test Data and Test Clones, for example, just pays of after one resp. three maintenance tasks.
For test suites that will not be maintained often, these smells will not save testing effort.
Furthermore, removing most smell findings will not pay off before 40 to 100 test runs (if they
are not maintained at all).
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Figure 7.13: Benefit of removing a single smell finding.
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Figure 7.14: System testing costs saved by our approach.

Reduction of Test Execution and Maintenance Costs

Figure 7.14a shows the relative reduction of the costs for the activities test execution and
maintenance. In our calculation, the number of planned test runs and the number of expected
maintenance tasks have been used as independent variables (similar as in the figures before).
The x-axis of the figure represents different values of planned numbers of test runs, whereas
the y-axis shows the percentage of execution and maintenance costs that will be saved by
removing all smell findings (the costs for removing smell findings has been considered in the
calculation). Furthermore, each data series represents a different value for the number of
expected maintenance tasks.

Results: In our case study, the natural language test smells have their major impact re-
garding the test maintenance costs. Most smell findings are instances of smells that primarily
(or even only) affect the activity maintenance, for example, the smells Hard-Coded Test Data
or Test Clones (see Table 7.16 on page 139). Furthermore, the cost saving effect of remov-
ing smell findings is generally higher for the activity maintenance than for the activity test
execution (see our classification in Tables 7.18 and 7.20 on pages 140 and 141).

This effect is also visible in our calculation. The more often the test suite will be main-
tained, the higher will be the costs saving (visible in the difference between the data series).
However, the more often the test suite is executed, the lower is the impact of the high main-
tenance savings (development on the x-axis). Since the execution benefit of our smells is
generally lower compared with the maintenance benefit, the relative reduction of costs (in
percent) will shrink the more often the test suite is executed despite the absolute cost saving
is increasing.

Reduction of Overall System Testing Costs

We used our relative benefit estimation mode to extrapolate the overall system testing costs
that are saved by removing smell findings (see Figure 7.14b). Similar to the previous figure,
the numbers of planned test runs and expected maintenance tasks are used as independent
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variables (x-axis and individual data series). The y-axis shows the relative improvement of
the overall system testing costs.

Results: Based on our calculation, we can get the following information for the test suites
of our case study. Identifying and removing smell findings will not pay off until the test suite
is executed or is subject to maintenance often. The break-even point is at ~20 test runs
if the test suite is maintained once or at ~300 planned test executions if the test suite is
never subject to maintenance at all. Applying the context of our case study from Chapter 5
Choosing Execution Modes (40 — 60 test runs, 1 maintenance tasks), our approach is just
above zero. However, if the test suite is subject to maintenance more often (e.g., 2 to 5
times), ~10% of the overall system testing costs could be saved by removing smell findings.

7.5.6 Qualitative Benefit

In addition to the quantitative results, we identified qualitative benefits of removing natural
language test smells in test suites:

Same testing in less time: Many of our natural language test smell findings identify qual-
ity defects that are slowing down the execution of test cases, for example, because testers
have to clarify ambiguities in test descriptions. However, a decrease of execution time
does not only lead to reduced testing costs, but also enables quicker testing of all test
cases leading to faster development cycles.

More testing in the same time: Faster test execution can also be used to (create and)
execute more test cases in the same time. This leads to more effective testing, for
example, by increasing test coverage.

Ease of maintenance: Furthermore, all of our natural language test smells findings points
at challenges in maintaining test cases. Removing these findings leads to test cases that
are easier to maintain. This does not only reduce maintenance costs but also leads to
test suites that are faster to adapt to changes and therefore are earlier ready-to-use.

7.6 Summary

In this chapter, we addressed the challenge of improving the quality of test artifacts. We
proposed Natural Language Test Smells, an approach to support test engineers in identifying
quality problems in test suites that are written in natural language. The proposed approach
is purely analytically and complements constructive quality improvement approaches by re-
vealing quality problems to be fixed.

We introduced a smell definition template as a framework to support quality engineers in
defining quality problems and smells. Furthermore, we bring together our concept of natural
language test smells with a basic quality model which allows to individually select smells that
are of importance in certain project contexts.

Based on existing code and unit test smells and on our own industrial experience, we
define an initial set of six smells for test cases written in natural language. To detect natural
language test smells automatically, we introduced four universal smell detection techniques
using static analysis techniques, such as, Natural Language Processing (NLP). Using these
universal techniques, we presented concrete ways of detecting our smells.
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In a case study, we analyzed the ability of our approach to identify relevant quality prob-
lems in industrial test suites. We prototypically implemented our smell detection techniques
and applied them to 5,433 test cases from 9 manual test suites taken from two different com-
panies. We performed manual assessments and performed interviews with test engineers to
evaluate the quality of our detection techniques and the relevance of the smell findings that
have been reported by our tooling. The study revealed that our implementation of smell
detection techniques has an average precision of ~74% leading to ~80,000 correctly identified
quality problems in our study objects. Furthermore, the interviews revealed that in ~75% of
the cases, the corresponding test engineers would fix the identified quality problems at next
or at suitable opportunities.

We furthermore performed a coarse benefit estimation to find out if and when the costs for
removing smell findings are paid off by the benefit of removed smell findings. For our study
objects, it turned out that removing smell findings is starting to have a positive benefit, once
the test suite is executed ~20 times and is subject to maintenance at least once (alternatively,
~300 planned test executions if the test suite is never subject to maintenance at all). However,
if our test suites are maintained more often, ~10% of the overall system testing costs could
be saved by removing smell findings.



Chapter 8

Summary

In this final chapter, we summarize the contributions of this thesis and describe directions for
further research.

8.1 Summary of the Problem and the Contributions

In the following, we outline the problem statement and the contents of this thesis. We start by
describing the importance of software testing and explain the problem of high testing efforts.
Afterwards, we present the phenomenon of commonality of test procedures that influences
the activities of creating, executing and maintaining test cases. Having this phenomenon in
mind, we provide specific contributions to support test engineers in performing the activities
of test creation, execution and maintenance.

8.1.1 Importance of Software Testing

Testing is a central activity in software development, however, it is also among the most
expensive activities in software development: For the last decades, efforts for testing have been
in the dimension of half of the overall development expenses (see Chapter 1 Introduction).

Testing comprises different levels, such as unit testing and integration testing. In this
thesis, we limited ourselves to system testing as a way to verify whether complete, integrated
systems comply with their (mostly functional) requirements. We furthermore focused on the
application domain of interactive systems, such as business information systems and on the
efforts for system testing that arise during the following three activities of the system test case
life-cycle: test creation, test execution, and test maintenance (see Section 1.1.1 The System
Test Case Life-Cycle).

8.1.2 Commonalities in Test Procedures

Based on our experiences from five years of close collaboration with industry, we identified
the phenomenon of commonality in test cases as a cause for high system testing efforts: Key
elements of all system test life-cycle activities are test cases. Looking at test cases of the same
test suite, their flow of test steps (the test procedure) is often very similar. Reasons for that
are manifold and lie in the basic idea of testing: To reach high test coverage, as many different
paths as possible through the software system are executed. Since these paths often differ
just slightly, this inevitably leads to test cases with similar test procedures. Furthermore, if
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the functionalities that are tested are alike, then test cases testing this functionality will be
alike, too. Lastly, dependencies between functionalities (such as preconditions or inheritance
of functions) also lead to commonality of test procedures (see Section 1.1.2 Commonalities in
Test Procedures).

Commonality in test procedures leads to the following negative consequences for the sys-
tem test life-cycle: First, commonality in test procedures complicates the decision when to
automate tests and when to rely on manual execution. Both execution techniques have advan-
tages and disadvantages. For each test suite, one has to decide when to use which execution
technique. However, this decision is not a trivial task, and if made inappropriately, test-
ing budgets can be wasted easily. Second, commonality often leads to bad artifact quality,
which hampers executing and maintaining test cases. If test artifacts are inappropriate to
support execution and maintenance, testing efforts increase (see Section 1.1.3 Consequences
of Commonality to the System Test Case Life-Cycle).

8.1.3 Our Approach to Address the Problem

Goal of this thesis is to investigate approaches to reduce overall system test case life-cycle effort
focusing on testing of business information systems. We pursued this goal by following two
key principles: First, we designed our contributions to be as less invasive as possible to ease
their adoption in practice. Second, we addressed the problem of high system testing effort
by taking test cases as starting points for our contributions. More specifically, we addressed
our goal by supporting all three system test case life-cycle activities: Test case creation,
execution, and maintenance. Furthermore, we followed the research approach industry-as-
laboratory [Potts, 1993] by clarifying the research problem as well as developing contributions
with close involvement of industry partners. This allowed us to evaluate our approaches in
industrial real-life settings.

In the beginning, we investigated the phenomenon of commonality in real-world test suites
and its impact to system testing effort. This study did not only lead to a deeper understand-
ing of the problem domain, but also helped us to identify two relevant challenges we want
to address: Choosing adequate execution modes as well as improving and keeping the qual-
ity of test artifacts. Afterwards, we followed a two-fold approach addressing the negative
consequences of commonality of test procedures:

First, we support test engineers in choosing best fitting execution modes. We presented an
effort estimation model that enables test engineers in balancing the advantages and disadvan-
tages of manual and automated test execution and allows finding best fitting execution modes.
Thereby, we support the activity of executing test cases and avoid unnecessary expenses for
creating and maintaining manual test descriptions or automated test scripts.

Second, we support test engineers in creating and improving high quality test artifacts in
two different ways. Building upon existing grammar inference techniques, we developed an
approach guiding test engineers in removing test clones, a common negative consequence of
commonality of test procedures. Furthermore, we proposed an analytical technique to point
to quality problems in test artifacts. Both approaches support test engineers in creating and
maintaining high quality test artifacts, which are easier to execute and maintain.
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8.1.4 Contributions

Concretely, we made the following four contributions:

A Study on Clones in Manual System Test Cases: We performed clone detection on
seven industrial test suites (72 — 1800 manual test cases each). The study identified that
the test suites contained between 43% and 86% identical text passages (some appearing
up to 30 times). The results of the study supports our assumption that commonality
in test artifacts has negative affects to the system test case life-cycle.

An Effort Estimation Model to Identify Adequate Execution Modes: We proposed
an effort estimation model to support test engineers in choosing execution modes. Ap-
plying our model in industry (41 test cases) revealed that execution modes have a strong
influence on testing efforts: Testing efforts differed by the factor of four depending on
how manual and automated testing are applied. A coarse benefit estimation indicated
that, in our case study, an adequate execution will reduce the overall system testing
costs up to ~20% — ~30% (within two years).

Constructive Quality Improvement of Test Artifacts: We presented an approach to
identify cloned parts in automated test cases and describes specific ways of removing
them. Compared with the sate of the art, our approach shows its strength by finding
ways of extracting clones that overlap and are therefore difficult to handle manually. A
study revealed that our approach is considered beneficial by test engineers: In 16 out of
18 cases, test engineers would implement our refactorings. A coarse benefit estimation
showed that our approach pays off after the test suites are maintained 2 — 3 times. The
overall system testing costs will be reduced up to ~10% if the test suites are maintained
5 — 10 times.

Natural Language Test Smells: We introduced natural language test smells, a technique
to identify potential quality defects in manual test cases. In an industrial study (9 test
suites from two companies, 5,466 test cases in total), we identified that our technique
has an average precision of ~74%. Interviews revealed that 75% of the (correct) findings
have been considered by test engineers as worth to be fixed. A coarse benefit estimation
showed, that removing smell findings can reduce the overall system testing costs up to
~10%.

8.2 Outlook and Future Work

In the following sections, we discuss directions for future research. First, we present next
steps that are directly related to our work. Second, we discuss alternatives to our approach.
Third, we point out future research topics having a larger scope and are addressing not only
the system test case life-cycle, but software testing in general.

8.2.1 Future Work Related to Our Approach

This section discusses possible extensions and improvements related to our approach and
illustrates directions for further research.
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Prioritization of Smell Findings using Cost-Benefit Analysis

The industrial evaluation presented in Chapter 7 Natural Language Test Smells has shown
that our concept of smells for natural language test cases is able to identify a high number of
quality problems: We identified ~1,500 up to ~24,000 smell findings per test suite and 75%
of the assessed findings have been rated as worth to be fixed. However, time and budgets of
test engineers are limited. Therefore, it is unrealistic to assume that each of these findings is
getting fixed in near future. This poses the challenge of determining on which smell findings
test engineers should focus first.

We believe that a process to prioritize smell findings will help test engineers in dealing
with the high number of smell findings. Our study revealed that not all smell findings are
similarly severe: For example, 17.4% of the detected smell findings have even been rated as
not relevant at all. Additionally, not all findings are equally easy to correct. This implies
that trading off benefits of smell finding removal with the expected removal costs is a good
starting point towards a prioritization of smell findings. For source code, similar approaches
already exist. Steidl and Eder, for example, propose to focus on findings that can be fixed
with quick refactorings. Other approaches propose to follow the Boy Scout Rule by coupling
development tasks with fixing quality findings that affect the same code regions [Martin, 2009;
Steidl et al., 2014].

Constructive Solutions for Further Smells

In Chapter 6 Test Refactoring Using Grammar Inference, we presented a constructive ap-
proach to help test engineers removing quality problems in test artifacts. However, the pre-
sented approach focuses only on clones and is (without further adaption) just applicable to
automated test scripts in keyword-driven style. For other quality problems, we just provide
hints to possible solutions so far.

For some types of quality problems, fixes are rather obvious and trivial to realize. However,
other types of quality problems are more difficult to be fixed. We believe that test engineers
would benefit from tool support to work quality problems that are difficult to fix manually.

Integrating Analytical and Constructive Quality Improvement

In Chapter 6 Test Refactoring Using Grammar Inference and Chapter 7 Natural Language
Test Smells, we presented two different ways to obtain high artifact quality. Whereas the latter
is a purely analytical approach pointing out likely quality problems, the first is a constructive
approach helping test engineers in improving test artifacts. Although both approaches have
the same goal, they are not integrated yet.

Both approaches are complementary and test engineers would benefit from integrating
both. Following the original idea of coupling smells and refactorings [Fowler, 1999], we pro-
pose to integrate natural language test smells with constructive approaches such as the one
presented in Chapter 6 Test Refactoring Using Grammar Inference. Equipping each natural
language test smell with constructive ways of fixing the caused quality problems would make
it easier for test engineers to find out how to improve the quality of test artifacts.
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Using Test Smells as Metrics for Continuous Quality Monitoring

We presented natural language test smell as a tool to support test engineers in identifying
quality problems with the goal to fix them and thereby improve the overall quality of test
artifacts.

However, we believe that smell findings can also be used differently: By combining smell
detection results, new metrics indicating the overall quality of test suites can be defined. For
example, metrics, such as total number of smell findings or amount of smell findings per 100
words can be used to compare the overall quality of similar test suites or different parts of
the same test suite. Furthermore, having such metrics allows monitoring the quality of test
suites continuously and enables detecting quality trends early.

Integration into Software Development Processes

The approaches of this thesis aim at reducing efforts for creating new test cases and for
executing and maintaining existing test cases. To be as generally applicable as possible,
we made as little assumptions about the surrounding (software development) activities as
possible.

However, in some styles of software development processes, testing plays a particularly
important role. Following the development approach of continuous delivery, for example, soft-
ware is produced in short development cycles and deployed (and tested) as early as possible.
Furthermore, a common approach in software development projects is to structure testing
and deployment processes in several stages starting in development environments, going over
to dedicated testing environments until the application is finally deployed and tested in a
production environment. In each of the stages, individual tests are performed.

Compared to waterfall-like development processes, test cases are executed more frequently
and time periods between test runs are shorter. To leverage the approaches presented in this
thesis, they have to be integrated into software development processes and to be aligned with
existing quality assurance processes in order to be implemented effectively. For example, it
has to be defined at what stages or how often within a development process the approaches
are performed (in every development cycle or only once per release?) and how the results of
the approaches are used (immediately or for the next test run or release?).

8.2.2 Alternative Approaches to Reduce System Testing Effort

In this thesis, we aimed at reducing system testing effort by sticking to our key principles:
(1) Contributions should be as little invasive as possible to ease their adoption in practice.
(2) Taking test cases as starting point for improvements. (see Section 1.3.1 Key Principles).
In this section, we discuss alternative approaches that do not follow both of our key prin-
ciples. More specifically, we present approaches that do not follow principle 1 by proposing
contributions that (in some cases) strongly change existing testing processes and tool chains.

Test Suite Optimization

Our approach to a solution does not question the semantics of existing test suites: We take
a given set of test cases as granted and do not question their existence. However, a funda-
mentally different approach to reduce system testing effort is to optimize a test suite in a
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way that it is smaller leading to less test execution and maintenance effort (see Section 3.3
Optimizing Goals of Test Suites).

Reducing and optimizing system test suites would cover questions such as the relevance of
each test case. For example, by prioritizing the aspects of the software system that have to be
tested (the test conditions — see Section 2.3 A Generic System Test Process), less important
test cases could be identified. This information could also be considered to find best fitting
execution modes (Chapter 5 Choosing Execution Modes).

Most existing approaches for test suite reduction and optimization require formal system
specifications and formal test requirements which are both uncommon in the area of business
information systems. However, clones in test cases could be used as a heuristics to identify
redundantly tested functionality. Thereby, redundant realizations of test conditions can be
uncovered. Additionally, clones in test cases can be used to find candidates for merging test
cases.

Tools and Languages for Semi-Automatic Test Execution

The study in Chapter 5 Choosing Ezecution Modes revealed that mixing manual and auto-
mated test execution is a promising way to save test creation, execution, and maintenance
effort. The most promising way of mixing both techniques was a combination of both execu-
tion techniques even within single test cases — so called Semi-Automatic Test Execution.

However, implementing semi-automatic test execution requires testing tools that allow
mixing both techniques freely. Based on our observations while performing case studies, most
available testing tools are designed to dedicatedly support creation and execution of either
manual or automated test cases. To leverage the benefits of semi-automatic test execution,
we need tools and languages that enable easy and stepwise implementation of semi-automatic
test execution.

Tools and Languages for High Quality Test Artifacts

In interviews with test engineers (see Chapter 4, Chapter 6, and Chapter 7), it turned out
that many quality issues concerning the executability and maintainability of test cases are
due to inadequacy of testing tools and languages. For example, complex phrases in manual
test descriptions are encouraged by writing unrestricted natural language text. One approach
is to write manual test cases exclusively in form of semi-structured text, using text patterns
of phrases to be used. For example, behavior-driven development (BDD) (see Chapter 3 State
of the Art), a technique to write test cases in form of user stories, proclaims to write test
cases in a Given- When-Then style. However, user stories are not suitable to write system
test cases in every setting. Furthermore, test engineers claimed that in many cases, clones in
test procedures were inevitable since the used test definition tools did not provide sufficient
reuse abilities. Tools did not provide fitting abstraction mechanisms to extract cloned parts
to reuse components.

Tools and languages for test cases have a strong influence on the quality of the resulting
artifacts. To have high quality artifacts, tools and test definition languages have to sup-
port test engineers in writing test cases as well as to guide them in avoiding typical quality
problems.
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8.2.3 Beyond the System Test Case Life-Cycle

Similar to the previous section, we now discuss alternative approaches to reduce system testing
effort that do not follow our key principles. We present approaches that do not follow both of
our principles since they are not limited to the system test case life-cycle, but consider testing
in general.

Optimized Test Strategies

Software testing as a quality assurance method consists of different test levels, such as unit
testing, integration testing, or system testing (see Chapter 2 Fundamentals, Terms, and
Definitions). Mostly, several test levels are mixed to reach a project’s testing goal. Since
many test conditions can be tested using different test levels, many strategies of mixing test
levels are possible. However, test levels have strengths and weaknesses. Therefore, not each
test level is suitable for each type of test condition. This leads to test strategies that are not
efficient since they are using test levels in unsuitable ways. For example, exhaustive testing of
software libraries using manual testing on the level of the graphical user interface is inefficient.
In this case, (automated) unit testing combined with data-driven techniques is in most cases
by far more efficient.

A completely different way of reducing testing effort compared with ours is to consider
all levels of testing as a whole and optimize complete testing strategies of software projects.
Thereby, more efficient ways of verifying the quality of software systems could be found. This
would lead to less creation, execution, and maintenance effort for system testing.

Structured Derivation of Test Conditions and Test Cases

Based on our experience, test conditions and test procedures for system testing of business
information systems are mostly created manually. Test engineers analyze system specifications
and define testable aspects of the system — so called test conditions. Based on these test
conditions, test cases including test procedures are created (see Test Analysis and Test Design
in Section 2.3 A Generic System Test Process). Both steps are labor intensive and error prone.

A test analysis and design process that is more structured and tool supported has the
following advantages: Having a structured way of deriving test conditions from system spec-
ifications would ensure that all important aspects of a software system have been considered
in testing. Furthermore, a structured way of deriving test conditions and test cases would
allow linking test cases to those parts of the system specification that are tested. This enables
detailed reasoning about the coverage of executed test cases and of identifying erroneous func-
tionality from failed test cases. Furthermore, functional changes of the software system can
easily be tracked from the system specification to identify test cases that have to be adapted.

Although model-based testing aims at similar goals, most existing approaches are not ap-
plicable for business information systems: Model-based testing approaches target at deriving
low-level test cases completely automatically and therefore require system requirements in
form of formal specifications, such as state machines. However, business information systems
are often specified in form of informal or semi-formal requirements documents using natural
language text (for example, in form of use-case documents). By creating languages and tools
to model requirements of business information systems in a more structured form (for exam-
ple, having a clear meta-model with well-defined semantics of elements), test cases could be
semi-automated derived from requirements.
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Quality of Semantics of Test Cases

In this thesis, we focused on test executability, understandability and maintainability but
never challenged the execution behavior of test cases. We assumed that all test cases have
correctly been transferred to high-level test cases and test descriptions or test scripts. How-
ever, if this assumption is wrong, test results lead to wrong conclusions about the system’s
correctness.

By developing quality measures regarding the semantics of test cases, it would be possible
to identify unintended behavior of test cases. Having such measures, it could be verified
whether test cases are actually verifying the functionality they are executing. For example,
analyzing the assertions within test procedures may show whether test cases do not only
execute the system under test, but also verify its response (assertion coverage [Piziali, 2004]).
Furthermore, aligning test conditions with the source code of the system under test enables
verifying whether the correct functionality of the system under test is executed [Eder et al.,
2013]. Thereby, the overall process of testing would be more effective.
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