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Abstract

This cumulative thesis concerns numerical techniques for incompressible multi-phase flow. Strategies

for accurate and robust simulations are suggested. In particular, a conservative sharp interface method

is for incompressible flows with viscous and surface tension effects, a curvature boundary condition is

for a moving contact line and an efficient formulation of the scale-separation approach for multi-scale

modeling of interfacial flow.

In incompressible multi-phase flow, surface tension forces and viscosity forces play important

roles. To treat these two forces sharply at the phase interface, I develop a conservative sharp-interface

method based on Ref. [37] by employing a weakly compressible model. The method is simple, mass

conserving and capable of handling flows with large density and viscosity ratios and high surface

tension. Since the viscosity jump at the material interface is directly imposed by an interface-flux term,

momentum conservation is ensured regardless of capillary effects. Furthermore, a subcell-resolution

method for volume-fraction evaluation is developed to achieve accurate interface reconstruction. A

number of two and three dimensional numerical examples, are considered to demonstrate that the

present method is able to simulate a wide range of flow problems with good robustness and high

accuracy.

When the interface of two immiscible fluids meets a solid wall, a fundamental difficulty in the

numerical treatment of the contact line arises with the conventional no-slip boundary condition, as it

leads to inconsistent, grid-dependent results. In this thesis, we present a curvature boundary condition

to circumvent the difficulties of previous approaches on explicitly imposing the contact angle and with

respect to mass-loss artifacts near the wall boundary. While employing the asymptotic theory of Cox

for imposing an effective curvature directly at the wall surface, the present method avoids a mismatch

between the exact and the numerical contact angles. Simulations on drop spreading and multi-phase
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flow in a channel show that the present method achieves grid-convergent results and ensures mass

conservation, and delivers good agreement with theoretical, numerical and experimental data.

Another difficulty encountered with multi-phase method is multi-scale problem, especially in the

drop breakup or splash, where the involving length scales can span at least several orders. To separate

the scales and then treat them differently, we propose an efficient formulation of the scale-separation

approach which has been developed by Han et al. [24] based on the level-set technique. Instead of

shifting the entire level-set field twice as in the original method, the improved method identifies the

non-resolved interface structures from two auxiliary level-sets close to the interface. Non-resolved

structures are separated from the interface by a localized re-distancing method, which increases the

computational efficiency considerably compared to the original global reinitialization procedure.

Several tests for two-phase flow problems, involving simple and complex interface structures, are

carried out to show that the present method maintains sharper interface structures than the original

method, and achieves effective scale-separation.



Kurzfassung

Diese kumulative Dissertation betrifft numerische Verfahren für inkompressible Mehrphasenströ-

mungen. Strategien für die genaue und robuste Simulationen werden vorgeschlagen. Insgesamt werden

ein konservatives scharfes Schnittstellenverfahren für inkompressible Strömungen mit viskosen und

Oberflächenspannungseffekte, eine Krümmungsbegrenzungsbedingung für eine bewegete Kontak-

tlinie und eine effiziente Formulierung des Skalentrennungs Ansatz für die mehrskalige Modellierung

des Grenzflächenstroms präsentiert.

In inkompressiblen Mehrphasenströmung, spielen Oberflächenspannungskäfte und Viskosität-

skräfte eine wichtige Rolle. Um diese beiden Kräfte scharf an der Phasengrenzfläche zu behandeln,

wird eine konservative scharfe Interface-Methode basiered auf Referenz [37] unter eine schwach

komprimierbaren Modell entwickelt. Das Verfahren ist einfach, Masse erhaltend und in der Lage

Ströme mit hohen Dichte und Viskositäts Verhältnissen und hohen Oberflächenspannungen zu handeln.

Da der Viskositätsprung an der Materialschnittstelle direkt über einen schnittstellefluss augepräst

wird, wird die Impulserhaltung gewährleistet trotz der Kapillarwirkung. Des Weiterhin wird ein

Subzellenauflösungsverfahren für die Volumenfraktionauswertung entwickelt, um eine genaue Rekon-

struktion der Schnittstelle zu erreichen. Eine Reihe von zwei- und dreidimensionalen numerischen

Beispielen werden präsentiert, dass die vorliegende Methode in der Lage ist, um einen weiten Bere-

ich von Strömungsproblemen mit guter Robustheit und hohe Genauigkeit zu simulieren. Wenn

die Grenzfläche von zwei unmischbaren Flüssigkeiten auf eine feste Wand trifft, ergibt sich eine

grundlegende Schwierigkeit bei der numerischen Behandlung der Kontaktlinie mit der herkömmlichen

haftbedingung. Es führt zu inkonsistenten, Gitter abhängigen Ergebnissen. In dieser Dissertation,

stellen wir eine Krümmungs Randbedingung, die Schwierigkeiten früherer Ansätze auf ausdrücklich

zur Einführung des Kontaktwinkels und in Bezug auf Massenverlust Artefakte in der nähe der Wand
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Grenze umzugehen. Das vorliegende Verfahren vermeidet eine Diskrepanz zwischen dem exakten und

dem numerischen Kontaktwinkel. Simulationen Tropfenverteilung und Kanalmehrphasenströmung

zeigen, dass das vorliegende Verfahren netzkonvergente Ergebnisse erreicht und die Massenerhal-

tung gewährleistet. Es liefert eine gute Übereinstimmung mit den theoretischen, numerischen und

experimentellen vergleichdaten. Eine weitere Schwierigkeit die bei Mehrphasenferfahren auftritt ist

das Multiskalenproblem. Um die Waage zu trennen und sie dann anders zu behandeln, schlagen wir

eine effiziente Formulierung des Scale-Trennung Ansatzes von Han et al. [24] auf der Grundlage der

Level-Set-Technik. Anstatt das gesamte Level-Set-Feld doppelt zu verschieben, wie identifiziert das

verbesserte Verfahren die nicht aufgelöste Schnittstellenstrukturen von zwei zusätzliche Level sets

nahe der Schnittstelle. Nichtaufgelöster Strukturen werden von der Grenzfläche durch eine lokales

Neudistanzierungsverfahren getrennt, was die Recheneffizienz deutlich gegenüber dem ursprünglichen

globalen Reinitialisierungverfahren erhöht. Mehrere Tests für Zweiphasenströmungsprobleme, ein-

facher und komplexer Schnittstellenstrukturen, werden um zu zeigen durchgeführt, dass das vor-

liegende Verfahren schärfere Grenzfläche Strukturen aufrechterhält als das ursprüngliche Verfahren

und wirksame Skalen-Trennung erzielt.
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Chapter 1

Introduction

1.1 Multi-phase flow problem

Multi-phase flow research is an important topic, which has directed towards the understanding of

the phenomena occurring in a wide range of industrial applications. Examples include jet coating,

ink jet printing, lab-on-a-chip devices, and liquid phase sintering. Fig. 1.1 shows a typical process

of jet coating, where a jet exits the nozzle orifice, breaks into a small droplet, and then it impacts a

solid surface and spreads to thin coat. This process involves some fundamental challenges in the

simulation, such as filament breakup, droplet generation and moving contact line

Fig. 1.1 The process of jet coating, taken from Bolleddula [3].

In the breakup of a liquid filament, Surface-tension forces and viscous forces play important

roles, where the interface evolution is governed by the competition between these two forces [87].

The relative importance of surface tension and viscosity can be expressed through the Ohnesorge
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number Oh = µ
√

ρσR, where µ , ρ , and σ are the viscosity, density, and surface tension of the liquid,

respectively, and R denotes the radius of the filament. Whether the filament condenses into the main

drop, or breaks up into satellite drops can be predicted from the aspect ratio and Ohnesorge number

[8, 32]. Fig. 1.2 shows examples of typical liquid filaments with a range of different aspect ratios. In

each case, the evolution of the filaments is illustrated with a serial of images. The shortest filaments

always condensed into single drops for all values of Oh, while for the highest values of Oh, the

filaments never broke up regardless of their aspect ratio. Therefore, accurate treatments of surface

tension forces and viscous forces, especially at the phase interface, are required to capture these subtle

behaviors.

Fig. 1.2 Breakup of liquid filaments, taken from Castrejón-Pita et al. [8].

The behavior of drops impacting on a solid surface can be characterized into three main modes:

deposition, bouncing and splashing [3]. The experiments of Rioboo et al. revealed the possible

outcomes of drop impact on a dry wall, including three main modes and three otherwise transition

modes [59], as shown in Fig. 1.3. These various modes come from the interactions of initial drop speed,

ambient pressure, wall surface roughness, drop viscosity and surface tension. The hydrodynamics

of this problem has been widely studied, both experimentally [52] and theoretically [4]. One of

challenges in these phenomena is the treatment of moving contact line and dynamic contact angle.

Several theoretical models [13, 63] and empirical models [18, 67] have been proposed and compared

well with experiment. However, a fundamental difficulty in the numerical treatment of the contact line

arises when confronted with the conventional no-slip boundary condition, as it leads to inconsistent,
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grid-dependent results [21, 72]. Hence, a special treatment of interface at the vicinity of moving

contact line is needed to tackle this problem.

Fig. 1.3 Morphology of drop impact on a solid surface, taken from Rioboo et al. [59].

Another issue associated with drop generation, such as filament breakup (e.g. Fig. 1.2c) and

drop splash (e.g. Fig. 1.3c), is the multi-scale problem. One need to resolve length scales that can

span at least several orders, which poses a great computational challenge. Adaptive mesh refinement

[45] and multi-resolution methods [23, 26], even with local time stepping, do not sufficiently reduce

computational cost to enable accurate routine simulations of complex interfacial flows. A promising

approach is to separate them from the current spatial resolution and treat them differently, e.g.

structures smaller than the given grid size (referred to as unresolved structures) can be separated and

converted into Lagrangian particles. Therefore, the scheme associated with scale separation should be

built to identify and separate unresolved interface structures.

1.2 Phase-interface representation

The representation and evolution of the phase-interface is essential to the numerical simulation of

multi-phase flow involving immiscible phase-interfaces. Existing interface representation techniques

can essentially be divided into two classes, namely interface-tracking methods and interface-capturing

methods.



4 Introduction

In interface-tracking, interfaces are represented explicitly, e.g. front tracking methods [82, 83]

and marker methods [64, 81]. These methods can efficiently locate the interface position by interface

markers or track the moving boundary by adjusting the position of the nodes on the interface. However,

they encounter difficulties for large interface deformations and topology changes, and require a special

treatment of the interface marker distribution when the interface is stretched.

In interface-capturing, there is no explicit representation of the interface, but the location of the

interface is represented implicitly by a scalar field, e.g. volume of fluid method (VOF) [31], phase

field (PF) method [39] and level-set method [55]. Compared to the interface-tracking methods these

methods handle topological changes such as merging and breaking natrually. All such changes can be

captured by a continuous evolution of the scalar function defining the interface implicitly.

In VOF method, a volume of fluid function gives the volume fraction of each fluid in every

computational cell. The cells that are intersected by the interface will have a volume fraction between

zero and one. The main advantage of VOF methods is the exact conservation of mass when computing

incompressible flow. One main drawback of VOF methods is the smearing of the interface by the

numerical diffusion, which is due to the use of total-variation-diminishing (TVD) schemes [25] to

preserve the volume-fraction boundedness (for the step-profile of volume fraction at the interface).

Furthermore, computations of accurate normal and curvature approximations are not straightforward.

The PF method is based on fluid free energy, where a conserved order parameter or phase-field is

introduced to characterize the two different phases. This order parameter changes rapidly but smoothly

in the thin interfacial region and is mostly uniform in the bulk phases. Analog to the VOF method,

the interfacial location is defined between the contour levels of this order parameter. The interface

is updated by the Cahn–Hilliard equation [7]. This equation involving fourth-order derivatives with

respect to the order parameter, makes its numerical treatment more complex as compared to the

Navier–Stokes (NS) equation which involves only second-order derivatives. Another issue with the

PF method is the resolution of the interface thickness, which usually spans several grid cells.

The level-set method is one of non-smeared interface-capture methods. A signed-distance function

(level-set function) specifies the distance of a discretization point to a nearby interface. Hence the

interface is defined sharply by the zero-level-set of this function. From the level-set function the

curvature of the interface and the surface tension can be calculated with high accuracy. However, a
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main drawback of the level-set method is lack of discrete conservation. Various attempts are applied

to improve the mass conservation in the level-set method. For example, Sussman et al. constrain

the interface during the reinitialization procedure to conserve the volume bounded by the zero-level-

set [75]. However, the mass enclosed by the zero level-set is not conserved in the advection step.

Several hybrid methods have also been developed with the aim of improving the mass conservation,

such as the particle level-set method [16, 85], and the coupled level-set and volume of fluid method

(CLSVOF) [46, 77]. While these approaches increase the computational complexity, and compromise

the simplicity of the pure level-set method, especially in three dimensions. A conservative level-set

based sharp-interface method was introduced by Hu et al. [37], where the underlying conservative

scheme on a Cartesian grid is modified for computational cells that are cut by the interface. To ensure

numerical stability for small cells, a conservative mixing procedure is proposed to redistribute the flux

to neighbour cells, which avoids an unstructured mesh near the interface. This method is simple for

implementation and extension to higher dimensions, which is hence used and further developed in

this thesis.

1.3 Objective

After choosing the representation of the phase-interface, it is followed by the corresponding methods

to handle the specific phenomena at the interface, such as computations of the velocity and the pressure

at the phase-interface (referred to a interface interaction), the treatment of moving contact line and the

scheme of scale separation.

In general, there are two established approaches for modeling interface interactions, the diffuse-

interface method (DIM) and the sharp-interface method (SIM). With the diffuse-interface method

the interface is represented by an artificial region with limited thickness, where the transition from

one phase to the other is smooth. While the diffuse-interface methods are conceptually simple,

the artificial mixing region may generate nonphysical artifacts, such as parasitic flows near a static

interface by surface tension and wrongly predicted instability growth rates of viscous interfacial flow.

With the sharp-interface method, the interface as well as the interface interactions are all localized

at the infinitely thin interface. Various SIMs have been proposed, as reviewed in Paper I, but they
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have more or less deficiencies and limitations, such as complexity, no mass conservation and difficult

extension to three dimensions. Therefore, we develop a conservative sharp-interface method (CSIM)

based on [37] for incompressible multi-phase flows by employing a weakly compressible model. The

viscosity jump at the material interface is directly imposed by an interface-flux term, and the pressure

jump due to surface tension is imposed consistently after solving the constrained Riemann problem.

Moreover, the extension to three dimensions is straightforward.

When the interface of two immiscible fluids meets a solid wall, a difficulty associated with contact

line appears in simulations, i.e. the consistency with the conventional no-slip boundary condition.

Various approaches have been proposed to alleviate this problem, as summarized in Paper II. The

efficient approaches are to model the microscopic region near the contact line based on hydrodynamic

theories and to resolve only the macroscopic region away from the contact line. Grid-independent

results have been obtained by using Cox’s theory [13] to built the relationship between microscopic

angle to the macroscopic angle. However, a complex, implicit integral function should be solved

in Cox’s theory, which is either replaced by a simplified form or obtained numerically. Moreover,

imposing the contact angle explicitly can spuriously displace the zero level-set and the location of

contact line, and thus induce large mass-conservation errors. To overcome these problems, we impose

a curvature boundary condition for predicting moving contact line, where the effective curvature is

formulated explicitly based on the asymptotic theories of Cox.

Small scales and non-resolved interface segments are generated during filament breakup or drop

splash. To avoid resolving the entire range of length scales, an effective approach is to separate them

from well-resolved field and treated them individually. To author’s knowledge, only two approaches

have been proposed: one is based on the refined level-set grid method [29], the other is the constrained

stimulus–response procedure [24]. As pointed out in Paper III, the first one has low efficiency, because

it requires a two-grid system to check non-resolved cells. The second method separate resolved and

non-resolved interface segments upon different responds when they are subjected to small shifts of

the level-set field. Though this procedure is effective, shifting the level-set and re-initialization twice

in the entire field are quite time consuming, especially when the non-resolved interface structures

compose only very small portion of the entire interface. To speed up the procedure of scale separation,
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we propose an efficient multi-scale model to avoid shifts of the level-set and additional re-initialization

operations.

This work focus on tackling above challenges in numerical simulation of incompressible multi-

phase flow, specifically, the treatments of surface tension and viscosity, moving contact line and

scale separation. The new methods should have lower computational cost and higher accuracy than

those currently available proposed strategies. Accurate simulations can contribute to understanding

of the phenomena occurring in multi-phase flow, and hence to the improvement of flow control in

engineering.

The following chapter gives an introduction to the present CSIM as well as the level-set method

for phase-interface representation. Chapter 3 first gives a short literature review and then summaries

the present methods on each problem, including a CSIM for incompressible multi-phase flow, a

curvature boundary condition for moving contact line and efficient implementation of scale separation

for multi-scale modeling. Finally, Chapter 4 makes a conclusion on the state of proposed methods.





Chapter 2

Conservative sharp-interface method

The CSIM is formulated following a standard finite volume approach, in which the underlying finite-

volume scheme operating on a Cartesian grid is modified by considering computational cells being

cut by the interface. The level-set approach is the method of choice here to capture the interface, since

it allows for an easy and straightforward calculation of the geometrical properties of the interfaces,

and it handles topology changes of the interface automatically. A main drawback of the level-set

method is the lack of discrete conservation properties, which has been overcome by combining with

the finite volume approach [37]. An essential key of this method is to handle the cut cells, such as

interface flux in cut cells, curvature in cut cells, small and empty cut cells, volume fraction of cut cells

and non-resolved cut cells.

2.1 Governing flow Equations

In multi-phase problems, the flow field of each phase is updated separately with the standard finite

volume approach. For incompressible flows, a weakly compressible model is employed, where an

explicit link between pressure and density is established other than solving for the Poisson equation

for the pressure. Weighted essentially non-oscillatory scheme (WENO) [41] is applied to flux

reconstruction, and TVD Runge-Kutta scheme [68] is used for time integration.
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2.1.1 Finite volume method for multi-phase flow

For the weakly compressible model the governing equations can be written as

∂U
∂ t

+∇ ·F = ∇ ·Fν +as, (2.1)

where U is the density of mass and momentum; F represents the convective fluxes, and Fν the viscous

fluxes. Note that the right-hand side of Eq. (2.1) vanishes when it represents the continuity equation.

The surface-tension force is given by

as = σκδN (2.2)

where σ , κ , N are surface tension, curvature and normal direction of the interface, respectively. δn is

the Dirac delta distribution

δ (x) =


+∞ ϕ = 0

0 ϕ ̸= 0
,
∫ +∞

−∞

δ (x)dx = 1, (2.3)

defined in the normal direction of the interface.

The flow domain Ω is divided by a time-dependent interface Γ into two sub-domains Ω1 and Ω2,

which denote the regions occupied by f luid1 and f luid2, as shown in Fig. 2.1. We solve Eq. (2.1)

for each fluid in respective its sub-domain Ωm(m = 1,2), as in Hu et al. [37], on a two-dimensional

collocated Cartesian grid with spacing ∆x and ∆y. Integrating Eq. (2.1) over a computational cell and

applying the Gauss’s theorem yields

∫ n+1

n
dt
∫

∆i, j
⋂

Ωm
dxdy

∂U
∂x

+
∫ n+1

n
dt
∫

∂ (∆i, j
⋂

Ωm)
dxdyF ·n

=
∫ n+1

n
dt
∫

∂ (∆i, j
⋂

Ωm)
dxdyFν ·n+

∫ n+1

n
dt
∫

∆Γi, j

dxdyFs ·n,
(2.4)

where ∆i, j = ∆x∆y is the cell volume; ∆i, j
⋂

Ωm can be represented as αi, j∆i, j, where αi, j is the time

dependent volume fraction of fluid m and satisfies 1 ≥ α ≥ 0. ∂ (∆i, j
⋂

Ωm) denotes the faces of cell

i, j wetted by fluid m, including the interface segment contained in the cell, and Fs is an additional

flux at the interface due to surface tension. The surface of ∂ (∆i, j
⋂

Ωm) with normal direction n
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N
A

i-
1
/2

,j

Ai,j-1/2

A
i+

1
/2

,j
=

0

i,j

φ=0

Fluid1

Fluid2

αi,j

(i, j-1)

(i-1, j) (i+1, j)(i, j)

(i, j+1)

Ai,j+1/2

Fig. 2.1 Schematic of discretization for a cut cell (i, j) on a collocated grid: the red dot indicates the
cell center, the red line indicates the interface, the green dash line indicates the cell face, αi, j denotes
the volume fraction occupied by f luid1 in cut cell (i, j), A denotes the cell-face aperture, N is the
normal direction of the interface and ∆Γi, j the segment of the interface.

can be represented by two parts. One part is the combination of four segments (2D) of the cut cell

faces, which can be written as Ai+1/2, j∆y,Ai, j+1/2∆x,Ai−1/2, j∆y and Ai, j−1/2∆x, where 1 ≥ A ≥ 0 is

the time-dependent cell-face aperture. The second, denoted as ∆Γi, j , is the segment of the interface

Γ inside of cell (i, j). For simplicity, a typical discretization with explicit first-order forward time

difference (see Sec. 2.1.4 for the higher-order scheme) of Eq. (2.4) can be written in the following

form,

α
n+1
i, j Un+1

i, j = α
n
i, jU

n
i, j +

∆t
∆x∆y

[
X̂(∆Γi, j)+ X̂ν (∆Γi, j)+ X̂s (∆Γi, j)

]
+

∆t
∆x

[
Ai−1/2, jF̂i−1/2, j −Ai+1/2, jF̂i+1/2, j

]
+

∆t
∆y

[
Ai, j−1/2F̂i, j−1/2 −Ai, j+1/2F̂i, j+1/2

]
+

∆t
∆x

[
Ai−1/2, jF̂ν i−1/2, j −Ai+1/2, jF̂ν i+1/2, j

]
+

∆t
∆y

[
Ai, j−1/2F̂ν i, j−1/2 −Ai, j+1/2F̂ν i, j+1/2

]
,

(2.5)
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where ∆t is the time step size. Ui, j denotes cell-averaged density of conservative quantities of mass

and momentum of the considered fluid, and αi, jUi, j are the conservative quantities in the cut cell. X̂ is

the average inviscid momentum flux across the interface, and X̂ν denotes the momentum flux due

to viscous force. X̂s is the momentum flux due to the interfacial pressure jump induced by surface

tension. The detailed formulation of these interface fluxes (X̂, X̂ν , X̂s) is presented in Paper I.

For a small cut cell or an empty cell, i.e. α < 0.5, a stable fluid state may be unobtainable based

on the time step calculated according to the full grid size Courant-Friedrich-Lewy (CFL) condition.

A mix procedure is introduced to mix the conservative quantities with their neighbors [37]. The

exchanges of the conservative quantities are calculated according to the averaged values in mixing

operations. Then the conservative quantities for one fluid in the near interface cells are updated by

α
n+1
i, j Ui, j =

(
α

n+1
i, j Ui, j

)∗
+∑M, (2.6)

where
(

α
n+1
i, j Ui, j

)∗
is the conservative quantities at time step n+1 before mixing, and the second

term on the right hand side represents the sum of all mixing operations on cell (i, j). Note that

conservation is maintained since the conservative quantities in a small cell obtained from a target

cell corresponds to a loss of its neighboring cell. The extension of Eq. (2.5) to three dimensions is

straightforward.

2.1.2 Equation of state

To close the governing equations, one should relate the pressure and density. If incompressibility is

strictly required, the Poisson equation is commonly solved, which is rather time-consuming. Here,

we employ a weakly compressible model for incompressible multi-phase flows with sacrificing little

incompressibility, where an explicit link pressure and density is established. Such model is widely

used, e.g. with smoothed particle hydrodynamics (SPH) [33, 47] and the lattice Boltzmann method

[11]. Moreover, the weakly compressible model has been applied recently for a systematic study of

the coarse-grained prediction for a range of turbulent and non-turbulent incompressible flows [66].
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In the present implementation, we use the Tait’s equation that enforces very low density variation

and is efficient to compute [12]. Tait’s equation has the form

p = B[(
ρ

ρ0
)γ −1]+ p0

B =
ρ0|v f |2

γM2

, (2.7)

where ρ0 and p0 are the density and pressure of fluids at the reference condition, respectively. γ

is artificial specific heat ratio. For the liquid-gas system, typical adopted values are γl = 7.15 and

γg = 1.4, respectively. The parameter B governs the density fluctuation |∆ρ|/ρ with ∆ρ = ρ −ρ0. As

known that, the density variation in fluid flow is ∝ M2, where M is Mach number, which results in the

following relation,
|∆ρ|

ρ
∝

|v f |2

c2
s

(2.8)

where v f denotes an expected order of magnitude of the fluid velocity for the consider problem, cs

is the artificial sound speed in the fluid, cs =
√

γB
ρ

. Typically, the density variation is allowed with

the order of 1%. The parameters γ,B and ρ0 are chosen to ensure that the Mach number satisfies

M =
|v f |

c ≈ 0.1.

2.1.3 Numerical flux reconstruction

The numerical fluxes, convective flux F̂ and diffusive flux F̂ν in Eq. (2.5), are calculated separately.

In two dimensions they can be written as

F̂ =


ρ(v ·n)

ρu(v ·n)+pnx

ρv(v ·n)+pny

 ; F̂ν =


0

−τxxnx + τxyny

−τxynx + τyyny

 ;n = nxi+nyj;v = ui+ vj;

τxx = µ

(
4
3

∂u
∂x

− 2
3

∂v
∂y

)
;τxy = τyx = µ

(
∂u
∂y

− ∂v
∂x

)
;τyy = µ

(
4
3

∂v
∂y

− 2
3

∂u
∂x

)
, (2.9)

where n is unit (outward) normal on the cell face, v is the fluid velocity and τ the viscous stress.

Since the governing equations (2.4) are a system of conservation laws, the convective fluxes F̂

can be approximated using WENO methodology. Specifically, the Roe approximation is used for the
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characteristic decomposition at the cell faces, the Lax-Friedrichs formulation is used for the numerical

fluxes. To achieve very small numerical dissipation relative to original WENO scheme, Hu et al.

[38] proposed an adaptive central-upwind weighted essentially non-oscillatory scheme. Such scheme

adapts between central and upwind schemes smoothly by a new weighting relation based on blending

the smoothness indicators of the optimal higher order stencil and the lower order upwind stencils.

In order to construct the appropriate diffusive flux function, we need the values of τxx, τxy and v at

the cell faces which are center between the grid points. First the higher order centered difference is

applied to calculate the ux,uy,vx,vy at the cell center with the neighboring grid points, and then using

the arithmetic average to define viscous stresses at the cell faces.

2.1.4 Temporal discretization

To advance the governing equations in time, a temporal discretization is needed. A common way

is to discretize with respect to the spatial variables, and then combine the semi-discretization with

standard time discretization methods. When the flow is truly transient, flow characters changes rapidly

over time. Explicit time discretization schemes are popular alternatives to solving these cases other

than the implicit method. Moreover, it is relatively easy to construct schemes of higher-order. To

improve the numerical stability, the total variation diminishing (TVD) Runge-Kutta method is chosen

for temporal discretization [68]. Such scheme guarantees that no spurious oscillations are produced as

a consequence of the higher-order accurate temporal discretization as long as no spurious oscillations

are produced.

There are certain limitations for the size of the time step, when an explicit method is used. When

the time step is too large, numerical instabilities occur. Defining a fixed time step in the beginning of a

numerical simulation bears the danger of either chosen a too small time step, which weighs heavy on

the computational resources. Or the time step is too large, resulting in a diverging solution. The most

efficient solution is to use adaptive time-stepping. Here the maximum values for the velocities, the

viscosity and the volume and surface forces are calculated at each time step. With this information,

the size of the next time step is determined. The time-step is set according to [77],

∆t =CFL ·min

(
∆x

|un|+ cn ,
ρn∆x2

µ
,

√
ρn

8πσ
∆x

3
2

)
, (2.10)
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where cn is the artificial sound speed at time step n. We set CFL= 0.6 for all our simulations.

2.2 Level-set method

The LS method is chosen to represent the phase-interface for its simple and strong capability of

handing large interface deformations and topological changes. The location of interface is represented

implicitly by the zero level-set, and a Hamilton-Jacobi equation is solved for updating the implicit

interface. The volume fraction, interface segment and cell-aperture in Eq. (2.5) can be reconstructed

from the level-set function. The interface curvature can be obtained directly from the level-set function

as well, except for the cut cell containing a contact line.

2.2.1 Level-set function

The level-set function, ϕ , which describes the signed distance from the interface to each cell center, is

used to track the interface. The zero-level set, i.e. ϕ = 0, represents the interface Γ, and the phases

are distinguished by the change of the sign. That results in following properties,

ϕ (⃗x, t) =


> 0 if x⃗ ∈ Phase1,

= 0 if x⃗ ∈ Γ,

< 0 if x⃗ ∈ Phase2,

. (2.11)

The level-set field is advanced by [17]

∂ϕ

∂ t
+u ·∇ϕ = 0, (2.12)

where u represents the velocity for the level-set obtained with the interface interaction model [35].

The spatial derivatives are approximated by an upwind method based on the sign of u. At each grid

point, define ϕ−
x as a backward difference and ϕ+

x as a forward difference. If ui > 0, approximate ϕx

with ϕ+
x . If ui < 0, approximate ϕx with ϕ−

x . When ui = 0, the ui(ϕx) term vanishes, and ϕx does not

need to be approximated.



16 Conservative sharp-interface method

Practical experience suggests that level-set methods are sensitive to spatial accuracy [53], implying

that the high-order accurate WENO method is required to get a more accurate approximation for

ϕ−
x and ϕ+

x . And a 2nd-order TVD Runge–Kutta scheme is preferred for temporal discretization to

obtain accurate numerical solutions.

When the interface evolves under the external velocity field the level-set function can become

irregular and loose its signed distance property. In order to avoid this, the level-set function needs to

be reinitialized. The reinitialization needs to reset the level-set function without actually changing the

location of the interface. Here, a partial differential equation (PDE) based reinitialization equation is

solved [17],
∂ϕ

∂ι
+S(ϕ)(ϕ)(|∇ϕ|−1) = 0, (2.13)

where S(ϕ) is the smoothed sign function by Peng et al. [56],

S(ϕ) =
ϕ√

ϕ2 + |ϕx|2(∆x)
. (2.14)

The signed distance property is recovered by solving Eq. 2.14 until steady, where ι is fictitious time,

such as ∆ι = dx/2.

2.2.2 Volume fraction of cut cell

With the standard level-set technique, the volume fraction α
+
i, j for the phase corresponding to ϕ > 0

can be estimated by a smoothed Heaviside function α
+
i, j = H(ϕ,ε) where ε is a tunable parameter

that determines the size of the bandwidth of numerical smearing [76]. And the volume fraction α
−
i, j

for the phase corresponding to ϕ > 0 can be calculated by the relation by α
−
i j = 1−α

+
i, j. According to

volume fraction, the cells can be classified into three types: cells with volume fraction larger than 0.5

are normal cells, cells with volume fraction less than 0.5 but non-zero are small cells, and otherwise

they are empty cells. As addressed in Sec. 2.1.1, a mix procedure is introduced to maintain the

stability when updating the small cells or empty cells.

To obtain accurate volume fraction, Lauer et al. [42] employed the marching-square approach to

determine the interface topology. Although 16 cases exist in 2D, there are 256 cases when extending it

to 3D by the corresponding way, marching cubes [44]. They are complex and computationally costly
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due to the necessity of identifying the correct topology, especially with the presence of ambiguous

topology.

To overcome this difficulty, a subcell-resolution interface-reconstruction scheme is proposed in

Paper I, which avoids complex case-selections for identifying the topology of the interface, and its

extension to 3D is straightforward.

2.2.3 Interface curvature

The interface curvature in a cut cell is defined by κ = ∇ ·
(

∇ϕ

|∇ϕ|

)
, which can be rewritten, in three

dimension, as

κ =
ϕxx +ϕyy +ϕzz(

ϕ2
x +ϕ2

y +ϕ2
z + ε

)1/2

−
ϕ2

x ϕxx +ϕ2
y ϕyy +ϕ2

z ϕzz +2(ϕxϕyϕxy +ϕxϕzϕxz +ϕyϕzϕyz)(
ϕ2

x +ϕ2
y +ϕ2

z + ε
)3/2 ,

(2.15)

where ε is a small positive number to avoid division by zero [61]. Note that the curvature in two

dimensions is obtained by setting all derivatives with subscript z to zero. Since all the partial derivatives

in Eq. (2.15) are usually computed at the cell center with standard central difference schemes, the

curvature κ is estimated at the cell center. Therefore, this value is corrected for the distance of the cell

center from the interface by approximating the interface locally by a circle or sphere in Paper I.

A difficulty arises with the presence of the contact line at the solid wall. The curvature at the

contact line cannot be obtained directly through Eq. (2.15), since the stencil of central differences

for the cell adjacent to the wall would contain ghost cells in the wall. Close to the contact line, the

balance between viscous stresses and capillary forces primarily determines the interface profile. The

curvature at the contact line should be reconstructed to respect above balance. Cox [13] provides a

general hydrodynamic description of a moving contact line, where the interface profile presents a

logarithmic dependence on the Capillary number. Therefore, an effective curvature is estimated based

on the asymptotic theory of Cox in Paper II, where the moving of the contact line is attributed to the

updating of the level-set field.
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2.2.4 Non-resolved cut cell

Another issue associated with multi-phase flow is the non-resolved interface problems, because it

manifest singularities at the interface, which may give rise to errors for calculating volume fractions

and interface curvatures. For a given spatial resolution with the grid size h, the phase-interface

segments with magnitude of η can be categorized into resolve ones by η > h and non-resolved

ones by η < h. As shown in Fig. 2.2(a), the cells marked by blue stars are non-resolved cut cells

due to the corresponding scale smaller than a grid size. An effective approach is to separate them

from well-resolved field, otherwise the error of estimating these geometry properties would lead to

erroneous or even numerically unstable simulations. Fig. 2.2(b) shows the reconstructed interface

after filtering the non-resolved cut cell. It is found that there are singularities at the interface, the

geometry properties are can be estimated from the level-set function again.

(a) (b)
ΓΓ

Fig. 2.2 Identification of the non-resolved cut cells in two dimensions: (a) the initial interface with
non-resolved cut cells (blue stars); (b) interface reconstruction (dash line) by filtering non-resolved
cut cells.

Non-resolved interface segments are often presented as drops and thin filaments with length scale

close to the grid size h. In the level-set field, they take a common property that is lack of consistency

among the level-sets near the interface. Such property is corresponding to the large discrepancies

that induced by the non-resolved interface segments when subjected to a small shift of the level-set

field. With this observation, Han et al. [24] established a relationship that allows for identifying

non-resolved interface segments from their response to a small constant shift of the level-set, called

"stimulus". Scale separation is achieved implicitly and efficiently by incorporating a stimulus-response
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operation into the process of level-set reinitialization. Due to sign-dependence of the procedure for

identification of all non-resolved interface segments, two stimuli in opposite directions are required.

Obviously, shifting the level-set and re-initialization twice in the entire field are quite time consuming,

especially when the non-resolved interface structures compose only very small portion of the entire

interface. To speed up the procedure of scale separation, an efficient multi-scale model is presented in

Paper III, where a criterion is established to identify the non-resolved interface structures.





Chapter 3

Accomplishments

In this chapter, the extension of the conservative sharp-interface method to incompressible multi-phase

flows and its application for moving contact line are presented. In multi-phase flows, each fluid

has individual density and viscosity, and surface tension forces act at the interfaces. In paper I, we

proposed a sharp-interface method to treat the viscous forces and surface tension forces sharply at

the interface. Paper II is concerned with mesh convergency in the simulation of moving contact line

problems. An issue appears when applying conventional no-slip boundary conditions at the vicinity

of the contact line, which leads to grid-dependent simulation results, i.e. dependent on the grid sizes.

A curvature boundary condition is proposed to overcome this problem. Another issue associated

with multi-phase flows is the multi-scale problem, which gives rise to erroneous or even numerically

unstable simulations. An efficient approach for the multi-scale problems is to separate the scales and

then treat them differently. In Paper III, the original scale separation method is developed to improve

the computational efficiency.

3.1 A conservative sharp interface method for incompressible multi-

phase flow

The treatment of surface tension forces and viscous forces at the interface is essential of simulation of

incompressible multiphase flow problems. Here, we give an overview of some existing numerical

methods, and then summarize the proposed method in Paper I.
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3.1.1 State of the art

Surface tension forces and viscous forces often play important roles in many natural phenomena and

engineering processes. For example, in the deformation of liquid drop in shear flow, the details of

liquid shape is governed by the capillary force [69], and during the liquid filament contracting, whether

it separates into satellite drops or condenses into a single drop depends on the Ohnesorge number [8].

An accurate approximation of them is essential for simulations of multi-phase flow problems. How

this force is modeled and approximated strongly influences the quality of the approximation of the

velocity field and the pressure, especially in the problems involving large density and viscosity ratios

and high surface tension. In general, there are two developed approaches: one is the DIM; the other is

the SIM.

With the DIM, an artificial mixture or smeared zone close to the interface is created, where the

transition from one phase to the other is smooth. For the material properties, such as viscosity and

density, are treated by the use of smooth functions in the mixture zone, which can be represented as a

volume fraction [31] or a Heaviside-function [78]. For imposing surface tension at the interface, a

widespread used approach is the continuum surface force method [5], where the surface tension is

regularized by a delta function obtained from the volume fraction or a smooth Heaviside function

[78] and as a source term in the Navier–Stokes equations. While the diffuse-interface methods are

conceptually simple, the smoothed zone may be prone to generate nonphysical flows, especially in

surface tension dominated flows [40, 64] or viscous dominated flows [49, 50].

With the SIM, the representation of interface and interface interactions are both treated in a sharp

way. Various approaches have been developed to obtain a sharp interface representation. Examples

of such approaches include arbitrary Lagrangian Eulerian methods [30] where the interface is a

coordinate line which evolves and deforms at the local flow velocity, front-tracking method [83] and

marker method [64] in which the interface can be explicitly capture by interface markers, and the

level-set method [78] where the interface is defined as the zero contour of a signed-distance function.

The level-set method is a simple interface capturing method and possesses strong capability of

handling large interface deformations and topological changes in a straightforward way [54]. A main

drawback of the level-set method is lack of discrete conservation, many attempts therefore have been
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proposed to remedy it. Some hybrid methods, such as the particle level-set method [16, 85] and the

CLSVOF [46, 77] have been developed. While these approaches increase computational complexity

they also compromise the simplicity of the pure level-set method. To avoid being coupled with other

method, Glimm [20] introduced a conservative method based on a grid intersection technique with

the assumption of no topological change in the solution. A fully conservative level-set method for

compressible flows capable of dealing with topological interface changes was introduced by Hu et

al. [37]. In this method the underlying conservative scheme on a Cartesian grid is modified for

computational cells that are cut by the interface.

Moreover, sharp-interface methods require fully coupled treatments of surface tension and viscous

forces at the interface singularity. With the interest of applying the singular surface tension force at

the interface, Sussman [79] treated it as a Dirichlet boundary condition when solving the two-domain

pressure-Poisson equation. Flowing the ghost fluid method, Bo [2] modeled the surface tension as

a pressure jump in Riemann problems. Nourgaliev at al. [49] modeled surface-tension and viscous-

stress for incompressible flows by applying jump conditions at the interface for density, viscosity and

pressure. However, discrete mass conservation is not ensured in these methods. A mass conservative

sharp-interface method by employing an unstructured mesh near the interface has been developed by

Chang et al. [10]. While this method has been demonstrated to be accurate and efficient for computing

surface tension and viscous forces for two-dimensional problems, an extension to three dimensions

may, however, be challenging, especially when the interface and thus also the unstructured meshes

becomes very complex, as in most practical applications.

3.1.2 Summary of the presented method

In Paper I, we develop a conservative sharp interface method based on [37] for incompressible flows

with viscous and surface tension effects. Employing a weakly compressible framework, the method is

simple, mass conserving and capable of handling flows with large density and viscosity ratios and

high surface tension. Moreover, both surface tension and viscous forces are treated sharply at the

interface.

For viscous stress at the interface, the present method imposes the viscosity jump directly on

the momentum flux across the interface. Based on two assumptions: (a) in a neighborhood of the
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interface the velocity distribution is linear within each fluid; (b) the viscous stress is continuous

at the interface, an effective viscosity in the cut cell is provided via harmonic mean with respect

to the volume fractions of the two fluids. As now we can obtain viscous stress directly from the

velocity difference across the interface. Since the viscosity jump is imposed at the interface directly

on the momentum flux across the interface, momentum conservation and the ability of handling large

viscosity ratios are ensured. The extension to three dimensions is straightforward.

For surface tension, a constrained Riemann problem is solved to impose the pressure jump at the

interface. Combining with the effective viscosity by assuming continuous viscous stress across the

interface, the surface tension effect contributes to the pressure jump at the interface only. The interface

pressures for individual fluids and the interface velocity are all obtained by solving the constrained

Riemann problem. Then, the interfacial momentum flux is ensured. The present approach also applies

to a free surface boundary, just assuming that one fluid is subjected to the free surface condition. Note

that, due to the non-conservative form of the surface-tension model, the implementation of pressure

jump does not satisfy momentum conservation. However, since the present formulation is based on a

conservative sharp-interface method, it maintains the so called zero-order consistency.

In addition, a subcell-resolution scheme by refining the cut cell recursively is used to improve the

accuracy of calculating cell-face aperture and volume fraction. First, cut cells are divided into two

types: simple-interface cells in which the interface is a single connected patch, and complex-interface

cells in which the interface possibly has multiple unconnected patches, e.g. the cell is cut by the

interface more than one time. A complex-interface cell is identified by checking the inconsistency of

the local-gradient estimations of the level-set at the cell center, obtained by forward and by backward

differences. A complex-interface cell is refined recursively into subcells until each subcell is a simple-

interface cell or the relative error reaches a certain threshold. Subsequently, the volume fraction and

apertures on the original cut cell are computed by combining the results from all subcells.

The viscosity model is validated through a typical case of shear flow with two viscous horizontal

fluid layers. Comparisons with the exact solution show that the present method predict agreement

velocity profile of the fully developed flow, even when a sharp kink appears at the interface. A static

drop in equilibrium is considered to validate the proposed surface tension model, the errors between

the prediction and exact solution takes nearly second-order accuracy with mesh refinement. The
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oscillation of a drop under surface tension allows to access the prediction of capillary instabilities,

the error of the predicted oscillation period is much smaller than that reported in [57]. To access

the capability of handling coupled effects of viscosity and surface tension, a drop deforming in a

Couette shear flow is simulated. The obtained results are in good agreement with those in Hu et al.

[36] and Zhou et al. [90]. The simulation of two-fluid Poiseuille flow illustrates the great capability

of predicting the instabilities in the linear range as well as in the non-linear region. The last test is

the liquid filament contraction and breakup, which is simulated to assess the capability of the present

method for three dimensional configurations with coupled effects of viscosity and surface tension.

The obtained results are in very good agreement with the experiment [8] and previously published

data [48].

My contribution to this work was the development of the method and the corresponding com-

puter code for its implementation. I performed simulations and analyzed the results, and wrote the

manuscript for the publication.

3.2 Curvature boundary condition for a moving contact line

Simulation of flow involving a contact line moving along a no-slip solid surface is complicated, which

are prone to generate grid-dependent simulation results when encountered with the conventional

no-slip boundary condition. Here, we give an overview of some existing numerical methods to

overcome this difficulty, and then summarize the proposed method in Paper II.

3.2.1 State of the art

An interface separating two fluids may also be in contact with a solid surface where the liquid wets

the solid surface. The line where the interface separating the two fluids intersects the solid surface

is called the contact line. If we consider a liquid drop on a solid substrate, there are three different

phases present. Therefore, there are three surface tensions that need to be considered: solid-liquid,

liquid-gas, and solid-gas. For the equilibrium drop, it respects the Young’s equations, however, the

difficulties arise when subjected to the moving contact line. There are two fundamental difficulties

in the numerical treatment of the contact line [21]. The first is associated with the conventional
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no-slip boundary condition, which leads to, i.e. dependent on the grid sizes. The second is due to the

resolution challenge on describing the near-wall phase-interface profile.

To obtained grid-independent simulation results various approaches are proposed, such as the

slip model [80], the precursor film model [63], the diffusive interface model [89], and the multi-scale

model combing molecular dynamics and diffusive interface [58]. Whether getting grid-convergent

results or nor is related to respective prescribed parameters in above models, e.g. slip length in the slip

model, film thickness in the precursor film model and interfacial thickness in the diffusive interface

model. In order to obtain mesh convergency results, the mesh grid should reach specific length scale

corresponding to prescribed parameters. With the framework of the slip model, the grid size should be

smaller than the introduced slip length. In practical, slip length is usually inferred to be of nano-meter

scale, however, using extremely fine meshes could require enormous computational resource [15].

To solve the flows with moving contact lines with reasonable mesh grids, the microscopic region

is usually modeled based on hydrodynamic theories, which circumvents extremely small mesh grid

to obtain grid-independent simulation results. Schönfeld and Hardt [65] obtained almost mesh

independent results in the case of capillary rise by combined model with a macroscopic slip and a

localized close to the contact line, where such body force is inferred from the hydrodynamic theory in

the microscopic region. Similar mesh-independent results are obtained in [1] of Afkhami and Zaleski

by modeling the dynamic contact angle based on an analog to Cox’s theory, where the applied contact

angle boundary condition is presented as a function of mesh size. Sui and Spelt [74] extended this

method to cover viscous and inertial regimes by considering higher-order terms in Cox’ theory. One

difficulty of such methods based on Cox’s theory is to solve the complex, implicit integral function

relating the microscopic angle to the macroscopic angle, which is either replaced by a simplified form

[1, 15] or resorted to numerical approaches [74].

The phase-interface near wall at the contact line should be specified to compute the curvature. In

numerical simulations, imposing an apparent contact angle is a common way to define the interface

in the vicinity of the contact line [88]. Afkhami reconstructed a height function at the contact line

based on the contact angle to estimate the curvature of the interface for their VOF [1]. Also, in

Sui’s mesh convergent approach, an iterative procedure is used to impose the contact angle for their

level-set method [74]. However, imposing a contact angle can move the contact line from its previous
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position, which may violate the conservation of mass and lead to parasitic currents. To remedy

artificial movement of the contact line, Spelt [71] and Walker [84] proposed to track the contact line

explicitly, and Rocca [60] applied a modified reinitialization routine for the level-set based on the

Hamilton-Jacobi equation in the vicinity of the contact line.

3.2.2 Summary of the presented method

In Paper II, we present a curvature boundary condition for simulating multi-phase flow involving

moving contact line. To obtain mesh convergency results, the microscopic region near the contact line

is modeled based on Cox’s theory as that of [74]. Differently, an effective curvature is formulated

explicitly based on the asymptotic theories of Cox [13], which avoids solving the complex, implicit

integral function. Meanwhile, no artificial moving of the contact line occurs, so the conservation of

mass is ensured.

The fluid fields is updated by the conservative sharp interface method in Paper I. For the boundary

condition of fluid field at the solid in the presence of moving contact line, the conventional no-slip

boundary condition is applied without any modification. The phase-interface is captured by the

level-set method for its simplicity of handling large interface deformations and topological changes.

Within a level-set framework, the interface curvature in a cut-cell far away from the moving contact

line can be obtained directly from the level-set function. However, the curvature cannot be obtained

directly from the level-set function at the contact line, since the level-set functions are not defined

therein when using the central differences. Alternatively, the curvature in a cut-cell with moving

contact line is provided by the curvature boundary condition

This effective curvature at moving contact line is formulated based on the asymptotic theories

of Cox [13]. Close to the contact line, the balance between viscous stresses and capillary forces

primarily determines the interface profile. Cox provides a general hydrodynamic description of a

moving contact line, where the interface profile presents a logarithmic dependence on the Capillary

number (Ca). Hence, we could define a macroscopic contact angle at a small height above the wall.

The average curvature in the cut cell with contact line can be estimated based on this macroscopic

contact angle. Finally, the relationship between the curvature and Cox’s theory is established, where

an extra-curvature is introduced into the original curvature. If the contact line reaches an static
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equilibrium, this extra-curvature vanishes. It is possible to extend the curvature boundary condition

to axisymmetry and three dimensions, where an addition curvature should be provided, i.e. radial

curvature in axisymmetry and planar curvature in three dimensions.

The equilibrium shape of a water drop on a wall is first considered demonstrating the capabilities

of the presented method for static contact angle problems. In the absence of gravity, the simulation

recover the theory that the equilibrium shape of the water drop is a circular cap respecting the preset

static contact angle at the wall [14]. Furthermore, in the presence of gravity the simulation results are

in good agreement with the asymptotic solutions, where the shape of the water drop is determined by a

balance between surface tension and gravity [14]. Then we perform two channel flows involving two

immiscible fluids, displacement flow and couette flow. To check the spatial convergence of present

method, the computational domain is discretized with increasing resolutions. The temporal evolution

of the interface profile suggest about second-order convergency with mesh refinement. In the case

of displacement flow in a channel, there is almost no visible difference between the present result

and theoretical predication. Moveover, several cases with various viscosity ratios are conducted to

manifest the performance merits, where the effective curvature can be formulated explicitly and avoids

solving the integral function and determining the inverse function. Finally, we conduct a numerical

simulation of the drop spreading in axisymmetric coordinates and compare the simulation results with

experiments to validate the present method. The simulation is in agreement with the experiment [91].

And the mesh convergence test shows that the computed wetting length agrees well with Tanner’s law.

The presence of a little discrepancy prompts us to built a model for the microscopic contact angle in

the future. In addition, the mass conservation is validated in this case.

My contribution to this work was the development of the method and the corresponding com-

puter code for its implementation. I performed simulations and analyzed the results, and wrote the

manuscript for the publication.

3.3 Efficient formulation of scale separation for multi-scale modeling

Small scales and non-resolved interface segments are generated during the interface evolution, and

are prone to introduce numerical fluctuations in calculation of the geometry properties and to yield
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inaccurate results due to the scale-dependent dynamics. Therefore, an effective approach is to separate

them from well-resolved field and treated them individually. Here, we give an overview of some

existing numerical methods on scale separation, and then summarize the proposed method in Paper

III.

3.3.1 State of the art

There is a growing interest to accurately model and simulate multi-phase flow phenomena. Phenomena

such as shock bubble interaction [37], drop impact [19] and spray atomization [6, 29] require handling

of a wide range of physical scales in numerical simulation, which poses a great challenge to resolve

all the length scales. Even adaptive mesh refinement [45] and multi-resolution [23, 26] are not able

to tackle for expensive computational cost. Another issue associated with multi-scale problems due

to scale-dependent dynamics implies very different physical phenomena acting at different length

scales [34]. For example, a pressure disturbance propagates across a large scale with pure-material

sound speed but small scale with a mixture sound speed. The underlying mechanism depends

on whether there is local mechanical non-equilibrium (microscopic view with resolved interface),

mechanical equilibrium (macroscopic view with unresolved interface) or thermodynamic equilibrium

(macroscopic view with miscible interface) between the two fluids. Therefore, an efficient approach

for the multi-scale problems is to separate the scales and then treat them differently.

With the sharp interface methods [17, 37], accurate modeling of interface interaction is important.

To estimate the states of fluids at the interface, the geometrical parameters, such as normal direction,

curvature and volume fraction is essential. For a given spatial resolution with the grid size h, the

phase-interface segments with magnitude of η can be categorized into resolve ones by η > h and

non-resolved ones by η < h. In presence of non-resolved interface segments, the reconstruction of

these parameters would fail based on the given grid resolution. To to overcome this difficulty, there

are two established approaches to separate resolved and non-resolved interface segments: one is

based on a Refined level-set grid method [27–29]; the other is the constrained stimulus-response

procedure [24]. In the Refined level-set grid method, the level-set equations are solved on a separate,

refined grid, compared to the resolution grids for fluids. The scale separation is achieved by checking

the difference of volume fractions measured on a coarse grid and a refined grid, respectively [34].
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The refinement-based method, however, requires refined resolution for the level-set, which increases

computational cost as well as coding complexity.

With the constrained stimulus-response procedure scale separation is achieved on the same

resolution grids as fluids. As pointed out in [24], resolved and non-resolved interface segments act

differently when they are subjected to a small constant shift of the level-set. Based on this observation

separation of these scales can be achieved through a stimulus-response operation during level-set

re-initialization. Though this procedure is effective, shifting the level-set and re-initialization twice

in the entire field are quite time consuming, especially when the non-resolved interface structures

compose very small portion of the entire interface. Moreover, the smoothing effect of the interface is

associated with a criterion defined in constrained re-initialization, where this criterion is formulated

to select the anchored and unanchored cells to avoid undesirable displacements of well-resolved

interface segments.

3.3.2 Summary of the presented method

In Paper III, we modify the stimulus-response procedure to improve the computational efficiency. The

non-resolved interface structures are identified by examining the consistency between the auxiliary

and zero level-sets, and the resolved structures are separated by a localized re-distance approach to

avoid the entire-field operation of the re-initialization.

In the level-set field, non-resolved interface segments are often presented as drops and thin

filaments, which take a common property that is lack of consistency among the level-sets near the

interface. Such property is corresponding to the large discrepancies that induced by the non-resolved

interface segments when subjected to a small shift of the level-set field. With this observation, we

establish a criterion to identify under-resolvable interface segments from the well-resolved ones. First,

we sketch two auxiliary level-sets, and then define two types of cut cells associated with such auxiliary

level-sets: positive auxiliary cut cells intersected by the positive auxiliary level-set and negative

auxiliary cut cells intersected by the positive one. The cut cell associated with non-resolved interface

segments can be identified by checking the auxiliary cut cells in its neighborhood. In the monotonic

region where the interface is well resolved, there are both positive and negative auxiliary cut cells in
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their nearest neighbors. For the cut cell associated with the non-resolvable interface segment, there is

only either positive or negative auxiliary cut cell in its nearest neighbors.

After the cut cells containing non-resolved interface segments are identified, one should assign

a reasonable level-set value for these cells to remove all the non-resolved structure and reconstruct

a well-resolved interface around the non-resolved region. Here, the level-set value of these cut

cells are estimated directly from a re-distance method. First, the cut cells who contain non-resolved

interface segments are classified into two categories according to the type of auxiliary cut cells in its

neighborhood. Then the level-set value of cut cells that contain non-resolved interface segments can

be simply estimated based on the minimum distance to the corresponding auxiliary level-sets. We

calculate all the distance to the corresponding auxiliary cut cells and choose a minimum one as the

level-set value of this cut cell. When the level-set value of all non-resolved cut cell are resetted, the

non-resolved structures are filtered out and a well-resolved interface is obtained. Note that the present

method does not apply level-set shifting and re-initialization in the entire level-set domain as in [24],

it increases the computational efficiency considerably. Meanwhile, a specific criterion to select the

anchored and unanchored cells for the constraint re-initialization is not needed with the absence of

re-initialization.

A canonical advection test of a circle in a single vortex flow is carried out to exam the smoothing

effect of the present method on the interface as well as computational cost. Compared with scale

separation procedure in [24], not only more interface segments are remained, but also the present

method achieve a speed up of 2.3 times on scale separation. To demonstrate that the present method

has no effect on the well-resolved interface structure, we carry out a two-dimensional simulation of

an underwater explosion. The simulation results are the same with those in [23]. Compared with the

results obtained without scale separation, no interface segments is removed due to the well-resolved

interface. To validate the present method on handling the complex interface, we consider a shock

bubble interaction problem. The results are in good agreement with previous numerical work of

[23, 51, 62, 70] and the experiment [22]. To verify mesh convergency of the present method, we

consider a case of liquid filament break-up under the gravity and capillary effects. This problem

has been studied both experimentally [9, 86] and numerically [24, 57, 73]. The simulation results
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suggests at least second order convergency with mesh refinement. Furthermore, the results recovers

the expected potential flow scaling law [43].

My contribution to this work was the development of the method and the corresponding com-

puter code for its implementation. I performed simulations and analyzed the results, and wrote the

manuscript for the publication.



Chapter 4

Conclusions

In this work, three numerical methods are developed to tackle several issues in numerical simulations

of incompressible multi-phase flow. A conservative sharp interface method is used to deal with the

viscous forces and surface tension forces sharply at the interface. A curvature boundary condition is

presented for simulating multi-phase flow problems with moving contact line. In addition, an efficient

formulation is developed to separate non-resolved interface segments of the multi-scale problem.

Employing a weakly compressible framework, the original conservative interface method is

developed for incompressible flows. Since the method is constructed based on its compressible

version, the original conservative interfacial-flux formulation and simplicity are maintained. By a

subcell-resolution method for evaluating the volume fraction and cell face aperture of computational

cell cut by interface, the accuracy of interface reconstruction is ensured without resorting to complex

and consuming operations for identifying ambiguous topologies. Moreover, it contributes to the

numerical stability. The viscous stress at the interface is directly imposed on the interfacial-flux to

ensure conservative of momentum by a simple formulation of effective viscosity. The pressure jump

due to surface tension is imposed consistently after solving the constrained Riemann problem. While

the numerical results of a number of validation tests show that the method is robust, accurate, and

capable of handling large density and viscosity ratios and high surface tension, the simulations of

extensive two- and three-dimensional example problems compared with experiments or previous

results suggest that the method can be applied to a large range of flow problems.
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Based on the asymptotic theory of Cox, a curvature boundary condition is derived for simulating

multi-phase flow problems with moving contact line. The curvature is explicitly defined and valid for

variable viscosity ratios. Furthermore, since the present method does not prescribe the value of the

contact angle explicitly, the contact-line evolution is determined by the flow field directly, and artifacts

by mass-conservation errors are avoided. The numerical model has been tested by comparison with

analytical solutions, previous numerical simulations or experiments for several typical problems,

including the equilibrium shape of a drop on a wall, displacement flow in a channel, Couette flow in a

channel and drop spreading on a wall. The simulation results show that the present method leads to

grid-convergent results and ensures mass conservation. Furthermore, while the simulation with the

present method is in good agreement with experimental data and theory.

We have developed a new formulation for scale separation to improve the computational efficiency

for multi-scale sharp interface modeling of multi-phase flows. Based on the observation that there is

lack of topological consistency between the auxiliary and zero level-sets for the non-resolved interface

segments, the cut cell associated with non-resolved interface segments are identified explicitly by

checking the auxiliary cut cells in its neighborhood. Non-resolved structures are removed and the

corresponding level-set field is reconstructed by a localized re-distancing method. Several typical

numerical examples are simulated to validate the performance of the present scale separation method.

The results show that the current approach is able to handle complex interface evolution. Compared

to Han et al. [24], the present method decreases the over-smoothing effect of the original method

and achieves a considerable computational speed up. Furthermore, the simulations of the filament-

breakup case on with increasing grid resolutions verifies the physical consistency of the present

scale-separation method.

Combining these methods together, the new conservative sharp interface method is already

successfully applied to challenging problems, such as liquid filament contraction and breakup or

predicting the interfacial instabilities involving Rayleigh–Taylor and viscous Kelvin–Helmholtz flows.

However, some problems are still open. As pointed out in Paper II, a small discrepancy presents in

comparison to the experiment, because the microscopic contact angle is simply set to the constant static

angle. In fact, the microscopic angle rather varies with capillary number and kinetic energy dissipation,

For the further improvement, a model for the microscopic contact angle are required as well as to
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consider contact angle hysteresis. In addition, as stated in Paper III, the non-resolved interface

segments are simply deleted after they are identified by a scale separation procedure. Actually, a

model should be built to handle these segments, including the evolution of them, interaction with

resolved interface and collision between each other.
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In this work, we develop a conservative sharp interface method based on [25] for 
incompressible flows with viscous and surface tension effects. Employing a weakly 
compressible framework, the method is simple, mass conserving and capable of handling 
flows with large density and viscosity ratios and high surface tension. Since the viscosity 
jump at the material interface is directly imposed by an interface-flux term, momentum 
conservation is ensured when capillary effects are absent. Furthermore, a subcell-
resolution method for volume-fraction evaluation is developed to achieve accurate 
interface reconstruction. A number of two and three dimensional numerical examples, 
are considered to demonstrate that the present method is able to simulate a wide range of 
flow problems with good robustness and high accuracy.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In multiphase flows, surface-tension forces and viscous forces often play important roles. For example, the deformation 
of liquid drops in shear flow is governed by the competition between surface-tension forces and viscous forces [49]. From 
a numerical perspective, surface tension leads to a singular force only acting at the interface, and differences of density or 
viscosity introduce discontinuities of material properties across the interface. The treatment of interactions at the interface 
is a challenge for numerical models of multiphase flows.

In general, there are two established approaches for modeling interface interactions, the diffuse-interface method and 
the sharp-interface method. With the diffuse-interface method the interface is represented by an artificial region with 
limited thickness, where the transition from one phase to the other is smooth. Material properties, such as viscosity and 
density, are represented by a smooth function, such as the volume fraction [20] or a Heaviside function [52]. For computing 
surface tension, a widespread approach is the continuum-surface-force method [4], where the singular surface tension 
force is regularized by a delta function obtained from the volume fraction or a smooth Heaviside function [52]. While the 
diffuse-interface methods are conceptually simple, the artificial mixing region may generate nonphysical artifacts, such as 
parasitic flows near a static interface by surface tension and wrongly predicted instability growth rates of viscous interfacial 
flows [45,26,38,37]. With the sharp-interface method, the interface as well as the interface interactions are all localized at 
the infinitely thin interface. Various approaches have been developed to obtain a sharp interface representation. Examples 
of such approaches include the arbitrary Lagrangian Eulerian (ALE) method [19], where the interface is represented by 
the computational mesh which evolves and deforms with the flow, the front-tracking method [54,45] where the interface 
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is represented explicitly by interface markers, and the level-set method [52], where the interface is defined as the zero 
level-set of a signed-distance function.

While the level-set method is simple and shares algorithmic similarities with the diffuse-interface method, it is able to 
handle large interface deformations and topological changes in a straight-forward way [39]. A main drawback of the level-set 
method is the lack of discrete conservation properties. For incompressible flow this problem has been addressed by hybrid 
methods, such as the particle level-set method [11,55] and the coupled level-set and volume-of-fluid method (CLSVOF) 
[51,34]. While these approaches increase computational complexity they also compromise the simplicity of the pure level-set 
method. To maintain simplicity Glimm et al. [16] introduced a conservative method based on a grid intersection technique 
for compressible flow without topological interface changes. A fully conservative level-set based sharp-interface method for 
compressible flows capable of dealing with topological interface changes was introduced by Hu et al. [25]. In this method 
the underlying conservative scheme on a Cartesian grid is modified for computational cells that are cut by the interface. 
A mixing procedure is introduced to avoid a time-step restriction due to small or empty cells. In order to calculate the 
numerical fluxes and fluid states associated with cut cells, the cell-face aperture and volume fraction are reconstructed from 
the level-set function. While the simple algorithm used by the original method [25] is suitable only for two-dimensional 
reconstruction, more elaborate marching square or marching cube [32] algorithms are required for accurate reconstruction 
in three dimensions. The difficulty is that these algorithms are either not accurate due to ambiguous topology or they are 
complex and computationally costly due to the necessity of identifying the correct topology [29].

Sharp-interface methods require fully coupled treatments of surface tension and viscous forces at the interface singu-
larity. Sussman et al. [50] treated the pressure jump introduced by surface tension in incompressible flows by a Dirichlet 
boundary condition when solving the two-domain pressure-Poisson equation. Bo et al. [1] modeled the surface tension in 
compressible flow as a pressure jump within the Riemann problem between the real fluid state and its corresponding ghost 
fluid state, following the ghost fluid method [13]. Nourgaliev et al. [37] modeled surface-tension and viscous-stress for in-
compressible flows by applying jump conditions at the interface for density, viscosity and pressure. However, discrete mass 
conservation is not ensured in these methods. A mass conservative sharp-interface method by employing an unstructured 
mesh near the interface has been developed by Chang et al. [8]. While this method has been demonstrated to be accurate 
and efficient for computing surface tension and viscous forces for two-dimensional problems, an extension to three dimen-
sions may, however, be challenging, especially when the interface and thus also the unstructured meshes becomes very 
complex, as in most practical applications.

In this paper we develop a conservative sharp-interface method based on Ref. [25] for incompressible multiphase flows 
by employing a weakly compressible model, which is widely used e.g. in smoothed particle hydrodynamics (SPH) [35,21]
and the lattice Boltzmann method [9]. Moreover, the weakly compressible model has been applied recently to study a 
range of turbulent and non-turbulent incompressible flows [46]. From the original method for compressible multi-phase 
flow the present method inherits the property of mass conservation and the ability of handling large density ratios. Unlike 
the effective-viscosity approach in the diffusive-interface method [28,31], where a mixture viscosity is used to represent 
the effective viscosity of the entire mixture cell cut by the interface, the present method imposes the viscosity jump at the 
interface directly on the momentum flux across the interface to ensure momentum conservation and the ability of handling 
large viscosity ratios. For interface reconstruction, a subcell-resolution scheme by refining the cut cell recursively is used to 
calculating cell-face aperture and volume fraction. Such scheme avoids the complicated topology-identification operations 
in marching cube algorithms, and eliminates the error due to ambiguous topology. It also is much easier to program than 
marching-square or marching-cube schemes, where 16 cases in two-dimensions and 256 cases in three-dimensions have to 
be identified [32].

In Section 2, we give an overview of the conservative sharp-interface method for simulating incompressible flows with 
the weakly compressible model. We briefly review the level-set method for the interface representation, and propose a 
subcell-resolution scheme to calculate the volume fraction and cell-face apertures in Section 3. In Section 4, we present the 
method for calculating the viscous stress at the interface, a momentum-flux based surface tension formulation. The overall 
method is validated with numerical examples in two and three dimensions in Section 5, and concluding remarks are given 
in Appendix A.

2. Weakly compressible sharp interface method

For the weakly compressible model the governing equations can be written as

∂U

∂t
+ ∇ · F = ∇ · Fν + as, (1)

where U is the vector of mass and momentum densities; F represents the convective fluxes, and Fν the viscous fluxes. Note 
that the right-hand side of Eq. (1) vanishes when it represents the continuity equation. For momentum conservation, the 
surface-tension force is given by

as = σκδnN (2)

where σ , κ , N are surface tension, curvature and normal direction of the interface, respectively. δn is a Dirac delta function 
defined in the normal direction of the interface.
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Fig. 1. Schematic of discretization for a cut cell (i, j) on a collocated grid: the red dot indicates the cell center, the red line indicates the interface, the green 
dashed line indicates the cell face, αi, j denotes the volume fraction occupied by fluid1 in cut cell (i, j), A denotes the cell-face aperture, N is the normal 
direction of the interface and �Γi, j the segment of the interface. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

To close the governing equations an artificial equation of state relating the pressure and density is used. Here, we use 
Tait’s equation

p = B

[(
ρ

ρ0

)γ

− 1

]
+ p0

B = ρ0|v f |2
γ M2

, (3)

where M is the Mach number, γ is an artificial specific-heat ratio, v f denotes a characteristic flow velocity, ρ0 and p0 are 

reference density and pressure, respectively. The artificial sound speed is c =
√

γ B
ρ . To impose incompressibility, we choose 

the parameters γ , B and ρ0 such that the Mach number satisfies M = |v f |
c ≈ 0.1.

The flow domain Ω is divided by a time-dependent interface Γ into two sub-domains Ω1 and Ω2, which denote the 
regions occupied by fluid1 and fluid2, as shown in Fig. 1. We solve Eq. (1) for each fluid in its respective sub-domain Ωm

(m = 1, 2), as in Hu et al. [25], on a two-dimensional collocated Cartesian grid with spacing �x and �y. Integrating Eq. (1)
over a computational cell and applying the Gauss’ theorem yields

n+1∫
n

dt

∫
�i, j

⋂
Ωm

dxdy
∂U

∂x
+

n+1∫
n

dt

∫
∂(�i, j

⋂
Ωm)

dxdyF · n

=
n+1∫
n

dt

∫
∂(�i, j

⋂
Ωm)

dxdyFν · n +
n+1∫
n

dt

∫
�Γi, j

dxdyFs · n, (4)

where �i, j = �x�y is the cell volume; �i, j ∩ Ωm can be represented as αi, j�i, j , where αi, j is the time dependent volume 
fraction of fluid m and satisfies 1 ≥ α ≥ 0. ∂(�i, j ∩ Ωm) denotes the faces of cell i, j wetted by fluid m, including the 
interface segment contained in the cell, and Fs is an additional flux at the interface due to surface tension. The surface 
∂(�i, j ∩ Ωm) with surface normal n can be represented by two parts. One part is the combination of four segments (in 
two-dimensions) of the cut cell faces, which can be written as Ai+1/2, j�y, Ai, j+1/2�x, Ai−1/2, j�y and Ai, j−1/2�x, where 
1 ≥ A ≥ 0 is the time-dependent cell-face aperture. The second, denoted as �Γi, j , is the segment of the interface Γ inside 
of cell (i, j). Hence, Eq. (4) can be rewritten in the following form, using explicit first-order forward time difference,
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αn+1
i, j Un+1

i, j = αn
i, jU

n
i, j + �t

�x�y

[
X̂(�Γi, j) + X̂ν(�Γi, j) + X̂s(�Γi, j)

]
+ �t

�x
[Ai−1/2, j F̂i−1/2, j − Ai+1/2, j F̂i+1/2, j]

+ �t

�y
[Ai, j−1/2F̂i, j−1/2 − Ai, j+1/2F̂i, j+1/2]

+ �t

�x
[Ai−1/2, j F̂νi−1/2, j − Ai+1/2, j F̂νi+1/2, j]

+ �t

�y
[Ai, j−1/2F̂νi, j−1/2 − Ai, j+1/2F̂νi, j+1/2], (5)

where �t is the time step size. Ui, j denotes cell-averaged vector of mass and momentum densities of the considered fluid, 
and αi, jUi, j are the conservative quantities in the cut cell. X̂ is the average inviscid momentum flux across the interface, 
and X̂ν denotes the momentum flux due to the viscous force. X̂s is the momentum flux due to the interfacial pressure 
jump induced by surface tension. Note that all the interface fluxes (X̂, X̂ν, X̂s) vanish when Eq. (5) discretizes the continuity 
equation. All the terms on the right-hand side are calculated at time step n. Note that the extension of Eq. (5) to three 
dimensions is straightforward. Specifically, one needs to calculate cell-face apertures, volume fraction and interface patch in 
a in three-dimensional cut cell, which is detailed in Section 3.2. Also note that, as shown in Hu et al. [25], discrete global 
conservation is maintained for flows without capillary effects.

In this paper, the governing equations of the individual fluids are discretized by a 5th-order WENO-LLF scheme [27] and 
2nd-order TVD Runge–Kutta time integration [48]. The time-step is set according to [51],

�t = CFL · min

(
�x

|un| + cn
,
ρn�x2

μ
,

√
ρn

8πσ
�x

3
2

)
, (6)

where cn is the artificial sound speed at time step n. We set CFL = 0.6 for all our simulations. For a small or empty cell, 
a stable fluid state may not be obtained based on the time step calculated according to the full grid size CFL condition. 
Therefore, a mixing procedure is introduced to maintain numerical stability [25]. In addition, a wavelet-based adaptive 
multi-resolution algorithm [17] is adopted for improving computational efficiency.

3. Interface modeling

3.1. Level-set method

The level-set function, ϕ , which describes the signed distance from the interface to each cell center, is used to track 
the interface. The zero-level set, i.e. ϕ = 0, represents the interface Γ . The entire domain is divided into two sub-domains, 
characterized by opposite signs of the level set function. Hereafter, the positive sub-domain refers to fluid1, and the negative 
sub-domain refers to fluid2. The level-set field is advanced by [13]

∂ϕ

∂t
+ u · ∇ϕ = 0, (7)

where u represents the velocity for the level set obtained with the interface interaction model [24]. In practice, the level-
set is updated only in a narrow band near the interface. Outside of the narrow band it is re-initialized by the following 
equation [13]

∂ϕ

∂τ
+ sgn(ϕ)

(|∇ϕ| − 1
) = 0, (8)

in order to maintain the signed-distance property of the level set, where τ is the a pseudo time.

3.2. Interface reconstruction

To solve Eq. (5), the information of the interface associated with the cut-cell, such as volume fraction, cell-face apertures 
and interface curvature, are reconstructed from the level-set function.

The accuracy of the approach originally proposed in Hu et al. [25] for calculating cell-face aperture and volume fraction 
can be improved by a subcell-resolution interface-reconstruction scheme. As will be shown in Section 4.7.2, such improve-
ment of accuracy is able to improve numerical stability when non-resolved interface singularities are produced in the 
solution. In the subcell-resolution interface-reconstruction scheme, cut cells are divided into two types: (i) simple-interface 
cells in which the interface is a single connected patch, and (ii) complex-interface cells in which the interface possibly 
has multiple unconnected patches, e.g. the cell is cut by the interface more than once. For a simple-interface cell, the cor-
responding volume fraction and apertures are computed directly due to its simple geometry. A complex-interface cell is 
refined recursively into subcells until each subcell is a simple-interface cell or the relative error reaches a certain threshold. 
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Fig. 2. Schematic for refining the complex-interface-cell in two dimensions. Solid circle and open circle indicate the cell corners with positive and neg-
ative values of the level set, respectively. The black dashed line indicates the actual interface, and the green one a possible reconstructed interface. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Four typical cases of cut cells in two-dimensions.

Subsequently, the volume fraction and apertures on the original cut cell are computed by combining the results from all 
subcells. A complex-interface cell is identified by checking the inconsistency of the local-gradient estimations of the level-set 
at the cell center, obtained by forward and by backward differences. If these two estimates have opposite signs, the cut-cell 
is identified as a complex-interface cell.

The procedure of the subcell-resolution reconstruction scheme is sketched in Fig. 2. If a cut cell is identified as a complex-
interface cell, it is divided into 4 or 8 equal subcells in two and three dimensions, respectively, and the level set on the 
centers and corners of subcells is evaluated by bi- or tri-linear interpolation. At the same time, ambiguous topologies are 
identified by subcell-refinement, as shown in Fig. 2. If a subcell is identified as a complex-interface cell or the relative 
error of predicted volume fraction is large, it is sub-divided again. Otherwise the refinement is stopped. Since only the 
cell-face aperture and volume fraction in simple-interface cells are actually computed, very simple algorithms, such as those 
in Refs. [29] and [23], can be applied. See also the details of an implementation and its extension to three dimensions are 
described in Appendix A. Note that in this paper the computation of the interface fluxes for complex-interface cells still is 
preformed at the cell-resolution (not sub-cell) level according to Eq. (5) without further modification.

To validate the subcell-resolution scheme, we consider four typical cases of cut cells including simple-interface cells and 
complex-interface cells, as shown in Fig. 3. The level set values at cell corners are set as⎧⎪⎪⎨

⎪⎪⎩
Case (a) (−0.2

√
2,0.3

√
2,0.3

√
2,0.8

√
2.0)

Case (b) (0.05
√

5,0.25
√

5,−0.35
√

5,−0.15
√

5)

Case (c) (−0.2
√

2.0,0.3
√

2.0,0.3
√

2.0,−0.2
√

2.0)

Case (d) (−0.3
√

2.0,0.2
√

2.0,0.2
√

2.0,−0.3
√

2.0).

(9)

In Table 1 we list the evaluated volume fractions of cut cells with increasing refinement levels. Note that the volume 
fractions remain the same for the simple-interface cells, while the relative errors for complex-interface cells reduce below 
1% at the refinement level of 3. The results suggest second-order convergence. In this paper, the error threshold is set at 1%, 
so the maximum refinement level of 3 is generally sufficient for all cases.

The interface curvature in a cut cell is defined by κ = ∇ · ( ∇ϕ
|∇ϕ| ), which can be rewritten, in three dimensions, as

κ = ϕxx + ϕyy + ϕzz

(ϕ2
x + ϕ2

y + ϕ2
z + ε)

1/2
− ϕ2

x ϕxx + ϕ2
yϕyy + ϕ2

z ϕzz + 2(ϕxϕyϕxy + ϕxϕzϕxz + ϕyϕzϕyz)

(ϕ2
x + ϕ2

y + ϕ2
z + ε)

3/2
, (10)

where ε is a small positive number to avoid division by zero [44]. Note that the curvature in two dimensions is obtained 
by setting all derivatives with subscript z to zero. Since all the partial derivatives in Eq. (10) usually are computed at the 
cell center with standard central difference schemes, the curvature κ is estimated at the cell center. Therefore, this value is 
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Table 1
Convergence study for the subcell-resolution interface-reconstruction scheme.

Case Level 0 Level 1 Level 2 Level 3 Level 4

(a) 0.92 0.92 0.92 0.92 0.92
(b) 0.375 0.8 0.375 0.375 0.375
(c) 0.6000 0.7900 0.7558 0.7605 0.7604
(d) 0.4000 0.2100 0.2441 0.2394 0.2395

Fig. 4. Correction for interface curvature.

corrected for the distance of the cell center from the interface by approximating the interface locally by a circle or sphere, 
as shown in Fig. 4, obtaining a corrected curvature as

κI = (d − 1)κ

d − 1 − ϕκ
, (11)

where d is the spatial dimension.

3.3. Viscous flux at the interface

An effective viscosity in the cut cell is constructed to model the viscous flux across the interface, i.e. X̂ν in Eq. (5), based 
on two assumptions: (a) in a neighborhood of the interface the velocity distribution is linear within each fluid; (b) the 
viscous stress is continuous at the interface. Note that, this approach does not follow the jump condition of Kang et al. [28], 
or Esmaeeli and Tryggvason [12], nevertheless, the continuous-shear-stress assumption proves to be accurate and effective 
in previous works, such as with front-tracking [56], level-set [52], volume-of-fluid [30] and SPH methods [21]. Consider a 
simple two-dimensional configuration with two different fluids with viscosity μ1 for the upper fluid and μ2 for the lower 
fluid, as shown in Fig. 5. The volume fractions of the two fluids are α and 1 − α, respectively. Viscous shear stresses at the 
interface are continuous, thus

μI
V 1 − V 2

1
= μ1

V 1 − V I

α
= μ2

V I − V 2

1 − α
, (12)

where μI is the effective viscosity, which results as harmonic mean with respect to the volume fractions of the two fluids, 
i.e.

μI = μ1μ2

αμ2 + (1 − α)μ1
. (13)

As pointed out by Coward et al. [10], the harmonic average of viscosity is appreciate for the two-layer Couette flow config-
uration. This expression can be generalized for more general interface orientations cut cells. As now we can obtain viscous 
stress directly from the velocity difference across the interface. The viscous fluxes across the interface (e.g. in two dimen-
sions) are

X̂v = (Fν,x, Fν,y) · (Nx�Γi, j, N y�Γi, j), (14)
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Fig. 5. Simple shear flow with two viscosities in a simplified cut cell.

Fig. 6. Schematic for the modified Riemann problem, W1 and W2 indicate fluid states for fluid1 and fluid2, respectively.

where Nx�Γi, j and N y�Γi, j are the projections of the interface segment in x and y direction, respectively. Fν,x = [τxx, τxy]T

and Fν,y = [τxy, τyy]T are the components of the viscous stress tensor. The extension to three dimensions is straightforward.

3.4. Surface tension

Surface tension by mechanical equilibrium results in a pressure jump at the interface. It is expressed as

[p]Γ = pI,1 − pI,2 = σκ. (15)

In order to impose surface tension at the interface, a constrained Riemann problem [1], as sketched in Fig. 6, is solved to 
impose Eq. (15). Cells with ϕ < 0 are defined as on the left and the cells with ϕ > 0 as on the right side of the interface. 
Due to the small Mach number in the weakly compressible model a simple non-iterative linearized Riemann solver is 
employed [24]. The interface states are obtained as

uI = ρ1c1u1 + ρ2c2u2 + p1 − p2 − σκ

ρ1c1 + ρ2c2

pI1 = ρ1c1(p2 + σκ) + ρ2c2 p1 + ρ1c1ρ2c2(u1 − u2)

ρ1c1 + ρ2c2

pI2 = ρ1c1 p2 + ρ2c2(p1 − σκ) + ρ1c1ρ2c2(u1 − u2)

ρ1c1 + ρ2c2
, (16)
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Fig. 7. Viscosity test: (a) Computational domain and initial condition; (b) Velocity profile for fully developed flow.

where uI is the interface velocity, c1 and c2 are the artificial sound speeds, and pI1 and pI2 the interface pressures for fluid1
and fluid2, respectively. Other than defining the ghost fluid state as in Ref. [1], the solution of the constrained Riemann 
problem is used for determining the extra interfacial momentum flux due to surface tension X̂s in Eq. (5), which can be 
integrated into the inviscid momentum flux, i.e. X̂, as{

X̂1 = −pI1(�Γi, j Nx,�Γi, j N y) for fluid1

X̂2 = pI2(�Γi, j Nx,�Γi, j N y) for fluid2.
(17)

The extension to three dimensions is straightforward. The above approach also applies to a free surface boundary. Assuming 
that fluid1 represents a fluid subject to the free surface condition, the interfacial condition becomes

uI = u1 + p1 − p0 − σκ

ρ1c1
, pI = p0 + σκ, (18)

where p0 is an external reference pressure.
Note that, due to the non-conservative form of the surface-tension model, the implementation of the pressure jump 

does not satisfy momentum conservation. However, since the present formulation is based on a conservative sharp-interface 
method, it maintains the so called zero-order consistency, i.e. a drop with constant curvature or constant pressure jump 
introduces zero total force acting on the drop.

4. Numerical validation and application examples

The following numerical examples are considered to illustrate the capability of the proposed conservative sharp-interface 
method to handle viscous forces and surface tension forces: (1) interface separating fluids with different viscosities; (2) static 
drop with surface tension; (3) parasitic currents; (4) deformed drop oscillation due to surface tension; (5) drop deformation 
in shear flow; (6) two-fluid Poiseuille flow; (7) liquid-filament contraction.

4.1. Interface separating fluids with different viscosities

A simple shear flow of two viscous horizontal fluid layers is considered to assess the capability of handling discontinuous 
viscosities. The computational domain is a unit square partitioned by a Cartesian grid with 128 × 128 cells. The flow is 
driven with velocities of ±10 at top and bottom of the domain, respectively. Periodic boundary conditions are applied in 
the horizontal direction. The interface is located initially at y = 0.2, as shown in Fig. 7(a). We consider two fluids with the 
same densities but different viscosities. The reference velocity is set to v f = 10. Initially, the respective properties of fluids 
are given by⎧⎨

⎩
ρ = 1, p0 = 102, B = 2.0 × 103, γ = 7.15, μ = 2.0 fluid1
ρ = 1, p0 = 102, B = 2.0 × 103, γ = 7.15, μ = 1.0 fluid2
ϕ = y − 0.2 level-set.

(19)

As shown in Fig. 7, the velocity profile of the fully developed flow agrees with the exact solution. A sharp kink appears 
at the interface in agreement with the exact result, rather than a smooth transition as predicted by a diffuse-interface 
method [52].
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Fig. 8. Laplace law test: (a) Pressure distribution; (b) Relative error according to resolution.

4.2. Static drop with surface tension

We consider a static drop in equilibrium to validate the surface tension model. The computational domain is a unit 
square with no-slip boundary conditions A liquid drop of radius R = 0.2 is placed at the center of the domain, embedded 
in the air. The surface tension coefficient is σ = 73. The reference velocity is v f = √

σ/ρR , and the initial conditions are⎧⎪⎨
⎪⎩

ρ = 1, p0 = 103, B = 102, γ = 1.4, μ = 1 fluid1

ρ = 103, p0 = 103, B = 104, γ = 7.15, μ = 102 fluid2

ϕ = −0.2 + √
(x − 0.5)2 + (y − 0.5)2 level-set.

(20)

Fig. 8(a) shows the steady-state pressure distribution, and Fig. 8(b) depicts the convergence of the relative errors E(�p) =
|�pnumerical − �pexact|/�pexact with grid refinement. It can be observed that nearly second-order accuracy is obtained.

4.3. Parasitic currents

We consider a 2 × 2 square computational domain with a drop of diameter D = 1.0 placed at its center to evaluate 
parasitic currents. It is known that parasitic currents exist due to an imbalance between stresses from surface tension and 
viscosity near the interface, resulting in artificial interface distortions [18,41]. The drop is modeled by a water-like fluid 
surrounded by a gas-like fluid, and the surface tension is set as σ = 1.0. The initial conditions are⎧⎪⎨

⎪⎩
ρ = 1, p0 = 104, B = 7.0 × 102, γ = 1.4, μ = 1.6 × 10−5 gas

ρ = 103, p0 = 104, B = 105, γ = 7.15, μ = 10−4 liquid

ϕ = −0.5 + √
(x − 1)2 + (y − 1)2 level-set.

(21)

The corresponding Laplace number is La = σρD/μ2 = 1011. First, we consider a drop resting at the center of the com-
putational domain with periodic boundary conditions. Spurious currents for a static configuration manifest themselves as 
artificial velocity fluctuations. The level of parasitic currents can be measured by the numerical capillary number written 
as Ca = Umaxμ/σ , where Umax is the maximum velocity. Fig. 9(a) depicts the time evolution of the capillary number with 
increasing resolution from 32 × 32 to 128 × 128. It is found that after an initial transient the capillary number decays to-
wards a small stationary value, and decreases with increasing resolution. Note that for the method in [1], La ∼ O (104) was 
reported as the achievable limit of the method. Instead of reducing viscosity, Chang et al. [8] increased the surface tension 
coefficient to obtain a capillary number La = 1010 with their conservative sharp-interface method. Second, a drop moving at 
a constant velocity is considered. The setup is the same as for the static drop, except that a constant translation velocity in 
horizontal direction is inputed as U0 = 0.1. Fig. 9(b) shows the temporal evolution of the capillary number with increasing 
resolution. It is observed that, while the spurious-current velocity is larger than that for static drop, its normalized mag-
nitude is still very small, on the order of 10−5. Note that for both cases the spurious currents may remain at small finite 
values due to artificial sound waves formulated by the present weakly compressible model.

4.4. Drop oscillation

The oscillation of a drop under surface tension allows to access the prediction of capillary instabilities [33]. A two-
dimensional ellipsoidal drop is filled with a water-like fluid and surrounded by a gas-like fluid. The ellipsoidal drop initially 
is at rest. Due to the action of surface tension it relaxes in an oscillatory way from ellipsoidal shape to the circular shape. 
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Fig. 9. The evolution of the capillary number with La = 1011: (a) A drop fixed at the center of the domain; (b) A moving drop with a constant velocity 
U0 = −0.1.

Fig. 10. Oscillations of an ellipsoidal drop: (a) Evolution of deformed shape; (b) Evolution of kinetic energy, E = 1
2

∫ ∫
ρu2dxdy.

The oscillating behavior is associated with a transfer between potential energy and kinetic energy. According to the Rayleigh 
formula [42,15], the oscillation frequency of a liquid drop with density ρl surround by another fluid with density ρg is ex-
pressed by

ω2 = (
o3 − o

) σ

(ρl + ρg)R3
, T = 2π

ω
(22)

where o is an in oscillation mode, and R is the volumetric drop radius. Here, we consider o = 2, following [40]. The 
computational domain is a unit square with no-slip boundary conditions. The ellipsoidal drop is located at the center of the 
domain, and the surface tension coefficient is σ = 341.642. The initial conditions are⎧⎪⎪⎨

⎪⎪⎩
ρ = 1, p0 = 104, B = 500, γ = 1.4 air

ρ = 102, p0 = 104, B = 1.05, γ = 7.15 liquid drop

ϕ0 = −1.0 +
√

(x − 0.5)2/0.22 + (y − 0.5)2/0.122 level-set.

(23)

Note that ϕ0 as defined by Eq. (23) has to be re-initialized by Eq. (8) before the simulation, as it is not a signed distance 
function. The computation is carried out on a mesh with 128 × 128 grid points.

As shown in Fig. 10, the oscillation of the liquid drop is well predicted. The theoretical value of the period is T = 0.0878
according to Eq. (22), for R = 0.15825. Fig. 10(b) shows the evolution of the kinetic energy, from which we can evaluate the 
predicted oscillation period T = 0.0881. The error is about 0.3%, which is less than the 2% error reported in [40], where a 
diffusive-interface method on a 111 × 111 grid has been employed.
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Fig. 11. Drop deformation: (a) The shape of drop in equilibrium and the pressure contour; (b) The velocity field near the interface.

4.5. Drop deformation in shear flow

A drop deforming in a Couette shear flow is computed to validate the present method with coupled effects of viscosity 
and surface tension. The drop deforms until it reaches a balance between viscous stresses and surface tension. The final 
shape of the deformed drop is governed by two non-dimensional numbers: the viscosity ratio λ = μc/μd and the capillary 
number Ca = μcr0γ̇ /σ . γ̇ is the shear rate, r0 is the initial drop radius, μc and μd are viscosities of bulk phase and the 
drop, respectively. The associated Reynolds number is Re = ργ̇ r2

0/μc . According to linear theory of Taylor [53] the steady 
equilibrium deformation parameter, for small deformation and small capillary number, is given by

D = L + B

L − B
= Ca

19λ + 16

16λ + 16
, (24)

where L and B represent the semi-major and semi-minor axes of the steady state ellipse, respectively. In the simulation, 
the deformation parameter is obtained from the relation between the moments of inertia of the ellipse

I1 = π

4
LB3, I2 = π

4
L3 B. (25)

We consider an initially circular drop with radius R = 1.0 centered in the computational domain 8R × 8R . A simple shear 
flow is generated by moving the top and bottom walls with constant velocities ±4, respectively. Periodic boundary condi-
tions are applied in horizontal direction. The domain is discretized with 256 ×256 grid points. The surface-tension coefficient 
is set to σ = 200/3. Initial conditions are{

ρ = 1, p0 = 2.0 × 103, B = 2.0 × 104, γ = 7.15, μ = 10 fluids

ϕ = −1 + √
(x − 4)2 + (y − 4)2 level-set.

(26)

As shown in Fig. 11(a), a distinct pressure jump appears at the drop interface at steady state after the viscous stresses and 
surface tension have reached a balance. Fig. 11(b) illustrate the velocity field near the interface. It is found that the velocity 
is continuous across the interface. Fig. 12(a) shows the drop deformation with increasing capillary number. It is observed 
that our results are in good agreement with those in Hu et al. [22] and Zhou et al. [56]. The evolution of drop deformation 
obtained with increasing resolution from 64 × 64 to 512 × 512 is shown in Fig. 12(b). By measuring the differences between 
the results of successive resolutions to that of the highest resolution, one can extract the exponent of error-decay ε ∝ �xp , 
as shown in the insert of Fig. 12(b), which implies about second-order convergence.

4.6. Two-fluid Poiseuille flow

A small perturbation introduced at the interface between two viscous horizontal fluid layers [43] in a channel develops 
a linear instability, where the proper, initially linear growth rate of the instability depends strongly on the accuracy of the 
interface model. This problem has been widely studied in previous works [3,2,5,10,30]. The set up for this case is shown in 
Fig. 13. Subscripts 1 and 2 refer to the upper fluid and lower fluid, respectively. As mentioned in [5] the problem is defined 
by the fluid-height ratio n = d2/d1, density ratio r = ρ2/ρ1, viscosity ratio m = μ2/μ1, Reynolds number Re = ρ1d1U0/μ1, 
surface tension σ and the wave number α = 2πd1/λ, where λ is wave length of the initial sinusoidal disturbance. The 
width of the domain is chosen to accommodate one wave length λ, too. The initial velocity field is given by
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Fig. 12. Drop deformation with (a) capillary numbers (b) different resolutions. The insert in (b) shows the error decay with increasing resolution at t = 4.

Fig. 13. Set up for viscous Kelvin–Helmholtz simulation.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 = U0

[
1 + a

(
y − d2

d1

)
+ b

(
y − d2

d1

)2]

u2 = U0

[
1 + a

m

(
y − d2

d1

)
+ b

m

(
y − d2

d1

)2]

a = m − n2

n(n + 1)
, b = − m + n

n(n + 1)

, (27)

where U0 is the interfacial velocity given by

U0 = −1

2

dp

dx

d1d2

μ2

n + 1

m + n
. (28)

Note that if periodic boundary conditions are applied in the horizontal direction the constant pressure gradient is expressed 
as uniform body force [14]

f = − 1

ρ

dp

dx
. (29)

4.6.1. Linear regime
The growth rate of a small initial single-mode perturbation κ is computed from A = A0ekt , where A0 is the initial 

amplitude. We consider the problem from Nourgaliev et al. [37] without surface tension. The Reynolds number is Re = 7.1
and parameters are α = 2.5133, m = 0.5 and n = 4. Initial amplitude of the perturbation is A0 = 5.0 × 10−3, which is 
introduced at the interface. Fig. 14 shows that after an initial transient a linear-growth region is recovered with a good 
convergency by increasing resolution from 256 × 256 to 1024 × 1024 grid points. The growth rate is measured by ln(A(t1) −
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Fig. 14. Linear growth of the perturbation amplitude with different resolutions: (a) The viscosity ratio is set as m = 0.5; (a) The viscosity ratio is set as 
m = 0.05. The insert in (b) shows the error decay with increasing resolution at t = 0.1.

A(t2))/(t1 − t2), within the line growth regime [5]. We obtain k ≈ 0.235, which is in good agreement with the exact growth 
rate of k = 0.2274 and the numerical prediction of Nourgaliev et al. [37]. Furthermore, we consider another problem with a 
viscosity ratio m = 0.05. Fig. 14(b) shows the results for increasing resolution from 256 × 256 to 2048 × 2048 grid points, 
which suggests about second-order convergence.

4.6.2. Non-linear regime
For investigating the non-linear region we perform a simulation with an initial sinusoidal perturbation with large am-

plitude. This problem follows [5], where the initial data are similar to the linear case with m = 10, n = 0.6, Re = 5 and the 
initial amplitude of perturbation is A0 = 0.02. We consider surface-tension effects with three Weber numbers We = ∞, 37.5 
and 18.8, where We = ρU 2

0dv/σ , and dv is the thickness of the fluid layer with large viscosity. The domain is discretized by 
a mesh with increasing grid points from 128 × 128 to 512 × 512.

The computed interface evolution for all three cases is shown in Fig. 15. We observe that the stretching of filaments 
increases with increasing We. Note that the present results suggest about second-order convergence, and are in very good 
agreement with the results of Cao et al. [5] and Li et al. [30]. In these works the surface tension is represented as a 
distributed body force by a smooth Dirac delta function, and also the viscosity is smoothed in a transition region.

4.7. Liquid filament contraction and breakup

The contraction of a stretched liquid filament is simulated to assess the capability of the present method for three 
dimensional configurations with coupled effects of viscosity and surface tension. The configuration is relevant for several 
practical applications, such as ink-jet printing. Many theoretical and experimental studies have studied the formation of 
drops from liquid filaments [6,7,36]. The problem of the contraction of a thin filament, as shown in Fig. 16, has been 
proposed by Schulkes [47]. The initial shape of the filament is an axisymmetric cylinder with two hemispherical caps at 
both ends. The half-length of the filament is L, and the hemispherical caps have the same radius R as the cylinder. Whether 
the filament breaks up into several satellite drops or contracts into a single drop, depends on the aspect ratio of the filament 
L0 = L/R , and the Ohnesorge number Oh = μ/

√
ρσ R .

4.7.1. Liquid filament contraction
For liquid filament contraction we follow the experiment by Castrejon-Pita et al. [6]. The initial aspect ratio is L0 = 9.0, 

and the Ohnesorge number is Oh = 0.04 with viscosity 5 m Pa s and surface tension 72 m Nm−1. The initial conditions are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ = 1 kg/m3, p0 = 104 Pa, B = 7.0 × 102 Pa,

γ = 1.4, μ = 1.6 × 10−5 Pa s
air

ρ = 103 kg/m3, p0 = 104 Pa, B = 1.4 × 105 Pa,

γ = 7.15, μ = 5.0 × 10−3 Pa s
liquid filament

ϕ =
{

−0.19 + √
x2 + z2 mm y < 1.52

−0.19 + √
x2 + (y − 1.52)2 + z2 mm y ≥ 1.52

level-set.

(30)

The computational domain is 1/8 of the physical domain with 2.0 mm in x-direction, 1.0 mm in y-direction and 1.0 mm in 
z direction, involving 128 × 64 × 64 computational cells.

The computed shape of the contracting filament at several time instants is shown in comparison to the experimental 
results in Fig. 17. It can be observed that the simulation is in very good agreement with the experiment. When the filament 
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Fig. 16. Geometry of a contracting filament.

Fig. 17. Evolution of a contract liquid filament: (a) Simulation results; (b) Experiments results in Fig. 4(b) of [6], used with permission.

Fig. 18. Convergency and Conservation test: (a) Droplet shapes with various mesh resolution at t = 2.0; (b) Time variation of drop mass to its initial value. 
The insert in (a) shows the error decay with increasing resolution at x = 0.

has small aspect ratio, it contracts quickly, due to the fact that the capillary forces are not strong enough to overcome 
the viscous force to pinch off the neck of filament. Instead, its bulbous ends become larger and expand. Subsequently 
the filament undergoes a series of oscillations with diminishing amplitudes and finally assumes a spherical drop shape (not 
shown here). Fig. 18(a) illustrates the droplet shapes with different resolutions at t = 2.0, which suggests about second-order 
convergence. In Fig. 18(b) the relative mass for the filament during the computation is calculated by

Mn

M0
=

∑i=N
i=0 αnρn

i∑i=N
i=0 α0ρ0

i

, (31)

where M denotes the total mass of the filament and ρi is the cell-averaged mass density of cell i. The superscripts n
and 0 represent the nth time step and the initial condition, respectively. It is confirmed that the present method has no 
conservation error. Additionally, for this case we validate the free surface model proposed in Section 3.4. The liquid filament 
is regarded as a fluid subjected to the free surface condition, and the external reference pressure is set as the initial air 
pressure, i.e. p0 = 104. The simulation results are the same as that for the case considering the surrounding air. As pointed 
out by Castrejon-Pita et al. [6], the radius of the filament is much larger than the critical radius (μairμliquid/ρliquidσ ), the 
influence of the air is negligible.

4.7.2. Liquid filament breakup
For the liquid filament breakup, we consider a case with aspect ratio L0 = 15 and Ohnesorge number Oh = 10−2, which 

is taken from [36]. Since the computational domain is quite large for simulating a filament with high aspect ratio, a two-
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Fig. 19. Evolution of liquid filament breakup.

dimensional axisymmetric model is used to increase computational efficiency. Again the surrounding air is simplified by 
applying a free-surface boundary condition. The computational domain is 0.4 mm × 1.6 mm with increasing resolutions 
from 128 × 512 to 512 × 2048. The initial conditions are⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ = 103 kg/m3, p0 = 104 Pa, B = 2.8 × 105 Pa,

γ = 7.15, μ = 10−3 Pa s, σ = 100 m Nm−1 liquid

ϕ =
{−0.1 + |x| mm y < 14

−0.1 + √
x2 + (y − 14)2 mm y ≥ 14

level-set.

(32)

Fig. 19 shows the evolution of the liquid filament. First, bulbous ends form on the contracting filament at t = 3.22. 
Capillary waves appear on the surface of the filament, which give rise to the typical shape before breakup. Because of the 
thinning neck the capillary force dominates the viscous force and the bulbous ends pinch-off from the filament. Soon after 
breakup, the drops merge together due to the inertia effects. While the results are in good agreement with Notz et al. [36], 
they achieve good mesh convergence even after liquid filament breakup, as shown in Fig. 19.
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Note that, the method of Notz et al. [36] recovers the evolution only up to the breakup point because the emptying 
of the thinning necks is inhibited in their finite element model, whereas the present simulation captures the shape after 
the liquid breakup. For higher resolution of 256 × 1024 or 512 × 2048, the filament breaks up at t = 11.114, which may 
generate some complex-interface cells. Without the subcell-resolution reconstruction, the simulation fails due to erroneous 
evaluation of volume fraction and cell-face apertures.

5. Concluding remarks

In this paper, we have developed a conservative sharp-interface method for incompressible flows using the weakly com-
pressible model. Since the method is constructed based on its compressible version, the original conservative interfacial-flux 
formulation and simplicity are maintained. By a subcell-resolution approach for evaluating the volume fraction and cell face 
aperture of computational cell cut by the interface, the accuracy of interface reconstruction is ensured without resorting 
to complex and time-consuming operations for identifying ambiguous topologies. The viscous stress at the interface is di-
rectly imposed on the interfacial-flux to ensure conservation of momentum by a simple formulation of effective viscosity. 
The pressure jump due to surface tension is imposed consistently after solving the constrained Riemann problem. While 
the numerical results of a number of validation tests show that the method is robust, accurate, and capable of handling 
large density and viscosity ratios and high surface tension, extensive simulations of two- and three-dimensional example 
problems which are compared with experiments or previous results demonstrate the reliability of the proposed method.
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Appendix A. Algorithm to calculate cell-face aperture and volume fraction

In Lauer et al. [29] the volume fraction is estimated by a sum of triangle areas in two-dimensions and pyramid volumes 
in three-dimensions for simplicity. For a simple-interface cell in two-dimensions the cell-face apertures are calculated in the 
same way as in Hu et al. [25], whereas the interface segment-length is evaluated as

�Γi, j = [
(Ai+1/2, j − Ai−1/2, j)

2 + (Ai, j+1/2 − Ai, j−1/2)
2]1/2

. (A.1)

As shown in Fig. 20 in two-dimensions, the cut cell is reconstructed through triangles that meet at the cell center. Thus, the 
volume fraction is the sum of the areas of these triangles,

αm
i, j = 1

2

(
1

2
Ai−1/2, j + 1

2
Ai, j−1/2 + 1

2
Ai+1/2, j + 1

2
Ai, j+1/2 + �Γi, jϕc

)
, (A.2)

where m indicates the fluid represented by positive level-set value, and ϕc is the level set, representing the distance from 
the cell center to the interface.

Fig. 20. Scheme for calculating the volume fraction of a cut cell in two dimensions.
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This procedure can be extended to three-dimensions in a straightforward way, where the volume fraction is evaluated 
by a sum of pyramids as

�Γi, j,k = [
(Ai+1/2, j,k − Ai−1/2, j,k)

2 + (Ai, j+1/2,k − Ai, j−1/2,k)
2

+ (Ai, j,k+1/2 − Ai, j,k−1/2)
2]1/2

,

αm
i, j,k = 1

3

(
1

2
Ai−1/2, j,k + 1

2
Ai+1/2, j,k + 1

2
Ai, j−1/2,k + 1

2
Ai, j+1/2,k

+ 1

2
Ai, j,k+1/2 + 1

2
Ai, j,k+1/2 + �Γi, j,kϕc

)
. (A.3)

Note that, the cell-face apertures in three-dimensions are computed in the same way as the volume fractions in two-
dimensions.
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Effective wall boundary conditions are very important for simulating multi-phase flows 
involving a moving contact line. In this paper we present a curvature boundary condition 
to circumvent the difficulties of previous approaches on explicitly imposing the contact 
angle and with respect to mass-loss artifacts near the wall boundary. While employing the 
asymptotic theory of Cox for imposing an effective curvature directly at the wall surface, 
the present method avoids a mismatch between the exact and the numerical contact 
angles. Test simulations on drop spreading and multi-phase flow in a channel show that 
the present method achieves grid-convergent results and ensures mass conservation, and 
delivers good agreement with theoretical, numerical and experimental data.

© 2016 Published by Elsevier Inc.

1. Introduction

Wetting or dewetting of a solid surface occurs in a number of applications, such as coating, lamination, inkjet printing 
and spray painting [44,33,35]. A phenomenon common to these applications is the moving contact line, where one fluid 
displaces the other. A fundamental difficulty in the numerical treatment of the contact line arises with the conventional 
no-slip boundary condition, as it leads to inconsistent, grid-dependent results [10,34].

Various approaches have been proposed to alleviate this problem, such as the slip model [39,37], the precursor film 
model [28], the diffusive interface model [45], and the multi-scale model combining molecular dynamics and diffusive 
interface [22]. Convergence of results is controlled by prescribed parameters in these models, such as the slip length in 
the slip model, the film thickness in the precursor film model, and the interface thickness in the diffusive interface model. 
With the slip model, a slip length is introduced to replace the no-slip boundary condition. For grid convergence, the mesh 
size needs to be smaller than the introduced slip length [41]. However, experimental studies suggest that the physical slip 
length is on the order of the intermolecular distance [8], which is far beyond what can be achieved with acceptable grid 
resolution [7]. An efficient approach for circumventing extremely small grid sizes is to model the microscopic region near 
the contact line based on hydrodynamic theories and to resolve only the macroscopic region away from the contact line. 
Schönfeld and Hardt [29] obtained almost grid-independent results by a combined model with a macroscopic length and 
a near-wall body force. Similar results are obtained in [1] of Afkhami and Zaleski by modeling the dynamic contact angle 
based on an analog to Cox’s theory. Sui and Spelt [36] revisited and extended this method by considering higher-order 
terms in Cox’s theory.

One difficulty of such methods based on Cox’s theory is to solve the complex, implicit integral function relating the mi-
croscopic angle to the macroscopic angle, which is either replaced by a simplified form [1,7] or obtained numerically [36]. 
Another issue associated with the boundary condition is how to compute curvature at the contact line. In numerical simu-
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lations, imposing a contact angle explicitly at the wall is a common way to define the interface in the vicinity of the contact 
line [2,25,17,20,42]. Afkhami and Zaleski reconstructed a height function at the contact line based on the contact angle for 
their Volume-of-Fluid method [1]. Also, in Sui and Spelt’s approach, an iterative procedure is used to impose the contact 
angle for their level-set method [36]. Note that, since in these cases the contact angle is defined on the numerical grid, 
undesirable artifacts can occur due to a mismatch with the exact contact angle which is defined on a length scale much 
smaller than the grid size. For example, imposing the contact angle explicitly can spuriously displace the zero level-set and 
the location of contact line, and thus induce large mass-conservation errors [40,26].

In this paper, we rather impose a curvature boundary condition for predicting moving contact lines. An effective curva-
ture is formulated explicitly based on the asymptotic theories of Cox [4], which avoids solving complex, implicit integral 
function. For simulating incompressible multi-phase flow, we adopt the conservative sharp-interface method, where surface 
tension and viscosity jump are treated without numerical smearing [18]. Since the present method does not impose the 
contact angle explicitly on the level-set function representing the interface, it avoids a mismatch between the exact and 
numerically imposed contact angles and hence spurious level-set displacement and the corresponding mass-conservation 
errors. Several multi-phase flow problems, including drop spreading on the wall, steady Couette and Poiseuille flows, are 
considered to demonstrate the ability of the present method. The numerical results suggest grid-convergence and good 
agreement with previous theoretical, numerical and experimental results.

2. Weakly compressible model

We use a weakly compressible model for incompressible multiphase flows [30,3,19]. The mass and momentum conser-
vation for a weakly compressible flow can be described as

∂U

∂t
+ ∇ · F = S, (1)

where U is the density of mass and momentum and F represents the convective fluxes. On the right-hand side S = 0 for 
the density component of U, and S = ∇ · Fν + as + ρg for the momentum components. Here, Fν are the viscous fluxes. The 
surface-tension force is given by

as = σκδnN (2)

where σ , κ , N are surface tension, curvature and normal direction of the interface, respectively. δn is the Dirac delta 
distribution

δ(x) =
{

+∞ ϕ = 0

0 ϕ �= 0
,

+∞∫
−∞

δ(x)dx = 1, (3)

defined in the normal direction of the interface. g is the gravitational acceleration. To close Eq. (1) an artificial equation of 
state relating pressure and density is used. Here, we employ Tait’s equation

p = B[( ρ

ρ0
)γ − 1] + p0

B = ρ0|v f |2
γ M2

, (4)

where M is the Mach number, γ is an artificial specific heat ratio, v f denotes a characteristic flow velocity, ρ0 and p0 are 

density and pressure of the fluids at the reference condition, respectively. The artificial sound speed is c =
√

γ B
ρ . To impose 

incompressibility of the fluids, we choose the parameters γ , B and ρ0 such that the Mach number satisfies M = |v f |
c ≈ 0.1.

For weakly compressible multiphase flows, the above governing equation is solved within a framework of the con-
servative sharp interface method [12], where the underlying conservative scheme on a Cartesian grid is modified for 
computational cells being cut by the interface. Specifically, the viscosity jump at the interface is directly imposed on the 
momentum flux across the interface, so that momentum conservation is ensured. A constrained Riemman problem is solved 
to impose a pressure jump condition due to surface tension. We refer to Luo et al. [18] for details.

For capturing the phase-interface, we use the level-set function ϕ , which describes the signed distance from the interface 
to each cell center [21]. The zero-level-set, i.e. ϕ = 0, represents the interface 
. The entire domain is divided into two 
sub-domains, characterized for two fluids by opposite signs of the level-set function. The level-set field is advanced by

∂ϕ

∂t
+ u · ∇ϕ = 0, (5)

where u represents the velocity for the level-set obtained from the fluid field [9]. To update the flow field, the governing 
equations are discretized by a 5th-order WENO-LLF scheme [15] and a 2nd-order TVD Runge–Kutta time integration [31]
for individual fluids. The time-step is set according to [38],
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�t = CFL · min

(
�

|u| + c
,
ρ�2

μ
,

√
ρ

8πσ
�

3
2

)
, (6)

where � is grid size and μ is dynamic viscosity. We set CFL = 0.6 for all the simulations. In addition, a wavelet-based 
adaptive multi-resolution algorithm is adopted for improving computational efficiency [11].

3. Curvature boundary condition

The boundary condition for a moving contact line is presented in the following. As in Ref. [1] the no-slip boundary 
condition is employed for fluid fields by defining velocities of the so-called “ghost cells” within the wall with

v g = 2U w − v, (7)

where v is the tangential velocity in the cell adjacent to the wall and U w is the velocity of the wall. Within a level-set 
framework the interface curvature in a cut-cell sufficient far away from the moving contact line can be obtained directly 
from the level-set function. The curvature in a cut-cell with moving contact line is provided by the new curvature boundary 
condition, since the stencil of the central-difference curvature approximation for this cell is incomplete.

3.1. Curvature far away from the contact line

The curvature of the interface in a cut cell is defined by κ = ∇ ·
( ∇ϕ

|∇ϕ|
)

, which can be rewritten as

κ = ϕ2
x ϕxx + ϕ2

yϕyy − 2
(
ϕxϕyϕxy

)
(
ϕ2

x + ϕ2
y + ε

)3/2
(2D)

κ = nr

r
+ ϕ2

z ϕzz + ϕ2
r ϕrr − 2 (ϕzϕrϕzr)(

ϕ2
z + ϕ2

r + ε
)3/2

(axisymmetric), (8)

where ε is a small positive number to avoid division by zero [27]. r is the radial coordinate of the cell center, nr is the 
component of the normal direction of the interface in the radial direction, defined as nr = ϕr/(ϕ

2
r + ϕ2

z )1/2. Since all the 
partial derivatives in Eq. (8) usually are computed at the cell center with standard central difference schemes, the curvature 
κ is estimated at the cell center. The cell-center value is corrected for the distance of the cell center from the interface by 
approximating the level-set locally by a concentric circle or sphere [18], resulting in

κI = (Nd − 1)κ

Nd − 1 − ϕκ
, (9)

where Nd is the number spatial dimensions.

3.2. Effective curvature at the contact line

The curvature at the contact line cannot be obtained directly through Eq. (8) since the stencil of central differences for 
cells adjacent to the wall would contain ghost cells in the wall. Therefore, we propose an effective curvature for a moving 
contact line based on the asymptotic theories of Cox [4].

Close to the contact line, which is located in a cut cell adjacent to the wall, the balance between viscous stresses and 
capillary forces primarily determines the interface profile. Cox provided a general hydrodynamic description of a moving 
contact line under the condition of a small capillary number Cacl , where the interface profile and Cacl follow a logarithmic 
relation

g(θd) = g(θm) + Cacl ln (αh) . (10)

θd is the macroscopic contact angle, θm is the microscopic angle, α is a prefactor depending on higher-order terms and on 
the microscopic length scale [4,36]. The function g(θ) is defined by

g(θ) =
θ∫

0

dθ

f (θ, λ)
and

f (θ, λ) =
2 sin β{λ2(β2 − sin2 β) + 2λ

(
β(π − β) + sin2 β

)
+

(
(π − β)2 − sin2 β

)
}

λ(β2 − sin2 β) ((π − β) + cosβ sinβ) +
(
(π − β)2 − sin2 β

)
(θ − cosβ sinβ)

, (11)
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Fig. 1. Schematic of estimating the curvature in a cut cell with contact line.

where λ is the viscosity ratio, and d represents the distance to the contact line. Hence, we can find a macroscopic contact 
angle at the height ε� of a thin layer above the wall from Eq. (10)

g(θ⊥
ε�) = g(θm) + Cacl ln (αε�) , (12)

where ε is a length scale parameter (ε � 1) and the distance to the contact line is d = ε�, which is assumed to be much 
larger than the intermolecular distance and much smaller than the grid size. Note that, for the non-degenerate cases where 
the contact angle is sufficient far from 0◦ or 180◦ , the thin layer spans only a region much smaller than the mesh size. 
Therefore, it is natural and reasonable to impose the boundary condition within a single cut-cell adjacent to the wall.

The average curvature in the cut cell containing the contact line can be estimated from the macroscopic contact angles. 
As in Ref. [5], assuming that the angle θ⊥

ε� close to the wall changes to the angle θ⊥
� where the phase-interface cuts through 

the upper cell face, as shown in Fig. 1, the average curvature in this cell adjacent to the wall can be approximated as

κcl = cos(θ⊥
�) − cos(θ⊥

ε�)

�
(2D)

κcl = nr

r
+ cos(θ⊥

�) − cos(θ⊥
ε�)

�
(axisymmetric), (13)

where θ⊥
� is estimated directly from the level-set function. For the macroscopic contact angle, cos(θ⊥

ε�) can be calculated 
explicitly from Eq. (12) by using the derivative

dg(θ) = g′(θ)dθ = − g′(θ)

sin(θ)
d cos(θ) = − 1

f (θ, λ) sin(θ)
d cos(θ). (14)

Combining Eqs. (14) and (12) yields the relationship,

cos(θ⊥
ε�) ≈ cos(θm) − f (θm, λ) sin(θm)Cacl ln(αε�). (15)

Note that Eq. (15) is valid for different viscosity ratios and for λ = 1 recovers the simplified relationship of [1]

cos(θnum) = cos(θapp) − 5.63Cacl ln(2�/K ), (16)

where θnum is a contact angle employed as boundary condition for the moving contact line, θapp is a static contact angle, 
and K is a constant with a dimension of length. From Eq. (13) and Eq. (15) one can define an effective curvature in the 
cut-cell adjacent to the wall as

κcl = cos(θ⊥
�) − cos(θm) + f (θm, λ) sin(θm)Cacl ln(A�)

�
(2D)

κcl = nr

r
+ cos(θ⊥

�) − cos(θm) + f (θm, λ) sin(θm)Cacl ln(A�)

�
(axisymmetric), (17)

where A = 2/K is introduced as a parameter instead of αε, and will be discussed further in Secs. 4.2 and 4.4. Also note 
that the logarithmic term in Eq. (17) can be explained as a curvature correction, which is introduced in accordance to Cox’s 
theory. It is possible to extend the curvature boundary condition to 3D . Similarly to the axisymmetric case, the effective 
mean curvature at the contact line can be approximated as

κcl = κw

√
1 − (nc · nw)2 + cos(θ⊥

�) − cos(θm) + f (θm, λ) sin(θm)Cacl ln(A�)

�
, (18)

where κw is the contact line curvature, nw is the normal direction of the wall and nc is the normal direction of the interface 
near the contact line. Note that estimating Cacl may be more involved than that in the 2D and axisymmetric cases [16].
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Fig. 2. The equilibrium shape of a drop without gravity: (a) Setup for the drop spreading; (b) Comparison of wetting length (ls) with the theory.

The procedure of imposing the curvature boundary condition can be summarized as follows:

1. Calculate the curvature κI in all cut-cells except those adjacent to the wall from Eqs. (8), (9). For cut-cells adjacent to 
the wall (containing a contact line), the effective curvature κcl , is computed from Eq. (17). Note that both κI and κcl are 
limited by 1/� to avoid large erroneous surface tension forces,

2. Solve the interface interaction involving surface tension to obtain the interface condition and the momentum flux at 
the interface with the sharp interface method of Luo et al. [18].

3. Maintain no-slip boundaries along the wall by Eq. (7), and update the flow field by Eq. (1) with the conservative 
interface method proposed in [12].

4. Advance the level-set field by Eq. (5) where the advection velocity is obtained from the interface condition [14,18]; 
level-set values are extrapolated linearly to the ghost cells.

Imposing the exact dynamic contact angle, according to Cox’s theory, for simulation of multi-phase flows with moving 
contact lines, requires to solve the implicit Eqs. (10) and (11) for this angle and then calculate the curvature at contact line. 
In the present method the effective curvature in a cut-cell with a contact line is approximated directly by Eq. (17), without 
the need for reconstructing the near-wall interface profile according to the dynamic contact angle. Since the curvature 
boundary condition does not explicitly impose a contact angle or require the exact location of the contact line, unlike 
Refs. [40,26], the level-set data at the ghost cells are not modified, and a spurious displacement of the zero level set is 
avoided. Together with the conservative sharp-interface method [18], mass conservation thus is ensured without extra mass 
conservation correction [25].

4. Numerical validation and examples

In the following numerical examples are considered to illustrate the capability of the present method for handling moving 
contact lines. Simulations have been performed in 2D (plane or axisymmetric) configurations where analytical solutions, 
previous numerical results or experimental data are available. We first consider the equilibrium shape of a water drop on a 
wall to demonstrate that the presented method recovers the static contact angle, when the curvature correction in Eq. (17)
vanishes. Then we show spatial convergence for two channel flows, displacement flow and Couette flow. Both of them 
involve two immiscible fluids and moving contact lines. Finally, we consider drop spreading on a wall and compare the 
simulation results with experiments to validate the present method. Also, mass conservation is validated by this case.

4.1. Equilibrium shape of a water drop resting on a wall

An equilibrium water drop on a horizontal wall is considered to validate the present boundary condition for problems 
with a static contact angle. The final shape of the water drop is determined by two parameters, the static contact angle 
and the Eötvös number Eo = ρg R2

0/σ , where R0 is the initial radius of the drop. The water drop is initially assumed to 
be a semi-circle of R0 = 0.5 with the contact angle 90◦ , resting on the wall, as illustrated in Fig. 2(a). It deforms due to 
the difference between the transient contact angle and the preset static angle. Also, the presence of gravity flattens the 
water drop. The computational domain is a 2 × 2 square with no-slip boundary conditions and discretized by 128 × 128
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Fig. 3. The equilibrium shape of drop with gravity: (a) The shape of drop with different Eötvös numbers; (b) Drop height as a function of Eötvös number.

grid points. The drop is modeled by a water-like fluid surrounded by a gas-like fluid, and the surface-tension coefficient is 
set to σ = 7.5. The initial conditions are⎧⎪⎪⎨

⎪⎪⎩
ρ = 10−3, p0 = 103, B = 1.0 × 102, γ = 1.4,μ = 4.0 × 10−3 gas

ρ = 1, p0 = 103, B = 1.0 × 104, γ = 7.15,μ = 0.25 drop

ϕ = −0.5 + √
x2 + y2 level-set

. (19)

In the absence of gravity (Eo = 0), the equilibrium shape of the water drop is a circular cap that respects the preset static 
contact angle at the wall, where surface tension on the entire drop reaches a balance [6]. Due to the volume conservation 
of the water drop in 2D , the wetting length is expressed as

ls = R0 sin θs

√
π/2

θs − sin θs cos θs
, (20)

where θs is the static contact angle. In our simulations, unless stated otherwise, the microscopic contact angle in Eq. (12)
is assumed to be equal to the static contact angle, i.e. θm = θs . Fig. 2(b) shows the numerical results of the wetting length 
compared with the theoretical results from Eq. (20). We observe that overall the simulation results agree with the theoretical 
values quite well, except for small discrepancies for very small or large static contact angles. These small discrepancies 
appear due to the error on estimating the curvature at small or large static contact angles near the contact line [7].

In the presence of gravity the shape of the water drop is determined by a balance between surface tension and gravity 
[6]. When Eo � 1, the drop assumes a circular cap shape. The drop height H is given by

H = R0(1 − cos θs)

√
π/2

θs − sin θs cos θs
. (21)

When Eo � 1, gravity deforms the water drop until it forms a puddle. The height of the drop is given by

H = 2
√

σ

ρg
sin(θs/2) = 2R0√

E0
sin(θs/2). (22)

For simplicity, the static contact angle is set to θs = 90◦ , so the drop height is H = R0 = 0.5 if gravity is ignored. Fig. 3(a) 
shows the shapes of a drop at E0 = 0.1, E0 = 1.0, E0 = 10.0, where the water drop resembles a circular cap at small E0 and 
a puddle at large E0. The comparison between simulation and theory for the drop height as function of the Eötvös number 
is illustrated in Fig. 3(b). The simulation results are in good agreement with the asymptotic solutions given by Eq. (21) and 
Eq. (22) at small and large E0 values, respectively. Note that a transition region is observed for moderate values of E0.
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Fig. 4. Definition of displacement flow in a tube.

4.2. Displacement flow in a channel

The simple test of displacement flows in a two-dimensional channel is considered, as shown in Fig. 4. The size of 
computational domain is 1 × 8, which is sufficiently long for the interface to develop a steady shape. A symmetry boundary 
condition is applied at the top of the domain and a no-slip boundary condition at the bottom of the domain. A fully 
developed Poiseuille flow with an averaged velocity U = 0.2 is applied at the left of the domain as inlet boundary condition. 
At the right of the domain, a zero normal velocity gradient is used as outflow boundary condition.

For simplicity, both fluid 1 and fluid 2 have the same density and viscosity, i.e. ρ1/ρ2 = 1, λ = μ1/μ2 = 1. The micro-
scopic contact angle is defined from the displacing fluid, which is assumed to be the static advancing angle and set as 
θm = 60◦ . The initial velocity condition in the channel is set as a fully-developed Poiseuille flow. The initial interface profile 
is flat, which has no effect on the steady shape [36]. The fluids are both modeled as water-like fluids, and the surface-tension 
coefficient is set to σ = 1.0. The initial conditions are⎧⎪⎪⎨

⎪⎪⎩
ρ = 1, p0 = 2.0 × 103, B = 2.0 × 104, γ = 7.15,μ = 0.1 fluids

u = 0.4 × (1.0 − y2), v = 0 velocity

ϕ = x − 3.0 level-set

. (23)

The parameter A in Eq. (17) is set to A = 103 corresponding to a realistic nanometer slip length if the channel radius is on 
the order of a millimeter [36]. The contact line velocity, Ucl , is calculated from the weighted average of fluid velocities,

Ucl = ρ1u1α + ρ2u2(1 − α)

ρ1α + ρ2(1 − α)
, (24)

where α is the volume fraction corresponding to fluid 1 in a cut cell, and Nx is the component of the interface normal 
direction. The capillary number is thereby estimated as

Cacl = μUcl

σ
. (25)

Simulations are carried out to investigate grid convergence. Fig. 5(a) shows the steady interface profile of the fully 
developed flow. The initial flat interface profile develops a meniscus due the motion of the contact line. The interface 
profile can be characterized by the horizontal distance between the ends of the meniscus curve, denoted as offset, as shown 
in Fig. 4. Fig. 5(b) illustrates the temporal evolution of the interface profile with mesh refinement. It can be seen that 
second-order mesh convergence is obtained not only for the steady state, but also for the moving contact line.

We further consider an axisymmetric displacement flow in a tube, which is taken from Sui and Spelt [36]. The viscosity 
and density ratios of the fluids are both set to 0.05, and the microscopic contact angle is set as θm = 45◦ . The initial 
conditions are{

ρ = 1, p0 = 2.0 × 103, B = 2.0 × 104, γ = 7.15,μ = 0.1 fluid 1

ρ = 0.05, p0 = 2.0 × 103, B = 2.0 × 102, γ = 7.15,μ = 0.005 fluid 2
. (26)

Other parameters are the same as with the above example, but with an axisymmetric setup. The computation is carried out 
on a mesh with 128 × 128 grid points. To investigate the effect of parameter A, we simulate this case with A = 103, 104, 
3 × 104 and 105. Fig. 6(a) shows the interface evolution with different parameters, and Fig. 6(b) shows the steady interface 
profiles at t = 8.0. We compare our numerical results with the theory predicted by Ramé [23] and the numerical result in 
Sui and Spelt [36]. As shown in Fig. 6(b), there is almost no visible difference between the present result with A = 3 × 104

and those predicted by Ramé [23] and Sui and Spelt [36].
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Fig. 5. Evolution of the interface with different grid size.

Fig. 6. Interface evolution and steady interface shapes with different parameters: (a) evolution of the offset; (b) steady interface profiles at t = 8.0, compared 
with Ramé [23] and Sui and Spelt [36]; the dotted line represents the result of Sui and Spelt with λ = 10−6 and α = 10 in their method.

4.3. Couette flow

We consider a Couette flow in a channel, where a shear flow is formed between two moving parallel walls. Fluid 1
is located in the middle of the channel, surrounded by Fluid 2, as shown in Fig. 7. The fully developed interface profile 
assumes a stationary shape which is determined by the velocity of the moving walls ±V wall and the microscopic contact 
angle [22]. Periodic boundary conditions are used in the x direction. The size of the computational domain is 4 × 1, which 
is sufficiently long for the interface to develop a steady state.

For simplicity, the two fluids have the same density and viscosity (λ = 1), and the microscopic contact angle is set to 
θm = 90◦ . The fluids are both modeled as water-like fluids, and the surface-tension coefficient is set to σ = 2.0. The initial 
conditions are⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρ = 1, p0 = 1.0 × 101, B = 4.0 × 101, γ = 7.15,μ = 0.1 fluids

u = 0, v = 0 velocity

ϕ =

⎧⎪⎨
⎪⎩

1.5 − x if x < 1.5

x − 2.5 if x > 2.5

max(1.5 − x, x − 2.5) else

level-set

. (27)
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Fig. 7. Steady Couette flow with contact line.

Fig. 8. Couette flow in a channel with the Capillary number Ca = 0.005: (a) Convergence test with the mesh refinement; (b) Shear stress along the tube 
wall with mesh refinement.

The velocity of the moving wall are set to V wall = 0.1, with the associated Capillary numbers Ca = 0.005. The parameters A
in Eq. (17) is set as A = 103, and the instantaneous capillary number is obtained as follows,

Cacl = μUcl/σ , Ucl = U I − V wall

U I = ρ1u1α + ρ2u2(1 − α)

ρ1α + ρ2(1 − α)

. (28)

The velocity of the interface, U I , is estimated from the weighted average of fluid velocities along the wall.
To investigate grid convergence of the present model, the computational domain is discretized with increasing resolu-

tions from 256 × 64 to 2048 × 512 grid points. Fig. 8(a) shows that the simulation results exhibit convergence with mesh 
refinement, where the offset is defined in Fig. 7. As expected from Ref. [36], the shear stress near the contact line ap-
proaches to singularity, as shown in Fig. 8(b), because the microscopic inner region is not resolved. This is only an apparent 
contradiction to the good convergence properties of the computed interface position and the moving contact angle. The 
magnitude of curvature correction, as shown in Eqs. (15), (17) and (18), indeed increases with mesh resolution and does 
not converge. The reason that such diverging quantities do not contaminate the convergence of interface position and mov-
ing contact angle can be explained by the force balance between both increasing surface tension and the shear stress [13]. 
Note that convergence is obtained under the condition that Cox’s assumption is valid in a thin layer with thickness much 
less than the mesh size.

We further conduct two tests with viscosity ratios λ = 1/2 and λ = 2, respectively. Unlike imposing a contact angle at 
the contact line, for which one needs to solve the complex, implicit integral function Eq. (10) and its inverse, with the 
present method an effective curvature can be formulated explicitly based on f (θ, λ) in Eq. (17). It is shown in Fig. 9(a) that 
the offset increases with increasing viscosity ratios. In addition, we perform a simulation with λ = 1 and a larger Capillary 
number Ca = 0.01, which also shows good convergence with mesh refinement in Fig. 9(b). We find about second-order 
convergence.

4.4. Drop spreading

The last test is the spontaneous spreading of a drop on a wall. We first investigate grid convergence, and then compare 
the simulation results with experimental data to validate the present method.
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Fig. 9. Couette flow in a channel with different viscosity ratios and Capillary number: (a) λ = 1/2, λ = 1, λ = 2 and Ca = 0.005; (b) λ = 1 and Ca = 0.01.

Fig. 10. Drop spreading with static angle θS = 60◦ .

For the grid convergence test, the setup is the same as for the equilibrium test in Sec. 4.1. The water drop is initially 
assumed to be a semi-circle of R0 = 0.5 with the contact angle 90◦ , resting on the wall, as illustrated in Fig. 2(a). Re and Ca, 
based on the maximum velocity of the flow and the initial radius of the drop R0, are approximately 2 and 0.03, respectively. 
The drop spreads until it reaches a static balance at which the contact angle is the static contact angle. The microscopic 
contact angle is set to the static contact angle, i.e. θm = θs = 60◦ , and the parameters A in Eq. (17) is set to A = 103. Eq. (24)
and Eq. (25) serve to calculate the instantaneous capillary number. The initial conditions are defined by Eq. (19).

Fig. 10 shows the interface profile at several time instants. At time t = 2.4 it reaches the steady state, where the macro-
scopic angle equals the static contact angle. The mesh convergence test in Fig. 11(a), shows that the computed wetting 
length agrees well with Tanner’s law, i.e. ls ∝ t1/10. Additionally, we investigate the mass conservation of present method in 
this case. Fig. 11(b) illustrates time variation of drop mass to its initial value. M is defined as M = �N

i=1ρiαi , where N the 
number of cells contained in the drop. M0 is the value of M at the initial condition. Note that mass conservation is satisfied 
exactly as expected.

To validate the present method, we conduct a numerical simulation of the drop spreading in axisymmetric coordinates 
and compare with the experiment in [46]. A drop of radius R = 1.5 mm is initially placed on a wall with its center at a 
height of 1.48 mm above the wall. The corresponding initial contact angle is slightly smaller than 180◦ . The computational 
domain is 3.5 mm×3.5 mm with no slip boundary conditions. Since capillary effects dominate the flow, gravity is neglected. 
According to the experiment, the microscopic contact angle is set to θm = 60◦ and the surface-tension coefficient is σ =
32 mN/m. The initial conditions are
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Fig. 11. Convergence and conservation test: (a) Evolution of the wetting length with mesh refinement; (b) Time variation of the drop mass normalized by 
the initial value.

Fig. 12. Drop spreading: comparison between the numerical simulations and experiments.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ = 1 kg/m3, p0 = 103 Pa, B = 1.0 × 102 Pa,

γ = 1.4,μ = 1.8 × 10−5 Pa s
air

ρ = 103 kg/m3, p0 = 103 Pa, B = 2.0 × 104 Pa,

γ = 7.15,μ = 0.25 Pa s
liquid drop

ϕ = −1.5 + √
x2 + (y − 1.48)2 mm level-set

. (29)

To investigate the effect of the parameter A on the numerical results, we use A = 103 and A = 104 respectively. As 
addressed in [46], the curves of drop-spreading length ls/R vs. spreading time t for the different liquids collapse onto 
a master curve by normalizing spreading time with tσ/μ/R . In Fig. 12, the normalized numerical results are shown in 
comparison to the experiment, where the master curve is reproduced from Fig. 7 of [46]. It can be observed that the value 
of the parameter A determines the speed of drop spreading but has no effect on the equilibrium state. The numerical result 
for A = 103 agrees better with the experiment than A = 104. From this point of view, A can be regarded, similarly as α
in Eq. (10), as an adjustable parameter that determines the speed of the contact line. The presence of a small discrepancy 
may be due to the simple assumption that the microscopic contact angle is the constant static angle, i.e. θm = θs . In fact, 
the microscopic angle rather varies with capillary number [32,43] and kinetic energy dissipation [24].



340 J. Luo et al. / Journal of Computational Physics 310 (2016) 329–341

5. Concluding remarks

A curvature boundary condition is presented for simulating multi-phase flow problems with moving contact line. The 
boundary condition, which is derived from the theory of Cox, is explicitly defined and valid for variable viscosity ratios. 
Furthermore, since the present method does not prescribe the value of the contact angle explicitly, the contact-line evolution 
is determined by the flow field directly, and artifacts by mass-conservation errors are avoided. The numerical model has 
been tested by comparison with analytical solutions, previous numerical simulations or experiments for several typical 
problems, including the equilibrium shape of a drop on a wall, displacement flow in a channel, Couette flow in a channel and 
drop spreading on a wall. The simulation results show that the present method leads to grid-convergent results and ensures 
mass conservation. Furthermore, while the simulation with the present method is in good agreement with experimental 
data, the results suggest that further improvement is possible by a model for the microscopic contact angle, which is 
subject of future studies.

Acknowledgements

The first author has partially been financed by China Scholarship Council (No. 2010629044).

References

[1] S. Afkhami, S. Zaleski, M. Bussmann, A mesh-dependent model for applying dynamic contact angles to VOF simulations, J. Comput. Phys. 228 (15) 
(2009) 5370–5389.

[2] J.U. Brackbill, Douglas B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (2) (1992) 335–354.
[3] Shiyi Chen, Gary D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30 (1) (1998) 329–364.
[4] R.G. Cox, The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow, J. Fluid Mech. 168 (1986) 169–194.
[5] G. Della Rocca, G. Blanquart, A level set based method to simulate contact line motion and dynamic contact angles for multiphase flow, in: Seventh 

International Conference on Computational Fluid Dynamics, ICCFD7, Big Island, Hawaii, July 9–13, 2012, p. 2106.
[6] S. Dong, On imposing dynamic contact-angle boundary conditions for wall-bounded liquid–gas flows, Comput. Methods Appl. Mech. Eng. 247–248 

(November 2012) 179–200.
[7] Jean-Baptiste Dupont, Dominique Legendre, Numerical simulation of static and sliding drop with contact angle hysteresis, J. Comput. Phys. 229 (7) 

(2010) 2453–2478.
[8] Jens Eggers, Howard A. Stone, Characteristic lengths at moving contact lines for a perfectly wetting fluid: the influence of speed on the dynamic 

contact angle, J. Fluid Mech. 505 (April 2004) 309–321.
[9] Ronald P. Fedkiw, Tariq Aslam, Barry Merriman, Stanley Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid 

method), J. Comput. Phys. 152 (2) (1999) 457–492.
[10] Michael Griebel, Margrit Klitz, Simulation of droplet impact with dynamic contact angle boundary conditions, in: Michael Griebel (Ed.), Singular 

Phenomena and Scaling in Mathematical Models, Springer International Publishing, 2014, pp. 297–325.
[11] L.H. Han, X.Y. Hu, N.A. Adams, Adaptive multi-resolution method for compressible multi-phase flows with sharp interface model and pyramid data 

structure, J. Comput. Phys. 262 (April 2014) 131–152.
[12] X.Y. Hu, B.C. Khoo, N.A. Adams, F.L. Huang, A conservative interface method for compressible flows, J. Comput. Phys. 219 (2) (2006) 553–578.
[13] X.Y. Hu, N.A. Adams, Moving contact line with balanced stress singularities, in: IUTAM Symposium on Advances in Micro- and Nanofluidics, Springer, 

2009, pp. 87–94.
[14] X.Y. Hu, B.C. Khoo, An interface interaction method for compressible multifluids, J. Comput. Phys. 198 (1) (2004) 35–64.
[15] G.S. Jiang, C.W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996) 202–228.
[16] Nicklas Linder, Antonio Criscione, Ilia V. Roisman, Holger Marschall, Cameron Tropea, 3d computation of an incipient motion of a sessile drop on a 

rigid surface with contact angle hysteresis, Theor. Comput. Fluid Dyn. (2015) 1–18.
[17] H. Liu, S. Krishnan, S. Marella, H.S. Udaykumar, Sharp interface Cartesian grid method II: a technique for simulating droplet interactions with surfaces 

of arbitrary shape, J. Comput. Phys. 210 (1) (2005) 32–54.
[18] J. Luo, X.Y. Hu, N.A. Adams, A conservative sharp interface method for incompressible multiphase flows, J. Comput. Phys. 284 (2015) 547–565.
[19] Joe J. Monaghan, Simulating free surface flows with SPH, J. Comput. Phys. 110 (2) (1994) 399–406.
[20] C. Narayanan, D. Lakehal, Simulation of filling of microfluidic devices using a coarse-grained continuum contact angle model, in: Technical Proceedings 

of the 2006 NSTI Nanotechnology Conference and Trade, vol. 2, 2006, pp. 493–496.
[21] Stanley Osher, Ronald P. Fedkiw, Level set methods: an overview and some recent results, J. Comput. Phys. 169 (2) (2001) 463–502.
[22] Tiezheng Qian, Xiao-Ping Wang, Ping Sheng, Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E 68 (1) (2003) 016306.
[23] E. Ramé, On an approximate model for the shape of a liquid–air interface receding in a capillary tube, J. Fluid Mech. 342 (1997) 87–96.
[24] Weiqing Ren, Dan Hu, E. Weinan, Continuum models for the contact line problem, Phys. Fluids 22 (10) (2010) 102103.
[25] Michael Renardy, Yuriko Renardy, Jie Li, Numerical simulation of moving contact line problems using a volume-of-fluid method, J. Comput. Phys. 

171 (1) (2001) 243–263.
[26] G. Della Rocca, G. Blanquart, Level set reinitialization at a contact line, J. Comput. Phys. 265 (May 2014) 34–49.
[27] David Salac, Wei Lu, A local semi-implicit level-set method for interface motion, J. Sci. Comput. 35 (2) (2008) 330–349.
[28] N. Savva, S. Kalliadasis, Dynamics of moving contact lines: a comparison between slip and precursor film models, Europhys. Lett. 94 (6) (2011) 64004.
[29] Friedhelm Schönfeld, Steffen Hardt, Dynamic contact angles in CFD simulations, Comput. Fluids 38 (4) (2009) 757–764.
[30] F.S. Schranner, X.Y. Hu, N.A. Adams, A physically consistent weakly compressible high-resolution approach to underresolved simulations of incompress-

ible flows, Comput. Fluids 86 (2013) 109–124.
[31] Chi-Wang Shu, Stanley Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys. 77 (2) (1988) 439–471.
[32] Jacco H. Snoeijer, Bruno Andreotti, Moving contact lines: scales, regimes, and dynamical transitions, Annu. Rev. Fluid Mech. 45 (2013) 269–292.
[33] Yangsoo Son, Chongyoup Kim, Doo Ho Yang, Dong June Ahn, Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low 

Weber and Reynolds numbers, Langmuir 24 (6) (2008) 2900–2907.
[34] J.E. Sprittles, Y.D. Shikhmurzaev, Finite element simulation of dynamic wetting flows as an interface formation process, J. Comput. Phys. 233 (1) (2013) 

34–65.
[35] Youngho Suh, Gihun Son, A level-set method for simulation of a thermal inkjet process, Numer. Heat Transf., Part B, Fundam. 54 (2) (2008) 138–156.



J. Luo et al. / Journal of Computational Physics 310 (2016) 329–341 341

[36] Y. Sui, Peter D.M. Spelt, An efficient computational model for macroscale simulations of moving contact lines, J. Comput. Phys. 242 (2013) 37–52.
[37] M. Sussman, A method for overcoming the surface tension time step constraint in multiphase flows II, Int. J. Numer. Methods Fluids 68 (11) (2012) 

1343–1361.
[38] Mark Sussman, Elbridge Gerry Puckett, A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase 

flows, J. Comput. Phys. 162 (2) (2000) 301–337.
[39] L.H. Tanner, The spreading of silicone oil drops on horizontal surfaces, J. Phys. D, Appl. Phys. 12 (9) (1979) 1473.
[40] Claudio Walker, Bernhard Müller, Contact line treatment with the sharp interface method, MekIT 11 (2013) 451–462.
[41] O. Weinstein, L.M. Pismen, Scale dependence of contact line computations, Math. Model. Nat. Phenom. 3 (2008) 98–107.
[42] Martin Wörner, Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications, 

Microfluid. Nanofluid. 12 (6) (2012) 841–886.
[43] Yasufumi Yamamoto, Katsunori Tokieda, Tatsuro Wakimoto, Takahiro Ito, Kenji Katoh, Modeling of the dynamic wetting behavior in a capillary tube 

considering the macroscopic–microscopic contact angle relation and generalized Navier boundary condition, Int. J. Multiph. Flow 59 (February 2014) 
106–112.

[44] K. Yokoi, D. Vadillo, J. Hinch, I. Hutchings, Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface, 
Phys. Fluids 21 (2009) 72102.

[45] P. Yue, J.J. Feng, Can diffuse-interface models quantitatively describe moving contact lines?, Eur. Phys. J. Spec. Top. 197 (1) (August 2011) 37–46.
[46] A. Zosel, Studies of the wetting kinetics of liquid drops on solid surfaces, Colloid Polym. Sci. 271 (7) (1993) 680–687.





III

Appendix C:

Article III

J. Luo, X.Y. Hu N.A. Adams

Efficient formulation of scale separation for multi-scale modeling of interfacial flows

In Journal of Computational Physics, Volume 308, 1 March 2016, pp. 411-420, DOI http://dx.doi.

org/10.1016/j.jcp.2015.11.044.

Copyright © 2016 Elsevier. Reprinted with permission.

Contribution: My contribution to this work was the development of the method and the corresponding

computer code for its implementation. I performed simulations and analyzed the results, and wrote

the manuscript for the publication.

http://dx.doi.org/10.1016/j.jcp.2015.11.044
http://dx.doi.org/10.1016/j.jcp.2015.11.044








Journal of Computational Physics 308 (2016) 411–420

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Efficient formulation of scale separation for multi-scale 

modeling of interfacial flows

J. Luo a,b, X.Y. Hu a,∗, N.A. Adams a

a Institute of Aerodynamics and Fluid Mechanics, Technische Universität München, 85747 Garching, Germany
b School of Mechanical Engineering, Northwestern Polytechnical University, 710072 Xi’an, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 March 2015
Received in revised form 12 November 2015
Accepted 20 November 2015
Available online 18 December 2015

Keywords:
Multi-scale
Multi-phase
Interfaces
Scale separation
Level-set method

We propose an efficient formulation of the scale-separation approach which has been 
developed by Han et al. [10] for multi-scale sharp interface modeling of multi-phase flows 
based on the level-set technique. Instead of shifting the entire level-set field twice as in 
the original method, the improved method identifies the non-resolved interface structures 
from two auxiliary level-sets close to the interface. Non-resolved structures are separated 
from the interface by a localized re-distancing method, which increases the computational 
efficiency considerably compared to the original global reinitialization procedure. Several 
tests for two-phase flow problems, involving simple and complex interface structures, are 
carried out to show that the present method maintains sharper interface structures than 
the original method, and achieves effective scale-separation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Simulations of two-phase flow, such as bubble interaction [17], drop impact [7] and spray atomization [2,15], need to 
resolve length scales that can span several orders of magnitude, which poses a great computational challenge. Adaptive 
mesh refinement (AMR) [23] and multi-resolution (MR) methods [11,9], even with local time stepping, do not sufficiently 
reduce computational cost to enable accurate routine simulations of complex interfacial flows. A promising approach to 
improve efficiency is offered by multi-scale sharp-interface methods [18,14,10]. One essential procedure in multi-scale mod-
eling is scale separation. For a given spatial resolution with grid size h, the interface segments with characteristic size δ
can be categorized as resolved if δ > h, or non-resolved if δ < h. In previous work, two approaches have been proposed 
for scale separation: one is based on the refined level-set grid method (RLSG) [13,18,14], the other is the constrained 
stimulus–response procedure (CSRP) [10]. While RLSG requires a two-grid system where a higher-resolution grid is used for 
representing the interface, CSRP uses a single grid for representing both the interface and the individual fluids. CSRP iden-
tifies the resolved and non-resolved interface segments based on the different responses they exhibit when subjected to a 
small shift of the level-set field, and separates these scales with a two-step level-set re-initialization procedure. Although 
CSRP is effective, in particular the additional re-initialization operation significantly increases computational cost.

In this paper, an improved scale-separation method is proposed to increase computational efficiency. Using two auxiliary 
level-set fields instead of level-set shifting, the new method identifies non-resolved interface structures by examining the 
topological consistency between the auxiliary and zero level-sets. Non-resolved structures are subsequently separated by 
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a localized re-distancing approach to avoid additional re-initialization operations. The performance of the new method is 
evaluated through several tests, including single-vortex flow, underwater explosion, shock–bubble interaction, and liquid-
filament breakup.

2. Sharp-interface method

The governing flow equations can be written as

∂U

∂t
+ ∇ · F = ∇ · Fν, (1)

where U represents the density of mass, momentum and total energy; F the convective fluxes, and Fν the viscous fluxes.
To close the governing equations, an equation of states (EOS) must be defined. For an ideal gas, the pressure is deter-

mined from

p = (γ − 1)ρe, (2)

where γ is the ratio of specific heats, ρ is mass density and e internal energy density. For water-like fluids, we use Tait’s 
equation to provide a relation,

p = B[( ρ

ρ0
)γ − 1] + p0, (3)

where ρ0 and p0 are the density and pressure of the liquid at the reference condition, respectively, and B is a parameter. 
For two-phase flows the above governing equations are solved by a conservative-sharp interface method [17,22], where the 
underlying conservative scheme on a Cartesian grid is modified by considering computational cells cut by the interface. 
These methods are not only able to cope with violent compressible flows involving strong interface interactions, but also 
can handle incompressible flow with large density and viscosity ratios and surface tension effects.

For tracking the phase-interface we employ the level-set function, ϕ , which describes the signed distance from the 
interface to each cell center [6]. The zero-level-set, ϕ = 0, represents the interface �. The entire domain is divided into two 
sub-domains, for two fluids indicated by different signs of the level-set function. The level-set field is propagated by

∂ϕ

∂t
+ u · ∇ϕ = 0, (4)

where u represents the evolution velocity of the level-set [17]. In practice, the level-set is updated only in a narrow band 
near the interface, which usually includes nearest cell-layers within |ϕ| < 4h. The entire level-set field is re-initialized at 
every time-step by the following equation [6]

∂ϕ

∂τ
+ sgn (ϕ) (|∇ϕ| − 1) = 0, (5)

in order to maintain the signed-distance property of the level-set, where τ is a fictitious time. To update the flow field, the 
governing equations of each fluid are discretized by a 5th-order WENO-LLF scheme [19] and a 2nd-order TVD Runge–Kutta 
time integration [27]. Advection and reinitialization of the level-set field are discretized, respectively, by a 5th-order WENO 
upwind scheme and a 1st-order upwind scheme [6]. The time-step is set according to Ref. [31],


t = CFL · min

(
h

|u| + c
,
ρh2

μ
,

√
ρ

8πσ
h

3
2

)
, (6)

where c is the sound speed. We set CFL = 0.6 for all our simulations. In addition, a wavelet-based adaptive multi-resolution 
algorithm is adopted for improving computational efficiency [9]. Due to the application of a storage-and-operation-splitting 
pyramid data structure, this method is able to achieve high memory and computational efficiency. All computations 
have been conducted on a workstation with 4 quad-core Intel Xeon Processor E5620 processors (12M Cache, 2.4 GHz) 
with 24 GB of RAM. The Intel Threading Building Blocks (TBB) library [4] is used to map logical tasks to physical 
threads.

3. Scale separation

Non-resolved interface segments are generated during the interface evolution, and are prone to introduce numerical 
fluctuations or even numerical instabilities, especially for high-resolution simulations of inviscid compressible multi-phase 
flow problems using the sharp-interface model [10]. They can also lead to unphysical results due to scale-dependent dy-
namics [18]. An effective approach is to separate them from the resolved scales and treat them differently. For example, in 
Ref. [10], the well-resolved interface is handled by a sharp interface method, non-resolved interface segments are converted 
into Lagrangian particles, or they are merged into the opposite phase to maintain mass conservation, or they are deleted.
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Fig. 1. Schematic of identifying the non-resolved interface segments in one dimension: (a) initial interface level set field and cut cells (block solid dots); 
(b) corresponding auxiliary cut cells crossed by �+ε (red solid dots) and by �−ε (blue solid dots). The tick marks indicate the cell faces, and the green 
mark the non-resolved interface segment. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)

Similarly to Han et al. [10], the present method applies scale separation as an additional operation just before the 
reinitialization step of the underlying level set method. Note that the scale-separation operation is independent of the 
specific choice of the numerical schemes for level-set advection and reinitialization. Therefore, one can use scale-separation 
also with other level-set schemes, such as those in Enright et al. [5].

3.1. Identifying non-resolved structures

Non-resolved interface segments often manifest themselves as drops and thin filaments with a characteristic length scale 
of about the grid size h. In the level set field they share a common property, that is the lack of topological consistency 
among the level-sets near the interface. Such a property corresponds to the large discrepancies induced by the non-resolved 
interface segments when the reinitialization operations are subjected to a small constant shift of the level set field [10].

Based on this criterion we now develop a new identification method, first in one dimension and then in two dimensions. 
Assuming a distribution of the level set field on cells near the interface, as sketched in Fig. 1(a), cut cells are those that 
contain segments of the zero level-set, i.e. A, B, C and D . Other than shifting the entire level-set field by ε as in Ref. [10], 
we use two auxiliary level-sets, ϕ = +ε and ϕ = −ε, as shown in Fig. 1(b). As pointed out in Ref. [10], all small interface 
segments with length scale less than h should be removed, so we also choose ε = 0.6h. We can define two types of cut cells 
associated with the auxiliary level-sets, the positive auxiliary cut cells A+ε, B+ε, C+ε, D+ε containing segments of ϕ = +ε
and the negative auxiliary cut cells A−ε, D−ε containing segments of ϕ = −ε, as shown in Fig. 1(b).

The cut cells associated with non-resolved interface segments can be identified by checking the auxiliary cut cells in its 
neighborhood, i.e. the topological consistency between nearby level sets. For a cut cell associated with resolved interface 
segment, such as Cell A or D in Fig. 1, there are both positive and negative auxiliary cut cells as the nearest neighbors, i.e. 
topologically consistent between nearby level sets. For a cut cell associated with a non-resolved interface segment, such as 
Cell B or C, however, there is only either a positive or negative auxiliary cut cell as its nearest neighbor, i.e. topologically 
inconsistent between nearby level sets. Therefore, the cut cells containing the interface segment marked by a green circle 
in Fig. 1(b) are uniquely identified.

The extension of such an identification algorithm to two dimensions is illustrated in Fig. 2. First, let S be defined as cut 
cells crossed by the zero level-set �0,

S = {Xi, j|∃ϕi±1/2, j±1/2 > 0 ∧ ∃ϕi±1/2, j±1/2 < 0}, (7)

where ϕi±1/2, j±1/2 is the level set value at the cell corner approximated by

ϕi+1/2, j+1/2 = 1

4

(
ϕi, j + ϕi+1, j + ϕi, j+1 + ϕi+1, j+1

)
ϕi+1/2, j−1/2 = 1

4

(
ϕi, j + ϕi+1, j + ϕi, j−1 + ϕi+1, j−1

)
ϕi−1/2, j+1/2 = 1

4

(
ϕi, j + ϕi−1, j + ϕi, j+1 + ϕi−1, j+1

)
ϕi−1/2, j−1/2 = 1

4

(
ϕi, j + ϕi−1, j + ϕi, j−1 + ϕi−1, j−1

)
. (8)

In Fig. 2(a), S is indicated by cells with back solid dots. Now we define P containing auxiliary cut cells crossed by �+ε

and N by �−ε ,

P ={Xi, j|∃ϕi±1/2, j±1/2 − ε > 0 ∧ ∃ϕi±1/2, j±1/2 − ε < 0}
N ={Xi, j|∃ϕi±1/2, j±1/2 + ε > 0 ∧ ∃ϕi±1/2, j±1/2 + ε < 0}, (9)
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Fig. 2. Identification of the non-resolved interface segments in two dimensions: (a) the initial interface �0 (black solid line) and corresponding cut cells 
(black solid dots); (b) the auxiliary level-sets �+ε (red dash line) and �−ε (blue dash line), and corresponding auxiliary cut cells crossed by �+ε (red solid 
dots) and by �−ε (blue solid dots). Cut cells whose neighbors contain no red solid dots are indicated by a red star, and Cut cells whose neighbors contain 
no blue solid dots are indicated by a blue star. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

Fig. 3. Interface reconstruction in one and two dimensions: (a) level-set values for the cut cells B and C are calculated from auxiliary cut cell A−ε , 
(b) level-set values of the cells marked with red stars are calculated from �+ε and level-set values of the cells marked with blue stars are calculated from 
�−ε . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where ε is 0.75h as in Ref. [10]. P and N are indicated with red solid dots and blue solid dots in Fig. 2(b), respectively. 
Now we can identify a cut cell containing a non-resolved interface segment when its neighbors contain either positive or 
negative auxiliary cells only

S1 = {Xi, j|(Xi, j ∈ S ∧ ∀i0, j0 ∈ {−1,0,1}), Xi+i0, j+ j0 /∈ P ∨ Xi+i0, j+ j0 /∈ N}. (10)

Finally, the cut cells associated with resolved interface segments are defined as

S2 = S \ S1. (11)

3.2. Interface reconstruction

After the cut cells containing non-resolved interface segments are identified, one should assign reasonable level-set 
values for these cells to reconstruct a resolved interface in the corresponding region. In Ref. [12], the level-set value of 
these cells are simply set as the original level-set values with opposite sign. Such a procedure may introduce artificial 
disturbances to the interface. We avoid this problem by estimating the level-set value of non-resolved cut cells directly 
from a re-distancing method. First, the set S1 is split into two disjoint subsets, S1�P and S1�N . The cut cells are in set 
S1�P ,

S1�P = {Xi, j|Xi, j ∈ S1 ∧ (∀(i0, j0) ∈ {−1,0,1}, Xi+i0, j+ j0 /∈ P )}, (12)

if their nearest neighbors do not contain any cells in P . The cut cells are in set S1�N ,

S1�N = {Xi, j|Xi, j ∈ S1 ∧ (∀(i0, j0) ∈ {−1,0,1}, Xi+i0, j+ j0 /∈ N)}, (13)

if their nearest neighbors do not contain any cells in N . The level set values for cut cells in S1�P and S1�N are assigned 
from an estimate of their distance to �+ε and �−ε , respectively. In one dimension, as shown in Fig. 3(a), Cells B and C are 
in set S1�N and their the level-set values can be estimated from the minimum distance to Cell A−ε and to D−ε . For the 
setup in Fig. 3(a), we can obtain corrected level set values ϕB = iB − i A−ε + ϕA−ε and ϕC = iC − i A−ε + ϕA−ε , where iB , iC

and i A−ε are the indexes of Cells B , C and A−ε , respectively. In two dimensions, the level-set value of cut cells that contain 
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non-resolved interface segments can be estimated from the minimum distance to the corresponding auxiliary level-sets. To 
find the minimum distance we define a search region as 9 × 9 grid cells around the considered cut cell. Assuming that the 
considered cut cell is in S1�P , the distance from this cut cell to the intersection point between the auxiliary level set �+ε

and the ray cast from the auxiliary cut cell along the normal direction is calculated by

d =
√

(is1 − ip + (ϕ − ε)Nx)2 + (( js1 − jp + (ϕ − ε)N y)2, (14)

where (is1, js1) and (ip, jp) are the indexes of the considered cut cell in S1�P and the auxiliary cut cell in P , respectively. 
(Nx, N y) is the unit normal vector and ϕ is the level-set value of the auxiliary cut cell (ip, jp). The level-set value of the 
considered cut cell results as

ϕis, js = −(dmin − ε), (15)

where dmin is the minimum distance obtained by Eq. (14) for the respective research regions. If there is no auxiliary cut cell 
within the search region, it indicates that the non-resolved structure is outside of the narrow band beside the well-resolved 
interface. Note that for a cut cell in S1�N the level set is constructed in the same way, but with −ε in Eq. (14) and negative 
sign on the right side of Eq. (15). By correcting the level set values of all cells in S1, and a well-resolved interface, indicated 
by a black solid line in Fig. 3(b), is obtained.

The overall procedure of the present method can be summarized as follows:

1. Calculate the level-set values at the cell corners for the entire field from Eq. (8), and identify cells cut by the zero 
level-set from Eq. (7).

2. Generate two sets of auxiliary cut cells with level set value ϕ = ±ε from Eq. (9).
3. Identify whether the cut cells contain non-resolved interface segments from Eq. (10), and classify them into two subsets 

S1�P and S1�N from Eq. (12) and (13), respectively.
4. Calculate the distance from cut cells that are in S1�P or in S1�N to the corresponding auxiliary level-sets from (14), 

and correct their level-set values by Eq. (15).

Note that the present method can be extended directly to three dimensions. Also note that, since the present method 
does not apply level-set shifting and re-initialization of the entire level-set field as in Ref. [10], the computational efficiency 
is increased considerably.

4. Numerical validation and examples

The following numerical examples are considered to illustrate the capability of the present method to handle interface-
scale separation. First, a canonical advection test of a circle in a single-vortex flow is carried out to examine the smoothing 
effect of the current approach on the interface as well as computational cost. Subsequently, two flow configurations serve 
to study the fully coupled problem: one is an underwater explosion problem with relatively simple interface evolution; the 
other is a shock–bubble interaction problem with complex interface evolution. Finally, we conduct a numerical simulation of 
liquid filament breakup to verify mesh convergence and physical sensibility of the present method. Here, the non-resolved 
interface segments are simply deleted after they are separated from the main interface. One can refer Han et al. [10] for 
alternative treatments.

4.1. Two-dimensional single-vortex flow

We consider a pure interface-transport case, where the interface deforms by a single-vortex flow [1]. A circle of radius 
R0 = 0.15 is located at (0.5, 0.75) in a unit square computational domain, as shown in Fig. 4 at the initial time. To compare 
the results with those in Ref. [10], the same grid resolution is set as 512 × 512. The velocity field is given by

u = 2 sin2(πx) sin(π y) cos(π y)

v = −2 sin2(π y) sin(πx) cos(πx). (16)

Under this solenoidal velocity field, the circular interface is stretched into a long filament around the vortex center.
Fig. 4 compares the evolution of the interface to that obtained by the constrained stimulus–response procedure of 

Ref. [10] (denoted as CSRP) and the level-set method without scale separation. In the early stage, since the interface is 
well-resolved, the three results coincide. After the interface has deformed, a thin filament appears at the cusp. The scale 
separation procedure is active when the length scale of the interface structure is less than the threshold (ε). As shown in 
Fig. 4, CSRP removes more interface segments or area at the cusp than the present method, since the level set values of 
some cells containing well-resolved interface segments are also updated by the re-initialization [10]. The area loss can be 
measured by

A

A0
= �i=N

i=0 αt
i

�i=N
i=0 α0

i

. (17)
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Fig. 4. Single-vortex flow: the evolution of interface deformation (first and second row) without scale separation (black line) and with CSRP (red line), 
and the method in this paper (green line). The third row shows zooms of the interfaces as indicated at times t = 3, 4 and 5. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Single-vortex flow: variation of the total area.

where A denotes the total area of the disk and αi is the cell area on cell i, and the superscript 0 represents the initial 
condition. The results given in Fig. 5 show that the present method achieves less area loss than the CSRP. Furthermore, 
our experiment shows that the present method achieves a speed up factor of 2.3 compared to the CSRP method for the 
scale-separation operations.

Note that, since the level-set method generally lacks area/volume conservation, the area/volume loss is inevitable even 
when the flow is incompressible and the interface is well resolved. However, if the level-set method is coupled with the 
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Fig. 6. Underwater explosion: Schlieren-type image for density (the left half) and interface position (the right half) at different time instances.

conservative sharp-interface method (see Ref. [21] and Sec. 4.4), area/volume conservation can be achieved due to the 
inherent mass-conservation property.

4.2. Underwater explosion

To demonstrate that the present method has no effect on the well-resolved interface structure, we carry out a two-
dimensional simulation of an underwater-explosion problem. This case has been investigated by Hu et al. [16], Han et al. 
[9,10], and Shyue [28]. For this case, the non-dimensional initial condition is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ = 1.2 × 10−3, u = 0, v = 0, p = 1, γ = 1.4 air

ρ = 1.25, u = 0, v = 0, p = 1, γ = 1.4 gaseous bubble

ρ = 1, u = 0, v = 0, p = 1, p0 = 1, B = 3310, γ = 7.15, water

ϕ =
{

1.5 − y y > 1.35

−0.12 + √
(x − 2)2 + (y − 1.2)2 y ≤ 1.35

level-set

. (18)

The dimensional references are given by the state of water at 1 atmosphere and length scale 1 m. The level set ϕ > 0 rep-
resents water described by a Tait’s equation of state, and ϕ < 0 represents air and the gaseous explosive products described 
by an ideal-gas equation of state. An underwater gaseous bubble of radius 0.12 is located at (2, 1.2) in a rectangular domain 
4 × 4, and the air–water interface is at y = 1.5. A solid-wall boundary is applied at the bottom and an outflow condition 
with zero gradient is applied at the other boundaries. The computational domain is discretized by 1024 × 1024 grid points, 
which is the same as in Ref. [9].

Fig. 6 shows the interface evolution as well as Schlieren-type images of density at several different time instances. 
The results are identical to those in Ref. [9]. As shown in Fig. 6, one can observe that, since the interface is smooth and 
well-resolved, no interface segments are removed by the present scale separation method. Compared to the CSRP method, 
our results show that the present method achieves a speed up factor of 2.5.

4.3. Shock–bubble interaction

To validate the present method with respect to handling complex interfaces, we consider a shock–bubble interaction 
problem. This case involves a weak shock wave of Mach 1.22 in air impacting a cylindrical bubble of Refrigerant-22 (R22), 
which is a canonical test for multi-phase numerical methods [9,24,26,29]. The corresponding experiments were carried out 
by Haas and Sturtevant [8]. With dimensional references given by the state of air at 1 atmosphere and 1 m, the initial 
condition is
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Fig. 7. Shock–bubble interaction: Schlieren-type images of density (the top half) and interface position (the bottom half) at different time instances.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ = 1, u = 0, v = 0, p = 1, γ = 1.4 pre-shocked air

ρ = 1.3764, u = −0.3947, v = 0, p = 1.5698, γ = 1.4, post-shocked air

ρ = 3.154, u = 0, v = 0, p = 1.0, γ = 1.249, R22 bubble

ϕ = −0.025 + √
(x − 0.245)2 + y2 level-set

. (19)

The level set ϕ > 0 represents air and ϕ < 0 represents R22 respectively. Both are described by ideal-gas equation of state. 
A R22 bubble of radius 0.25 is located at (0.245, 0.0445) in a rectangular domain 0.445 × 0.089. An incident shock wave, 
initially at x = 0.295, travels from right to left and interacts with the R22 bubble. To compare the current results with 
those in Ref. [10], the computational domain is discretized by the same grid with 8192 × 2048 points, where 1150 cells are 
distributed along the bubble diameter.

Fig. 7 shows the Schlieren-type images of density gradient |
ρ| at the several time instants. It can be observed that 
the results are in good agreement with previous numerical work of Refs. [9,24,26,29] and the experiment [8]. In the early 
stage, the interface is well-resolved as same as in Ref. [9,10]. Due to the vorticity induced by incident shock impact, the 
interface begins to roll up and produces small filaments, as shown in Fig. 7 at t = 187,247 μs. As time moves on, the 
filaments become thin and breakup into droplets. When these filaments are non-resolved by the current resolution grids, 
they are removed by the scale separation procedure. Compared with the results in Fig. 8 of Ref. [10], more droplets and thin 
filaments are preserved at the late stage, e.g. t = 318,417 by the present method. Furthermore, the present method achieves 
a speed up factor of 2.7. Note that, when the scale separation is switched off, numerical instability prevents the simulation 
from continuing after small filaments and droplets have been generated.

4.4. Liquid-filament breakup under gravity

To verify the ability of the present method on capturing the behavior near interface singularity, we consider a case 
of liquid-filament breakup under gravity and capillary effects. This problem has been studied both experimentally [32,3]
and numerically [25,30,10]. The set-up of the simulation is the same as in Ref. [25] but the surface-tension coefficient is 
increased to σ = 225 to reduce computation cost. As pointed out by Castrejon-Pita et al. [3], the effect of air around the 
filament can be neglected.

A conservative sharp interface method for incompressible multiphase flows [22] is applied. The surface tension term as

and gravity term ρg are added in the momentum equation of Eq. (1). The surface-tension force is given by

as = σκδnN (20)

where σ , κ , N are surface-tension coefficient, curvature and normal direction of the interface, respectively. δn is a Dirac 
delta function defined in the normal direction of the interface. The initial condition for the axisymmetric liquid drop is 
given by{

ρ = 103, u = 0, v = 0, p0 = 104, B = 105, γ = 7.15, Liquid

ϕ = −0.25 + √
x2 + (z − 3.0)2 level-set

. (21)
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Fig. 8. Liquid-filament breakup: evolution of the interface.

Fig. 9. Liquid-filament breakup at different resolutions: (a) evolution of the neck diameter hmin with time t; (b) evolution of hmin with the dimensionless 
time τ and the potential flow scaling law hmin ∼ τ 2/3.

The level set ϕ < 0 represents liquid drop described by a Tait’s equation of state, and ϕ < 0 represents air which is neglected 
by the free surface model. The drop radius is 0.25 m with its center located at (0.0, 3.1) in a axisymmetric domain of 
0.5 × 3.0, g 25 m/s2. The cap initially rests on the upper wetting wall due to surface tension. To handle the moving contact 
line, we adopt the effective curvature boundary condition at the wall [21]. The static contact angle is taken as θ = 25◦ . In 
order to investigate grid convergence, the computational domain is discretized by increasing the resolution from 256 × 1536
to 2048 × 12,288.

Fig. 8 shows the interface at several time instants of the simulation with the resolution 1024 × 6144. As reported in 
Ref. [25], the liquid cap is quickly distorted but still is attached to the wall due to surface tension (t = 0.4). Subsequently, 
the drop deforms and a filament appears (t = 0.45, 0.5). When the thickness of the filament neck reduces to the size of 
about one cell, the scale separation method takes effect and the filament breaks up into two parts (t = 0.55). While the 
lower part is falling down and recovers to a circular shape, the upper part develops the typical shape for second breakup 
due to the capillary waves acting on the surface of the filament (t = 0.6, 0.65).

The evolution of the neck diameter is shown in Fig. 9. Since the Ohnesorge number Oh = μ/
√

ρR3σ � 1 in this case, 
it is expected that the dynamics follows potential-flow theory when hmin becomes sufficiently small, i.e. hmin ∼ τ 2/3 [20]. 
hmin is the neck diameter normalized with the drop radius R . τ is defined as τ = t − tb , where t is time, and tb is the 
breakup time non-dimensionalized by the capillary time, tc = √

ρR3/σ . Fig. 9(a) illustrates the breakup times with different 
resolution, which implies about second order convergence with mesh refinement. Furthermore, the results recover the 
expected potential-flow scaling law, as shown in Fig. 9.



420 J. Luo et al. / Journal of Computational Physics 308 (2016) 411–420

5. Concluding remarks

We have developed a new formulation for scale separation to improve the computational efficiency for multi-scale sharp 
interface modeling of multi-phase flows. Based on the observation that there is lack of topological consistency between the 
auxiliary and zero level-sets for the non-resolved interface segments, the cut cell associated with non-resolved interface 
segments are identified explicitly by checking the auxiliary cut cells in its neighborhood. Non-resolved structures are re-
moved and the corresponding level-set field is reconstructed by a localized re-distancing method. Several typical numerical 
examples are simulated to validate the performance of the present scale separation method. The results show that the cur-
rent approach is able to handle complex interface evolution. Compared to Han et al. [10], the present method decreases 
the over-smoothing effect of the original method and achieves a considerable computational speed up. Furthermore, the 
simulations of the filament-breakup case on with increasing grid resolutions verifies the physical consistency of the present 
scale-separation method.
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