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Motivation

Can we use (continuum) models from solid mechanics to
make/assist medical diagnosis?

Governing equation: V- (FS)=0, B
Boundary conditions: u =ug, 0B
Congtitutivelaw: S = S(C; W)
(In-compressibility:  J =1)

Model M

— noisy displacements (velocities etc) U

!
W=7

Inclusio

“--_-’

Bio material
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Probabilistic approach

Bayes’ rule:
likelihood prior
(a|w, M) p(W|M)
A ujw,
p( W |0, M)="00T
N p(GM)
material par. data model
evidence

Goal: Find posterior density p(W|d, M)
@ The posterior quantifies how likely a W is to be the solution
@ Provides a generalization over deterministic optimization strategies

@ Evidence p((|.M) quantifies how likely is for the data to have arisen from
our model M
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likelihood prior

(G|w, M) p(W|M)

~ ujw,

. p(G|M)
material par. data model ——

evidence

@ computational efficiency
@ regularization (i.e. prior specification)
@ dimensionality reduction




Variational Bayes

Variational inference attempts to approximate the posterior
p(W|d, M) with a density g*(W) (belonging to an appropriate
family of distributions Q) such that (ssno 200s):

(W) = arg mi |0(\l'|u M) 4
q"(¥) = arg min KL(q(W) [p(W[d, M)) /q W) log P2
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Variational Bayes

likelihood prior
(ajw, M) p(W|M)
L~ uw,
p( W |0, M)="EET
NS p(GM)
material par. data model ——

evidence

@ Minimizing the Kullback-Leibler divergence is equivalent to maximizing
F(g, M):

logp(G|M) =log [ p(G|w, M) p(W|M)dw
> [q(w % dw (Jensen’s inequality)
= F(q, M)

where:

F(d, M) = log p(G| M) + KL(q(W)||p(W[d, M)) \
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Variational Bayes

@ If <. > implies expectation with q(W):
F(a, M) = [a(w)log PEEHREN dw
=< logp(G|Ww, M) >+ < logp(W¥|M) > — <logq >
@ Likelihood for data G € R™
0 = u(W)+Z - p(a|w, M) o 72 exp{~5]d — u(W)*}
where:

@ u(W): model M-predicted displacements for given material properties W
@ Z: observation noise, e.g. Z ~ N'(0,77)
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Variational Bayes

@ If <. > implies expectation with q(W):

F(a,M) = [ (W) log PEFLREEA dw
= < logp((|W, M) >+ < logp(W|M) > — < logq >

difficult
@ Likelihood for data G € R™
0 =u(W)+Z — p(d]w, M) o /2 exp{—%m —u(w))2}
where:

@ u(W): model M-predicted displacements for given material properties W
@ Z: observation noise, e.g. Z ~ N(0,77)
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Variational Bayes

@ Assumption 1: One possible solution is to linearize u(W) using G = 2%

using adjoint PDE (Chappelle et al 2009):
u(W) =~ u(Wo) + G(V — W)
@ As aresult:

logp(Gjw, M) = —Z|0 —u(W)?
= —2(lu(W) — u(Wo)[> — 2(u(W) — u(Wo)) G(W — W)
+(W - W) G G(W — Wwy))

@ Assumption 2: Family of approximating distributions q € Q are
multivariate Gaussians N(u, S).
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Variational Bayes

Algorithm

manF(qu) =< logp(i|W, M) > + < logp(¥|M) > — < logq >
s

0. Suppose a prior p(W|M) = N (g, So). Initialize q(V) = M(w, S)
. Set Wy = p and linearize u(W) ~ u(Wo) + G(W — Wy).
. Update for q(W):

N

s t=7G"G+s™?
ST =7G" (0 — u(Wo)) + So ko

3. Goto 1. until convergence
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Variational Bayes
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Figure: MCMC: 20,000 forward runs vs Variational Bayes: 50 forward runs
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Regularization & Dimensionality reduction

@ What should the prior be for an undetermined problem i.e. when data
G € R" and unknowns W € RN, N >> n:

1) Smoothness-enforcing prior:
p(WIM) = N(po, So)

where the covariance Sg enforces some smoothness/correlation.
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Regularization & Dimensionality reduction

@ What should the prior be for an undetermined problem i.e. when data
G € R" and unknowns W € RN, N >> n:

1) Smoothness-enforcing prior:
p(WIM) = N(po, So)

where the covariance Sg enforces some smoothness/correlation.

@ How big/small should that correlation be?
@ Should | be using a different norm?
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Regularization & Dimensionality reduction

@ What should the prior be for an undetermined problem i.e. when data
G € R" and unknowns W € RN, N >> n:

1) Smoothness-enforcing prior:
p(WIM) = N(po, So)

where the covariance Sg enforces some smoothness/correlation.

@ How big/small should that correlation be?
@ Should I be using a different norm?

2) Introduce hyper-parameter(s) that penalize the jumps between neighboring
V; which leads to (Bardsley 2013):

p(WIM) exp{—g\llTLlll}, L : Laplacian of graph
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Regularization & Dimensionality reduction

@ What should the prior be for an undetermined problem i.e. when data
G € R" and unknowns W € RN, N >> n:

1) Smoothness-enforcing prior:
p(WIM) = N(po, So)

where the covariance Sg enforces some smoothness/correlation.

@ How big/small should that correlation be?
@ Should I be using a different norm?

2) Introduce hyper-parameter(s) that penalize the jumps between neighboring
V; which leads to (Bardsley 2013):

p(WIM) exp{—g\llTLlll}, L : Laplacian of graph

@ How big/small should the neighborhoods be?
@ Must also infer the hyperparameters (same or different for each jump).
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Regularization & Dimensionality reduction

@ Can one infer ¥ € RN on a (much lower) dimensional subspace?
v = + W 6

~— K ;N

Nx1 Nx1 Nxk kx1

k << N

® The basis vectors W = [w, w5, ...,w] should depend on the data and
the model M.
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Regularization & Dimensionality reduction

@ Can one infer ¥ € RN on a (much lower) dimensional subspace?
v = + W 6

~— K ;N

Nx1 Nx1 Nxk kx1

k << N

® The basis vectors W = [w, w5, ...,w] should depend on the data and
the model M.

@ Given data ( and a forward model M, the best (u, W) should maximize
the evidence:

p(GIM) = p(Gp, W)
@ The advantage of the Variational Bayesian formulation adopted is that we
also obtain an estimate (lower bound) on the evidence:

p(GIM) =~ F(a(6), p, W)
=< logp(G|0, p, W) > + < logp(0|M) > — < logq(0) >
=—<Zli-u(p+We)P?>+.....

where the expectation < . > is with respect to the approximate posterior
q(0) of the reduced coordinates 6
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Regularization & Dimensionality reduction

W 6, k<<N
—~ A =~

How can one infer the effective dimensionality k?
@ Hierarchical heavy-tailed prior:

— Giaussian prior
—— Hierarchical prion

|
p(Wjla)) = N(0,a lyxn) -l
p(a) = Gamma(a, 3), j=1,...,k 1I

@ Automatic Relevance Determination priors (ARD, MacKay 1994)):
a; — oo then w; — O (i.e. basis vector j is inactive)

@ Closely related to LASSO (Tibshirani 1996), Compressive Sensing
(Candés et al 2006, Donoho et al 2006)
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Variational Expectation-Maximization

max F(q(0,a,7), u, W) =< Zlogr >q-) — < %[0 — u(p+Wwae)? >q(,) (likelihood
+ < logp(8) >qe) + < logp(W |a)p(a) >q) (priors)
— < logq(8,a, ) >q@,a,n)

@ Assumption 1: Mean-field approximation q(6, a, 7) ~ q(0) q(7)q(a) (Wainwright
2008)

@ Assumption 2: Linearize u(p +W80) ~ u(u) + GWE

Algorithm O(N): p, W 7, 1 W)
0. Initialize g, W

1. Repeat until convergence:

@ Fix p, W and update q(0) q(7),q(a) I
@ FixW,q(0) q(7),q(a) and update p —J
@ Fix 1, q(0) q(7),q(a) and update W

q(e,a,r)
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Numerical lllustration

Example:
@ large deformation, incompressible non-linear elasticity

@ Mooney-Rivlin constitutive law: ¢ = c;(l; — 3) + 9{ I, —
@ Synthetic data from fine (200 x 200) mesh, contaminated SNR = 5 x 10°

@ dim(W) = N = 25000, reduced-dimension k = 16

50 8.5
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7
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10 20 30 40 50

Figure: Ground truth: Log of material parameter c,
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Numerical lllustration

Example:
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Figure: (Left) Without (Right) With updating W
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Figure: Evolution of variational objective 7
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Figure: Evolution of most important (i.e. largest < 6,-2 >) basis vector in W




Conclusion & Extensions

@ Variational Bayesian methods offer comparable accuracy and much
greater efficiency as compared to sampling (MCMC/SMC) methods

@ By approximating the log-evidence one can obtain automatic
regularization and enable significant dimensionality reduction.
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Conclusion & Extensions

@ Variational Bayesian methods offer comparable accuracy and much
greater efficiency as compared to sampling (MCMC/SMC) methods

@ By approximating the log-evidence one can obtain automatic
regularization and enable significant dimensionality reduction.
@ Adaptivity:
@ incorporate data sequentially
@ utilize a hierarchy of forward models

@ experimental design i.e. determine measurement locations or excitations
that will maximize information intake
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Conclusion & Extensions

@ Variational Bayesian methods offer comparable accuracy and much
greater efficiency as compared to sampling (MCMC/SMC) methods
@ By approximating the log-evidence one can obtain automatic
regularization and enable significant dimensionality reduction.
@ Adaptivity:
@ incorporate data sequentially
@ utilize a hierarchy of forward models
@ experimental design i.e. determine measurement locations or excitations
that will maximize information intake
@ Accuracy:
@ Mixture models: Consider a mixture of M reduced-representations

‘u‘m = Hm + Wm0m7
= p(W[a) = S N (W5 gy + W g, , WmSon, W)

@ this can capture non-Gaussian projections
@ lead to greater dimensionality reduction
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