Variational Bayesian formulations with sparsity-enforcing priors for model calibration

$\boldsymbol{F} \boldsymbol{K}$
Fachgebiet für Kontinuums
Mechanik
I. Franck, P.S. Koutsourelakis
Continuum Mechanics Group Technical University of Munich
p.s.koutsourelakis@tum.de

WCCM XI
Barcelona, July 232014

Motivation

Can we use (continuum) models from solid mechanics to make/assist medical diagnosis?

\longrightarrow noisy displacements (velocities etc) $\hat{\mathbf{u}}$

$$
\Psi=?
$$

Probabilistic approach

Bayes' rule:

$$
p(\underbrace{\boldsymbol{\Psi}}_{\text {material par. }} \mid \underbrace{\hat{u}}_{\text {data }}, \underbrace{\mathcal{M}}_{\text {model }})=\frac{\overbrace{p(\hat{\boldsymbol{u}} \mid \boldsymbol{\Psi}, \mathcal{M})}^{\text {lielihood }} \overbrace{\underbrace{p(\hat{\boldsymbol{U}} \mid \mathcal{M})}_{\text {evidence }}}^{\text {prior }}}{\underbrace{p(\hat{M})}}
$$

Goal: Find posterior density $p(\Psi \mid \hat{\mathbf{u}}, \mathcal{M})$

- The posterior quantifies how likely a $\boldsymbol{\Psi}$ is to be the solution
- Provides a generalization over deterministic optimization strategies
- Evidence $p(\hat{\boldsymbol{u}} \mid \mathcal{M})$ quantifies how likely is for the data to have arisen from our model \mathcal{M}

Probabilistic approach

Bayes' rule:

$$
p(\underbrace{\boldsymbol{\Psi}}_{\text {material par. }} \mid \underbrace{\hat{\boldsymbol{u}}}_{\text {data }}, \underbrace{\mathcal{M}}_{\text {model }})=\frac{\overbrace{p(\hat{\boldsymbol{u}} \mid \boldsymbol{\Psi}, \mathcal{M})}^{\text {likelihood }} \overbrace{p(\boldsymbol{\Psi} \mid \mathcal{M})}^{\text {prior }}}{\underbrace{p(\hat{\boldsymbol{u} \mid \mathcal{M})}}_{\text {evidence }}}
$$

Challenges:

- computational efficiency
- regularization (i.e. prior specification)
- dimensionality reduction

Variational Bayes

Variational inference attempts to approximate the posterior $p(\boldsymbol{\Psi} \mid \hat{\boldsymbol{u}}, \mathcal{M})$ with a density $q^{*}(\boldsymbol{\Psi})$ (belonging to an appropriate family of distributions \mathcal{Q}) such that (Bsinop 2006):

$$
q^{*}(\boldsymbol{\Psi})=\arg \min _{q \in \mathcal{Q}} K L(q(\boldsymbol{\Psi}) \| p(\boldsymbol{\Psi} \mid \hat{\boldsymbol{u}}, \mathcal{M}))=-\int q(\boldsymbol{\Psi}) \log \frac{p(\boldsymbol{\Psi} \mid \hat{\mathbf{u}}, \mathcal{M})}{q(\boldsymbol{\Psi})} d \boldsymbol{\Psi}
$$

Variational Bayes

$$
p(\underbrace{\boldsymbol{\Psi}}_{\text {material par. }} \mid \underbrace{\hat{\mathbf{u}}}_{\text {data }}, \underbrace{\mathcal{M}}_{\text {model }})=\frac{\overbrace{p(\hat{\boldsymbol{u}} \mid \boldsymbol{\Psi}, \mathcal{M})}^{\text {likelihood }} \overbrace{p(\boldsymbol{\Psi} \mid \mathcal{M})}^{\text {prior }}}{\underbrace{p(\hat{\boldsymbol{u} \mid \mathcal{M})}}_{\text {evidence }}}
$$

- Minimizing the Kullback-Leibler divergence is equivalent to maximizing $\mathcal{F}(q, \mathcal{M})$:

$$
\begin{aligned}
\log p(\hat{\boldsymbol{u}} \mid \mathcal{M}) & =\log \int p(\hat{\boldsymbol{u}} \mid \boldsymbol{\Psi}, \mathcal{M}) p(\boldsymbol{\Psi} \mid \mathcal{M}) d \boldsymbol{\Psi} \\
& \geq \int q(\boldsymbol{\Psi}) \frac{p(\hat{\boldsymbol{u}} \mid \boldsymbol{\Psi}, \mathcal{M}) p(\boldsymbol{\Psi} \mid \mathcal{M})}{q(\boldsymbol{\Psi})} d \boldsymbol{\Psi} \quad \text { (Jensen's inequality) } \\
& =\mathcal{F}(q, \mathcal{M})
\end{aligned}
$$

where:

$$
\mathcal{F}(q, \mathcal{M})=\log p(\hat{\boldsymbol{u}} \mid \mathcal{M})+K L(q(\boldsymbol{\Psi}) \| p(\boldsymbol{\Psi} \mid \hat{\boldsymbol{u}}, \mathcal{M}))
$$

Variational Bayes

- If $<$. $>$ implies expectation with $q(\boldsymbol{\Psi})$:

$$
\begin{aligned}
\mathcal{F}(q, \mathcal{M}) & =\int q(\boldsymbol{\Psi}) \log \frac{p(\hat{\boldsymbol{u}} \mid \boldsymbol{\Psi}, \mathcal{M}) p(\boldsymbol{\Psi} \mid \mathcal{M})}{q(\boldsymbol{\Psi})} d \boldsymbol{\Psi} \\
& =<\log p(\hat{\boldsymbol{u}} \mid \boldsymbol{\Psi}, \mathcal{M})>+<\log p(\boldsymbol{\Psi} \mid \mathcal{M})>-<\log q>
\end{aligned}
$$

- Likelihood for data $\hat{\mathbf{u}} \in \mathbb{R}^{n}$:

$$
\hat{\mathbf{u}}=\boldsymbol{u}(\boldsymbol{\Psi})+\boldsymbol{Z} \rightarrow p(\hat{\boldsymbol{u}} \mid \boldsymbol{\Psi}, \mathcal{M}) \propto \tau^{n / 2} \exp \left\{-\frac{\tau}{2}|\hat{\boldsymbol{u}}-\boldsymbol{u}(\boldsymbol{\Psi})|^{2}\right\}
$$

where:

- $\boldsymbol{u}(\boldsymbol{\Psi})$: model \boldsymbol{M}-predicted displacements for given material properties $\boldsymbol{\Psi}$
- \boldsymbol{Z} : observation noise, e.g. $\boldsymbol{Z} \sim \mathcal{N}\left(0, \boldsymbol{\tau}^{-1} \boldsymbol{I}\right)$

Variational Bayes

- If $<$. $>$ implies expectation with $q(\boldsymbol{\Psi})$:

$$
\begin{aligned}
\mathcal{F}(q, \mathcal{M}) & =\int q(\boldsymbol{\Psi}) \log \frac{p(\hat{\boldsymbol{u}} \mid \boldsymbol{\Psi}, \mathcal{M}) p(\boldsymbol{\Psi} \mid \mathcal{M})}{q(\boldsymbol{\Psi})} d \boldsymbol{\Psi} \\
& =\underbrace{<\log p(\hat{\boldsymbol{u}} \mid \boldsymbol{\Psi}, \mathcal{M}) \stackrel{>}{>}}_{\text {difficult }}+\underbrace{<\log p(\boldsymbol{\Psi} \mid \mathcal{M})>-<\log q>}_{\text {easy }}
\end{aligned}
$$

- Likelihood for data $\hat{\mathbf{u}} \in \mathbb{R}^{n}$:

$$
\hat{\boldsymbol{u}}=\boldsymbol{u}(\boldsymbol{\Psi})+\boldsymbol{Z} \rightarrow p(\hat{\boldsymbol{u}} \mid \boldsymbol{\Psi}, \mathcal{M}) \propto \tau^{n / 2} \exp \left\{-\frac{\tau}{2}|\hat{\boldsymbol{u}}-\boldsymbol{u}(\boldsymbol{\Psi})|^{2}\right\}
$$

where:

- $\boldsymbol{u}(\boldsymbol{\Psi})$: model \boldsymbol{M}-predicted displacements for given material properties $\boldsymbol{\Psi}$
- \boldsymbol{Z} : observation noise, e.g. $\boldsymbol{Z} \sim \mathcal{N}\left(0, \boldsymbol{\tau}^{-1} \boldsymbol{I}\right)$

Variational Bayes

- Assumption 1: One possible solution is to linearize $\boldsymbol{u}(\boldsymbol{\Psi})$ using $\boldsymbol{G}=\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\Psi}}$ using adjoint PDE (Chappelle et al 2009):

$$
\boldsymbol{u}(\boldsymbol{\Psi}) \approx \boldsymbol{u}\left(\boldsymbol{\Psi}_{0}\right)+\boldsymbol{G}\left(\boldsymbol{\Psi}-\boldsymbol{\Psi}_{0}\right)
$$

- As a result:

$$
\begin{aligned}
\log p(\hat{\boldsymbol{u}} \mid \boldsymbol{\Psi}, \mathcal{M}) & =-\frac{\tau}{2}|\hat{\boldsymbol{u}}-\boldsymbol{u}(\boldsymbol{\Psi})|^{2} \\
& =-\frac{\tau}{2}\left(\left|\boldsymbol{u}(\boldsymbol{\Psi})-\boldsymbol{u}\left(\boldsymbol{\Psi}_{0}\right)\right|^{2}-2\left(\boldsymbol{u}(\boldsymbol{\Psi})-\boldsymbol{u}\left(\boldsymbol{\Psi}_{0}\right)\right)^{T} \boldsymbol{G}\left(\boldsymbol{\Psi}-\boldsymbol{\Psi}_{0}\right)\right. \\
& \left.+\left(\boldsymbol{\Psi}-\boldsymbol{\Psi}_{0}\right)^{T} \boldsymbol{G}^{T} \boldsymbol{G}\left(\boldsymbol{\Psi}-\boldsymbol{\Psi}_{0}\right)\right)
\end{aligned}
$$

- Assumption 2: Family of approximating distributions $\boldsymbol{q} \in \mathcal{Q}$ are multivariate Gaussians $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{S})$.

Variational Bayes

Algorithm

$$
\max _{\boldsymbol{\mu}, \boldsymbol{S}} F(q, \mathcal{M})=<\log p(\hat{\boldsymbol{u}} \mid \Psi, \mathcal{M})>+<\log p(\boldsymbol{\Psi} \mid \mathcal{M})>-<\log q>
$$

0. Suppose a prior $p(\boldsymbol{\Psi} \mid \mathcal{M}) \equiv \mathcal{N}\left(\boldsymbol{\mu}_{0}, \boldsymbol{S}_{0}\right)$. Initialize $q(\boldsymbol{\Psi}) \equiv \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{S})$
1. Set $\boldsymbol{\Psi}_{0}=\boldsymbol{\mu}$ and linearize $u(\boldsymbol{\Psi}) \approx \boldsymbol{u}\left(\boldsymbol{\Psi}_{0}\right)+\boldsymbol{G}\left(\boldsymbol{\Psi}-\boldsymbol{\Psi}_{0}\right)$.
2. Update for $q(\boldsymbol{\Psi})$:

$$
\begin{gathered}
\boldsymbol{S}^{-1}=\tau \boldsymbol{G}^{T} \boldsymbol{G}+\boldsymbol{S}^{-1} \\
\boldsymbol{S}^{-1} \boldsymbol{\mu}=\tau \boldsymbol{G}^{T}\left(\hat{\boldsymbol{u}}-\boldsymbol{u}\left(\boldsymbol{\Psi}_{0}\right)\right)+\boldsymbol{S}_{0}^{-1} \boldsymbol{\mu}_{0}
\end{gathered}
$$

3. Goto 1. until convergence

Variational Bayes

Figure: MCMC: 20,000 forward runs vs Variational Bayes: 50 forward runs

Regularization \& Dimensionality reduction

- What should the prior be for an undetermined problem i.e. when data $\hat{\mathbf{u}} \in \mathbb{R}^{n}$ and unknowns $\boldsymbol{\Psi} \in \mathbb{R}^{N}, N \gg n$:

1) Smoothness-enforcing prior:

$$
p(\boldsymbol{\Psi} \mid \mathcal{M}) \equiv \mathcal{N}\left(\boldsymbol{\mu}_{0}, \boldsymbol{S}_{0}\right)
$$

where the covariance \boldsymbol{S}_{0} enforces some smoothness/correlation.

Regularization \& Dimensionality reduction

- What should the prior be for an undetermined problem i.e. when data $\hat{\mathbf{u}} \in \mathbb{R}^{n}$ and unknowns $\boldsymbol{\Psi} \in \mathbb{R}^{N}, N \gg n$:

1) Smoothness-enforcing prior:

$$
p(\boldsymbol{\Psi} \mid \mathcal{M}) \equiv \mathcal{N}\left(\mu_{0}, \boldsymbol{S}_{0}\right)
$$

where the covariance \boldsymbol{S}_{0} enforces some smoothness/correlation.

- How big/small should that correlation be?
- Should I be using a different norm?

Regularization \& Dimensionality reduction

- What should the prior be for an undetermined problem i.e. when data $\hat{\mathbf{u}} \in \mathbb{R}^{n}$ and unknowns $\boldsymbol{\Psi} \in \mathbb{R}^{N}, N \gg n$:

1) Smoothness-enforcing prior:

$$
p(\boldsymbol{\Psi} \mid \mathcal{M}) \equiv \mathcal{N}\left(\mu_{0}, \boldsymbol{S}_{0}\right)
$$

where the covariance \boldsymbol{S}_{0} enforces some smoothness/correlation.

- How big/small should that correlation be?
- Should I be using a different norm?

2) Introduce hyper-parameter(s) that penalize the jumps between neighboring Ψ_{i} which leads to (Bardsley 2013):

$$
p(\boldsymbol{\Psi} \mid \mathcal{M}) \propto \exp \left\{-\frac{\delta}{2} \boldsymbol{\Psi}^{\top} \boldsymbol{L} \boldsymbol{\Psi}\right\}, \quad \boldsymbol{L}: \text { Laplacian of graph }
$$

Regularization \& Dimensionality reduction

- What should the prior be for an undetermined problem i.e. when data $\hat{u} \in \mathbb{R}^{n}$ and unknowns $\boldsymbol{\Psi} \in \mathbb{R}^{N}, N \gg n$:

1) Smoothness-enforcing prior:

$$
p(\boldsymbol{\Psi} \mid \mathcal{M}) \equiv \mathcal{N}\left(\mu_{0}, \boldsymbol{S}_{0}\right)
$$

where the covariance \boldsymbol{S}_{0} enforces some smoothness/correlation.

- How big/small should that correlation be?
- Should I be using a different norm?

2) Introduce hyper-parameter(s) that penalize the jumps between neighboring Ψ_{i} which leads to (Bardsley 2013):

$$
p(\boldsymbol{\Psi} \mid \mathcal{M}) \propto \exp \left\{-\frac{\delta}{2} \boldsymbol{\Psi}^{\top} \boldsymbol{L} \boldsymbol{\Psi}\right\}, \quad \boldsymbol{L}: \text { Laplacian of graph }
$$

- How big/small should the neighborhoods be?
- Must also infer the hyperparameters (same or different for each jump).

Regularization \& Dimensionality reduction

- Can one infer $\boldsymbol{\Psi} \in \mathbb{R}^{N}$ on a (much lower) dimensional subspace?

$$
\underbrace{\boldsymbol{\Psi}}_{N \times 1}=\underbrace{\boldsymbol{\mu}}_{N \times 1}+\underbrace{\boldsymbol{W}}_{N \times k} \underbrace{\boldsymbol{\theta}}_{k \times 1}, \quad k \ll N
$$

- The basis vectors $\boldsymbol{W}=\left[\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{k}\right]$ should depend on the data and the model \mathcal{M}.

Regularization \& Dimensionality reduction

- Can one infer $\boldsymbol{\Psi} \in \mathbb{R}^{N}$ on a (much lower) dimensional subspace?

$$
\underbrace{\boldsymbol{\Psi}}_{N \times 1}=\underbrace{\boldsymbol{\mu}}_{N \times 1}+\underbrace{\boldsymbol{W}}_{N \times k} \underbrace{\boldsymbol{\theta}}_{k \times 1}, \quad k \ll N
$$

- The basis vectors $\boldsymbol{W}=\left[\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{k}\right]$ should depend on the data and the model \mathcal{M}.
- Given data $\hat{\boldsymbol{u}}$ and a forward model \mathcal{M}, the best ($\boldsymbol{\mu}, \boldsymbol{W})$ should maximize the evidence:

$$
p(\hat{\boldsymbol{u}} \mid \mathcal{M})=p(\hat{\boldsymbol{u}} \mid \boldsymbol{\mu}, \boldsymbol{W})
$$

- The advantage of the Variational Bayesian formulation adopted is that we also obtain an estimate (lower bound) on the evidence:

$$
\begin{aligned}
p(\hat{\boldsymbol{u}} \mid \mathcal{M}) & \approx \mathcal{F}(q(\boldsymbol{\theta}), \boldsymbol{\mu}, \boldsymbol{W}) \\
& =<\log p(\hat{\boldsymbol{u}} \mid \boldsymbol{\theta}, \boldsymbol{\mu}, \boldsymbol{W})>+<\log p(\boldsymbol{\theta} \mid \mathcal{M})>-<\log q(\boldsymbol{\theta})> \\
& =-<\frac{\tau}{2}|\hat{\boldsymbol{u}}-\boldsymbol{u}(\boldsymbol{\mu}+\boldsymbol{W} \boldsymbol{\theta})|^{2}>+\ldots \ldots .
\end{aligned}
$$

where the expectation $<.>$ is with respect to the approximate posterior $q(\theta)$ of the reduced coordinates θ

Regularization \& Dimensionality reduction

$$
\underbrace{\boldsymbol{\Psi}}_{N \times 1}=\underbrace{\boldsymbol{\mu}}_{N \times 1}+\underbrace{\boldsymbol{W}}_{N \times k} \underbrace{\boldsymbol{\theta}}_{k \times 1}, \quad k \ll N
$$

How can one infer the effective dimensionality k ?

- Hierarchical heavy-tailed prior:

$$
\begin{gathered}
p\left(\boldsymbol{w}_{j} \mid a_{j}\right) \equiv \mathcal{N}\left(0, a_{j}^{-1} \boldsymbol{I}_{N \times N}\right) \\
p\left(a_{j}\right) \equiv \operatorname{Gamma}(\alpha, \beta), \quad j=1, \ldots, k
\end{gathered}
$$

- Automatic Relevance Determination priors (ARD, MacKay 1994)): $\mathrm{a}_{j} \rightarrow \infty$ then $\boldsymbol{w}_{j} \rightarrow \mathbf{0}$ (i.e. basis vector j is inactive)
- Closely related to LASSO (Tibshirani 1996), Compressive Sensing (Candés et al 2006, Donoho et al 2006)

Variational Expectation-Maximization

$$
\begin{aligned}
\max \mathcal{F}(q(\boldsymbol{\theta}, \boldsymbol{a}, \tau), \boldsymbol{\mu}, \boldsymbol{W}) & =<\frac{n}{2} \log \tau>_{q(\tau)}-<\frac{\tau}{2}|\hat{\boldsymbol{u}}-\boldsymbol{u}(\boldsymbol{\mu}+\boldsymbol{W} \boldsymbol{\theta})|^{2}>_{q(\boldsymbol{\theta}, \tau)} \text { (likelihood) } \\
& +<\log p(\boldsymbol{\theta})>_{q(\boldsymbol{\theta})}+<\log p(\boldsymbol{W} \mid \boldsymbol{a}) p(\boldsymbol{a})>_{q(\boldsymbol{a})} \quad \text { (priors) } \\
& -<\log q(\boldsymbol{\theta}, \mathbf{a}, \tau)>_{q(\boldsymbol{\theta}, \mathbf{a}, \tau)}
\end{aligned}
$$

- Assumption 1: Mean-field approximation $q(\boldsymbol{\theta}, \boldsymbol{a}, \tau) \approx q(\boldsymbol{\theta}) q(\tau) q(\boldsymbol{a})$ (Wainwright 2008)
- Assumption 2: Linearize $u(\boldsymbol{\mu}+\boldsymbol{W} \boldsymbol{\theta}) \approx \boldsymbol{u}(\boldsymbol{\mu})+\boldsymbol{G W} \boldsymbol{\theta}$

Algorithm $O(N)$:

0. Initialize $\boldsymbol{\mu}, \boldsymbol{W}$
1. Repeat until convergence:

- Fix $\boldsymbol{\mu}, \boldsymbol{W}$ and update $q(\boldsymbol{\theta}) q(\tau), q(\boldsymbol{a})$
- Fix $\boldsymbol{W}, q(\boldsymbol{\theta}) q(\tau), q(\boldsymbol{a})$ and update $\boldsymbol{\mu}$
- Fix $\boldsymbol{\mu}, q(\boldsymbol{\theta}) q(\tau), q(\boldsymbol{a})$ and update \boldsymbol{W}

Numerical Illustration

Example:

- large deformation, incompressible non-linear elasticity
- Mooney-Rivlin constitutive law: $\Phi=c_{1}\left(I_{1}-3\right)+C_{2}{ }^{0}\left(I_{2}-3\right)+\frac{1}{2} \kappa(\log J)^{2}$
- Synthetic data from fine (200×200) mesh, contaminated $S N R=5 \times 10^{3}$
- $\operatorname{dim}(\boldsymbol{\Psi})=N=25000$, reduced-dimension $k=16$

Figure: Ground truth: Log of material parameter c_{1}

Numerical Illustration

Example:

(a) Posterior along diagonal

(c) Posterior mean

(b) Posterior along diagonal

(d) Posterior mean

Figure: (Left) Without (Right) With updating W

Numerical Illustration

Example:

Figure: Evolution of variational objective \mathcal{F}

Numerical Illustration

Example:

(a) iteration 1

(b) iteration 21

(c) iteration 41

Figure: Evolution of most important (i.e. largest $\left\langle\theta_{j}^{2}\right\rangle$) basis vector in \boldsymbol{W}

Conclusion \& Extensions

- Variational Bayesian methods offer comparable accuracy and much greater efficiency as compared to sampling (MCMC/SMC) methods
- By approximating the log-evidence one can obtain automatic regularization and enable significant dimensionality reduction.

Conclusion \& Extensions

- Variational Bayesian methods offer comparable accuracy and much greater efficiency as compared to sampling (MCMC/SMC) methods
- By approximating the log-evidence one can obtain automatic regularization and enable significant dimensionality reduction.
- Adaptivity:
- incorporate data sequentially
- utilize a hierarchy of forward models
- experimental design i.e. determine measurement locations or excitations that will maximize information intake

Conclusion \& Extensions

- Variational Bayesian methods offer comparable accuracy and much greater efficiency as compared to sampling (MCMC/SMC) methods
- By approximating the log-evidence one can obtain automatic regularization and enable significant dimensionality reduction.
- Adaptivity:
- incorporate data sequentially
- utilize a hierarchy of forward models
- experimental design i.e. determine measurement locations or excitations that will maximize information intake
- Accuracy:
- Mixture models: Consider a mixture of M reduced-representations

$$
\begin{gathered}
\boldsymbol{\Psi} \mid m=\boldsymbol{\mu}_{m}+\boldsymbol{W}_{m} \boldsymbol{\theta}_{m}, \\
\rightarrow p(\boldsymbol{\Psi} \mid \hat{\boldsymbol{u}})=\sum_{m=1}^{M} \pi_{m} \mathcal{N}\left(\boldsymbol{\Psi} ; \boldsymbol{\mu}_{m}+\boldsymbol{W}_{m} \boldsymbol{\mu}_{\theta_{m}}, \boldsymbol{W}_{m} \boldsymbol{S}_{\theta_{m}} \boldsymbol{W}_{m}^{T}\right)
\end{gathered}
$$

- this can capture non-Gaussian projections
- lead to greater dimensionality reduction

