
Variational Bayesian formulations with
sparsity-enforcing priors for model calibration

I. Franck, P.S. Koutsourelakis
Continuum Mechanics Group
Technical University of Munich

p.s.koutsourelakis@tum.de

WCCM XI
Barcelona, July 23 2014

www.contmech.mw.tum.de (FKM) Variational Bayesian formulations 1 / 19



Motivation

Can we use (continuum) models from solid mechanics to
make/assist medical diagnosis?

Model M







Governing equation: ∇ · (FS) = 0, B
Boundary conditions: u = u0, ∂B
Constitutive law: S = S(C;Ψ)
(In-compressibility: J = 1)

−→ noisy displacements (velocities etc) û
↓

Ψ =?
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Probabilistic approach

Bayes’ rule:

p( Ψ
︸︷︷︸

material par .

| û
︸︷︷︸

data

, M
︸︷︷︸

model

) =

likelihood
︷ ︸︸ ︷

p(û|Ψ,M)

prior
︷ ︸︸ ︷

p(Ψ|M)

p(û|M)
︸ ︷︷ ︸

evidence

Goal: Find posterior density p(Ψ|û,M)

The posterior quantifies how likely a Ψ is to be the solution

Provides a generalization over deterministic optimization strategies

Evidence p(û|M) quantifies how likely is for the data to have arisen from
our model M
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Challenges:
computational efficiency

regularization (i.e. prior specification)

dimensionality reduction
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Variational Bayes

Variational inference attempts to approximate the posterior
p(Ψ|û,M) with a density q∗(Ψ) (belonging to an appropriate
family of distributions Q) such that (Bishop 2006):

p(Ψ|û,M)

q(Ψ)

q∗(Ψ) = arg min
q∈Q

KL(q(Ψ)||p(Ψ|û,M)) = −

∫

q(Ψ) log
p(Ψ|û,M)

q(Ψ)
dΨ
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Variational Bayes

p( Ψ
︸︷︷︸

material par .

| û
︸︷︷︸

data

, M
︸︷︷︸

model

) =

likelihood
︷ ︸︸ ︷

p(û|Ψ,M)

prior
︷ ︸︸ ︷

p(Ψ|M)

p(û|M)
︸ ︷︷ ︸

evidence

Minimizing the Kullback-Leibler divergence is equivalent to maximizing
F(q,M):

log p(û|M) = log
∫

p(û|Ψ,M) p(Ψ|M) dΨ
≥

∫
q(Ψ) p(û|Ψ,M) p(Ψ|M)

q(Ψ) dΨ (Jensen′s inequality)
= F(q,M)

where:
F(q,M) = log p(û|M) + KL(q(Ψ)||p(Ψ|û,M))
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Variational Bayes

If < . > implies expectation with q(Ψ):

F(q,M) =
∫

q(Ψ) log p(û|Ψ,M) p(Ψ|M)
q(Ψ) dΨ

=< log p(û|Ψ,M) > + < log p(Ψ|M) > − < log q >

Likelihood for data û ∈ R
n:

û = u(Ψ) + Z → p(û|Ψ,M) ∝ τ n/2 exp{−
τ

2
|û − u(Ψ)|2}

where:
u(Ψ): model M-predicted displacements for given material properties Ψ

Z : observation noise, e.g. Z ∼ N (0, τ−1I)
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Variational Bayes

Assumption 1: One possible solution is to linearize u(Ψ) using G = ∂u
∂Ψ

using adjoint PDE (Chappelle et al 2009):

u(Ψ) ≈ u(Ψ0) + G(Ψ−Ψ0)

As a result:

log p(û|Ψ,M) = − τ
2 |û − u(Ψ)|2

= − τ
2 (|u(Ψ)− u(Ψ0)|

2 − 2(u(Ψ)− u(Ψ0))
T G(Ψ−Ψ0)

+(Ψ−Ψ0)
T GT G(Ψ−Ψ0))

Assumption 2: Family of approximating distributions q ∈ Q are
multivariate Gaussians N (µ,S).
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Variational Bayes

Algorithm

max
µ,S

F (q,M) =< log p(û|Ψ,M) > + < log p(Ψ|M) > − < log q >

0. Suppose a prior p(Ψ|M) ≡ N (µ0,S0). Initialize q(Ψ) ≡ N (µ,S)

1. Set Ψ0 = µ and linearize u(Ψ) ≈ u(Ψ0) + G(Ψ−Ψ0).

2. Update for q(Ψ):

S−1 = τGT G + S−1

S−1
µ = τGT (û − u(Ψ0)) + S−1

0 µ0

3. Goto 1. until convergence
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Variational Bayes

Figure: MCMC: 20,000 forward runs vs Variational Bayes: 50 forward runs

www.contmech.mw.tum.de (FKM) Variational Bayesian formulations 10 / 19



Regularization & Dimensionality reduction

What should the prior be for an undetermined problem i.e. when data
û ∈ R

n and unknowns Ψ ∈ R
N , N >> n:

1) Smoothness-enforcing prior:

p(Ψ|M) ≡ N (µ0,S0)

where the covariance S0 enforces some smoothness/correlation.
How big/small should that correlation be?
Should I be using a different norm?

2) Introduce hyper-parameter(s) that penalize the jumps between neighboring
Ψi which leads to (Bardsley 2013):

p(Ψ|M) ∝ exp{−
δ

2
Ψ

T LΨ}, L : Laplacian of graph

How big/small should the neighborhoods be?
Must also infer the hyperparameters (same or different for each jump).

www.contmech.mw.tum.de (FKM) Variational Bayesian formulations 11 / 19



Regularization & Dimensionality reduction

What should the prior be for an undetermined problem i.e. when data
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Regularization & Dimensionality reduction

Can one infer Ψ ∈ R
N on a (much lower) dimensional subspace?

Ψ
︸︷︷︸

N×1

= µ
︸︷︷︸

N×1

+ W
︸︷︷︸

N×k

θ
︸︷︷︸

k×1

, k << N

The basis vectors W = [w1,w2, . . . ,wk ] should depend on the data and
the model M.
Given data û and a forward model M, the best (µ,W ) should maximize
the evidence:

p(û|M) = p(û|µ,W )

The advantage of the Variational Bayesian formulation adopted is that we
also obtain an estimate (lower bound) on the evidence:

p(û|M) ≈ F(q(θ), µ,W )
=< log p(û|θ, µ,W ) > + < log p(θ|M) > − < log q(θ) >
= − < τ

2 |û − u(µ+ Wθ)|2 > + . . . ....

where the expectation < . > is with respect to the approximate posterior
q(θ) of the reduced coordinates θ
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Given data û and a forward model M, the best (µ,W ) should maximize
the evidence:
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p(û|M) ≈ F(q(θ), µ,W )
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Regularization & Dimensionality reduction

Ψ
︸︷︷︸

N×1

= µ
︸︷︷︸

N×1

+ W
︸︷︷︸

N×k

θ
︸︷︷︸

k×1

, k << N

How can one infer the effective dimensionality k?
Hierarchical heavy-tailed prior:

p(w j |aj) ≡ N (0, a−1
j IN×N)

p(aj) ≡ Gamma(α, β), j = 1, . . . , k

Automatic Relevance Determination priors (ARD, MacKay 1994)):
aj → ∞ then w j → 0 (i.e. basis vector j is inactive)

Closely related to LASSO (Tibshirani 1996), Compressive Sensing
(Candés et al 2006, Donoho et al 2006)
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Variational Expectation-Maximization

maxF(q(θ, a, τ),µ,W ) =< n
2 log τ >q(τ) − < τ

2 |û − u(µ+ Wθ)|2 >q(θ,τ) (likelihood)
+ < log p(θ) >q(θ) + < logp(W |a)p(a) >q(a) (priors)
− < log q(θ, a, τ) >q(θ,a,τ)

Assumption 1: Mean-field approximation q(θ, a, τ) ≈ q(θ) q(τ)q(a) (Wainwright
2008)

Assumption 2: Linearize u(µ+ Wθ) ≈ u(µ) + GWθ

Algorithm O(N):

0. Initialize µ,W

1. Repeat until convergence:

Fix µ,W and update q(θ) q(τ), q(a)
Fix W , q(θ) q(τ), q(a) and update µ

Fix µ, q(θ) q(τ), q(a) and update W

µ,W

q(θ, a, τ)

F(q,µ,W )
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Numerical Illustration

Example:
large deformation, incompressible non-linear elasticity

Mooney-Rivlin constitutive law: Φ = c1(I1 − 3) +✚✚❃
0

c2 (I2 − 3) + 1
2κ(log J)2

Synthetic data from fine (200 × 200) mesh, contaminated SNR = 5 × 103

dim(Ψ) = N = 25000, reduced-dimension k = 16

Figure: Ground truth: Log of material parameter c1
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Numerical Illustration

Example:

(a) Posterior along diagonal (b) Posterior along diagonal

(c) Posterior mean (d) Posterior mean

Figure: (Left) Without (Right) With updating W
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Numerical Illustration

Example:

Figure: Evolution of variational objective F
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Numerical Illustration

Example:

(a) iteration 1 (b) iteration 21 (c) iteration 41

Figure: Evolution of most important (i.e. largest < θ2
j >) basis vector in W
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Conclusion & Extensions

Variational Bayesian methods offer comparable accuracy and much
greater efficiency as compared to sampling (MCMC/SMC) methods

By approximating the log-evidence one can obtain automatic
regularization and enable significant dimensionality reduction.
Adaptivity:

incorporate data sequentially
utilize a hierarchy of forward models
experimental design i.e. determine measurement locations or excitations
that will maximize information intake

Accuracy:
Mixture models: Consider a mixture of M reduced-representations

Ψ|m = µm + W mθm,

→ p(Ψ|û) =
∑M

m=1 πmN (Ψ;µm + W m µθm
,W mSθm W T

m)

this can capture non-Gaussian projections
lead to greater dimensionality reduction
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