
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Realzeit-Computersysteme

Models and Interfaces for Distributed Control Systems

Matthias Kauer

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Gerhard Rigoll

Prüfer der Dissertation: 1. Prof. Dr. Samarjit Chakraborty

2. Prof. Anuradha M. Annaswamy, Ph.D.

Die Dissertation wurde am 24.03.2016 bei der Technischen Universität München eingereicht
und durch die Fakultät für Elektrotechnik und Informationstechnik am 17.08.2017 angenom-
men.

ii

iii

Abstract

The goal of this thesis is to bridge the gap in digital control systems between high-level domain
models for physical dynamics and implementation platforms. To that end, suitable interfaces
linking physical and platform behavior are proposed for two setups. In the first, these interfaces
improve guaranteed control performance under constrained communication. In the second, fast
simulation and optimization are achieved for a class of switching-actuated systems.

Automatic control, the context of this work, is concerned with the regulation of dynamical
systems. A control algorithm periodically adjusts a system’s input signal to ensure a certain
output behavior. These algorithms are typically designed in isolation, with a number of idealis-
tic assumptions about their environment. Such assumptions include infinite numerical precision
and zero delays on the hardware platform, as well as mathematically convenient input signals.
Although approximately satisfied in many cases, they are not sufficiently analyzed in others.

Combining the design of control algorithms and their implementation platforms is challeng-
ing because their respective models deal with very different phenomenons. System descrip-
tions and control algorithms typically express dynamics in continuous time, using differential
equations. Digital platforms have many discrete aspects and comprise processor architectures,
scheduling strategies and communication protocols, among other things. Interfaces are hence
required that describe or abstract the behavior of the physical side in a form that can be taken
into account during the design process of the digital side and vice versa.

Developing suitable and expressive interfaces that enable a co-design of control algorithm
and digital platform is the focus of this thesis. To that end, we study two different setups.
The first deals with the effects of communication delay on the control performance of quickly
evolving systems. There, the requirements of each control algorithm are typically expressed
as a combination of period and deadline. This is rather rigid and the more flexible interface
introduced here leads to designs with higher guaranteed performance on identical hardware.
The second setup considers charge transfer within battery packs. Each of the many individual
cells in such a pack behaves somewhat differently, yet the aggregate charge is determined by
the minimum charge among cells in the pack. For this reason, transferring charge and thus
balancing cells improves efficiency. Because these transfers are actuated by frequent discrete
switching, abstracting interfaces are crucial for efficient quantitative models. Both models and
interfaces are proposed in this dissertation.

Communication and computation delay, as studied in the first setup, is the main link between
rapidly changing dynamical systems and their implementation platform. This delay becomes
non-negligible in complex distributed platforms that have been introduced to cope with the
growing number of control applications. The systematic design processes, which have been and
are being developed for larger systems, do still not include delay interaction in adequate detail,

iv

however. As delay affects control performance while timing requirements also affect platform
design in return, a co-design of control algorithm and implementation platform can improve the
overall process quality and dramatically reduce testing efforts.

This is the promise of the Cyber-Physical System (CPS) paradigm. It is different from pre-
vious approaches like networked control systems where the implementation platform (or the
network) is assumed to be fixed. By default, timing requirements are specified in terms of strict
deadlines. These are formed with respect to the worst case which only rarely occurs. Designing
towards that interface hence leads to guaranteed, but not necessarily to sufficient performance.
The design framework presented here allows and quantifies occasional deadline misses with
their effects on the physical system using formal verification. It can thus use shorter deadlines
and ultimately achieves better performance guarantees. To make the approach comprehensive,
automata-theoretic models for fixed priority scheduling are advanced to yield conservative re-
sults even with non-preemptive behavior. A delay-aware fault-tolerant control strategy further
improves guaranteed performance.

In the second setup, internal charge transfer increases battery pack efficiency because usable
charge is maximized when the charge of all cells is in balance. In this process, also referred to as
active cell balancing, network timing is less critical because it is slow compared to the network
and other control applications like anti-lock braking. Its actuation, however, intersects digital
and analog behavior in a challenging way. Charge is transferred most efficiently by rapidly
switching transistors that connect a temporary energy storage element, like an inductor, to the
sender and receiver cell in alteration. This switching leads to non-differentiable transitions
between the sender and receiver phase, interfering with common simulation techniques and
strategy design. Often, it is hence entirely abstracted away in a lossy way. By contrast, the
thesis at hand preserves detail and improves speed by deriving closed-form expressions for
the individual transfer phases of a transmitting cell pair. This proposed reformulation leads
to 1000 times faster simulation and lossless interfaces that specify long-term actuation. To
evaluate transfers beyond minutes, this work consequently develops formulations that enable
optimization techniques and speed up the aforementioned phase-based simulation by additional
orders of magnitude.

The discussed setups share a number of characteristics. In particular, they treat digital con-
trol systems with a semantic gap between models for the physical dynamics and the imple-
mentation platform. The solutions we propose towards modeling, controlling, and optimizing
them rely on the developed interfaces that bridge this gap. It is worth mentioning how these ap-
proaches relate to contributions in the domain of hybrid systems. These include both continuous
and digital behavior in one monolithic model, limiting the system size. In timing analysis, the
number of discrete states that model network behavior is prohibitively large for hybrid model
checking tools. In case of active cell balancing, a hybrid model corresponds to the initial slow
simulation we start out with. The techniques developed in this thesis integrate communication
and actuation aspects tightly, improving accuracy and hence performance compared to state-of-
the-art methods, while ensuring computational efficiency.

v

Kurzfassung

Das Ziel dieser Arbeit ist die Lücke zu schließen zwischen abstrakten, domänenspezifischen Modellen
für physikalische dynamische Systeme und für Implementierungsplattformen. Zu diesem Zweck schlägt
diese Arbeit geeignete Schnittstellen vor, die physikalisches und digitales Verhalten in zwei Aufbauten
verbinden. Im ersten Aufbau führen diese Schnittstellen zu verbesserter garantierter Regelungsleistung
unter eingeschränkter Kommunikation. Im Zweiten werden schnelle Simulation und Optimierung er-
reicht für eine Klasse von Systemen, die durch digitales Schalten gesteuert werden.

Die Regelungstechnik, die den Kontext für diese Arbeit bildet, beschäftigt sich mit der Regulie-
rung von dynamischen Systemen. Ein Regelungsalgorithmus passt die Eingangssignale eines Systems
periodisch an, um ein bestimmtes Ausgangsverhalten zu gewährleisten. Diese Algorithmen werden üb-
licherweise isoliert entworfen, mit verschiedenen idealisierenden Annahmen über ihre Umgebung. Zu
diesen Annahmen gehören unendliche numerische Präzision und null Verzögerung auf der Hardware-
plattform, aber auch mathematisch vorteilhaft gewählte Eingangssignale. Wenngleich solche Annahmen
in vielen Fällen annähernd erfüllt sind, werden sie in anderen Fällen nicht ausreichend untersucht.

Das Design von Regelungsalgorithmen und ihren Implementierungsplattformen zu kombinieren ist
schwierig, weil ihre jeweiligen Modelle mit sehr unterschiedlichen Phänomenen befasst sind. Systembe-
schreibungen und Regelungsalgorithmen drücken typischerweise die Dynamik in kontinuierlicher Zeit
aus unter Verwendung von Differenzialgleichungen. Digitale Plattformen haben viele diskrete Aspekte
und beinhalten unter anderem Prozessorarchitekturen, Schedulingstrategien und Kommunikationsproto-
kolle. Es werden daher Schnittstellen benötigt, die das Verhalten der physikalischen Seite in einer Form
beschreiben oder abstrahieren, die während des Designprozesses für die digitale Seite berücksichtigt
werden kann und umgekehrt.

Die Entwicklung geeigneter und ausdrucksstarker Schnittstellen, die ein Co-Design von Regelungs-
algorithmus und digitaler Plattform ermöglichen, steht im Fokus dieser Dissertation. Zu diesem Zweck
werden zwei verschiedene Aufbauten untersucht. Der erste beschäftigt sich mit den Effekten von Verzö-
gerung bei der Kommunikation auf die Regelungsleistung von Systemen mit schnellem Eigenverhalten.
Dort werden die Anforderungen jedes Regelungsalgorithmus typischerweise als Kombination von Peri-
ode und Deadline ausgedrückt. Das ist eher starr und die flexiblere Schnittstelle, die hier eingeführt wird,
ermöglicht Designs mit höherer garantierter Leistung auf identischer Hardware. Der zweite Aufbau be-
trachtet Ladungstransfers innerhalb von Batteriepacks. Jede der vielen individuellen Zellen in einem sol-
chen Pack verhält sich leicht anders, während die Gesamtladung bestimmt wird durch die Minimalladung
unter den Zellen des Packs. Aus diesem Grund erhöhen Transfers und der so erzeugte Ladungsausgleich
die Effizienz. Weil diese Transfers durch rapides, diskretes Umschalten getrieben werden, sind abstra-
hierende Schnittstellen entscheidend für die Erstellung von effizienten, quantitativen Modellen. Sowohl
Modelle als auch Schnittstellen werden im Rahmen dieser Arbeit vorgeschlagen.

Verzögerungen bei der Übertragung oder bei der Berechnung, wie sie im ersten Aufbau untersucht
werden, sind die Hauptverbindung zwischen sich schnell wandelnden dynamischen Systemen und ihrer
Implementierungsplattform. Diese Verzögerung kann nicht mehr vernachlässigt werden bei komplexen,

vi

verteilten Plattformen, welche eingeführt wurden, um mit der wachsenden Anzahl von Regelungsanwen-
dungen umzugehen. Die systematischen Designprozesse, welche für große Systeme entwickelt wurden
und werden, behandeln allerdings weiterhin nicht den Einfluss von Verzögerung in angemessenem De-
tail. Da Verzögerung die Regelungsleistung beeinflusst während Timinganforderungen umgekehrt auch
das Plattformdesign beeinflussen, kann ein Co-Design von Regelungsalgorithmus und Implementie-
rungsplattform die Prozessqualität insgesamt verbessern und den Testaufwand stark reduzieren.

Das ist das Versprechen des Cyber-Physical System (CPS) Paradigma. Es unterscheidet sich von frü-
heren Ansätzen wie vernetzten Regelungssystemen, wo die Implementierungsplattform (oder das Netz-
werk) als fest angenommen werden. Standardmäßig werden Timinganforderungen als strikte Deadlines
angegeben. Diese werden gebildet mit Bezug auf den ungünstigsten Fall, welcher nur äußerst selten
auftritt. Auf diese Schnittstelle zu designen führt daher zu garantierter, aber nicht notwendigerweise zu
ausreichender Performance. Das Designframework, das hier vorgestellt wird, lässt gelegentliche Zeit-
überschreitungen zu und quantifiziert sie mitsamt ihren Auswirkungen auf das physikalische System mit
formaler Verifikation. Es kann daher kürzere Fristen verwenden und schlussendlich bessere Leistungsga-
rantien erreichen. Um den Anwendungsbereich für diesen Ansatz zu erweitern, werden automatentheore-
tische Modelle für Scheduling mit festen Prioritäten vorangebracht, so dass sie konservative Ergebnisse
liefern auch wenn Nachrichten nicht unterbrochen werden können. Eine fehlertolerante Regelungsstra-
tegie, die sich Verzögerungen bewusst ist, erhöht die garantiere Leistung weiter.

Im zweiten Aufbau erhöhen interne Ladungstransfers die Effizienz eines Batteriepacks, weil die
nutzbare Ladung maximal wird, wenn alle Zellladungen ausgeglichen sind. In diesem Prozess, der auch
als Active Cell Balancing bezeichnet wird, ist das Timing des Netzwerks weniger entscheidend, da er
langsam ist verglichen mit dem Netzwerk und anderen Regelungsanwendungen, wie einem Antiblockier-
system. Seine Betätigung kreuzt allerdings digitales und analoges Verhalten auf herausfordernde Weise.
Ladung wird am effizientesten übertragen durch schnell umschaltende Transistoren, die einen temporä-
ren Energiespeicher, wie eine Spule, abwechselnd mit Sender- und Empfängerzelle verbinden. Dieses
Umschalten führt zu nicht-differenzierbaren Übergangen zwischen der Sender- und der Empfängerphase
und behindert gängige Simulationsmethoden wie auch den Strategieentwurf. Es wird daher oft einfach
wegabstrahiert auf verlustbehaftete Weise. Im Gegensatz dazu erhält die vorliegende Dissertation die
Details und verbessert die Simulationsgeschwindigkeit, indem sie geschlossene Ausdrücke für die ein-
zelnen Transferphasen herleitet. Diese vorgeschlagene Umformulierung ermöglicht 1000 mal schnellere
Simulation und verlustfreie Schnittstellen, welche die Langzeitoperation spezifizieren. Um Transfers zu
evaluieren, die über Minuten hinaus gehen, entwickelt diese Arbeit anschließend Formulierungen, die
Optimierung ermöglichen und den erwähnten phasenbasierten Simulationsansatz um weitere Größen-
ordnungen beschleunigen.

Die diskutierten Aufbauten teilen mehrere Eigenschaften. Insbesondere behandeln sie beide digitale
Regelungssysteme mit einer semantischen Lücke zwischen den Modellen für die physikalische Dynamik
und denen für die Implementierungsplattform. Die Lösungen, die zur Modellierung, Regelung und Opti-
mierung vorgeschlagen werden, beruhen auf Schnittstellen, die diese Lücke überbrücken. Es soll auch er-
wähnt werden, in welchem Verhältnis diese Ansätze zu Beiträgen aus dem Bereich der hybriden Systeme
stehen. Diese beinhalten sowohl kontinuierliches als auch digitales Verhalten in einem monolithischen
Modell, was die Systemgröße beschränkt. In der Timinganalyse ist die Anzahl an diskreten Zuständen,
die das Netzwerkverhalten modellieren, zu groß für hybride Model Checking Tools. Im Fall von Acti-
ve Cell Balancing entsprechen hybride Modelle den initialen, langsamen Modellen, die hier verbessert
werden. Die Techniken, die in dieser Dissertation entwickelt werden, integrieren Kommunikations- und
Antriebsaspekte auf enge Weise und verbessern dadurch die Genauigkeit und somit die Performance im
Vergleich zum Stand der Technik, während effiziente Berechnung gewährleistet bleibt.

vii

Acknowledgements

This thesis is the result of my work in the embedded systems group (RP3) of TUM CREATE, a
research collaboration of Technische Universität München (TUM) and Nanyang Technological
University funded by Singapore’s National Research Foundation under the CREATE program.

Many people deserve my gratitude for their support. First, I would like to thank my advisor,
Samarjit Chakraborty from the Institute for Real-Time Computer Systems (RCS) at TUM, for
his advice during the past four years. I consider myself very fortunate to have received your
insights and encouragement during our meetings. Furthermore, the collaborations and the re-
search stay you initiated for me are invaluable. At the same time, I also highly appreciate the
guidance I have received from Martin Lukasiewycz and Sebastian Steinhorst, the postdocs and
team leaders in RP3. We collaborated on virtually all my undertakings and I learned a great
deal from you about verification, optimization, and software engineering.

This work contains two major parts: distributed control systems and active cell balancing.
With regard to the first part, I would like to thank Reinhard Schneider and Dip Goswami from
RCS for answering my incessant questions about timing analysis, real-time calculus, and control
systems. With regard to the second part, my gratitude goes to Swaminathan Narayanaswamy
and Arne Meeuw from RP3. You have significantly enhanced my understanding of electrical
circuits and embedded programming. Many of the experiments from this thesis would also not
have been possible without the hardware you built.

My gratitude also goes to Damoon Soudbakhsh and Anuradha Annaswamy from the Active-
Adaptive Control Laboratory at the Massachusetts Institute of Technology. During our collab-
oration which related to both parts, you have taught me a lot about control systems, improving
my intuition as well as my understanding of techniques like linear matrix inequality design,
adaptive control, or model-predictive control. Thank you also, Dr. Annaswamy, for hosting me
in your group in fall 2014 and for being my second reviewer.

I am also fortunate for the colleagues I have had during the last years. Our laughs, tech-
nology discussions, and political rants have made the time more than enjoyable. A special note
goes to Philipp Mundhenk, Florian Sagstetter, and Peter Waszecki. I hope we can stay in touch
and meet for gaming, BBQ, or just a beer. A special thank you also goes to Martin Geier, for
help with IT and enlightening Linux discussions, Martin Schäfer, who introduced me to RCS,
and Benedikt Dietrich, for help with projects I supervised. Another big thank you is in order for
the administrative staff at MIT, TUM CREATE, and at RCS. You have been very helpful and
supportive.

Finally, I particularly thank my friends, my parents, Waltraud and Herbert, and my sister
Judith for their love, support, and continuous encouragement.

viii

ix

Contents

Abstract iii

Acknowledgements vii

Table of Contents x

1 Introduction 1
1.1 Cyber-physical System (CPS) co-design . 2
1.2 Active Cell Balancing (ACB) design . 6
1.3 Contributions and organization . 9
1.4 List of publications and awards . 12

2 Cyber-physical System (CPS) Analysis 15
2.1 Continuous dynamical systems . 16
2.2 Communication hardware . 17
2.3 Sampled-data systems . 20
2.4 Quality of Control . 24
2.5 Linear switched systems . 28
2.6 Formally verifiable properties for switched systems 29

3 Modeling Communication Platforms with Event Count Automata (ECAs) 35
3.1 Event Count Automata (ECAs) . 35
3.2 Event Count Automaton (ECA) networks . 38
3.3 Methods for evaluating Event Count Automata (ECAs) 41
3.4 Event Count Automata (ECAs) in the model checking tool SAL 46
3.5 Issues with naive Fixed-Priority Non-preemptive Scheduling (FPNS) models . 47
3.6 Conservative Fixed-Priority Non-preemptive Scheduling (FPNS) models 50
3.7 Evaluation of FPNS models using simulation 52
3.8 Related work . 55

4 Applying ECAs for CPS Co-Design 59
4.1 Verification of real-life performance instead of deadlines in distributed CPSs . . 59
4.2 Fault-tolerant control design with delays under firm deadline assumption 64
4.3 Related work . 72

x Contents

5 Quantitative Models for Charge Transfers in Active Cell Balancing (ACB) 79
5.1 ACB: Motivation, design flow, and challenges 80
5.2 Inductor-based charge transfer architectures 84
5.3 Equivalent circuit modeling . 86
5.4 Electrical battery models . 89
5.5 ACB actuation interfaces . 93

5.5.1 Fixed timing actuation . 94
5.5.2 Current interface . 96
5.5.3 Energy block interface with platform-determined current 97

5.6 Freewheeling phases & switching losses . 99
5.7 Transfer dynamics assuming constant voltage 101
5.8 Large-scale Active Cell Balancing (ACB) simulation 104

5.8.1 Straightforward numerical solution 105
5.8.2 Iterative solution for transfer dynamics 106
5.8.3 Error-controlled, adaptive phase aggregation 107
5.8.4 Long-term charge transfer simulation with fixed timing 111

5.9 Related work . 117

6 Optimizing Efficiency in Active Cell Balancing (ACB) 123
6.1 Optimization-friendly charge transfer model 123
6.2 Inductor optimization via Geometric Programming (GP) 128
6.3 Optimal current for individual links . 132
6.4 Charge routing problem . 133

6.4.1 Best case reference solution for charge routing 136
6.4.2 Constraint-driven charge routing . 137
6.4.3 Routing case study . 139

6.5 Related work . 142

7 Conclusions and Future Work 145

Bibliography 149

List of Tables 163

List of Figures 165

List of Definitions & Theorems 167

Abbreviations 169

Nomenclature 171

Index 173

1

1
Introduction

The regulation of dynamical systems using feedback mechanisms has a long history. The first
application arguably dates back to ancient Greece where the flow in water clocks was regulated
for improved accuracy. Starting with the industrial revolution in the 19th century, centrifugal
governors were widely used to control the inflow of steam engines. Alongside further similar
contributions, the mathematical formalization of the field also began at that time.

Even though methods for system analysis in time domain like the solution of Ordinary
Differential Equations (ODEs) and stability concepts were known, the lack of computation
power made them infeasible in practice. Frequency domain analysis, by contrast, makes it easier
to characterize a system from external measurements and the arithmetics it involves remain
tractable for computation by hand. This made it the method of choice at that time. Only the
arrival and subsequent massive growth of computing devices has increased the focus on time-
based methods over recent decades. Numerically efficient and stable techniques were devised to
test system stability, design optimal input signals, and reconstruct unobservable system states,
among other applications.

In addition to a dramatic expansion of system analysis techniques, digital devices have
also led to new actuation and controller implementation methods. By introducing computation
power into the system itself, the class of digital control systems provides a lot of new options
to the strategy designer. The main advantage is that calculation steps can be freely chosen and
no longer require individual physical components that represent them. Digital actuation, on
the other hand, significantly increases the efficiency of, e.g., electric motors or power supplies.
While the addition of digital devices creates size, efficiency, and flexibility benefits over previ-
ous analog or mechanical implementations, the so-created interaction also changes the system
behavior and may require adjustments in the design techniques.

Combining the behavior of digital implementation platform and physical control process
into one holistic model is difficult because their respective models deal with very different
phenomenons. The dynamics of the control process are typically expressed in continuous time,

2 Ch. 1 Introduction

using differential equations. In the digital platform, on the other hand, topics like processor
architecture, scheduling strategy and communication protocol contain many discrete aspects.
During the design process of the physical side, the behavior of the digital side must hence be
abstracted according to a suitable interface and vice versa.

The selection of interfaces for digital control design involves a trade-off between modeling
accuracy, validity area, and speed. In this context, the thesis at hand develops interfaces that are
more expressive than the state of the art and hence lead to better designs but also remain com-
putationally efficient to enable rapid iteration and optimization during the design phase. With
this goal, we investigate two different setups. The first (Section 1.1) deals with the effects of
communication delay on the control performance of quickly evolving systems. As the number
of control applications keeps growing, the digital implementation platforms become increas-
ingly distributed, creating contention on shared buses and processors. This calls into question
several standard assumptions about the computation behavior and complicates the design task
for the implementation platform. The second setup (Section 1.2) considers switching actuation
and analyzes a family of circuits that transfer charge within battery packs for improved perfor-
mance. In contrast to paradigms where switching is undesired, switching-actuated systems are
controlled by adjusting the, typically brief, time periods for which they maintain certain discrete
configurations. Charge transfer is particularly challenging since the averaging approach, which
is typically employed to circumvent non-differentiable transitions and the associated modeling
difficulties, becomes inaccurate as internal states evolve. These challenges are summarized in
Table 1.1.

Table 1.1: Overview of challenges

CPS co-design (Section 1.1) Charge transfer (Section 1.2)

Physical Fast control process Cells with transfer circuitry
Digital Controller-implementing hardware Actuation by transistor switching
Challenge Delay not negligible and varying Input via timing variation
Interface Timing specification Conversion: current↔ timing

Gap
Cannot model platform character-
istics, i.e., causes for delay

Conversion is voltage- and thus
state-dependent

Both setups deal with a semantic gap between models for the physical dynamics and the
behavior of a digital device. This gap interferes with accurate analysis of the system as a whole.
Several approaches that lead to tighter integration for better performance, faster simulation
at virtually identical accuracy, and efficient optimization are developed in the context of this
thesis. Section 1.3 details how these contributions and the publications they have led to form
the remainder of the work at hand.

1.1 Cyber-physical System (CPS) co-design
In digital control, a computing device is used as system controller to calculate input signals
at runtime. Inexpensive microcontrollers are typical for this role, but Application-Specific In-

Sec. 1.1 CPS co-design 3

tegrated Circuits (ASICs) or desktop computers are also reasonable depending on the perfor-
mance requirements. The controller in such a setup periodically evaluates the sensor values
describing the system state and subsequently calculates the input signals for actuation at run-
time. Forgoing analog components in that way provides many benefits, but it may also require
certain adjustments to the analysis methods.

The controller cannot compute input signals continuously as that would correspond to in-
finite frequency. For this reason, input signals in digital control typically remain constant for
a certain period; a case of digital control with a different actuation abstraction is discussed in
Section 1.2. The standard periodic behavior of the computation suggests a transformation of
the mathematical models that describe the physical world for easier analysis. Instead of cal-
culating the continuous-time dynamics of such a digital control system directly, it is common
to consider them only with respect to the discrete time steps that are implicitly defined by the
sampling period of the controller. Many previous results for system analysis and design have
been adjusted to systems described in this way, so-called discrete-time systems.

When the digital control framework was formed, ideal circumstances in military applica-
tions, space missions, and avionics have justified a number of idealistic assumptions about
the underlying computation platform. The most common of these assumptions are negligible
computation times, infinite numerical precision as well as zero communication delays between
sensor, controller, and actuator. With a dedicated controller that has direct access to sensors
and actuators, such assumptions are approximately satisfied and small deviations are unlikely
to produce large errors. Such setups are expensive and increasingly rare, however, as digi-
tal control systems have become ubiquitous, even in cost-sensitive industries like automotive,
home automation, and energy storage. In these industries, computation power is more lim-
ited and control applications are implemented in a distributed fashion. Each Electronic Control
Unit (ECU) typically handles many control tasks and no longer has direct access to sensors and
actuators. Instead, sensor readings are sent over a network, processed by one or more ECUs
along the way, before finally arriving at the actuator. In such an implementation environment,
some simplifying assumptions become difficult to satisfy in practice. The most important of
these is non-negligible delay introduced by contention on shared communication and some-
times computation resources.

A modern design flow must account for this constrained environment and simultaneously
handle the vastly increased number of control applications and the ensuing complexity. Cars
from 2013, for instance, ship with around 100 million lines of code [139], roughly 5 times
more than the LINUX kernel in June 2015 [105]. Notwithstanding that this comparison may be
misleading because car software is made up of components that probably include the LINUX

kernel, cars have come a long way. “Even low-end cars now have 30 to 50 ECUs embedded in
the body, doors, dash, roof, trunk, seats, and just about anywhere else . . . [In 1981,] GM was . . .
executing about 50 000 lines of code across its entire domestic passenger car production.” [42].
The formerly hand-crafted code that runs on these ECUs is mostly auto-generated today by
graphical frameworks that model the signal flow. This creates an additional layer of abstraction
that must be reasoned about.

To deal with the growing complexity, different abstractions are used to analyze individual
subsystems. A control engineer would typically start by considering the block diagram of a
control problem. An example of such a diagram which helps to focus on the relations between

4 Ch. 1 Introduction

subsystems, is shown in Fig. 1.1(a). In this perspective, the engineer first models the so-called
plant, consisting of the physical process to be controlled and an actuator. The plant is described
in time domain by a standardized ODE system, the so-called state space representation. While
there are alternatives like transfer functions, this form has advantages when analyzing systems
with multiple in- and outputs or with nonlinear behavior, justifying its increasing general popu-
larity. More importantly for the work at hand, this representation makes reasoning about timing
analysis and delay issues more natural. To obtain such a mathematical representation, the plant
is usually analyzed according to fundamental mechanical and electrical principles in bottom-up
fashion. As an alternative, semi-automated or guided system identification [118] procedures are
available that yield sufficiently accurate results in many circumstances.

Once a suitable plant description is available, the engineer deals with equations for control
law design and discrete-time transformation as in Fig. 1.1(b). These operations can be per-
formed in any order as long as sampling period and delay remain small compared to the change
rate of the plant. During control law design, engineers search for a mapping, often a gain matrix
K, between system state and input signal. This mapping, the control law, defines an action for
each possible state. To find it, many techniques have been established, guaranteeing various
properties for different system classes. The Linear Quadratic Gaussian (LQG) framework [11],
for instance, minimizes a quadratic cost function using only a gain matrix and no optimization at
runtime. To transform the continuous system to its discrete version, a fixed delay and sampling
period are utilized as discussed earlier in this section. During this phase of control application
design, the underlying hardware platform is hence typically taken into account according to this
interface specifying period and maximum delay.

The network engineer, on the other hand, considers the dependency chain formed by the
computer processes and messages that implement the corresponding control application shown
in Fig. 1.1(c). He or she distributes the elements of this chain on a network of ECUs and com-
munication links or buses. Once the computation cost of a process is established, it corresponds
to a specific time requirement depending on the power of the selected ECU. Similarly, the size
of a message implies the time it needs to be transmitted over a certain communication bus. With
this knowledge, each process / message chain distribution corresponds to a timing diagram as
in Fig. 1.1(d). Such a diagram details how the message timing and in particular how the end-to-
end or sensor-to-actuator delay behaves. Several frameworks have been devised to find analytic
bounds for the timings in such a network. Real-time Calculus (RTC) [178], for instance, applies
a mathematical convolution at each processing element to a stream with given arrival behavior
and obtains worst-case delays and backlog in this way, among other properties.

While distributing the elements of control applications in the network, the dependency of
the processes, the location of sensors and actuators, as well as the timing specifications must be
observed. This is a large set of complex conditions, but it may still leave significant flexibility. If
the network is not fixed yet, one may be interested in its topology and its components. Even on
a fixed network, process distribution, priority assignment, and other parameterizations remain
complicated, yet relevant questions. Searching for an optimal network according to metrics like
price, volume, or extensibility given such a set of constraints is commonly referred to as Design
Space Exploration (DSE). There are many DSE techniques, relying on methods like integer
programming, boolean satisfiability, or evolutionary algorithms [71].

In most network design endeavors, the control application requirements are considered as

Sec. 1.1 CPS co-design 5
C

on
tr

ol
E

ng
. Plant

ẋ(t) = A(c)x(t) +B(c)u(t)

Controller
input output

x[k + 1] = A(d)x[k] +B(d)u[k]

u[k] = Kx[k]

(a) Block Diagram (b) Discrete-time Equations

N
et

w
or

k
E

ng
.

Arbitrated communication

ECU1 ECU2

ECU3 ECU4

Actuator

Sensor Sensor

p1

m1

p2p3

m2

p4

p1

m1

p2p3

m2

p4

p1

m1

p2p3

m2

p4

p1

m1

p2p3

m2

p4

ECU1

ECU2

NETW

ECU4

(c) Processes and messages on a network (d) Timing Analysis

Figure 1.1: Different views on digital control design.

period / deadline specification. This specification matches the period / maximum delay descrip-
tion that abstracts the hardware platform during control design. There are several issues with
this interface. Often, a very low sampling period is selected along with an ideal zero delay to
achieve great performance during simulation. Sampling too often wastes computation and com-
munication resources, however. More importantly, zero delay cannot be obtained in practice.
A lengthy and costly test phase is then required to analyze the real behavior and guarantee the
safety of a system. If the specification is selected to be more achievable, it may forgo control
performance without leading to a real benefit on the network side.

Instead of a design process that is driven by either network or control requirements, the
Cyber-physical System (CPS) paradigm aims for an integration of both sides and ideally a co-
design of control law and hardware platform. Even in such a general setting, the interface itself
may hide optimal solutions from the design process, however. This is the case when specifying
only period and maximum delay. As the average is typically smaller than the worst-case delay
in complex networks, operating a control application with shorter deadline and some timeouts
often leads to improved control performance.

Since a fully holistic co-design with one model that includes detailed network and plant

6 Ch. 1 Introduction

behavior together remains infeasible, all interfaces must strike a balance between design speed
and abstraction level. The computing power for off-line analysis has grown tremendously, how-
ever, bringing tools within reach that were infeasible only a decade ago. One such tool that is
well-suited for the analysis of worst-case behavior is model-checking [12] as commonly applied
in the area of digital circuit design.

In the first part of this thesis, we investigate how model-checking can support the co-design
goals of the CPS paradigm. For this purpose, we mainly deal with an extension of the afore-
mentioned RTC timing analysis framework that is based on model-checking, the Event Count
Automaton (ECA) framework. Originally devised to analyze buffer requirements and delay un-
der state-dependent scheduling behavior, it is also well-suited to treat sporadic deadline misses.
On the control engineering side, we analyze the resulting performance on platforms whose be-
havior is guaranteed via ECA evaluation. As a further step, we then look for strategies that
specifically rely on this interface of behavior guarantees. These approaches provide a tighter
integration than state-of-the-art interfaces and can hence often improve the resulting control
performance in a co-design setting.

1.2 Active Cell Balancing (ACB) design

Another challenge for CPS design are digital actuation schemes. In contrast to the timing-based
interaction described in Section 1.1, these schemes may require special care even for physical
processes that evolve much slower than any potential network delay. As a case where standard
analysis is not sufficient, this part discusses charge transfer circuits for balancing battery packs
at high frequency.

The background of these circuits is the dramatic proliferation of Electrical Energy Stor-
age (EES) and the various applications it enables that occurred in the post-millennial years.
Laptop sales now exceed those of desktop computers; smartphones and tablets have their own
success stories. At the same time, there is a growing interest in Electric Vehicles (EVs) as well
as residential EES. This interest is part of a general desire for clean energy and transportation
arguably motivated by peak oil discussion, high fuel prices, and environmental concern. An EV
may completely rely on electrical energy for zero local emissions or use it to improve the com-
bustion engine’s efficiency. Residential EES mainly aims to smoothen the non-homogeneous
output of renewable power sources and to increase independence from the regional power grid.

While some applications favor other technologies like super-capacitors or fuel cells, most
store electrical energy in Lithium-Ion (Li-Ion) battery cells because of their high energy den-
sity. When the electrodes of such a rechargeable cell are connected, an electrochemical reaction
causes an electrical current to flow. The voltage that Li-Ion cells can achieve during this dis-
charge process is around 4 V, limited by the cell chemistry. To form the basis for a wide range
of applications, many cells are hence typically connected in series and in parallel. While cells in
parallel connection inherently reach an equilibrium and can be considered as electrical unit, the
charging or discharging of serially connected cells must stop as soon as the first cell reaches its
limit. Imbalances between these cells, caused by differences in capacity and internal resistance
from production or by non-homogeneous cooling, hence reduce the effective capacity of the
pack.

Sec. 1.2 Active Cell Balancing (ACB) design 7

Charge Charge Charge

starting point passive active

Figure 1.2: Variations in cell characteristics lead to imbalances over time, leaving some cells with excess
charge above the current pack level (dashed). Passive balancing, which is the current standard because
it can easily be implemented, simply discards local excess charge (hatched). Active balancing techniques
instead transfer the surplus and thus achieve higher pack charge levels.

For applications that require high voltage, and thus many cells in series, imbalances are
currently alleviated in two ways. First, cells with similar properties are clustered at production
time to minimize deviations in capacity and internal resistance, e.g., by cell weight and volume.
The deviations that are potentially avoided in this way exceed 5% [161]. This is not sufficient,
however, since the properties of identical cells evolve differently over time, even under lab con-
ditions [19]. Second, excess energy in individual cells is therefore dissipated using switchable
resistors [82]. This technique, referred to as passive balancing, is easy to implement, but clearly
not energy-efficient.

Alternatively, the excess charge can also be transferred to other cells. Fig. 1.2 illustrates
schematically how this approach, referred to as Active Cell Balancing (ACB), increases the
usable energy of a battery pack and consequently its performance. While ACB can be imple-
mented in numerous ways [32], the implementations can be grouped by the transfer mechanism
they rely on. This mechanism is usually determined by the main circuit component or compo-
nents that perform the charge transfer. For instance, capacitors can be connected in parallel to
cells and charge or discharge them in this way. Such parallel connections lead to rather ineffi-
cient charge transfer, however. Alternatively, suitable shunting at runtime can create additional
rest periods for cells with less charge. This approach balances the pack under load, but it leads
to voltage fluctuation if not controlled and requires switches in the main series connection of
the battery pack. Having switches there affects the efficiency during standard operation, how-
ever, which is usually not acceptable. The most efficient ACB implementations are built around
inductors or transformers and actuated with switching signals in the kilohertz range.

To obtain a well-performing ACB application, several decisions, simulations, and optimiza-
tions are necessary. The following design flow summarizes the overall process.

1. Select transfer mechanism and define topology requirements.

2. Synthesize suitable circuit architecture including transistor switching scheme.

3. Determine size requirements and choose circuit components accordingly.

8 Ch. 1 Introduction

4. Design control strategy.

The first stage begins with the selection of the transfer mechanism. While there are several
options, as just discussed, this thesis focuses on the class of inductor-based architectures for
efficiency reasons. One then defines the topology of the circuit. This is mainly about the
kind of transfers that the circuit shall be able to perform. Transferring only between adjacent
cells may be sufficient in some cases; others may require transfers to non-adjacent or multiple
cells. Another popular design has one cell always transfer to or from the whole pack. Further
desirable properties include modularity and concurrency. Modularity helps when additional
cells are added to a pack. Performing transfers concurrently, on the other hand, vastly reduces
balancing time. If shorter balancing times are not required, concurrency can also lead to lower
currents and consequently to higher efficiency in most cases.

In the second stage, a circuit architecture is synthesized according to the specification from
the first stage. For this purpose, a network of transistors is created to connect transferring
components, like inductors, to cells. The transistors are then switched according to a scheme
that defines their configuration in several recurring phases. This switching realizes the actual
charge transfer. While this stage only deals with qualitative behavior and component parame-
ters do not play a role yet, switching scheme and circuit architecture must be analyzed together
for potential issues like short circuits or undesired cell discharging. Although the architecture
can be designed by hand and verified in a standard circuit simulator, dedicated tools for faster
verification and even automated synthesis are also emerging [123]. As an alternative to synthe-
sizing, it is also often possible to utilize an existing architecture from the literature, such as the
inductor-based circuit for transfers between adjacent cells from [103].

The third stage deals with component selection or design in the circuit architecture obtained
so far. The numerous, not necessarily identical transistors and most importantly the inductor
determine under which scenario a circuit performs best. In the fourth stage, control strategies
for the actuation at runtime are devised. Depending on charge distribution in the pack and avail-
able time, different current rates and transfer sequences may be beneficial. To justify decisions
in these two stages, the system behavior must now be treated quantitatively. General purpose
circuit simulators may be used for ACB evaluation, but they have drawbacks like low flexi-
bility and long computation times, among other things. It is hard to implement sophisticated
strategies in a circuit simulator because state information is hard to aggregate and many math-
ematical operations are not readily available. Similarly, many efficient optimization techniques
are impossible because they require access on the equation level. Even simulation may become
unacceptably slow for larger systems or longer time frames. The high-frequency switching that
actuates the charge transfers leads to correspondingly small steps in the simulator. A balancing
strategy, on the other hand, may have to be evaluated over several hours and therefore require
millions of steps. In this area, switching details are hence often abstracted away, e.g., by aver-
aging. While this leads to simple formulations, it also creates a modeling gap with additional
relative errors of several percent points. On the other hand, faster simulation and mathematical
programming techniques are also possible in a lossless fashion by directly looking at funda-
mental electrical principles, like Kirchhoff’s laws. This provides more insight and direct access
to equations of the transfer dynamics.

Even though this work contains contributions to the second stage, its focus is on the third

Sec. 1.3 Contributions and organization 9

and fourth stage. It develops quantitative models that apply to the large class of inductor-based
charge transfer circuits, pursuing two main goals. The first is accurate, but fast simulation
of ACB. The second is optimization of ACB using mathematical programming. Although
more complex than in Section 1.1, a transformation to discrete-time helps to identify actuation
interfaces that formalize the long-term system behavior. The contributions to both goals build
on this interim result as these interfaces lead to further important reformulations.

1.3 Contributions and organization
After introducing the background information from CPS co-design and ACB design in the pre-
vious sections, this section discusses the results of the thesis at hand. After listing contributions,
it explains the organization of the remaining chapters, detailing in particular how they relate to
previous publications of the author.

The main contributions of this work are summarized as follows.

• Integration of the Event Count Automaton (ECA) timing analysis framework into Cyber-
physical System (CPS) design, creating an interface that allows direct verification of con-
trol performance for distributed linear systems from within the timing analysis.

• Development of a fault-tolerant control strategy design that uses the information about
the implementation platform from ECA analysis in a Linear Matrix Inequality (LMI)
formulation to yield an improved design under limited network resources.

• Addition of Fixed-Priority Non-preemptive Scheduling (FPNS) to the ECA framework,
handling issues with priority inversion and the ensuing message blocking.

• Investigation and advancement of models for charge transfer dynamics, proposing a total
of 3 models that are no longer anchored to the natural switching phases in the microsecond
range and can hence be used for accurate, but rapid long-term simulation (speedup of 5
orders of magnitude compared to standard simulation) or mathematical programming.

• Development of a PYTHON library with C++ back end that implements the aforemen-
tioned transfer models used, for instance, in the distributed balancing co-simulator of the
author’s research group.

• Application of the models for optimal design of inductors for charge transfer architectures
using Geometric Programming (GP), formalization of high-level actuation interfaces as
well as design and evaluation of efficient charge routing strategies.

This thesis is organized in 7 chapters. The current chapter gives an overview of the environ-
ments it aims to improve, CPS co-design with a focus on delay effects as well as ACB design
with switching actuation. By describing the current situation and challenges, it provides context
for the contributions of the work. The contributions themselves are explained in greater detail
in the remainder of the thesis which is structured as follows.

Chapter 2 provides background information on CPS analysis. It summarizes the standard
approach for describing physical processes in control applications which we require for delay

10 Ch. 1 Introduction

analysis, the so-called state space representation. This representation exists in continuous-time
and discrete-time form. The latter arises when a digital device senses or actuates a physical
process, turning the overall setup into a sampled-data system. After describing the transforma-
tion from continuous- to discrete-time form, the chapter goes over the standard properties and
performance measures for control applications. As we are interested not only in messages that
arrive with delay, we then treat switched systems which are necessary to model messages that
do not arrive at all. The chapter ends with an explanation of standard properties or variations
thereof which are compatible with formal languages for model-checking. This content is in-
cluded as reference; the contributions from the following chapters build upon this foundation in
many cases.

Chapter 3 introduces the Event Count Automaton (ECA) framework, an approach for tim-
ing analysis of communication and computation networks. It first describes the two automaton
types this framework employs, the service and the arrival ECA, both formally and with ex-
amples. The chapter then shows how multiple ECAs can be combined to form a network by
connecting them using in- and output buffers. Modeling a hardware platform, such an ECA
network can then be analyzed with model checking tools for various properties, like maximum
delay. Although other tools are also suitable, this thesis relies exclusively on SAL [54] for
model-checking. To give an impression of ECA analysis in practice, the chapter thus includes
some code snippets from the Scheme-like, functional programming language utilized in SAL.
Following the basic introduction of the ECA framework, an extension of its semantics is then
shown to model FPNS in this paradigm. Unlike for time-triggered scheduling protocols that
directly map to the slots of a discrete-time automaton like an ECA, a model for FPNS is not
straightforward. Since the non-interruptible transmissions can begin not only at slot transitions
but also within slots, the resulting communication behavior may depend on intra-slot arrival
times that cannot be tracked using discrete-time automata. The modeling approach described
here treats the bus in a conservative way to capture problematic behavior like priority inversion
that a straightforward implementation would miss. The FPNS model and the corresponding
extension of the ECA semantics have been originally presented in [92].

Chapter 4 describes two applications of the ECA framework in the CPS setting. Both ap-
plications utilize the fact that the worst-case delay in complex hardware platforms only rarely
occurs. Since feedback control systems are inherently robust to a certain number of communi-
cation faults, they may not require the hardware over-provisioning a worst-case design entails.
For this reason, the applications build on an interface that allows individual messages to miss
their deadlines according to specified amounts or patterns. In the first application, this interface
is used to implement given control applications with certain performance requirements on a
hardware platform. To that end, the performance requirements are analyzed to find the tolera-
ble patterns of deadline misses in a form that model-checking tools can treat. These patterns
are subsequently verified on a hardware platform modeled by ECAs. This approach typically
leads to specification-conform designs with higher bus utilization and hence reduced costs. The
second application aims to improve control performance given a certain hardware platform.
For this purpose, a fault-tolerant control strategy design is proposed that builds upon the same
ECA-verified interface. Using a LMI formulation solved via mathematical programming, the
approach finds a controller that takes into account the recent communication faults at runtime to
generate an improved input signal. This design fulfills exponential stability, a common control

Sec. 1.3 Contributions and organization 11

performance requirement, by construction. A description of these applications has appeared
in [91] and [90], respectively.

Chapter 5 discusses quantitative models for inductor-based Active Cell Balancing (ACB).
It begins by presenting a selection of circuit architectures from this class of charge transfer cir-
cuits with switching actuation and explains the fundamental operating principles. These circuits
charge an inductor from one cell, then change the configuration of their routing switches and dis-
charge the inductor into another cell. Each configuration transition leads to a non-differentiable
change in the transfer dynamics which is challenging for standard simulation techniques and un-
wieldy for actuation strategy design. A numerical solver for such dynamics commonly operates
with an adaptive step size approach, aiming to make only few, large steps as long as an associ-
ated error estimate fulfills its specification. The non-differentiable transitions force such solvers
to make multiple steps for each configuration change. This is slow because switching occurs
in the microsecond range while balancing operations may last for several hours and hence re-
quire millions of steps over hours of computation time. Many models that are computationally
cheaper, on the other hand, are also simple, ignoring transistor switching effects, the evolution
of voltages, or the parasitic reactions in the involved battery cells. Nevertheless, many improve-
ments are possible, both towards accurate yet fast ACB simulation and more natural actuation
interfaces. The improvements developed here build on an equivalent circuit modeling approach
that abstracts nonlinear circuit components and treats each switch configuration, or phase, as
individual ODE. These ODEs have closed-form solutions under virtually all parameterizations
and can thus be converted to a recurrence relation, similar to the discrete-time form of the state
space representation in digital control.

This discrete recurrence relation is still too slow for large-scale simulations but it enables
high-level actuation interfaces and subsequently two rapid simulation models, each with its own
advantages. The first, most precise, and most versatile model uses error control techniques to
take large steps in the discrete recurrence relation. In this way, it remains compatible with var-
ious common battery models and application interfaces. The second approach achieves even
faster simulation times by solving the recurrence relation in closed form, assuming an actuation
interface that leaves switching periods constant for many iterations. One charge transfer archi-
tecture with detailed switching scheme and the equivalent circuit approach has been published
in [88]. The first simulation model has been submitted to IEEE Transactions on Computer-
aided Design of Integrated Circuits and Systems in January 2016. The second model forms an
integral part of the co-simulator published in [166].

Chapter 6 builds on the developed transfer models to evaluate and improve the performance
of ACB operation in three aspects: inductor design, local operating current, and routing strate-
gies. To that end, it describes a transfer model that caters specifically to optimization and
accepts some mathematical transformations with accuracy loss in unlikely operating regions. It
then details a GP that can be used to design an optimal inductor for an ACB circuit. Although
this program also deals with the operating current, the computation is too involved to be per-
formed at runtime. The chapter hence goes on to discuss a closed form solution for the optimal
current and a best-case Linear Programming (LP) formulation for the charge routing problem.
The former is now accessible to virtually any computing device, the latter can be efficiently
solved on contemporary personal computers. The LP result is a reference value, indicating
what a routing strategy can achieve, and a set of transfers that attain this value assuming ideal

12 Ch. 1 Introduction

voltages in all participating cells. As heuristic routing strategies without concurrent transfers
almost achieve this value already, we then investigate the main constraints from the LP to find a
strategy that parallelizes more naturally and remains suitable for implementation on embedded
devices. Several heuristic routing strategies have been introduced in the papers that make up
Chapter 5. Inductor optimization has been presented in [89].

In Chapter 7, we summarize the results and conclude this work. We reevaluate the proposed
techniques in a bigger picture and suggest conditions to double-check before resorting to in-
volved CPS design or ACB over simpler alternatives. Future research endeavors are motivated
by pointing out potential and risk of the presented interfaces in the DSE context, the options for
even more accurate charge transfer models, and rarely explored benefits of ACB.

1.4 List of publications and awards
The contributions to Cyber-physical System (CPS) co-design and the Event Count Automaton
(ECA) framework from this thesis have appeared in the following publications:

• Matthias Kauer, Sebastian Steinhorst, Dip Goswami, Reinhard Schneider, Martin Luka-
siewycz, Samarjit Chakraborty. "Formal Verification of Distributed Controllers using
Time-Stamped Event Count Automata". In: Proceedings of the 18th Asia and South Pa-
cific Design Automation Conference (ASP-DAC 2013).

• Matthias Kauer, Sebastian Steinhorst, Reinhard Schneider, Martin Lukasiewycz, Samarjit
Chakraborty. "Automata-Theoretic Modeling of Fixed-Priority Non-Preemptive Schedul-
ing for Formal Timing Verification". In: Proceedings of the 19th Asia and South Pacific
Design Automation Conference (ASP-DAC 2014).

• Matthias Kauer, Damoon Soudbakhsh, Dip Goswami, Anuradha M. Annaswamy, Samar-
jit Chakraborty. "Fault-Tolerant Control Synthesis and Verification of Distributed Em-
bedded Systems". In: Proceedings of the Conference on Design, Automation and Test in
Europe (DATE 2014).

The contributions to architectures, models, and optimization for Active Cell Balancing
(ACB) have appeared in the following publications:

• Matthias Kauer, Swaminathan Narayanaswamy, Sebastian Steinhorst, Martin Lukasie-
wycz, Samarjit Chakraborty, Lars Hedrich. "Modular System-Level Architecture for Con-
current Cell Balancing". In: Proceedings of the 50th Design Automation Conference
(DAC 2013).

• Matthias Kauer, Swaminathan Narayanaswamy, Sebastian Steinhorst, Martin Lukasie-
wycz, Samarjit Chakraborty. "Many-to-Many Active Cell Balancing Strategy Design".
In: Proceedings of the 20th Asia and South Pacific Design Automation Conference (ASP-
DAC 2015).

• Matthias Kauer, Swaminathan Narayanaswamy, Martin Lukasiewycz, Sebastian Stein-
horst, Samarjit Chakraborty. "Inductor Optimization for Active Cell Balancing using

Sec. 1.4 List of publications and awards 13

Geometric Programming". In: Proceedings of the Conference on Design, Automation
and Test in Europe (DATE 2015).

• Sebastian Steinhorst, Matthias Kauer, Arne Meeuw, Swaminathan Narayanaswamy, Mar-
tin Lukasiewycz, Samarjit Chakraborty. "Cyber-Physical Co-Simulation Framework for
Smart Cells in Scalable Battery Packs". To appear in: ACM Transactions on Design
Automation of Electronic Systems (TODAES).

• Matthias Kauer, Swaminathan Narayanaswamy, Sebastian Steinhorst, Samarjit Chakraborty.
"Rapid Analysis of Active Cell Balancing Circuits". Under Submission.

The following publications are related to the topic of this thesis, but not a direct part hereof:

• Martin Lukasiewycz, Sebastian Steinhorst, Florian Sagstetter, Wanli Chang, Peter Waszecki,
Matthias Kauer, Samarjit Chakraborty. "Cyber-Physical Systems Design for Electric Ve-
hicles". In: Proceedings of the 15th Euromicro Conference on Digital System Design
(DSD 2012).

• Dip Goswami, Martin Lukasiewycz, Matthias Kauer, Sebastian Steinhorst, Alejandro
Masrur, Samarjit Chakraborty, S Ramesh. "Model-Based Development and Verification of
Control Software for Electric Vehicles". In: Proceedings of the 50th Design Automation
Conference (DAC 2013).

• Martin Lukasiewycz, Sebastian Steinhorst, Sidharta Andalam, Florian Sagstetter, Peter
Waszecki, Wanli Chang, Matthias Kauer, Philipp Mundhenk, Suhaib A. Fahmy, Shreejith
Shanker, Samarjit Chakraborty. "System Architecture and Software Design for Electric
Vehicles". In: Proceedings of the 50th Design Automation Conference (DAC 2013).

• Peter Waszecki, Matthias Kauer, Martin Lukasiewycz, Samarjit Chakraborty "Implicit
Intermittent Fault Detection in Distributed Systems". In: Proceedings of the 19th Asia
and South Pacific Design Automation Conference (ASP-DAC 2014).

• Swaminathan Narayanaswamy, Sebastian Steinhorst, Martin Lukasiewycz, Matthias Kauer,
Samarjit Chakraborty. "Optimal Dimensioning of Active Cell Balancing Architectures".
In: Proceedings of the Conference on Design, Automation and Test in Europe (DATE
2014).

• Sebastian Steinhorst, Martin Lukasiewycz, Swaminathan Narayanaswamy, Matthias Kauer,
Samarjit Chakraborty. "Smart Cells for Embedded Battery Management". In: Proceed-
ings of the 2nd International Conference on Cyber-Physical Systems, Networks, and Ap-
plications (CPSNA 2014).

• Sebastian Steinhorst, Zili Shao, Samarjit Chakraborty, Matthias Kauer, Shuai Li, Martin
Lukasiewycz, Swaminathan Narayanaswamy, Muhammad Usman Rafique, Qixin Wang.
"Distributed Reconfigurable Battery System Management Architectures". In: Proceedings
of the 21st Asia and South Pacific Design Automation Conference (ASP-DAC 2016).

14 Ch. 1 Introduction

• Swaminathan Narayanaswamy, Matthias Kauer, Sebastian Steinhorst, Martin Lukasie-
wycz, Samarjit Chakraborty. "Modular Active Charge Balancing for Scalable Battery
Packs". Under Submission.

In addition, the work performed for this thesis has led to the following awards.

• HiPEAC Paper Award, 2013: Recognition for European contributions at conferences
where Europe is not strongly represented.

• A. Richard Newton Young Student Fellow Program, 2013: Travel grant for ≈ 50 students
at Design Automation Conference in Austin, TX

• Global Young Scientists Summit, 2014: Discussion opportunity with eminent technology
leaders

• ACM SIGDA CADathlon 2014 at International Conference On Computer Aided Design
(ICCAD): ECA modeling paper [92] was selected as functional verification problem.

15

2
Cyber-physical System (CPS) Analysis

Cyber-physical Systems (CPSs) are a symbiosis of a dynamical system that is implemented
on and thus interacts with a digital platform. The textbook example for this is the inverted
pendulum experiment where a rod of a certain length has to be kept upright by moving its base
in the plane. The strategy for these movements is programmed into a computer or a small
microcontroller, depending on the setup, and together, they form a larger system that is referred
to as CPS.

Depending on the focus of the analysis, such systems are also referred to as digital control
systems or networked control systems. The former are the earliest variant and deal with the
issues of periodic sampling as well as fixed delay; the latter add a fixed network into the analysis
which is typically considered random in nature. The CPS paradigm expands on this, ultimately
aiming for a co-design of network, or platform, and control system.

Although they have an individual focus, the underlying theory of the aforementioned ap-
proaches overlaps significantly. This chapter introduces the major results from literature that
the later parts of the thesis rely on. It first presents general forms of dynamical systems (Sec-
tion 2.1) and the communication hardware (Section 2.2) that is commonly used to implement
them in a distributed fashion. As soon as the digital impact becomes significant for its evolu-
tion, a system must be considered as sampled-data system (Section 2.3), typically in discrete
time. Next, the chapter goes over the most relevant properties of a control system (Section 2.4).
In order to account for message losses, in addition to delay, we then explore switched systems
(Section 2.5). These systems evolve differently depending on discrete events like a successful
message arrival. Unlike for switching actuation as discussed in Chapter 5, switching is con-
sidered adversarial here and assumed to arrive in the worst pattern. Finally, we explore which
of the desirable control system properties can be applied to switched systems and expressed
in a form that is compatible with model checking (Section 2.6). In this way, control system
analysis can be combined with the model checking-based timing analysis from Chapter 3; this
combination is the topic of Chapter 4.

16 Ch. 2 Cyber-physical System (CPS) Analysis

2.1 Continuous dynamical systems
A system is first of all an entity formed by interacting components that are in some way sepa-
rated from the rest of the world. Across its boundaries, the system interacts with its surround-
ings via established input and output signals. For dynamical systems described in mathematical
terms, one very general formulation is

ẋ = f(x, u). (2.1)

Here, x is the state vector that a control engineer attempts to influence via input vector u. If f is
not benign in some sense, very few statements can be made about such systems in general (see
textbook [93] for reference). Nevertheless, this form already makes an assumption of causality.
The system is only affected by its input. The input device, on the other hand, is not affected by
the system unless explicitly modeled.

Since the most general form is hard to reason about, researchers have mostly dealt with less
general versions. The most popular paradigm is that of Linear Time-invariant (LTI) systems.
While LTI systems cannot describe all applications, they do cover the basic properties for vir-
tually all systems. When evaluating a control system, the first property that comes to mind
is usually stability (see Section 2.4). Informally speaking, one wonders whether the system
can possibly drive itself and accelerate out of control. This question is directly linked to an
equilibrium or working point xe, ue with f(xe, ue) = 0 that can be used for linearization. By
defining new coordinates around this point ∆x = x − xe, the system can be described linearly
and becomes much easier to analyze. With continuous system matrices

A(c) =
[∂f
∂x

]
xe,ue

B(c) =
[∂f
∂u

]
xe,ue

and re-setting x = ∆x, i.e., considering only the new coordinate system, one arrives at a general
form for LTI systems.

ẋ(t) =A(c)x(t) +B(c)u(t) (2.2)

y(t) =C(c)x(t)

Besides linearization, this so-called state space representation expands upon (2.1) by introduc-
ing output vector y. y can model that, in general, not all states, i.e., not all elements of x are
measurable from the outside. A(c), B(c), C(c) are called continuous system, input, and output
matrix, respectively. They fully characterize the system behavior. The superscript (c) distin-
guishes the continuous from the discrete version of the system, as examined in Section 2.3. It
is often clear from the context which system description is meant and we can then simply refer
to the matrices as A, B, C.

Converting to an LTI system is highly desirable since they come with a large number of
formal results. For the context of this work, the most relevant properties that become verifiable
and even designable are stability as well as quadratic costs for penalizing tracking error and
input energy. Please refer to Section 2.4 for an overview.

The accuracy of a linear model rapidly decreases outside the working point, however. Cau-
tion is thus required when evaluating properties without taking the distance from the working
point into account.

Sec. 2.2 Communication hardware 17

In addition, the form in Eq. (2.2) is only adequate to describe systems with negligible delay
and continuous actuation. Contemporary systems are mostly implemented on distributed digital
platforms, however (Section 2.2). This rules out continuous actuation because it would require
continuously recomputing the input signal and hence needs infinite computing resources. In
addition, contention on both computing and communication resources leads to waiting times.
Whereas (2.2) assumes that a new input u(t) can be applied the moment x(t) occurs in the
system, there is always a delay in reality. Consequently, we discuss in Section 2.3 the sampled-
data system modeling which includes sampling periods and possibly non-negligible delay.

In certain cases, an additive disturbance term w(t) is included in the LTI state space repre-
sentation from Eq. (2.2). This term is supposed to take both random noise inside the system as
well as modeling errors into account. Many design approaches ignore these disturbance terms
and rely on the inherent robustness of the control loop.

ẋ(t) =A(c)x(t) +B(c)u(t) + w(t) (2.3)

y(t) =C(c)x(t)

Typically, disturbance w(t) is assumed to be normally distributed, written w(t) ∼ N (0,Σc).
This choice is mostly driven by the desire to make algebraic techniques manageable. Questions
about average performance in particular benefit from the normal distribution. When considering
the worst case, the normal distribution is rarely chosen because its infinite support leads to
infinitely bad performance bounds.

2.2 Communication hardware
Distributed implementations of feedback control applications are common in many safety-
critical domains like automotive and avionics. In this work, we consider setups where a feed-
back control application is implemented on multiple ECUs that communicate over a shared bus.
As shown in Fig. 2.1, the sensing devices and the actuators are connected to different ECUs and
the control algorithm uses feedback signals that are transferred via the shared bus system. While
being transmitted over such a bus, feedback signals often get delayed due to contention by other
messages, thereby resulting in a sensor-to-actuator delay.

Delay in a feedback control system has tremendous influence on its performance. It would
thus be desirable to route all communication between the various ECUs directly. Such a fully
connected mesh requires many wires, however, that are then under-utilized on average. The
implied cost and extra weight almost always rule out this approach. Currently, the automotive
industry and many others hence favor bus topologies. These require the least amount of cabling
but also lead to more contention.

To keep a shared bus usable, access must be arbitrated in some way. The major paradigms
are currently time-triggered and event-triggered arbitration.

Time-triggered arbitration The highest amount of predictability and reliability can be achie-
ved by granting each application access to the bus in periodic fashion. To make this work, a
fixed period of time is divided into slots. This period, referred to as superframe in many archi-
tectures, is typically in the low millisecond range. Each slot is then assigned to an application or

18 Ch. 2 Cyber-physical System (CPS) Analysis

ECU1 ECU2 ECU3

bus

ps pc pasensor actuator

xk

uk

Figure 2.1: In distributed control applications, sensor task ps, controller task pc, and actuator task pa
are implemented on separate ECUs and communicate over a shared bus. While this allows for execution
on specialized processors and often reduces the number of ECUs required overall, it also introduces
delays.

ECU. As time evolves, the participants access the bus one after another during their designated
time slots. Once an entire cycle is completed, the procedure immediately starts again. Consider
textbook [97] for reference.

One downside of time-triggered arbitration is the low average utilization. If an application
does not have information to distribute during its assigned slot, the transmission opportunity
is wasted. The other participants become aware of such an unused slot too late to use it. In
most cases, they should also not abandon their own periodic schedule. The total bandwidth
that must be available for time-triggered arbitration is therefore larger than the actually required
bandwidth.

To achieve high data rates on time-triggered platforms, an accurate synchronization of the
clocks in all participants is usually required. This synchronization is challenging but necessary
to keep the network functional. Without synchronization, the transmissions of different ECUs
would overlap once their clocks drift apart enough and neither of the messages could arrive.
This is catastrophic for the applications relying on them because there is usually no fall-back
mechanism.

Event-triggered arbitration Instead of distributing access to a bus in slots, participants can
also try to access the bus according to their needs. If the bus utilization is above a certain level,
this almost certainly leads to collisions. Event-triggered schemes manage these collisions in
different ways. In IEEE 802.11, the protocol behind wireless local area network, nodes sense
the bus before attempting a transmission. If two nodes still start sending at the same time,
they back off and restart their attempt after waiting a random period. While this leads to high
throughput on average, such schemes are problematic for CPS implementation because they
produce highly indeterministic waiting times.

The Controller Area Network (CAN) bus has a more suitable arbitration scheme, also re-
ferred to as Fixed-Priority Non-preemptive Scheduling (FPNS). All participants are assigned
a priority that simultaneously serves as their address. Every message begins with this ID. The
physical layer is implemented in such a way that a higher priority ID can overwrite others should
they attempt transmitting at the same time. This keeps the arbitration overhead low and leads
to predictable behavior. Most importantly, the high-priority devices enjoy very low delay. The

Sec. 2.2 Communication hardware 19

CAN arbitration also means, however, that a high-priority process can keep others from sending
for a long time. In other words, low-priority processes can be “starved”.

In order to guarantee a timely arrival of all important messages on a CAN bus, several mea-
sures are usually taken. The average bus utilization is kept low in the hope that the reserve thus
created is sufficient to handle the worst case access patterns. Over-dimensioning the hardware
in this way undoubtedly leads to higher costs, however. In addition, the system undergoes ex-
tensive test runs and, possibly, subsequent re-design with the knowledge obtained during the
tests.

Compared to time-triggered arbitration, event-triggered schemes lead to higher bandwidth
utilization and are consequently cheaper. On the other hand, time-triggered schemes inherently
guarantee a certain arrival time for all participants. The associated delay is thus predictable and
easy to work with. While guaranteed, the delay may still be larger, however, than in the worst
case of the event-triggered version, to the dismay of the control engineer. It is a misconception
that a real-time guarantee means that a system is fast in some sense. On the contrary, achieving
such guarantees usually slows the system down significantly. Albert summarizes the trade-off
between event-triggered and time-triggered systems as follows. “The main advantage of event-
triggered systems is their ability to [quickly] react to asynchronous external events which are
not known in advance [...]. Thus, they show a better real-time performance in comparison with
time-triggered systems. In addition, event-triggered systems possess a higher flexibility and
allow in many cases the adaptation to the actual demand without a redesign of the complete
system.” [2]

In the past, the low costs and the challenges associated with time-triggered arbitration have
led to wide-spread deployment of event-triggered communication buses, like the CAN bus. The
associated issues discussed above were not of immediate concern since the utilization on most
CAN buses was rather low in the beginning. Issues like varying wait times producing jitter
and starvation have surfaced only later with higher load on the bus. Today, new bus systems
like FLEXRAY with a mix of time- and event-triggered segments and a higher bandwidth have
arrived. Notwithstanding, CAN continues to be cost-effective in many environments and will
also need to be supported as legacy platform for many years to come.

Design process The design processes for time-triggered and event-triggered systems have or-
thogonal advantages. Designing with priorities in mind is easy at first, but not compositional.
The system can only be analyzed with full knowledge about how many messages each partici-
pant might send. Slot-based designs require more thought right away, whereas event-triggered
schemes “just work” at the outset. Only in larger systems where slots can be distributed to indi-
vidual teams do time-triggered approaches really provide an advantage. In these circumstances,
one engineer can arrange his application according to the assigned slots without worrying about
contention from others.

In terms of redesign on the other hand, event-triggered schemes may have the upper hand.
There, adding another application to the bus may be as simple as assigning a new priority to it
if sufficient bandwidth is still available. In time-triggered schemes, such situations may require
a redistribution of slots when the available ones are not in a suitable pattern for the application
to be included.

20 Ch. 2 Cyber-physical System (CPS) Analysis

2.3 Sampled-data systems
Contemporary control systems are implemented on digital hardware. The perspective of the
control engineer on such a system is shown in Fig. 2.2. It forms a contrast to the network
and computer focused perspective from Fig. 2.1. The plant is now in focus whereas before
it was only implicit on the boundaries. The controller interacts with it through sensor and
actuator. State x[k] is still transmitted over the network. The implementation details of the
communication platform are abstracted away, however.

CPS timing and delay Fig. 2.3 shows the timing diagram that the CPS faces on the hardware.
The control engineer calls the delay between the sensor reading and the actuator applying a new
signal based on that information the sensor-to-actuator delay d. The network engineer can
now implement the platform in an interrupt-driven fashion, meaning pa triggers as soon as the
required information becomes available. In this case the control engineer’s delay d becomes the
varying transmission delay τ , i.e., d = τ , neglecting the brief time required for pa itself. The
control design must then take varying delay into account which is quite complicated.

Alternatively, the network engineer can consider control delay d to be a deadline for his
transmissions. For this purpose, he stores the signal in a buffer until pa triggers at the predefined
instant. The platform and the controller are then sized such that τ ≤ d which significantly
simplifies the analysis. This is the approach taken in this work.

This work is particularly interested in the effects of delay. In order to study the phenomenons
associated herewith, we limit ourselves to LTI systems of the form (2.2). Whether d, the delay
in the control realm is constant or not, it can be taken into account there as follows.

ẋ(t) =A(c)x(t) +B(c)u(t− d) + w(t) (2.4)

y(t) =C(c)x(t)

This still assumes an ongoing re-computation of the input signal, another issue that we discuss
next.

Periodic sampling With a delayed communication pattern as in Fig. 2.3, it is unlikely that
computation occurs in an ongoing fashion as Eq. (2.4) assumes. In fact, continuous computation
would require infinite resources. Instead, one selects a sampling period h and interacts with the

Plant
ẋ = A(c)x+B(c)u Sensor

ps

Actuator
pa

NetworkNetwork

Controller

pc
x[k]

u[k]

Figure 2.2: The control engineering perspective of the distributed application from Fig. 2.1 has sensor
and actuator directly interacting with the plant while the controller computes input signals after receiving
sensor readings over a network.

Sec. 2.3 Sampled-data systems 21

ps

x[k]

pc

u[k]

pa

ps

x[k]

pc

u[k]

pa

ps

x[k]

pc

u[k]

pa

ECU1

ECU2

BUS
ECU3

h

τ

d

Figure 2.3: The timing diagram of a distributed controller shows that sensor task ps, controller task pc,
and actuator task pa all require computation time on their respective resources. Communication occurs
over a shared bus; waiting time dominates actual transmission times there. In a buffered implementation,
pa is triggered periodically with an offset d that serves as deadline. Input signal u[k] must be present at
that moment for the system to proceed without failure, i.e., the varying sensor-to-buffer delay τ must not
exceed deadline d.

system periodically. In other words, each sensing, computation and actuation task triggers a
fixed amount of time since the last occurrence has elapsed. This corresponds to the situation
depicted by Fig. 2.3.

The periodicity introduced by sampling period h implicitly defines time instants {tk}k∈N as
tk = kh. Input signal u is calculated once, applied with delay d and then constant for a full
period. As long as h remains small, it is also reasonable to assume that disturbance w remains
constant within a sampling period.

w(t) = w[k], t ∈
[
tk, tk+1

)
u(t) = u[k], t ∈

[
tk + d, tk+1 + d

)
(2.5)

Notice how control delay d is reflected in the definition of input u. Åstrom and Wittenmark’s
textbook [10] contains more details on the systems that this sampling induces.

Actuation pattern (2.5) is often called Zero-Order Hold (ZOH). In the purest form of ZOH
the system is actuated by an input signal as soon as it arrives. The actuator then holds that
signal until new instructions arrive. ZOH is a very basic, interrupt-driven scheme. If the delay
is assumed to be constant and message drops are excluded, ZOH looks indeed identical to (2.5)
from the perspective of a control engineer.

Conversion to sampled-data system We can now insert the sampling input signals and cal-
culate the system evolution using ODE (2.4). This involves repeatedly solving the ODE and
may not be efficient on embedded devices. The standard approach instead transforms the ODE
into a recurrence equation custom fit to the sampling period. State-of-the-art ODE solvers with
adaptive step size are extremely fast for long-term LTI simulations because they can calculate
many sampling periods at once. The ongoing input signals can be computed faster through the
simpler matrix multiplications of the specific recurrence, however. More importantly, standard
ODE techniques can no longer be applied if delay forms a part of the system model. Searching

22 Ch. 2 Cyber-physical System (CPS) Analysis

for a solution then involves functional differential equations [152] which are significantly more
challenging.

We detail the transformation from continuous ODE to discrete recurrence relation in the
following. Using the periodically constant input pattern from (2.5), we first obtain the discrete-
time representation for x[k] = x(tk) of the undisturbed system (w(t) = 0). This requires only
standard ODE solution techniques like the variation of constants method.

x(tk) =eA
(c)hx(tk−1) +

∫ tk

tk−1

eA
(c)νB(c)u(ν) dν

=eA
(c)hx(tk−1) +

∫ d

0

eA
(c)ν dν B(c)u(tk−1)

+

∫ h

d

eA
(c)ν dν B(c)u(tk) (2.6)

This shows that the dependency of x[k] on its predecessor x[k − 1] is described by a matrix
A(d) = eA

(c)h, the discrete system matrix. If A(c) is invertible, we can utilize the Taylor series
representation of the matrix exponential to efficiently calculate discrete input matrix B(d).∫ d

0

exp(Aν) dν =

∫ d

0

∞∑
l=0

1

l!
Alνl dν =

∞∑
l=0

1

(l + 1)!
Aldl+1

=A−1 · (exp(Ad)− 1) (2.7)

Here, 1 refers to the identity matrix. Overall, we can thus reformulate Eq. (2.6) to

x[k + 1] = A(d)x[k] +B
(d)
1 u[k − 1] +B

(d)
0 u[k]. (2.8)

In this difference equation for the system dynamics, the new matricesA(d),B(d)
1 ,B(d)

0 containing
its parameters are obtained as follows.

A(d) = eA
(c)·h

B
(d)
1 =

∫ d

0

eA
(c)·ν dνB(c) = (A(c))−1

[
eA

(c)d − 1
]
B(c)

B
(d)
0 = (A(c))−1

[
eA

(c)(h−d) − 1
]
B(c) (2.9)

As long as delay d and sampling period h are constant, these matrices can be computed off-
line. Since their computation is otherwise quite expensive, employing buffers to prevent timing
variations is typically justified.

If there is a state feedback control law, u[k] = Kx[k], Eq. (2.8) is often re-written to a state
space form with augmented state

[
x[k] x[k − 1]

]′. Substituting the control law into Eq. (2.8)
yields

x[k + 1] =A(d)x[k] +B
(d)
1 Kx[k − 1] +B

(d)
0 Kx[k]. (2.10)

Sec. 2.3 Sampled-data systems 23

This can be written as state space representation for the augmented state.[
x[k + 1]
x[k]

]
=

[
A(d) +B

(d)
0 K B

(d)
1 K

1 0

] [
x[k]

x[k − 1]

]
(2.11)

Here, 1 and 0 refer to identity and zero matrices of appropriate size. One must be cautious not
to re-write the system in this form before the control law is fixed. Otherwise, the simulation
may inadvertently propagate information from the current state to the next state in a non-causal
fashion.

While the single matrix form facilitates simulation and analysis in certain cases, it also
shows that the delay has effectively doubled the dimension of the state space. This increase is
usually not critical for most controller designs and especially simulations. It constitutes a real
harm for discretization approaches, however, where computational effort increases exponen-
tially with the dimension of the state space.

Transforming disturbance parameters to discrete time We have established the discrete-
time dynamics of the undisturbed system in (2.8). If the original system included a disturbance
term, like (2.3), the characterization of this disturbance must be transformed as well. We thus
derive a discrete-time form of covariance matrix Σ(c) by integrating the constant disturbance
term along with the original dynamics that we had solved starting from Eq. (2.6).

x[k + 1] =A(d)x[k] +B
(d)
1 u[k − 1] +B

(d)
0 u[k] +

∫ tk+1

tk

eA
(c)νw(ν) dν︸ ︷︷ ︸
w[k]

(2.12)

From here, we can calculate Σ(d) = E [w[k]w[k]′] using w[k] =
∫ h

0
eA

(c)νw(ν) dν.

Σ(d) =E
[∫ h

0

∫ h

0

eA
(c)νw(ν)w′(α)eA

(c)′α dα dν
]

=

∫ h

0

∫ h

0

eA
(c)νE [w(ν)w′(α)]eA

(c)′α dα dν

=

∫ h

0

eA
(c)νΣ(c)eA

(c)′ν dν (2.13)

In the last step we have used that the correlation over time is zero for Gaussian noise. This
yields E [w(ν)wT (α)] = Σ(c)δ(ν−α). Numerically, we have two options to calculate Σ(d). We
can employ the method described in [179]. There, van Loan suggests computing

exp
([−A(c) Σ(c)

0 A(c)′

]
h
)

=

[
(A(d))−1 (A(d))−1Σ(d)

0 A(d)′

]
and subsequently obtaining Σ(d) as a combination of block matrices:

Σ(d) =
(
A(d)′)′((A(d))−1Σ(d)

)
(2.14)

24 Ch. 2 Cyber-physical System (CPS) Analysis

Alternatively, we can assume eA(c)ν ≈ 1 for ν ∈ [0, h] and obtain

Σ(d) ≈
∫ h

0

1Σ(c)1′ν dν = Σ(c) · h. (2.15)

2.4 Quality of Control
The motivation behind the efforts of control systems analysis is to find a suitable, or even an
optimal (with respect to some metric) input signal u. Whether this search is conducted for the
general form (2.1) or the simpler LTI versions, requirements and desirable properties must be
discussed beforehand.

Stability

Stability is the quintessential requirement of a closed-loop dynamic system. In [67], Friedland
defines it as “the ability of the system to operate under a variety of conditions without ‘self-
destructing’ ”.

Given its fundamental importance, many definitions have been introduced and a variety of
techniques have been developed to test for stability. The most basic stability definition asks
whether the system will return to its equilibrium after a disturbance. Lyapunov’s definition is
the most commonly accepted version nowadays, arguably because it applies to a very broad
class of systems. It is reproduced in the following with the assumption that the system has
been adjusted such that x = 0 is an equilibrium. Consider Khalil’s textbook [93] for further
background information.

Definition 2.1 (Stability & asymptotic stability). Consider an autonomous dynamical system

ẋ(t) =f(x(t)) x(0) =x0

with f : D → Rn, a locally Lipschitz map from a domain D ⊆ Rn into Rn. The equilibrium
point xe = 0 where f(xe) = 0 is stable if for each ε > 0, there is δ = δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε ∀t ≥ 0.

If the equilibrium is not stable, it is called unstable.
In addition, x = 0 is called asymptotically stable if it is stable and δ can be chosen such

that
‖x(0)‖ < δ ⇒ lim

t→∞
x(t) = 0.

Definition 2.1 asks whether we can find a δ-region such that we are guaranteed not to leave a
previously selected ε-neighborhood. In other words, given a small region, can we find a possibly
even smaller starting region such that we stay in the specified region for all times.

In the nonlinear case, proving stability usually involves finding a Lyapunov function. Such
a function models the energy level of the system in some sense. The idea is that as long as
energy decreases over time the system must eventually reach its equilibrium. Not every system

Sec. 2.4 Quality of Control 25

has a formulation for its energy readily available, however. In other cases, the available version
may not produce the desired result. Lyapunov has thus proven that using alternative energy
descriptions can be used to prove stability as well. This is detailed in the following Theorem,
reproduced from [93].

Theorem 2.2 (Lyapunov function). Let x = 0 be an equilibrium point for an autonomous
system

ẋ(t) =f(x(t)) x(0) =x0

with f : D → Rn, a locally Lipschitz map from a domain D ⊆ Rn into Rn. Let further
V : D → R be a continuously differentiable function with the following properties.

• V (0) = 0 and V (x) > 0 for x ∈ D \ {0}

• V̇ (x) ≤ 0 in D

Then x = 0 is stable. Moreover, if V̇ (x) < 0 in D \ {0}, then x = 0 is asymptotically stable.

Lyapunov functions are a tremendously helpful tool. Their main disadvantage is that it
often requires expert knowledge to find them. Recipes for designing them are only available for
certain simpler system classes.

Evaluating stability for linear systems like (2.2) is possible without Lyapunov functions
altogether. They have usually been designed around a working point. This working point
subsequently becomes their origin and the main equilibrium we are interested in. One very
common test examines the eigenvalues of system matrix A(c). Since the unforced version of the
system ẋ = Ax has solutions of the form x(t) = eAtx0, we can learn about stability from the
eigenvalues of A. If the real parts of all eigenvalues are strictly negative, eAt tends to zero and
we have an asymptotically stable system. If there is a strictly positive eigenvalue, the system
is unstable. With zero real parts, the situation is more complicated. Such systems are referred
to as stable, but not asymptotically stable and tend to exhibit ongoing oscillations. Fig. 2.4
explains these concepts using abstract one-dimensional systems.

A discrete-time linear system (2.8) can be examined similarly. There, however, we must
check that the eigenvalues are within the unit circle of the complex plane for a stable system.

Other popular tests that check for stability from the literature are the following. Root locus
method and Nyquist stability criterion are both graphical approaches that helped jump start
the field when manual computation was the only option. They are still used in robust and
adaptive control settings. Similarly, the Bode diagram can be used for graphic stability checks
in the frequency domain and the Hurwitz criterion is a quicker alternative to computing the
eigenvalues of the system matrix that evaluates smaller determinants instead.

Exponential stability

Stability is the most basic requirement for control systems, but it is often not sufficient. We
would also like to avoid ongoing oscillation and very slow convergence. Exponential stability
hence expands upon this concept by specifying a convergence speed in terms of an exponential
decay. The general definition for this requirement is as follows.

26 Ch. 2 Cyber-physical System (CPS) Analysis

0

t

x

asymptotically stable

0

t

stable, but not asymptotically

0

t

unstable

Figure 2.4: A control system, whether one-dimensional like here or not, behaves in one of three stability
patterns. An asymptotically stable system eliminates disturbances by itself and shrinks toward its work-
ing point, x = 0 in general. An unstable system increases errors and grows toward infinity. In between,
there is the case where deviations lead to future deviations of identical size.

Definition 2.3 (Exponential stability). Consider an autonomous dynamical system

ẋ(t) =f(x(t)) x(0) =x0

with f : D → Rn, a locally Lipschitz map from a domain D ⊆ Rn into Rn. We call equilibrium
xe = 0 where f(xe) = 0 exponentially stable if it is asymptotically stable and there exist α, β, δ
such that

‖x0‖ ≤ δ ⇒ ‖x(t)‖ ≤ α‖x0‖e−βt ∀t ≥ 0.

For continuous LTI systems where solutions have the form x(t) = eAtx0, an exponential
decay requires the (necessarily negative) eigenvalues to be smaller than a certain threshold
value.

For discrete-time systems exponential stability can be defined with regards to the time steps.
In this context, exponential stability ExpStab(l, ε) as model checking property in the way Weiss
and Alur present it (see Section 2.6 or [185]) requires

‖xk+l‖
‖xk‖

< ε, (2.16)

where ‖.‖ denotes the 2-norm. In other words, for a plant to be considered exponentially stable,
any error must be reduced by at least a factor of ε in l sampling periods, i.e., a time of ∆t = l ·h
where h is the sampling period.

Quadratic costs

Designs for stability leave several parameters free for further design. Optimal control goes
beyond merely ensuring stability and instead uses an additional performance criterion.

One way to measure the performance of a system, the so-called Quality of Control (QoC),
is looking at the associated continuous linear quadratic control costs.

J
(c)
C =

∫ T

0

x′(t)Q(c)x(t) + u′(t)R(c)u(t) dt (2.17)

Sec. 2.4 Quality of Control 27

Here, cost matricesQ(c) � 0,R(c) � 0 are used to weight the importance of each individual state
and input signal. For the cost formulation to be meaningful the involved matrices Q,R must be
positive semi-definite or definite, respectively. These terms are explained in Definition 2.4 after
this paragraph. Otherwise, Formulation (2.17) would encourage making errors or wasting input
energy. To understand this, consider a cost of J (c) =

∫ T
0
−u′(t)u(t). Clearly, minimizing these

costs will maximize the input energy. Note that most solution techniques do not even work in
these uninteresting circumstances.

Definition 2.4 (Positive definiteness). A symmetric matrix X ∈ Rn×n is called positive definite
if z′Xz > 0 for all z ∈ Rn \ {0}. It is called positive semi-definite if z′Xz ≥ 0 for all z ∈ Rn.

For two symmetric matrices X, Y ∈ Rn×n, X is larger than Y in the positive definite sense
if X − Y is positive definite. This is written

X � Y ⇔ X − Y � 0⇔ z′(X − Y)z > 0 ∀z ∈ Rn \ {0}

The comparison operator� for “greater equal” or “greater in the positive semi-definite sense”
is defined analogously.

Remark 2.5 (Positive definiteness via eigenvalues). A symmetric matrix X ∈ Rn×n is positive
definite according to Definition 2.4 if and only if all its eigenvalues are positive.

X � 0⇔ λi > 0 ∀λi ∈ λ(X)

Similarly, X is positive semi-definite if its eigenvalues are non-negative.

X � 0⇔ λi ≥ 0 ∀λi ∈ λ(X)

Many textbooks are concerned with the design of a gain matrix that provides optimal per-
formance with respect to linear quadratic costs (2.17). In other words, they look for a matrix
K such that actuating the system with u = Kx minimizes J (c)

C . This Linear Quadratic Gaus-
sian (LQG) regulator can be calculated by solving a matrix Riccati equation, an off-line oper-
ation that scales adequately. The entire framework is detailed in [168], for instance. Unstable
systems yield infinite costs over an infinite horizon and, figuratively speaking, the optimal de-
signs are thus automatically stable. A numerical solution approach for the underlying Riccati
equation is presented in [17]. The task is also part of the MATLAB control system toolbox.

In certain cases, it may not be possible to efficiently find an optimal gain or other criteria
may take priority. This is the case for systems that experience communication interference, for
instance. In such situations, the quadratic costs from (2.17) can still be used to evaluate and
compare the control quality of different approaches.

Next, consider the discrete representation of the linear quadratic control costs from Eq. (2.17).
It is common to write them as follows.

J
(d)
C =

N∑
k=0

x′[k]Q(d)x[k] + u′[k − 1]R
(d)
1 u[k − 1] + u′[k]R

(d)
0 u[k] (2.18)

28 Ch. 2 Cyber-physical System (CPS) Analysis

The involved matrices can be transformed accurately with the approach presented in [9] and
the matrix exponential manipulations from [179]. A simpler approach is to ignore second- and
higher-order terms to obtain

Q(d) =h ·Q(c) R
(d)
1 =d ·R(c) R

(d)
0 =(h− d) ·R(c).

It often makes sense to combineR(d)
1 andR(d)

0 . Consider the following transformation of (2.18).
It exploits that u[k−1] is the input of the previous step and ignores the border cases that become
irrelevant as soon as N , the number of steps to consider, becomes large.

J
(d)
C =

N∑
k=0

x′[k]Q(d)x[k] + u′[k]
(
R

(d)
1 +R

(d)
0

)
u[k] + u′[−1]R

(d)
1 u[−1]− u′[N]R

(d)
1 u[N]

The discrete costs are therefore often written with a single R(d) = R
(d)
1 +R

(d)
0 .

J
(d)
C =

N∑
k=0

x′[k]Q(d)x[k] + u′[k]R(d)u[k] (2.19)

The LQG framework continues to work with discrete dynamics. This means there is an-
other gain matrix K(d) such that actuating with u[k] = K(d)x[k] minimizes J (d)

C . Consider
Bertsekas’ textbook [21] for background information on how the involved recursion converges
to the Discrete Algebraic Riccati Equation.

2.5 Linear switched systems
When physical systems depend on digital environments in any way, we have to design appropri-
ate sampling and we will usually encounter some form of delay. This is taken into account by
the sampled data systems in Section 2.3. Digital components additionally introduce switching,
however. This can be voluntary, e.g., when scheduling computation tasks or involuntary, e.g.,
when messages do not arrive in time. These behaviors are analyzed from the control perspective
in a context referred to as switched systems [114].

A switched system moves from one subsystem to another. The switches can be driven by
the environment, considered as opponent or disturbance, or they can be voluntary if we move
between specialized controllers. If all subsystems are linear, we end up with a linear switched
system of the following form.

ẋ =Aσx (2.20)

Here, {Aσ}σ is a set of system matrices that represent the various subsystems. In this work,
we will usually treat {Ao, Ac} differentiating only between closed loop, i.e., standard, desirable
conditions and open loop operation that occurs when we lose messages for some reason. If we
have a controller K designed for feedback operation of a system described by matrix A and we
decide to input nothing without new information, we obtain the subsystems

ẋ =
(
A+BK︸ ︷︷ ︸

Ac

)
x ẋ =

(
A︸︷︷︸
Ao

)
x. (2.21)

Sec. 2.6 Formally verifiable properties for switched systems 29

The first question for all control systems is stability. When switching is considered, this is
typically answered by finding a common Lyapunov function, i.e., a single Lyapunov function
(see Theorem 2.2) that decreases for all systems. As long as the energy of all all subsystems
decreases with respect to one common function, the overall system is also stable. This is not
necessarily the case if all subsystems are stable but only with respect to individual Lyapunov
functions. Branicky shows a counter-example for this in [29].

For linear switched systems we do not need to rely on expert intuition to find such a Lya-
punov function. Theorem 2.6, taken from [126] and presented next, represents a computational
tool for this search.

Theorem 2.6 (Common Quadratic Lyapunov Function). A switching system

x[k + 1] = Aix[k], i = 1, 2 · · ·N. (2.22)

is exponentially stable with Common Quadratic Lyapunov Function (CQLF) V (x) = x′Px if
there exists a matrix P � 0 solving the system of LMIs

A′iPAi − P ≺ 0, i ∈ 1, 2 · · ·N (2.23)

Here, X � 0 specifies that X has to be positive definite (Definition 2.4). LMIs are convex
optimization problems [26]. As such, they can be efficiently solved.

2.6 Formally verifiable properties for switched systems
Traditionally, a feedback control application is designed to tolerate a maximum specified sensor-
to-actuator delay and the underlying implementation architecture (ECUs and bus schedules) is
chosen to meet such an end-to-end delay requirement.

Hence, the specified maximum sensor-to-actuator delay for which the controller has been
designed acts as a deadline for the feedback control messages. Towards this, a control applica-
tion is mapped onto an architecture only when all instances of control messages are guaranteed
to meet their deadlines. Such a design approach where control performance requirements are
mapped to hard timing constraints often turns out to be pessimistic and fails to exploit the
inherent robustness of the feedback control loops.

Alur and Weiss have paved the way for an alternative approach. In [185] and [5], they
formulate a number of common performance requirements for control systems in a way that
formal verification tools understand. They treat discrete-time LTI systems without disturbance
as in Eq. (2.8) and use finite Büchi automata as interface. We can verify specifications in this
form by intersecting them with automata models for the underlying hardware platform. A text
book like [12] details the well established algorithms that are required for this.

This section presents some of the Büchi automaton properties of Alur and Weiss. It then
expands on them by grouping the numerous patterns in a coarser, but more manageable way, the
(f,H)-firm deadlines. Furthermore, it adds thoughts on Linear Temporal Logic (LTL) versions,
extending their use case to model checking tools that answer specifically whether a LTL formula
is satisfied by a certain transition system.

30 Ch. 2 Cyber-physical System (CPS) Analysis

Exponential stability requirement as Büchi automaton Alur and Weiss transform perfor-
mance requirements as in Section 2.4 into Büchi automata. Their original motivation is on-line
task scheduling. In other words, after their construction, they traverse many automata simul-
taneously and search for a path that appears in their intersection and therefore satisfies all the
requirements. The motivation in this work is performance verification but the same construction
is still useful. After encoding the performance requirements in the same way, we subsequently
verify whether a certain architecture satisfies them.

Stability is the quintessential property for control systems. Nobody has formulated the
basic variant in a way that a model checking tool could understand, however. Figuratively
speaking, the issue is that stability cannot be decided with a finite view of the system. The
stronger requirement of exponential stability is more amenable for formal verification. There, it
is sufficient to select a certain period and collect all switching patterns the system can take that
fulfill the decay requirement over that period.

Starting from (2.16)) and considering a switched system of the form (2.20), we obtain the
following relation,

xk+l = Aσk+l · · ·Aσkxk ⇒
‖xk+l‖
‖xk‖

≤
∥∥Aσk+l · · ·Aσk∥∥ (2.24)

In other words, the exponential stability requirement can be re-written to ([185])

ExpStab(l, ε) = {σi ∈ {o, c}ω : ‖Aσk+l · · ·Aσk+1
‖ < ε ∀k ∈ N

}
. (2.25)

In model checking terms, this is a language of strings σ over the alphabet {o, c}. All strings
correspond to switching patterns ofAo andAc that ensure a possible tracking error in the system
is reduced by at least a factor of ε over l sampling periods. [185] shows that this language is
ω-regular. This means that it can be represented by a finite Non-determistic Büchi Automaton
(NBA) and is consequently suitable for model checking.

Quadratic cost bound as Büchi automaton In addition to exponential stability, we may also
be interested in the worst case performance of a switching system measured according to the
quadratic costs from (2.19). In a switching system there is no input signal besides the switching.
Costs for input energy must thus be imposed by penalizing the state in a suitable fashion. To
reach a compatible formulation, we are also limited to finite horizon costs. Specifying an upper
bound J over any horizon of K time steps, this yields the following switching patterns.

Cost({Qi}, K, J) =
{
σi ∈ {o, c}ω :

k0+K∑
k=ko

m∑
i=1

x′[k]Qix
′[k] < J ∀k0 ∈ N, xk0 ∈ D

}
(2.26)

Once more, [185] shows that this formulation is compatible with model checking.

(f,H)-firm deadlines Earlier parts of this section discuss how certain performance require-
ments for CPS correspond to testable patterns in switched systems. The computation of such
sets of acceptable patterns can be done via brute-force search as in [185], but it becomes tedious
to verify them pattern-by-pattern. To avoid this, we summarize many patterns in a combination
of the following deadline constraint.

Sec. 2.6 Formally verifiable properties for switched systems 31

Definition 2.7 ((f,H)-firm deadline). A stream of control messages is said to fulfill the (f,H)-
firm deadline τ if at least f out of any H consecutive messages meet their deadline. A system
switching between two states {o, c}, open loop and closed loop, equivalently fulfills a (f,H)-firm
specification if at least f out of any H consecutive steps are spent in closed-loop operation c.

This definition interacts well with the moving window perspective taken in (2.25) and (2.26).
The idea is that among all possible patterns, one can rule out all the unacceptable ones by
a combination of (f,H)-firm deadlines. We will see that (f,H)-firm deadlines can be readily
modeled using LTL. The hope is of course that checking for fewer such patterns is faster
than evaluating all patterns that the presented brute-force NBA approach would yield. This is
certainly true for tools that run their checks independently of each other. Section 4.1 has an
example of how this can be applied.

Example: Switched system performance under (f,H)-firm specification The following
motivational case study demonstrates the varying performance of a switched system over two
similar (f,H)-firm deadline specifications. It discusses a setup made up of

Ac =

[
0.4000 0.0750
−0.8250 0.3750

]
Ao =

[
1.4300 −0.3550
0.5330 1.5620

]
. (2.27)

The discrete-time arrangement evolves according to (2.22) with i ∈ {c, o} switching between
stable “closed-loop” and unstable “open-loop” mode.

Fig. 2.5 shows the difference in performance between architectures that fulfill various (f,H)-
firm deadline requirements. Under a (5,5)-firm deadline, i.e., under ideal transmission condi-
tions, the system settles quickly to its equilibrium after k ≈ 4 steps. When 2 drops are allowed
in a (3,5)-firm setting, the system performs noticeably worse. Allowing another drop in the
(2,5)-firm specification more than doubles the settling time to k ≈ 11 and lets the system move
away from the equilibrium at first (x4 > x0!). This illustrates that some drops can be tolerated
but once a threshold is reached control performance rapidly deteriorates.

Formulating properties in Linear Temporal Logic (LTL) Model checking frameworks
usually cannot treat inputs in the form of (f,H)-firm deadlines directly. In order to interact
with them, one has to resort to a language they understand. LTL is arguably the most common
input interface for these tools.

The elementary operators of LTL, resembling other temporal logics, are introduced in [12]
as follows.

• ♦ – “eventually” (at some point in the future), also expressed as F for “finally”

• � – “always” (now and forever from now on), also expressed as G for “globally”

These operators are prepositions for LTL formulas that are constructed according to the follow-
ing grammar.

ϕ ::= true
∣∣ a ∣∣ϕ1 ∧ ϕ2

∣∣¬ϕ ∣∣ Xϕ
∣∣ϕ1 Uϕ2 (2.28)

Here, the elementary formula elements are unary negation ¬, binary and ∧, next operator X
which delays checking for one time step and the until operator U. ϕ1 Uϕ2 is true if and only

32 Ch. 2 Cyber-physical System (CPS) Analysis

0 2 4 6 8 10 12 14 16
−0.2

0

0.2

0.4

0.6

0.8

1

k = 5

k

x
1

(5,5)-firm deadline
(3,5)-firm deadline
(2,5)-firm deadline

Figure 2.5: Switched system performance typically deteriorates with less reliable communication.

if ϕ1 holds until ϕ2 holds. Finally, a ∈ AP refers to an atomic proposition which evaluates
to true or false depending on the current state of the system. In our context, the set of atomic
propositions is often given by

• AP = {o, c} referring to a closed or open loop system, i.e., a successful or unsuccessful
message transmission, or

• AP = {1, . . . , N} describing which indexed application is currently scheduled.

The elementary LTL operators from (2.28) can be extended via transformations with a hand-
ful of equally basic operators. The ones we use are the or operator ∨, implication ϕ1 ⇒ ϕ2 =
¬ϕ1 ∨ ϕ2, as well as weak until where ϕ1 Wϕ2 = (ϕ1 Uϕ2) ∨ �ϕ1 evaluates to true if ϕ1 is
true forever or holds until ϕ2 holds.

A great help when formulating LTL properties is the patterns project [59], a collection of
common LTL specifications. To express (f,H)-firm deadlines, as in Definition 2.7, we slightly
modify the bounded existence pattern there. This yields LTL formula of the following form,
allowing one failure over H cycles in this case.

�

{
(k = k0)⇒ ¬oW

(
(k = k0 +H)∨ (2.29)[
o ∧ X[¬oW(k = k0 +H)]

]
(2.30))}
(2.31)

In this formula, k = k0 and k = k0 + H are atomic propositions that check whether we are in
a certain time step. o refers to being open loop mode because a transmission was unsuccessful.
In the ECA framework that we introduce in Section 3.1, this can be evaluated with evaluation
automata (see Fig. 3.5). The direct translation to the model checking tool SAL is in Listing 3.2
in Section 3.4.

Sec. 2.6 Formally verifiable properties for switched systems 33

The specification says that during the window [k0, k0 +H], o, meaning a failure, can occur at
most once. This LTL formulation has to be checked for every possible k0 of the time steps that
run round-robin with maximum value H . H is the period that shall be observed. For instance,
if the stream has a (1, 3)-firm deadline, then H = 3 has to be chosen. The amount of acceptable
deadline misses can be varied by adding additional lines similar to (2.30). The idea behind this
formulation is that we first require no failure (¬o) until the end (k = k0 + H) or until a failure
o. If that failure occurs, however, 6= o must then hold from the next step until the end. If there
are multiple formulations of this kind, they can be checked sequentially.

34 Ch. 2 Cyber-physical System (CPS) Analysis

35

3
Modeling Communication Platforms with

Event Count Automata (ECAs)

ECAs, as introduced in [41], are a modeling language for timing analysis. This thesis uses them
to describe how the hardware platform in a control system behaves. Chapter 4 presents how this
behavior analysis interfaces with the control system properties from Chapter 2.

After introducing how an individual ECA can model a bus or processor by example and
then formally (Section 3.1), this chapter describes how ECAs can be connected in networks
(Section 3.2) to describe entire computation platforms. Given an ECA model, helper automata
or other formulations can be used to verify various properties, like delay (Section 3.3). For this
purpose, the ECA model has to be analyzed by a model checking tool. This role is filled by
SAL [54] in this thesis (Section 3.4).

Next, we discuss how to model Fixed-Priority Non-preemptive Scheduling (FPNS) with
discrete-time automata, like ECAs. Since the non-interruptible transmissions do not need to
align with the time slots of an ECA, the scheduling behavior depends on intra-slot arrival times
that cannot be tracked. As originally presented in [92], common models do not take this into
account (Section 3.5). A non-deterministic model (Section 3.6) is necessary to perform conser-
vative timing analysis, as demonstrated in the corresponding case study (Section 3.7).

The chapter ends with a discussion on related work (Section 3.8).

3.1 Event Count Automata (ECAs)

ECAs have originally been devised for stream processing applications. The stream process-
ing abstraction comprises applications like audio/video or network packet processing, but also
database access. A wide variety of devices, ranging from mobile phones, set-top boxes to net-
work routers run such applications. In this formalism, applications are partitioned into several

36 Ch. 3 Modeling Communication Platforms with ECAs

tasks and subsequently mapped onto individual Processing Elements (PEs). A data stream then
flows into the first PE where it is processed and forwarded to the next PE of the network. PEs
are connected via buffers that store the partially processed data of the stream. Once a data el-
ement has gone through all PEs and their respective tasks, it is fully processed and leaves the
network.

The challenge in these applications arises from the burst patterns that the streams exhibit.
Determining the worst case delay of a stream or sufficient buffer sizes that prevent overflow
can thus be a challenge. These are very natural questions during the design phase of processing
hardware and frameworks like Network Calculus (NC) and, later, Real-time Calculus (RTC)
have been developed specifically to answer them.

Both NC and RTC are functional frameworks in the sense that streams and PEs are described
by algebraic functions. The analysis is performed purely through algebraic operations, typically
convolutions of input stream and processor. While this makes them highly efficient, they face
difficulty encoding state information. Special tweaks, as in [47] for Fixed-Priority Non-pre-
emptive Scheduling (FPNS), are necessary to address these limitations and some properties can
simply not be included without considerable pessimism.

ECAs aim to encode state information in a natural way while remaining as compatible with
RTC as possible. [41] shows how an arrival curve, the function RTC uses to model inputs of a
PE, can be converted to an ECA.

The reverse is not true in general. An ECA is more expressive than an algebraic function
from the RTC framework, mainly because it can store state information. While significantly
more expensive to evaluate as automaton, it remains useful because it can be combined with
RTC. In this way, small but critical system parts may be modeled using ECAs while RTC
describes the remaining network. This has been demonstrated in [145].

ECA example

An ECA describes event arrivals or occurrences. These may represent data coming from the
environment or indicate the amount of processing available in a PE. A specific sequence of
events is a string of integers. For example, in the case of an arrival ECA “201” denotes an arrival
pattern with two messages arriving in the first interval, no messages in the second interval and
one message in the third interval. In the case of a service ECA, it denotes the amount of data that
is processed during the respective intervals. In total, an ECA models a set of strings containing
all strings it can generate. This set is also referred to as its language.

The example ECA in Fig. 3.1 has a single count variable x. It accepts strings that have one
event occurring in either state A or B. The following sequence is possible, for instance. We
start with count variable x = 0 in state A. Now, zero or one event could occur. This is specified
by the rate function ρ(A) = [0, 1]. Whether an event occurs or not, we can now take the only
transition to B. In such a situation, transitions must be taken in the realm of ECA and we thus
move to B. Assume that one event occurred while in state A. x = 1 therefore already. As
specified by the guard x = 1 on transition (B,C), no further events occur and we move to C.
There, the rate function ρ(C) = [0, 0] specifies that no events can occur. We thus move back to
A, resetting x. This movement yields the string ”100”.

Instead of occurring in state A as in the cycle just described, an event could also have

Sec. 3.1 Event Count Automata (ECAs) 37

A
[0, 1]

B
[0, 1]

C
[0, 0]

x← 0 x ≤ 1 x = 1

x← 0

Figure 3.1: Periodic with jitter arrival ECA (p = 3, j = 2)

materialized in state B. This would yield the string ”010”. Combinations of the two strings
constitute the overall language

{100100 . . . , 100010 . . . , 010100 . . . , . . . }.

The ECA from Fig. 3.1 therefore models a process with period p = 3 and a jitter of j = 2.
Note that the discrete nature of the ECA must assume that an event occurs at any time during its
discrete time step. This means that an ECA that appears perfectly periodic already comes with
a built-in jitter j = 1.

The next paragraphs present a more rigorous description of ECA semantics.

Formal ECA definition

ECAs track the number of events that take place in a unit interval of time. Dealing with such
unit intervals, it is assumed that a suitable granularity of time has been fixed a priori. The arrival
of events is tracked by all count variables associated with the automaton.

An ECA starts in a configuration (sin, Vin) – an initial state and an initial valuation of all
count variables. Transitions and, in particular, their individual guards determine when the ECA
moves from state to state. During a transition – assumed to be instantaneous – some of the count
variables can be reset to 0. In addition to guards on transitions, ECA movement can be directed
by state invariant constraints. Altogether, an ECA is given by a tuple

A = (S, sin, X, Vin, Inv, ρ,→) . (3.1)

The components of this formulation are explained in the following.

• S is the set of states and sin ∈ S is the initial state.

• X is the set of count variables.

• Vin is the initial valuation of the count variables.

• Inv : S → Φ(X) is the Invariant Constraint Function with

Φ(X) = x ≤ c|x < c|x ≥ c|x > c|ϕ1 ∧ ϕ2

detailing the possible constraints. Inv assigns invariance constraints to the states.

38 Ch. 3 Modeling Communication Platforms with ECAs

A
[0, 1]

B
[1, 2]

x← 0 x ≤ 1

x← 0

x = 2

0 1 2 3 4
0

2

4

ticks

ev
en

ts

upper bound
lower bound

Figure 3.2: Periodic with jitter arrival automaton (p = 2, j = 2) and corresponding upper and lower
arrival curve.

• ρ : S → N× N is the rate function. Every state is assigned an interval

ρ(s) = [l, u]

that specifies the possible rates of input arrival or service in that state.

• →⊆ S×Φ(X)× 2X ×S is the transition relation. Each transition links two states, hence
the association with S × S, and it is equipped by a guard from Φ(X). It can further reset
any subset of X to 0. These subsets make up 2X , as usual.

The constraint variables c are integers; the rate intervals [l, u] are integer intervals. For this
reason, a count variable x can reach only integer values by design. Transitions are considered
urgent, i.e., they have to be taken if possible. If no transition is possible, the automaton can also
remain in its current state.

The language of ECAs contains infinite strings of integers that denote certain data arrival or
processing patterns. A string σ = n1n2 · · · ∈ [0, ρmax]ω is accepted if and only if the automaton
can produce an infinite sequence (s0, V0)

n1⇒ (s1, V1)
n2⇒ (s2, V2)⇒

In the case of the periodic with jitter automaton in Fig. 3.2, the states are given by S =
{A,B}. The initial state is sin = A and the only count variable x is initialized to x = 0. There
are no state invariants, the rate function yields ρ(A) = [0, 1] and ρ(B) = [1, 2]. Finally, the
transition relation is given by

→=
{(

A,B, x ≤ 1, ∅
)

;
(
B,A, x = 2, {x}

)}
.

The language of this ECA is represented by the upper and lower bound for arrivals depicted
on the right in Fig. 3.2. From its initial state sin = A, the guards are such that the ECA always
returns to A in two steps. There may or may not be an event in A at first. In this case, the guard
x = 2 forces two events to occur in B. The corresponding strings ”11” and ”02” obtained from
this logic are then the building blocks of the overall language.

3.2 ECA networks
An ECA by itself only models the behavior of one component. For system-level results, we
must connect multiple of them in the right way. The notion of ECA networks was introduced

Sec. 3.2 ECA networks 39

for this purpose. These are essentially directed graphs where each vertex is associated with an
ECA and every edge corresponds to a buffer. In each time step, the ECA nodes consume items
from their input buffers and deposit items into their output buffers.

Formally, an ECA network is represented by a structure

N = ({Ap}p∈P , {Up}p∈P ,B, Bmax, C, IN,OUT) . (3.2)

This definition contains many elements that require further clarification.

• P is a finite set of nodes that the various ECAs Ap are associated with. A P-indexed
family such as {Ap}p∈P is often expressed as just {Ap}.

• Each ECA is further associated with an update functionUp that defines from which buffers
it consumes items and where it deposits them. They are described in more detail in
Definition 3.1. Most update functions are trivial and the concept will become clear from
examples. They play an integral role, however, in the modeling of FPNS for the ECA
framework (Section 3.5).

• B is a finite set of buffers andBmax specifies their capacity. This maximum buffer capacity
could be modeled for each buffer individually, but that is usually forgone for convenience
reasons.

• C is the maximum number of items that any ECA in the network can handle in one step.
Such a bound must be specified so we can guarantee that the state space behind the ECA
that we need to explore remains finite.

• IN : P → 2B and OUT : P → 2B link the buffers to the ECA. For instance, IN(PE) = B1

in Fig. 3.3. These functions are required to have the following properties.

– IN(p) ∪ OUT(p) 6= ∅ ∀p ∈ P – Each ECA Ap is connected to at least one buffer.

– IN(p) ∩ OUT(p) = ∅ ∀p ∈ P – ECAs do not deposit into their own input buffers.

– IN(p) ∩ IN(q) = ∅ = OUT(p) ∩ OUT(q) ∀p 6= q – Buffers are point to point and
unshared.

– ∀B ∈ B,∃p : B ∈ IN(p) ∨ B ∈ OUT(p) – All buffers are connected to at least one
ECA.

Definition 3.1 (ECA update function). Let Ap be an ECA with Np = N in
p +N out

p := |IN(p)|+
|OUT(p)| the total amount of attached buffers separated into in- and output buffers.

A function Up : S×{0, . . . , C}×NNp → NNp mapping states, event count along with input
and output buffer levels to changes in input and output buffer levels is called update function if
it fulfills the following condition.

• Data is preserved within individual ECAs. It must therefore hold for all vectors of associ-
ated buffer levels b =

[
(bi)i∈IN(p) (b′i)i∈OUT(p)

]
∈ NN , event counts c ∈ {0, . . . , C} and

states s ∈ S ∑
i∈IN(p)

U (i)
p (s, c, b) =

∑
j∈OUT(p)

U (j)
p (s, c, b) ≤ c

40 Ch. 3 Modeling Communication Platforms with ECAs

B1Arr 1 B2PE

Figure 3.3: In this sample ECA network, the arrival ECA Arr1 deposits into bufferB1. The service ECA
PE obtains data from there and delivers them to buffer B2 where they are further processed.

Figuratively speaking, an ECA does not store or consume data. It only moves it from
buffer to buffer. Typically, the number of moved items is equal to the event count c. It can
be smaller, however, if the buffers have less items, for instance.

Definition 3.2 (ECA buffer). A buffer B is represented by its fill level b. It evolves according to
incoming messages U (B)

in and outgoing messages U (B)
out . Here in = {p : OUT(p) 3 B} refers to

the unique ECA who deposits into B. out = {p : IN(p) 3 B} analogously refers to the unique
ECA that reads from B.

b+ = max
[
0,min

(
b+ U

(B)
in − U (B)

out , Bmax

)]
(3.3)

The (·)+ is a temporal next operator. More precisely, if b = b[k] refers to the content of the
buffer at the end of slot k, b+ = b[k + 1] refers to the content one time step later1.

Note that, while the ECAs cannot lose data, the buffer mechanics in (3.3) let the buffers
throw away data if they run full. This mirrors real-life buffer behavior. If one wants to check
whether a certain buffer capacity Bmax is sufficient to keep all data, however, one has to model
buffers that are larger than Bmax and check whether this level is exceeded at any time.

Fig. 3.3 shows an exemplary ECA network that operates in this fashion. In this system,
{Ap} = {Arr 1,PE} and B = {B1, B2}. IN, OUT are clear from the graph; Bmax, C can be
specified as circumstances demand.

With the main parameters in place, we now look at the update functions {Up}. For the
arrival automaton, the update function is simply

UArr1 (s, c, b) = c. (3.4)

Similarly, the update function of PE is given by

UPE (s, c, b) =
[
c c

]
. (3.5)

In other words, both ECAs consume and deliver their event count directly.
A more complicated example that demonstrates Time Division Multiple Access (TDMA)

arbitration with ECAs is in Fig. 3.4. It begins on the left with a set of arrival ECAs. These
automata deposit all their events into the single attached buffer using the simple update function
from (3.4).

1 This is a convenient notation because it emphasizes that there is no interaction between more distant time
steps and it translates well into the implementation language for the Binary Decision Diagram (BDD)-based model
checking tool SAL [54].

Sec. 3.3 Methods for evaluating ECAs 41

B1

B5

Arr1

Arr5

... ... TDMA

C1

C5

...

Figure 3.4: This ECA network demonstrates a single service ECA handling multiple streams. This raises
arbitration questions that must be handled by its update function.

From the first buffers, the data is further processed by a single time-triggered ECA TDMA.
This service automaton implements a time-triggered scheduling policy, i.e., it associates each
state with a certain input buffer. Cycling through the states sj in round-robin fashion, it pro-
cesses exactly the buffer the current state is assigned to. If there is nothing to be processed in
this buffer, the processing opportunity keeps unused. This protocol is realized by the following
update function.

U
(i)
TDMA(sj, c, b) =


[
c c

]
, if i = j[

0 0
]

, if i 6= j
(3.6)

3.3 Methods for evaluating ECAs

We have now explored the theory behind ECAs. Next, we add augmentation methods that
permit convenient evaluation of the common questions that arise in the design of communication
networks. This passage first shows how the maximum delay for individual message streams can
be calculated and then treats the evaluation of individual deadline misses that are needed to
collaborate with the LTL properties from Section 2.4.

Delay calculation Once an ECA network is set up, the maximum delay for a specific message
stream can be calculated in the following way. Initialize an integer arrayDj = 0. Dj tracks how
many messages have been in the system for j units of time or more. With the buffer mechanics
and the next-operator (·)+ explained in Definition 3.2 in mind, update Dj to D+

j as follows.
Here, inc(b1) refers to the increment of the first buffer, i.e., the new arrivals; dec(blast) to the
decrement of the last buffer, i.e., the messages leaving the system. Both are to be regarded with
respect to one specific message stream.

D+
j =

{
inc(b1) +D1 − dec(blast) , if j = 1

max
(
0, Dj−1 − dec(blast)

)
, otherwise

The maximum delay that a message of this stream can experience is then bounded by max{j :
Dj > 0 at any time}. In a model checking environment, this value can be calculated in the

42 Ch. 3 Modeling Communication Platforms with ECAs

following way. Initialize a variable d = 0 and update d according to

d+ =

{
d , if Dd+1 = 0

d+ 1 , otherwise.

Note that this model does not delete buffer overwrites from the delay count. An overwritten
message will therefore cause an unbounded worst case delay for the concerned message stream.
This is the correct interpretation in most cases, but it is not suitable for the evaluation of deadline
firmness that we discuss next.

Verification of deadline firmness The (f,H)-firm deadline interface from Section 2.4 cannot
be evaluated by merely asking for the maximum delay. This worst case delay may in many cases
be unbounded and therefore not reveal any information. In a typical distributed CPS situation –
the assumptions will be detailed shortly – the validity of a (f,H)-firm deadline can be checked
by introducing an evaluation helper automaton for counting failures and an array to store them.

The evaluation automaton is depicted in Fig. 3.5. Its inputs are clkarr and buftotal. These
refer to the clock in the corresponding arrival automaton from the stream under scrutiny and the
total amount of messages that are inside the system for this stream. In the ideal case, a message
arrives in cycle clkarr = 0. The automaton stays in “neutral” until the deadline or threshold
delay τth is reached. It then counts the messages that the stream currently has inside the system.
If the deadline is shorter than the period, i.e., if no new message has been inserted into the
stream and the last message has arrived, there should be no messages inside the system. In this
case, the automaton moves to “success”. Otherwise, it shifts to “fail”.

Evaluating communication with the automaton from Fig. 3.5 relies on the following as-
sumptions.

1. Messages in the stream under discussion arrive periodically, possibly with small jitter, but
without burst. This is necessary for the arrival automaton’s clock to serve as clock for the
evaluation automaton.

2. Messages are only overwritten by other messages from their own stream and they cannot
bypass each other.

3. Messages have a deadline shorter than their arrival period.

These assumptions hold in virtually all control systems. It is very rare that the sampling period
is chosen to be smaller than the specified deadline. If a message would bypass another, it should
rather overwrite its predecessor since the state information that is transmitted is not sequential.
In other words, if the last state is knows, knowledge about the older states is no longer needed
to actuate the system. Under these assumptions it is sufficient to test that the stream has no
more messages inside the system when the clock of the arrival automaton reaches the deadline.
When no messages are inside the system, the last message that was sent must have successfully
arrived since – being last – it could not have been overwritten.

Reading inputs from multiple distributed sensors may necessitate merging streams. This
does not constitute a major challenge for the approach from this section. Having a message
inside the system when it is evaluated at the deadline still represents a failure.

Sec. 3.3 Methods for evaluating ECAs 43

neutral

success fail

clkarr mod h 6= τth

clkarr mod h = τth
buftotal > 0

clkarr mod h = τth
buftotal = 0

Figure 3.5: Evaluation Automaton with inputs clkarr, the clock of the corresponding arrival automaton,
buftotal =

∑
i:i∈Stream bi, the total amount of messages the stream of interest has inside the system.

With the evaluation automaton in place, checking for (f,H)-firmness (Definition 2.7) is pos-
sible by introducing an array of integers. Consider first the simpler case of a (m + 1, 1)-firm
deadline that requires only one integer. In this situation, we wonder whether it is guaranteed
that no more than m consecutive messages fail to meet their deadline. To track the maximum
number of uninterrupted deadline misses, we initialize a variable failcnt = 0. We then update
it with (·)+ the temporal next operator depending on s, the state of the evaluation automaton.

failcnt+ =


failcnt +1 , if s = fail

0 , if s = success

failcnt , if s = neutral

(3.7)

To guarantee that there are at most m message drops after every successful transmission, it then
suffices to model check for the LTL formulation

G(failcnt < m).

For general (f,H)-firm deadlines as discussed in [91] and Section 4.1, a fail count array F of
size H is updated in a similar way. Its elements Fj represent the number of failed transmissions
over H time steps. They differ in their offset; F0 counts messages in the interval [0, H− 1]%H ,
F1 is associated with [1, 0]%H . %H is modulo H and indicates that time steps are tracked in
round-robin fashion. At the end, it must be verified that none of the array’s elements exceeds f
at any time. Note that it is significantly easier to evaluate the number of messages in the system
than to track the delay of individual messages as in [91].

Timestamping messages The techniques presented for deadline evaluation so far all cater
to one specific question. This keeps their implementation nimble with respect to the overall
state space size implied by an ECA network. In certain cases, we may want even more precise
information about the behavior of the network. Tracking individual patterns of message delay
tends to be difficult with the discussed approaches, for instance.

One has to keep in mind that the ECA framework was designed to answer questions like
”Is there a buffer overflow?” or ”What is the maximum end-to-end delay of a stream?”. The

44 Ch. 3 Modeling Communication Platforms with ECAs

B1Ain Aservice1t=5 t=2 Aeval

Clock
t = 6

Figure 3.6: A stream of time-stamped messages in a network of ECAs

buffers therefore do not hold individual messages; only the number of messages that are present
in a specific buffer is stored. Once a message is in the network, we do not know when it arrived
anymore, in general. The automaton from Fig. 3.5 alleviates this only under certain assumptions
and not for general delay-related questions. The more general approach of timestamping hence
proves valuable in practice.

By adding timestamps to messages, it becomes possible to answer very general questions
about delay. If there are many such questions, this may be more efficient than adding many
custom-designed evaluation automatons. Since it does incur a significant overhead, however,
it is advisable to track only individual streams in this manner. In addition to system analysis,
timestamps could also be used for scheduling inside the system. Removing messages from the
bus that can no longer meet their deadline could be an efficient scheme, for instance.

The overall situation of a supervised stream is shown in Fig. 3.6. It is started by an arrival
ECA and ends with an evaluation automaton. In parallel to this, a global clock is introduced
that runs in round-robin fashion to keep the state space finite. This clock can in certain cases
be the clock of an arrival automaton. Messages that go into the system are stamped with the
value of the clock at that instant. While messages make their way from buffer to buffer through
the system, their progress is tracked and finally their stamp is compared to the global clock
once they are through the network. Here, we see an old message with t = 2 and a more
recent message with t = 5 that just left the arrival ECA. In between, they are processed by a
shared service ECA or possibly a sequence of service ECAs; the dashed connections indicate
competing streams.

There are many ways to implement timestamping in ECAs. The approach in this work is
inspired by the semantics of SAL. In the following, we exclude merging streams from the part
of the ECA network that we want to validate and discuss only buffers of size one. This cor-
responds to the requirements of control applications and significantly simplifies the necessary
discussion. For typical streaming applications, like audio/video streaming, larger buffers and
merging streams are common, however. In order to consider merging streams, it may be suffi-
cient to tag the outgoing merged message with the time of the older ingoing message after the
merging service ECA. Larger buffers may necessitate storing arrays of index variables. This
does not necessarily deteriorate performance because it must not lead to additional states in
the back end. The biggest issue there is branching and such arrays would not introduce new
optionality into the system. Both these topics should be examined more closely, however.

In the SAL framework, and possibly in other model checking tools as well, one solution

Sec. 3.3 Methods for evaluating ECAs 45

is tracking the timestamps in the evaluation automaton directly. The buffers then pass around
indexes that refer to the timestamps managed by the evaluation automata. In an object-oriented
environment, one would rather extend the messages with this data and pass them around as
larger data structures. This, however, can be difficult in the available modeling tools.

Concretely, the messages that enter the system are numbered in round-robin fashion. The
buffers store an index that marks the position of the messages it currently holds with respect to
all the messages in a stream array. The buffer mechanics from Definition 3.2 are extended as
follows.

The first bufferB1 behind the arrival automaton works as follows. It is initialized with index
i[0] = 0 and empty, i.e., b[0] = 0. It is then updated via

b+ = max
[
0,min

(
b+ U

(B)
in − U (B)

out , Bmax

)]
(3.8)

i+ =(i+ U
(B)
in) mod imax.

As before, the buffer elements are increased by new arrivals U (B)
in . These are messages com-

ing into B from the automaton where B serves as output buffer. U (B)
out similarly refers to the

messages leaving toward the ECA for which B is an input buffer. The addition is the evolution
of the index. The buffer simply increments this variable by the number of messages that are
deposited. In other words, i corresponds to the index of the newest message inside the buffer
and together with b, one can deduce all indexes.

Consider now B2, a buffer that comes later in the stream. There, it has to be taken into
account that messages may be overwritten along the way and never arrive inB2. This is achieved
by the following mechanics.

b+ = max
[
0,min

(
b+ U

(B)
in − U (B)

out , Bmax

)]
(3.9)

i+ =

{
iin , if U (B)

in > 0

i , otherwise

In these buffers, the index remains constant unless a new message arrives. If that is the case,
the index is overwritten with the index of the newcomer. This corresponds to overwriting old
information in the buffer that was rendered useless by the last arrival.

Fig. 3.7 contains an evaluation automaton for evaluation of deadline firmness patterns. In-
stead of evaluating the number of messages in all buffers of the stream as in Fig. 3.5, the delay
of the last arrival is now evaluated directly. The states of this automaton can once more be
tracked by LTL formulas (see Section 2.6).

Runtime comparison of timestamping and direct deadline firmness verification Times-
tamping provides more freedom in terms of evaluation. At the same time, it also creates more
states and is thus computationally more expensive. To quantify this difference, a runtime evalu-
ation was performed using the platform from [91], reproduced in Section 4.1. This comparison
considers the time required for a deadlock-check where the full state space must be constructed
and traversed. Individual properties can terminate early and are thus harder to compare.

46 Ch. 3 Modeling Communication Platforms with ECAs

neutral

success fail

clk mod peval 6= 0

clk mod peval = 0
time(mlast)− clk > deval

clk mod peval = 0
time(mlast)− clk ≤ deval

Figure 3.7: Given that arrival times are captured in an array TIME by the ECA network, “success” and
“fail” states can be emitted based on the delay of the last message to leave the system.

The deadlock-check required 45s with the timestamping technique. The direct method from
(3.7) for the special case of a (1, 1+H)-firm deadline requires less than 2s. All these mea-
surements were performed on a workstation with INTEL I7-3370 CPU @ 3.4GHz and 16GB
RAM.

This demonstrates that specific evaluation automata may be well worth the effort over times-
tamping. The results may be less convincing, however, once the property asks for more general
(f,H)-firm deadlines. These results were also reported in [90].

3.4 ECAs in the model checking tool SAL

We now have the theory in place for ECA modeling. Going from there, the next paragraphs
are supposed to offer a glimpse of how these models are subsequently implemented. In this
work, the tool selected for this purpose is SAL [54], but there are several similarly suitable
alternatives. NUSMV is similar to SAL, for instance, and also performs model checking on
Binary Decision Diagrams (BDDs). As such, it could also serve as back end for ECAs. The
original work from [41] implements its examples in CPN TOOLS [84]. Fore more information
on Colored Petri Nets (CPNs), please refer to [83].

The advantage of SAL is that its syntax can conveniently construct parallel elements, like
the buffers in Fig. 3.4, in an array-like container. This allows resizing case studies conveniently
and appears to be unique among current open-source model checking tools.

SAL models are written in functional programming fashion. Its style is similar to the
SCHEME language that the SAL scripts themselves are implemented in. The basic idea we
pursue for ECA implementation is the following. We implement the buffers and each ECA as a
module. We then execute these modules in parallel using the ”||” operator.

Recall the arrival ECA with only two states from Fig. 3.2. This automaton has been imple-
mented in SAL as shown in the following listing. The apostrophe in, e.g., k′ is the next operator
in SAL. It works just like the (·)+ operator described in Definition 3.2.

Listing 3.1 describes the two states of the ECA individually. The implementation thus re-

Sec. 3.5 Issues with naive FPNS models 47

Listing 3.1: SAL code implementing the arrival ECA from Fig. 3.2.
1 eca_example : MODULE =
2 States : TYPE = { A, B } ;
3 BEGIN
4 LOCAL s : States , x : [0 . . 2]
5 OUTPUT k : [0 . . 2] %event count
6 INITIALIZATION
7 s = A; x = 0; k = 0;
8 TRANSITION
9 [s = A −−> %sta te A

10 %choose k ’ from set con ta in ing d i n {0 ,1 } s . t . x+d <= 1
11 k ’ IN { d : [0 . . 1] | x + d <= 1 } ;
12 s ’ = B ; % move to B
13 x ’ = x + k ’ ; % update x
14 [] else −−> %sta te B
15 %choose k ’ from set con ta in ing d i n {1 ,2 } s . t . x+d = 2
16 k ’ IN { d : [1 . . 2] | x + d = 2 } ;
17 s ’ = A ; % move back to A
18 x ’ = 0 ; % rese t x
19]
20 END ;

mains close to the graphic representation of the ECA.
Listing 3.2 contains an example for an LTL formulation, referred to as theorem in the SAL

language. Specified systems are evaluated with respect to such theorems. SAL replies whether
they are guaranteed to hold or returns a counter-example for the specification.

Listing 3.2: The LTL formulation from (2.29) has been implemented in SAL for a (2,5)-firm deadline.
1 wmodabs(a , base : NATURAL) : NATURAL = IF a>=0 THEN a ELSE a+base ENDIF ;
2

3 max2in5 : THEOREM system
4 |− (FORALL (vcyc : ecyc_t) : G ((ecyc=vcyc) =>
5 W(NOT(s= t x _ f) , wmodabs(ecyc−vcyc , ecyc les)= cyc_5 OR (s= t x _ f AND X
6 [W(NOT(s= t x _ f) , wmodabs(ecyc−vcyc , ecyc les)= cyc_5 OR (s= t x _ f AND X
7 [W(NOT(s= t x _ f) ,wmodabs(ecyc−vcyc , ecyc les)= cyc_5)]
8))]
9))

10)) ;

3.5 Issues with naive Fixed-Priority Non-preemptive Sche-
duling (FPNS) models

We have seen basic buffer mechanics for ECAs in Fig. 3.3 and time-triggered arbitration in
Fig. 3.4. Event-triggered arbitration, like FPNS, is more intricate, however.

48 Ch. 3 Modeling Communication Platforms with ECAs

Following [92], we will first describe a basic FPNS model implemented in the ECA frame-
work. Its mechanics are very close to those of a simulation implementation in, e.g., SYSTEMC.
Yet, the time granularity of an ECA model must be chosen much coarser than that of a sim-
ulation to avoid state space explosion. Therefore, this intuitive model cannot capture all the
intricacies of a real-world CAN bus. We will first explore these effects and see how they can
lead to overly optimistic bounds in detail. Since the main purpose of ECAs is system verifica-
tion, optimistic bounds are not helpful. Relying on such bounds can and will lead to deadline
misses and, as a consequence, to potentially severe consequences in the real world.

After analyzing the shortcomings of the straightforward model, we discuss conservative,
i.e., safe models in Section 3.6. These models extend the ECA syntax to differentiate between
messages that newly arrive in a buffer and those that had been there for a longer time. Finally,
we motivate their use in a case study in Section 3.7.

Straightforward FPNS model The most basic implementation of FPNS, that is closest to
how a simulation tool would implement an abstract CAN bus, would employ a constant service
automaton (one state A with constant rate ρ(A) = [c, c]) and combine it with a priority-based
update function where π(b) is the priority of a certain message buffer. Consider an update
function for input buffers {i} and output buffers {i′} where U (i)(si, c, b) = U (i′)(si, c, b) = gi
and

gi = max
(

0,min
(
bi, c−

∑
j∈IN(p)

π(bj)>π(bi)

bj
))
. (3.10)

This lets the PE handle all the data in the higher priority buffers before moving on to lower
priority items. Note that for the highest priority buffer it holds U = min(bi, c), meaning it
always gets the full service unless there is not enough data in the buffer.

Timing Issues of the Straightforward FPNS Implementation The straightforward FPNS
model described by update function (3.10) assumes that the messages on the FPNS bus are
aligned to the ticks of the ECA as illustrated in Fig. 3.8. The arbitration in the model takes
place at the beginning of every tick and it is impossible to resolve timing issues within a slot.
More precisely, if two messages arrive in the same slot, it is impossible to say which one was
first. Aligning the ticks of the ECA realm with the real-world timing of, e.g., the CAN bus is
an overly simplistic assumption, however, and cannot hold in practice. When the bus is idle, it
does not wait for the next time slot to begin before transmitting once a message is in the buffer
ready to be sent. Such a behavior might make verification easier, but it is certainly undesirable
when optimizing for throughput.

On the other hand, the fundamental time unit of the CAN bus is dramatically smaller than an
ECA model can capture without rendering its state space unmanageable. It is therefore common
that messages arrive and processing occurs without being aligned to the ECA time slots.

CAN priority inversion The CAN bus can have situations where higher priority messages are
blocked by lower priority messages. Such cases occur when the lower priority message arrives
first and starts sending before the higher priority message arrives. At first glance, the important

Sec. 3.5 Issues with naive FPNS models 49

ECU1

ECU2

k = 1 k = 2 k = 3 k = 4 k = 5

m1 m2

m4

m3

Figure 3.8: Perfectly aligned timing as assumed by the straightforward FPNS model ignores blocking
by lower-priority message. Table 3.1 shows the corresponding ECA trace. The arrows denote the actual
message arrival in the send-buffer.

information is only delayed during this single transmission. It could get held up indefinitely,
however, if messages of even higher priority arrive in the meantime.

Priority inversion is not captured by the straightforward model and leads to over-optimistic
bounds when analyzing it in a model checker. To see this issue in more detail, let us assume
for simplicity that there are only two message streams and that they are indexed in order of
descending priority (1 being the highest priority). Further let the underlying constant service
automaton process one message per time slot, i.e., c = 1.

As shown in Fig. 3.9, after two messages, m1 and m2 from the buffer for ECU1 are sent, all
the buffers are empty and the bus idles at the beginning of k = 3. Then, a message arrives for
ECU2 (indicated by the black arrow) and the bus starts processing it immediately since ECU2

is the highest priority accessing it at that moment. When ECU1 wants to transmit data shortly
after (black arrow), the bus is already utilized and ECU1 is blocked (transparent) until ECU2

finishes its uninterruptible message m3. Only then is m4 transmitted.
Let us compare this to how the straightforward FPNS model would process this arrival

pattern. Fig. 3.8 contains the same arrivals, but the messages are processed according to the
straightforward model. The evolution of the two buffers b1 and b2 under this model is further
detailed in Table 3.1. It starts out just like the real pattern and handles the two items in the
buffer of ECU1. At the end of k = 2, the buffers are empty and nothing is processed in k = 3,
but there are two arrivals.

Table 3.1: Buffer fill levels at the end of individual steps k showing the behavior of the basic FPNS model
for the arrival pattern in Fig. 3.8 and Fig. 3.9.

k 0 1 2 3 4 5

b1 2 1 0 1 0 0
b2 0 0 0 1 1 0

The model starts to differ from the observed pattern in step k = 4. Here, it would just pro-
cess the higher priority message because it performs arbitration at the beginning of the slot only.
This has been marked in bold in Table 3.1. The bus, however, would have started processing
the message of ECU2 already before the beginning of slot k = 3 as described above. This
would correspond to

[
b1 b2

]
=
[
1 0

]
at the end of k = 4. Calculating the maximum delay

for ECU1 from this model, e.g., by using the method from Section 3.3, and using it as a bound

50 Ch. 3 Modeling Communication Platforms with ECAs

ECU1

ECU2

k = 1 k = 2 k = 3 k = 4 k = 5

m1 m2

m3

blocked m4

Figure 3.9: Timing diagram illustrating how a higher priority-message can be blocked by a lower-
priority one in FPNS scheduling. Fig. 3.8 and Table 3.1 show the corresponding sequence in the basic
ECA implementation that fails to capture this effect.

would therefore be overly optimistic. As we will see in the case study in Section 3.7, such a
bound will be violated by some of the messages.

3.6 Conservative FPNS models
Blocking by lower-priority messages as described in Section 3.5 does occur and needs to be
taken care of at the ECA modeling level. We will start by showing how a model could look
like for an FPNS element that processes one message per tick (or less, e.g., one message every
3 steps) and then extend it to a multi message model. Processing more messages per slot re-
duces the timing accuracy of the ECA, but also leads to less states and thus potentially to faster
computation.

In this section, we will introduce a model that takes the possible blocking by lower prior-
ity messages into account when a transmission starts before the slot it ends in. Towards this,
we need to consider the various paths the intra-slot behavior could take due to the underlying
slotted-time mechanics. These paths then need to be included into the update function that gov-
erns the arbitration between the individual message streams. The example from Fig. 3.9 and
Table 3.1 showed that we cannot just take the highest priority from the buffer and process it.
Instead, we have to consider that any newly arrived message with even higher priority could
take its place. Fig. 3.10 illustrates this in greater detail.

With one message in the buffer for ECU3 at the end of k = 1 and one message arriving for
both ECU1 and ECU2 during k = 2, the discrete-time semantics allow for several scenarios.
Each scenario consists of two arrivals (arrows) and one message (labeled a, b, c) and is further
described in the following paragraphs.

(a) The message from ECU1 arrives before the transmission of m1 ends and it therefore gets
to send next. It is irrelevant when the message of ECU2 arrives in this case.

(b) The message from ECU2 arrives before m1 is entirely transmitted and ECU1 is ready to
send only afterwards. ECU2 therefore sends next.

(c) Both ECU1 and ECU2 get ready to send after the transmission of m1 finishes. ECU3

therefore transmits next.

Since the slotted time does not hold enough information to resolve which message arrives first
within the time slot, all the possibilities need to be accounted for.

Sec. 3.6 Conservative FPNS models 51

ECU1

ECU2

ECU3

k = 1 k = 2 k = 3

m1

a

a
a

b

b
b

c

c

c

Figure 3.10: Three scenarios (a,b,c) with identical arrival signature from the ECA’s point of view lead
to different outcomes when the CAN’s arbitration is not aligned to the ECA’s ticks in the single message
case.

Enhanced buffer mechanics To calculate all these possibilities, we need to track which mes-
sages were already present at the beginning of the slot and which have just arrived during the
last step. We therefore extend the basic buffer semantics from Definition 3.2 where only the
total buffer content was tracked. In addition to b, the total elements in the buffer at the end of
the slot, we now track n, the elements that newly arrived during this slot. This results in

n+ =U
(B)
in

b+ = max
[
0,min

(
b+ U

(B)
in − U (B)

out , Bmax

)]
. (3.11)

The elements that remained in the buffer after all the messages from the last step were sent are
then given by

r+ = b+ − n+. (3.12)

Selecting one message per ECA cycle for processing With this additional and more fine-
grained information we can now select the message i0 that the bus starts sending at the end
of the last step and finishes in the current step. As shown in Fig. 3.10, this can be either
the message with the highest priority that was already in the buffer and whose transmission
therefore would have started immediately after the bus was idle (scenario (c)) or any of the
newly arrived messages that have higher priority (scenarios (a) and (b)). This is summarized in
the following options.

i0 ∈
{
i : bi > 0︸ ︷︷ ︸

has message to send

AND rj = 0 ∀j > i︸ ︷︷ ︸
no higher priority is waiting

}
(3.13)

Such a diverging path can be easily included in the model checking tool SAL.
Next, the corresponding update function is adjusted. With i0 from (3.13) in mind, let

gi :=

{
1 , if i = i0

0 , otherwise.
(3.14)

This constitutes the new update function U (i)(s, c, b) = U (i′)(s, c, b) = gi, where i and i′ refer
to the in- and output buffer of stream i, respectively.

52 Ch. 3 Modeling Communication Platforms with ECAs

The single message model extends well into a more fine-grained time discretization, where
one message is transmitted every couple of time steps. Here, one would just change the underly-
ing service automaton and leave the arbitration as described when there is service to distribute.
Additional delay could be modeled by introducing new buffer stages that the message has to
travel through.

Processing multiple messages in a single ECA cycle As discussed, extension of the single
message FPNS model from (3.13) towards finer timing is straightforward. Establishing a similar
model for even less fine-grained timing where multiple messages are sent during a single time
slot still poses a challenge, however. One possibility for modeling the behavior in this case is to
iterate the selection process for i0.

Start by assuming that i0 was chosen in the previous time step using the rule from Eq. (3.13).
The next message to be transmitted faces a situation that is similar to the single message case
shown in Fig. 3.10. The difference in the selection of i1, the ECU to send after i0, lies in the
available messages. Firstly, the messages that were in the buffer at the end of slot k = 1 are
available if they were not sent already, i.e., minus i0. Additionally, all the messages with higher
priority that might have arrived by then could be ready to send. Since, again, it is impossible
to distinguish arrivals within a single time step, this refers to all the messages arriving in the
respective slot. Therefore i1 has to be selected as

i+1 ∈
{
i : bi + n+

i − δii0 > 0︸ ︷︷ ︸
potentially has message

AND rj − δji0 = 0 ∀j > i︸ ︷︷ ︸
no higher priority

}
where δij refers to the Kronecker delta

δij =

{
0 , if i 6= j

1 , if i = j
.

After i1 has been determined, further il can then be calculated iteratively:

i+l ∈
{
i : bi + n+

i −
l−1∑
m=0

δiim > 0

AND rj −
l−1∑
m=0

δiim = 0 ∀j > i
}

(3.15)

3.7 Evaluation of FPNS models using simulation
For a demonstration of the benefits from the models developed in Section 3.6, consider the
following case study performed using SAL and SYSTEMC. The abstract ECA networks from
both the straightforward model and the proposed extended models are transformed to their
transition system representation. Next, they are implemented in the modeling language of SAL.
Finally, the BDD-based model-checker in SAL verifies the respective system behavior.

Sec. 3.7 Evaluation of FPNS models using simulation 53

We calculate bounds on the delay for every stream via the method outlined in Section 3.3.
These bounds are referred to as StraightForw, SingleMsg and MultiMsg, respectively. Addi-
tionally, a SystemC model for the CAN bus is constructed. Observing a simulation there for
T = 10 Ms ≈ 2.7 h yields the average delay Avg and the maximum delay Max.

Finally, we perform a manual analysis of the worst case scenario where all messages start at
the same time and are initially blocked by the longest lower priority message. This is denoted
by Manual. It is both tedious and error-prone and, unlike ECAs and SYSTEMC, this analysis
cannot be applied to state-based or even just larger systems.

The experiment assumes 4 message streams numbered #1 to #4 from highest to lowest
priority with periods

P =
[
1 ms 2 ms 4 ms 5 ms

]
and a common jitter of j = 0.5 ms. Here, jitter refers to enlarging the scheduled arrival k × Pi
to an interval

[
k × Pi, k × Pi + j

]
.

The message streams share a CAN bus with transmission time of 0.5 ms per message. No
state dependency was modeled in order to have readily available reference solutions for com-
parison.

Runtime Evaluation The model checking runs for the following case study took 16 s for the
single message model and 85 s for the multi message model on an Intel i7 at 3.4 GHz with
16 GB RAM. Note that while the multi message model took longer to verify in this case, it
might be the preferred or only choice in case another PE dictates a certain slot time.

Single message model For testing the single message model, the ECA slot time is set to
0.5 ms in accordance with the transmission time. The resulting bounds created by the formal
verification of the ECA models via the model checking tool SAL are listed in Table 3.2 as
Straightforw and SingleMsg, respectively.

The same architecture is also modeled in the SYSTEMC simulation framework. We executed
the model there and recorded the delays of the individual messages. Fig. 3.11 shows the delay
distribution of Stream #3. It illustrates that some messages do in fact incur a larger delay
than 2.5 ms, the bound calculated using the straightforward model. By contrast, no message
exceeded 4.5 ms, the bound guaranteed by SAL when verifying the newly developed single
message model.

Average and maximum delay of the other streams is summarized in Table 3.2. The straight-
forward model also fails for stream #2. It does hold for streams #1 and #4, however. This
is expected behavior because the straightforward model does not miss blocking of the lowest
priority messages and the highest priority stream can only be delayed for one slot; no indefinite
suspension is possible as for the lower streams.

All the bounds from the single message model shown there prove to be tight within the
resolution of the ECA. To clarify, consider stream #3 in Table 3.2 as an example. There,
we observe a maximum delay of 3.63 ms (equivalent to 4 ms or 8 slots, rounded up for the
ECA) and the manual analysis yields a worst-case delay of 4.0 ms that can occur in practice.
Verifying the ECA model with SAL leads to an upper bound of 8 slots. This corresponds to
the same 4.0 ms and would therefore be tight as well. However, we additionally account for the

54 Ch. 3 Modeling Communication Platforms with ECAs

0.5 1 2 3 4

101

103

105

Delay in ms

m
es

sa
ge

co
un

t

Figure 3.11: Histogram of delays experienced by message stream #3 as measured in the SystemC simu-
lation. The bound from the straightforward model (dashed, Section 3.5) is exceeded by a significant part
of the messages while the bound from the single message model (solid, Section 3.6) holds.

fact that this worst-case message could have arrived early in slot k = k0 and was transmitted
late in slot k = k0 + 8, increasing the upper bound SingleMsg by an additional slot to 4.5 ms .

Multi message model We use the same experimental setup for evaluating the multi message
model where messages are selected using rule (3.15). Toward this, the ECA slot time is adjusted
to 1 ms, such that two messages can be transmitted per slot. Implementing this model in SAL
and running its BDD-based model checker yields the bounds StraightForw and MultiMsg from
Table 3.3. These bounds appear to be very conservative with respect to the simulation results
and the analysis from Table 3.2. This is due to the higher implied jitter in the multi message
case. Since the slot time is 1 ms, the ECA framework must now assume that all the messages
suffer from a minimum jitter of 1 ms as well.

Repeating the simulation and the analysis with this jitter in mind, we obtain the columns
Avg, Max and Manual in Table 3.3. Again, we observe that the straightforward model is overly
optimistic. In contrast, the proposed model successfully bounds the transmission delay and it
is tight within the selected resolution of the ECA framework when compared to the analytical
worst case. We could, however, not observe the worst case for all message streams in the
SYSTEMC simulation.

Table 3.2: Single message model FPNS case study results.

Delay from SystemC Analytic Delay Bounds
Stream # Avg Max Manual Straightforw SingleMsg

1 0.66 ms 0.98 ms 1.0 ms 1.0 ms 1.5 ms
2 0.83 ms 1.83 ms 2.0 ms 1.5 ms 2.5 ms
3 1.10 ms 3.63 ms 4.0 ms 2.5 ms 4.5 ms
4 1.17 ms 3.65 ms 4.0 ms 4.5 ms 4.5 ms

Sec. 3.8 Related work 55

3.8 Related work
ECAs are not the only tool for timing analysis and this work does not newly introduce this
automaton framework either. This section lays out the origins of Real-time Calculus (RTC).
The difficulties with modeling state dependency there motivate the ECA framework.

Next, the main works in the ECA domain are presented. They form the background for this
chapter’s contributions, the FPNS model from Section 3.6 and the majority of the CPS-inspired
evaluation techniques from Section 3.3. The value of ECAs in the co-verification context is
explored at the end of the corresponding chapter, in Section 4.3.

Finally, less closely related automatons and timing analysis techniques are presented. This
background knowledge underlines the value of RTC and its extension, the ECA framework.

Network Calculus (NC) The NC scheme is one of the building blocks of RTC. It deals with
streaming networks and extends or complements queuing theory there. The applications range
from local audio and video transcoding to large networks of an Internet service provider. The
goals are finding appropriate buffer sizes, adequate computing or communication elements and
discovering bottlenecks in larger graphs with multiple routes.

The framework is purely algebraic and compositional in nature. System inputs are charac-
terized using suitable monotonic functions, the so-called upper and lower arrival curves. The
processing elements like the processors, buses and switches are described by service curves,
similar monotonic functions. Both arrival and service curves contain information of the sys-
tem from an interval-based, sliding window perspective. LeBoudec and Thiran in their refer-
ence textbook [107] describe this perspective as follows. “For example, if [an arrival curve]
α(t) = rt, then the constraint means that, on any time window of width τ , the number of bits
for the flow is limited by rτ .”

The system is then solved by iteratively evaluating processing elements via application of
the convolution operator on their service curve and the corresponding arrival curves. This com-
positional approach leads to excellent scalability.

One criticism of the deterministic NC where both arrivals and service are bounded is that the
bounds may become too loose to be useful in practice. While “the bounds are tight in the sense
that there exist worst-case arrival and service patterns for which the bounds become realizable
[...], such worst-case realizations are very unlikely to happen [in large scenarios]” according
to [48]. This motivates stochastic network calculus. There, arrival and service curves are of
probabilistic nature. One consequently obtains delay guarantees that hold for a desired level of

Table 3.3: Multi message model FPNS case study results.

Delay from SystemC Analytic Delay Bounds
Stream # Avg Max Manual Straightforw MultiMsg

1 0.65 ms 1.4 ms 1.5 ms 2 ms 2 ms
2 0.78 ms 2.3 ms 2.5 ms 2 ms 4 ms
3 1.02 ms 4.5 ms 5.5 ms 3 ms 7 ms
4 1.14 ms 5.45 ms 7.5 ms 5 ms 9 ms

56 Ch. 3 Modeling Communication Platforms with ECAs

certainty. For instance, one may obtain that a bound guaranteeing a certain throughput under
a given delay constraint holds with a probability of (1 − ε). Jiang’s textbook [86] is one main
reference for this approach.

There have been several attempts to unify deterministic NC and stochastic NC, e.g., [85]. It
currently appears, however, that they cannot be consistently unified and should be seen instead
as separately providing great value [49].

Real-time Calculus (RTC) RTC extends NC for use with real-time systems. It is equally
compositional and still built upon the interaction of arrival curves with corresponding service
curves that contain information of the system from an interval-based, sliding window perspec-
tive. Besides the conversion of task models from the real-time domain to the algebraic format of
NC, this movement also rendered the approach more accurate and more usable with the novel
tools it spawned.

Thiele first announced the desire for a framework that extends NC in [178]. This paper
contains a motivational example of a realistic task system for which the request curve is cal-
culated in polynomial time. In [177], the group develops the advantages of RTC further. In
their own words, “[t]hese results substantially generalize and sharpen the bounds obtained in
[[178], [107]], as both lower and upper bounds are involved.”

After the initial success, the authors have contributed more works that explain and evaluate
the new framework more comprehensively. [176] integrates RTC into design space exploration.
There, one looks for the best combination of, e.g., Central Processing Unit (CPU) models,
scheduling policies from a number of options. RTC is used to describe the performance of each
possible combination and integrated into a higher-level solver that looks for the best setup. Ac-
cording to the authors, such optimization techniques had almost exclusively relied on simulation
before.

In [39], the capabilities of RTC are compared with the theoretical results from the real-
time systems area. Chakraborty demonstrates that RTC can replicate many results that had
been individually derived before inside a congruent framework. The same author compares
RTC to simulation results in [40]. There, a SYSTEMC implementation with components from
a comprehensive library and input traces from several research databases serves as simulation
representative. RTC achieves a very tight fit in utilization value over each of several dozens of
parameter combinations. The delay bounds are less tight, but remain conservative in the sense
that the bounds from RTC surround the simulation values.

RTC is nowadays accessible to a wide audience thanks to Wandeler’s “Real-Time Calculus
Toolbox” [184] for MATLAB. This software dramatically lowers adaptation barriers compared
to, e.g., NC where the relevant tools require a development setup with compiler on the user side.
Besides this seminal contribution, his thesis [183], arguably among the most comprehensive
and consistent explanations of RTC, also presents Real-Time Interfaces. These are motivated
by previous interface automata and allow “a holistic one-step approach to design and analysis
of systems, sometimes also referred to as correct-by-construction.” They are implemented in
stateless assume/guarantee fashion and thus scale more favorably than automata.

Sec. 3.8 Related work 57

Event Count Automaton (ECA) framework RTC delivers precise results in many cases and
its compositional design leads to unrivaled scalability. However, it cannot accurately capture
state information. In streaming networks, it is common for a PE to temporarily halt when its
output buffer is full. The original RTC approach cannot capture this in a meaningful way. Other
challenging examples are scheduling laws that speed up a PE when its input buffer exceeds a
certain level like in Section 4.2.

There are several improvements to the original framework that model specific state depen-
dencies. [79] examines correlated streams that are executed in parallel. Such setups introduce
blocking-read semantics and may even influence each other via shared memory. That work
deals with the interdependence by introducing OR and ORDER semantics that define how pro-
cesses can be joined. In [23], Bouillard presents a lightweight method for modeling PEs halting
due to full output buffer. By adding a feedback loop to the RTC task graph, she achieves a
tighter analysis in these circumstances.

In spite of all efforts, modeling general state dependency remains difficult in RTC and most
likely in all algebraic frameworks. Consequently, previous efforts have supplemented the RTC
framework with a model checking based extension, the ECA [41]. There, both upper and lower
curves are represented by an arrival or a service automaton. The models built in this way can be
converted to Büchi automata and are then evaluated using standard model checking tools from
the digital domain.

Using ECAs, state-based scheduling becomes straightforward as with all automaton-based
frameworks. The strength of the ECA approach compared to other automaton-based frame-
works is its great compatibility with RTC. Since they all scale far worse than algebraic tech-
niques, they can often handle only small platforms. Using the bridging technique explained
in [145], it is possible to model a subpart of the network as ECAs and then compose it with the
remainder of the hardware architecture under consideration modeled in plain RTC. This con-
siderably improves scalability. [144] describes another compositional technique where ECAs
are replaced by conservatively over-approximating, but syntactically similar automatons. This
further speeds up the analysis.

ECAs have shown to be a good model for capturing the timing properties of streaming appli-
cations. This thesis summarizes, for the first time, the extension of their use case to underlying
communication platforms of CPSs. The timestamping approach for evaluating arbitrary delay
patterns from Section 3.3 has been presented in [91]; the custom approach for (1,H+1)-firm
deadlines from the same section stems from [90].

In the CPS context, the CAN bus plays an important role. A model for FPNS, the corre-
sponding arbitration strategy, has been proposed for RTC in [47]. However, it still carries the
usual issues with state dependencies that RTC faces. This motivates [92], examining FPNS
modeling and its issues for discrete-time automatons with a focus on the ECA framework. This
work is reproduced from Section 3.5 onwards.

Others The need for state-based and non-preemptive scheduling has motivated automaton-
based methods. [106], for instance, introduces UPPAAL, arguably still the leading tool for
verification of Timed Automata (TAs). Refer to [20] for a more recent overview of the TA
flavors implemented there. The TA approach defines timed languages that associate a time
τ ∈ R with each transition an automaton takes. This leads to a very rich interface but also great

58 Ch. 3 Modeling Communication Platforms with ECAs

difficulty in evaluating it. Consider [4] for the theoretical background of the original version.
Approaches to FPNS analysis using TAs are presented in [99] and [65]. Because these ap-

proaches employ a continuous time model, they track the evolution of the system in a much
more fine-grained fashion than necessary in most cases. In addition, they are difficult to in-
terface with algebraic methods, such that scalability often becomes an issue. For instance, the
technique from [65] is not applicable when arrival times are given in intervals.

Usually, there is a trade-off between time-granularity and scalability of the modeling. Timed
Automata (TAs), for example, intend to track the system’s behavior with high precision and
often result in models that cannot be solved in practice. Event Count Automata (ECAs), on the
other hand, have been developed for streaming applications and their inherent uncertainty. As
a result, they naturally model data arrival patterns that need to be scheduled and integrate well
with analytic approaches. In other words, the ECA with its unit time intervals strikes a balance
between the high precision tracking of the TA and the scalability of RTC. Its fully discrete
nature allows timing guarantees by delegating to powerful, established model checking tools
originating from the digital design area.

[104] proposes another automaton extension for RTC. It defines “input generators” to obtain
networks of TAs from RTC-conforming input curves. It further specifies how to derive conform
output curves from the TAs. UPPAAL is used for implementing the whole approach. This idea
leads to a framework with high flexibility whose scalability appears to be on par with the ECA
method. The difficulty lies in the generation of RTC curves in the “output generators”. There,
complicated patterns may lead to gross overestimation. Nevertheless, this approach deserves
further consideration and can generate the drop patterns that this thesis generates with ECAs.

Common scheduling analysis based on, e.g., demand bound or response time analysis, is
still around as well but continues to be challenging. These approaches become pessimistic for
the non-preemptive case and are often not compositional in nature. This has given rise to NC
in the first place. Furthermore, Davis has recently discovered that commonly accepted analysis
techniques for CAN timing from 1994 are flawed [53]. This demonstrates how difficult avoiding
human error in custom-made methods with narrow focus really is.

59

4
Applying ECAs for CPS Co-Design

This chapter presents two applications that combine ECA modeling from Chapter 3 with the
control system analysis from Chapter 2 for CPS co-design.

The first application (Section 4.1) has originally been presented in [91]. Given a control
performance requirement, it finds patterns of deadline misses that are tolerable. By analyzing
these patterns on an ECA model via model checking, the performance of a CPS as a whole can
then be verified.

The second application (Section 4.2) has been published in [90]. Here, a fault-tolerant
control strategy is designed to match the delay patterns a hardware platform may exhibit. In
this way, the CPS as a whole fulfills exponential stability by construction.

Both applications utilize the fact that the average delay in complex platforms is significantly
smaller than the worst case. By specifying patterns and not just a single number, a tighter
integration is achieved. In this way, the guaranteed performance can be improved because
additional options become available in the design space.

4.1 Verification of real-life performance instead of deadlines
in distributed CPSs

After discussing checkable CPS requirements in Section 2.6 and the ECA framework for mod-
eling communication platforms underneath CPSs, we can now bring the two together. In the
co-verification approach of this section, the goal is to expand the typical deadline specification
interface. The overall technique yields a formally verified design that exploits the robust na-
ture of the feedback loops and allows some of the control messages to miss their deadlines,
while still meeting the desired control performance. This goal is addressed from two sides (see
Fig. 4.1). We first establish how frequently and in what order (or pattern) the control application
can tolerate deadline violations. There, we obtain a LTL formulation that must be satisfied. We

60 Ch. 4 Applying ECAs for CPS Co-Design

Sampled-data system

Section 2.3

Control Constraints

Section 2.4

LTL Formulation

Section 2.6

Communication Hardware

Section 2.2

ECA Network

Section 3.2

ECA evaluation

Section 3.3

Co-Verification
Using SAL

Section 3.4

Figure 4.1: Proposed co-verification framework

then model the implementation architecture – i.e., the ECUs, the bus, and their schedules – so
that it can be formally verified as a collection of automata, ECAs in our case. If the LTL formula
is satisfied by the automaton at the end, the architecture in question is a valid implementation
of the controller.

Implementation Architecture The CPS for this experiment is implemented on the platform
implied by Fig. 4.2. The control application is partitioned in three tasks: sensor task (ps),
controller task (pc), and actuator task (pa) running on three different ECUs. ECU1 and ECU2

communicate over a shared bus, whereas ECU3 is directly attached to ECU2.
ps reads state xk in ECU1 from the sensors and sends it to the bus. On ECU2, pc receives xk,

computes uk based on xk and stores it in a buffer. The periodically executed pa then takes the
computed input signal uk – if it is present – and applies it at the beginning of the new period.

The corresponding ECA network is shown in Fig. 4.3. The stream we want to verify, i.e., the
one we assume to be available for the discussed application, is the lowest-priority stream 6. The
ECAs’ update functions are chosen such that the streams remain separate. They are processed
according to their priority on the bus and follow a time-triggered schedule on the TDMA-based
ECU.

ps

xk

pc

pa

ps

xk

pc

pa

ps

xk

pc

pa

ECU1

ECU2

BUS
ECU3

h

τ

Figure 4.2: Timing diagram of the distributed controller under consideration

Sec. 4.1 Verification of real-life performance 61

B1

B5

B6

In1

In5

In6

... ...

C1

C5

C6

...
CAN TDMA

...

Figure 4.3: Case study example modeled as ECA network

Control strategy Consider a sampled-data system of the form introduced in Eq. (2.8).

x[k + 1] = Ax[k] +B1u[k − 1] (4.1)

Here, a buffer is assumed to make control delay and thus deadline equal to sampling period,
i.e., d = h. In this setting, B0 = 0, meaning input u[k] calculated from the current state cannot
be applied in this period at all.

The time duration between reading sensor data xk and the computation of uk in ECU2 is
the varying transmission delay τ (see Fig. 4.2). Since the actuator can only apply it if the new
signal is computed by the end of the period, the sampling period h represents a deadline for the
control signal to reach ECU3. If τ > h, the application considers the message lost and must
proceed accordingly. This is also referred to as deadline miss.

uk =

{
Kxk−1 , if τ ≤ h

0 , if τ > h

The control input uk as state-feedback with delayed state is thus applied only when the control
message uk meets its deadline and uk is set to zero otherwise. This avoids energy expenditure
in counter-productive directions. With this control strategy, the application becomes a switched
system (2.21) with Ac = A + BK and Ao = A for the closed and open loop situation, respec-
tively. The state must also be augmented to xa,k =

[
xk xk−1

]′ to account for the delay. See
Eq. (2.11) for implementation details.

Experimental results Consider a second-order LTI system with

A =

[
0.611 0.284
0.239 0.7253

]
∈ R2×2 B =

[
0
1

]
∈ R2×1.

The sampling period that led to this discrete-time representation is h = 3.5 ms.
Controller gain K =

[
−0.1620 −0.2200

]
is designed with a pole placement approach

that is unaware of faults but takes delay into account. A more involved control strategy that is
custom-made for both delay and faults is presented in Section 4.2.

62 Ch. 4 Applying ECAs for CPS Co-Design

This system is expected to fulfill the exponential stability requirement from Eq. (2.24),
ExpStab(l, ε) with l = 5 and ε = 0.7. Recall that exponential stability requires a reduction
by a factor of ε over l time steps. After evaluating the patterns as described in Section 2.6, it
becomes evident that this property can be guaranteed by requiring the system to be both (2,3)-
firm and (3,5)-firm with respect to its period. Plainly, this means that in any three samples at
most one message, and in any 5 samples at most two messages can have delay τ > h. As men-
tioned, the set of all acceptable patterns can thus be represented by a combination of (f,H)-firm
deadlines where H ≤ l.

Turning back to the architecture illustrated in Figs. 4.2 and 4.3, we recall that the discussed
control application transmits messages over a shared communication bus. There are five other,
higher-priority streams that interfere with these messages. All the messages are assumed to be
periodic with jitter as detailed in Table 4.1. The control message has a period of 3.5 ms which is
equal to the sampling period h of the discrete-time plant. As discussed, this period also consti-
tutes the deadline for the messages in this case. The message length is assumed to be 8 B which
results in 0.21 ms transmission time including overhead on a 512 kbit communication bus. The
bus is considered to be preemptive. This does not only allow ignoring the complications de-
scribed in Section 3.5, but also facilitates a comparison with other techniques. The execution
times ei for the TDMA ECU are given in the same table.

Relying on RTC, an algebraic, state-of-the-art timing analysis [184] is performed for the
control messages in the given architecture. This yields a worst-case delay of τ = 4.84 ms.
Clearly, this is larger than the controller’s sampling period of T = 3.5 ms and the performance
requirement could not be guaranteed by a design with such a worst-case delay.

Next, the ECA framework is applied to verify the derived (f,H)-firm deadlines as laid out
in the overall co-verification approach (Fig. 4.1). ECAs are based on an implicitly chosen unit
time step. The obvious choice would be the smallest time that occurs in the system, such as the
bus arbitration time. This is very small however and leads to an explosion of the state space. In
this case study, the ECA time unit is thus set to 0.5 ms such that the shared bus processes two
messages in every step. With this period and the execution times ei in mind, the streams are
then scheduled sequentially on the TDMA ECU. In this setup, processing alternates between
competing streams during the first 0.5 ms slot and the discussed stream during the other 0.5 ms
slot.

After implementation in SAL (see Section 3.4), the LTL specification for the required (f,H)-
firm deadlines is checked with the timestamping approach from Section 3.3.

Table 4.1: Deadline verification case study parameters

Task i Period pi Jitter ji Execution time ei

1 1.0 ms 0.5 ms 50 µs
2 1.0 ms 1.0 ms 50 µs
3 2.0 ms 1.5 ms 125 µs
4 2.0 ms 0.5 ms 125 µs
5 3.0 ms 1.5 ms 150 µs
6 3.5 ms 0.5 ms 200 µs

Sec. 4.1 Verification of real-life performance 63

0 2 4 6 8 10 12 14 16

0

1

2

3

k = 5

51% reduction

71% reduction

82% reduction

k

‖x
‖

ideal transmission
validated architecture
invalid architecture

Figure 4.4: Control performance evolution for different architectures

Example of a valid architecture We consider the control specification of a (3,5) and (2,3)-
firm deadline that, combined, guarantee the demanded exponential stability of the CPS. With
the interfering message properties set as shown in Table 4.1 (load on the bus: 90 %), the ECA
framework validates these soft deadline requirements. This indicates that the control appli-
cation can be implemented on the given architecture meeting the ExpStab(l, ε) requirement.
To evaluate the resulting control performance, SAL delivers the worst-case trace of delay for
the architecture with these message properties. The corresponding system behavior is then ob-
tained from MATLAB via simulation. Fig. 4.4 compares the control performance from such
a delay-trace and the control performance with ideal transmission without any deadline miss.
It can be seen that the architecture that satisfies the specifications (that are derived from the
exponential stability constraints) reduces an error signal by 71 % in 5 samples while the same
system without any deadline miss (i.e., with ideal transmission) could reduce 82 % in the same
duration.

Example of an invalid architecture The same control algorithm is also evaluated on a com-
munication platform where the properties of the interfering messages differ slightly from Ta-
ble 4.1. Consider changing j4 from j4 = 0.5 ms to j4 = 1.5 ms or alternatively changing
p5 = 3.0 ms to p5 = 2.5 ms. Both changes are sufficient to make the resulting platform fail the
(3,5) and (2,3)-firm deadline requirement. Consequently, this means that an architecture with
modified message properties fails to guarantee the ExpStab(5, 0.7) requirement.

We obtain a similar delay-trace from SAL as previously for the validated architecture for
p5 = 2.5 ms (load 92 %). In Fig. 4.4, we can see that the control performance deviates signifi-
cantly from the ideal case without deadline miss. Only 51 % error reduction is achieved when
the CPS is implemented on top of this invalid architecture. This is less than the 71 % that the
valid architecture achieved in 5 samples. In this example, the invalid platform still meets the
controller’s exponential stability criterion that any error signal should be reduced by at least
25 % in 5 samples. Keep in mind that the performance shown here is not the absolute worst

64 Ch. 4 Applying ECAs for CPS Co-Design

case. It is possible to find another delay-trace and initial condition through extensive simulation
that will cause a violation of the control requirements.

The examples above demonstrate that a small change in the architecture (like period and
jitter of one interfering message) can have a significant impact on the resulting control perfor-
mance. This demonstrates the necessity for formal verification techniques in order to avoid the
extensive testing and integration effort entailed by an incremental design process.

4.2 Fault-tolerant control design with delays under firm dead-
line assumption

In the previous sections ECAs serve to check and verify the performance of a distributed em-
bedded control system closed over a faulty or severely constrained communication network.
Such overloaded networks are common in cost-sensitive domains such as automotive. The as-
sumption in the previous co-verification approach (Section 4.1) is that the controller is fully
designed. Here, the situation is reversed and we aim to exploit robustness of the controller in
another way to achieve a tighter design.

The communication platform is fixed a priori and the control law is considered changeable.
In many cases this is a closer reflection of reality. The control law is usually software code that
can be re-programmed without interfering with other applications. Changes in the communica-
tion hardware are virtually always prohibitively expensive; the feasible scheduling adjustments
entail at least new analysis and testing of the overall system. For that purpose, this section treats
the following research question: Given a bound on deadline misses, how to design a controller
such that the desired stability and Quality of Control (QoC) requirements are met. The ECA
framework can model a distributed embedded architecture and formally verify it according to
property formulations of arbitrary complexity. With such a bound in mind, a fault-tolerant con-
trol strategy can adjust the input signal at runtime based on the observed occurrence of faults
or message drops. The QoC under faulty communication improves significantly using such a
fault-tolerant approach.

More precisely, this section introduces a LMI-based formulation for fault-tolerant control
design that takes into account both the bound guaranteed by the model checking framework and
delay. The resulting control strategy observes deadlines – that can be smaller than sampling
period – at runtime and adjusts the linear gains with respect to violations. The constructive
proof of Theorem 4.1 yields the existence of a Common Quadratic Lyapunov Function (CQLF)
and the switching controller thus guarantees exponential stability relying on Theorem 2.6.

This new control design and implementation algorithm significantly improve the system’s
stability and reduced the required input over traditional methods such as ZOH.

Communication timing adjustments for DCC The overall challenge in this section is still
the stabilization of a sampled-data system over a network. In order to employ Drop Compensa-
tion Control (DCC), the order of computation must be adjusted, however.

The difference to the general sampled-data system analysis from Section 2.3 lies in the
sensing, communication and actuation timing. In addition to the total sensor-to-actuator delay

Sec. 4.2 Fault-tolerant control design 65

Sense

ps x[k]

pc

Actuate Sense

ps x[k]

pc

Actuate Sense

ps x[k]

pc

ActuatePHY

ECU1

CAN
ECU2

h

d

dcτ

Figure 4.5: The timing diagram for DCC differs from general sampled-data system analysis (Fig. 2.3).
Controller task pc requires constant time dc that must be available after the decision about fault occur-
rence is taken. A fault thus occurs if variable delay τ > d− dc.

d from Fig. 2.3, DCC must separately take into account the time required for computation. The
computation phase is the default and often the only instant for adjustments to happen at runtime.

Fig. 4.5 displays the relevant timing pattern. The control system is divided into only two
main tasks, sensor task ps and controller task pc. The duties of the previous actuator task pa are
integrated into pc for simplicity. On ECU1, state x[k] is read from the sensor periodically. ps
further processes the reading and sends it out over the network to ECU2 as a message. After
the message is transmitted over the network, it is stored in the buffer of ECU2. On ECU2, pc
is triggered periodically. It checks whether a message has arrived in its buffer, calculates input
signal u[k] and adjusts the actuator accordingly.

τ is the variable time interval from sensor reading until the message arrives at the buffer of
ECU2. Controller task pc then needs time dc to calculate u[k] and apply the input signal via the
actuator. Sensor and actuator are triggered periodically with period h and a relative offset of d.
Therefore, τ must not exceed d − dc for a successful actuation. A message is considered to be
dropped when τ > (d − dc). Under these circumstances, the continuous delayed system (2.4)
can be considered a discrete-time sampled-data system with period h and constant sensor-to-
actuator delay d. Recall the relevant dynamics from Eq. (2.8)

x[k + 1] = Ax[k] +B0u[k] +B1u[k − 1] (4.2)

where the system matrices are calculated as laid out in Eq. (2.9). These matrices depend on
control delay d and sampling period h ≥ d.

The goal is to guarantee QoC in the form of exponential stability (Definition 2.3) under
the presence of some dropped messages. However, package drops degrade QoC and potentially
render the system unstable. Hence, messages cannot be dropped too frequently. The permissible
amount of lost signals is quantified by the notion of (f,H)-firm deadline (Definition 2.7). For a
given (1, H + 1)-firmness, the control strategy is adapted online to ensure exponential stability.

Typically, the drops under consideration are caused by delay from contending messages
and subsequent deadline violation as in Section 2.2. The fault tolerant control strategy can
handle sporadic hardware faults or disturbance from outside the control setup in the same way.
While it remains questionable whether such errors can be quantified in a safe way, fault-tolerant
approaches are certainly preferable to standard designs if any mishaps are possible.

66 Ch. 4 Applying ECAs for CPS Co-Design

x0

t0 t0 + d

x1

t1 t1 + d

x2

t2 t2 + d

x3

t3 t3 + d

u0 u1 = u0 u2
ZOH

u0 u1 = 0 u2
PZOH

Figure 4.6: Activation Sequences for ZOH and PZOH in reaction to two successful (x0, x2) and one
failed (x1) transmission. ZOH only changes the input after a successful transmission. PZOH sets the
input to zero if a fault is detected.

Actuation timing patterns The traditional implementation of a digital controller is a sample
and hold block that stores the control signal until the periodically actuated controller finds a
new one in its buffer. This is referred to as Zero-Order Hold (ZOH).

u[k] =

{
Kx[k] , if τ ≤ d− dc
u[k − 1] , otherwise

(4.3)

Note that certain works in the literature assume that ZOH is interrupt-driven and applies new
signals as soon as they arrive. This thesis does not deal with the complicated analysis that the
induced varying delays require and does not consider this interpretation therefore. An alter-
native approach periodically checks the buffer for fresh state information and only actuates if
the last transmission was successful. This may in certain cases lead to higher input energy, but
it avoids diverting the system into an undesirable direction. That approach is called Periodic
Zero-Order Hold (PZOH) in this work.

u[k] =

{
Kx[k] , if τ ≤ d− dc
0 , otherwise

(4.4)

Fig. 4.6 illustrates the difference between these patterns.
DCC builds upon these patterns. In case of a miss, it adjusts the new input signal to lessen

the impact of the old input signal. Its design is more involved than for ZOH, but it achieves
superior QoC and does not introduce chattering.

Drop Compensation Control (DCC) design Any controller that is periodically checking
its buffer for new information in PZOH fashion (see Fig. 4.6) can identify dropped messages
at runtime. This motivates searching for a strategy that compensates for drops and thereby
increases the robustness of the system. Fig. 4.7 shows the schematic implementation for such a
drop controller. The drop controller counts the number of consecutive drops j, i.e., the number
of instants where τ > d−dc, since the last successful update. In time step k+ j, it then actuates
the system based on x[k − 1], the last state that was transmitted, and u[k − 2], the input at that
time.

u[k + j] = Kjx[k − 1] +Gju[k − 2], j = 0, 1, . . . ,m− 1 (4.5)

Sec. 4.2 Fault-tolerant control design 67

τ2 τ1

TX
success?

Compensate
u← Kjx+Gju

∗

u∗ ← u∗

j ← j + 1

Regular
u← K0x+G0u

u∗ ← u
j ← 0

Wait

NO

YES

Figure 4.7: Schematic representation of Drop Compensation Control (DCC). After a successful trans-
mission (TX), the regular path is taken. If no new information is available, progressively higher compen-
sation gains (Kj , Gj) are utilized.

In the following, we discuss how to select gain matrices (Kj, Gj)j=0,...,m such that exponential
stability of the system is guaranteed.

In the nominal case, there are no drops and the system is always actuated using (K0, G0).
Using an extended state X[k] :=

[
x[k] u[k − 1]

]′ we can write this as

X[k + 1] =

[
A+B0K0 B1 +B0G0

K0 G0

]
X[k] =: AnX[k]. (4.6)

In what follows, we develop an algorithm for designing the stabilizing controller in the drop
mode. For j = 1 drops, it holds

x[k + 1] =Ax[k] +B0u[k] +B1uk−1 (4.7)

=A
(
Ax[k − 1] +B0u[k − 1] +B1u[k − 2]

)
+B0

(
K1x[k − 1] +G1u[k − 2]

)
+B1uk−1.

Introducing AB := AB0 +B1, this is equivalent to

X[k + 1] =

[
A2 + ABK0 +B0K1 AB1 + ABG0 +B0G1

K1 G1

]
︸ ︷︷ ︸

=:A
(1)
d

X[k − 1].

For an arbitrary number of drops j, this construction can be iterated, resulting in the following
closed loop dynamics.

X[k + 1] =

[
A

(j)
0 A

(j)
1

Ki Gi

]
X[k − j] =: A

(j)
d X[k − j] (4.8)

68 Ch. 4 Applying ECAs for CPS Co-Design

Here, the relevant system matrices A(j)
0 and A(j)

1 are defined by

A
(j)
0 := Aj+1 +

j∑
`=1

Aj−`ABK`−1 +B0Kj

A
(j)
1 := AiB1 +

j−1∑
`=1

Aj−`ABG`−1 +B0Gj. (4.9)

The goal remains designing a controller that renders the switching system in (4.8) exponentially
stable (Definition 2.3) given that there is a bound on the consecutive drops, i.e., j ≤ H . The
following theorem demonstrates how to find such a controller using LMI.

Theorem 4.1 (Drop compensation controller). Suppose the communication of the system meets
a (1, H + 1)-firm deadline requirement, i.e., there are at most H consecutive drops. If there
exist matrices Ej ∈ Rp×n, Fj ∈ Rp×p, Q1 ∈ Rn×n, Q2 ∈ Rp×p with Q1, Q2 � 0, and positive
scalar γ < 1 such that LMI (4.11) and the system of LMIs (4.12) are satisfied. Then, utilizing
Kj ∈ Rp×n and Gj ∈ Rp×p as given by (4.10) in control strategy (4.5) guarantees exponential
stability of system (4.2).

Kj = EjQ
−1
1 Gj = FjQ

−1
2 (4.10)

−γQ1 ∗ ∗ ∗
0 −γQ2 ∗ ∗

AQ1 +B0E0 B1Q2 +B0F0 −Q1 ∗
E0 F0 0 −Q2

 ≺ 0 (4.11)

[
−Q ∗
Lj −Q

]
≺ 0, j = 1, · · · , H (4.12)

Here ? refers to symmetric completion of the matrix and Lj is given as follows.

Lj :=

Aj+1Q1 +
j∑̀
=1

Aj−`ABE`−1 +B0Ej AiB1Q2 +
j−1∑̀
=1

Aj−`ABF`−1 +B0Fj

Ej Fj


Proof. Using the Schur complement, LMI (4.11) can be rewritten to

L′0Q
−1L0 − γQ ≺ 0 (4.13)

where matrices Q,L0 are defined as

Q =

[
Q1 0
0 Q2

]
L0 =

[
AQ1 +B0E0 B1Q2 +B0F0

E0 F0

]
Substituting (4.10) and keeping nominal system matrix An from (4.6) in mind, we obtain

L0 =

[
AQ1 +B0K0Q1 B1Q2 +B0G0Q2

K0Q1 G0Q2

]
= An ·Q. (4.14)

Sec. 4.2 Fault-tolerant control design 69

With this, (4.13) can be further reformulated to

QA′nQ
−1AnQ− γQ ≺ 0. (4.15)

Multiplying (4.15) from left and right by Q−1, and defining a new positive definite matrix
P := Q−1, we arrive at the following inequality.

A′nPAn − γP ≺ 0 (4.16)

This proves that (4.11) guarantees the existence of a Lyapunov function for the nominal case.
In a similar fashion to the nominal case, it can be shown for the drop mode that inequality

(4.12) implies
A

(j)′
d PA

(j)
d − P ≺ 0, j = 1, · · · ,m (4.17)

Together, these inequalities imply that a CQLF V (X) = X ′PX exists for systems (4.6) and
(4.8). Recalling Theorem 2.6, this completes the proof.

Remark 4.2 (Relation of drop compensation and state estimation). One can view DCC as a
special case of state estimation scheme.

Fault-tolerant control case study In order to compare DCC to the established ZOH design,
consider the following continuous-time LTI plant with highly unstable system matrix A(c) and
two variations of input matrices B(c)

1 , B(c)
2 (consider (2.4) for reference).

A(c) =

[
0 1

6.31 −15.48

]
B

(c)
1 =

[
0
10

]
B

(c)
2 =

[
0

1000

]
(4.18)

To bring this into the required discrete-time form (4.2), a sampling period of h = 10 ms and a
delay of d = 4 ms is chosen. A, B0, B1 are then calculated according to (2.9). The system is
required to maintain exponential stability tolerating a maximum of m = 2 consecutive drops.
Theorem 4.1 yields the desired control gains Ki, Gi for this goal.

Fig. 4.8 shows the behavior of the plant with the various control strategies subject to random
drops within the specifications. All traces start with an initial disturbance of x0 =

[
0.25 0

]′.
On the left, we see that PZOH is clearly not suited for the bigger input amplitude as it introduces
considerable chatter in u and converges much slower towards 0 in x1 than the other approaches.
In case of a smaller input amplitude, as with B(c)

2 on the right, it is a more reasonable choice
than ZOH however. Since this system is more sensitive, ZOH can easily lead to over-actuating
and hence instability there. The proposed DCC strategy does not suffer from either of these
drawbacks and performs well for both input matrices.

Formal verification The described control application is implemented as the last of five ex-
emplary streams with periods P and jitter j as follows.

P =
[
4 ms 5 ms 7.5 ms 7.5 ms 10 ms

]
j =

[
1 ms 1.5 ms 1.0 ms 1.5 ms 0.5 ms

]
(4.19)

70 Ch. 4 Applying ECAs for CPS Co-Design

0 100 200 300 400 500

1

1.5

2

2.5
x
1
(t
)[
1
0
−
1
]

DCC
ZOH

PZOH

0 100 200 300 400 500

1.8

2

2.2

2.4

0 100 200 300 400 500

−4

−2

0

x
2
(t
)[
1
0
−
1
]

0 100 200 300 400 500

−1

0

1

0 100 200 300 400 500

−15

−10

−5

0

t [ms]

u
(t
)[
1
0
−
1
]

0 100 200 300 400 500

−0.4

−0.2

0

0.2

t [ms]

Figure 4.8: Comparing x1, x2, u (top to bottom) for system (4.18) with matrix B(c)
1 (left) and B(c)

2

(right): ZOH (dashed) performs well for large inputs as required by B(c)
1 ; PZOH (dotted) is well-suited

for small inputs as induced by B(c)
2 ; DCC (solid) remains stable and more steady in both situations.

The streams are traveling over a network with two service automatons. The first is a TDMA
automaton that rotates 10 slots, each 0.5 ms long. In its second slot, it processes one item
of stream #5, the stream of interest. The sixth slot is reserved for maintenance tasks and the
remaining slots each process higher priority messages.

After the TDMA ECU, messages are further processed by a bus with speed-stepping that
schedules according to a synchronized FPNS scheme. It starts out processing 1 message in every
second slot. If there are more than 2 messages waiting to be processed in total, it increases its
speed to one message per slot. If there are no more messages waiting, it returns to processing 1
message in every second slot. Messages are arbitrated at the beginning of the slot, i.e., the ECA
processes the highest priority message that was in the buffer at the end of the last slot.

Verification Result and Combined Design If the system runs purely on the starting speed,
stream #5 will only succeed occasionally. If it always utilizes the high speed, there are no
violations for a deadline of d − dc = 3 ms. Under the described speed stepping scheme, the
model checking implementation finds two design points. It is guaranteed that there will be at
most five consecutive misses for a deadline d − dc = 3 ms and at most two for a deadline
d− dc = 4 ms. With controllers designed at both points for A(c), B(c)

2 from (4.18), we evaluate

Sec. 4.2 Fault-tolerant control design 71

0 2 4 6 8 10 12 14 16 18

3

4

14.56

12.93

14.52

12.87

17.48

19.07

Control Cost J

D
ea

dl
in

e
d
−

d
c

Jreal

Jbc

Jwc

Figure 4.9: Comparing two DCC design points found by the ECA network based verification. Designing
for higher delay, but less drops leads to a lower cost in the best (Jb) and the simulated case (Jreal), only
the worst case (Jwc) is inferior.

the performance using a typical quadratic cost-term punishing both non-augmented state and
input. Such costs and the corresponding conversion from continuous- to discrete-time domain
have been described in the lead-up to Eq.(2.19). The cost parameters Q = In, R = Ip are
chosen to be identity matrices of appropriate size.

We examine data from N = 300 randomly initialized Monte-Carlo simulations of length
Tmax = 5400 ms. The comparison is shown in Fig. 4.9. Here, Jwc refers to the worst case
where the maximum number of drops always occur and Jbc refers to the best case where no
drops occur. In addition to the verification, the system is also modeled using a SYSTEMC
implementation. This generates a trace of the communication that is subsequently fed into the
MATLAB simulation of the control system. The costs that are observed from that simulation
are the realistic costs Jreal.

Designing for longer delay with fewer losses clearly outperforms designs that accept more
drops under a stricter deadline. Note however, that increasing the delay to the point where no
more drops occur often renders the corresponding LMI system infeasible for the solver.

Comparison with optimistic lossless design Depending on the design flow, the designer may
have more flexibility with regards to sampling period h in certain cases. It is thus of interest
to see how the proposed design would fare compared to another implementation with longer
sampling period, but without losses. Fig. 4.10 shows the optimistic pattern assumed for this
comparison. Given a (1, H+1)-firm deadline, it forgoes the transmission of the two potentially
failing messages. This yields a lossless pattern with sampling period hll = (1 +H) · h with no
changes in deadline d − dc. This is optimistic and only serves to demonstrate the value of the
control design because the drop pattern is typically irregular and unknown a priori.

For this comparison, consider again the system from (4.18) with B(c)
2 and set d−dc = 2 ms,

H = 2. The performance is evaluated using the same quadratic cost-term with Q = In, R = Ip.
Simulation length and cost per step have been adjusted to account for different sampling periods
across the various examples and the longer slots in the lossless cases. Note that these results are
therefore not comparable with Fig. 4.9.

Fig. 4.11 summarizes the result of the comparison of DCC with a lossless system for sam-

72 Ch. 4 Applying ECAs for CPS Co-Design

lossless

worst

h

Figure 4.10: Assuming the message drops follow the regular worst-case pattern under sampling period
h, we could also regulate the system using the larger period hll = 3·h. Note that this pattern is introduced
to illustrate the value of our control design and that in real systems, it is actually not guaranteed to be
lossless.

0 50 100 150 200 250

5

10

15

Control Cost J

Sa
m

pl
in

g
Pe

ri
od

h
[m

s

Jll
Jreal
Jwc

Figure 4.11: Comparing the fault-tolerant controller (Jreal and Jwc) to the lossless design (Jll) with
hll = 3 · h from Fig. 4.10: For h = 5, Jreal and Jll are on par, indicating oversampling; For larger h,
Jreal is significantly smaller than Jll showing the value of the combination design.

pling periods h1 = 5 ms, h2 = 10 ms, h3 = 15 ms. This data stems from Monte-Carlo sim-
ulation with 500 random initializations of x0 and 150 time steps afterwards. For the smallest
sampling period the system is oversampled since reducing the sampling frequency does not re-
duce QoC even when compared to Jbc the best (or lossless) case for the smaller period h (not
shown). The lossless design outperforms DCC here, albeit only slightly when compared to the
real performance. Once a critical sampling period is reached, the system becomes sensitive
to further sampling reductions. DCC designs become beneficial in such circumstances. Here,
even the worst case pattern for the faster sampling achieves 10 % better QoC; the real case, as
obtained by simulating, is about 25 % superior.

4.3 Related work
The contributions of this section serve several purposes and as such relate with various fields.
Both the guaranteed performance approach from Section 4.1 and the fault-tolerant controller
from Section 4.2 help operating under reduced communication. From this perspective, they
relate to techniques with the same goal, like event-triggered control. They also achieve a per-
formance guarantee, giving them a relationship to formal verification of CPSs. Fault-tolerant

Sec. 4.3 Related work 73

control is still relevant on its own without talking about errors from communication and there
have been many contributions in that area. Finally, treatment of delay is also found in the area of
Networked Control System (NCS). Overall, this section presents several small contributions in
all these areas. Mainly, it demonstrates how to bring these fields together and make a first step
towards co-verification and co-design of control system and hardware platform. The necessary
literature to understand the underlying ECA framework is presented in Section 3.8.

Networked Control Systems (NCSs) The NCS paradigm essentially builds a theory around
the control engineering perspective of the interaction between the controller and the communi-
cation platform (see Fig. 2.2). It is typically assumed that the knowledge of the communication
platform is limited and there is no control over it. The network is often modeled with random
behavior or even considered an opponent who may act in the worst possible fashion (subject to
mathematically convenient fairness constraints).

Hespanha provides an overview of the NCS area in [77]. Detailing the most relevant find-
ings, this work firstly treats optimal estimation of discrete-time LTI systems over lossy net-
works. Assuming Bernoulli dropouts a Kalman filter approach remains optimal until it breaks
down once the dropout probability reaches a critical value [163]. Smart sensors that compute
state estimates locally and then transmit them dramatically improve the robustness against drops
compared to dumb sensors that directly transmit their readings [191].

The next important topic in NCS is stability under delay. In [182], Walsh derives a bound
for the maximum allowable transfer interval below which it is guaranteed that a linear NCS
remains globally exponentially stable. Branicky and Zhang take a different approach in [30]
and [197]. They model the NCS as hybrid system and evaluate the Schur-ness of a matrix
containing various system matrices. In [28], they further examine the effects of dropouts. For a
stable closed-loop system they develop bounds for the dropout rate based on the eigenvalues of
the closed- and open-loop matrices.

Suh goes one step further in [171] where he considers stability under non-uniform sampling.
Toward this, he first finds norm sampling periods for which the norm bound of the system is
small. These subsequently help form an LMI that guarantees the overall stability. A similar
result has been simultaneously reported by Fujioka in [68]. The main advantage of the latter is
“the development of a concrete algorithm for the state feedback synthesis with a guarantee of
convergence”.

The delay introduced in a NCS also motivates adjusting established control strategies. In
[196], Zhang shows a new approach for designing the LQG gain under delay, i.e., the control law
that minimizes the quadratic costs from (2.19). The authors’ method is computationally cheaper
than the naive approach of augmenting the state space as in (2.11) and only then computing the
gain for the larger matrix. They mention however that this approach still works as long as only
a single delay is involved and the matrix does not become too large.

Model Predictive Control (MPC) has also been adjusted for NCS. Soudbakhsh presents an
MPC formulation with delay in [164]. While the paper focuses on the parallel implementation
for faster calculation, it begins with a derivation of the augmented LTI discrete-time matrices
for taking delay into account. In [135], a controller is implemented over a platform that has two
communication channels with different delay. After augmenting the state space, the authors
solve a mixed integer quadratic program at runtime to decide switching between the channels.

74 Ch. 4 Applying ECAs for CPS Co-Design

Mixed integer programs are computationally hard to solve, however. While the approach may
hence not provide benefits in practice, it is of interest as reference solution for future work in
this direction. In fact, comparing it with Voit’s approach from [180] would be interesting. That
scheme also switches between two channels with different delay. The authors use an adap-
tive controller that guarantees bounded behavior as long as impulse disturbances have sufficient
inter-arrival time. This requires no optimization at runtime and is thus more suitable for embed-
ded environments.

Another set of contributions is concerned with simulations of NCS. Cervin’s JITTERBUG

addresses this aspect [115]. In the words of the author, it “ is a MATLAB-based toolbox that
is used to analyze linear control systems with time-varying delays” [38]. The main downside is
that delays in the simulation follow standard random assumptions like independence that may
not hold in practice. Nevertheless, this tool provides a valuable ad-hoc gauge for QoC under
delay and drops.

All NCS studies mentioned here have in common that they use tools from control theory
to mitigate effects from the communication they consider unavoidable. Interestingly, it is ex-
tremely rare that data distortion is considered in this context. The design of that architecture
which is after all an entirely human creation as well has only been considered in more recent
co-design approaches.

Event-triggered control Going beyond the NCS goal of ensuring stability under adverse
communication but still working in the same platform-agnostic settings, event-triggered con-
trol aims to reduce communication and communication in some sense.

The first family of event-triggered control works survey a performance metric. They trigger
when the system comes dangerously close to failing the performance requirement. Differences
between them must be searched in the assumptions they make about actuating without compu-
tation, the performance metric, etc.

[172] is a prominent example that observes the decrease of a Lyapunov function and triggers
the system when the descent is no longer fast enough. Using a Lyapunov function in this way
even allows treating nonlinear systems. The authors provide an accompanying schedulability
criterion and prove that this scheme leads to inter-arrival times that are bounded below. In
other words, it cannot happen that computation and actuator task are triggered infinitely often.
It remains an open question how they measure the state in continuous fashion but with low
computation requirements. If an observer is involved to derive the state from a measurement,
this appears challenging.

A similar scheme based on Lyapunov functions is pursued by the same group in [128].
There, instead of reducing the sampling per se, the goal is less network communication. In [129]
they aim for decreased listening times. They claim “it is a well-known phenomena [sic!] in
the sensor networks community that reducing listening times has a bigger impact on the power
burden than reducing transmissions”, citing [193]. The paper begins by looking for a stabilizing
sample & hold implementation such that every state can be updated independently. The authors
then design a simple triggering law and prove that it is effective. The assumption appears to be
that the controller mainly deals with sudden errors, not ongoing disturbance.

[8] describes a similar approach: self-triggering. The idea here is that the controller decides
its next invocation time itself during execution. In this way, ongoing measurements of the state

Sec. 4.3 Related work 75

are no longer necessary. The authors define an operating region and then design a Lyapunov
function using a sum-of-squares technique. This subsequently serves to form the predictive trig-
gering law, as before. [155] moves in the same direction but with more focus on scheduling the
self-triggered tasks. The authors contribute a heuristic based on cost-function approximations.
They ensure stability through design-time verification and by construction.

A major downside of all event-triggering approaches that rely on a Lyapunov function for
measuring progress is that they ignore input costs. Since the Lyapunov function is only con-
cerned with the state evolution, it may be perfectly acceptable for them to employ more energy
in an electric motor to correct a larger deviation caused by a few missed, or saved transmis-
sions. If higher input energy is unacceptable, the following cost-based scheme may be an op-
tion. In [190], the transmissions and the estimation error cost in a remote observer problem
are weighted and minimized together. The authors show that this corresponds to a dynamic
programming problem. Molin later shows in [131] and [132] that this scheme is also useful
for event-triggered control. In particular, the optimal controller can be designed separately and
thus remains the LQG regulator gain. Dynamic programming is applied subsequently to find the
optimal triggering law. The downside of dynamic programming is that it requires a discretiza-
tion of the state space. Such a grid grows exponentially in the dimension of the state space
and hence usually limits the applicability of the approach to dimensions smaller than 4. As a
remedy, there are many approximate approaches for the calculation of triggering laws. [112],
for instance, uses a sum-of-squares approach that works well for systems up to dimension 8.

An earlier event-triggered control approach simply overlays a feedback controller for the
task periods on top of an actual control system implementation. This was discussed first by
Eker in [61]. There, if the measured cost term is far from the reference value, sampling is
increased. Henriksson extends this work in [75] by considering feedback from the plant states
in addition to the linear quadratic cost function. Furthermore, he also models delay. In [37],
the group considers more general controller designs. Whereas their works were limited to LQG
before, they now treat pole placement as well. This paper works with sets of sampling periods,
however. This allows building lookup tables, but is somewhat less flexible than the earlier
works. These works consider an additive disturbance term as in (2.3). This is possible because
they optimize the expected value of the costs and do not consider the worst case performance.

Zhang proposes adjusting the sampling period according to noise in the system as measured
by the H∞ norm in [195]. The authors prove that the corresponding cost function is monotonic
and thus apply a gradient descent algorithm to determine the sampling periods offline. Learning
from that method’s results, they propose a heuristic for online scheduling.

Finally, the main issue of all event-triggered schemes and perhaps the reason why they
have not found widespread application so far, is their difficult integration in real-time systems.
The proposed schemes may provide identical performance with reduced communication on
average, but they expect to receive computation and actuation when they request it. When
provisioning for the worst case, it is thus impossible to downsize the system even though the
average requirements went down after adopting event-triggering.

Cyber-physical System (CPS) design Whereas the computation and communication plat-
form is a randomly behaving adversary for NCS researchers, the CPS paradigm takes that hard-
ware into account with more detail. Lee argues in his position paper [108] that today’s comput-

76 Ch. 4 Applying ECAs for CPS Co-Design

ing and networking abstractions do not match the inherent concurrency and relentless passage
of time that the physical world exhibits. Real-time guarantees would benefit many industries,
from transportation systems to financial networks. However, “lack of temporal semantics and
adequate concurrency models in computing, and today’s ‘best effort’ networking technologies
make predictable and reliable real-time performance difficult, at best”. In a nutshell, he points
out that in spite of improvements according to Moore’s Law for general computing the perfor-
mance in real-time computing has practically stood still during the last 20 years. According to
him, we need new semantics to change that.

In [109], Lee expands upon his initial paper and calls for robustness on all abstraction levels.
This work also contains a vision of how timing guarantees can be achieved by including them
into the Application Programming Interface (API) across all layers.

The main contribution of Lee’s group in this direction is the PTOLEMY project. In the main
reference [62], the team explains how they integrate the many heterogeneous subsystems into
one consistent framework. They avoid amorphous heterogeneity where actors interface in var-
ious ways because it leads to unexpected system behaviors. Instead, they propose hierarchical
heterogeneity. There, they require that the model of computation includes the flow of data and
remains compositional after aggregation. After associating a number of nodes with each other,
this group acts as new node and can participate in further composition. The tool itself provides a
number of such models that can be composed in a Graphical User Interface (GUI). An example
from their paper is the control system from Fig. 2.2. It has an ODE model for the plant that
interacts with a discrete-time controller via sampling. In addition to modeling and simulation,
PTOLEMY also provides a code generator.

Formal verification of control systems Formal verification of high-level controller models
and, to some extent, also the verification of the generated code has been studied before.

Reachability analysis is a popular discipline, for instance. Its adherents are concerned with
finding safe enclosures for nonlinear ODE systems like (2.1). Often, the contributions are lim-
ited to one of the simpler subclasses, however. Althoff’s CORA [3], for instance, uses zono-
topes to calculate the reachable set of both linear and nonlinear systems. Frehse’s SPACEEX [66]
focuses on LTI systems and can thus achieve tighter approximations and higher efficiency. It
appears to be the only tool in this domain that handles systems with state dimension over 20.

The goal in reachability analysis is always guaranteeing that a given system does not reach
a specified “bad” area of the state space. Game-theoretic control design goes even further
and searches a control law that guarantees such properties by construction. Examples like
TULIP [188] and PESSOA [130] both begin by discretizing the state space. Next, they employ
model-checking and game-theory techniques to find the control strategy. The strategy itself is
represented by the values it takes at the points of the discretization, akin to a large non-uniform
lookup table.

None of these approaches has the communication platform in mind. Their analysis starts
and ends with the control engineering perspective, i.e., the dynamic system alone. The control
software and the code itself have been investigated more recently as well. COSTAN from [7],
for instance, derives bounds on implementation errors that can be tolerated and then checks if
the maximal error in the controller software respects the tolerance threshold. [64] also deals
with static analysis of the C code that implements control functionality. This work combines

Sec. 4.3 Related work 77

Lyapunov stability and Hoare logic. The authors suggest annotating MATLAB source code
with pre and post expressions that are assumed to hold before and after a statement, respectively.
These annotations then translate to the generated C code and can be verified independently by
a proof checker.

Co-verification approaches The previous passage contains many formal approaches for con-
trol systems. None of them includes the computation and communication hardware as well as its
timing properties into their framework, however. Both reachability analysis and the discretiza-
tion approaches are already exhausting contemporary off-the-shelf computers. It is unlikely that
they can simply be extended with knowledge about the architecture. As implementation archi-
tectures become more complex and distributed, however, the semantic gap between high-level
controller models and their actual implementations continues to increase, necessitating such
co-verification.

Alur and Weiss have proposed Büchi automaton models for various CPS performance spec-
ifications in [5] and [185]. These are also discussed in Section 2.6. Originally intended for
online scheduling of processor tasks, they also serve as verifiable properties. Building on their
work, [91] describes how such a Büchi automaton specification can be used in conjunction
with the ECA framework. By constructing an ECA model of the communication platform the
overall performance of a CPS can be guaranteed by verifying the corresponding specification
in a model checker. This paper has been reproduced in Section 4.1. The idea is similar to
that in [101] where model checking also jointly verifies controllers and their implementation
platforms. The difference is two-fold. [101] relies on the RTC-UPPAAL interface proposed
in [104]. The advantages and drawbacks of ECAs compared to TAs, as discussed in Section 3.8,
hence apply here as well. In addition to a more explicit model of the architecture, Section 4.1
also utilizes a more general interface for the performance specifications.

Following [91], a later technique for drop analysis relying on RTC directly is developed
in [165]. This approach for generating (f,H)-firm deadline guarantees is highly efficient, but
it cannot deal with state dependency. Please refer to Section 3.8 for these limitations and the
original motivation behind the ECA framework.

Co-design techniques Instead of verifying a certain platform behavior a posteriori, co-design
techniques include QoC metrics during the platform composition. There are not many contri-
butions in this space and they are not strictly superior to co-verification methods. Often, they
optimize a cost function instead of guaranteeing a certain performance. In other cases, they
determine costs via simulation or the architecture they work with is more favorable.

Schneider solves a Constraint Satisfaction Problem (CSP) in [158] to find a feasible FlexRay
schedule. FlexRay is an upcoming bus technology that offers a static (time-triggered) and a
dynamic (priority-based) segment. Statically scheduled messages exhibit predictable behavior,
but there are limited slots to distribute. For each control application, this work determines a
suitable period from the discrete set FlexRay offers by simulation. The applications are then
synthesized into a single schedule by solving the CSP.

[119] pursues another interesting idea for schedule synthesis in time-triggered architectures.
It uses evolutionary algorithms to determine the best periods and corresponding allocation. Such

78 Ch. 4 Applying ECAs for CPS Co-Design

an optimizer generates candidates from a given gene pool, here the available FlexRay slots. It
then evaluates the quality of the resulting feedback loops by creating the LQG regulator gain
according to the implied period and simulating. Over many cycles where good candidates are
treated favorably in some sense, the algorithm finds a good result. These techniques are not
guaranteed to find the global or even a local minimum. They do work well for many hard prob-
lems in practice, however. Here, they manage to find a non-equidistant scheduling sequence
that clearly improves QoC compared to a standard round-robin approach. Interestingly, instead
of scheduling 3 systems in the order “123123”, the technique often finds irregular cases like
“123231”. A human designer would arguably not explore every such ordering and it is some-
what surprising that they can be beneficial.

Fault-tolerant control design Section 4.1 presents the Drop Compensation Control (DCC)
approach from [90]. This paper is inspired by the aforementioned [165]. Besides the discussed
technique for determining message drop patterns, it also contains an LMI-based test for expo-
nential stability. No control law is designed there, but this test motivates the controller synthesis
in [90]. It is the first synthesis based on the (f,H)-firm interface backed by ECA verification. A
similar LMI-based design approach is also presented in [194]. It does, however, assume zero
sensor-to-actuator delay and does not justify the fault bound it relies on.

[76] introduces patterns similar to ZOH, PZOH from a NCS perspective. This work also
contributes a predictive outage control technique. This approach is based on predictive form and
implemented using an additional computational block next to the actuator to compute new input
signals in case no new messages arrived. The input signal there is computed using the previous
inputs of the system. This means it requires more computation than the approach from [90].

Other contributions in the fault-tolerant control area are less closely related, but still rele-
vant. In [29], Branicky deals with a system switching between several subsystems that all have
their individual Lyapunov functions, ensuring their stability. He shows that the overall system
nevertheless need not be stable. He then introduces limitations on the switching that ensure
stability in such a mixed situation.

79

5
Quantitative Models for Charge Transfers in

Active Cell Balancing (ACB)

The recurring theme of this thesis is the interaction between digital and physical. Such inter-
action commonly occurs in digital control systems where a controller periodically samples a
physical process to subsequently compute a new input signal. In the previous chapters, we have
seen that this interaction becomes significant when the timing of the underlying hardware plat-
form is no longer negligible compared to the timing of the physical process. This interaction
does also become important, however, when the actuation of the physical process is inherently
digital. Switched systems, for instance, only have a discrete set of inputs that can be selected.
For the linear, discrete-time case, where all possible switching instants are assumed to be pre-
defined, these systems have been discussed in Section 2.5. In other cases, the system undergoes
a fixed sequence of configurations and the timing of the corresponding transitions becomes the
fundamental input variable. A field where such systems arise is the increasingly important area
of Active Cell Balancing (ACB) that we investigate in this chapter. In ACB, internal charge
transfers are performed, often at kilohertz frequencies, to improve the performance of battery
packs.

The goal of this chapter are quantitative models for component selection, performance eval-
uation, and strategy design in the later stages of the ACB design flow described in Section 1.2.
To that end, we first revisit the motivation for ACB, position this thesis with regard to the overall
ACB design flow, and present the main challenges (Section 5.1). We then limit the analysis to
inductor-based architectures and introduce their charge transfer mechanism (Section 5.2).

The remainder of this chapter develops accurate, yet computationally efficient models for
large-scale simulations (Section 5.8); optimization is the subject of Chapter 6. For these simu-
lation models, the transfer dynamics are localized using an equivalent circuit abstraction (Sec-
tion 5.3) to yield an ODE where any battery model can be inserted (Section 5.4). After de-
scribing high-level actuation interfaces that make long-term transfers more manageable (Sec-

80 Ch. 5 Quantitative Models for Charge Transfers in ACB

tion 5.5), we go over additional operating losses from the transistor switching that must be con-
sidered, e.g., when transferring at low current (Section 5.6). Even though a numerical solver can
now calculate the current behavior within a phase directly, the high computation times motivate
further reformulations to obtain closed-form expressions (Section 5.7). These help implement
the actuation interfaces and are a requirement for rapid simulation. After presenting the faster
simulation models (Section 5.8), the chapter concludes with a discussion on related work and
other implementations of ACB (Section 5.9).

5.1 ACB: Motivation, design flow, and challenges
This section presents the motivation for balancing and subsequently covers the corresponding
design goals and challenges. It also describes the four phases of the ACB design flow and how
this thesis relates to them.

Motivation Balancing becomes necessary in most Electrical Energy Storage (EES) applica-
tions since Li-Ion battery cells do not behave identically. Justified by their energy density, these
cells currently form the basis for a wide range of applications, like smartphones, laptops, or
EVs. Their cell chemistry limits voltage to about 4V and many cells are hence typically con-
nected in series and/or parallel to form a battery pack that provides the required power output.
In such setups, imbalances between the cells arise because cooling is non-homogeneous and
because cell parameters exhibit significant variation, both initially and increasingly over time.

Gogoana [72], for instance, measures up to 25 % difference in internal resistance and 3.5 %
difference in capacity over 72 fresh, commercially available 2.2 A h LiFePO4 cells. Similarly,
Dubarry [58] finds up to 3.8 % (± 1.9 %) deviation in capacity and 60 % (± 30 %) in internal
resistance for a lot of 300 mA h LiCoO2 cells. While such differences can be alleviated by
clustering cells, e.g., by weight [161], the issue also grows over time as cells age. In [19], 48
cells with 1.85 A h mean capacity, from the same production lot and subsequently the same
grade, increase their capacity spread from 0.02 A h (1 %) to 0.1 A h (4.5 %) over 900 cycles
and 0.4 A h (18 %) over 1300 cycles. The evolution exhibits significant randomness, such that a
“cell that is in the lower third of the capacities after 480 cycles can end in the top ten cells after
1440 cycles . . . ” [19].

Whereas parallel cells even out by themselves, the usable energy of serially connected cells
remains limited by the cell with the least energy. Besides supervising temperature and other
cell operating parameters, a Battery Management System (BMS) hence regularly performs bal-
ancing to improve the efficiency of the pack.

A simple, but inefficient option for balancing is passive balancing where excess energy is
dissipated using switchable resistors. In ACB, on the other hand, this energy is transferred to
other cells within the pack. While such transfers can be implemented in many ways, this thesis
focuses on inductor-based architectures since they are highly efficient with respect to energy
dissipation as well as space requirement.

Balancing performance criteria There are several target variables that we may want to im-
prove both during design phase and during operation. In this work, we mainly consider the

Sec. 5.1 ACB: Motivation, design flow, and challenges 81

following objectives:

• Minimize charge losses: While ACB transfers charge between cells, the process is not
completely lossless. The resistance of the components in the current path leads to energy
dissipation, for instance. As balancing is first and foremost about energy efficiency, these
losses should be as small as possible.

• Balancing time: In many charge transfer scenarios, the balancing time is constrained.
Consider, for instance, an EV that should be balanced over night. The time for passive
balancing mainly depends on the available cooling since dissipating charge leads to heat
that must be removed from the system. In ACB, balancing time is mainly determined
by the routing strategy and the transfer current. Adjusting the current, however, leads
to a trade-off between speed and efficiency. Performing transfers in parallel is hence
highly beneficial; if the ensuing speed increase is not required, lower currents can be used
for more efficiency. In any case, this link between time and efficiency also implies that
considering efficiency in isolation is not meaningful.

Furthermore, there are secondary objectives which, depending on the usage scenario of the
battery pack, may also become relevant:

• Raise charge level of the pack early: The discharge of a battery pack must stop once
the first cell reaches its limit. The energy level of the pack is thus determined by the
weakest cell. While only a fully balanced pack leads to the maximum usable charge,
there are several reasons to raise the weakest cells and thus the overall charge level early.
Given that complete balancing at efficient transfer rates often requires significant time,
interruptions by the user have to be expected. Consider, for instance, an EV that is parked
in a shopping mall for an unknown period of time. If balancing is interrupted, the pack
should already be in the best possible state. Raising the pack level quickly at the expense
of some overall efficiency may thus be beneficial.

• Minimize stress on cells: The goal of cell balancing is to equalize the charge of cells in
the battery pack to increase the usable energy. Depending on how the charge transfers are
performed they may contribute differently to the wear and lifetime of the cells. Frequent
transfers, high currents, or increased depth of discharge usually deteriorate a cell’s health.
Proper balancing may also lead to reduced depth of discharge in the weak cells, however,
and potentially prolong the pack lifetime.

These criteria vary in importance depending on situation and user preferences. That said, this
thesis focuses on improving the overall efficiency under a time constraint. The other goals are
mostly evaluated as side effects of the strategies that achieve this purpose.

Design flow There are many challenges in the ACB area. As described in the design flow
from Section 1.2, circuits must be designed, components selected and low-level functionality
ensured. Although equally important, not all aspects from this flow can be considered in this
thesis. Mainly, we are concerned with the quantitative modeling and optimization of the charge
transfer. To provide context for the following investigation, we now briefly go over the design
flow and detail what decisions we assume to be fixed and how the steps depend on each other.

82 Ch. 5 Quantitative Models for Charge Transfers in ACB

1. Topology selection: Although many transfer mechanisms are possible, this work only
deals with inductor-based circuits. Compared to their alternatives, inductors lead to high
energy efficiency with relatively low space requirements. The examples also focus on
modular architectures due to the focus on distributed battery management in the author’s
research group. Please refer to the introduction later in this section. The developed mod-
els and methods do not require modularity, however.

2. Circuit synthesis: From the family of inductor-based circuits, this work considers various
versions. These include a basic version that only allows transfers between neighbors,
but also more complicated circuits that allow transfers to non-adjacent cells or multiple
cells. The higher-level DSE challenge is beyond the scope of this work and all circuits
are considered given. From the perspective of the following steps, which are the focus
of this work, one specific circuit differs from the other in which links it creates between
cells and in the aggregated resistances there. This relationship is explained in Section 5.3.

3. Component selection: A circuit architecture determines only the layout and the number
of Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs), inductors and pos-
sibly diodes. The final performance of the ACB circuit heavily depends on the parameters
of these components. Ideally, one would want small components with vanishing resis-
tance and high inductance. Clearly, there is a trade-off between these values involved,
however, that we treat in Chapter 6.

4. Control strategy: Once the circuit is printed and the components are soldered, further de-
cisions must be taken online during the balancing process. The most important questions
are charge routing and transfer current. Heuristics and optimization approaches for these
questions are discussed in Chapter 6.

This chapter builds quantitative models to evaluate an ACB circuit and thus lays the foundation
for Chapter 6.

Modeling & simulation challenges To evaluate and subsequently improve the typical perfor-
mance criteria, accurate models for computer simulation are critical. These are challenging in
ACB for several reasons.

• Time scale disparity: The time periods for the switching phases, described in Section 5.2
(φt and φr in Fig. 5.4), are typically in the microsecond range. A balancing operation,
on the other hand, may last for several hours. This means that a simulation may have to
analyze domains that differ by a factor of 10 h/50 µs = 7.2e8.

• Non-differentiable switching transitions: By itself, the time scale disparity may not be
a major issue. However, the switching behavior of the circuit leads to non-differentiable
transitions between the individual phases. These are the kinks in Fig. 5.4 from Section 5.2.
A general purpose simulator must hence increase its resolution there, severely limiting its
speed overall.

Sec. 5.1 ACB: Motivation, design flow, and challenges 83

• Battery modeling: While there exist a vast amount of battery models in the literature,
most of them are concerned with the simulation of one cell or consider a pack of multiple
cells as a single cell. However, since ACB is about transfers between cells, they must be
represented individually and many models are not computationally efficient enough for
this purpose.

Distributed battery management & smart cell architecture Most BMS implementations
use a master-slave architecture. There, a powerful ECU forms the center of operation, receiv-
ing information from all sensors. At TUM CREATE, we have explored an alternative, fully
distributed approach where the BMS is formed by smart cells.

A distributed approach imposes certain restrictions on the transfer circuits. Since no cell
should have a special role, only modular circuit designs can be used. For this reason, most
examples from the thesis at hand fulfill this modularity requirement even though it is not a
constraint for the presented methods. Since balancing is a slow process and there are not too
many cells, communication is not constrained and global knowledge of the state can be as-
sumed. Message protocols that ensure charge transfers do not interfere with each other have
been presented in [166].

Cell

Sensor and Balancing Board

Microcontroller

LCD

CAN Transceiver

Smart Cell

Smart
Cell
#1

Smart
Cell
#2

Smart
Cell
#3

Smart
Cell
#4

Smart
Cell
#5

Figure 5.1: The smart cell development platform from [167] consists of five smart cells. Each cell con-
sists of sensor & balancing board as well as a microcontroller and CAN transceiver for communication.

Fig. 5.1 shows a development platform with 5 cells. The communication architecture cho-
sen for this prototypical implementation is the wired CAN bus since it is a reliable and well-
established standard. The emphasis is on broadcast messages with only one smart cell transmit-
ting to the bus at a time. Every cell thus automatically has global knowledge of the system.

The overall goal of the smart cell architecture is to come up with a single Integrated Cir-
cuit (IC) per cell, comprising the whole functionality. Integration of the computational layer
and the communication layer as well as most parts for sensing and balancing is possible with

84 Ch. 5 Quantitative Models for Charge Transfers in ACB

minimal footprint, low power consumption and cheap production costs. For modular active cell
balancing architectures, one inductor would be required for each smart cell as in Fig. 5.2. Com-
ponents for temporary energy storage like inductors cannot be efficiently integrated in a single
chip, however. Packaging an inductor with the IC chip on a small Printed Circuit Board (PCB)
still allows compact smart cells with negligible volume and weight of less than 50 grams. This
is a small ballast compared with 2kg per prismatic cell in state-of-the-art vehicles such as the
BMW i3. The IC would also replace many conventional BMS components and the overall
weight would thus remain similar in spite of scalability and integration benefits coming from
the smart cell architecture.

5.2 Inductor-based charge transfer architectures
This section qualitatively presents the basic operating principles of inductor-based charge trans-
fer. The following sections build upon these principles, adding quantitative models and more
details to improve the resulting ACB performance.

Charge transfer mechanism Figures 5.2 and 5.3 show Kutkut’s charge transfer circuit from
[103] in a modular layout. This, arguably first, inductor-based balancing architecture has a
simple topology that enables only transfers between adjacent cells. Its biggest advantage is the
low number of transistors it requires. This facilitates the explanation of the general concepts
behind inductor-based charge transfer. Along with the fewest transistors, the basic version from
Fig. 5.2 is also the smallest in size. It hence remains relevant in practice.

The general concepts explained in this section apply to the entire family of inductor-based
balancing circuits. The larger versions employ more transistors to provide additional features
like transfers between non-adjacent cells or groups of cells. They always represent trade-offs,
however, since the additional weight and resistance of the transistors must be justified.

Inductor-based charge transfer always occurs in several phases, each corresponding to a
specific transistor configuration. Figs. 5.3 and 5.4 detail this operation. In phase φt, inductor L2

is charged from cell c2 by closing Ma
2 . Inductor current iL consequently rises to peak current

c1

unit
#1

c2

unit
#2

c3

unit
#3

c4

unit
#4

c5

unit
#5

c1

Q

Figure 5.2: After composing individual modules to a balancing architecture and attaching it to the main
battery string, charge can be transferred between adjacent cells. Here, cell c2 charges its inductor ()
which subsequently discharges into c3 ().

Sec. 5.2 Inductor-based charge transfer architectures 85

φt φr

c1 c2 c3 c4 c5

Ma
2 M b

2

L2

Figure 5.3: Circuit-level perspective of the modules from Fig. 5.2: Driven by switching signals in M b
2

(see also Fig. 5.4), cell c2 charges inductor L2 during transmitting phase φt. The MOSFET then switches
over and L2 discharges into cell c3 in receiving phase φr.

I . This stores energy in the magnetic field of the inductor. Next, transistors Ma
2 and M b

2 both
switch over and discharging or receiving phase φr begins. The energy from the inductor now
moves into another cell (c3 in this example). Note how the direction of the inductor current iL
remains constant in Fig. 5.3. This current now decreases back to zero before M b

2 switches back
to its non-conducting state. Note that charge transfer remains possible even if the voltage of c3

is higher than that of c2. The inductor, with its continuous current, separates the two cells and
their voltages are never directly compared.

For efficient operation, it is crucial that iL does not turn negative because that would reverse
the transfer direction and extract energy from the receiving cell. In Fig. 5.4, this is achieved
by M b

2 switching over precisely when iL = 0. We ignore the implementation details and the
timing issues for now, postponing the discussion on techniques that approximately create this
ideal behavior to Section 5.5. There, we also treat model adjustments that capture the actual
transfer behavior more accurately which become relevant in the case of transfers at low current
or equivalently high frequency1.

1The slope in Fig. 5.4 depends on cell voltage and inductance; it is hence approximately constant at runtime.
We must therefore shorten Tt, the time for φt, to achieve a lower current, leading to higher frequency.

0

I
iL

0
1Ma

2

0
1

t
M b

2

φt φr

Tt Tr

Tc

Figure 5.4: The transfer in Fig. 5.3 is driven by switching signals in Ma
2 and M b

2 . Inductor current iL
rises to peak current I during charging phase φt. Next, it goes back to zero during discharge phase φr.

86 Ch. 5 Quantitative Models for Charge Transfers in ACB

5.3 Equivalent circuit modeling
Inductor-based charge transfer occurs in several phases, as shown in Fig. 5.4. The circuits are
actuated by varying the sequence timing for transmitting phase φt, and receiving phase φr. This
section explains how the equivalent circuits of these phases can be considered separately to
obtain an ODE model for the dynamics within each phase. These models are also referred to as
intra-phase dynamics. Although they depend on the cell voltage, no explicit battery model is
necessary for the formulations in this section. In the later analysis techniques a battery model
(see Section 5.4) can then be selected as needed.

φt

φr

c1 c2 c3 c4

Figure 5.5: The charge transfer circuit from [123] allows one-to-one transfers between non-adjacent
cells, using several additional transistors.

Consider the charge transfer architecture from Fig. 5.5. Compared with the basic circuit
from Fig. 5.3, it contains significantly more transistors. Predictably, the switching sequence (cf.
Fig. 5.4) is also more complicated, involving a total of 10 transistors that must be controlled.
Please refer to [123] for details. Apart from transistor network, the components (inductor)
and the modularity have remained identical. The benefit of this circuit are the non-neighbor
transfers that it enables. These lead to a higher efficiency in almost all scenarios. Intuitively,
this is the case because daisy chaining, the alternative for long-distance transfers in neighbor-
only architectures, must temporarily charge all interim cells. However, the resistance with
less transistors is lower. In practice, it thus depends on the individual application whether the
additional expense and installation space for the extra components is justified.

In this section, the purpose of the more complicated architecture from Fig. 5.5 is to demon-
strate that it can be analyzed with the same equivalent circuit model as the basic architecture
from Fig. 5.3. Ignoring the details of the switching scheme that has been formally verified
in [123], we now consider the dynamics of the individual phases φt and φr. In both architec-
tures, the corresponding current paths contain one battery cell, one inductor and a number of
MOSFETs. Since the MOSFETs do not switch during either phase, the intra-phase dynam-
ics only need to consider their contribution to the aggregate resistance of the path. After this
aggregation, the only differences between the phases are the current direction and the amount
of resistance. Fig. 5.6 summarizes the involved current paths into equivalent circuits using the

Sec. 5.3 Equivalent circuit modeling 87

aggregated transmitter resistance Rt and receiver resistance Rr. Compare this figure to both
Fig. 5.3 and Fig. 5.5 to convince yourself that the circuits there represent the same circum-
stances (modulo cell indexes).

To quantify the dynamic behavior, formulas are required that contain the aggregated resis-
tances for all possible transfer routes. These formulas are the interface that abstracts the full
circuit schematics. Although this standard transformation forgoes several nonlinear compo-
nents, it is well respected and only leads to small errors. Please refer to the measurements from
Fig. 5.20 on page 109 that compare this abstraction to a standard circuit simulator.

Before we can focus entirely on the dynamics of the equivalent circuits from Fig. 5.6, we
must guarantee that the full circuit is free of short circuits and other design errors. Such an
analysis can and should be performed with the tool presented in [123]. It formally verifies that
the full circuit does not contain bugs, but it does not make quantitative statements about the
performance.

Quantitative analysis is the topic of the following sections. They all build on the equivalent
circuit models from Fig. 5.6. The dynamics of the transmitting and receiving cells are identi-
cal except for their parameters and current direction. The latter follows the convention in the
following definition.

Definition 5.1 (Current direction). The current direction follows the convention that positive
currents discharge and negative currents charge a cell. The charge differences q, being integrals
of the currents, adopt the same signs. In this way, we can always add q without distinguishing
cases. This is particularly important for battery models (Section 5.4) that employ additional
capacitors for more accuracy.

To simplify the equations, a short notation is often used to summarize variables of both
phases. In this scheme, R refers to the aggregate resistance of both respective phases, Rt and
Rr. With these definitions, the dynamics for both phase φt and φr are given as follows.

d

dt
i(t) =

1

L
[V (t)− i(t)R] i(0) = i0 (5.1)

φt φr

ct

L

Rt

(a) Inductor charging

cr

L

Rr

(b) Inductor discharging

Figure 5.6: After aggregating the resistances on the current path, the charge transfer can be described
by two equivalent circuits, (a) and (b). Driven by transmitting cell ct, the current in the inductor rises
during φt until the desired peak value I is reached. The MOSFETs then switch over and the inductor
discharges into the receiving cell cr during φr.

88 Ch. 5 Quantitative Models for Charge Transfers in ACB

In this formulation, V , a short notation for Vt and Vr, refers to the respective cell voltage and
must be characterized. Section 5.4 discusses the corresponding battery models and how they
affect the solution of this ODE. Aggregate resistance R, short for Rt or Rr depending on which
phase we are solving for, is determined by the circuit itself. For the circuit from Fig. 5.5, for
instance, the transfer involving c1 and c4 yields the following resistances.

Rt =5RM +RL +RC Rr =17RM +RL +RC

Here, RM , RL, RC refer to the resistance of the involved MOSFETs, inductors and battery
cells, respectively. In general, receiver resistance Rr depends on the length of the transfer, or
the distance (in cells) between the two participants. With this in mind, we can find a more
general formula for this circuit.

Rt =5RM +RL +RC Rr(i, j) =8RM + |i− j| · 3RM +RL +RC (5.2)

The basic, neighbor-only circuit from Figure 5.3 also has a simpler resistance function.
There can be no gap between cells and all distances are hence identical |i− j| = 1. Concretely,
its resistance values are hence given by

Rt =RM +RL +RC Rr =RM +RL +RC . (5.3)

This is strictly less than the values from (5.2). Whether it is dramatically less depends on how
large the transistor resistance RM is in relation to RL, RC , the inductor and cell resistances.

More complicated circuits may implement transfers in non-symmetrical fashion to reduce
the transistor count. This cannot be described by only including the cell distance |i− j|. Other
architectures are not fully modular and come instead with two types of modules that they use
in alternating fashion. A transfer c2 → c3 is then identical to a transfer c4 → c5 whereas
a transfer c3 → c4 would face different resistances. The equivalent circuit model from this
section and the methodologies this thesis builds on top of it are valid in all these situations. The
only requirement is that there is a time-invariant function

R : {1, .., N} × {1, .., N} → R2 with R(i, j) =
(
Rt Rr

)
that returns the resistances for a transfer ci → cj . Evaluating this function should be cheap to
avoid interfering with other computation tasks. In practice, this is not an issue; most functions
of this kind consist only of a few multiplications, additions, and absolute value evaluations.

The following definition of links, describing the connection of two cells, formalizes the
interaction of high-level algorithms with the details of the corresponding equivalent circuits. In
particular, the parameters of the link and the current state of the participating cells is sufficient
to calculate the transfer dynamics.

Definition 5.2 (Link). A link l is identified by the transmitting cell t(l) and the receiving cell
r(l) it connects. As parameters, a link stores the resistances Rt, Rr and the inductance L.

We refer to the set of all links as L. For convenience, we additionally define the following
sets of links with respect to a single cell c.

IN(c) ={l ∈ L : r(l) = c} OUT(c) ={l ∈ L : t(l) = c} (5.4)

With the link parameters Rt, Rr, L provided by the selected circuit, we are now almost
ready to solve the intra-phase dynamics (5.1). The last ingredient we need is a battery model
and the corresponding selection process is discussed in Section 5.4.

Sec. 5.4 Electrical battery models 89

5.4 Electrical battery models
ACB is first and foremost concerned with Li-Ion battery cells. Their power and energy density
dominate other cell chemistries in the market and make them the clear choice for many appli-
cations. The chemical reactions inside these cells lead to complicated dynamics, however, that
are virtually impossible to model in their entirety. For this reason, various cell models have ap-
peared in the literature, each catering to special use cases or circumstances. To analyze charge
transfer dynamics with ODE (5.1), many of these models are not suitable because they are too
complex. In most applications a cell model represents an entire pack as a single cell which
justifies more computational effort for increased accuracy. This perspective cannot be taken in
ACB because it is concerned with the differences of the cells. Additionally, ACB deals with
high-frequency behavior and we aim to reformulate the dynamics. We hence require models
that are both computationally efficient and provide insight on the equation level. This require-
ment rules out most cell model classes, like the chemical reaction models, or those based on
neural networks. Currently, only electrical battery models are a good option for ACB since they
integrate directly into the equivalent circuits from Fig. 5.6 and thus bring both equation-level
analysis and fast computation.

Resistor-Capacitor (RC) battery models The most common electrical battery models are
Resistor-Capacitor (RC) models. They consist of a voltage source and several RC stages in
series. Prominent examples achieve small errors on the order of 0.5 % in charge content and
30 mV in terminal voltage under a wide range of input currents. Simpler approaches like Peuk-
ert’s law, Thevenin model, or impedance circuits typically lead to errors that are at least 10
times larger [45].

Fig. 5.7 shows a cell model with a voltage source and two RC stages integrated into the
equivalent circuits from Fig. 5.6. In these electrical battery models, two effects are modeled:
transient voltages and main cell evolution. The RC stages, such as Ct,1 with Rt,1, model tran-
sient, often parasitic, effects. They behave according to the following ODE.

d

dt
Qj = −i− Vj(Qj)

Rj

j = 1, 2 (5.5)

When a current flows through a RC stage, (5.5) leads to a charge Qj on Cj and consequently a
voltage Vj , given by

Vj(Qj) = Qj/Cj , j = 1, 2. (5.6)

This voltage is typically parasitic and renders the main operation less efficient. During charging
(i < 0), for instance, the overall voltage of the cell is increased by Vj > 0, and the charger must
operate at a higher power level. When it = 0 or ir = 0, the respective cell is relaxing. In this
case, we must still update the resistor-capacitor stages using (5.5).

The main evolution of the cell is modeled by the upper circuit with the controlled current
source and by the controlled voltage source V0. The latter is also referred to as the Open Circuit
Voltage (OCV). it directly updates the cell charge in Ct,0, and ir analogously updates Cr,0. The
resulting charge in C0, short for Ct,0 and Cr,0, is called Q0. It is often expressed in relation
to C0 rather than as absolute value. The so-created State of Charge (SoC) is explained in the
following definition.

90 Ch. 5 Quantitative Models for Charge Transfers in ACB

ct

φt

cr

φr

Ct,2Ct,1

Rt,2Rt,1

+−

Vt,0(zt)

Ct,0 it

zt

LitRt

Cr,2Cr,1

Rr,2Rr,1

+−

Vr,0(zr)

Cr,0 ir

zr

LirRr

Figure 5.7: After inserting a standard battery model into the equivalent circuit from Fig. 5.6, the transfer
dynamics can still be described with two phases. There are now 8 states, however: one current and three
capacitor charges per cell.

Definition 5.3 (SoC). A cell’s charge Q0 is often equivalently expressed in percentage as State
of Charge (SoC) z = Q0/C0. Absolute changes in SoC are denominated in percentage points
(pp) or basis points (bp).

V0(Q0), the OCV, describes the relation between a cell’s charge and its voltage, without
external influences. The OCV is obtained from measurements and typically expressed as piece-
wise linear function or via another form of curve-fitting. A later paragraph from this section
describes this in more detail.

How many RC stages? Since the RC stages discharge themselves, the maximum voltage
they can reach depends on the input current. As the current is divided between capacitor and
resistor such that their voltages are always identical, the voltage of the resistor represents an
upper bound that the voltage of the RC stage approaches. For a constant current it, it holds

|Vj(t)| ≤ lim
t→∞
|Vj(t)| = |it|Rj (5.7)

This can be seen from (5.5) where the right-hand side vanishes for Vj = −iRj . When deciding
how many RC stages should be used in a model, this upper bound becomes useful.

Since currents in ACB tend to be low, operating with few or even no RC stages is not an
issue in many cases. Typical peak currents of 1

4
C lead to less than 10 mV in RC contributions2.

The RC voltages may reach 50 mV only with high C rates (see Fig. 5.22 in Section 5.8.3). As
these differences are dwarfed by the minimum cell voltage and even by changes in OCV, RC
stages are rarely included in ACB optimization and often omitted for simulation as well.

2A peak current of 1
4C corresponds to 1

16C on average (factor 1
2 for idling during the opposite phase and

another factor 1
2 for the triangle shape of the current). The voltage estimate is for the cells characterized in [45].

Sec. 5.4 Electrical battery models 91

Piecewise linear charge-voltage mapping In electrical battery models, the Open Circuit
Voltage (OCV) describes the major evolution of the cell. It is the terminal voltage of a cell with-
out load and after transient effects have worn off. Correspondingly, it can be seen in Fig. 5.7
that V0 becomes the terminal voltage of the cell once the voltages in C1, C2 have decayed. The
OCV is a mappingQ→ V (Q) that must be established from measurement before operation be-
gins. This mapping is crucial because the SoC, or equivalently the charge of the cell cannot be
measured directly. These values must hence be estimated from the measured terminal voltage,
the recent current measurements, and knowledge about the OCV at runtime.

To see how an OCV mapping can be devised, consider the measurements in Figs. 5.8 and
5.9. They show voltage evolutions over the corresponding SoC during a slow complete dis-
charge. Both measurements were performed at approximately 0.1C. The C-rate defines the
discharge current in relation to the capacity of a cell. 1C refers to a current that discharges the
cell within one hour; a current of 0.1C correspondingly requires 10 hours for a full discharge.
The difference between Fig. 5.8 and Fig. 5.9 is the battery cell used for the measurement. The
APR18650M1 cell from A123SYSTEMS [1] has a Lithium Iron Phosphate (LiFePO4) chem-
istry. This chemistry leads to very high power and abuse tolerance. It also possesses a very
flat voltage profile, making SoC estimation difficult. Its capacity of 1.1 A h is significantly less
than the 2.5 A h of the newer INR18650-25R cell from SAMSUNG [156]. The latter uses a
Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) chemistry, also referred to as NCA.
This composition offers the highest specific energy while retaining acceptable specific power.

Both cells have the same 18650 form factor, indicating a cylindrical shape with a diameter
of 18 mm and a length of 65 mm. With their weight below 50 g, an EV can employ thousands
of them to achieve the desired capacity. Tesla has chosen such a massively parallel setup of
(LiNiCoAlO2) cells over larger battery cells, for instance. In a laboratory environment, the
most important thing is that these cells are both cheaper and far safer to use than their larger
counterparts.

Under low currents, both cells exhibit an approximately linear decrease in voltage with
decreasing SoC. For the SAMSUNG cells there are two kinks around 15% and 5%. As Fig. 5.9

100 80 60 40 20 5

4

3.5

3

Absolute State-of-Charge (SoC) [%]

C
el

lV
ol

ta
ge

[V
]

measurement
linear model

Figure 5.8: A123SYSTEMS APR18650M1 (LiFePO4 chemistry) – 10h discharge measurement (corre-
sponding to a C-rate of 0.1) and piecewise linear charge-voltage mapping

92 Ch. 5 Quantitative Models for Charge Transfers in ACB

100 80 60 40 20 5

4

3.5

3

Absolute State-of-Charge (SoC) [%]

C
el

lV
ol

ta
ge

[V
]

measurement
linear model

Figure 5.9: SAMSUNG INR18650-25R (LiNiCoAlO2 chemistry) – 10h discharge measurement (corre-
sponding to a C-rate of 0.1) and piecewise linear charge-voltage mapping

shows, this behavior can be captured well by a small piecewise linear model.

V (Q) =


Vζ,0 + ζ0(Q− 0) if Q < Q1

Vζ,1 + ζ1(Q−Q1) if Q1 ≤ Q < Q2

Vζ,2 + ζ2(Q−Q2) if Q2 ≤ Q < Qmax

(5.8)

For the SAMSUNG measurement, we have[
Q1 Q2

]
=
[
0.05Qmax 0.15Qmax

] [
Vζ,0 Vζ,1 Vζ,1

]
=
[
2.5 3.1 3.4

]
. (5.9)

Given Vζ,3 = Vmax = 4.15 and Qmax = 2.5A h, ζi are then calculated such that the curve is
continuous. The A123SYSTEMS measurement (Fig. 5.8) yields[

Q1 Q2

]
=
[
0.08Qmax 0.3Qmax

] [
Vζ,0 Vζ,1 Vζ,1

]
=
[
2.7 3.16 3.25

]
. (5.10)

Further parameters in that piecewise linear model are Vζ,3 = Vmax = 3.34 and Qmax = 1.1A h.
While this work uses a piecewise linear approach for the OCV, other techniques like curve-

fitting with smooth functions work equally well for simulation. For optimization in Chapter 6
and also for one long-term simulation approach in Section 5.8.4, locally linear behavior is re-
quired for the reformulations.

Modeling a limited SoC region If the OCV model only needs to model a certain SoC re-
gion, it can become even simpler which is particularly helpful for optimization tasks. In ACB,
different such regional restrictions are justifiable. The first option is limiting the model to the
commonly used SoC range between 20% to 80% of absolute SoC. Cells are under greater stress
and age faster if they operate in the highest or lowest 20% of the absolute SoC range. These
areas are thus rarely used because life time requirements take priority and do not need to be
modeled in most scenarios. Another option is adjusting the model according to the current
SoC distribution. As battery cells in a pack typically do not deviate too far from each other
and move towards each other during balancing, it may be preferable to model only the region
[mini(zi),maxi(zi)] between the minimum and maximum SoC of the pack.

Sec. 5.5 ACB actuation interfaces 93

Reevaluating Eq. (5.9) and Eq. (5.10) with a restriction to the most common SoC region
(20% to 80%), we find that both of them can be treated as linear models. In the SAMSUNG

case, this is evident from the parameters in (5.9) themselves. In the A123 case, Fig. 5.8 helps
visualize that the segment transition at z = 30% is not a crucial one. If we further restrict
the OCV model according to the current SoC distribution, on the other hand, the typical SoC
deviation of 2-5% leads to linear models being accurate for virtually all Li-Ion cells.

Restricting the support region of the OCV model in one of these ways is particularly rele-
vant for optimization. There, a nonlinear model or even the kinks of a piecewise linear model
usually render the solution significantly more expensive. For simulation methods, by contrast,
the changeovers of the piecewise linear approach are not a major issue. They should hence be
included for accuracy reasons.

Cell energy With battery model (5.8), the energy stored in a cell that is currently within the
i-th linear segment can be calculated as follows.

EB(Q) =

∫ Q

0

V (q) dq = Eζ,i +

∫ Q

Qi

Vζ,i + ζi(q −Qi) dq

=Eζ,i +
1

2
(Q−Qi)(2Vζ,i + (Q−Qi)ζi) (5.11)

Recognizing that, from Eq. (5.8), it also holds that Q =
V−Vζ,i
ζi

+Qi, this further transforms to

EB(V) =Eζ,i +
1

2ζi
(V 2 − V 2

ζ,i). (5.12)

5.5 ACB actuation interfaces

Section 5.2 introduces the basic transfer mechanism in inductor-based circuits for ACB. This
description presents two phases φt and φr that immediately follow each other (Fig. 5.4) and
correspond to equivalent circuits (Fig. 5.6). The circuit is actuated by varying the times Tt, Tr,
and Tc ≥ Tt + Tr. Not all combinations lead to desirable results, however. In the following,
we hence discuss three actuation interfaces that build on this basic input method. The first
simply selects timing parameters and then leaves them constant for a certain period of time
∆t. This requires a a break period where the inductor discharges over a diode to ensure a
safety margin against undesired discharge of the receiving cell. Alternatively, the inductor can
be entirely discharged over a diode which represents an inefficient, yet important special case
for experimentation that can be set up quickly. The second interface specifies the peak current
and then continuously adjusts the timing parameters at runtime. Although more complicated to
implement, this approach approximately achieves the ideal waveform from Fig. 5.4. The third
builds on the second interface. Instead of specifying the current, it asks for transfer amount and
time limit to calculate the best current online.

94 Ch. 5 Quantitative Models for Charge Transfers in ACB

5.5.1 Fixed timing actuation

The most basic interface requires no equations to operate in practice. The user directly adjusts
the timing parameters Tt, Tr and Tc ≥ Tt +Tr. An additional parameter ∆t determines for how
long the system should perform work with these settings before returning for further instruc-
tions. Since the time to discharge the inductor, is not precisely known a priori and changes over
time, a fixed timing must include a break period where the inductor discharges over a diode.
This diode prevents undesired discharge of the receiving cell. In most cases, a diode included
with a MOSFET may be used for this technique and no additional components are needed.

Fig. 5.10 provides a detailed view on the various phases that become necessary with fixed
timing. Compared to Fig. 5.4, it contains the additional break phase φb. To leave a safety
margin, Tr is selected shorter than necessary to deplete the inductor. Phase φr thus ends with a
small remaining current Ib. Inductor current iL then proceeds to decrease with a steeper slope
because of the additional voltage drop at the diode Vd. Once the current reaches zero, the diode
becomes non-conducting and an undesired discharge of receiving cell cr is prevented. The
corresponding equivalent circuits from Fig. 5.6 must be updated to include φb. As shown in
Fig. 5.11, φb can be treated like φr after the addition of the diode drop voltage Vd.

The parameters for fixed-timing actuation as in Fig. 5.10 have been summarized in the
following table. In this table, derived values, like I , Ib, and Tb, indicate their main runtime
dependency in parentheses. id refers to the desired current at the end of a phase.

In total, we are thus dealing with three phases under a fixed timing actuation scheme.
Adding a third phase complicates many subsequent calculations significantly, however. Even
when a diode is used to prevent undesired discharge in this manner, one should thus always
consider whether the required safety margin is small enough to ignore φb in simulation and
optimization.

Another fixed timing approach with only two phases is popular in lab environments. By

0

I

iL

0
1Ma

0
1

t
M b

Ib

φt φr φb

Tt Tr Tb
Tc

Figure 5.10: With actuation timing fixed over prolonged periods, a break period φb is necessary where
a diode prevents a reversal of the current (see also the ideal current shape from Fig. 5.4). The remaining
current Ib and the corresponding charge qb (gray area) may become significant enough to be included in
simulation models.

Sec. 5.5 ACB actuation interfaces 95

φt φr

φb

ct

L

Rt

(a) Inductor charging

D

cr

L

Rr

(b) Inductor discharging

Figure 5.11: Fixed-timing actuation requires a safety margin and hence transfers over a diode for a
non-negligible period of time. This creates a third phase that must be taken into account by adding a
diode to the equivalent circuits from Fig. 5.6.

operating the entire receiving phase φr over a diode, the additional phase transition is no longer
necessary. Since the diode greatly reduces efficiency in this way, the approach is rarely used in
real applications. Its advantage is that it only needs one control signal (Ma) and very few com-
ponents. For experiments, it is hence often the method of choice because it can be implemented
so quickly.

After the implementation details, the following definition summarizes how a user or a
higher-level algorithm may interact with the ACB platform according to the fixed timing in-
terface.

Definition 5.4 (T -Movement). A time-based movement

m =
[
t r Tr Tt Tc ∆t

]
specifies which link – identified by transmitter t and receiver r – to operate with a given timing
for a certain duration ∆t. The timing parameters specify the length of inductor charging Tt,
the length of discharging Tr and the overall cycle time cycle time Tc (see also Fig. 5.10). As the
exact break time Tb is not known a priori, Tc should be chosen with a safety margin.

Fig. 5.12 illustrates the feed-forward process to operate such a time-based movement m.
With fixed timing parameters, transfer dynamics (5.1) with a battery model can be actuated
directly. The unknown time Tb (see Fig. 5.10) for the diode discharge presents a challenge only
for simulation. This is addressed individually by the approaches from Section 5.8.

Table 5.1: Phase-dependent parameters for charge transfer dynamics (5.1) in the T -interface, including
diode voltage Vd and break current Ib = i(Tr) for φb (see also Fig. 5.10)

Phase V T i0 R id

φt Vt Tt 0 Rt I(Tt)
φr Vr Tr −I Rr Ib(Tr)
φb Vr + Vd Tb(Ib) −Ib Rr 0

96 Ch. 5 Quantitative Models for Charge Transfers in ACB

T -interfaceTtTr
Tc


∆t

[
Q+
t

Q+
r

]
Global link parameter constants Rt, Rr, L

Charge transfer
(Sec. 5.3)

≤

Figure 5.12: The timing-based T -interface expects user-specified timing parameters (see Def. 5.4). The
system is then actuated with these fixed settings in a feed-forward fashion over a time frame ∆t before
reaching a new state

[
Q+
t Q+

r

]
.

It is advisable to use a timing formula like (5.20) from Section 5.7 when determining the
input parameters. It is ultimately up to the user, however, to ensure the selected timing does not
lead to unsuitable currents.

5.5.2 Current interface

Instead of asking the user to supply timing parameters that lead to a certain current behavior,
the platform can also calculate the corresponding low-level settings by itself. Although it would
be desirable to specify the average current from a modeling perspective, there are several issues
with this choice. Dissipative losses make it challenging to calculate the timing parameters that
correspond to a certain average current. More importantly, different voltages at the transmitting
and the receiving cell lead to different average currents as the inductor charges and discharges
faster for higher voltages. This thesis hence prefers to specify peak current I which allows
a lossless transformation to timing parameters and which is shared by both transmitting and
receiving side.

There are several techniques to achieve a specified peak current at runtime. Using a current
sensor, an analog comparator can automatically switch the involved transistors at the right mo-
ment. Digital feedback control can similarly adjust the timing parameters over time, preferably
by averaging several measurements. As current sensors are either expensive or intrusive, they
are often not an option, however. In this case, the timing can be calculated with reasonable
accuracy based on standard voltage measurements and a mathematical model like (5.20) from
Section 5.7.

It is understood that all actuation approaches still operate with the three phases shown in
Fig 5.10. The control techniques achieve an extremely short duration for break phase φb, how-
ever. This is not only favorable from an efficiency point of view, but also makes the modeling
of φb during the design stage unnecessary. Overall, the ideal current behavior from Fig. 5.4 is
hence approximately achieved. Table 5.2 summarizes the parameters for fixed-current actua-
tion. In contrast to Table 5.1, the timing now depends on peak current I .

Fig. 5.13 shows the current-based, or I-interface built on that formula. It describes on-line
actuation and simulation for a single link. In this setting each link manages timing questions on
its own. For this purpose, it receives the evolving voltage data to adjust the timing at runtime,

Sec. 5.5 ACB actuation interfaces 97

Table 5.2: Phase-dependent parameters for charge transfer dynamics (5.1) following the I-interface (see
also the current diagram in Fig. 5.4 on page 85)

Phase V T i0 R id

φt Vt Tt(I) 0 Rt I
φr Vr Tr(I) −I Rr 0

using a timing formula like (5.20) from Section 5.7. Even more accurate results are possible
with current measurements, as described at the beginning of this section.

A user or higher-level algorithm now only needs to supply peak current I , a single and far
more tangible parameter than the previous timing details. The following movement definition
summarizes the interaction with the ACB platform under the fixed current paradigm.

Definition 5.5 (I-Movement). A current-based movement

m =
[
t r I ∆t

]
specifies which link – identified by transmitter t and receiver r – to operate with a given peak
current I for a certain time ∆t.

Besides minimizing diode involvement and eliminating inefficient break period, the I-inter-
face has another mathematical advantage. The two phases φt and φr can be analyzed in an
entirely separated fashion. Since the peak current in the T -interface evolves over time as the
sender cell voltage Vt decreases, the calculation of cr must take this evolution into account.
This is unnecessary in the I-interface where the peak current is maintained at a constant level.
This does not mean that the involved cells, ct and cr, can also be separately simulated, however.
As the phase lengths Tt and Tr adjust to the current specification and change over time (see
also Table 5.2), knowledge about the other cell is required to analyze the evolution of a cell
in the time domain. This difficult timing behavior is the disadvantage of the I-interface. The
simulation approach from Section 5.8.3, for instance, tracks time separately for this reason.

5.5.3 Energy block interface with platform-determined current
The I-movement where the transfer rate instead of low-level timing behavior is specified pro-
vides a more straightforward user experience. These advantages notwithstanding, selecting the
best current by hand may still prove complicated.

Searching for an optimal current appears fruitful, however, as Fig. 5.14 motivates. There are
essentially two kinds of losses that need to be taken into account for this purpose. On the one
hand, there is dissipation in the resistances contributed by all the involved components. These
losses behave akin to a resistor and grow quadratically in the current. In other words, they
are approximately proportional to “I2R”. On the other hand, operating the transistors leads to
switching losses. The corresponding models are summarized in Section 5.6. As the textbook
model has a constant component that is lost during each switching cycle and the frequency
increases with lower current, these losses grow proportionally to “1/I”. It is intuitively clear
that the overall losses hence have a minimum value that is achieved by some optimal current.

98 Ch. 5 Quantitative Models for Charge Transfers in ACB

I-interface

[
Tt
Tr

]

[
Q+
t

Q+
r

][
Vt
Vr

]I

∆t

Global link parameter constants Rt, Rr, L

Phase timing
(Sec. 5.7)

Charge transfer
(Sec. 5.3)

≤

Figure 5.13: In the current-based I-interface, the user specifies peak current I and transmission time
∆t (see Def. 5.5). The system then derives the timing parameters automatically, ideally adjusting after
each cycle as the voltages evolve. Once ∆t has elapsed, the new state

[
Q+
t Q+

r

]
is reached.

Minimizing losses per time may not lead to the result that a user actually wants, however.
After all, a smaller current will lead to a longer transfer time and higher total losses may sub-
sequently be accumulated over this longer period. This motivates looking at the losses per
transferred amount to minimize the energy expenditure for equalizing two given cell levels ir-
respective of the corresponding time requirement. Informally speaking, this roughly entails a
division by I of the loss terms in Fig. 5.14. The involved functions then behave similarly to
“1/I2” and “RI”, respectively.

Whether optimizing for losses per time or per transferred amount, the optimal current de-
pends on many variables. Some, like the resistances, depend on which cells are involved, oth-
ers, like the sender and receiver voltage Vt, Vr change at runtime. It is thus sensible to have
the platform calculate optimal currents online. While we postpone a detailed discussion on the
computational options to Section 6.3, the following paragraphs explain how to interact with a
platform that has these capabilities, using the ∆E-interface.

Fig. 5.15 illustrates how the ∆E-interface builds on top of the I-interface. The user speci-

sum dissipation

switching

peak current I

lo
ss

/t
im

e

Figure 5.14: Following a shape (or convexity) argument, there must be an optimal current minimizing
the sum of transfer (dissipative) and switching losses. Lower currents lead to higher switching frequency
and consequently losses while dissipation rises with increasing currents. There must hence be a current
where their sum is minimized.

Sec. 5.6 Freewheeling phases & switching losses 99

∆E-interface

∆E

∆tmax

[
I

∆t

] [
Q+
t

Q+
r

]
Global link parameter constants Rt, Rr, L

I-interface
(Fig. 5.13)

Optimal current
(Sec. 6.3)

Figure 5.15: Energy-based actuation interface: Given an amount of energy ∆E to be transferred over
a certain link under a time constraint ∆tmax, the platform calculates an optimal current Iopt with a cor-
responding actuation time ∆t for this transmission. The low-level timing details for the chosen current
level are subsequently determined by the I-interface. After simulating the link for a duration of ∆t, this
yields the new state

[
Q+
t Q+

r

]
.

fies how much energy should be moved over a certain link. Additionally, he defines a bound on
transmission time ∆tmax that he deems acceptable instead of a fixed transmission time ∆twhich
implicitly sets the amount to transfer in the current-based movement (Definition 5.5). Once the
platform has determined the most suitable current, it operates by forwarding this result to the
I-interface. In this process, ∆tmax is only a constraint and the system will finish faster than
specified, leading to ∆t < ∆tmax, if it is advantageous from an energy perspective. The follow-
ing movement definition formalizes the interaction with an ACB platform under this paradigm.

Definition 5.6 (E-movement). An energy-based movement is given by

m =
[
t r ∆E ∆tmax

]
.

It specifies a certain amount of energy ∆E to be transferred during a maximum time frame
∆tmax from transmitter t to receiver r.

5.6 Freewheeling phases & switching losses
In addition to the diode involvement described in Section 5.5.2, there are several other effects
that may become relevant beyond the dynamics described by the equivalent circuit model from
Section 5.3. Here, we discuss the influence of the transistor network on the transfer behavior
although it only becomes significant for low currents. Diodes and particularly transistors have
highly complex behavior that is almost impossible to model in its entirety. For ACB simu-
lation, we hence focus only on the most relevant effects: freewheeling and switching losses.
Freewheeling phases become necessary because transistors cannot switch instantaneously and
conducting phases that directly follow one another would thus lead to short circuits. In addition
to being non-instantaneous, the transitions of a transistor are also not lossless. The following
passages discuss how freewheeling phases are implemented and how the accompanying switch-
ing losses can be quantitatively taken into account during simulation and optimization.

100 Ch. 5 Quantitative Models for Charge Transfers in ACB

0

I
iL

0
1Ma

0
1

t
M b

φt φf φr φf

Figure 5.16: Non-overlapping switching signals for ACB transfers contain short freewheeling phases
where diodes are used to avoid short circuits.

Fig. 5.16 provides a more detailed view on the various phases during the inductor current
evolution than Fig. 5.4. In phase φt, the inductor is charged from cell ct by closing Ma. It
reaches peak current I before Ma switches over and phase φf begins. In φf , the inductor
briefly discharges into cell cr over a freewheeling diode. M b then activates in non-overlapping
fashion and the main discharging occurs in phase φr, without involving the diode and thus at
higher efficiency. Finally, M b is deactivated again and another freewheeling phase is necessary
to transition back to φt.

Freewheeling is necessary because transistor switching is not instantaneous. A 7.8 A-rated
power MOSFET from ON Semiconductor [141], for instance, requires a total time of 14 ns
to turn on. This summarizes turn-on delay and rise time from the data sheet. We denote this
switching delay τu because it refers to the “up” movement. Similarly, there is a switching delay
for the “down” part τd that consists of turn-off delay and fall time. For the aforementioned
transistor, τd has a value of 24 ns. A switching scheme must wait at least τd after switching off
Ma before switching on M b. Otherwise, a short circuit occurs because both transistors conduct
simultaneously. M b only switches on after a further delay τu, however. Freewheeling phase φf
hence has a minimum length of τu + τd.

If a diode is necessary to avoid a reversal of the current, the second freewheeling phase
becomes longer and effectively turns into break phase φb as in Fig. 5.10. The analysis of this
case is discussed in Section 5.5.2.

As long as the freewheeling phases remain on the order of the transistor switching times,
i.e., close to the minimum length, it is common to model the involved transition effects only as
switching loss. Please refer to Chapter 4.3 ”Switching Losses” in Erickson’s power electronics
textbook [63] for more detailed information on transistor switching. MOSFET switching losses
in ACB consist of two main components: charging of output capacitances plus current dur-
ing transition periods. The energy dissipated for charging output capacitance of a MOSFET is
given by 1

2
COSSV

2
ds. In this formulation, COSS and Vds are output capacitance and drain-source

voltage of the transistor, respectively. In addition, the current that is drawn during τu – summa-
rizing turn-on delay and rise time – and τd – consisting of turn-off delay and fall time – cannot
be utilized. This entails losses of the form 1

2
τIdsVds where Ids is the drain-source current of the

transistor.
Following this textbook approach, the transistor of the transmitter and the receiver expend

Sec. 5.7 Transfer dynamics assuming constant voltage 101

an additional switching energy Esw,t and Esw,r, respectively, where

Esw,t =
1

2
τdIVt +

1

2
COSSV

2
t Esw,r =

1

2
τuIVr +

1

2
COSSV

2
r . (5.13)

The current-related terms correspond to the end of φt and the beginning of φr where i(t) = I .
The current terms related to the transition in φb, i.e., from the start of φt and the end of φr have
been ignored in these formulations because i(t) ≈ 0 there.

In many cases, the switching losses are more conveniently tracked in terms of charge such
that the main dynamics can directly take them into account. This formulation can be achieved
via division of energy by voltage q = Esw,t/Vt.

qsw,t =
1

2
τdI +

1

2
COSSVt qsw,r =

1

2
τuI +

1

2
COSSVr (5.14)

More recently, Xiong has shown that the COSSV 2 terms in (5.13) are too conservative for
power MOSFETs with high currents (see [189]). It appears that part of the losses during the
transition phase (the 1

2
tIdsVds terms) actually charge the parasitic capacitances. By adding

1
2
COSSV

2
ds terms a calculation may hence count these losses twice. Before introducing a more

complex model, the authors demonstrate that using

Esw,t =
1

2
τdIVt Esw,r =

1

2
τrIVr (5.15)

is superior to (5.13) and sufficient for most applications in this environment. From an optimiza-
tion point of view, the shorter expression is preferable because it is linear in both I and V once
the other is fixed. The corresponding qsw,t and qsw,r as in (5.14) are similarly simpler. This
makes many calculations easier and more efficient. In the end, it depends on peak current and
MOSFET type whether (5.13) or (5.15) is more appropriate.

The freewheeling phases may also be completely ignored during the modeling and analysis
stage in certain cases, even though they are crucial for operation. This is because Tt, Tr the
lengths of phases φt, φr (≈ 100µs) are typically several orders of magnitude larger than the
switching times τu, τd (< 100ns). At low currents, however, the switching losses may become
significant as frequency increases and leads to shorter phase times. If an optimization technique
explores many currents, the underlying model should hence include switching terms in some
way.

5.7 Transfer dynamics assuming constant voltage
The individual phases of an ACB charge transfer can be modeled by an equivalent circuit with
aggregated resistances (Section 5.3). While the battery cell itself can be modeled by electrical
battery models (Section 5.4), it is also beneficial to analyze the intra-phase dynamics (5.1) for
a constant voltage. This approach is justified since the internal resistance of the cell is already
modeled by its contribution to the aggregated resistance Rt or Rr and because the individual
phases are in the microsecond range. This perspective tremendously simplifies the ODE so-
lution and leads to important formulations for both actuation and simulation. We evaluate the
errors from this simplification in Fig. 5.21 on page 110 alongside other results.

102 Ch. 5 Quantitative Models for Charge Transfers in ACB

After modeling the cell as a constant voltage source with series resistance, the equivalent
circuit from Fig. 5.6 becomes Fig. 5.17. This model should only be used for the dynamics of
a single phase. The results from this section can, however, be used in conjunction with a more
sophisticated battery model as iterative simulation technique that calculates the state evolution
phase by phase.

Current and charge evolution With constant voltage V , both charging (φt) and discharging
(φr) phase are governed by the following ODE.

d

dt
i(t) =

1

L
[V − i(t)R] i(0) = i0 (5.16)

With its single differential operator, this is a first-order ODE. Note that the ODE parameters V ,
i0, R need to be adjusted according to the individual phase as the system evolves. These values
depend on the actuation approach as discussed in Section 5.5. They have been summarized in
Table 5.1 and Table 5.2. With these parameterization questions taken care of, the variation of
constants technique finds the unique solution of (5.16). It is given by

i(t, V, i0, R) =
V

R
− V − i0R

R
exp

(−R
L
t
)
. (5.17)

This describes the evolution of the inductor current provided the involved MOSFETs never
switch. For more long-term studies, the amount of charge that is moved during one phase is
even more important. To calculate this quantity, we integrate current i(t) from (5.17). This
yields the evolution of the transferred charge over time.

q(T, V, i0, R) =

∫ T

0

−i(t, V, i0, R) dt = −V
R
T − L(V − i0R)

R2

[
exp

(−R
L
T
)
− 1
]

(5.18)

Here, the integration constant is chosen such that q(0) = 0 and the sign of q follows the con-
vention from Definition 5.1.

In addition to the charge from inductor current i in (5.18), potential RC stages of the battery
model (see Section 5.4) must consider their self-discharge. Integrating that self-discharge term
from (5.5), we obtain

qj(T,Qj) =− Vj(Qj)

Rj

T. (5.19)

Phase timing Eq. (5.18) serves as closed-form equation for the charge evolution within a
switching phase. As such, it is sufficient to drive simulations once the switch timing is given.
Not all timing settings are meaningful, however. To determine timing parameters, it is helpful
to know the time required to reach a certain current.

i(t) from (5.17) rises monotonically and reaches a desired current id after a period of Td,
i.e., i(Td) = id. With the settings of this section (constant intra-phase voltage leading to first

Sec. 5.7 Transfer dynamics assuming constant voltage 103

φt φr

+ −ct

L

Rt

(a) Inductor charging
+ −cr

L

Rr

(b) Inductor discharging

Figure 5.17: As individual phases are brief, the battery cells from Fig. 5.6 can be replaced with constant
voltage source plus series resistance there.

order ODE), the inductor current i(t) is invertible with respect to time t. More concretely, the
time Td can be calculated as

Td(id, V, i0, R) =
−L
R

log
(V − idR
V − i0R

)
. (5.20)

This equation is applicable in the fixed current interface from Section 5.5.2. In addition, it can
calculate φb from Section 5.5.1 and help with a priori timing design.

If the timing parameters are adjusted continuously, timing calculation and charge transfer
can be integrated into a single step for faster simulation and easier analysis. Substitute Td from
(5.20) into the equation for the transferred charge (5.18). This yields the following closed-form
solution for qd, the charge transferred under current-based timing.

qd(id, V, i0, R) =− V

R
Td(id)−

L(V − i0R)

R2

[V − idR
V − i0R

− 1
]

=
LV

R2
log
(V − idR
V − i0R

)
+
L(id − i0)

R
(5.21)

Remark 5.7 (Monotonicity of charge per phase). Under current-based actuation, higher volt-
ages lead to shorter timings. This can be seen from (5.20). Even though the transferred charge
q from (5.18) increases with V , combined with timing, the charge transferred in a phase (qd
from (5.21) with parameters from Table 5.2) decreases with increasing V for both phases. The
following calculations yield d

dV
− qt ≤ 0 and d

dV
qr ≤ 0 to demonstrate this. To that end, they

use log(1
v
) = − log(v) and log(1 + v) ≥ v

1+v
∀v > −1.

d

dV

R2
t

L
(−qt) =−

[
log
(V −RI

V

)
+ V

V

V −RI ·
RI

V 2

]
=
−RI
V −RI − log

(
1− RI

V

)
≤ −RI
V −RI −

−RI
V

/
V −RI
V

= 0

d

dV

R2
r

L
qr = log

(V

V +RI

)
+ V

V +RI

V
· RI

(V +RI)2
= − log

(
1 +

RI

V

)
+

RI

V +RI

≤− RI

V
/
V +RI

V
+

RI

V + IR
= 0 (5.22)

104 Ch. 5 Quantitative Models for Charge Transfers in ACB

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

t [ms]

i L
[A

]
imeas
imdl

Figure 5.18: The inductor current iL from the model (5.17) remains close to a corresponding measure-
ment. Note how the diode blocks the current as soon as it reaches iL = 0 in this experiment.

Remark 5.8 (Maximum current). Inductor current i(t) from (5.17) converges against a maxi-
mum over time.

lim
t→∞

i(t)→ i∞ =
V

R

This value is important during charging phase φt where it represents an upper bound for the
user-selected current id = I . Eq. 5.20 for Td reflects this bound. The logarithm, defined only
for positive inputs, fails to evaluate there when id > V

R
and i0 = 0 because (V − V

R
R)/V = 0.

Validation of constant voltage dynamics The behavior of the closed-form model from this
section has been compared to measurements on the demonstrator platform as well as small test
setups. Fig. 5.18 shows an example from this measurement series with inductance L = 290 µH,
diode voltage Vd = 0.65 V and resistances Rt = Rr = 1.15 Ω. The circuit has been actuated
using two phases with fixed timing and diode routing during φr, i.e., using the alternative for
experiments described in Section 5.5.1. The voltages were measured to be Vt = 3.26 V and
Vr = 2.09 V for transmitting and receiving cell, respectively.

The model current in Fig. 5.18 matches the measurement well. Note that the elevated resis-
tance in this experiment leads to imperfect triangles where the rising edge curves outwards and
the falling edge curves inwards. This curvature is caused by the dissipative losses and is well
captured by the model.

As the voltages are measured and taken as constant in this experiment, we cannot derive
statements about the battery model from these measurements. They motivate, however, that
assuming constant voltages inside the brief switching phases is a reasonable approach. A more
extensive validation of transfer models can be found in Fig. 5.20 and Fig. 5.21 (Section 5.8.3).

5.8 Large-scale Active Cell Balancing (ACB) simulation

After the description of battery models, ACB actuation, and intra-phase dynamics, this sec-
tion combines these collected insights to achieve accurate, but fast simulation of large ACB
scenarios. To that end, it presents and compares four simulation approaches that build on one

Sec. 5.8 Large-scale ACB simulation 105

another. The first uses a numerical solver to simulate the intra-phase dynamics directly (Sec-
tion 5.8.1). This reference solution represents a general purpose circuit simulator and is too
slow to be useful for most applications. The second approach (Section 5.8.2) uses the constant
voltage dynamics from Section 5.7 to obtain an iterative method. This is faster than the first
approach because it forgoes the numerical solver but can still require one hour of computation
time for large balancing scenarios. Instead of calculating that iteration phase by phase, the third
approach (Section 5.8.3) aggregates phases by applying error control and adaptive step size
techniques from the ODE domain. This systematically reduces millions of phase evaluations
that would be necessary otherwise to dozens in some cases and enables interactive applications.
While these approaches remain quite flexible in terms of actuation method and battery model,
further speedup is possible with fixed-timing actuation and a simple battery model. The fourth
approach (Section 5.8.4) examines this situation and finds a solution to the recursion which
provides instant evaluation.

5.8.1 Straightforward numerical solution
The equivalent circuit models from Section 5.3 with a battery model like the ones presented
in Section 5.4 are sufficient to simulate charge transfers using a general purpose numerical
solver. While this approach is not computationally efficient, it serves as accuracy as well as
computation time reference for later techniques and summarizes the insights obtained there.

This section assumes a battery model with two RC stages which is the most common size,
but more stages can be appended as needed. Fig. 5.7 from Section 5.4 shows the equivalent
circuit of the transfer to be simulated. The corresponding dynamics are in (5.1) and (5.5) which
altogether yield the following ODE system.

d

dt
i =

1

L
[V − iR]

d

dt
Q0 = −i (5.23)

d

dt
Q1 = −i− V1(Q1)

R1

d

dt
Q2 = −i− V2(Q2)

R2

(5.24)

These system dynamics have four states per cell and 8 states in total: it, ir are the respective
cell currents, whose direction follows the convention from Definition 5.1, and Qt,0, . . . , Qr,2 are
the charges in the respective RC stages. Q0, a short notation for both Qt,0 and Qr,0, models the
charge of the cell itself and thus the SoC. V , the respective cell voltage, is given by summing
up the contributions from the involved stages (see also Fig. 5.7 from Section 5.4).

Vt =
2∑
j=0

Vt,j(Qt,j) Vr =
2∑
j=0

Vr,j(Qr,j) + Vd (5.25)

Vd models additional voltage from the diode preventing undesirable discharge of cr during φr
or a potential φb as explained in Section 5.5.1. If such a diode is not involved, Vd = 0 should be
used.

The following description mainly treats fixed-timing actuation with two phases. While an
additional φb can be added analogously, the adjustments for fixed-current actuation are pointed
out along the way. Given timing parameters Tt, Tc, a numerical solver can simulate the system
as follows.

106 Ch. 5 Quantitative Models for Charge Transfers in ACB

φt Solve ODE system (5.23) & (5.24) with it(0) = 0 and end time Tt to update transmitting
cell ct. This updates states

[
Qt,0 Qt,1 Qt,2

]
and yields peak current I = it(Tt). Simul-

taneously, relax receiving cell cr by solving ODE (5.24). This updates states
[
Qr,1 Qr,2

]
.

φr After the circuit switches over, relax transmitting cell ct with ODE (5.24), updating[
Qt,1 Qt,2

]
. Solve ODE system (5.23) & (5.24) with ir(Tt) = −it(Tt) and end time

Tc for cr. This updates
[
Qr,0 Qr,1 Qr,2

]
.

* Repeat until K, the desired number of cycles, is reached.

Note that during φr, receiving time Tr is not known a priori. Its calculation can be circumvented
by setting ir(t) := max(0, ir(t)) before updating charges. Alternatively, one may use (5.20)
from Section 5.7 to calculate the corresponding timing directly or perform a binary search
over the time domain if the ODE solver permits. These alternative approaches also handle
requirements like constant peak current I , implying Tt adjustments at runtime and immediate
switching back to φt when i = 0 and Tr has elapsed to ensure Tc = Tt + Tr.

Switching losses, as described in Section 5.6, can be simulated with this approach by updat-
ing the states with the terms in (5.14) after each completed cycle.

5.8.2 Iterative solution for transfer dynamics

The first improvement over the direct application of numerical solvers for ACB simulation
are phase-based models, like the one from Section 5.7. With a closed-form equation for the
evolution during each phase they are significantly faster than state-of-the-art circuit simulators.
As all capacitors in current cell models like [45] are large, modeling effects in the domain
of seconds and minutes, treating their voltages as constant during individual phases does not
introduce noticeable errors.

The formulas from Section 5.7 are only valid as long as the system configuration does not
switch. Over one cycle of charge and discharge phase the dynamics move through different
equivalent circuits with different parameters and initial conditions. For longer simulations with
many cycles, an iterative approach is hence required. It is described in the following for the
T -interface (Section 5.5.1).

1. Obtain cell voltages from (5.25).

2. Calculate peak current I given transmitting time Tt with (5.17).

3. Update charges for phase φt, using partially specialized qt(T) := q(T, Vt, 0, Rt) from
(5.18) and qt,j , qr,j from (5.19).

Qt,0(t+ Tt) = Qt,0(t) + qt(Tt) (5.26)
Qt,j(t+ Tt) = Qt,j(t) + qt(Tt) + qt,j(Tt, Qt,j(t))

Qr,0(t+ Tt) = Qr,0(t)

Qr,j(t+ Tt) = Qr,j(t) + qr,j(Tt, Qr,j(t))

Sec. 5.8 Large-scale ACB simulation 107

4. Calculate break current Ib given transmitting time Tr with (5.17) (Fig. 5.10). Update
charges for phase φr analogously to φt.

5. From timing formula (5.20), calculate discharging time Tb until i = 0 and discharge of cr
ends in phase φb. Update charges analogously to φt. Relax the RC stages for Tc−(Tr+Tt)
with qj from (5.19).

6. Repeat, until K, the desired number of cycles, is reached.

The two-phase approach using a diode for the entire φr forgoes Step 4 and sets Ib = I in
Step 5, relabeling φb to φr. Additional changes are also necessary to simulate the I-interface
(Section 5.5.2). In Step 2, Tt is calculated given I with timing formula (5.20). Step 4 is omitted,
as for the two-phase approach, but letting Vd = 0 since no diode is used and adjusting Tc =
Tt + Tr dynamically since no break phase is included.

Switching losses (Section 5.6) are even easier to integrate with an iterative approach than
with a numerical solver as in Section 5.8.1. Exchanging q̃t(Tt) := qt(Tt)− qsw,t and q̃r(Tr) :=
qr(Tt)− qsw,r for qt(Tt) and qr(Tr), respectively, is sufficient.

This approach is significantly faster than solving directly although it does not introduce
additional errors. Please refer to Fig. 5.21 in Section 5.8.3 for a more extensive evaluation.

It is worth mentioning that this iteration cannot be replaced by a matrix exponentiation in
general. The main obstacle is the voltage dependency of the charge differences q in the I-inter-
face. This dependency leads to a system of the form x[k+1] = A(x[k])x[k] whereA depends on
the state in a nonlinear fashion. A special case for the T -interface is explored in Section 5.8.4.

5.8.3 Error-controlled, adaptive phase aggregation

This section transform the iterative approach from the previous section and then applies error
control methods from the ODE domain for faster computation. To reformulate the iteration,
we now consider the evolution with respect to cycles k in contrast to previous sections which
calculate the system dynamics over time t. Each cycle has a duration of Tc that varies slightly
if a constant peak current is maintained as voltages change. It is thus necessary to track time as
a separate state variable in this formulation. Tracking time in this way is simpler than scaling
results to account for time variations. This perspective also makes it easier to reason about the
accuracy loss outside cycle ends that we accept to alleviate kinks (see Fig. 5.19).

In the following, we adopt the formulations from Section 5.7 to sum up the state differences

108 Ch. 5 Quantitative Models for Charge Transfers in ACB

Tt Tc

phase aggr.

intra-phase

closed-form

t

Q
r

Figure 5.19: Modeling intra-phase behavior (, Section 5.8.1) provides the most accurate charge
information at all times. When solving phases in closed form (, Section 5.8.2), we obtain accurate
charge information only at the end of phases. In order to avoid kinks, the model underlying phase
aggregation (, Section 5.8.3) is content being accurate only at the end of cycles.

of a single cycle: [
Vt Vr

]
=
[∑2

j=0 Vt,j(Qt,j)
∑2

j=0 Vr,j(Qr,j) + Vd

]
[
I Tr

]
=
[
i(Tt, Vt, 0, Rt) Td(0, Vr,−I, Rr)

]
(5.27)

∆t

∆k
=Tc

∆Qt

∆k
=q(Tt, Vt, 0, Rt)

∆Qt,j

∆k
=q(Tt, Vt, 0, Rt) + qt,j(Tc, Qt,j) , j = 1, 2

∆Qr

∆k
=q(Tr, Vr,−I, Rr)

∆Qr,j

∆k
=q(Tr, Vr,−I, Rr) + qr,j(Tc, Qr,j) , j = 1, 2

This is the formulation for two phases with fixed timing parameters Tt, Tc. A third phase or
switching losses can be integrated as in Section 5.8.2. Constant peak current (I-interface) can
be achieved by calculating Tt, Tc on the fly with (5.20) in addition to Tr.

(5.27) is not inherently an ODE because k,∆k ∈ {1, 2, . . . K} are discrete variables. Nev-
ertheless, we are interested in applying ODE techniques with error control and adaptive step
size. The typical choice for these requirements are solvers from the class of embedded Runge-
Kutta methods. An unadjusted solver from that class may also evaluate the right-hand side for
non-integral cycle counts and thus at instants where charge evolution is incorrectly interpolated.
We will first quantify the magnitude of this issue and then propose a remedy for it. Consider
the following worst case calculation. With an average balancing current equivalent to a C rate
of 1 and using a low frequency with Tt = 10ms, the SoC changes only by

∆z =
∆Q

C0

=
1·C0

3600s
· 10ms

C0

≈ 2.7e-4pp = 0.027bp.

Even assuming a region where the OCV increases quickly by 100mV
pp

, ∆z corresponds to only
∆V = 0.027mV. With a minimum cell voltage of 2.5V, the worst case error thus remains in the

Sec. 5.8 Large-scale ACB simulation 109

order of 1e-5 and is typically far smaller. As cell models come with inherent modeling errors in
the order of 1e-3 [45], one may accept this error and resort to readily available methods directly.

Alternatively, ensuring that embedded Runge-Kutta solvers only evaluate integral cycle
counts is also possible. These solvers have fixed nodes, proportional to the current step size
∆k, at which a function is evaluated. For instance, the Bogacki-Shampine method [22], com-
bining orders 2 and 3, evaluates at 0∆k, 1

2
∆k, 3

4
∆k and 1∆k. Restricting steps ∆k to multiples

of their common denominator, here 4, ensures that all evaluation points are integral. Other pop-
ular embedded methods with orders 4 & 5, like Dormand-Prince [56] which is the default solver
in MATLAB and Cash-Karp [33] similarly require multiples of 90 and 40, respectively.

Experimental Results

To evaluate the approaches from the previous sections, they have been implemented with the
C++ library boost::odeint [134]. This forms the back end of a Python implementation that we
use for data analysis.

All battery parameters correspond to the 850 mA Li-Ion polymer cell which has been char-
acterized in [45] for various SoC levels. The analytic OCV relation there is replaced by a
piecewise linear formulation because that interacts better with the rest of our framework. This
model comes with a good SoC (or runtime) error of 0.4 % and a voltage deviation of 15 mV.

We evaluate accuracy and speedup of the proposed techniques in two stages. First, we
compare the intra-phase model from Section 5.8.1 to a circuit simulator to quantify the errors
introduced by the equivalent circuit abstraction. Next, we compare the abstraction levels from
Sections 5.8.1, 5.8.2, and 5.8.3 to each other, using longer simulation times of several minutes.
Although impossible for the circuit simulator, such times are still small for ACB strategies.

Equivalent circuit model accuracy & speedup We investigate a transfer between a trans-
mitting cell at 60 % SoC and a receiving cell at 40 %, setting the cell parameters accordingly.
In addition, we modeled an inductor resistance RL = 1 mΩ and a diode voltage Vd = 0.7 V.
This transfer is simulated in SPICE and with the intra-phase ODE from Section 5.8.1. We
perform the transfer over a variety of switching frequencies, keeping the peak current approx-
imately constant by suitably decreasing the inductance with shorter timing. All transfers are

−0.4 0 0.4

100Hz
1kHz

10kHz
100kHz

1MHz

Relative error [%]
−0.4 0 0.4

Relative error [%]

Figure 5.20: For both nominal currents of 400mA (left) and 2A (right), the relative error in SoC of
transmitting (black) and receiving (white) cell remains small compared to SPICE over a wide frequency
range.

110 Ch. 5 Quantitative Models for Charge Transfers in ACB

executed over 10 cycles of fixed timing. Fig. 5.20 shows two sets of this experiment. The
nominal peak currents, assuming lossless dynamics, were 400 mA and 2 A. Although we do
not see a discernible trend, the relative error in SoC remained below 0.5 % over the investigated
frequencies. We have selected these frequencies to span more than the most relevant range of
1–100 kHz. The SoC evolution depends on all voltages and is, as such, the most error-sensitive
value in the system. Relative errors in the various voltages all remained even smaller. We at-
tribute these errors to several aspects that are only modeled in the circuit simulator, like diodes
and switches or imperfect, but realistic current edges. Since the errors do not exceed inherent
modeling errors of the cell model, the equivalent circuit abstraction is well justified.

The speedup in this experiment is significant. All SPICE simulations required over 5 s to
calculate 10 cycles at the desired accuracy. With the equivalent circuit abstraction, the intra-
phase model solves the same task in the millisecond range. Although the simulation time varies
widely, the higher frequency and accuracy requirement in the shorter experiments keep the
computation effort roughly constant.

Abstraction level accuracy & speedup The previous paragraphs evaluate inaccuracies in-
troduced by the equivalent circuit abstraction. Now, we investigate the techniques from Sec-
tions 5.8.1, 5.8.2, and 5.8.3 which build on that abstraction. For this purpose, we consider
the same cell pair with 40 % and 60 % SoC over longer simulation times with randomized
transfer parameters. We draw resistances R = 10x Ω, x ∈ [−3, 0] and peak currents I ∈
[0.1 A, 2.5 A], according to a uniform distribution. Timing parameters were fixed to

[
Tt Tc

]
=[

200 µs 420 µs
]
. The inductance L = 4.0 V

I
Tt is scaled to approximately achieve the desired

peak current. After drawing the random parameters, we perform K = 106 cycles with the
respective settings.

Fig. 5.21 shows the results from 50 such random transfers. Although the closed form ap-
proach from Section 5.8.2 and the phase aggregation technique from Section 5.8.3 introduce
virtually no additional error, they achieve a remarkable speedup. The closed form approach
is roughly 35 times faster than the intra-phase ODE solver, and phase aggregation is another
2500 times faster. Compared to intra-phase ODE, phase aggregation hence achieves a speedup

10−10 10−9 10−8

IN
T

R
A

C
F

PA

Reference: No error

Relative error
10−4 10−3 10−2 10−1 100 101

Computation time [s]

Figure 5.21: Neither closed form (CF, Section 5.8.2) nor phase aggregation (PA, Section 5.8.3) method
introduce noticeable errors into the simulation over a direct solution of the equivalent circuit dynamics
(INTRA, Section 5.8.1). At the same time, they do achieve speedups of several orders of magnitude.

Sec. 5.8 Large-scale ACB simulation 111

0

20

40
V
r,
1

+
V
r,
2

[m
V

]

0 50 100 150 200 250 300 350 400

1e-6

1e-4

time [s]

‖∆
V
‖

Figure 5.22: The phase aggregation approach (circles) tracks the intra-phase ODE solution (line) per-
fectly, calculating only dozens, not millions, of cycles. In the RC voltage of the receiver, the absolute
error remains around 0.1 µV.

of about 90000. These measurements were made on a workstation with 3.4 GHz Intel i7-3770
CPU and 16 GB RAM. All implementations are single-threaded. Note that the computation
time of each approach does not vary a lot over the experiment set, indicating that the required
effort depends on the number of simulation cycles and not the total simulation time. With higher
frequency, the proposed methods therefore become even more beneficial.

Extrapolating the computation times from Fig. 5.21 involving two cells and a simulation
time of about 7 minutes, we consider a battery pack that performs 10 parallel transfers, using
a frequency of 20kHz (10 times higher) and a simulation time of 7 hours. For this 6000 times
larger scenario, a general purpose solver requires at least a full day. Closed-form iteration re-
duces that time, but still needs more than 40 minutes. Only the phase aggregation approach
calculates results in less than 2 seconds and remains fast enough to interactively evaluate bal-
ancing strategies with respect to balancing time and efficiency.

Fig. 5.22 shows an example time series plot from one of the random transfers that we per-
formed, demonstrating why phase aggregation is so much faster. Instead of calculating millions
of cycles one by one, it requires only dozens of evaluations to provide the desired result. This
plot also demonstrates the importance of the RC stages in the model, as the voltage they con-
tribute on the receiver side exceeds 40mV.

5.8.4 Long-term charge transfer simulation with fixed timing

Even though the phase aggregation approach from Section 5.8.3 leads to rapid simulations,
it is possible to be even faster in certain cases. This section presents such a case that assumes
(i) the simulation remains in one linear segment of the charge-voltage mapping from Section 5.4,
(ii) the constant voltage argument from Section 5.7 holds, (iii) the T -interface is used, and
(iv) the current is low enough that RC stages need not be modeled. (i) and (ii) are almost always
satisfied as explained in the respective sections. (iii) is almost entirely a preference of the system
designer. For (iv), the voltage contributions can be estimated from the expected current levels

112 Ch. 5 Quantitative Models for Charge Transfers in ACB

using (5.7). Please also refer to the discussion there.

Sending cell voltage evolution

We begin with the easier case of the transmitting cell. Take one segment from the piecewise
linear charge-voltage mapping (5.8). We substitute this segment along with the parameters of
the sender into Eq. (5.18), the charge transferred according to the first order model. This yields
recurrence relation

Vt[k + 1] =Vt[k] + ζqt(Vt[k])

=

[
1−

(
ζ
Tt
Rt

+ ζ
L

R2
t

(
e−RtTt/L − 1

))
︸ ︷︷ ︸

=:α

]
Vt[k]. (5.28)

As Tt remains constant during ∆t, the newly defined α ∈ R is also constant there. Given α, it
is trivial to see that we can calculate Vt[k] for any number of switching cycles k as

Vt[k] = αkVt[0]. (5.29)

Receiving cell voltage evolution

Calculating the receiving side is more intricate because it depends on the evolution of the send-
ing cell. The peak current decreases as the voltage of the sender decreases during a transmission
and this must be taken into account. The biggest challenge from a mathematical point of view is
the charge transferred over the MOSFET diode during Tb (see Figure 5.10 on page 94) because
it introduces non-linear terms. This term is usually very small compared to the charge received
directly over a conducting MOSFET during Tr. We hence ignore it at first and then adjust our
calculation at the end of this section. We can hence combine the charge of a single cycle from
Eq.(5.18) for Tr and the cell voltage model (5.8) to describe the major behavior.

Vr[k + 1] =Vr[k] + ζqr(Vr[k], i0)

=Vr[k] + ζ

[−Vr[k]Tr
Rr

− L(Vr[k] + IRr)

R2
r

(
e−RrTr/L − 1

)]
=

[
1− ζ Tr

Rr

− ζ L
R2
r

(
e−RrTr/L − 1

)
︸ ︷︷ ︸

=:β

]
Vr[k]− ζ LI

Rr

(
e−RrTr/L − 1

)
(5.30)

This recurrence relation for Vr depends on Vt through I , the varying peak current at the end of
the charging phase. Consider that current as given by Eq. (5.17) and introduce another helper
constant d ∈ R as follows.

I =
1

Rt

(
1− e−RtTt/L

)
Vt[k] =: dVt[k] (5.31)

Sec. 5.8 Large-scale ACB simulation 113

Given the current in this form, we can now further transform Eq. (5.30).

Vr[k + 1] =βVr[k] + ζ
−L
Rr

(
e−RrTr/L − 1

)
d︸ ︷︷ ︸

=:θ

Vt[k] (5.32)

Now, the recurrence relation for Vr can be solved with the following lemma.

Lemma 5.9 (Recurrence relation with offset). Consider a recurrence relation

x2[k + 1] = θαkx1[0] + βx2[k] + γ (5.33)

with given parameters α, β, γ, θ, x1[0], x2[0] ∈ R and α 6= β. If β 6= 1, then x2[k] has the
following unique solution.

x2[k] = βk
(
x2[0] +

θ

β − αx1[0]
)

+
βk − 1

β − 1
γ − θαk

β − αx1[0]. (5.34)

Proof. Introduce auxiliary variable y[k] with

y[k] := x2[k] +
θαk

β − αx1[0]. (5.35)

y[k] has a simpler recursion than x2[k]. This can be seen as follows.

y[k + 1] =x2[k + 1] +
θαk+1

β − αx1[0] = θαkx1[0] + βx2[k] + γ +
θαk+1

β − αx1[0]

=θαkx1[0] + β
(
y[k]− θαk

β − αx1[0]
)

+ γ +
θαk+1

β − αx1[0]

=βy[k] + γ + θαkx1[0]
{

1− β

β − α +
α

β − α︸ ︷︷ ︸
=0

}

Here, the first step uses the definition of y[k] in (5.35). Next, the recurrence relation for x2[k+1]
from (5.33) is substituted. Then, y[k] is recovered from x2[k] via its definition in (5.35) (x2[k] =

y[k]− αkθ
β−αx1[0]). After these steps, the recursion of y[k] is solved by

y[k] = βky[0] +
βk − 1

β − 1
γ. (5.36)

This can quickly be confirmed by induction over k.
Given the original recursion from (5.33), we can therefore initialize y[0] = x2[0]+ θα0

β−αx1[0]

and substitute it into (5.36). Transforming that equation back to x2[k] using (5.35) as in previous
steps, yields (5.34) and concludes the proof.

114 Ch. 5 Quantitative Models for Charge Transfers in ACB

Note that Lemma 5.9 requires β 6= αwhich follows fromRt < Rr in most cases. If required,
it can even be enforced by slightly altering Tr, i.e., by transferring slightly more charge over the
diode at the end of the discharge phase (cf. Figure 5.10).

We now have all components to run simulations concerning the major phases φt and φr.
(5.29) models long-term evolution for the sender, (5.32) with Lemma 5.9 for the receiver.
Required helper variables, comprising equivalent circuit resistances Rt, Rr, inductor timings
Tt, Tr, inductance L, and voltage slope ζ , are summarized in (5.37).

α =1−
(
ζ
Tt
Rt

+ ζ
L

R2
t

(
e−RtTt/L − 1

))
γ =0

β =1− ζ Tr
Rr

− ζ L
R2
r

(
e−RrTr/L − 1

)
θ =ζ

−L
Rr

(
e−RrTr/L − 1

)
d (5.37)

Here, d describes the peak current evolution i0 = dVt[k], as defined in (5.31).
The following paragraphs improve simulation accuracy by considering the switching effects

described in Section 5.6 and the diode involvement explained in Section 5.5.1.

Switching losses for long-term transfer with fixed timing

Consider the textbook switching losses in charge from from Eq. (5.14). With this, the cell
evolutions from (5.28) and (5.32) adjust to the following.

Vt[k + 1] =αVt[k]− ζ

2
τd dVt[k]︸ ︷︷ ︸

=I

−ζ
2
COSSVt[k]

Vr[k + 1] =βVr[k] + θVt[k]− ζ

2
τu dVt[k]︸ ︷︷ ︸

=I

−ζ
2
COSSVr[k] (5.38)

The recursion parameters from (5.37) for Lemma 5.9 must hence be adjusted as follows.

α̃ := α− ζ

2

[
COSS + τdd

]
γ̃ := γ

β̃ := β − ζ

2
COSS θ̃ := θ − ζ

2
τud. (5.39)

With these adjustments, the simulation proceeds as it did previously without switching losses.
Eq. (5.29) calculates the sender voltage for the macro step ∆t after calculating the necessary
cycles K = ∆t

Tt+Tr+Tb
. Lemma 5.9 subsequently yields the resulting receiver voltage.

Receiving over diode

The previous paragraphs have not yet dealt with qb, the charge transferred during break φb
(see also Fig. 5.10 in Section 5.5.1). Since Tb is typically short, the error thus created may be
acceptable in many cases. It is possible, however, to improve this error considerably by using a
rough estimate for qb.

Sec. 5.8 Large-scale ACB simulation 115

qb can be calculated accurately using qd from (5.21). Using this formula, that substitutes
timing into the charge term to obtain the transferred amount of a specific phase, we derive

qb =
−L(Vr + Vd)

R2
r

log
((Vr + Vd)− 0Rr

(Vr + Vd) + IbRr

)
+
L(−Ib − 0)

Rr

(5.40)

Since Ib varies over time, this precise version of qb cannot be combined directly with the linear
models from the previous paragraphs.

As an alternative, we hence consider a coarse estimate for qb instead. If we consider the
lowest peak current from the last cycle K, Imin = i(Tt, Vt[K], 0, Rt) = dV t[K], and a constant
receiver voltage, Vr = Vr[0], we receive a constant proxy value Ib,p for Ib.

Ib,p =i(Tr, Vr[0],−Imin, Rr) =
Vr[0]

Rr

(
1− eRrTr/L

)
− dVt[K]eRrTr/L (5.41)

Here, i is the current from Eq. (5.17), obtained as unique solution for the intra-phase dynamics.
Inserting Ib,p and Vb[0] = Vr[0] + Vd into qb from (5.40) then yields qb,p, the required proxy
for qb. To take this constant value into account in the previous calculations, only γ from (5.37)
needs to be adjusted.

γ̂ := γ + ζqb,p (5.42)

The improvement this correction term brings is evaluated at the end of this section (Ta-
ble 5.3). Even more precise results may be obtainable by calculating Vr[K] without diode
correction at first and then adjusting it afterwards, potentially with an iterative approach. An-
other alternative could use error control as in Section 5.8.3 specifically for this diode correction
term. On the other hand, the voltage evolves slowly even during a typical macro step period
Tm ≈ 1 min and the share of charge transferred during Tb is small. For this reason, the increased
computational effort of more complicated techniques is typically not justified.

Smart cell simulation platform

The fixed timing interface (Section 5.5.1) is the easiest to implement and is hence the most
likely to be deployed on embedded platforms. In addition, the calculation methods of this
section provide the most accurate instant evaluation. For this reason, they form the battery
layer in the co-simulation framework developed at TUM CREATE. Together with a CAN bus
model for the communication layer, this tool allows quick evaluation of request-driven strategies
for balancing in a distributed BMS. It has demonstrated, for instance, that the bus utilization
remains low in a smart cell setup and there is no communication bottleneck for the investigated
strategies. Neither cell communication nor request-driven strategies have consequently been a
focus of this thesis. A screenshot of the GUI front end of the smart cell simulation tool is shown
in Fig. 5.23, visualizing the SoC evolution over time during an active cell balancing run of a 96
smart cell battery pack.

Long-term transfer model evaluation

In the following, we examine accuracy and speedup that the simulation approach for the T -
interface from this section achieves. As the computation effort remains constant with respect

116 Ch. 5 Quantitative Models for Charge Transfers in ACB

Figure 5.23: Co-simulation framework performing simulation of active cell balancing for the 96 smart
cells of a 21.6 W h battery pack.

to the phase count, we expect a linear speedup over the iterative approach from Section 5.8.2
which calculates phase by phase. On the other hand, we also expect the inaccuracies from the
diode involvement in phase φb to grow as more cycles are calculated.

In the first experiment, we analyze a set of transfer scenarios and compare the results from
“normal” LiFePO4 cells with 1.1 A h (Fig 5.8) and a “tiny” variant at 0.1 A h with the same
voltage curve. The tiny cells are chosen to evaluate the effects from somewhat faster voltage
evolution. The scenarios are created by considering every combination of the following param-
eter vectors individually.

I ∈ {0.25, 1.0, 2.0}
(
Rs Rr

)
∈
{(

0.01 0.012
)
,
(
0.5 0.6

)
,
(
1.3 1.4

)}
L = 0.0001

(
zs[0] zr[0]

)
∈
{(

0.4 0.3
)
,
(
0.8 0.2

)
,
(
0.45 0.65

)}
(5.43)

For a macro step size of 10s, driving the simulation in a phase-by-phase fashion requires around
7s in a prototypic Python implementation. The reason is that 10s of balancing time may cor-
respond to over 105 switching cycles. By contrast, the approach from this section requires less
than 100µs on average, a speedup of roughly 105 for this macro step. The analysis of the worst
case relative error εrel :=

‖∆Qcf−∆Qstep‖
‖∆Qstep‖ reveals, however, that changes in voltage lead to errors

from the third phase φb. Without taking diode involvement into account, εrel is in the order
of 10−3 for both cell variants. Using the correction term from Eq. (5.42), the relative error is
reduced to εrel ≈ 10−5, the error of the tiny variant being about 5 times larger.

Cells with larger capacities lead to a more benign situation since the current is usually not
raised equally for efficiency reasons and the voltages hence evolve more slowly. Overall, this
technique is hence well-suited to calculate the transfer dynamics in one go, even for macro steps
in the low minute range.

Sec. 5.9 Related work 117

Another experiment investigates speedup and relative error for a small battery pack. It is
made up of parallel-connected units with 10 LiFePO4 1.1 A h cells (Fig 5.8). Two such cell
units then transfer charge between each other for 1 s at I = 2.0 A, using a variety of resistance
and inductance parameters. Table 5.3 shows the results from this experiment. Although coarse,
the diode correction term (5.42) improves accuracy by almost two orders of magnitude without
significant impact on computation times. While it is intuitive that speedup increases and ac-
curacy decreases with lower inductance and the implied higher frequency, the dependency on
resistance may be worth investigating.

Overall, the technique is less accurate but somewhat faster than the error-controlled ap-
proach from Section 5.8.3. The decreased accuracy may not be relevant, however, since the
largest errors are still introduced by the battery model and the equivalent circuit abstraction.

All measurements from this section have been performed on a laptop computer with Intel
i5-2540M CPU @ 2.6 GHz and 8 GB RAM.

Table 5.3: Over various inductance (vertical) and resistance (horizontal) values, the instantaneous eval-
uation of the fixed-timing approach is dramatically faster than the iteration from Section 5.8.2. Accuracy
is helped significantly by the diode correction and remains well above the levels of the battery model.

Basic version WITH diode correction

Sp
ee

du
p

0.005 0.05 0.5
3.0e−6 1.0e+5 1.1e+5 1.2e+5
1.0e−5 3.8e+4 3.5e+4 3.4e+4
3.0e−5 8.4e+3 1.2e+4 8.8e+3
1.0e−4 3.4e+3 3.1e+3 3.4e+3

0.005 0.05 0.5
3.0e−6 9.4e+4 9.5e+4 9.6e+4
1.0e−5 2.4e+4 3.0e+4 2.8e+4
3.0e−5 9.5e+3 9.3e+3 9.4e+3
1.0e−4 3.0e+3 2.8e+3 3.0e+3

R
el

.E
rr

or

0.005 0.05 0.5
3.0e−6 7.5e−4 7.4e−4 8.8e−4
1.0e−5 7.4e−4 7.5e−4 8.8e−4
3.0e−5 7.4e−4 7.5e−4 8.8e−4
1.0e−4 7.4e−4 7.5e−4 8.8e−4

0.005 0.05 0.5
3.0e−6 1.8e−5 1.3e−5 2.2e−5
1.0e−5 4.0e−6 4.5e−6 3.0e−6
3.0e−5 1.6e−6 7.7e−7 2.0e−6
1.0e−4 1.3e−7 2.4e−7 2.1e−6

5.9 Related work
In this section, the most relevant contributions from the domain of ACB are discussed. On the
one hand, we deal with other modeling techniques. On the other hand, we go over the general
context of BMS design and alternative ACB approaches.

Battery management Although Electrical Energy Storage (EES) already serves many use
cases, upcoming technologies like Electric Vehicles (EVs) and smart grid applications would
benefit the most from further improvements [151]. The smart grid concept aims to deliver elec-
tricity both cheaper and more reliably by augmenting the power grid with a communication net-
work and sophisticated control. These efforts aim to deal with more and more irregularities in
the grid that increasing amounts of renewable energy introduce, driven by ambitious targets like
33 % by 2020 in the European Union [175] or 15–30 % in about half of the US by 2025 [137].

118 Ch. 5 Quantitative Models for Charge Transfers in ACB

The overall motivations, emission reduction and oil independence, extend to the transportation
sector and also stimulate the EV development. As both domains employ ever larger EES de-
vices, “a smart [Battery Management System (BMS)] is crucial [for their] realization” states
Rahimi-Eichi [151] in his overview.

On the other hand, “there is still no consensus of the final definition of BMS and what
[BMSs] do” [120]. Under the premise that a BMS is any system that manages the battery,
Lu [120] presents the key issues of Li-Ion battery management, like the small size of the safe
operating window or the difficulties in measuring SoC. The high-level tasks of a BMS identified
in the recent works of Lu and Rahimi-Eichi, monitoring, safety, thermal management, state
estimation, and cell balancing, are similarly discussed in earlier works like [70] or [87]. The
corresponding engineering aspects are discussed more thoroughly in Andrea’s book [6]. Besides
control and power engineering, the embedded systems domain also has its own perspective on
BMS implementation, presented in the brief overview by Brandl [27].

The following paragraphs expand on state estimation and cell balancing and their require-
ments like battery models. Please refer to the aforementioned works for a discussion on other
BMS functions.

Decentralized implementation In commercial battery packs, centralized BMS architectures
are currently dominating. Here, a central master controller specifically tailored to the pack
acquires all sensor information like individual voltages and temperatures. Additionally, it pro-
cesses and creates control signals for cell balancing. Approaches to decentralize the control of
the battery pack are driven by the requirements of higher efficiency, modularity and easier inte-
gration in order to cope with the perennial demand for shorter design cycles and time-to-market.

Decentralization at the measurement level for reduced wiring and simplified matching has
been proposed in several places. Stuart [169], for instance, proposes a pack consisting of 4
submodules where an individual ECU board controls 12 cells and communicates with a central
unit. In [44], a similar master-slave setup is described that can additionally isolate individual
cells for safety. A circuit with increased focus on efficiency and isolated communication has
been presented more recently in [14]. [142] even uses wireless signals for communication to
further reduce wiring and discusses the ensuing issues from electromagnetic interference. As all
these approaches offload tasks from the master device to the computing devices of the individual
cells, these tasks can also be scheduled in a way that creates more load on stronger cells, thus
equalizing the pack and leading to more runtime [124].

Instead of communicating to a master for coordination as in the previous works, the smart
cells introduced in [167] are fully autonomous, individually control their parameters, and coor-
dinate their actions with other smart cells via communication.

Cell balancing techniques While cells that are connected in parallel balance according to
their voltage, somewhat like capacitors, serially connected cells require additional circuitry.
Generally, the available approaches are classified into passive and active cell balancing. Passive
cell balancing dissipates excess energy of cells above minimum pack SoC via a resistor until
they reach the charge level of the weakest cell [82]. While this technique is easy to implement
and has low cost in comparison with the active cell balancing techniques, it suffers from low

Sec. 5.9 Related work 119

efficiency since all excess energy is dissipated as heat across the balancing resistors. As cooling
must bring this heat out of the system, balancing quickly is also challenging [170]. Commercial
implementations use currents below 10 mA, like [174] from Texas Instruments, or treat cells
sequentially and with external resistors to reach 200 mA, like [127] from Maxim Integrated.

Active approaches, by contrast, transfer energy from cells with high SoC to cells with low
SoC instead of dissipating it. This significantly increases energy efficiency of the balancing
process. In addition, transfers allow significantly higher currents as reduced dissipation also
leads to less heat. Unlike the quasi-fixed design for passive balancing, there are many ways to
achieve Active Cell Balancing (ACB). A qualitative overview of numerous techniques can be
found in [102], [133], or [32]. These papers introduce the basic functionality of roughly a dozen
techniques, focusing on component count, ease of implementation, and efficiency estimates.
Many of these basic approaches are simulated in [52] although the evaluation of balancing time
and efficiency remains qualitative in nature.

A systematic classification that encompasses many of the papers from the previous para-
graphs has recently been presented in [69]. This publication structures ACB architectures by
topology or equivalently by the kind of charge transfers that can be performed. The most im-
portant topologies are Cell Bypass, Cell to Pack, Pack to Cell, and Cell to Cell.

Cell Bypass is typically achieved via shunting as in [160] or [125]. Instead of transferring
charge, these approaches reroute the external load current to temporarily reduce the stress on
weak cells. Although they introduce some fault tolerance, or even reconfigurability [94], with
moderate control effort, these techniques are often not an option because they insert shunts into
the main connection of the battery. The so-created resistance entails an additional energy loss
during normal operation which may be hard to overcome via balancing.

Unlike Cell Bypass, the other ACB topologies transfer charge. The available mechanisms
to create such transfers are discussed in the next paragraph. Once a mechanism is selected,
a suitable routing network can then form any of the following topologies, each with its own
benefits and drawbacks.

Cell to Pack approaches transfer charge from one cell to the entire battery pack. In Pack
to Cell techniques, conversely, the pack collectively sends to one cell. As such, both have
very simple charge routing strategies. Cell to Pack is strictly preferable to Pack to Cell for two
reasons [6]. First, the low voltage on the transmitting side can be handled by cheaper transistors.
Second, the high output voltage leads to improved efficiency (80 % vs 70 %).

Cell to Cell approaches, the focus of this thesis, can be further grouped by whether or not
they allow transfers between non-adjacent cells. In the literature, the focus is often on the
simpler version, ignoring the more sophisticated circuits. According to [6], for instance, Cell
to Cell leads to the most efficient one-to-one transfers (90 %). If charge is transferred in daisy
chain fashion over several cells, however, this efficiency is greatly reduced. Although correct,
this drawback is mostly overcome by non-adjacent transfers [88].

Quantitative guidelines for the performance of the various topologies are also obtained via
optimization techniques. Please refer to Section 6.5 for a discussion on these works.

Other topology aspects like modularity and locally created actuation signals [138] are less
discussed. The former helps when assembling a pack; the latter is necessary for distributed
BMS because the alternative, clock synchronization in the microsecond range, is very difficult
to achieve.

120 Ch. 5 Quantitative Models for Charge Transfers in ACB

Charge transfer mechanisms While the routing network ultimately determines the topology,
its design and the overall performance largely depend on the charge transfer mechanism, i.e.,
on the components that are used as temporary energy storage. The options include inductors,
transformers, capacitors, and even combinations thereof.

Capacitors by themselves can be connected in parallel to transmitting and receiving cell in
an alternating fashion. This requires a network of switches but actuation and timing remain
simple. [143] implements adjacent Cell to Cell transfers in this way, [18] adds remote trans-
fers. Their main drawback is that the parallel constellation inherently has poor efficiency. For
this reason, capacitors are typically accessed via other components as in [15] or [121] where
inductors are used. In such setups, the efficiency considerations of the auxiliary component by
itself, as discussed in the following paragraphs, largely apply. Although an additional transfer
becomes necessary since capacitors are not the ultimate destination, the isolating aspects of
such approaches may lead to smaller switching networks.

Inductors rely on high-frequency switching signals (Section 5.2). These signals can become
quite involved because inductors do not isolate the current meshes they are members of from one
another. Although inconsequential for simple cases [103], this typically leads to high transistor
counts for sophisticated topologies like the architectures with non-adjacent transfer from [88]
or [123]. Once designed, however, inductor-based circuits operate very efficiently and require
comparatively little space. Off the shelf, devices with PowerPump from Texas Instruments,
like [173], enable transfers between neighboring cells with up to 1 A in this way. Please refer
to [186] for a high-level description.

Transformers are an interesting alternative to inductors. Even though their actuation signals
are relatively similar, the design is much simpler as transformers provide isolation and thus
inherently prevent many short circuits. From an efficiency perspective, they are comparable
to inductors. In simple setups, inductors have an advantage. They are smaller at equivalent
parameters since transformers consist of two windings and they have less leakage terms. In
larger setups, transformer architectures may require less transistors, however, and thus lead to
improved cost and efficiency values. This is somewhat evident in circuits, like [162] or [80],
that create a Cell to Cell topology with a switching network around a single transformer. It
becomes even more clear for Cell to Pack variants. While these can be implemented with
excellent efficiency (over 90 %) with multi-winding transformers as in [113] or [60], they remain
challenging for inductor architectures. Note, however, that it is not clear how to scale these
approaches since it becomes difficult to create the required custom transformers for packs with
more than 10 cells. Linear Technology offers such a balancer with Cell to Stack topology for
up to 6 cells in series [116]. It is rated for currents up to 10 A if suitable transistors are added
externally.

Functionality verification Charge transfer architectures are typically evaluated using circuit
simulation or test hardware implementations. Since such manual techniques may not be suf-
ficient in complicated cases, formal verification is also emerging in this domain. In [13], for
instance, the access logic for a circular balancing bus is validated using SAL [54]. A more gen-
eral approach that takes all electrical components into account, at least qualitatively, is pursued
in [123]. There, the authors rely on a Boolean Satisfiability (SAT) solver to develop a GUI tool
that formally verifies user-designed balancing architectures over all switching phases.

Sec. 5.9 Related work 121

Li-Ion battery models Whether analyzing EV drive cycles or mobile phone runtime, a simu-
lator needs battery models that can predict SoC, voltage characteristics, and dynamic behavior.
For Li-Ion batteries, the families of electrochemical, mathematical, and electrical models com-
pete to fill this role. Overviews of these options, as in [100] or [43], conclude with varying
advice.

Electrochemical models offer the deepest insight into the battery [140]. For this reason,
they are the only option when determining electrode size or other aspects of battery design. As
they are a system of coupled time-varying Partial Differential Equations (PDEs), however, they
are computationally expensive. In addition, many parameters they require are not provided by
the manufacturer and “must be determined independently . . . through a series of experiments
. . . ” [55]. With these downsides in mind, it is nevertheless possible to simplify the complicated
models to simpler, one-dimensional versions that are suitable for control applications and still
have physically meaningful parameters [43].

Mathematical models predict battery behavior using empirical equations [153] or via a
stochastic process [46]. While they can be evaluated quickly, their results may not reliable
in practice. According to [45], such models lead to 5–20 % error in voltage characteristics and
SoC evolution.

Electrical models are the most intuitive option for circuit simulation. Most of them are based
on Thevenin’s theorem, impedance networks, or runtime dependency [45]. A Thevenin-based
model describes the cell behavior with a series resistor and one [192] or a number of stages [159]
with resistor and capacitor connected in parallel. In this process, it is assumed the OCV is con-
stant which prevents Thevenin models from tracking SoC evolution. Impedance-based models
like [31] require complicated impedance spectroscopy to fit the parameters. Nevertheless, they
are accurate only for a fixed SoC and cannot predict the runtime of a battery. Runtime-based
models, on the other hand, employ a circuit network that simulates the runtime for a constant
discharge current. As they are inaccurate for varying load currents, combined models become
necessary. The model from [45], employed in this thesis, is such a model that provides accu-
racy for arbitrary load currents over the full SoC range using two resistor-capacitor stages. As
there is a trade-off between accuracy and complexity when determining the number of these
stages, other models have also emerged. Some demonstrate sufficient accuracy with only one
resistor-capacitor stage, like [154] or [95]. Others argue for the need of a third stage [100].

Another aspect of battery modeling is aging. It is well known that parameters, like capacity
or internal resistance, change over time. Since the corresponding experiments require months
to complete, however, a consensus on the modeling of these effects has not been reached yet.
While the main factors seem to be depth of discharge and mean SoC [157], the “degradation is
more complicated than . . . reported in the literature” [57] and larger studies show that significant
randomness is involved [19].

State of Charge (SoC) estimation The charge within a battery cell, summarized in the SoC
ratio, cannot be measured directly. Only terminal voltage and current are available to estimate
the SoC. An accurate SoC is required for many applications, however, like the fuel gauge for
an EV. It is also known that even passive balancing based on voltages finishes with significant
offsets [186].

There are several approaches to find the SoC in a lab situation. Starting at a known value and

122 Ch. 5 Quantitative Models for Charge Transfers in ACB

integrating the precisely measured input current, so-called Coulomb counting, is typically used
as reference. Waiting for several hours and taking a voltage measurement may also reveal the
OCV and lead to a reasonable estimate. There are other techniques from the chemistry domain,
like impedance spectroscopy, but they are not suitable for estimation at runtime either.

A discussion on techniques that estimate SoC at runtime can be found in [151]. As the
voltage profile of battery cells can be rather flat, a measurement accuracy of 5 mV for benign
chemistries or even 1 mV for the most challenging cases is required to reliably estimate the
SoC. The computational challenge is currently addressed mainly with Kalman filters and initial
adaptive observer approaches.

Kalman filter approaches are comprehensively described in Plett’s three-part overview [146–
148]. Besides simpler mathematical models that consider SoC to be the only state, the author
also investigates hysteresis and achieves estimation errors in the range of 2 %. [110] uses an
impedance-based battery model that they simplify to reduce computation time, aiming at sam-
pling periods below 100 ms for multiple cells. This technique achieves SoC errors around 1.5 %.
In [74], by contrast, a Thevenin battery model is used. After parameter identification, the au-
thors propose an adaptive component for the Kalman filter that reduces the mean estimation
error to 1 %

Adaptive observers A major difficulty for static battery models as employed by Kalman
filters is the strong dependency on SoC that many parameters exhibit. According to [150],
some of them vary as much as 800 %. To address this, the authors adaptively estimate the model
parameters along with the SoC at runtime. In this way, convergence times and estimation errors
are significantly reduced. Another, less involved technique is described in [78] where the gain
of a Luenberger observer is adapted at runtime to minimize the error along the convergence
trajectory.

Electrochemical models are rarely used for SoC estimation in the literature. A noteworthy
example operating an observer on a reduced version of the full kinetics can be found in [96].
While computationally expensive, it is not only highly accurate but also provides additional
insight about other unmeasurable details like internal temperature.

A recent, thorough review of the various cell monitoring techniques can be found in [181].

123

6
Optimizing Efficiency in Active Cell

Balancing (ACB)

Chapter 5 deals with modeling and quantitative evaluation of inductor-based ACB operation.
This chapter deals with two subsequent elements in the overall design flow (see Sections 1.2 and
5.1): component optimization and routing strategies. First, it discusses a transfer model that is
suitable for mathematical programming (Section 6.1). This model accepts some approximative
transformations as they only lead to inaccuracy in very inefficient and hence insignificant op-
erating points. With this model, we then examine a Geometric Programming (GP) formulation
for inductor design (Section 6.2) and approaches that find the best transfer current (Section 6.3).
The higher-level issue of charge routing is analyzed next, with the derivation of a bound on the
achievable performance and the presentation of several strategies (Section 6.4). A discussion
on related work (Section 6.5) concludes the chapter.

6.1 Optimization-friendly charge transfer model

In Section 5.8, several techniques for accurate, but rapid simulation of large-scale ACB scenar-
ios have been discussed. While these models can be used to look for good operating parameters
interactively, their nonlinearities are not suitable for efficient optimization algorithms. In order
to systematically find the best settings even for large problems, this section relaxes accuracy re-
quirements slightly to derive linear constraints that describe the transfer dynamics. In this form,
ACB can be included in various mathematical programming frameworks and efficiently solved.
Section 6.4.1, in particular, uses an LP solver based on this model after deriving suitable cost
terms.

To derive the model, we assume the current interface from Fig. 5.13 on page 98 where
a constant peak current is maintained by adjusting the timing settings as voltages evolve. A

124 Ch. 6 Optimizing Efficiency in ACB

simple battery model without RC stages is used as in Section 5.8.4. Please refer to (5.7) and the
explanation there for a discussion on the errors this common simplification introduces. In this
context, we examine the power series expansion of the closed-form terms for the intra-phase
dynamics from Section 5.7 to reformulate the iteration from Section 5.8.2 as ODE.

Power series expansion of single-phase charge differences With the current interface from
Fig. 5.13, the charge qd of a single cycle can be calculated using (5.21). That formulation is
reproduced here with the phase-dependent parameters of Table 5.2 from Page 97. It yields the
charge differences qt and qr for transmitter and receiver, respectively.

qt =
LVt
R2
t

log
(Vt − IRt

Vt

)
+
L(I − 0)

Rt

=
LVt
R2
t

log
(

1− IRt

Vt

)
+
LI

Rt

qr =
LVr
R2
r

log
(Vr
Vr + IRr

)
+
L(0− (−I))

Rr

=
−LVr
R2
r

log
(

1 +
IRr

Vr

)
+
LI

Rr

(6.1)

Here, the relation log(1
v
) = − log(v) explains the second step for qr. Now, consider, log(1 +

z) = z − z2

2
+ z3

3
+ . . . , a power series expansion of the natural logarithm which transforms qt

and qr to the following, approximate representations.

qt ≈
LVt
R2
t

[−IRt

Vt
− 1

2

(−IRt

Vt

)2

+
1

3

(−IRt

Vt

)3]
+
LI

Rt

= −LI
2

2Vt
− LI3Rt

3V 2
t

(6.2)

qr ≈
−LVr
R2
r

[IRr

Vr
− 1

2

(IRr

Vr

)2

+
1

3

(IRr

Vr

)3]
+
LI

Rr

=
LI2

2Vr
− LI3Rr

3V 2
r

(6.3)

As linearizing the phase duration (5.20) leads to Td = LI
V

, these terms can also be interpreted as
follows.

qt ≈−
1

2
ITt −

1

3

I2Rt

Vt
Tt qr ≈

1

2
ITr −

1

3

I2Rr

Vr
Tr (6.4)

Note, however, that Tt and Tr are not necessarily constant in these expressions!

ODE formulation On the way to the desired representation, the transfer dynamics are now
considered in the form of a discrete ODE as in Section 5.8.3. In order to further simplify
this ODE to forgo a numerical solver, only the first and major part of the expanded charge
differences (6.2), (6.3) is included. Under this perspective, the voltage within one linear segment
of model (5.8) from Section 5.4 evolves as follows.

Vt[k + 1] =Vζ,i + ζi
(
Qt[k + 1]−Qi

)
= Vζ,i + ζi

(
Qt[k] + qt −Qi

)
≈Vζ,i + ζi

(
Qt[k]− LI2

2Vt[k]
−Qi

)
= Vt[k]− ζi

LI2

2Vt[k]
(6.5)

Here, k refers to discrete switching cycles. As the cycles are so numerous in ACB, this recur-
rence relation can also be considered as ODE ∆Vt

∆k
= −ζi LI

2

2Vt
. This ODE for Vt and the similar

version for Vr have the following unique positive solutions.

Vt[k] =
√
V 2
t [0]− ζtLI2k Vr[k] =

√
V 2
r [0] + ζrLI2k. (6.6)

Sec. 6.1 Optimization-friendly charge transfer model 125

Clearly, a transformation via series truncation is not lossless. The resulting error consists
of the higher-order terms in (6.2), (6.3) that are omitted. The first and largest term are the
dissipative losses as explained in the next paragraph. Like all terms, it grows with IR/V . The
model is thus most accurate in the efficient operating areas where R, I and consequently losses
are small. More details on this error that other optimization models share can be found later in
this section (Fig. 6.1 and Table 6.1).

Dissipative losses The second terms from (6.2), (6.3), which have been omitted so far, rep-
resent the dissipative or transfer loss Etf . This is somewhat evident from (6.4). It can also
be calculated more concretely by examining the energy balance of the two participating cells.
For this purpose, we continue assuming that the cell voltage remains constant during individual
switching cycles as in Section 5.7.

Etf =∆Et + ∆Er = Vtqt + Vrqr

=Vt

[
− LI2

2Vt
− LI3Rt

3V 2
t

]
+ Vr

[LI2

2Vr
− LI3Rr

3V 2
r

]
= −LI

3Rt

3Vt
− LI3Rr

3Vr
(6.7)

Energy-based reformulation Although the voltage evolution from (6.6) can be used for fast
simulation, it is still unwieldy in optimization scenarios. We can, however, reformulate it to
be based on energy instead of voltage. This renders the main dynamics linear with respect to
cycles k given constant peak current I . If the current is calculated by the platform, as described
in Section 5.5.3, this can be used to solve large-scale routing problems (Section 6.4.1).

Switching the state variable from voltage to energy is straightforward. We substitute (6.6)
into battery energy (5.12) and obtain the following for the transmitting cell.

Et[k] =Eζ,i +
1

2ζi

[√
V 2
t [0]− ζtLI2k

2

− V 2
ζ,i)
]

= Eζ,i +
1

2ζi

[
V 2
t [0]− V 2

ζ,i

]
− 1

2
LI2k

Transforming the voltage terms back to Et[0] and applying similar algebraic transformations to
the receiver side, leads to the desired transfer dynamics:

Et[k] =Et[0]− 1

2
LI2k =: Et[0]−∆E Er[k] =Er[0] + ∆E (6.8)

Tracking time evolution The transfer dynamics (6.8) from this section are calculated in terms
of switching cycles. Similarly to Section 5.8.3, the evolution of time must thus be tracked
separately. For this purpose, consider the following power series expansion for Td from (5.20).

Td ≈
LI

V
+ sgn(I)

LI2R

2V 2
+
LI3R2

3V 3
(6.9)

This formula calculates the time for one switching cycle by considering Tc = Tt + Tr. Depend-
ing on the optimization problem, it can be included as constraint with varying number of terms.
For simulation, we discuss a more accurate option at the end of this section.

126 Ch. 6 Optimizing Efficiency in ACB

Why a better model with voltage dependency? Optimization for ACB is often performed
with the standard linear state space representation

ẋ(t) = Ax(t) +Bu(t) (6.10)

Since the cells in ACB barely evolve without actuation, the system matrix can be selected as
A = 0. Although it is not always clear how the exact dynamics from Section 5.3 are then
mapped to this representation, the most common approach is to introduce an average current
that can be actuated directly.

Q̇(t) = βi(t) (6.11)

Looking at the first terms from (6.4), it may appear that β = 1
2

Tt
Tt+Tr

would be a reasonable
choice for the transmitting cell. As β must be constant, however, and Tt, Tr depend on cell
voltages, among other things, this choice can only be accurate in a certain working point. This
is problematic because ACB deliberately moves the system to a new state unlike typical control
applications that maintain a working point.

Outside its working point, an average current model quickly leads to relative errors in the
range of 5 %, as shown in Fig. 6.1. This figure shows an experiment with two cells having linear
voltage behavior for 3.0–4.5 V. Resistances and inductance were modeled asRt = Rr = 10 mΩ
and L = 100 µH, respectively. The SoC of the receiving cell was set to zr = 0.5 while the
transmitting cell was varied. Brief transfers of ∆t = 0.1 s with a peak current of I = 1.25 A
are simulated using three techniques: the iterative approach from Section 5.8.2 as reference, the
energy-based technique (6.8) proposed here, and the average current model (6.11). The relative
errors εrel = (∆zref −∆z)/∆zref with respect to the reference are plotted in Fig. 6.1.

In spite of the growing inaccuracy, the average current approach can still be justified for
SoC differences |∆z| < 0.04 that lead to εrel < 1 %. Even though this includes a significant
part of the relevant ACB scenarios, the energy-based model (i) is strictly superior with higher
accuracy and neither higher computation costs nor more complicated optimization. In addition,
it (ii) must not fear future cells that may introduce steeper voltage profiles.

It is worth pointing out that both approximative models intersect at ∆z = 0 where they are
mathematically equivalent since β from (6.11) is calibrated. This offset depends on resistance
as well as current; it roughly corresponds to the dissipative loss terms identified in (6.7) that
have been omitted so far. Please refer to Table 6.1 for more details.

Improving accuracy in simulation There are several possibilities to include the dissipation
terms that create the offset in Fig. 6.1. For optimization, they are compatible with the Geometric
Programming (GP) framework in some cases (Section 6.2). In other cases, it is necessary to
account for them more coarsely (Section 6.4.1). For simulation, however, these terms can be
included a posteriori for high accuracy.

With the voltage evolution as per (6.6), the dissipative losses from (6.7) can be integrated

Sec. 6.1 Optimization-friendly charge transfer model 127

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−5

−1
0
1

5

∆z = zt − zr

ε r
el

[%
]

Ref
Iavg
Nrg

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−5

−1
0
1

5

∆z = zt − zr

ε r
el

[%
]

Ref
Iavg
Nrg

Figure 6.1: The energy-based model (Nrg) from this section omits dissipation terms that lead to a small
error if not dealt with using one of the later-suggested methods. In addition to these same terms (note
intersection at working point ∆z = 0), a typical state space representation (Iavg) also ignores voltage-
dependency. This leads to relative errors of up to 5 % away from the working point.

over time to obtain an accurate total.

Ẽtf,t[K] =

∫ K

0

LI3Rt

3Vt[k]
dk =

2IRt

3ζt

(
Vt[0]− Vt[K]

)
Ẽtf,r[K] =

∫ K

0

LI3Rr

3Vr[k]
dk =

2IRr

3ζr

(
Vr[K]− Vr[0]

)
(6.12)

These transformations have been found using a Computer Algebra System (CAS) [187]. Note
that current I reappears in the ending voltage Vt[K] here. This makes these formulations diffi-
cult to use for optimization purposes. Subtracting them a posteriori in simulation does increase
accuracy, however. Similar correction terms for the switching loss terms from (5.13) can be
found in an analog fashion. Set Coss = 0 for the alternative representation from (5.15).

Ẽsw,t =
CossK

2

(
V 2
t [0]− ζt

2
I2KL

)
+

1

3
τdIKVt[K] +

τdV
2
t [0]

3ILζt

(
Vt[0]− Vt[K]

)
Ẽsw,r =

CossK

2

(
V 2
r [0] +

ζr
2
I2KL

)
+

1

3
τuIKVr[K] +

τuV
2
r [0]

3ILζr

(
Vr[K]− Vr[0]

)
(6.13)

The balancing duration can also be derived more accurately by substituting the voltage evo-
lution from (6.6) into (6.9) and calculating

∫ K
0
Tt + Tr with a CAS. For both sides, this uses∫ K

0
Td ≈ sgn(I)

{
2
V [0]− V [K]

Iζ
− R

2ζ
log
[
1− sgn(I)

I2KLζ

V [0]

]
+

2IR

3ζ

[1

V [K]
− 1

V [0]

]}
. (6.14)

These adjustments significantly improve the accuracy, as demonstrated by the experiment
from Table 6.1. There, transfers with peak current I = 1.0 A and a duration of ∆t = 0.5 ms are
performed between two cells with voltages V ≈ 3.65 V. The transfers use a variety of induc-
tances and resistances and are evaluated with three iterative mathematical models. (6.2), (6.3)

128 Ch. 6 Optimizing Efficiency in ACB

furnish the single-term model, as for long-term model (6.6), and the two-term model to repre-
sent the corrections from the previous paragraphs. The full accuracy model from (6.1) serves
as reference. Inductance and associated frequency barely affect accuracy in this experiment;
further investigation is needed to confirm this for other approximations like timing or losses.
The error does increase with resistance as expected, on the other hand; the resistance of circuits
for battery cells that balance at I = 1.0 A should hence be discussed. Assuming SAMSUNG

cells [156], as in Section 5.4, with a capacity of 2.5 A h, balancing with a peak current of 1
4
C

would correspond to two parallel cells and hence RC = 10 mΩ cell resistance. As other circuit
components typically contribute resistance in the same range, such a circuit can be analyzed
with relative errors under 1 % even with the basic version. Larger battery backs that require
higher currents also have lower resistances. While this truncation error is larger than the errors
in the simulation models from Section 5.8, the model from this section improves upon alterna-
tives and applies to a wide range of scenarios. Special care is only required for very fast and
wasteful balancing.

Table 6.1: Over various inductance (vertical) and resistance (horizontal) values, both basic and cor-
rected optimization model remain sufficiently accurate for most scenarios (below 1 % relative error).
Only inefficient conditions, with high resistance and current, that an optimization solver would avoid,
lead to significant inaccuracies.

Basic (single term) Corrected (two terms)

R
el

.E
rr

or

0.005 0.05 0.5
3.0e−6 9.2e−4 9.3e−3 1.1e−1
1.0e−5 9.2e−4 9.3e−3 1.1e−1
3.0e−5 9.2e−4 9.3e−3 1.1e−1
1.0e−4 9.2e−4 9.3e−3 1.1e−1

0.005 0.05 0.5
3.0e−6 9.4e−7 9.6e−5 1.2e−2
1.0e−5 9.4e−7 9.6e−5 1.2e−2
3.0e−5 9.4e−7 9.6e−5 1.2e−2
1.0e−4 9.4e−7 9.6e−5 1.2e−2

6.2 Inductor optimization via Geometric Programming (GP)
During the design phase of an ACB architecture, the individual components are selected once
the circuit layout is determined. In this context, we now look for the inductor that performs best
under several predetermined scenarios. To that end, we take the model from Section 6.1 and
adapt it for a GP formulation. This formulation is then extended by inductor constraints and
yields designs that are superior to off-the-shelf options in a case study.

Since the inductor is optimized by itself in this section, its resistance RL must be treated
individually and not as part of the aggregated resistances described in Section 5.3. We hence
introduce Rt,0, Rr,0 to account for all other resistances in the equivalent circuit.

Rt =Rt,0 +RL Rr =Rr,0 +RL (6.15)

Geometric Programming (GP) Instead of using a nonlinear solver, this section operates in
the GP paradigm (i) to guarantee that an optimal solution is found and (ii) to deal with larger

Sec. 6.2 Inductor optimization via GP 129

problems. According to Boyd’s overview [25], a GP problem in standard form is:

min f0(x)

s.t. fi(x) ≤ 1 ∀i = 1, . . . ,m

gi(x) = 1 ∀i = 1, . . . , p

where x =
[
x1, . . . , xn

]
is a vector of positive real-valued decision variables. fi and gi are

posynomial and monomial functions, respectively. A monomial has the following form:

m(x) = cxa11 x
a2
2 . . . xann c > 0, ai ∈ R

Posynomials are sums of monomials and closed under addition, multiplication, positive scaling
as well as division by monomials. Geometric Programming (GP) is a special form of convex
optimization. GPs have polynomial time computational complexity and can be solved very
efficiently by a variety of off-the-shelf solvers.

Adjusting charge transfer and losses for GP Instead of dealing with the actual losses, the
technique in this section is content to minimize an upper bound. For this purpose, it considers
only the highest and lowest voltages which the two cells of a certain link can reach. As cell
voltage increases monotonously with SoC, the initial voltages of transmitting and receiving
cell, Vt[0] and Vr[0], represent such bounds.

Inserting these bounds into the approximate charge differences from (6.2), (6.3), we obtain

qt,max ≈−
LI2

2Vr[0]
− LI3Rt

3V 2
r [0]

qr,min ≈
LI2

2Vt[0]
− LI3Rr

3V 2
t [0]

. (6.16)

Minimizing transfer losses Etf from (6.7) can be done directly. This formulation is a posyn-
omial in Rt, Rr, I , L, Vr, Vt. After inserting bounds Vt[0] and Vr[0], it becomes the following.

|Etf | =
LI3Rt

3Vr[0]
+
LI3Rr

3Vt[0]
(6.17)

The switching losses, as described in Section 5.6, are also a posynomial in I , Vr, Vt. With
Vt[0] as upper bound for the voltage, (5.13) becomes

Esw =
1

2
(τd + τu)IVt[0] + COSSV

2
t [0] (6.18)

Inductor Design Constraint In order to minimize both transfer and switching losses, we
would like to have an inductor with microscopic resistance and large inductance that supports
gigantic peak currents. However, there is obviously a trade-off involved between these features.
Using the procedure described in Chapter 14 “Inductor Design” of [63], we begin by ensuring
that the following inequality holds.

Kg ≥
ρL2I2

max

B2
maxRLKu

(6.19)

130 Ch. 6 Optimizing Efficiency in ACB

Here, Kg is the core geometrical constant summarizing the size and the layout of the core. It
can be obtained from data tables. ρ = 1.724e-6 Ωcm−2 is the resistivity of copper wire. Imax can
be assumed to be the peak current I for non-dominated designs. Ku is the winding fill factor
and is in the range of Ku = 0.7. Finally, we set Bmax = 0.3 T, as recommended for most ferrite
core materials in [98] (Chapter 9.4.5 ”Design of Inductors”).

Given the dimension of the overall circuitry, we select a suitable core which determines the
geometrical constant Kg. From any combination of L,R, I that fulfills (6.19), we can then go
back to the procedure from [63] and calculate air gap length lg as well as number of turns n.
This means that selecting L,R, I implicitly fixes the entire inductor design.

Timing considerations When equalizing a charge difference ∆Q between two cells, the num-
ber of switching cycles, K, is bounded below by K ≥ ∆Q/(qr,min − qt,min). This can be refor-
mulated to

∆Q

K
≤ LI2

2Vr[0]
+
LI3Rt

3V 2
r [0]

+
LI2

2Vr[0]
− LI3Rr

3V 2
r [0]

=
LI2

Vr[0]
+
LI3
(
Rt,0 +RL −Rr,0 −RL

)
3V 2

r [0]
.

Here, inductor resistanceRL has been separated fromRt,Rr as described in (6.15). Rearranged,
this yields a posynomial formulation:

∆Q

K
+ max

{
0,
LI3(Rr,0 −Rt,0)

3V 2
r [0]

}
≤ LI2

Vr[0]
(6.20)

Here, the max operation can and must be evaluated beforehand as the remaining circuit resis-
tances Rt,0, Rr,0, are constant from the perspective of this optimization.

With the total cyclesK thus determined, a bound on the total balancing time can be obtained
by adapting (6.9). The following constraint ensures that this duration remains below a threshold
Tmax.

Tt + Tr ≤
LI

Vr[0]
+

LI

Vr[0]
+
LI2Rt

2V 2
t [0]

+
LI3R2

t

V 3
r [0]

≤ Tmax

K
(6.21)

In this formulation, only the second inequality is part of the optimization. The higher-order
terms from Tr cannot be included because the second term is negative and thus not a posyno-
mial.

Overall GP formulation Together, the posynomial terms from the previous paragraphs yield
the following optimization problem that fits the GP paradigm.

min
∑
s∈S

Ks · (Es
tf + Es

sw) using (6.17), (6.18) (6.22)

s.t. Inductor constraint (6.19) ∀Is
Cycle count constraint (6.20) ∀Ks

Time constraint (6.21) ∀T smax, K
s

Problem (6.22) is solved using CVX, a MATLAB package that suitably reformulates geometric
programs to equivalent convex representations [73].

Sec. 6.2 Inductor optimization via GP 131

0 2 4 6 8 10 12 14
0

20

40

60 

RL

L
Imax


 =



0.0082
2.2e-6
2.66






RL

L
Imax


 =



0.0031
1.03e-5
2.66




better

Tmax[min]

E
tf
+
E

sw
[V

A
s]

Kg = 6.7e-4
Kg = 9.8e-2
Murata(8.2)

Figure 6.2: Specifically designing the inductor reduces the average energy losses for the scenarios in
Table 6.2 of a fixed inductor at least by 20%.

Design quality For a demonstration of how useful this optimization is in practice, consider
a design with off-the-shelf components that was deemed optimal by the search algorithm from
[138]. This design uses the MURATA(8.2) inductor with effective volume Ve = 893 mm3 and
the ONSEMI(7.8) MOSFET. This entails the following circuit parameters.[

Rt,0 Rr,0 ?
COSS τd τu

]
=

[
35 mΩ 35 mΩ ?
125 pF 44 ns 168 ns

]
(6.23)

The optimization designs are based on cores POT1107 and ETD29, as described, e.g., by
the data tables in Appendix D of [63]. POT1107 has geometric constant Kg = 6.67e-4 and
effective volume Ve = 251 mm3 and should lead to a final product with volume in the range of
the MURATA(8.2). The larger ETD29 with Kg = 9.78e-2 and Ve = 5470 mm3 is included for
comparison. Volume data has been obtained from the corresponding part numbers 0R42929EC
and 0F41107UG in the Magnetics catalog.

The scenarios we take into consideration are chosen such that both cells remain within a
typical SoC range of [10 %, 90 %] with a maximum difference of 10 percentage points. They
are detailed in Table 6.2.

Fig. 6.2 shows the results from this experiment. Each of the marks represents an inductor
design that is optimal for a certain allotted balancing time Tmax and core with geometrical con-
stant Kg. All the curves flatten out once Tmax is so large that time constraint (6.21) is not active
in the optimization any longer. For Tmax = 1 min, the required current is too large for the fixed

Table 6.2: Scenarios for inductor design, specifying SoC z, voltage V , and charge difference for trans-
mitter and receiver

Scenario s1 s2 s3 s4 s5

zt|Vt 0.9|3.315 V 0.76|3.284 V 0.55|3.273 V 0.41|3.262 V 0.25|3.220 V
zr, Vr 0.82|3.304 V 0.72|3.279 V 0.49|3.271 V 0.33|3.240 V 0.18|3.197 V

∆Q[C] 316.5 172.8 189.2 300.2 287.8

132 Ch. 6 Optimizing Efficiency in ACB

inductor. Otherwise, the comparable designs from the proposed approach dissipate at least 20 %
less energy (42 V A s

34.7 V A s
= 1.21 for Tmax = 2 min). The larger core yields only mediocre further

benefits.
Furthermore, the effects from using bounds for voltages and the power series reformula-

tions (6.2) and (6.3) were evaluated. The relative errors that arise from these effects remain
well under 1 % in the optimal points of GP problem (6.22).

Scalability To measure the performance of GP instance (6.22) we select the scenarios ran-
domly by drawing voltage pairs according to V ∼ N (3.15, 0.1), using the larger one as sender
and calculating ∆Q according to the OCV mapping. We solve GP instance (6.22) with in-
creasing |S| and record the required runtime. This procedure yields Table 6.3. Clearly, the
scalability is excellent – almost linear – probably because the GP formulation is quite sparse.
Even larger problems are solved in merely minutes on the computer we utilized (Intel i5-2540M
@ 2.60 GHz with 8 GB RAM).

Table 6.3: Runtime measurements for growing scenario vector

Scenarios |S| 1 5 10 50 100

Runtime [s] 2.45 9.33 15.36 82.14 179.97

6.3 Optimal current for individual links

In this section, we discuss how to calculate an optimal operating current locally, i.e., for a single
link (Definition 5.2). The ∆E-interface (Fig. 5.15 on page 99) needs such methods to drive the
system in operation. Besides more efficient operation, locally calculating the current also yields
a priori loss bounds for the best case reference solution (Section 6.4.1).

An initial idea may be to calculate the current that minimizes losses per time. This typically
leads to very small currents, however, that do not create significant progress. For this reason,
we instead consider `, relating losses from a single cycle to the amount of energy moved at the
same time.

`(V, I) :=
Etf (V, I) + Esw(V, I)

∆E
(6.24)

Minimizing this formulation ensures that any surplus is transferred as efficiently as possible.
This can be done with a restricted version of the GP formulation from Section 6.2. As GP
solvers may not be available at runtime, however, this might require a lookup table.

For a single link, we can also minimize (6.24) directly. We first present the calculation of the
optimal current in closed form for environments where using the simpler switching loss expres-
sion (5.15) is justified. We then comment on the more conservative, complicated case (5.13).
We forgo the time constraint at first and form the derivative of the losses to transferred energy

Sec. 6.4 Charge routing problem 133

ratio. Here, we utilize ∆E = 1
2
LI2 as given in (6.8) and the dissipative losses from (6.7) in

addition to the switching losses from (5.15), as discussed.

`t(Vt, I) + `r(Vr, I) =
Etf,t + Esw,t + Etf,r + Esw,r

∆E

=
2

LI2

[LI3Rt

3Vt
+
LI3Rr

3Vr
+
τtIVt

2
+
τrIVr

2

]
(6.25)

We now derive with respect to I and look for a root of this term to find an optimal value.

2Rt

3Vt
+

2Rr

3Vr
− τtVt
LI2
− τrVr
LI2

= 0 ⇔ I2
(2Rt

3Vt
+

2Rr

3Vr

)
=
τtVt
L

+
τrVr
L

(6.26)

As we are only interested in positive currents, the optimal current is given by

Iopt =

√
3

2L

τtVt + τrVr
Rt
Vt

+ Rr
Vr

. (6.27)

If you prefer using the more conservative terms from Eq. (5.13) for the switching losses, the
approach we just followed (derivation and equation solving) requires significantly more effort.
In particular, d

dI

Etf+Esw
∆E

= 0 is now a cubic equation. A CAS [187] still yields a closed-form
solution for this equation that can be readily implemented, just not easily printed. Alternatively,
cubic equations can also be solved efficiently at runtime.

Now recall that optimal current Iopt from (6.27) is calculated without taking a time constraint
into account. As long as Iopt fulfills the speed requirement, this is no issue and the optimal
current can directly be utilized. If Iopt is too slow however, we can select the smallest current
that fulfills the time constraint. The convexity of the cost function guarantees that this is the
best choice if we require more speed.

A starting point for the time calculation is the total time from (6.9). With four terms, two
for Tt and two for Tr, inverting (6.9) leads to a quartic equation. Although efficiently solv-
able, relaxing accuracy and solving only for two terms in closed form may be a better option.
Alternatively, finding a bound with fixed voltages as in Section 6.2 is also viable.

6.4 Charge routing problem
The previous sections have dealt with the analysis and optimization of single links in ACB
architectures. A link is specified by transmitter and receiver cell that can transfer cells in some
way. Please refer to Definition 5.2 for more details.

This section takes a higher-level perspective and deals with routing strategies. These strate-
gies, in the scope of this thesis, build on top of the interfaces from Chapter 5. They decide
which link should be actuated and how.

Fig. 6.3 depicts how a routing strategy interacts with the balancing platform. The plat-
form consists of cells and links that are created by balancing components, like inductors. It
provides information about the state of the cells, namely their voltage and their charge or SoC.

134 Ch. 6 Optimizing Efficiency in ACB

Balancing platform

c1 c2

Intf

Intf

Link 1–2

Link 2–1

c3

Intf

Intf

Link 2–3

Link 3–2

c4

Intf

Intf

Link 3–4

Link 4–3

Routing strategy

m =
[
3 4 Link data

]
Cell states {Vi, Qi}

Link data

Figure 6.3: The routing strategy receives the current cell states from the balancing platform. It actuates
the platform by sending movements, as specified in Section 5.5. Here a movement is sent for link 3–4. The
link data is forwarded to the specified link where it is further processed according to the corresponding
interface (intf) before the cells are actuated physically.

Using this information, the routing strategy forms movements, as defined in Section 5.5 (Defini-
tions 5.4, 5.5, and 5.6). The link data from such a movement, e.g.,

[
I ∆t

]
for an I-movement,

is forwarded to the respective link. There, it is processed by the corresponding actuation inter-
face to actuate the balancing hardware physically.

Before we discuss approaches for charge routing, we now clarify what the problem actually
looks like. We are given a number of cells with associated links. In this context, cells are taken
into account according to the following definition.

Definition 6.1 (Cell). A cell is characterized byQmax, its capacity, andQ, the charge it currently
holds. The cell interacts with other parts of the system via terminal voltage V and current i.
This is summarized by the state space representation

Q̇(t) =− i(t) V (t) =f
(
Q(t), i(t)

)
.

Options for f , the mapping between charge and voltage, are discussed in Section 5.4.
An additional complication comes from the fact that not all links can be operated simultane-

ously. For instance, we can typically charge one cell only from a single other cell at any given
time. The following definition formalizes this concept.

Definition 6.2 (Link junction). A link junction is a segment shared by multiple links. It is
described by a set J = {li}i containing the links that utilize it. Only one link can transfer over
any segment at a time, leading to constraints of the form∑

i∈J
νi ≤ 1 (6.28)

Sec. 6.4 Charge routing problem 135

where νi ∈ {0, 1} indicates whether a link is currently active or not.

Junctions are tough to model efficiently. In their original form, they lead to an integer
problem. Integers are inherently challenging in optimization and even harder to combine with
nonlinear effects. For this reason, it is often preferable to model junctions in other ways.

One alternative is to consider νi ∈ [0, 1] as continuous variables. In this way, one models
the utilization of the corresponding segment and ensures that it remains below 100 % over a
longer period of time. Since there are so many discrete steps, a round-robin scheduling can
approximately create virtually all ratios that an optimization may come up with. Consider also
the related argument in Section 5.8.3 for reference.

Another alternative, pursued here, exclusively looks at the time that a segment is used.
Added up, that time must be smaller than the total time of the system. Here, system time
may refer to a constraint on the balancing time or the length of a time step in discrete-time
formulations. Note that this is equivalent to the aforementioned continuous utilization variables.

Given cells with their states, links, and junctions, the basic balancing problem consists of
finding a state where deviation from the mean ‖Qc − Q̄‖ = 0 in a specified time frame Tmax

while dissipating as little charge as possible. Equivalently, we maximize the total end charge.

max
N∑
c=1

Qc[tK] (6.29)

s.t. Qc[tk+1] = Qc[tk] +
∑
l∈IN(c)

qr(l)(Qr(l)[tk], Il,∆tl,k)

−
∑

l∈OUT(c)

qt(l)(Qt(l)[tk], Il,∆tl,k) ∀c = 1, . . . , N (6.30)

tk+1 ≥ tk +
∑
l∈Ji

∆tl,k ∀Ji ∈ {Ji}i, 0 ≤ k ≤ K − 1 (6.31)

Qc[tK] = Qc+1[tK] ∀c = 1, . . . , N (6.32)
∆tl,k ≥ 0 ∀l ∈ L, 0 ≤ k ≤ K − 1

tK ≤ Tmax

We are showing variables in optimization programs in bold for clarity. K, the number of re-
quired time steps, is unknown a priori but only has to be chosen sufficiently large in practice.
The optimization can decide not to use superfluous time steps by letting ∆tl,k = 0 there.

(6.30) represents the transfer dynamics. qt, qr can be implemented by any of the simulation
models from Section 5.8. In this case, (6.30) becomes a non-convex constraint. This makes the
problem very hard to solve. The energy-based model from Section 6.1 which leads to linear
constraints is thus often preferred. (6.31) ensures that all junctions are used only as long as the
length of a time step allows, as discussed previously. (6.32), on the other hand, ensures that we
end up with a battery pack where all cells are balanced.

The size of the problem depends mostly upon how many links connect the cells to each
other. The roughly 100 serially connected cells of contemporary EVs lead to a problem of at
least 500 variables. If remote transfers are allowed and the fully connected graph of the cells
is considered, more than 10000 variables are required. These numbers assume that all transfers

136 Ch. 6 Optimizing Efficiency in ACB

occur in a single time step (K = 1) which is, of course, not accurate enough in many cases. LP
solvers easily handle problems of this size. For nonlinear solvers that we require in the current
form, problems of 500 or 10000 variables are considered large and extremely large, respectively.

In the following, we analyze the charge routing problem quantitatively. As the optimal cur-
rent can be calculated for each link individually (Section 6.3), we can find a best case estimate
for the transfer costs. With this bound, it becomes possible to calculate the best case for overall
charge routing in a Linear Programming (LP) formulation (Section 6.4.1). This reference value
demonstrates that heuristic strategies already yield good performance in non-concurrent scenar-
ios. For this reason, we subsequently present a strategy that focuses on simplicity, embedded
implementation, and parallelization (Section 6.4.2). The section ends with an experimental
comparison of this strategy, a heuristic strategy, and the reference LP (Section 6.4.3).

6.4.1 Best case reference solution for charge routing

With the more manageable model for the transfer dynamics from Section 6.1 and locally cal-
culated current as per Section 6.3, it is possible to find a lower bound for the losses in a certain
balancing scenario. Such a bound, representing an unachievable best case, is highly valuable to
evaluate routing strategies and gauge the potential for improvement.

Consider how the optimal current is calculated for individual links (Definition 5.2) in Sec-
tion 6.3. Any solution, like (6.27), depends on cell voltages and link parameters, with or with-
out additional time constraint. As the involved link parameters are constant, the optimal current
varies only with the evolving cell voltages. While the best case for the transfer losses occurs
at Vmax the switching losses are lowest at Vmin, e.g., in (6.25). If we substitute these best cases
– even though they cannot occur simultaneously – we obtain the best case losses `min. `max is
calculated analogously. This works with any of the approaches described in Section 6.3. We
do this for each of the links (Definition 5.2) in our network and arrive at a best case bound
for the losses that we must incur for each block of energy that we transfer across. Given these
optimistic link prices, we then formulate the overall best case problem.

min
∑
l∈L

`min,l∆El (6.33)

s.t. Ec[1] = Ec[0] +
∑
l∈In(c)

(1− `min,l)∆El −
∑

l∈Out(c)

(1 + `max,l)∆El

Ec[1] = Ec+1[1] ∀c = 1, . . . , N

∆El ≥ 0

In this LP formulation, we are interested in minimizing the sum of the losses that occur in all
cells. This is equivalent to summing the losses that the transfers ∆El over all links entail using
the link prices `min,l. The state of each cell, its energy, evolves linearly. This is owed to the
re-formulated charge transfer dynamics (6.8). To ensure that cells move toward each other at
the highest possible speed, we have transmitters incur the worst case losses `max while receivers
only incur the best case `min. The goal is to have all cells at one level eventually; this is encoded
by constraining each cell to equal its neighbor. As Problem (6.33) is a linear program, it can

Sec. 6.4 Charge routing problem 137

be solved efficiently using a variety of off-line solvers. The following experiments have been
conducted with CBC from the COIN-OR project [50] and its Python interface PULP.

6.4.2 Constraint-driven charge routing

The performance bound from Section 6.4.1 is a useful tool to evaluate the room for improvement
in routing strategies. With respect to this bound, heuristic strategies already perform well in
scenarios without concurrency, as we will see in Section 6.4.3. This indicates that there may
not be much to gain through further routing improvements. In this section, we therefore look
for a strategy that remains above all simple with regards to computation, communication, and
parallelization. Implementing heuristic strategies in parallel has typically lead to efficiency
reductions previously, by contrast.

The solutions of the best case LP formulation (6.33) are often characterized entirely by
the charge transfer direction that the main constraints indicate. This is intuitive because each
transfer incurs a loss and one cannot expect to move charge in one direction and profitably
reverse this transfer later on. Guided by this observation, the following paragraphs develop
a routing law for architectures with transfers only between neighbors. As expected, this law
turns out to be much simpler than a LP solver, even after adjustments for more complicated
topologies. Nevertheless it yields excellent performance.

Basic implementation (assuming no losses) Assuming that transfers occur in a lossless fash-
ion, the amount a cell must send or receive can be readily calculated. Using broadcasts or a
daisy chain approach, the mean energy level Ē is calculated such that all participants are aware
of their deviation Ei − Ē. For each cell, this value represents how much its state has to be
adjusted in total.

To start balancing, pick either boundary cell; c = 1 is chosen here. It is connected with the
remainder of the pack only through a single link. This cell must therefore exchange the exact
amount E1 − Ē with its only neighbor. A regular cell c is connected with two neighbors, but it
must already transfer a certain amount with its predecessor c − 1. The second cell’s deviation
for instance is given by (E2 +E1 − Ē)− Ē. These adjustments sum throughout the cell string
and have the general form

δc,c+1 =
c∑
j=1

(Ej − Ē). (6.34)

Note that this calculation can be implemented efficiently in daisy chain fashion. We use δc,c+1 =
∆Ec→c+1 as a shorter notation for the energy that must be exchanged. Once all δc,c+1 are
calculated, each cell swaps exactly this amount with its neighbor. Ignoring the losses from
these transfers, this procedure yields a perfectly balanced string. For cells c < N , this is clear
by design. For N , the last cell, we find

EN [1] =EN [0] + δN−1 = EN [0] +
N−1∑
j=1

(Ej[0]− Ē) =
N∑
j=1

Ej[0]− (N − 1)Ē = Ē. (6.35)

138 Ch. 6 Optimizing Efficiency in ACB

There are multiple advantages in calculating the full transfer strategy upfront. We could
slightly reduce dissipative losses, that typically dominate, by maximizing the interim voltages
that occur along a chain of charge movements. For instance, if we have movements of the form
Q1

q1→ Q2
q2→ Q3, we can send q1 before we send q2. This increases the temporary voltage

in Q2 and hence reduces the losses during the second transfer. Yet, it also increases stress on
cells and this trade-off should be carefully evaluated. Without further investigation, it appears
prudent to divide δc,c+1 into several blocks and schedule them such that they alternate with the
transfers from other cells to limit the depth of discharge. The block size limit employed in the
experiments of this chapter (Section 6.4.3) is clearly visible in the time series plot (Fig. 6.5).

Longer charge movements also reduce communication. Instead of arbitrating every few
seconds, the constraint-driven approach can theoretically run for hours without recalculation
or negotiation. In practice, minutes may be more realistic. This saves energy in practice and
speeds up simulation which can also take larger steps without interrupting.

Anticipating losses The basic implementation of constraint-driven routing is sufficiently sim-
ple to run even on the cheapest embedded devices. However, it does not yet take into account the
losses that the scheduled transfers entail. These losses depend on the individual cells; boundary
cells in particular that either send or receive only as opposed to forwarding part of the incoming
charge suffer significantly smaller losses. After concluding the scheduled transfers, we there-
fore do not end up with a perfectly balanced battery pack. In practice, we may be left with a
deviation as high as 30 bp in SoC after starting balancing at an overall deviation of 300 bp as in
Section 6.4.3. 1 bp is one basis point of deviation in SoC here, as introduced in Definition 5.3.
Since the minimum SoC determines the energy level of the pack, this reduces the effectiveness
of balancing significantly.

The end deviation remains elevated because the losses are entirely ignored. Using even a
crude estimate, the performance can be improved to a satisfactory level (below 2 bp in Sec-
tion 6.4.3). To that end, consider `min,l and `max,l, the best and worst case loss ratios calculated
for each link in Section 6.4.1. Using the mid-point of these predetermined boundaries, an esti-
mate for the losses from the scheduled transfers can be calculated quickly. We define

`est,l,t :=
1

2

[
`min,l,t + `max,l,t

]
and analogously `est,l,r to gauge the losses of transmitting and receiving cell in a link.

Each transfer δc,c+1 from the first set of transfers now yields loss estimates `est,l,cδc,c+1 and
`est,l,c+1δc,c+1. Adjusting the state of all cells with these estimates and recalculating the transfers
according to the basic version reduces the remaining end deviation. Since the losses change, as
the charge transfers are adjusted, this process must be iterated multiple times for decent results.
5 iterations are typically sufficient, however.

This iterative approach keeps all advantages from calculating a priori as discussed for the
basic version. Most noteworthy is that it does not increase the communication overhead. The
additional computation time is moderate.

Constraint-driven approach in feedback loop If anticipating losses is not sufficient, con-
straint-driven routing can also operate with a feedback loop. By limiting the amount of energy

Sec. 6.4 Charge routing problem 139

that can be sent at once, the process is separated into several iterations. After each iteration,
affecting all participating cells, the charge transfers are reevaluated based on the new energy
levels.

A feedback loop naturally increases communication overhead and energy threshold ∆Emax

must thus be chosen sufficiently large. On the other hand, it should remain small to achieve the
desired accuracy and prevent oscillations. As cell balancing is a slow process, however, finding
a compromise should not be difficult.

Transfers between non-adjacent cells The routing technique from this section only deals
with transfers between adjacent cells. This often leads to charge being transferred in daisy
chain fashion. Direct transfers over a distance are almost always more efficient, however. Al-
though resistances of neighbor transfers are generally lower due to fewer transistors and shorter
distances, at least twice as many transfers are required. These lead to larger total losses in al-
most all cases. Accounting for the higher time requirement, and consequently using a lower
current for non-neighbor transfers, makes the efficiency gain even more pronounced.

As transfers over distance are almost always preferable in ACB architectures that allow
them, constraint-driven routing can be extended with the following heuristic. Instead of trans-
ferring all excess charge to the nearest neighbor, a cell shall meet the requirements of its neigh-
bors one by one until its surplus is exhausted or the maximum transmission range is reached. In
the latter case, the remaining surplus is transferred to the farthest cell within reach.

6.4.3 Routing case study
This section compares a heuristic strategy to the reference LP (Section 6.4.1) in order to gauge
the room for further routing improvements. In the same experiment, constraint-driven routing
(Section 6.4.2) demonstrates the benefits of parallel transfers and optimal current (Section 6.3).

The battery pack under consideration aims to mimic those from recent EVs like the Nissan
Leaf or BMW i3 with a capacity of 21.6 kW h. It is arranged in a 96S24P fashion to reach both
the desired capacity and operating voltage. This means, it consists of 96 series-connected cell
units. Each unit contains 24 parallel-connected SAMSUNG INR18650-25R cells with a nom-
inal voltage of 3.75 V and a nominal capacity of 2.5 A h [156]. These cells were characterized
in Section 5.4 (Fig. 5.9 and Eq. (5.8)). Their typical internal resistance is 22.15 mΩ. Recall that
parallel-connected cells are considered as electrical unit from an ACB perspective since they
balance on their own. Resistance and capacity of such a unit of 24 cells as well as inductor
parameters are as follows.[

RC Qmax
]

=
[

1
24
× 22.15 mΩ 24× 2.5 A h

] [
RL L

]
=
[
5 mΩ 12 µH

]
These values correspond to inductors from the BOURNS 1140 series [24]. The transistor pa-
rameters were set according to the INFINEON OPTIMOS BSC010NE2LS data sheet [81].[

RM τu τd Coss
]

=
[
1.1 mΩ 6.7 ns + 6.0 ns 34 ns + 4.4 ns 1700 pF

]
On a neighbor-only architecture (see Fig. 5.3), the following strategies are compared.

140 Ch. 6 Optimizing Efficiency in ACB

• BEST calculates a performance bound using LP formulation (6.33) for reference purposes.

• MAX is a heuristic strategy from [88]. It selects the strongest cell in terms of SoC and
sends charge in the direction with lower mean SoC. After a so-called macro step of 30 s,
it calculates new transfers.

• ACD refers to anticipating constraint-driven routing as presented in Section 6.4.2.

• PAR is the parallel version of ACD. It constructs subsets for concurrent operation from
the transfer list in a greedy fashion. This works well because the transfers are separated
according to a block size limit ∆Emax which ensures that they have similar amounts to
process, besides the advantages discussed in Section 6.4.2.

• Strategies BEST*, ACD* and PAR* choose the optimal current dynamically via the ∆E-
interface as explained in Section 5.5.3. This leads to higher efficiency but also increased
balancing times.

Unless calculated dynamically, the peak current I is set to a value of 12 A which corresponds to
about 1

5
C. This typical value ensures that the sequential strategies do not require unnecessarily

long but do not dissipate too much energy either. It is larger than in other case studies from
this thesis because the battery pack under consideration has a larger capacity. The transfers
in this large-scale experiment have also been synchronized using a worst case cycle time. This
simplifies actuation and simulation while increasing balancing time slightly but homogeneously.

The pack is considered to be equalized when the SoC deviation maxi{zi − 1
N

∑
c zc} falls

below ε = 0.1 pp. This threshold is most critical for MAX where it serves as end condition.
ACD and its derivatives achieve end deviations that are roughly an order of magnitude smaller
by anticipating losses. For MAX to achieve the same without long and wasteful oscillations
during the final stages of balancing the macro step would have to be inconveniently small.

The strategies are compared in terms of speed or balancing time as well as in terms of losses.
To make the loss terms more tangible, we calculate them with respect to the maximum possible
energy that can be gained through balancing. Consider a string of cells with energies Ec. The
amount of energy we can draw from the pack without balancing is given by N ·mincEc. If we
were to balance in a lossless fashion on the other hand, we could draw

∑
cEc. After obtaining

the losses, via simulation or from optimization, the loss ratio is calculated as

loss ratio =
losses∑

cEc −N ·mincEc
. (6.36)

Passive balancing corresponds to a loss ratio of 100 % since all cell energies are reduced to the
weakest cell by dissipating excess charge.

The battery cells are initialized with an SoC of zc = zµ,s+zc,s. In each scenario s, the lowest
SoC zµ ∼ Uniform(0.3, 0.6) is generated first. The individual zc,s ∼ Uniform(0.00, 0.03) is
added subsequently. In other words, the analyzed SoC distributions are spread out over at most
3 pp and occur roughly within the second third of the SoC spectrum.

Fig. 6.4 shows an overview from 20 such scenarios. Comparing ACD and BEST (or ACD*
and BEST*), we find that the routing selected by ACD is indeed highly efficient. It may in fact be

Sec. 6.4 Charge routing problem 141

101 102

PAR*

PAR

ACD*

ACD

MAX

BEST*

BEST

time [h]

0 2 4 6 8 10

loss ratio [%]

Figure 6.4: Both MAX and the proposed ACD strategy operate close to the unachievable reference bound
BEST when facing random initial SoC distributions. This indicates small or no potential for further gains
from smarter charge routing. Optimal current choice (starred versions) reduces losses significantly but
requires more time. Parallelization is thus essential.

optimal since BEST calculates with optimistic assumptions that are not achievable in practice.
That said, the heuristic routing selected by MAX also leads to decent results. This strategy
dissipates only 3 % more than ACD. Calculating transfers a priori as in ACD saves additional
energy in reduced communication that is not reflected here, however.

With heuristic (MAX) and constraint-driven routing (ACD) performing close to the optimum
(BEST), there is almost nothing to be gained from further investigating routing strategies. Large
efficiency gains come only from selecting a more suitable current. Operating at I ≈ 2.3 A,
ACD* loses less than 40% of the fixed current alternatives. These variations trade off speed
however and the balancing times they require (weeks for the scenarios here) may be infeasible
in practice.

A remedy for the long balancing durations is parallelization which is another strength of
the constraint-driven approach. In MAX and similar heuristic algorithms parallelization is non-
obvious. Attempts that also send from the second strongest, third strongest cell, etc., have
always traded off efficiency for concurrency, for instance. With PAR, we do not trade off effi-
ciency (see Fig. 6.4). Even though it constructs the parallel movements in a greedy fashion, it
dissipates only fractions of a percent more energy than ACD. It is, however, 12 times faster on
average. Accelerated in this way, PAR* is both faster and more efficient than ACD and MAX.
Fig. 6.5 shows how the individual SoC values evolve over time in one of the examined scenar-
ios. There, MAX drives down the maximum value towards the average as expected. ACD and
PAR* perform similar charge movements. The first transfers at a higher rate, but sequentially.
The short bumps in SoC occur when a cell forwards charge such as in the middle of a transfer
chain 2→ 3→ 4.

In some cases, the speed achieved via parallelization may still be insufficient. In these cases,
the transfer rate, i.e., the peak current must be increased. Fig. 6.6 illustrates the trade-off in this
situation. Raising the current away from the optimal value increases the loss ratio. This leads

142 Ch. 6 Optimizing Efficiency in ACB

34

36

38 par*

22.62h
140bp

S
oC

[%
]

34

36

38 63.83h
132 bp

acd

S
oC

[%
]

0 5 10 15 20 25 30 35 40 45 50 55 60 65

34

35

36

37 max

65.8h
126bp

time [h]

S
oC

[%
]

Figure 6.5: The constraint-driven approach parallelizes so naturally that PAR*, running at the lower,
optimal current is both faster and more efficient than its sequential version ACD and state-of-the-art
strategy MAX operating at higher current. Here, it increases the pack SoC 11 % more (140 bp vs 126 bp)
than MAX in less than half the time.

to slow increments at first and balancing times under 4 h are achievable while dissipating less
than 10 % of the energy gained via balancing. In some scenarios even balancing times around
1 h are possible. Beyond that, the efficiency deteriorates rapidly however. At loss ratios over
20 %, the loss estimation process behind the ACD strategy becomes more difficult. Since these
values are also increasingly meaningless, we do not simulate in this parameter range.

6.5 Related work

In this section, the literature for ACB optimization is discussed. This includes modeling tech-
niques, topology comparisons that are typically based on these models, a priori parameterization
and runtime strategies.

Sec. 6.5 Related work 143

0 10 20 30 40 50
0

10

20

time [h]

lo
ss

ra
tio

[%
]

5

10

15

20

Pe
ak

cu
rr

en
tI

[A
]

Figure 6.6: If parallelization alone is not sufficient, we can trade off efficiency for speed by increasing
the peak current I that we utilize in strategy PAR.

Modeling for optimization In the control domain, it is typically assumed that the effective
balancing current can be freely chosen. This transforms the complex problem into a linear
program, but it ignores actuation aspects and the effects from changing cell voltages. As the
voltage of the receiving cell rises, for instance, phase timing must be shortened to maintain a
fixed current which reduces the transferred charge. The inaccuracies of such models are shown
in Fig. 6.1 on page 127. As they lead to simple, efficient computation, they are nevertheless
used in the literature to compare ACB topologies [34, 36, 149], among other things. These
comparisons are further discussed in an upcoming paragraph. [51], by contrast, investigates the
problem class in general under these linearity assumptions and finds that it can be solved by
MPC with a horizon of one step.

[35] presents an approach that is similar to the I-interface (Section 5.5.2). The authors
introduce a linear voltage slope and discuss frequency adjustments to maintain a specified cur-
rent because “[with constant frequency], a change from the voltage level 4.2 V to 2.7 V leads to
a decrease of current by 35 %” [35]. They include this behavior into a mathematical program
which trades off cell imbalances with actuation losses and total balancing time, as in many MPC
formulations. To solve that program with its nonlinearities, they resort to Dynamic Program-
ming (DP) and use direct collocation. Since DP resorts to a discrete grid, this approach may
have limited scalability; the case study only considers 8 cells.

A detailed convex modeling approach for batteries in hybrid EV is presented in [136]. This
paper uses and justifies a piecewise-linear voltage model to consider the load dynamics of a
battery in terms of energy and power, similar to the thesis at hand (Section 6.1). [136] deals with
battery sizing as well as load distribution between battery and combustion engine, however, and
not with ACB. For this reason, no switching dynamics are considered. As the currents are also
higher, the reported relative errors are above 10 % in many cases.

Topology evaluation Section 5.9 qualitatively describes the many topologies for ACB, like
Cell Bypass, Cell to Pack, Pack to Cell, and Cell to Cell. While this thesis focuses on Cell to
Cell balancing, other works deal with the quantitative comparison of the various topologies.

Caspar, for instance, compares various ACB approaches assuming constant transfer effi-

144 Ch. 6 Optimizing Efficiency in ACB

ciency. In [34], he analyzes a battery consisting of 96 cells, which is subdivided into isolated
modules with 8 cells . He reports that single inductor and flyback converter architectures lead to
the longest driving distance in the two scenarios whereas a Ćuk converter balancing architecture
achieves the fastest time. In [36], he uses optimal control to make the comparison more system-
atic. Simulating up to 14 cells, it is shown that direct Cell to Cell leads to the lowest transfer
losses, but relatively high balancing times. Having a fully connected graph significantly in-
creases speed with minor additional losses, but requires more components.

Baronti models voltage dependency, but also assumes constant transfer efficiency to perform
statistical simulations of an inductor-based architecture with 10 cells and varying topology. In
this way, he finds that Cell to Cell with remote transfers “outperforms the other methods in
terms of both balancing time and energy loss” [16].

Preindl goes beyond simulation and compares ACB topologies based on their worst case
performance in [149]. To that end, a LP formulation is evaluated for all vertices of a polytopic
set of initial imbalances. A convexity argument justifies that this yields the worst case. Assum-
ing identical link efficiency and ignoring concurrency as well as the trade-off between losses
and speed, his analysis finds that Cell to Pack approaches dominate in terms of balancing time
and efficiency.

Architecture optimization After topology and transfer mechanism are decided, there are still
several design issues that determine the efficiency of an ACB application: offline optimization
of components and switching network and strategies for control at runtime. While the latter
is addressed by several contributions in the literature as discussed in the next paragraph, the
former leads to more complicated optimization and is still emerging. The author of this thesis
and immediate colleagues have investigated the systematic selection of off-the-shelf [138] and
the design of an optimal inductor [89] (Section 6.2). A design methodology for the transistor
network and the associated switching scheme has been presented in [122]. Extending the SAT-
based verification from [123], this work significantly reduces the transistor and signal count for
non-adjacent Cell to Cell transfers.

Charge routing strategies Actuation at runtime is another important factor for ACB perfor-
mance. Papers that compare topologies implicitly deal with optimal routing as well [36,51,149].
As they often select constant currents a priori and assume fixed link efficiencies, they are typ-
ically not accurate enough to justify their computational cost, particularly in embedded envi-
ronments. Several heuristic strategies have hence been proposed in the literature. In [111],
a balancing strategy using fuzzy control is presented and evaluated using SPICE simulation,
however without considering pack-level criteria. Several request-driven strategies for inductor-
based balancing of battery packs are discussed in [166]. An initial, fully distributed algorithm
for charge equalization of super-capacitors is presented in [117]. Many of the balancing archi-
tectures discussed in Section 5.9 also propose their own actuation strategies.

145

7
Conclusions and Future Work

Conclusions

This thesis studies semantic gaps in digital control between high-level models for the physical
process and those for the underlying computation platform. In the first part, it analyzes how a
platform and a fast process are linked by delay which is typically either ignored or abstracted too
coarsely. The second part deals with switching actuation in the case of Active Cell Balancing
(ACB). There, the timing-based input is typically abstracted to current in ways that ignore
important details. Since monolithic models lead to unacceptable computation times in both
cases, suitable interfaces are necessary to describe the behavior of the physical side in a form
that can be taken into account in the analysis of the digital side and vice versa. Such interfaces
are proposed in the scope of this thesis. In the first part, they lead to improvements in terms of
guaranteed control quality under communication constraints by considering delay patterns with
more detail. In the second part, they speed up accurate simulation by orders of magnitude and
form the basis for optimization techniques.

The main contributions and results of this work can be summarized as follows.

• Fixed-Priority Non-preemptive Scheduling (FPNS) in the ECA framework

The ECA framework is based on discrete time steps that are typically much longer than
the arbitration times in FPNS to keep computation feasible. A more realistic time step is
in the range of message transmission time. Many other automaton frameworks share this
situation. While it is not an issue for time-triggered communication where the time steps
can be aligned with the message transmissions, event-triggered approaches like FPNS
require the analysis of messages that arrive in the middle of a time step.

Chapter 3 explains how straightforward FPNS modeling leads to overly optimistic delay
bounds that are often broken in practice. This may have catastrophic outcomes, like a
failure of the anti-lock braking system, if it is not discovered during testing. The chapter

146 Ch. 7 Conclusions and Future Work

thus proceeds to take the non-deterministic behaviors produced by the message arrivals
into account during model checking to obtain conservative but safe timing guarantees.

• Delay pattern interface for CPS co-design and fault-tolerant control strategy

During controller design, the digital implementation platform is typically either consid-
ered ideal, i.e., with zero delay or reduced to its worst-case delay. For the platform design,
on the other hand, the controller requirements are given as deadlines that specify the ac-
ceptable delay. This leads to suboptimal designs since the worst-case delay is rare in most
platforms and significantly exceeds the average.

Chapter 4 demonstrates how delay patterns can be used as more expressive interface.
They can be checked on an ECA model of the implementation platform and translate to
various control criteria. In addition, knowledge of these patterns leads to a fault-tolerant
control strategy that takes deadline misses into account at runtime and achieves exponen-
tial stability by construction. Overall, this interface tightens the integration of platform
and controller to yield improved designs.

• Computationally efficient, but accurate models for Active Cell Balancing (ACB)

Efficient charge transfer methods for ACB are actuated by varying the durations of alter-
nating switch configurations. This is challenging for design automation since nonlinear
behavior and non-differentiable phase transitions, that require high resolution, compli-
cate optimization and even lead to slow simulation. For this reason, the switching details
are often abstracted away and replaced by average current. Although simpler, this also
forgoes accuracy. Detailed computation, conversely, can also remain efficient.

Chapter 5 demonstrates how the transfer dynamics of each phase can be solved in closed
form to yield a recurrence relation that does not require a numeric solver. Based on this
representation, several lossless actuation interfaces are developed that formalize the inter-
action over the long term and enable further reformulations. The latter lead to simulation
techniques which introduce virtually no error and achieve speedups of up to 5 orders of
magnitude, that are vital for interactive design and bulk evaluation of multiple scenarios.

• Optimal parameterization and actuation of ACB architectures

While fast simulations can lead to good designs via interactive iterations, optimization via
mathematical programming leads to additional insights and a higher degree of automa-
tion. For this reason, Chapter 6 continues the bottom-up modeling from Chapter 5 but
forgoes some accuracy, mostly in inefficient and thus less important operating regions, to
obtain a formulation that is compatible with efficient optimization techniques. This for-
mulation is used to design optimal inductors for ACB that outperform off-the-shelf can-
didates because the latter make provisions for unnecessarily high currents. Furthermore,
it leads to a best-case reference bound for charge routing to guide future research en-
deavors. Non-concurrent heuristic strategies already perform well relative to this bound,
motivating the development of a strategy that focuses on simplicity and parallelization.

147

Notwithstanding the value of these contributions in their respective situations, careful anal-
ysis is recommended to check whether the circumstances necessitate such sophisticated tech-
niques.

Providing a more powerful platform is often an alternative to the techniques presented in the
first part of this thesis. The higher costs this leads to may be acceptable since processors and
network bandwidth have grown over the years while control transmissions and computations
have often remained short.

ACB, from the second part, needs to prove that it should be substituted for passive balanc-
ing, the current state of the art. This depends on factors like pack size, cell variation, component
costs, and transfer efficiency. Energy savings which can be obtained from imbalance measure-
ments and simulation techniques, like those proposed in the thesis at hand, must be weighed
with the associated costs.

Future work

Even though the proposed techniques significantly improve existing interfaces for CPS and
ACB design, many questions remain. Some promising directions for future research are pointed
out in the following paragraph. Potential issues should be investigated to increase robustness,
but there is also untapped performance.

• Robustness analysis for message losses

A big strength of feedback control systems is their inherent robustness. Good perfor-
mance can be achieved even when model parameters are not perfectly known, signals are
delayed, or when there are external disturbances. However, these factors may not be inde-
pendent of each other. In other words, we may trade in robustness to model uncertainties
for robustness to communication faults. For this reason, it appears prudent to investigate
how other factors are affected when the system must compensate for message losses.

• State estimation to alleviate message losses

When an actuator does not receive new input information, it has several options. The
most common options are to reapply the current input or to apply no input at all. If
it is possible to perform small computations in case of a message loss, however, state
estimators become an option. Such constellations are explored in event-triggered control
where some messages are deliberately not sent and may also mitigate communication
faults in platforms where computation is less scarce.

• Inductor design with more flexible input current

The inductor design presented in Chapter 6 can be extended in several ways. For instance,
it may be possible to model more behavior as variable and not with respect to the worst-
case voltages. More importantly, the transfer current could be created in a more flexible
way. Instead of operating between zero and a peak value, a non-zero trough current could
be used. This reduces the peak current required to achieve a specified speed and may
improve efficiency.

148 Ch. 7 Conclusions and Future Work

• ACB against cell aging
ACB is mainly considered from an efficiency perspective. However, ACB also alleviates
stress on weaker cells and may hence increase their lifetime. Further investigation is
needed to determine whether the overall pack benefits from this.

• Battery characterization experiments at ACB frequencies
Current cell models are mainly designed for SoC estimation and simulation of device op-
eration. The conditions there are different from those in ACB. Even though the models
capture pulses in the millisecond range that an electric motor may produce, they are not
tested on triangle waves in the kilohertz range with positive offset. If such experiments
ever produce more detailed models, the analysis from this thesis can be amended to in-
clude them as long as a closed-form solution for the intra-phase dynamics can be found,
as in Section 5.7. This is possible, e.g., for second-order models.

In a broader scope, it is desirable to integrate switching questions into formal methods for
CPS analysis. Tools like SPACEEX [66] and PESSOA [130] have recently made significant in-
roads in this field. As pointed out throughout this thesis, they cannot include the full details of
communication hardware or switching actuation directly, however. Nevertheless, a formal veri-
fication appears feasible with appropriate interfaces and some adjustments. Such an integration
could lead to further automation and a more systematic approach to CPS design.

149

Bibliography

[1] A123 SYSTEMS, High Power Lithium Ion APR18650M1, 2008. www.a123batteries.com/
v/vspfiles/images/pdf/APR18650M1A.pdf.

[2] A. ALBERT, Comparison of Event-Triggered and Time-Triggered Concepts with Regard to Dis-
tributed Control Systems, in Proc. of Embedded World, 2004.

[3] M. ALTHOFF, An Introduction to CORA 2015, in Proc. of the Workshop on Applied Verification
for Continuous and Hybrid Systems (ARCH), 2015.

[4] R. ALUR AND D. L. DILL, A Theory of Timed Automata, Theoretical Computer Science, 126
(1994), pp. 183–235.

[5] R. ALUR AND G. WEISS, Regular Specifications of Resource Requirements for Embedded Con-
trol Software, in Proc. of Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2008.

[6] D. ANDREA, Battery Management Systems for Large Lithium Ion Battery Packs, Artech House,
2010.

[7] A. ANTA, R. MAJUMDAR, I. SAHA, AND P. TABUADA, Automatic Verification of Control System
Implementations, in Proc. of International Conference on Embedded Software (EMSOFT), 2010.

[8] A. ANTA AND P. TABUADA, To sample or not to sample: Self-triggered control for nonlinear
systems, IEEE Transactions on Automatic Control, 55 (2010), pp. 2030–2042.

[9] E. S. ARMSTRONG AND A. K. CAGLAYAN, An Algorithm for the Weighting Matrices in the
Sampled-data Optimal Linear Regulator Problem, NASA Tech. Note, TN D-8372 (1976).

[10] K. J. ÅSTRÖM AND B. WITTENMARK, Computer-Controlled Systems: Theory and Design,
Courier Dover Publications, 2011.

[11] M. ATHANS, The Role and Use of the Stochastic Linear-Quadratic-Gaussian Problem in Control
System Design, IEEE Transactions on Automatic Control, 16 (1971), pp. 529–552.

[12] C. BAIER AND J.-P. KATOEN, Principles of Model Checking, MIT Press, 2008.

[13] F. BARONTI, C. BERNARDESCHI, L. CASSANO, A. DOMENICI, R. RONCELLA, AND

R. SALETTI, Design and Safety Verification of a Distributed Charge Equalizer for Modular Li-Ion
Batteries, IEEE Transactions on Industrial Informatics, 10 (2014), pp. 1003–1011.

[14] F. BARONTI, G. FANTECHI, R. RONCELLA, AND R. SALETTI, Intelligent Cell Gauge for a Hier-
archical Battery Management System, in Proc. of IEEE Transportation Electrification Conference
(ITEC), 2012.

www.a123batteries.com/v/vspfiles/images/pdf/APR18650M1A.pdf
www.a123batteries.com/v/vspfiles/images/pdf/APR18650M1A.pdf

150 Bibliography

[15] , High-Efficiency Digitally Controlled Charge Equalizer for Series-Connected Cells Based
on Switching Converter and Super-Capacitor, IEEE Transactions on Industrial Informatics, 9
(2013), pp. 1139–1147.

[16] F. BARONTI, R. RONCELLA, AND R. SALETTI, Performance Comparison of Active Balancing
Techniques for Lithium-Ion Batteries, Journal of Power Sources, 267 (2014), pp. 603–609.

[17] R. H. BARTELS AND G. W. STEWART, Solution of the Matrix Equation AX + XB = C [F4],
Communications of the ACM, 15 (1972), pp. 820–826.

[18] A. BAUGHMAN AND M. FERDOWSI, Double-Tiered Switched-Capacitor Battery Charge Equal-
ization Technique, IEEE Transactions on Industrial Electronics, 55 (2008), pp. 2277–2285.

[19] T. BAUMHÖFER, M. BRÜHL, S. ROTHGANG, AND D. U. SAUER, Production Caused Variation
in Capacity Aging Trend and Correlation to Initial Cell Performance, Journal of Power Sources,
247 (2014), pp. 332–338.

[20] G. BEHRMANN, A. DAVID, AND K. G. LARSEN, A Tutorial on Uppaal, in Formal Methods for
the Design of Real-Time Systems, Springer, 2004, pp. 200–236.

[21] D. BERTSEKAS, Dynamic Programming and Optimal Control, vol. 1, Athena Scientific, 1995.

[22] P. BOGACKI AND L. F. SHAMPINE, A 3(2) pair of Runge - Kutta Formulas, Applied Mathematics
Letters, 2 (1989), pp. 321–325.

[23] A. BOUILLARD, L. PHAN, AND S. CHAKRABORTY, Lightweight Modeling of Complex State
Dependencies in Stream Processing Systems, in Proc. of Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2009.

[24] BOURNS, INC., High Current Chokes, 2014. www.bourns.com/data/global/pdfs/
1140_series.pdf.

[25] S. BOYD, S.-J. KIM, L. VANDENBERGHE, AND A. HASSIBI, A Tutorial on Geometric Program-
ming, Optimization and Engineering, 8 (2007), pp. 67–127.

[26] S. P. BOYD, L. EL GHAOUI, E. FERON, AND V. BALAKRISHNAN, Linear Matrix Inequalities
in System and Control Theory, SIAM, 1994.

[27] M. BRANDL, H. GALL, M. WENGER, V. LORENTZ, M. GIEGERICH, F. BARONTI, G. FAN-
TECHI, L. FANUCCI, R. RONCELLA, R. SALETTI, ET AL., Batteries and Battery Management
Systems for Electric Vehicles, in Proc. of Design, Automation and Test in Europe (DATE), 2012.

[28] M. BRANICKY, S. PHILLIPS, AND W. ZHANG, Scheduling and Feedback Co-Design for Net-
worked Control Systems, in Proc. of Conference on Decision and Control (CDC), 2002.

[29] M. S. BRANICKY, Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hy-
brid Systems, IEEE Transactions on Automatic Control, 43 (1998), pp. 475–482.

[30] M. S. BRANICKY, S. M. PHILLIPS, AND W. ZHANG, Stability of Networked Control Systems:
Explicit Analysis of Delay, in Proc. of American Control Conference (ACC), 2000.

www.bourns.com/data/global/pdfs/1140_series.pdf
www.bourns.com/data/global/pdfs/1140_series.pdf

Bibliography 151

[31] S. BULLER, M. THELE, R. W. A. A. DE DONCKER, AND E. KARDEN, Impedance-Based
Simulation Models of Supercapacitors and Li-ion Batteries for Power Electronic Applications,
IEEE Transactions on Industrial Applications, 41 (2005), pp. 742–747.

[32] J. CAO, N. SCHOFIELD, AND A. EMADI, Battery Balancing Methods: A Comprehensive Review,
in Proc. of Vehicle Power and Propulsion Conference (VPPC), 2008.

[33] J. R. CASH AND A. H. KARP, A Variable Order Runge-Kutta Method for Initial Value Problems
with Rapidly Varying Right-Hand Sides, ACM Transactions on Mathematical Software, 16 (1990),
pp. 201–222.

[34] M. CASPAR, T. EILER, AND S. HOHMANN, Comparison of Active Battery Balancing Systems,
in Proc. of Vehicle Power and Propulsion Conference (VPPC), 2014.

[35] M. CASPAR AND S. HOHMANN, Optimal Cell Balancing with Model-based Cascade Control by
Duty Cycle Adaption, in Proc. of IFAC World Congress, 2014.

[36] M. CASPAR, V. POLINSKI, AND S. HOHMANN, Structural Comparison of Battery Balancing Ar-
chitectures with Optimal Control, in Proc. of Vehicle Power and Propulsion Conference (VPPC),
2015.

[37] R. CASTANE, P. MARTI, M. VELASCO, A. CERVIN, AND D. HENRIKSSON, Resource Man-
agement for Control Tasks Based on the Transient Dynamics of Closed-Loop Systems, in Proc. of
Euromicro Conference on Real-Time Systems (ECRTS), 2006.

[38] A. CERVIN, Using Jitterbug to Derive Control Loop Timing Requirements, in Proc. of Co-design
for Embedded Real-time Systems (CERTS), 2003.

[39] S. CHAKRABORTY, S. KÜNZLI, AND L. THIELE, A General Framework for Analysing System
Properties in Platform-Based Embedded System Designs, in Proc. of Design, Automation and Test
in Europe (DATE), 2003.

[40] S. CHAKRABORTY, S. KÜNZLI, L. THIELE, A. HERKERSDORF, AND P. SAGMEISTER, Per-
formance Evaluation of Network Processor Architectures: Combining Simulation with Analytical
Estimation, Computer Networks, 41 (2003), pp. 641–665.

[41] S. CHAKRABORTY, L. PHAN, AND P. THIAGARAJAN, Event Count Automata: A State-Based
Model for Stream Processing Systems, in Proc. of Real-Time Systems Symposium (RTSS), 2005.

[42] R. N. CHARETTE, This Car Runs on Code, 2009. http://spectrum.ieee.org/
transportation/systems/this-car-runs-on-code.

[43] N. CHATURVEDI, R. KLEIN, J. CHRISTENSEN, J. AHMED, AND A. KOJIC, Algorithms for
Advanced Battery-Management Systems, IEEE Control Systems Magazine, 30 (2010), pp. 49–68.

[44] J. CHATZAKIS, K. KALAITZAKIS, N. C. VOULGARIS, AND S. N. MANIAS, Designing a New
Generalized Battery Management System, IEEE Transactions on Industrial Electronics, 50 (2003),
pp. 990–999.

[45] M. CHEN AND G. RINCON-MORA, Accurate Electrical Battery Model Capable of Predicting
Runtime and I-V Performance, IEEE Transactions on Energy Conversion, 21 (2006), pp. 504–
511.

http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code

152 Bibliography

[46] C.-F. CHIASSERINI AND R. R. RAO, Energy Efficient Battery Management, IEEE Journal on
Selected Areas in Communications, 19 (2001), pp. 1235–1245.

[47] D. B. CHOKSHI AND P. BHADURI, Modeling Fixed Priority Non-Preemptive Scheduling with
Real-Time Calculus, in Proc. of IEEE Intl. Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2008.

[48] F. CIUCU, The Stochastic Network Calculus: A Modern Approach to Queueing Using Inequali-
ties, in Proc. of Asian Internet Engineering Conference (AINTEC), 2009.

[49] F. CIUCU AND J. SCHMITT, Perspectives on Network Calculus: No Free Lunch, but Still Good
Value, ACM SIGCOMM Computer Communcation Review, 42 (2012), pp. 311–322.

[50] COIN-OR FOUNDATION, COmputational INfrastructure for Operations Research. http://
www.coin-or.org/.

[51] C. DANIELSON, F. BORRELLI, D. OLIVER, D. ANDERSON, AND T. PHILLIPS, Constrained
Flow Control in Storage Networks: Capacity Maximization and Balancing, Automatica, 49
(2013), pp. 2612–2621.

[52] M. DAOWD, N. OMAR, P. VAN DEN BOSSCHE, AND J. VAN MIERLO, Passive and Active
Battery Balancing Comparison Based on MATLAB Simulation, in Proc. of Vehicle Power and
Propulsion Conference (VPPC), 2011.

[53] R. I. DAVIS, A. BURNS, R. J. BRIL, AND J. J. LUKKIEN, Controller Area Network (CAN)
Schedulability Analysis: Refuted, Revisited and Revised, Real-Time Systems, 35 (2007), pp. 239–
272.

[54] L. DE MOURA, S. OWRE, H. RUESS, J. RUSHBY, N. SHANKAR, M. SOREA, AND A. TIWARI,
SAL 2, in Proc. of Computer Aided Verification (CAV), 2004.

[55] D. W. DEES, V. S. BATTAGLIA, AND A. BÉLANGER, Electrochemical Modeling of Lithium
Polymer Batteries, Journal of Power Sources, 110 (2002), pp. 310–320.

[56] J. R. DORMAND AND P. J. PRINCE, A Family of Embedded Runge-Kutta Formulae, Journal of
Computational and Applied Mathematics, 6 (1980), pp. 19–26.

[57] M. DUBARRY, B. Y. LIAW, M.-S. CHEN, S.-S. CHYAN, K.-C. HAN, W.-T. SIE, AND S.-
H. WU, Identifying Battery Aging Mechanisms in Large Format Li-Ion Cells, Journal of Power
Sources, 196 (2011), pp. 3420–3425.

[58] M. DUBARRY, N. VUILLAUME, AND B. Y. LIAW, Origins and Accommodation of Cell Vari-
ations in Li-ion Battery Pack Modeling, International Journal of Energy Research, 34 (2010),
pp. 216–231.

[59] M. DWYER, G. AVRUNIN, AND J. CORBETT, Patterns in Property Specifications for Finite-State
Verification, in Proc. of International Conference on Software Engineering (ICSE), 1999.

[60] M. EINHORN, W. ROESSLER, AND J. FLEIG, Improved Performance of Serially Connected Li-
Ion Batteries With Active Cell Balancing in Electric Vehicles, IEEE Transactions on Vehicular
Technology, 60 (2011), pp. 2448–2457.

http://www.coin-or.org/
http://www.coin-or.org/

Bibliography 153

[61] J. EKER, P. HAGANDER, AND K.-E. ÅRZÉN, A Feedback Scheduler for Real-Time Controller
Tasks, Control Engineering Practice, 8 (2000), pp. 1369–1378.

[62] J. EKER, J. W. JANNECK, E. LEE, J. LIU, X. LIU, J. LUDVIG, S. NEUENDORFFER, S. SACHS,
Y. XIONG, AND OTHERS, Taming Heterogeneity - the Ptolemy Approach, Proceedings of the
IEEE, 91 (2003), pp. 127–144.

[63] R. W. ERICKSON AND D. MAKSIMOVIC, Fundamentals of Power Electronics, Springer, 2001.

[64] E. FERON AND F. ALEGRE, Control Software Analysis, Part I Open-loop Properties,
arXiv:0809.4812, (2008). http://arxiv.org/abs/0809.4812.

[65] E. FERSMAN, L. MOKRUSHIN, P. PETTERSSON, AND W. YI, Schedulability Analysis of Fixed-
Priority Systems using Timed Automata, Theoretical Computer Science, 354 (2006), pp. 301–317.

[66] G. FREHSE, C. L. GUERNIC, R. DONZÉ, S. COTTON, R. RAY, O. LEBELTEL, R. RIPADO,
A. GIRARD, AND T. DANG, SpaceEx: Scalable Verification of Hybrid Systems, in Proc. of Com-
puter Aided Verification (CAV), 2011.

[67] B. FRIEDLAND, Control System Design: An Introduction to State-Space Methods, Courier Cor-
poration, 2012.

[68] H. FUJIOKA AND T. NAKAI, Stabilising Systems with Aperiodic Sample-and-Hold Devices: State
Feedback Case, IET Control Theory & Applications, 4 (2010), pp. 265–272.

[69] J. GALLARDO-LOZANO, E. ROMERO-CADAVAL, M. I. MILANES-MONTERO, AND M. A.
GUERRERO-MARTINEZ, Battery equalization active methods, Journal of Power Sources, 246
(2014), pp. 934–949.

[70] J. GARCHE AND A. JOSSEN, Battery Management Systems (BMS) for Increasing Battery Life
Time, in Proc. of Telecommunications Energy Special Conference (TELESCON), 2000.

[71] A. GERSTLAUER, C. HAUBELT, A. PIMENTEL, T. STEFANOV, D. GAJSKI, AND J. TEICH,
Electronic System-Level Synthesis Methodologies, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 28 (2009), pp. 1517–1530.

[72] R. GOGOANA, M. B. PINSON, M. Z. BAZANT, AND S. E. SARMA, Internal Resistance Match-
ing for Parallel-Connected Lithium-ion Cells and Impacts on Battery Pack Cycle Life, Journal of
Power Sources, 252 (2014), pp. 8–13.

[73] M. GRANT AND S. BOYD, CVX: Matlab Software for Disciplined Convex Programming, 2014.
http://cvxr.com/cvx.

[74] H. HE, R. XIONG, X. ZHANG, F. SUN, AND J. FAN, State-of-Charge Estimation of the Lithium-
Ion Battery Using an Adaptive Extended Kalman Filter Based on an Improved Thevenin Model,
IEEE Transactions on Vehicular Technology, 60 (2011), pp. 1461–1469.

[75] D. HENRIKSSON AND A. CERVIN, Optimal On-line Sampling Period Assignment for Real-Time
Control Tasks Based on Plant State Information, in Proc. of Conference on Decision and Control
(CDC), 2005.

http://arxiv.org/abs/0809.4812
http://cvxr.com/cvx

154 Bibliography

[76] E. HENRIKSSON, H. SANDBERG, AND K. H. JOHANSSON, Predictive Compensation for Com-
munication Outages in Networked Control Systems, in Proc. of Conference on Decision and Con-
trol (CDC), 2008.

[77] J. HESPANHA, P. NAGHSHTABRIZI, AND Y. XU, A Survey of Recent Results in Networked Con-
trol Systems, Proceedings of the IEEE, 95 (2007), pp. 138 –162.

[78] X. HU, F. SUN, AND Y. ZOU, Estimation of State of Charge of a Lithium-Ion Battery Pack for
Electric Vehicles Using an Adaptive Luenberger Observer, Energies, 3 (2010), pp. 1586–1603.

[79] K. HUANG, L. THIELE, T. STEFANOV, AND E. DEPRETTERE, Performance Analysis of Multi-
media Applications using Correlated Streams, in Proc. of Design, Automation and Test in Europe
(DATE), 2007.

[80] A. IMTIAZ AND F. KHAN, “Time Shared Flyback Converter” Based Regenerative Cell Balancing
Technique for Series Connected Li-Ion Battery Strings, IEEE Transactions on Power Electronics,
28 (2013), pp. 5960–5975.

[81] INFINEON TECHNOLOGIES AG, BSC010NE2LS - OptiMOS Power-MOSFET, 2013.
https://www.infineon.com/dgdl/Infineon-BSC010NE2LS-DS-v02_02-en.
pdf?fileId=db3a304326dfb1300126fb3d176a3f1b.

[82] M. ISAACSON, R. HOLLANDSWORTH, P. GIAMPAOLI, F. LINKOWSKY, A. SALIM, AND V. TE-
OFILO, Advanced Lithium Ion Battery Charger, in Proc. of Battery Conference on Applications
and Advances, 2000.

[83] K. JENSEN, Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, vol. 1,
Springer, 2013.

[84] K. JENSEN, L. M. KRISTENSEN, AND L. WELLS, Coloured Petri Nets and CPN Tools for Mod-
elling and Validation of Concurrent Systems, International Journal on Software Tools for Technol-
ogy Transfer, 9 (2007), pp. 213–254.

[85] Y. JIANG, A Basic Stochastic Network Calculus, ACM SIGCOMM Computer Communcation
Review, 36 (2006), pp. 123–134.

[86] Y. JIANG AND Y. LIU, Stochastic Network Calculus, vol. 1, Springer, 2008.

[87] A. JOSSEN, V. SPÄTH, H. DÖRING, AND J. GARCHE, Reliable Battery Operation - A Challenge
for the Battery Management System, Journal of Power Sources, 84 (1999), pp. 283–286.

[88] M. KAUER, S. NARANAYASWAMY, S. STEINHORST, M. LUKASIEWYCZ, S. CHAKRABORTY,
AND L. HEDRICH, Modular System-Level Architecture for Concurrent Cell Balancing, in Proc.
of Design Automation Conference (DAC), 2013.

[89] M. KAUER, S. NARAYANASWAMY, M. LUKASIEWYCZ, S. STEINHORST, AND

S. CHAKRABORTY, Inductor Optimization for Active Cell Balancing Using Geometric
Programming, in Proc. of Design, Automation and Test in Europe (DATE), 2015.

[90] M. KAUER, D. SOUDBAKHSH, D. GOSWAMI, S. CHAKRABORTY, AND A. M. ANNASWAMY,
Fault-tolerant Control Synthesis and Verification of Distributed Embedded Systems, in Proc. of
Design, Automation and Test in Europe (DATE), 2014.

https://www.infineon.com/dgdl/Infineon-BSC010NE2LS-DS-v02_02-en.pdf?fileId=db3a304326dfb1300126fb3d176a3f1b
https://www.infineon.com/dgdl/Infineon-BSC010NE2LS-DS-v02_02-en.pdf?fileId=db3a304326dfb1300126fb3d176a3f1b

Bibliography 155

[91] M. KAUER, S. STEINHORST, D. GOSWAMI, R. SCHNEIDER, M. LUKASIEWYCZ, AND

S. CHAKRABORTY, Formal Verification of Distributed Controllers using Time-Stamped Event
Count Automata, in Proc. of Asia and South Pacific Design Automation Conference (ASP-DAC),
2013.

[92] M. KAUER, S. STEINHORST, R. SCHNEIDER, M. LUKASIEWYCZ, AND S. CHAKRABORTY,
Automata-Theoretic Modeling of Fixed-Priority Non-Preemptive Scheduling for Formal Timing
Verification, in Proc. of Asia and South Pacific Design Automation Conference (ASP-DAC), 2014.

[93] H. K. KHALIL, Nonlinear Systems, Prentice Hall, 3 ed., 2001.

[94] H. KIM AND K. G. SHIN, Dependable, Efficient, Scalable Architecture for Management of Large-
Scale Batteries, in Proc. of International Conference on Cyber-Physical Systems (ICCPS), 2010.

[95] I.-S. KIM, A Technique for Estimating the State of Health of Lithium Batteries Through a Dual-
Sliding-Mode Observer, IEEE Transactions on Power Electronics, 25 (2010), pp. 1013–1022.

[96] R. KLEIN, N. CHATURVEDI, J. CHRISTENSEN, J. AHMED, R. FINDEISEN, AND A. KOJIC,
Electrochemical Model Based Observer Design for a Lithium-Ion Battery, IEEE Transactions on
Control Systems Technology, 21 (2013), pp. 289–301.

[97] H. KOPETZ AND G. BAUER, The Time-Triggered Architecture, Proceedings of the IEEE, 91
(2003), pp. 112–126.

[98] R. KORIES AND H. SCHMIDT-WALTER, Electrical Engineering: A Pocket Reference, Springer,
2003.

[99] J. KRAKORA AND Z. HANZALEK, Timed Automata Approach to CAN Verification, in Proc. of
IFAC Symposium on Information Control Problems in Manufacturing (INCOM), 2005.

[100] R. KROEZE AND P. KREIN, Electrical Battery Model for Use in Dynamic Electric Vehicle Simu-
lations, in Proc. of Power Electronics Specialists Conference (PESC), 2008.

[101] P. KUMAR, D. GOSWAMI, S. CHAKRABORTY, A. ANNASWAMY, K. LAMPKA, AND L. THIELE,
A Hybrid Approach to Cyber-Physical Systems Verification, in Proc. of Design Automation Con-
ference (DAC), 2012.

[102] N. KUTKUT AND D. DIVAN, Dynamic Equalization Techniques for Series Battery Stacks, in Proc.
of Intl. Telecommunications Energy Conference (INTELEC), 1996.

[103] N. H. KUTKUT, A Modular Nondissipative Current Diverter for EV Battery Charge Equalization,
in Proc. of Applied Power Electronics Conference and Exposition (APEC), 1998.

[104] K. LAMPKA, S. PERATHONER, AND L. THIELE, Analytic Real-Time Analysis and Timed Au-
tomata: A Hybrid Methodology for the Performance Analysis of Embedded Real-Time Systems,
Design Automation for Embedded Systems, 14 (2010), pp. 193–227.

[105] M. LARABEL, Linux Kernel at 19.5 Million Lines of Code, Continues Rising, 2015. http:
//www.phoronix.com/scan.php?page=news_item&px=Linux-19.5M-Stats.

[106] K. G. LARSEN, P. PETTERSSON, AND W. YI, Compositional and Symbolic Model-Checking of
Real-Time Systems, in Proc. of Real-Time Systems Symposium (RTSS), 1995.

http://www.phoronix.com/scan.php?page=news_item&px=Linux-19.5M-Stats
http://www.phoronix.com/scan.php?page=news_item&px=Linux-19.5M-Stats

156 Bibliography

[107] J. Y. LE BOUDEC AND P. THIRAN, Network Calculus: A Theory of Deterministic Queuing Sys-
tems for the Internet, Springer, 2001.

[108] E. A. LEE, Cyber-Physical Systems - Are Computing Foundations Adequate?, in Position Paper
for NSF Workshop On Cyber-Physical Systems, 2006.

[109] E. A. LEE, Cyber Physical Systems: Design Challenges, in Proc. of Intl. Symposium on Object
Oriented Real-Time Distributed Computing (ISORC), 2008.

[110] J. LEE, O. NAM, AND B. H. CHO, Li-ion battery SOC estimation method based on the reduced
order extended Kalman filtering, Journal of Power Sources, 174 (2007), pp. 9–15.

[111] Y.-S. LEE AND M.-W. CHENG, Intelligent Control Battery Equalization for Series Connected
Lithium-Ion Battery Strings, IEEE Transactions on Industrial Electronics, 52 (2005), pp. 1297–
1307.

[112] L. LI AND M. LEMMON, Weakly Coupled Event Triggered Output Feedback Control in Wireless
Networked Control Systems, in Proc. of Allerton Conf. on Communication, Control, and Comput-
ing, 2011.

[113] S. LI, C. C. MI, AND M. ZHANG, A High-Efficiency Active Battery-Balancing Circuit Using
Multiwinding Transformer, IEEE Transactions on Industry Applications, 49 (2013), pp. 198–207.

[114] D. LIBERZON AND A. S. MORSE, Basic Problems in Stability and Design of Switched Systems,
IEEE Control Systems, 19 (1999), pp. 59–70.

[115] B. LINCOLN AND A. CERVIN, Jitterbug: A Tool for Analysis of Real-Time Control Performance,
in Proc. of Conference on Decision and Control (CDC), 2002.

[116] LINEAR TECHNOLOGY, LTC3300-1 - High Efficiency Bidirectional Multicell Battery Balancer.
http://www.linear.com/product/LTC3300-1.

[117] J. LIU, Z. HUANG, J. PENG, AND J. WANG, Distributed Cooperative Voltage Equalization for
Series-Connected Super-Capacitors, in Proc. of American Control Conference (ACC), 2015.

[118] L. LJUNG, System Identification: Theory for the User, Prentice Hall, (1987).

[119] S. LONGO, G. HERRMANN, AND P. BARBER, Optimal Scheduling Methods for Time-Triggered
Networked Control, in Proc. of Intl. Conf. on Systems Engineering (ICSEng), 2009.

[120] L. LU, X. HAN, J. LI, J. HUA, AND M. OUYANG, A review on the key issues for lithium-ion
battery management in electric vehicles, Journal of Power Sources, 226 (2013), pp. 272–288.

[121] X. LU, W. QIAN, AND F. Z. PENG, Modularized Buck-Boost + Cuk Converter for High Voltage
Series Connected Battery Cells, in Proc. of Applied Power Electronics Conference and Exposition
(APEC), 2012.

[122] M. LUKASIEWYCZ, M. KAUER, AND S. STEINHORST, Synthesis of Active Cell Balancing Archi-
tectures for Battery Packs, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), (to appear).

http://www.linear.com/product/LTC3300-1

Bibliography 157

[123] M. LUKASIEWYCZ, S. STEINHORST, AND S. NARAYANASWAMY, Verification of Balancing
Architectures for Modular Batteries, in Proc. of Intl. Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS), 2014.

[124] S. K. MANDAL, P. S. BHOJWANI, S. P. MOHANTY, AND R. N. MAHAPATRA, IntellBatt: To-
wards smarter battery design, in Proc. of Design Automation Conference (DAC), 2008.

[125] A. MANENTI, A. ABBA, A. MERATI, S. M. SAVARESI, AND A. GERACI, A New BMS Ar-
chitecture Based on Cell Redundancy, IEEE Transactions on Industrial Electronics, 58 (2011),
pp. 4314–4322.

[126] O. MASON AND R. SHORTEN, On common quadratic Lyapunov functions for stable discrete-time
LTI systems, IMA Journal of Applied Mathematics, 69 (2004), pp. 271–283.

[127] MAXIM INTEGRATED, MAX11068 12-Channel, High-Voltage Sensor, Smart Data-
Acquisition Interface. http://www.maximintegrated.com/en/products/power/
battery-management/MAX11068.html.

[128] M. MAZO AND P. TABUADA, On Event-Triggered and Self-Triggered Control over Sensor/Actu-
ator Networks, in Proc. of Conference on Decision and Control (CDC), 2008.

[129] M. MAZO JR AND M. CAO, Asynchronous Decentralized Event-triggered Control,
arXiv:1206.6648, (2012). http://arxiv.org/abs/1206.6648.

[130] M. MAZO JR, A. DAVITIAN, AND P. TABUADA, Pessoa: A Tool for Embedded Controller Syn-
thesis, in Proc. of Computer Aided Verification (CAV), 2010.

[131] A. MOLIN AND S. HIRCHE, Structural Characterization of Optimal Event-Based Controllers for
Linear Stochastic Systems, in Proc. of Conference on Decision and Control (CDC), 2010.

[132] A. MOLIN AND S. HIRCHE, On the Optimality of Certainty Equivalence for Event-Triggered
Control Systems, IEEE Transactions on Automatic Control, 58 (2013), pp. 470–474.

[133] S. W. MOORE AND P. J. SCHNEIDER, A Review of Cell Equalization Methods for Lithium Ion
and Lithium Polymer Battery Systems, SAE Technical Paper Series, (2001).

[134] M. MULANSKY AND K. AHNERT, Odeint library, Scholarpedia, 9 (2014), p. 32342. http:
//www.scholarpedia.org/article/Odeint_library.

[135] R. MURADORE, D. QUAGLIA, AND P. FIORINI, Model Predictive Control over Delay-Based
Differentiated Services Control Networks, in Proc. of Design, Automation and Test in Europe
(DATE), 2013.

[136] N. MURGOVSKI, L. JOHANNESSON, AND J. SJÖBERG, Convex modeling of energy buffers in
power control applications, in Proc. of IFAC Workshop on Engine and Powertrain Control Simu-
lation and Modeling, 2012.

[137] N. NAIK-DHUNGEL, Energy Portfolio Standards and the Promotion of Combined Heat and
Power, U.S. Environmental Protection Agency (EPA), (2013).

[138] S. NARAYANASWAMY, S. STEINHORST, M. LUKASIEWYCZ, M. KAUER, AND

S. CHAKRABORTY, Optimal Dimensioning of Active Cell Balancing Architectures, in Proc. of
Design, Automation and Test in Europe (DATE), 2014.

http://www.maximintegrated.com/en/products/power/battery-management/MAX11068.html
http://www.maximintegrated.com/en/products/power/battery-management/MAX11068.html
http://arxiv.org/abs/1206.6648
http://www.scholarpedia.org/article/Odeint_library
http://www.scholarpedia.org/article/Odeint_library

158 Bibliography

[139] D. NEWCOMB, The Next Big OS War Is in Your Dashboard, 2012. http://www.wired.
com/2012/12/automotive-os-war/.

[140] J. NEWMAN, K. E. THOMAS, H. HAFEZI, AND D. R. WHEELER, Modeling of Lithium-Ion
Batteries, Journal of Power Sources, 119 (2003), pp. 838–843.

[141] ON SEMICONDUCTOR, Power MOSFET NTLJS4114N, 2012. http://www.onsemi.com/
PowerSolutions/product.do?id=NTLJS4114N.

[142] A. OTTO, S. RZEPKA, T. MAGER, B. MICHEL, C. LANCIOTTI, T. GÜNTHER, AND O. KA-
NOUN, Battery Management Network for Fully Electrical Vehicles Featuring Smart Systems at
Cell and Pack Level, in Proc. of Advanced Microsystems for Automotive Applications (AMAA),
2012.

[143] C. PASCUAL AND P. KREIN, Switched Capacitor System for Automatic Series Battery Equaliza-
tion, in Proc. of Applied Power Electronics Conference and Exposition (APEC), 1997.

[144] L. PHAN, S. CHAKRABORTY, AND P. THIAGARAJAN, A Multi-mode Real-Time Calculus, in
Proc. of Real-Time Systems Symposium (RTSS), 2008.

[145] L. PHAN, S. CHAKRABORTY, P. THIAGARAJAN, AND L. THIELE, Composing Functional and
State-Based Performance Models for Analyzing Heterogeneous Real-Time Systems, in Proc. of
Real-Time Systems Symposium (RTSS), 2007.

[146] G. L. PLETT, Extended Kalman filtering for battery management systems of LiPB-based HEV
battery packs Part 1. Background, Journal of Power Sources, 134 (2004), pp. 252–261.

[147] , Extended Kalman filtering for battery management systems of LiPB-based HEV battery
packs Part 2. Modeling and identification, Journal of Power Sources, 134 (2004), pp. 262–276.

[148] , Extended Kalman filtering for battery management systems of LiPB-based HEV battery
packs Part 3. State and parameter estimation, Journal of Power Sources, 134 (2004), pp. 277–
292.

[149] M. PREINDL, C. DANIELSON, AND F. BORRELLI, Performance Evaluation of Battery Balancing
Hardware, in Proc. of European Control Conference (ECC), 2013.

[150] H. RAHIMI-EICHI, F. BARONTI, AND M.-Y. CHOW, Online Adaptive Parameter Identification
and State-of-Charge Coestimation for Lithium-Polymer Battery Cells, IEEE Transactions on In-
dustrial Electronics, 61 (2014), pp. 2053–2061.

[151] H. RAHIMI-EICHI, U. OJHA, F. BARONTI, AND M. CHOW, Battery Management System: An
Overview of Its Application in the Smart Grid and Electric Vehicles, IEEE Industrial Electronics
Magazine, 7 (2013), pp. 4–16.

[152] J.-P. RICHARD, Time-Delay Systems: An Overview of Some Recent Advances and Open Prob-
lems, Automatica, 39 (2003), pp. 1667–1694.

[153] P. RONG AND M. PEDRAM, An Analytical Model for Predicting the Remaining Battery Capacity
of Lithium-Ion Batteries, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14
(2006), pp. 441–451.

http://www.wired.com/2012/12/automotive-os-war/
http://www.wired.com/2012/12/automotive-os-war/
http://www.onsemi.com/PowerSolutions/product.do?id=NTLJS4114N
http://www.onsemi.com/PowerSolutions/product.do?id=NTLJS4114N

Bibliography 159

[154] M. A. ROSCHER AND D. U. SAUER, Dynamic electric behavior and open-circuit-voltage mod-
eling of LiFePO4-based lithium ion secondary batteries, Journal of Power Sources, 196 (2011),
pp. 331–336.

[155] S. SAMII, P. ELES, Z. PENG, P. TABUADA, AND A. CERVIN, Dynamic Scheduling and Control-
Quality Optimization of Self-Triggered Control Applications, in Proc. of Real-Time Systems Sym-
posium (RTSS), 2010.

[156] SAMSUNG SDI CO., LTD., Introduction of INR18650-25R, 2013. http://www.
datasheet-pdf.com/PDF/INR18650-25R-Datasheet-Samsung-839321.

[157] J. SCHMALSTIEG, S. KÄBITZ, M. ECKER, AND D. U. SAUER, A holistic aging model for
Li(NiMnCo)O2 based 18650 lithium-ion batteries, Journal of Power Sources, 257 (2014), pp. 325–
334.

[158] R. SCHNEIDER, D. GOSWAMI, S. ZAFAR, S. CHAKRABORTY, AND M. LUKASIEWYCZ,
Constraint-Driven Synthesis and Tool-Support for FlexRay-Based Automotive Control Systems, in
Proc. of Intl. Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
2011.

[159] B. SCHWEIGHOFER, K. RAAB, AND G. BRASSEUR, Modeling of High Power Automotive Bat-
teries by the Use of an Automated Test System, IEEE Transactions on Instrumentation and Mea-
surement, 52 (2003), pp. 1087–1091.

[160] H. SHIBATA, S. TANIGUCHI, K. ADACHI, K. YAMASAKI, G. ARIYOSHI, K. KAWATA,
K. NISHIJIMA, AND K. HARADA, Management of Serially-connected Battery System Using Mul-
tiple Switches, in Proc. of Intl. Conference on Power Electronics and Drive Systems (PEDS), 2001.

[161] D. SHIN, M. PONCINO, E. MACII, AND N. CHANG, A Statistical Model-Based Cell-to-Cell
Variability Management of Li-ion Battery Pack, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 34 (2015), pp. 252–265.

[162] J.-W. SHIN, G.-S. SEO, C.-Y. CHUN, AND B.-H. CHO, Selective Flyback Balancing Circuit
with Improved Balancing Speed for Series Connected Lithium-Ion Batteries, in Proc. of Intl. Power
Electronics Conference (IPEC), 2010.

[163] B. SINOPOLI, L. SCHENATO, M. FRANCESCHETTI, K. POOLLA, M. JORDAN, S. S. SASTRY,
AND OTHERS, Kalman Filtering with Intermittent Observations, IEEE Transactions on Automatic
Control, 49 (2004), pp. 1453–1464.

[164] D. SOUDBAKHSH AND A. M. ANNASWAMY, Parallelized Model Predictive Control, in Proc. of
American Control Conference (ACC), 2013.

[165] D. SOUDBAKHSH, L. T. X. PHAN, O. SOKOLSKY, I. LEE, AND A. ANNASWAMY, Co-design
of Control and Platform with Dropped Signals, in Proc. of International Conference on Cyber-
Physical Systems (ICCPS), 2013.

[166] S. STEINHORST, M. KAUER, A. MEEUW, S. NARAYANASWAMY, M. LUKASIEWYCZ, AND

S. CHAKRABORTY, Cyber-Physical Co-Simulation Framework for Smart Cells in Scalable Bat-
tery Packs, ACM Transactions on Design Automation of Electronic Systems (TODAES), (to ap-
pear).

http://www.datasheet-pdf.com/PDF/INR18650-25R-Datasheet-Samsung-839321
http://www.datasheet-pdf.com/PDF/INR18650-25R-Datasheet-Samsung-839321

160 Bibliography

[167] S. STEINHORST, M. LUKASIEWYCZ, S. NARAYANASWAMY, M. KAUER, AND

S. CHAKRABORTY, Smart Cells for Embedded Battery Management, in Proc. of Intl. Conf. on
Cyber-Physical Systems, Networks, and Applications (CPSNA), 2014.

[168] R. F. STENGEL, Optimal Control and Estimation, Courier Corporation, 2012.

[169] T. STUART, F. FANG, X. WANG, C. ASHTIANI, AND A. PESARAN, A Modular Battery Man-
agement System for HEVs, SAE Technical Paper, (2002).

[170] T. STUART AND W. ZHU, Fast Equalization for Large Lithium Ion Batteries, IEEE Aerospace
and Electronic Systems Magazine, 24 (2009), pp. 27–31.

[171] Y. S. SUH, Stability and Stabilization of Nonuniform Sampling Systems, Automatica, 44 (2008),
pp. 3222–3226.

[172] P. TABUADA, Event-Triggered Real-Time Scheduling of Stabilizing Control Tasks, IEEE Transac-
tions on Automatic Control, 52 (2007), pp. 1680 –1685.

[173] TEXAS INSTRUMENTS, bq76PL102 - PowerLAN Dual-Cell Li-Ion Battery Monitor with Power-
Pump Cell Balancing. http://www.ti.com/product/BQ76PL102.

[174] , BQ77PL900 5-10 cell Li-ion Battery protection & AFE. http://www.ti.com/
product/BQ77PL900.

[175] THE EUROPEAN COMMISSION, Energy 2020, European Union, (2011).

[176] L. THIELE, S. CHAKRABORTY, M. GRIES, AND S. KÜNZLI, A Framework for Evaluating De-
sign Tradeoffs in Packet Processing Architectures, in Proc. of Design Automation Conference
(DAC), 2002.

[177] L. THIELE, S. CHAKRABORTY, M. GRIES, A. MAXIAGUINE, AND J. GREUTERT, Embedded
Software in Network Processors - Models and Algorithms, in Proc. of International Conference on
Embedded Software (EMSOFT), 2001.

[178] L. THIELE, S. CHAKRABORTY, AND M. NAEDELE, Real-Time Calculus for Scheduling Hard
Real-Time Systems, in Proc. of Intl. Symposium on Circuits and Systems (ISCAS), 2000.

[179] C. VAN LOAN, Computing Integrals Involving the Matrix Exponential, IEEE Transactions on
Automatic Control, 23 (1978), pp. 395–404.

[180] H. VOIT, A. ANNASWAMY, R. SCHNEIDER, D. GOSWAMI, AND S. CHAKRABORTY, Adaptive
Switching Controllers for Systems with Hybrid Communication Protocols, in Proc. of American
Control Conference (ACC), 2012.

[181] W. WAAG, C. FLEISCHER, AND D. U. SAUER, Critical review of the methods for monitoring
of lithium-ion batteries in electric and hybrid vehicles, Journal of Power Sources, 258 (2014),
pp. 321–339.

[182] G. C. WALSH, H. YE, AND L. G. BUSHNELL, Stability Analysis of Networked Control Systems,
IEEE Transactions on Control Systems Technology, 10 (2002), pp. 438–446.

[183] E. WANDELER, Modular Performance Analysis and Interface-Based Design for Embedded Real-
Time Systems, PhD thesis, Swiss Federal Institute of Technology Zurich, 2006.

http://www.ti.com/product/BQ76PL102
http://www.ti.com/product/BQ77PL900
http://www.ti.com/product/BQ77PL900

Bibliography 161

[184] E. WANDELER AND L. THIELE, Real-Time Calculus (RTC) Toolbox, 2006. http://www.
mpa.ethz.ch/Rtctoolbox.

[185] G. WEISS AND R. ALUR, Automata Based Interfaces for Control and Scheduling, in Proc. of
Hybrid Systems: Computation and Control (HSCC), 2007.

[186] S. WEN, Cell balancing buys extra run time and battery life, Analog Applications Journal, (2009),
pp. 14–18.

[187] WOLFRAM RESEARCH, INC., Mathematica 9.0, 2012.

[188] T. WONGPIROMSARN, U. TOPCU, N. OZAY, H. XU, AND R. M. MURRAY, TuLiP: A Software
Toolbox for Receding Horizon Temporal Logic Planning, in Proc. of Hybrid Systems: Computa-
tion and Control (HSCC), 2011.

[189] Y. XIONG, S. SUN, H. JIA, P. SHEA, AND Z. J. SHEN, New Physical Insights on Power MOSFET
Switching Losses, IEEE Transactions on Power Electronics, 24 (2009), pp. 525–531.

[190] Y. XU AND J. HESPANHA, Optimal Communication Logics in Networked Control Systems, in
Proc. of Conference on Decision and Control (CDC), 2004.

[191] Y. XU AND J. P. HESPANHA, Estimation under uncontrolled and controlled communications in
networked control systems, in Proc. of European Control Conference (ECC), 2005.

[192] B. YANN LIAW, G. NAGASUBRAMANIAN, R. G. JUNGST, AND D. H. DOUGHTY, Modeling
of lithium ion cells – A simple equivalent-circuit model approach, Solid State Ionics, 175 (2004),
pp. 835–839.

[193] W. YE, J. HEIDEMANN, AND D. ESTRIN, An Energy-Efficient MAC Protocol for Wireless Sensor
Networks, in Proc. of Conf. of the IEEE Computer and Communications Societies (INFOCOM),
2002.

[194] M. YU, L. WANG, G. XIE, AND T. CHU, Stabilization of Networked Control Systems with Data
Packet Dropout via Switched System Approach, in Proc. of Intl. Symposium on Circuits and Sys-
tems (ISCAS), 2004.

[195] F. ZHANG, K. SZWAYKOWSKA, W. WOLF, AND V. MOONEY, Task Scheduling for Control
Oriented Requirements for Cyber-Physical Systems, in Proc. of Real-Time Systems Symposium
(RTSS), 2008.

[196] H. ZHANG, G. DUAN, AND L. XIE, Linear quadratic regulation for linear time-varying systems
with multiple input delays, Automatica, 42 (2006), pp. 1465–1476.

[197] W. ZHANG, M. BRANICKY, AND S. PHILLIPS, Stability of Networked Control Systems, IEEE
Control Systems Magazine, 21 (2001), pp. 84–99.

http://www.mpa.ethz.ch/Rtctoolbox
http://www.mpa.ethz.ch/Rtctoolbox

162 Bibliography

163

List of Tables

1.1 Overview of challenges . 2

3.1 Buffer evolution in basic FPNS model . 49
3.2 Single message model FPNS case study results. 54
3.3 Multi message model FPNS case study results. 55

4.1 Deadline verification case study parameters 62

5.1 T -interface simulation parameters . 95
5.2 I-interface simulation parameters . 97
5.3 Relative error and speedup of fixed-timing simulation 117

6.1 Relative error of optimization model . 128
6.2 Scenarios for inductor design . 131
6.3 Runtime measurements for growing scenario vector 132

164 List of Tables

165

List of Figures

1.1 Different views on digital control design. 5
1.2 Active cell balancing motivation . 7

2.1 Distributed control application – cyber perspective 18
2.2 Distributed control application – physical perspective 20
2.3 Timing diagram of a distributed controller . 21
2.4 Stability types . 26
2.5 Switched system performance . 32

3.1 Periodic with jitter arrival ECA (p = 3, j = 2) 37
3.2 Example ECA with corresponding arrival curves 38
3.3 Sample ECA network . 40
3.4 ECA network with multiple streams . 41
3.5 ECA evaluation automaton . 43
3.6 A stream of time-stamped messages in a network of ECAs 44
3.7 Evaluation automaton for timestamping . 46
3.8 Naive FPNS timing assumption . 49
3.9 Naive FPNS ignoring priority inversion . 50
3.10 Scenarios in single message FPNS model . 51
3.11 Histogram of FPNS simulation experiment . 54

4.1 Proposed co-verification framework . 60
4.2 Timing diagram of the distributed controller under consideration 60
4.3 Case study example modeled as ECA network 61
4.4 Control performance evolution for different architectures 63
4.5 Timing diagram for drop compensation control 65
4.6 Activation Sequences for ZOH and PZOH . 66
4.7 Drop Compensation Control (DCC) . 67
4.8 ZOH, PZOH, DCC simulation results . 70
4.9 Comparison of two DCC design points found via ECA verification 71
4.10 Optimistic lossless actuation pattern . 72
4.11 Comparison of slower lossless sampling and DCC 72

5.1 Smart cell development platform . 83
5.2 Basic modular charge transfer circuit . 84

166 List of Figures

5.3 Low-level view of basic modular charge transfer circuit 85
5.4 Basic current and switching signal plot of inductor-based charge transfer 85
5.5 Remote charge transfer circuit . 86
5.6 Equivalent circuit for basic charge transfer . 87
5.7 Equivalent circuit with standard battery model 90
5.8 LiFePO4 charge to voltage mapping . 91
5.9 LiNiCoAlO2 charge to voltage mapping . 92
5.10 Current and switching signal plot for fixed-timing actuation 94
5.11 Equivalent circuit with diode involvement . 95
5.12 Timing-based actuation interface . 96
5.13 Current-based actuation interface . 98
5.14 Trade-off between switching and transfer losses 98
5.15 Energy-based actuation interface . 99
5.16 ACB actuation signals with freewheeling . 100
5.17 Equivalent circuit with constant voltage . 103
5.18 Comparison of transfer model with current measurement 104
5.19 Time axis considerations in long-term simulation techniques 108
5.20 Comparison between circuit simulator and equivalent circuit abstraction 109
5.21 Phase aggregation speedup & accuracy . 110
5.22 Time series comparison of phase aggregation and iterative simulation approach 111
5.23 Screenshot of smart cell co-simulation framework 116

6.1 Accuracy of optimization-friendly transfer model 127
6.2 Inductor design results . 131
6.3 Routing strategy interacting with balancing platform 134
6.4 Box plot of best-case reference, heuristic, and constraint-driven routing 141
6.5 Time series plot of best-case reference, heuristic, and constraint-driven routing . 142
6.6 Trade-off between balancing time and efficiency 143

167

List of Definitions & Theorems

2.1 Definition (Stability & asymptotic stability) 24
2.2 Theorem (Lyapunov function) . 25
2.3 Definition (Exponential stability) . 26
2.4 Definition (Positive definiteness) . 27
2.5 Remark (Positive definiteness via eigenvalues) 27
2.6 Theorem (Common Quadratic Lyapunov Function) 29
2.7 Definition ((f,H)-firm deadline) . 31

3.1 Definition (ECA update function) . 39
3.2 Definition (ECA buffer) . 40

4.1 Theorem (Drop compensation controller) . 68
4.2 Remark (Relation of drop compensation and state estimation) 69

5.1 Definition (Current direction) . 87
5.2 Definition (Link) . 88
5.3 Definition (SoC) . 90
5.4 Definition (T -Movement) . 95
5.5 Definition (I-Movement) . 97
5.6 Definition (E-movement) . 99
5.7 Remark (Monotonicity of charge per phase) 103
5.8 Remark (Maximum current) . 104
5.9 Lemma (Recurrence relation with offset) . 113

6.1 Definition (Cell) . 134
6.2 Definition (Link junction) . 134

168 List of Definitions & Theorems

169

Abbreviations

ACB Active Cell Balancing

API Application Programming Interface

BDD Binary Decision Diagram

BMS Battery Management System

CAN Controller Area Network

CAS Computer Algebra System

CPN Colored Petri Net

CPS Cyber-physical System

CPU Central Processing Unit

CQLF Common Quadratic Lyapunov Function

CSP Constraint Satisfaction Problem

DCC Drop Compensation Control

DSE Design Space Exploration

DP Dynamic Programming

ECA Event Count Automaton

ECU Electronic Control Unit

EES Electrical Energy Storage

EV Electric Vehicle

FPNS Fixed-Priority Non-preemptive Scheduling

GP Geometric Programming

GUI Graphical User Interface

170 Abbreviations

IC Integrated Circuit

Li-Ion Lithium-Ion

LMI Linear Matrix Inequality

LQG Linear Quadratic Gaussian

LP Linear Programming

LTI Linear Time-invariant

LTL Linear Temporal Logic

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

MPC Model Predictive Control

NBA Non-determistic Büchi Automaton

NC Network Calculus

NCS Networked Control System

ODE Ordinary Differential Equation

OCV Open Circuit Voltage

PCB Printed Circuit Board

PDE Partial Differential Equation

PE Processing Element

PZOH Periodic Zero-Order Hold

QoC Quality of Control

RC Resistor-Capacitor

RTC Real-time Calculus

SAT Boolean Satisfiability

SoC State of Charge

TA Timed Automaton

TDMA Time Division Multiple Access

171

Nomenclature

Symbol Units Description
0 R?×? Zero matrix: mi,j = 0 ∀i, j
1 R?×? Identity matrix diag(1, . . . , 1)
(·)′ Transposition operator
(·)+ Temporal next operator
A Rn×n System matrix
B Rn×p Input matrix
C Rq×n Output matrix
COSS pF Transistor output capacitance
c Battery cell
d ms Deadline (fixed delay)
Esw J = V A s Switching energy
h ms Sampling period
i(t) A Current
I A Peak inductor current
Ib A Break inductor current (Fig. 5.10)
k h Time steps (in periods)
L H Inductance
` R Energy loss ratio (balancing)
Q A s Charge
q A s Transferred charge increment
R Ω Resistance
RC Ω Cell resistance
RL Ω Inductor resistance
RM Ω Transistor (MOSFET) resistance
·r related to receiving cell
T µs Switching period (balancing)
t s Simulation time
·t related to transmitting cell
τ ms Variable (actual) delay
τd ns Upwards transistor switching delay
τu ns Downwards transistor switching delay
u(t), u[k] Rp Input vector
Vd V Diode voltage drop
Vds V Transistor drain-source voltage

172 Nomenclature

φ Switching phase (balancing)
x(t), x[k] Rn State vector
y(t), y[k] Rq Output vector
z(t) % State of Charge (SoC) [Differences mea-

sured in pp or bp]

173

Index

Aggregate resistance, 87
Augmented state, 23

Balancing
design flow, 81
diode involvement, 94, 114
motivation, 80
optimization model, 123, 143
performance criteria, 81
platform actuation, 134
safety margin, 94
topology comparison, 118, 143
transfer mechanism, 84, 120
transfer phases, 84, 102

Balancing simulation
adaptive phase aggregation, 107
energy-based, 123
fixed timing, 111
iterative, 106
straightforward, 105

Battery management, 117
distributed, 83, 118

Battery model, 89, 121
Break phase, 94, 114
Bus arbitration

event-triggered, 18, 47
time-triggered, 17

Cell energy, 93
Cell parameter variation, 80
Charge routing, 133, 144

constraint-driven strategy, 137
heuristic, 139
reference solution, 136

Charge-voltage mapping, 91
Closed-form

intra-phase dynamics, 101
long-term dynamics, 111, 123

Co-design, 77
Co-verification, 60, 77
Constant voltage dynamics, 102

validation, 104
CPS design, 75
CPS verification, 76
Current direction, 87

Delay, 21
Drop compensation control, 67

timing, 65
Dynamical system

linear time-invariant (LTI), 16
LTI with delay, 20
nonlinear, 16

ECA
buffer, 40, 45, 51
definition, 37
delay calculation, 41
FPNS, 51
network, 39
runtime, 45
timestamping, 43
update function, 39, 40, 51

Equivalent circuit modeling, 86
Event-triggered control, 74

(f,H)-firm deadline, 31, 42
Fault-tolerant design, 64, 78
FPNS

arbitration, 18
ECA, 51
priority inversion, 48

174 Index

Geometric programming (GP), 128

Inductor optimization, 128

Linear quadratic costs, 26, 30
discrete-time, 27

Linear temporal logic (LTL), 31
Linearization, 16
Link, 88

junction, 134
Lyapunov function, 25

common quadratic, 29

Movement, 95, 97, 99

Networked control systems, 73

operator
(·)+, 40

Optimal current, 98, 132

Phase timing, 102
Positive definite, 27

Reachability analysis, 76

Sampled-data system
conversion, 21
disturbance conversion, 23

Stability, 24
asymptotic, 24
exponential, 25, 30
switched system, 29
testing, 25

State of Charge (SoC), 90
estimation, 121

State space representation
continuous, 16
discrete time, 22

Superframe, 17
Switched systems, 28
Switching loss, 99, 114

Working point, 16

Zero-order hold, 21

	Abstract
	Acknowledgements
	Table of Contents
	Introduction
	Cyber-physical System (CPS) co-design
	Active Cell Balancing (ACB) design
	Contributions and organization
	List of publications and awards

	Cyber-physical System (CPS) Analysis
	Continuous dynamical systems
	Communication hardware
	Sampled-data systems
	Quality of Control
	Linear switched systems
	Formally verifiable properties for switched systems

	Modeling Communication Platforms with Event Count Automata (ECAs)
	Event Count Automata (ECAs)
	ECA networks
	Methods for evaluating ECAs
	ECAs in the model checking tool SAL
	Issues with naive Fixed-Priority Non-preemptive Scheduling (FPNS) models
	Conservative FPNS models
	Evaluation of FPNS models using simulation
	Related work

	Applying ECAs for CPS Co-Design
	Verification of real-life performance instead of deadlines in distributed CPSs
	Fault-tolerant control design with delays under firm deadline assumption
	Related work

	Quantitative Models for Charge Transfers in Active Cell Balancing (ACB)
	ACB: Motivation, design flow, and challenges
	Inductor-based charge transfer architectures
	Equivalent circuit modeling
	Electrical battery models
	ACB actuation interfaces
	Fixed timing actuation
	Current interface
	Energy block interface with platform-determined current

	Freewheeling phases & switching losses
	Transfer dynamics assuming constant voltage
	Large-scale Active Cell Balancing (ACB) simulation
	Straightforward numerical solution
	Iterative solution for transfer dynamics
	Error-controlled, adaptive phase aggregation
	Long-term charge transfer simulation with fixed timing

	Related work

	Optimizing Efficiency in Active Cell Balancing (ACB)
	Optimization-friendly charge transfer model
	Inductor optimization via Geometric Programming (GP)
	Optimal current for individual links
	Charge routing problem
	Best case reference solution for charge routing
	Constraint-driven charge routing
	Routing case study

	Related work

	Conclusions and Future Work
	Bibliography
	List of Tables
	List of Figures
	List of Definitions & Theorems
	Abbreviations
	Nomenclature
	Index

