TECHNISCHE UNIVERSITAT MUNCHEN
Fakultat fur Informatik
Lehrstuhl III: Datenbanksysteme

On Supporting Hierarchical Data in
Relational Main-Memory Database Systems

Jan Peter Finis

@ TECHNISCHE UNIVERSITAT MUNCHEN

Fakultat fir Informatik m

Lehrstuhl IIT — Datenbanksysteme

On Supporting Hierarchical Data in
Relational Main-Memory Database Systems

Jan Peter Finis
Master of Science,
Master of Science with honours

Vollstédndiger Abdruck der von der Fakultét fir Informatik der Technischen Universi-
tat Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Seidl

Priifer der Dissertation: 1. Univ.-Prof. Alfons Kemper, Ph.D
2. Univ.-Prof. Nikolaus Augsten, Ph.D.
(Universitéit Salzburg, Osterreich)

3. Univ.-Prof. Dr. Thomas Neumann

Die Dissertation wurde am 24.03.2016 bei der Technischen Universitat Miinchen

eingereicht und durch die Fakultédt fiir Informatik am 16.06.2016 angenommen.

For my parents,
who kept their faith in me even though
my elementary school teacher told them
that I would never succeed in life

Abstract

Hierarchical data is prevalent in a number of business use cases. However, most business
data is stored in a relational database and hierarchical data is somehow encoded rela-
tionally. Since most queries on hierarchies also feature relational data, companies must
continue maintaining their hierarchical data in a relational database system.

There are many challenges when storing and querying hierarchical data in a relational
context, because tables are inherently flat data structures while hierarchies possess
inherent recursive properties. This impedance mismatch calls for dedicated hierarchy
support in relational database systems: A user-friendly front end for querying hierarchical
data and a sophisticated back end for evaluating these queries efficiently. In addition,
hierarchies are usually dynamic with a high rate of complex, structural updates being
issued on them. The aim of this thesis is to take on all these challenges.

We propose a holistic framework for maintaining and querying hierarchical data in a
modern main-memory relational database system. We design a data model for unifying
hierarchical and relational data. Based on this model, we propose a query language,
which blends seamlessly into SQL and allows the intuitive phrasing of queries working
simultaneously on hierarchical and relational data. We then devise a family of indexing
schemes to index hierarchical data effectively by enabling efficient queries and updates.
We show how the proposed indexes can be used to answer queries in our SQL extension,
thus providing all building blocks for our hierarchy framework. We then extend the
framework with indexes for versioned hierarchical data, since many use cases require
versioning for traceability and confirmability purposes. Finally, we propose an algorithm
for the change recognition in hierarchies, which is important for versioning and completes
our hierarchy framework.

As our experiments on real-world data of SAP customers show, our framework enables
unprecedented performance and is the first approach to handle complex updates efficiently.
The fact that parts of our framework have already been shipped with the latest release
of the SAP HANA Vora in-memory query engine [85] proves that our work is not only of
theoretical scientific interest but adds real business value to a relational system.

vii

Kurzfassung

Hierarchische Daten sind weit verbreitet in geschéftlichen Anwendungsfillen. Jedoch
werden die meisten Unternehmensdaten in relationalen Datenbanken gespeichert und
hierarchische Daten werden relational codiert. Da die meisten Anfragen auf hierarchischen
Daten auch relationale Daten beinhalten, miissen Unternehmen weiterhin hierarchische
Daten in ihren relationalen Systemen halten.

Durch das Speichern und Anfragen von hierarchischen Daten im relationalen Kon-
text ergeben sich viele Herausforderungen, da Tabellen inhérent flach sind, wihrend
Hierarchien inharent rekursive Eigenschaften besitzen. Dies erfordert dedizierte Hierar-
chieunterstiitzung in relationalen Systemen: Ein nutzerfreundliches Frontend zur Anfrage
von hierarchischen Daten und ein ausgefeiltes Backend, um diese Anfragen effizient aus-
zuwerten. Zusétzlich werden auf Hierarchien im Allgemeinen viele komplexe, strukturelle
Anderungen durchgefiihrt. Ziel dieser Arbeit ist, all diese Herausforderungen anzugehen.

Wir schlagen ein holistisches Framework zur Haltung und Anfrage von hierarchischen
Daten in einem modernen, relationalen Hauptspeicherdatenbanksystem vor. Wir entwerfen
ein Datenmodell zur Vereinigung von hierarchischen und relationalen Daten. Basierend auf
diesem Modell fithren wir eine Anfragesprache ein, welche sich nahtlos in SQL integriert
und dabei die intuitive Formulierung von Anfragen ermoglicht, welche gleichzeitig auf
hierarchischen und relationalen Daten arbeiten. Dann entwerfen wir eine Familie von
Indexstrukturen zur effektiven Indexierung von hierarchischen Daten. Wir zeigen wie
Anfragen in unserer SQL-Erweiterung mit Hilfe unserer Indexe beantwortet werden
konnen. Somit stellen wir alle nétigen Bausteine fiir unser Framework bereit. Als néchstes
erweitern wir das Framework um Indexe fiir versionierte hierarchische Daten, da viele
Anwendungsfille Versionierung aus Riickverfolgbarkeits- und Beweisbarkeitsgriinden
benétigen. Als letztes beschreiben wir einen Algorithmus zur Erkennung von Anderungen
in Hierarchien, welcher zur Versionierung benotigt wird und unser Framework abrundet.

Wie unsere Experimente mit echten Kundendaten von SAP belegen, stellt unser
Framework beispiellose Leistung bereit und ist das erste Verfahren, welches komplexe An-
derungsoperationen effizient unterstiitzt. Der Fakt, dass Teile unseres Frameworks bereits
mit dem neuesten Release der SAP HANA Vora Hauptspeicherengine [85] ausgeliefert
wurden zeigt, dass unsere Arbeit nicht nur von theoretischem, wissenschaftlichen Interesse
ist, sondern auch zum wirtschaftlichen Nutzen eines relationalen Systems beitragt.

ix

Contents

Abstract vii
Kurzfassung ix
List of Figures XV
List of Tables Xvii
1 Introduction 1
1.1 The Hierarchy/Table Impedance Mismatch 2
1.2 Contribution and Outline 5

2 A Data Model and Front End For Hierarchical Data 9
2.1 Requirements Review 11
2.2 From Status Quo to Our Proposal 13
2.3 Hierarchical Tables: Our Model 19
2.4 Querying Hierarchies L. 21
2.5 Creating and Manipulating Hierarchies 23
2.5.1 Deriving a Hierarchy from an Adjacency List 23

2.5.2 Hierarchical Base Tables 26

2.5.3 Manipulating Hierarchies 27

2.6 Advanced Customer Scenarios 28
2.7 Architecture and Implementation Aspects 32
2.7.1 Hierarchy Indexing Schemes 32

2.7.2 Hierarchy-Aware Join Operators 34

2.7.3 Bulk-Building o 35

2.8 Experiments 39

X1

xii

Contents

2.9 Conclusion

Order Index: Indexing Highly Dynamic Hierarchical Data

3.1 Dynamic Hierarchies in Relational Systems
3.1.1 Challenges
3.1.2 Query Capabilities
3.1.3 Update Capabilities
3.2 Related Indexing Schemes,
3.3 Hierarchical Query Processing
34 OrderIndexes
3.4.1 The Order Index Concept
3.4.2 Order Index Structures
3.4.3 Back-Links in Block-Based Order Indexes
3.4.4 Updating Order Indexes
3.5 Order Index Extensions
3.5.1 Disk-Based Systems

3.5.2 Supporting ordinal primitives with the BO-Tree

3.6 Performance Evaluation
3.6.1 TestSetup.
3.6.2 Block Size & Back-Link Representation
3.6.3 Comparison to Existing Schemes

3.7 Conclusion

DeltaNI: Indexing Versioned Hierarchical Data

4.1 Hierarchies in RDBMS
4.2 Interval Deltas
4.3 Implementing the Query Primitives
4.4 Efficient Delta Representation
4.5 Obtaining Deltas
4.5.1 Static Scenario oL
4.5.2 Dynamic Scenario L.
4.6 Delta Version Histories
4.6.1 Querying the History
4.6.2 Exponential Deltas
4.6.3 Optimizations
4.7 Evaluation oo

Contents xiii
4.8 Related Work 132
4.9 Conclusion 134

5 RWS-Diff: Flexible Change Detection in Hierarchical Data 135
5.1 Tree Edit Scriptso 137
5.2 Related Work 139

5.2.1 Tree Edit Distance Computation 139

5.2.2 Computing Diffs between Trees 140

5.3 The RWS-Diff Algorithm 142
5.3.1 Finding Simple Mappings 142

5.3.2 Random Walk Similarity Matching 143

5.3.3 Edit Script Generation L. 145

5.3.4 Complexity of RWS-Dift 147

5.4 Random Walk Similarity 148
5.4.1 Grams for Trees, 148

5.4.2 Random Walk Distance 150

5.4.3 Weighting Grams 153

5,5 Ewvaluation 153
5.6 Conclusion 160

6 Conclusions 163
Bibliography 165

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

Example hierarchy and corresponding table. 2
Example hierarchy and corresponding table. 10
Using SQL/XML for XML generation and XQuery evaluation . . . 14
Example hierarchical query, expressed using two RCTEs. 17
Example from Figure 2.3 expressed using the proposed SQL extensions 18
Querying a heterogeneous hierarchy 30
Example hierarchy and its NoDE column using different indexing schemes 33
Steps of the bulk build algorithm 36
Depth first traversal Lo 37

Various labeling schemes and their changes when a subtree is relocated 46

Relocation updates on an example hierarchy: before and after . . . 50
An example query using the SQL extensions from [18] 59
A hierarchy with Order Index (AO-Tree) 63
Query evaluation in the Order Indexes 67
Using back-links to find entry [3 71
Inserting new leafs H and | in a BO-Tree 72
Relocating B below F in a BO-Tree 80
Relocating B below F in an O-List 82
Updating levels after left rotation in an AO-Tree [36] 83
Adjusting levels after a leaf block merge 83
Main memory and disk implementation of an O-List 85
Ordinal queries in the BO-Tree 86
BO-Tree performance for different back-links and block sizes 91
Performance of different query primitives 93
Compound query performance (scanfz]) 95

XV

xvi List of Figures
3.17 Bulk build and leaf update performance 95
3.18 (a) mixed_updates[p] (b) relocate_subtree[z| (c) relocate_range[y] . . 96
3.19 Performance over varying hierarchy size 98
4.1 An HR hierarchy and its NI encoding 104
4.2 Insertion, relocation, and deletion in a hierarchy, modeled by a swap 112
4.3 Model of translation rangeso 114
4.4 Representation of translation ranges 114
4.5 Inferring deltas from source and target interval encoding 116
4.6 Updating a version delta by swapping translation range Ry with Ry 117
4.7 Using the accumulation tree as target tree 119
4.8 Left rotation in the accumulation tree 120
4.9 Performing the swap operation on the (accumulation) target tree. . 121
4.10 Using the number of trailing zeros for deciding delta sizes 123
4.11 Merging two deltas oo 126
4.12 Execution time and space consumption measurements 130
5.1 Slightly different trees make top-down and bottom-up matching fail 136
5.2 Sibling order invariant subtree hashes 143
5.3 Algorithm for generating edit scripts 145
5.4 Edit mapping with implied edit operations 146
5.5 Partial construction of p,q-grams L 149
5.6 Transforming bags of grams into corresponding random walks . . . 151
5.7 One change per parent on the nasal dataset. 156
5.8 10 changes on the nasal dataset. 157
5.9 Growing number of changes on the nasal dataset.. 158

List of Tables

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1

5.1
5.2
2.3
5.4

Projecting hierarchy properties of BoM.
Bulk-building performance oL
Query performance

Essential query primitives on hierarchies
Ordinal query primitives L.
Update operations on hierarchies
Asymptotic query complexities for various indexing schemes

Asymptotic update complexities for various indexing schemes
Implementing the query primitives
Basic functions and fields used during range relocation
Comparison of ordinal approaches
Number of cache misses per operation

memory consumption in bytes pernode
Implementing the Order Index interface for DeltaNI

Comparison of indexes with 10,000 points
Comparison of indexes with 100,000 points
Result for the bbcdataset
Result for the tagesschau dataset

110

154
154
159
160

Xvii

CHAPTER 1

Introduction

Hierarchical data, that is, data shaped as a rooted tree or forest, has always
been ubiquitous in business, engineering, and science applications. In Enterprise
Resource Planning (ERP) applications, various kinds of large hierarchies exist.
For example, companies need to manage human resource (HR) hierarchies, which
representing their organizational structures such as reporting lines or geographical
divisions, enterprise asset (EA) hierarchies, which model all production-relevant
assets and their parts (e. g., plants, machines, machine-parts, tools, equipment), or
material hierarchies, which constitute a hierarchical arrangement of components
to assemble an end product. Taxonomies, file systems, and hierarchies in the
dimensions of data cubes are further examples for the prevalence of hierarchical
data. The hierarchical data models JSON and XML have virtually become the
language of the world wide web and have also received a lot of attention from the
research community in the last decade. All in all, the importance of hierarchical
data prevails in virtually all applications.

Although hierarchical data is so omnipresent, the relational model is still the pre-
dominant data model for modern database systems. Since such relational database
systems (RDBMS) have been the core data storage for almost all mission critical
corporate data in the last decades, it is very unlikely that they will be replaced
in the near future. Moreover, even if companies were willing to install separate
hierarchical databases, having coexisting relational and hierarchical systems would
overcomplicate business analytics since users virtually always need relational and hi-

2 1.1. The Hierarchy/Table Impedance Mismatch

hierarchy

id parent interval payload

'A1' NULL [0,23]

'B1' 'A1’ [1,6]
'B2' 'A1' [7,22]
'c1' 'B1' [2,3]
'c2' 'B1' [4,5]

'c3' 'B2' [8,15]
'c4' 'B2' [16,21]
‘D1 'C3! [9,12]
'D2' 'C3' [13,14]
'D3' 'C4' [17,20]
'E1' 'D1' [10,11]
'E2' 'D3' [18,19]

Figure 1.1: Example hierarchy and corresponding table

erarchical data. Joining these data models would be cumbersome if they are stored
in different systems. Another problem with dedicated hierarchical databases is that
most legacy hierarchical corporate data is somehow encoded in relations. Manually
migrating this implicitly represented hierarchical data to an own system would be
a difficult and error-prone task. Consequently, the only reasonable approach for

handling hierarchical corporate data is to use existing relational systems.

1.1 The Hierarchy/Table Impedance Mismatch

When trying to represent hierarchical data in relations, we face a classical impedance
mismatch: Relations are flat tables, while hierarchies have inherent recursive prop-
erties. Figure 1.1 shows an example hierarchy on the left and a table representing
it in two different ways on the right: Either through storing the key of the parent
node of each node, or by storing a numeric interval for each node. Especially the

former is a standard means of encoding a hierarchy in relational data.

A simple hierarchical query consists of finding all descendants of node B2 (which
are C3, C4, D1, D2, D3, E1, and E2 in this example). When using the parent
column to represent the hierarchy, this simple query cannot be answered in SQL-92,
since we would have to self-join the table repeatedly to find all descendants. The
number of joins depends on the depth of the hierarchy, so no query with a fixed
number of joins is able to find all descendants in the general case. Instead, database
users tend to implement this repeated join in application code, issuing one query

Chapter 1. Introduction 3

per level of the hierarchy. This approach is neither efficient nor user-friendly, as it

requires query logic in the application code.

Recursive Common Table Expressions (RCTEs) [39, 3], which are part of the
SQL-99 standard, can be used to express the query thoroughly:
WITH RECURSIVE descendants (id) AS (
SELECT h.id FROM hierarchy h WHERE h.parent = 'B2'
UNION ALL
SELECT h.id FROM hierarchy h JOIN descendants d ON h.parent = d.id
)
SELECT id
FROM descendants
While we are now able to at least express the query, the RCTE can still not be
considered a good solution: First, it is still overly complex even for this extremely
simple query. Next, the fact that this query represents all descendants of B2 is
not obvious from the query; it is therefore hard to read and maintain. Finally, the
recursive join specified with this statement is still an inferior evaluation technique

for hierarchies and shows unsatisfying performance for large hierarchies.

Since no satisfying query evaluation techniques for hierarchies represented by a
parent column exist, one may argue that such a column is simply a bad represen-
tation and the problems with it can be circumvented by picking a better suited
hierarchy encoding. And indeed, the interval column shown in Figure 1.1 can
answer the example query with one single join:

SELECT h.id FROM hierarchy h JOIN hierarchy r

ON h.interval.lower > r.interval.lower
AND h.interval.upper < r.interval.upper
WHERE r.id = 'B2'
Although this join is easier to write and more efficient to evaluate than the RCTE;,
the fact that this query works on a hierarchy and extracts descendants is still
hidden. From a bird’s eye view, the query looks like a simple join over some
relational data using a range predicate. In addition, using the interval column to
encode the hierarchy structure makes updates very expensive, since the insertion
of a node usually changes the interval of various other nodes. So while queries are
easier and more efficient with this encoding, updates are much more difficult and
less efficient.

The encodings shown here are only two examples of many existing ones. However,
they are good representatives for showing that although it might seem simple to

4 1.1. The Hierarchy/Table Impedance Mismatch

represent hierarchical data in relations on first sight, each encoding has severe

weaknesses which limit its applicability.

The example also shows that the challenges when blending hierarchical data
into relational data are twofold: First, the chosen encoding must facilitate efficient
query and update processing. Second, the query language must be user-friendly.
It may not deceive about the fact that a hierarchy is being queried: The kind of
hierarchical query issued must be obvious from the syntax. In addition, the syntax
must blend well into SQL so that SQL users are able to learn it without much
effort.

In conclusion, the hierarchy/table impedance mismatch demands adaptions in
the front end (the query language) as well as in the back end (the query processing
and encoding). Hence, only a holistic approach taking into account all database
layers can yield thoroughly satisfying results.

Due to the prevalence of hierarchical data in business applications, almost
all large database vendors have included some explicit hierarchy support into
their relational products: Oracle Database provides Hierarchical Queries [2] as a
proprietary SQL extension for traversing recursively structured data. Microsoft
SQL Server 2008 introduced the hierarchyid [72, 1] data type whose values represent
a position in a hierarchy. PostgreSQL supports hierarchical data with its ltree
module [90]. The SQL/XML standard [4] for integrating XML support into SQL
has also been implemented by prominent vendors [61, 75, 13]. Considering research,
hierarchical data support has received a lot of attention, especially with the advent
of XML. Dozens of papers have been dedicated to various aspects of hierarchical
data support. In conclusion, a lot of approaches for supporting hierarchical data
in relational systems exist in research as well as in commercial and open-source

database products.

Since virtually every existing relational database system features some kind of
hierarchy support and a lot of papers exist on the topic, it might seem that this
problem may be considered solved. However, all existing systems suffer from various
issues which we will investigate in the remainder of this thesis. Consequently, their
general applicability is limited and a satisfactory solution is missing up to date. The
reason for this is probably that most systems integrated hierarchy support because
of growing customer demand while not treating this challenging problem with the
due prudence: While the relational model needed decades of research to mature to
the state in which it is today, most systems seem to have integrated the hierarchical

Chapter 1. Introduction)

data model on a least effort basis. In contrast, a data model introducing such a
severe impedance mismatch calls for a careful integration strategy. In addition,
almost all dedicated hierarchy support in existing systems is about querying a
hierarchy; efficient update support is not in the focus. Some system only support
fully static hierarchies, while others provide some limited, often inefficient means of
updating hierarchical data. Since there are indeed use cases featuring very dynamic
hierarchies, efficient update support is of paramount importance.

In conclusion, all existing systems lack some aspect of satisfactory support of
possibly-dynamic hierarchical data. The aim of this thesis is therefore a detailed

and thorough consideration of the challenges arising in this context.

1.2 Contribution and QOutline

All in all, our contribution is a fully-featured, efficient, and user-friendly framework
for maintaining and querying hierarchical data in a relational main-memory data-
base system. Supporting hierarchical data in such a system requires an easy-to-use
front end as well as an efficient back end.

The thesis is structured as follows: Chapter 2 covers the front end considerations,
while Chapter 3 covers the back end considerations. Afterwards, we explore the
advanced topics hierarchy versioning (Chapter 4) and hierarchy change detection
(Chapter 5). Finally, Chapter 6 draws conclusive remarks.

Our first contribution (Section 2.1) is a survey of the requirements a hierarchy
framework in a relational setting must fulfill. The survey is based on various SAP
customer scenarios and therefore accurately reflects the demands of business use
cases.

A data model and front end for hierarchical data in a relational setting is
our second contribution (Chapter 2). In this regard, we also investigate into
the shortcomings of existing database systems and data models for hierarchical
data. Based on our data model we propose a query language for hierarchical data
which blends seamlessly into SQL and allows for queries featuring hierarchical and
relational data simultaneously. We also propose data definition language (DDL)
and data manipulation language (DML) constructs for hierarchical data. Therefore,
we provide a fully-featured front end for hierarchical data in a relational database
system.

6 1.2. Contribution and Outline

As our third contribution (Section 2.7.3), we provide a highly-efficient operator
for bulk-building a hierarchy from an existing relational representation, which is
important for legacy use cases. This operator allows efficient ad-hoc hierarchy
query execution on relationally-encoded hierarchical data.

Existing works on hierarchy indexing often only cover a small set of query and
update primitives, which is not rich enough to answer important queries or execute
necessary kinds of updates. In fact, we were unable to find any existing work on
finding a suitable abstract interface for hierarchy indexes. Therefore, our fourth
contribution (Section 3.1) consists of a generic interface of hierarchy query and
update primitives. The primitives are carefully selected with regards to query and
update needs of various business scenarios with the capabilities of existing indexing
schemes in mind. Hence, this interface describes a necessary set of operations which

each hierarchy indexing scheme must expose to be considered generally applicable.

A survey and a taxonomy of existing indexing schemes is our fifth contribution
(Section 3.2). Our findings reveal that most existing schemes share similar properties
and capabilities. They therefore can be summed up in a small number of categories
with similar asymptotic behaviour. For all identified indexing categories we derive
the asymptotic query and update runtimes of all methods from our proposed
interface. We therefore draw an expressive outline of existing indexing techniques.

Using our proposed generic interface of query primitives, our sixth contribution
(Section 3.3) is to show how indexes with this interface can be used in various
hierarchy-aware relational operators to evaluate hierarchical queries efficiently. This

forms the basis of our proposed back end for efficient query evaluation.

As our seventh contribution (Sections 3.4—3.6) we propose Order Indexes as a
family of index structures for hierarchical data that is able to handle high rates
of potentially-complex updates. To our best knowledge, Order Indexes are the
first indexing technique which can handle all kinds of complex hierarchy updates
efficiently. In addition, they support all proposed query primitives and offer query
performance comparable to or even higher than existing static indexing schemes.
Using Order Indexes in conjunction with hierarchy-aware relational operators is
an efficient means for hierarchical query and update execution and therefore an
efficient back end for our framework.

Our eighth contribution (Chapter 4) is DeltaNI, an index structure for versioned
hierarchical data. Using this index structure allows for maintaining an unbounded
number of versions of a hierarchy compactly. Updates are appended to the latest

Chapter 1. Introduction 7

version for a linear history of versions. In addition, the index also supports
branching version histories where new branches can be created from any existing
version and updates can be appended to any branch. The index is able to answer
queries efficiently in all versions, irrespective of the age of the version. DeltaNI
exposes the same interface as Order Indexes. Therefore, the relational operators
used in conjunction with Order Indexes for efficient query processing can also be
used with DeltaNI to enable query processing on versioned hierarchies without any
changes in the operators. By using DeltaNI in conjunction with Order Indexes, our
framework is able to support non-versioned and versioned hierarchical data—both
with maximum performance—in the same database.

The RWS-Diff algorithm for finding the differences between two hierarchies is
our ninth and final contribution (Chapter 5). Given two hierarchies, it generates an
approximately cost-minimal edit-script, which contains a sequence of edit operations
to transform the first hierarchy into the second. Thus, the edit script compactly
represents the difference between the two hierarchies (the so-called edit distance).
In our scenario, such edit scripts are useful when a hierarchy stored in the database
is altered by a third party tool. Then, we can compute the edit script to trace the
changes performed by the third party tool and to apply these changes onto the
database.

The practical applicability of our contributions in a modern setting is demon-
strated by integrating our hierarchy handling framework into the relational main-
memory database systems HyPer [51] and SAP HANA [35]. The feasibility for
business scenarios is evidenced by basing our experiments on real business data of
SAP customers. The fact that parts of our framework have already been shipped
with the latest release of the SAP HANA Vora in-memory query engine [85] proves
that our work is not only of theoretical scientific interest but adds real business
value to a relational system.

CHAPTER 2

A Data Model and Front End
For Hierarchical Data

Parts of this chapter have previously been published in [18].

Hierarchical relations appear in virtually any business application, be it for repre-
senting organizational structures such as reporting lines or geographical divisions,
the structure of assemblies, taxonomies, marketing schemes, or tasks in a project
plan. But as tree and graph structures do not naturally fit into the flat nature of
the traditional relational model, handling such data today remains a clumsy and
unnatural task for users of the SQL language. We have investigated a number of
SAP applications dealing with hierarchies and collected their typical requirements
(Section 2.1). Within SAP’s Enterprise Resource Planning system, hierarchies are
used in the human resources domain to model reporting lines of employees, in
asset management to keep track of production-relevant assets and their functional
locations (e. g., plants, machines, machine parts, tools, equipment), and in materials
planning to represent an assembly of components into an end product, a so-called
bill of materials (BOM). Due to the limitations of the relational model and SQL,
logic for hierarchy handling within these applications has mostly been written in
ABAP and therefore runs within the application server. We have identified almost
a dozen different implementations of more or less the same hierarchy-handling logic,
which is unfortunate not only from an interoperability and maintainability point
of view. In most cases, hierarchies are represented in the database schema using
a simple relational encoding, and converted into a custom-tailored format within
the application, if needed. The most widespread encoding is a self-referencing

10

BOM
id pid kind payload pos
'A1' NULL 'compound' Al
'A2' NULL 'display' cee A2
'B1' 'Al' ‘'engine' Bl
'B2' 'Al' 'engine' B2
'Cl' 'B1' 'valve' C1
'C2' 'B1' 'rotor' c2
'C3' 'B2' 'compound' Cc3
'C4' 'B2' 'control' c4
'D1' 'C3' 'valve' D1
'D2' 'C3' 'rotor' D2
'D3' 'C4' 'cpu' D3

Figure 2.1: Example hierarchy and corresponding table

table resembling an adjacency list. It is well-known in the literature (e.g., [22])
under the term Adjacency List model. Figure 2.1 shows an example instance: table
BOM represents a bill of materials. Field id uniquely identifies each part. The
hierarchical relationship is established by a self-reference pid associating each row
with its respective parent row, the part containing it. The resulting hierarchy is
displayed on the left.

The only standard hierarchy-handling tools that SQL-based DBMSs today offer
are Recursive Common Table Expressions (RCTEs) and some means to define cus-
tom stored procedures for working on adjacency lists like BoM. But these tools suffer
from certain usability and performance deficiencies. The conventional alternative
is to abandon the Adjacency List model and implement a more suitable encoding
scheme manually, either on the relational level [22] or within the application (i.e.,
ABAP), relinquishing any kind of engine support either way. We consider neither
RCTEs nor alternative encoding schemes nor any other purported solution we
investigated sufficient to meet the common requirements that we have identified
(Section 2.2). These requirements call for a solution that seamlessly integrates
hierarchical and relational data by combining an expressive front end (new language
constructs) with a powerful back end (indexing and query processing techniques),
without departing farther than necessary from the philosophy of the relational
model. Such a solution is missing to date.

That is not to say the research community has not given enough attention to
the underlying technical challenges. In fact, the problem of storing and indexing
hierarchical or recursively structured data has been studied deeply in the past
decade, in the course of research efforts in the domains of XML and semi-structured

Chapter 2. A Data Model and Front End For Hierarchical Data 11

databases. While recognizing that many challenges of indexing and query processing
have been successfully tackled previously (e.g., by RCTEs, encoding schemes, and
structural joins), we believe there is an open opportunity to reconcile the ideas and
techniques from the mentioned areas into a general framework for working with
hierarchies in a relational context.

The core concept of our framework is to encapsulate structural information into a
table column of a new special-purpose data type NODE (Section 2.3). Our extensions
to the SQL query language comprise a small yet essential set of built-in functions
operating on the NODE values (Section 2.4), plus DDL and DML constructs for
obtaining and manipulating a NODE column in the first place (Section 2.5). Altogether
the language elements cover the typical requirements and blend seamlessly with
the look and feel of SQL, as we illustrate on some advanced scenarios (Section 2.6).
The back end design we present is geared to the in-memory column store of SAP
HANA [35]. From an early stage on, HANA has been envisioned as a multi-engine
query processing environment offering abstractions for data of different degrees of
structure, and the idea of hierarchical tables fits well in this spirit. That said, our
framework is generic in such a way that it can be adapted for different RDBMSs,
including classical row stores. Our HANA-based prototype provides insights into
architectural and implementation aspects (Section 2.7) as well as a proof of concept

and initial performance characteristics (Section 2.8).

2.1 Requirements Review

Through consultations with stakeholders at SAP we investigated a number of
customer scenarios dealing with hierarchies. We restrained ourselves to “strict”
hierarchies—basically trees—and precluded applications featuring general non-tree
graphs. Hence, we identified the following requirements that a DBMS should fulfill
to exhibit decent support for hierarchical data:

#1 Tightly integrate relational and hierarchical data. Today business data still
resides mainly in pure relational tables, and virtually any query on a hierarchy
needs to simultaneously refer to such data. First and foremost, any hierarchy
support must harmonize with relational concepts, both on the data model side
and on the language side. In particular, it is of major importance that joining
hierarchical and relational data is straightforward and frictionless.

12 2.1. Requirements Review

#2 Provide expressive, lightweight language constructs. Apart from expressiveness,
the constructs must be intelligible in such a way that SQL programmers are able
to intuitively understand, adopt, and leverage the functionality they provide. At
the same time, an eye must be kept on light syntactic impact: Where appropriate,
existing constructs should be reused or enhanced rather than replaced with new
inventions. This not only minimizes training efforts for users who are familiar with
SQL, but also reduces implementation complexity and adoption barriers for an
existing system such as HANA.

#3 Enable and facilitate complex queries involving hierarchies, by offering conve-
nient query language (QL) constructs and corresponding back end support. Typical
tasks to be supported are: querying hierarchical properties such as the level of a
node, and selecting nodes according to their properties; testing node relationships
with respect to hierarchy azes such as ancestor, descendant, parent, sibling, or child;
navigating along an axis starting from a given set of nodes; and arranging a set of
nodes in either depth-first or breadth-first order.

#4 Support explicit modeling of hierarchical data. In a plain relational database,
a schema designer initially has to decide on how to represent a hierarchy (e.g.,
as an adjacency list). Even though relational tree encodings are well understood
nowadays [22], carefully choosing and implementing one still requires advanced
knowledge. What’s more, a tree encoding generally disguises the fact that the
corresponding table contains a hierarchy. What is needed is a way to explicitly
model hierarchies in the schema, using abstract, special-purpose data definition
(DDL) constructs that hide the fiddly storage details.

#5 Provide front and back end support for data manipulation. Hierarchies in
business scenarios are usually dynamic. In some cases manipulations involve only
insertions or removals of individual leaf nodes, while in other cases more complex
update operations are required, such as collective relocations of large subtrees.
As an example, consider the enterprise assets (EA) hierarchy of an automotive
company that contains a lot of machines and robots and relocates them whenever
a new production line is established. Through a previous analysis of a customer’s
EA hierarchy, we found that as much as 31% of all recorded update operations
were subtree relocations [36]. Consequently, the system must provide an interface
(DML) and efficient back end support for both leaf and subtree manipulations.

Chapter 2. A Data Model and Front End For Hierarchical Data 13

#6 Support legacy applications, where modeling and maintaining hierarchies ex-
plicitly (#4) by extending the schema is not always an option. In existing schemas,
hierarchies are necessarily encoded in a certain relational format—in the majority
of cases the Adjacency List format. Users shall be enabled to take advantage of all
QL functionality “ad-hoc” on the basis of such data without having to modify the
schema. For that purpose, means to create a derived hierarchy from an adjacency
list shall be provided.

#7 Enforce structural integrity of a hierarchy. To this end, the system must prevent
the user from inserting non-tree edges. Furthermore, it must ensure that a node

cannot be removed as long as it still has children, which would become orphans.

#8 Cope with very large hierarchies of millions of nodes. Every proposed language
construct must yield an evaluation plan that is at least as fast as—and often
considerably faster than—the best equivalent hand-crafted RCTE. To achieve
maximum query performance, back end support in the form of special-purpose
indexing schemes is indispensable. For hierarchies that are never updated—in
particular derived hierarchies (#6)—read-optimized static indexing schemes are
to be used. In contrast, dynamic scenarios (#5) demand for dynamic indexing

schemes that support update operations efficiently.

In addition to these primary requirements, further requirements arise in some
advanced customer scenarios: One example are multi-versioned or temporal hierar-
chies. Another example are “non-strict” hierarchies, that is, directed graphs that
contain a few non-tree edges but shall be treated as trees anyway. Such hierarchies
can be handled by systematically extracting a spanning tree from the graph, or by
replicating subtrees that are reachable via non-tree edges. Although we already
anticipate these advanced requirements in our prototype, they are not in the scope
of this thesis.

2.2 From Status Quo to Our Proposal

Do we need yet another solution? The problem at hand is almost ancient in
terms of DBMS history. Hierarchical Queries [2], a proprietary SQL extension for
traversing recursively structured data in the Adjacency List format, have been a
part of Oracle Database for about 35 years. In 1999, Recursive Common Table

14 2.2. From Status Quo to Our Proposal

SELECT
XMLElement ("PurchaseOrder", XMLAttributes(pono AS "pono"),
XMLElement ("ShipAddr", XMLForest(
street AS "Street", city AS "City", state AS "State")),
(SELECT XMLAgg(
XMLElement ("LineItem", XMLAttributes(lino AS "lineno"),
XMLElement ("liname", liname)))
FROM lineitems 1
WHERE 1.pono = p.pono)
) AS po
FROM purchaseorder p

SELECT top_price, XMLQUERY (
'for $cost in /buyer/contract/item/amount
where /buyer/name = $varl return $cost'’
PASSING BY VALUE 'A.Eisenberg' AS varl, buying_agents
RETURNING SEQUENCE BY VALUE)
FROM buyers

Figure 2.2: Using SQL /XML to generate XML from a relational table (top, [61])
and to evaluate XQuery (bottom, [34])

Expressions (RCTEs) [39, 3] brought standard SQL a general and powerful facility
for recursive fixpoint queries. Furthermore, many alternative data models and
languages incorporating hierarchies more or less natively have emerged, such as
Multidimensional Expressions (MDX), XPath, XQuery, and SQL/XML. Upon
closer inspection, however, neither of the existing approaches stands up to our
requirements. In the following we discuss the assets and drawbacks of the strongest

existing solutions we found.

XML. Storing and querying XML-—an inherently hierarchical data format—and
the idea of bridging the technology stacks of the relational and XML worlds have
received a lot of attention in the research community. One research track pursues
the idea of adapting RDBMSs for storing XML fragments and evaluating XPath
and XQuery based on relational query processing techniques [15, 42]. Beyond that,
the idea of joining the XML and relational data models in order to enable queries
over both tables and XML documents has resulted in the SQL/XML standard [4],
which integrates XML support into SQL. It has been implemented by prominent
vendors [61, 75, 13]. Figure 2.2 depicts two example SQL/XML queries. So-called
publishing functions enable the user to generate XML from relational input data
(top example). Conversely, XQuery can be used within SQL statements to extract

Chapter 2. A Data Model and Front End For Hierarchical Data 15

data from an XML fragment and produce either XML or a relational view (bottom
example). While SQL /XML is the tool of choice for working with XML within
RDBMS:s, it cannot hide the fact that the underlying data models were not designed
for interoperability in the first place. “Casting” data from a relational to an XML
format or vice versa induces a lot of syntactic overhead, as the many xML. .. clauses
cluttering the top example of Figure 2.2 attest. In addition, SQL/XML requires
users to know both data models and the respective query languages, which is a
challenge to SQL-only users. Since our requirements #1 and #2 mandate that
the data model and query language should blend seamlessly with SQL, we do not
consider SQL /XML a candidate for general hierarchy support in a relational system.
That said, we recognize that many techniques from the XML field, such as join
operators and labeling schemes, can be leveraged for our purpose.

hierarchyid is a variable-length system data type introduced in Microsoft SQL
Server 2008 [72, 1] whose values represent a position in an ordered tree using
ORDPATH [74], a compact and update-friendly path-based encoding scheme. The
feature is apparently a by-product of SQL Server’s XML support and as such a
good demonstration that XML technology can be leveraged for more general uses.
The data type provides methods for working with nodes, such as GetLevel and
IsDescendant0f. Nodes can be inserted and relocated by generating new values
using, for example, methods GetReparentedValue and GetDescendant. From a syntax
and data model perspective, this is the related work that is most similar to what we
present in this chapter. However, there are several major differences to our design:
The hierarchyid field is provided as a simple tool for modeling a hierarchy; yet, a
collection of rows with such a field does not necessarily represent a valid hierarchy.
It is up to the user to generate and manage the values in a reasonable way. By
design, the system does not enforce the structural integrity of the represented tree.
For example, it does not guarantee the uniqueness of generated values, and it does
not prevent accidentally “orphaning” a subtree by deleting its parent node. In
contrast, we require the system to ensure structural integrity at any time (Req. #7),
so that queries on hierarchies will not yield surprising results. Of course, this design
choice comes at a price, as consistency has to be checked on each update. As another
difference, we opt to provide flexibility regarding the underlying indexing scheme.
Rather than hardwiring a particular scheme such as ORDPATH, our design allows a
scheme to be chosen according to the application scenario at hand. ORDPATH has

16 2.2. From Status Quo to Our Proposal

the inherent deficiency that relocating a subtree incurs changes to all hierarchyid
values in that subtree (cf. Req. #5).

Hierarchical Queries in Oracle Database [2] extend the SELECT statement by the
constructs START WITH, CONNECT BY, and ORDER SIBLINGS BY. The wording of these con-
structs and the related built-in functions and pseudo-columns such as ROOT, IS_LEAF,
and LEVEL clearly hint at their intended use for traversing hierarchical data in the
Adjacency List format. The underlying recursion mechanism is conceptually similar
to RCTEs. Most functionality can in fact be expressed straightforwardly using
RCTEs [68], so the discussion in the following paragraphs applies to Hierarchical

Queries as well.

Recursive Common Table Expressions are a standard tool that can, among other
things, be used for working with a table in the Adjacency List format. We refer to
this particular combination as the “RCTE-based approach”. As a generic mechanism,
RCTEs do in fact have interesting uses far beyond traversing hierarchical data,
and we by no means intend to render them obsolete. To convey an impression of
how our design and the RCTE-based approach differ, we revisit the BOM example
from Figure 2.1. Consider the following query, which is derived from a customer

scenario:

“Select all combinations (e,r,¢) of an engine e, a rotor r, and a compound part c,

such that e contains r, and r is contained in ¢.”

In the example BOM, the qualifying node triples are (B2, D2, C3), (B2,D2, A1),
and (B1,C2,Al). This query is not entirely trivial in that it involves not only two,
but three nodes that are tested for hierarchical relationships. Figure 2.3 shows
an RCTE-based solution. It selects the id and a payload of each node. We use
two RCTEs: one starting from an engine e and navigating downwards from e
to r, the other navigating upwards from r to c¢. Obviously, the statement is not
particularly intelligible to readers, and somewhat tedious to write down in the first
place. What’s more, it is not the only way to solve the problem. An alternative
would be to fully materialize all ancestor/descendant combinations (u,v) using a
single RCTE and then work (non-recursively) on the resulting table. This option is
generally inferior due to the large intermediate result, though it might be feasible if
only a small hierarchy is involved. The point is that it is up to the user to choose
the most appropriate strategy for answering the query. The first choice to make is
the basic approach to use: one RCTE materializing all pairs versus two RCTEs as

Chapter 2. A Data Model and Front End For Hierarchical Data 17

WITH RECURSIVE ER (id, pl, r_id, r_pl, r_kind) AS (
SELECT e.id, e.payload, e.id, e.payload, e.kind

FROM BOM e

WHERE e.kind = 'engine'

UNION ALL

SELECT e.id, e.pl, r.id, r.payload, r.kind
FROM BOM r

JOIN ER e ON r.pid = e.r_id
),
CER (e_id, e_pl, r_id, r_pl,
c_id, c_pl, c_kind, pid) AS (
SELECT id, pl,r_id, r_pl,r_id, r_pl, r_kind, r_id

FROM ER
WHERE r_kind = 'rotor'
UNION ALL
SELECT e.e_id, e.e_pl, e.r_id, e.r_pl, c.id, c.payload, c.kind, c.pid
FROM BOM c
JOIN CER e ON e.pid = c.id
)
SELECT e_id, e_pl, r_id, r_pl, c_id, c_pl

FROM CER
WHERE c_kind = 'compound'

Figure 2.3: Example hierarchical query, expressed using two RCTEs.

in the example. The second choice is the join direction to proceed in: towards the
root versus away from the root. The query optimizer is tightly constrained by the
approach the user is prescribing. In fact, the query statement is imperative rather
than declarative: A bad choice from the user’s side can easily result in incorrect

answers or severe performance penalties.

Furthermore, as a direct consequence of the underlying Adjacency List model,
navigation axes other than descendant and ancestor (e. g., the XPath axis following)
are inherently difficult to express. And in order to query hierarchical properties
such as the level of a node, the user must do the computation manually using
arithmetics within the RCTE. Even though the flexibility of RCTEs allows the
user to perform arbitrary computations, seemingly basic tasks, such as depth-first
sorting, can be surprisingly difficult to express, let alone evaluate. All in all, writing
RCTESs to express non-trivial queries is an “expert-friendly” and error-prone task
in terms of achieving correctness, intelligibility, and robust performance.

In addition, the RCTE-based approach bears some inherent inefficiencies. We
give two examples: First, note that even though in Figure 2.3 we are interested

18 2.2. From Status Quo to Our Proposal

SELECT e.id, e.payload, r.id, r.payload, c.id, c.payload
FROM BOM e, BOM r, BOM c
WHERE e.kind = 'engine'
AND IS_DESCENDANT(r.pos, e.pos)
AND r.kind = 'rotor'
AND IS_ANCESTOR(c.pos, r.pos)
AND c.kind = 'compound'

Figure 2.4: The example query from Figure 2.3, expressed using the proposed SQL
language extensions.

only in qualifying ancestor/descendant pairs (e, r) and (r, ¢), but not in any nodes
in between, the RCTE necessarily touches all intermediate nodes anyway. Second,
attributes of interest to the user (payload in the example) must often be materialized

early and carried along throughout the recursion, which is costly.

From RCTFEs to our syntaz. Figure 2.4 shows how the example query is expressed
in the syntax we introduce in Section 2.3 and Section 2.4. In a nutshell, the pos
field of type NODE identifies a row’s position in the depicted hierarchy, which makes
BOM a hierarchical table. Without delving into details, we illustrate three major
cornerstones of our design: First, with the RCTE-based approach, the task of
“discovering” and navigating the hierarchy structure on the one hand, and the task
of actually using the hierarchy to compute hierarchical properties of interest on
the other hand, are inseparably intertwined. By contrast, the query statement
in Figure 2.4 makes use of an awvailable hierarchical table exposing the pos field.
The hierarchy structure is known ahead and persisted. The task of querying the
hierarchy is cleanly separated from the task of specifying and building the hierarchy
structure. Thus, any duplication of “discovery logic” in user code is avoided.
Second, unlike the generic RCTE mechanism, our syntax is particularly tailored
for working with hierarchies. This way we can provide increased intelligibility,
user-friendliness, and expressiveness, and we can employ particularly tuned data
structures and algorithms on the back end side. Third, our syntax states the
hierarchical relationships clearly and in a declarative way (e.g., IS_DESCENDANT).
This allows the query optimizer to reason about the user’s intent and pick an
optimal evaluation (i.e., join) strategy and direction.

The example shows how we achieve requirements #1, #2, and #3: Our syntax
blends with SQL (#1), as we stick to joins and built-in functions to provide all
required query support (#3). As a corollary, the syntactic impact is minimal (#2).

Chapter 2. A Data Model and Front End For Hierarchical Data 19

In fact, a hierarchy query does not need any extensions to the SQL grammar. Still,
the syntax is highly expressive (#2): the query in Figure 2.4 reads just like the
English sentence defining it.

2.3 Hierarchical Tables: Our Model

Basic Terms. We use the term hierarchy to denote an ordered, rooted, labeled tree.
The tree in Figure 2.1 is an example. Labeled means each vertex in the tree has a
label, which represents the attached data. Rooted means a specific node is marked
as root, and all edges are conceptually oriented away from the root. We require
that every hierarchy contains by default a single, virtual root node, which we
denote by T and call the super-root. As a virtual node, T is hidden from the user.
The children of T are the actual roots in the user data. Through this mechanism
we avoid certain technical complications in handling empty hierarchies as well
as hierarchies with multiple roots, so-called forests. Furthermore, a hierarchy is
ordered, that is, a total order is defined among the children of each node. That
said, for many applications the relative order of siblings is actually not relevant.
While we recognize this use case by providing order-indifferent update operations,
the system always maintains an internal order. This way order-based functionality

such as pre-order ranking is well-defined and deterministic.

Hierarchical Tables. In a database context, a hierarchy is not an isolated object but
rather closely tied to an associated table. A hierarchy has exactly one associated
table. (Of course, additional tables can be tied to a hierarchy by using joins;
cf. Section 2.6.) Conversely, a table might have multiple associated hierarchies. In
Figure 2.1, for instance, table BoM has one associated hierarchy, which arranges its
rows in a tree, thus adding a hierarchical dimension to BoM. We call a table with at
least one associated hierarchy a hierarchical table. Let H be a hierarchy attached
to a table T'. Each row r of T' is associated with at most one node v of H, so there
may also be rows that do not appear in the hierarchy. Conversely, each node except
for T is associated with exactly one row of T'. The values in the fields of r can be
regarded as labels attached to v or to the edge onto v. Besides the tree structure
and a node-row association, H conceptually does not contain any data. A user
never works with the hierarchy object H itself but only works with the associated

20 2.3. Hierarchical Tables: Our Model

table T'. Consequently, a row-to-node handle is required to enable the user to refer

to the nodes in H. Such a handle is provided by a column of type NODE in 7.

The nobe Data Type. A field of the predefined data type NODE represents the position
of a row’s associated node within the hierarchy. A table (row) can easily have
two or more NODE fields and thus be part of multiple distinct hierarchies. Using an
explicit column to serve as handle for a hierarchical dimension is a cornerstone of
our design. We can expose all hierarchy-specific functionality through that column
in a very natural and lightweight way. The following pseudo-code illustrates this
for table BoM with its NODE column named pos:

SELECT id, ..., “level of pos”
FROM BOM
WHERE “pos is a leaf”

Compared to other conceivable approaches, such as introducing a pseudo-column
for each property of interest (similar to the LEVEL column in Oracle Hierarchical
Queries), or functions operating on table aliases (an idea mandated by early
proposals for temporal SQL), the NoDE field implicates minimal syntactic impact
and also simplifies certain aspects: Transporting “hierarchy information” across a
SQL view is a trivial matter of including the NODE column in the projection list of
the defining SELECT statement. Furthermore, the functionality can be extended in
the future by simply defining new functions operating on NODE.

Actual values of data type NODE are opaque and not directly observable; a naked
NODE field must not be part of the output of a top-level query. The user may think
of a NODE value as “the position of this row in the hierarchy”. How this position
is encoded is intentionally left unspecified. This leaves maximum flexibility and

optimization opportunities to the back end.

The user works with a NODE column exclusively by applying hierarchical functions
and predicates such as “level of” and “is ancestor of”. Besides that, the NODE type
supports only the operators = and <>. Other operations such as arithmetics and
casts from other data types are not allowed. The system statically tracks the
original hierarchy of each NODE column and ensures that binary predicates and set
operations (e.g., UNION) do not mix NODE values from different hierarchies. NODE
values can be NULL to express that a row is not part of the hierarchy. Non-null
values always encode a valid position in the hierarchy. The handling of NULL values
during query processing is consistent with SQL semantics.

Chapter 2. A Data Model and Front End For Hierarchical Data 21

ID LEVEL IS_LEAF IS_ROOT PRE_RANK POST_RANK

IAll
IBll
IC1|
ICQI
IB2|
|C3l
IDll
ID2|
IC4|
ID3|
IA2|

o

10

oW D WONWwWwN -
PR, ORFR,rRFP OO RFLO
P O O O OO0 O0O OO -
© 00 N O 0D WN -
~N 00 Ul OO N - W

=
= O

[EEY
[E

Table 2.1: Projecting hierarchy properties of BoM.

2.4 Querying Hierarchies

To meet Requirement #3 to support and facilitate complex queries, we enhance
SQL’s query language. As outlined in the previous section, a field of data type
NODE serves as handle to the nodes in the associated hierarchy. For the following,
we suppose a table with such a field (like BaM and pos) is at hand. How to obtain
such a table—either a hierarchical base table or a derived hierarchy—is covered by
Section 2.5.

We provide built-in scalar functions operating on a NODE value v to enable the
user to query certain hierarchy properties:

LEVEL(v) — The number of edges on the path from T to v.
IS_LEAF (v) — Whether v is a leaf, i. e., has no children.
IS_ROOT(v) — Whether v is a root, i.e., its parent is T.
PRE_RANK (v) — The pre-order traversal rank of v.
POST_RANK(v) — The post-order traversal rank of v.

Table 2.1 shows the result of projecting all these properties for BoM. The values
of LEVEL, PRE_RANK, and POST_RANK are l-based. There are certain more or less
obvious equivalences. For example, IS_RO0T(v) is equivalent to LEVEL(v) =1 and
thus redundant, strictly speaking. However, for the sake of convenience and
expressiveness we do not aim for a strictly orthogonal function set.

The following example demonstrates how hierarchy properties are used; it pro-
duces a table of all non-composite parts (i.e., leaves) and their respective levels:

22 2.4. Querying Hierarchies

SELECT id, LEVEL(pos) AS level
FROM BOM
WHERE IS_LEAF(pos) = 1
As mandated by SQL semantics, the order of the result rows is undefined. To
traverse a hierarchy in a particular order, one can combine ORDER BY with a hierarchy
property. For example, consider a so-called parts explosion for the BOM, which
shows all parts in depth-first order, down to a certain level:
-~ Depth-first, depth-limited parts ezplosion with level numbers
SELECT id, LEVEL(pos) AS level
FROM BOM

WHERE LEVEL(pos) < 5
ORDER BY PRE_RANK (pos)

With PRE_RANK, parents are arranged before children (in pre-order); with POST_RANK,
children are arranged before parents (in post-order). Sorting in breadth-first search
order can be done using the LEVEL property:

-— Breadth-first parts explosion

SELECT id, LEVEL(pos) AS level

FROM BOM
ORDER BY LEVEL(pos)

Note that computing the actual pre- or post-order rank of a node is not trivial
for many indexing schemes (e.g., ORDPATH). However, when PRE_RANK or POST_RANK
appear only in the 0RDER BY clause (which is their main use case), then there is no
need to actually compute the values. For sorting purposes, pairwise comparison
of the pre/post positions is sufficient, and all indexing schemes we use can handle
this efficiently.

Besides querying hierarchy properties, a general task is to navigate from a given
set of nodes along a certain hierarchy azis. Such axes can be expressed using one
of the following hierarchy predicates (with u and v being NODE values):

IS_PARENT (u,v) — whether u is a parent of v.

IS_CHILD(u,v) — whether u is a child of v.

IS_SIBLING(u,v) — whether wu is a sibling of v, i.e., has the same parent.
IS_ANCESTOR(u,v) — whether u is an ancestor of v.

IS_DESCENDANT (u,v) — whether u is a descendant of v.

IS_PRECEDING(u,v) — whether u precedes v in pre-order and is no ancestor of v.

IS_FOLLOWING(u,v) — whether u follows v in pre-order and is no descendant of v.

Chapter 2. A Data Model and Front End For Hierarchical Data 23

The task of axis navigation maps quite naturally onto a self-join with an appropriate
hierarchy predicate as join condition. For example, the following lists all pairs
(u,v) of nodes where u is a descendant of v:
SELECT u.id, v.id
FROM BOM u
JOIN BOM v
ON IS_DESCENDANT(u.pos, v.pos)
As another example, we can use a join to answer the classic where-used query on
a BOM. The query “Where is part D2 used?” corresponds to enumerating all
ancestors of said node:
SELECT a.id
FROM BOM p, BOM a
WHERE IS_ANCESTOR(a.pos, p.pos)
AND p.id = 'D2'
The different predicates are inspired by the axis steps known from XPath. Note
that the preceding and following predicates are only meaningful in an ordered
hierarchy, and thus of less interest in the general case.
The functions presented here are chosen based on the customer scenarios we
have analyzed and the capabilities of the indexing schemes we have considered.
Further functions might be added in the future.

2.5 Creating and Manipulating Hierarchies

The previous section describes query primitives that work on a field of type NODE.
In this section, we show how such fields are declared and maintained.

2.5.1 Deriving a Hierarchy from an Adjacency List

According to Requirement #6, legacy applications demand for a means to derive a
hierarchy from an available table in the Adjacency List format. Derived hierarchies
enable users to take advantage of all query functionality “ad hoc” on the basis
of relationally encoded hierarchical data, while staying entirely within the QL
(and in particular, without requiring schema modifications via DDL). For this
purpose we provide the HIERARCHY expression. It derives a hierarchy from a given
adjacency-list-formatted source table, which may be a table, a view, or the result
of a subquery:

24 2.5. Creating and Manipulating Hierarchies

HIERARCHY

USING source table AS source name

[START WHERE start condition]

JOIN PARENT parent_mname ON join__condition

[SEARCH BY order]

SET node_column__name
This expression can be used wherever a table reference is allowed (in particular, a
FROM clause). Its result is a temporary table containing the data from the source_table
plus an additional NODE column named node_ column_name. The expression is
evaluated by first self-joining the source table in order to derive a parent-child
relation representing the edges, then building a temporary hierarchy representation
from that, and finally producing the corresponding NODE column. The START WHERE
subclause can be used to restrict the hierarchy to only the nodes that are reachable
from any node satisfying start condition. The SEARCH BY subclause can be used
to specify a desired sibling order; if omitted, siblings are ordered arbitrarily.
Conceptually, the procedure for evaluating the whole expression is as follows:

1. Evaluate source_table and materialize required columns into a temporary table T'.

Also add a NODE column named node column name to T.

2. Perform the join
T AS C LEFT OUTER JOIN T AS P ON join__condition,

where P is the parent_name and C' is the source_name. Within the join_ condition,
P and C can be used to refer to the parent and the child node, respectively.

3. Build a directed graph G containing all row IDs of T" as nodes, and add an edge
rp — r¢ between any two rows rp and r¢o that are matched through the join.

4. Traverse GG, starting at rows satisfying start_condition, if specified, or otherwise
at rows that have no (right) partner through the outer join. If order is specified,
visit siblings in that order. Check whether the traversed edges form a valid tree or
forest, that is, there are no cycles and no node has more than one parent. Raise an

error when a non-tree edge is encountered.

5. Build a hierarchy representation from all edges visited in Step 4 and populate
the NODE column of T accordingly. The result of the HIERARCHY expression is 7.

Chapter 2. A Data Model and Front End For Hierarchical Data 25

Note that the description above is merely conceptual; we describe an efficient
implementation in Section 2.7.3. As described, an error is raised when a non-tree
edge is encountered. This way we ensure the resulting hierarchy has a valid tree
structure (Req. #7). In our prototype, we also support “non-strict” hierarchies
by deriving a spanning tree over (G, with various options controlling the way the
spanning tree is chosen. We omit these advanced options for the sake of brevity.
The HIERARCHY syntax is intentionally close to an RCTE and even more so to
Oracle Hierarchical Queries. (The self-join via parent_name is comparable to a
CONNECT BY via PRIOR in a Hierarchical Query.) However, the semantics are quite
different in that by design only a single self-join is performed on the input rather
than a recursive join. As our experiments show, this allows for a very efficient
evaluation algorithm compared to a recursive join. Furthermore, there is a major
conceptual difference to the mentioned approaches: The HIERARCHY expression does
nothing more than define a hierarchy. That hierarchy can be queried by wrapping
the expression into a SELECT statement. In contrast, a RCTE both defines and
queries a hierarchy in one convoluted statement. We believe that separating these
two aspects greatly increases comprehensibility. As an example, consider again
the BOM of Figure 2.1. The following statement uses a CTE to derive the pos
column from id and pid, then selects the id and 1evel of all parts that appear
within part C2:
WITH PartHierarchy AS (
SELECT id, pos
FROM HIERARCHY USING BOM AS c
JOIN PARENT p ON p.id = c.pid
SET pos
)
SELECT v.id, LEVEL(v.pos) AS level
FROM PartHierarchy u, PartHierarchy v
WHERE u.id = 'C2'
AND IS_DESCENDANT(v.pos, u.pos)
The mentioned separation of aspects is clearly visible. PartHierarchy could be
extracted into a view and reused for different queries. One might argue that a
RCTE or Hierarchical Query could as well be placed in a view, but that would still
not result in a clear definition/query separation, because any potentially needed
hierarchy properties (such as LEVEL in the example) would have to be computed in
the view definition even though they are clearly part of the query. A query that
does not need the level would still trigger its computation, resulting in unnecessary

26 2.5. Creating and Manipulating Hierarchies

overhead. In contrast, our design allows for deferring the selection of hierarchy

properties to the query.

2.5.2 Hierarchical Base Tables

Derived hierarchies as discussed in the previous section are targeted mainly at
legacy applications. For newly designed applications a preferable approach is to
express and maintain a hierarchy explicitly in the table schema. We provide specific
DDL constructs for this purpose (Req. #4). The user can include a hierarchical
dimension in a base table definition:

CREATE TABLE T (

e ey

HIERARCHY name [NULL|NOT NULL] [WITH (option*)]
)

This implicitly adds a column named name of type NODE to the table, exposing
the underlying hierarchy. Explicitly adding columns of type NODE is prohibited. A
hierarchical dimension can also be added to or dropped from an existing table using
ALTER TABLE. Like a column, a hierarchical dimension can optionally be declared
nullable. If it is declared NOT NULL, the implicit NODE value of a newly inserted row
is DEFAULT, making it a new root without children. A row with a NULL value in its
NODE field is not part of the hierarchy.

A hierarchy that is known to be static allows the system to employ a read-
optimized indexing scheme (cf. Req. #8). Therefore, we provide the user with a
means of controlling the degree to which updates to the hierarchy are to be allowed.
This is done through an option named UPDATES:

UPDATES = BULK|NODE | SUBTREE

BULK allows only bulk-updates; NoDE allows bulk-updates and single-node operations,
that is, relocating, adding, and removing single leaf nodes; SUBTREE allows bulk-
updates, single-node operations, and the relocation of whole subtrees. A BULK
dimension is basically static; individual updates are prohibited. We furthermore
make a distinction between single-node and subtree updates, because subtree
updates require a more powerful dynamic indexing scheme than single-node updates,
with inevitable tradeoffs in query performance (cf. Section 2.7.1). Depending on
the option, the system chooses an appropriate indexing scheme for the hierarchical
dimension. The default setting is SUBTREE, so full update flexibility is provided
unless restricted explicitly by the user.

Chapter 2. A Data Model and Front End For Hierarchical Data 27

2.5.3 Manipulating Hierarchies

For legacy application support (Req. #6), we aim to provide a smooth transition
path from relationally encoded hierarchies (i.e., adjacency lists) to full-fledged
hierarchical dimensions. In a first stage, we expect most legacy applications to rely
entirely on views featuring HIERARCHY expressions on top of adjacency lists, thus
avoiding any schema changes. Hence, bulk-building is, at least conceptually, used
on each view evaluation; though it may be elided often in practice, since HANA
employs view caching. In a second stage, a partly adapted legacy application might
add a static (UPDATES =BULK) hierarchical dimension alongside an existing adjacency
list encoding, and update the dimension periodically from the adjacency list via
an explicit bulk-update. A bulk-update is issued by using a HIERARCHY expression
as source table of a MERGE INTO statement. (We do not discuss this in detail for
brevity reasons.) These two stages provide a way to gradually adopt hierarchy
functionality in a legacy application, but they come at the cost of frequently
performing bulk-builds whenever the hierarchy structure changes. Therefore, for
green-field applications as well as for fully migrated legacy applications, a dynamic
hierarchy (UPDATES =NODE or SUBTREE) supporting explicit, fine-grained updates via
special-purpose DML constructs is preferable (Req. #5). Again, we strive for a
minimally invasive syntax: We use ordinary INSERT and UPDATE statements operating
on the NODE column of a hierarchical dimension to express updates.

Inserting. To specify the position where a new row is to be inserted into the
hierarchy, we use an anchor value. Again, we refrain from extending the SQL
grammar and define new built-in functions that take a NODE as input and yield an
anchor. An anchor can be used as value for the NODE field in an INSERT statement.
We support the following anchor functions:

BELOW(v) inserts the new row as child of v. The insert position among siblings is
undefined.
BEFORE (v) Or BEHIND(v) insert the new row as immediate left or right sibling of v.
For example, we can add a node B3 as new child of A2 into the hierarchy of
Figure 2.1 like this:

INSERT INTO BOM (id, pos)
VALUES ('B3', BELOW(SELECT pos FROM BOM WHERE id = 'A2'))

28 2.6. Advanced Customer Scenarios

The BELOW anchor is useful for unordered hierarchies, while the BEFORE and BEHIND
anchors allow for precise positioning among siblings in hierarchies where sibling

order matters.

The user can also use DEFAULT to make the new row a root, or NULL (for nullable
dimensions) to omit it from the hierarchy.

Relocating. Relocating a node v is done by issuing an ordinary UPDATE on the NODE
field of the associated row, again using an anchor to describe the node’s target
position. If v has any descendants, they are moved together with v, so the whole
subtree rooted at v is relocated. Relocating a subtree is only allowed if option
UPDATES = SUBTREE is used for the hierarchical dimension. In order to guarantee
structural integrity, the system must prohibit relocation of a subtree below a node
within that same subtree, as this would result in a cycle.

Removing. A node can be removed from a hierarchy by either deleting its row
or setting the NODE field to NULL. However, these operations are prohibited if the
node has any descendants that are not also removed by the same transaction. To
remove a node with descendants, all children have to be relocated first or removed
with that node. While this is necessary to ensure that removing nodes does not
leave behind an invalid hierarchy, it is very restrictive: If a hierarchical dimension
uses option UPDATES =BULK, the only rows that may be deleted are those whose NODE
value is NULL; the user is prevented from deleting any rows that take part in the
hierarchy. To make easy row deletion possible in this case, we allow truncating
the whole hierarchy by setting the NODE value of all rows to NULL within the same
transaction. Then, rows may be deleted at will, and subsequently the hierarchy
can be rebuilt (bulk-built) from scratch. These rules ensure that the structure of

the hierarchy remains valid at any time, thus satisfying Requirement #7.

2.6 Advanced Customer Scenarios

In this section we explore some advanced techniques for modeling entities that are
part of multiple hierarchies, entities that appear in the same hierarchy multiple
times, and inhomogeneous hierarchies that contain entities of various types. The
queries are inspired by customer scenarios and demonstrate that our language

extensions stand up to non-trivial, real-world queries.

Chapter 2. A Data Model and Front End For Hierarchical Data 29

Flexible Forms of Hierarchies. In certain applications an entity might be designed
to belong to two or even more hierarchies. For example, an employee might have
both a disciplinary superior as well as a line manager, and thus be part of two
reporting lines. A straightforward way to model this is to use two hierarchical
dimensions:

CREATE TABLE Employee (
id INTEGER PRIMARY KEY, ...,
HIERARCHY disciplinary,
HIERARCHY line
)
A more complex case arises when a hierarchy shall contain certain rows more than
once. Again, a bill of materials is a good example: A common part such as a screw
generally appears multiple times within the same BOM, and we do not want to
replicate its attributes each time. This is a typical 1 : n relationship: one part
can appear many times in the hierarchy. As our data model blends seamlessly
with SQL, the solution is to model this case exactly as one would model 1 : n
relationships in SQL, namely by introducing two relations and linking them by
means of a foreign key constraint. Thus, we separate the schema from Figure 2.1
into per-part data Part and a separate BoM table:
CREATE TABLE Part (
id INTEGER PRIMARY KEY,
kind VARCHAR(16),

price INTEGER, ... —— master per-part data

)

CREATE TABLE BOM (
node_id INTEGER PRIMARY KEY,
HIERARCHY pos,
part_id INTEGER, -- a nodeis a part (N:1)
FOREIGN KEY (part_id) REFERENCES Part (id),

== additional node attributes

)

Heterogeneous Hierarchies. Often, entities of different types are mixed in a single
hierarchy. “Different types” means that the entities are characterized by different
sets of attributes. Especially in XML documents, it is very common to have various
node types (i.e., tags with corresponding attributes), and XPath expressions
routinely interleave navigation with filtering by node type (so-called node tests).
The SQL way of modeling multiple entity types is to define a separate table per

30 2.6. Advanced Customer Scenarios

SELECT =
FROM BOM c, —= compound node
Part cm, == compound master data
BOM £, —— fitting node
Part fm, —— fitting master data
BOM e, —— engine node
Engine em —= engine master data

WHERE c.id = cm.id
AND cm.kind = 'compound'
AND IS_DESCENDANT(f.pos, c.pos)
AND f.id = fm.id
AND fm.kind = 'fitting'
AND fm.manufacturer = 'X'
AND IS_DESCENDANT(e.pos, f.pos)
AND e.id = em.id
AND em.power > 700

Figure 2.5: Querying a heterogeneous hierarchy

entity type, each with an appropriate set of columns. Returning to our BOM, we
further enhance the part—BoM data model with master data specific to engines:

CREATE TABLE Engine (
id INTEGER PRIMARY KEY,
FOREIGN KEY (id) REFERENCES Part (id),
power INTEGER, ... —-— master data

While part contains master data common to all parts, Engine adds master data that
is specific to parts of kind “engine”. Both tables necessarily share their primary key
domain (id). BoM is now a heterogeneous hierarchy in that each node has a type: it
is either a general Part or an Engine. This design is extensible. Further part types
can be added by defining further tables like Engine with 1 : 1 relationships to Part.

While working with a BOM, the user can use type-specific part attributes for
filtering purposes simply by joining in the corresponding master data. As an
example, suppose that fittings by manufacturer X have been reported to outwear
too quickly when used in combination with engines more powerful than 700 watts,
and we need to determine the compounds that contain this hazardous combination
in order to issue a recall. Figure 2.5 shows the solution. Note that the BOM-Engine
join implies the test that node e is of kind 'engine'.

Chapter 2. A Data Model and Front End For Hierarchical Data 31

Dimension Hierarchies. A major use case for hierarchies is arranging some keys
that are used as dimensions for a fact table. Measures associated with the facts are
to be aggregated alongside the dimension hierarchies. As an example, consider a
sales table recording, besides a certain sales amount and other attributes, the store
where each sale took place. Suppose stores are arranged in a geographic hierarchy.
The schema is:

Sale : {[store_id, date, amount, ... 1}
Store : {[id, location_id, ...]}
Location : {[id, pos, name, ...]}

By joining Sale—Store—Location, we can associate each sale with a NODE value
(Location.pos) of the location hierarchy indicating where the sale took place. Sup-
pose we would like to answer the query: “Considering only sales within Europe,
list the total sales per sub-subregion.” This query speaks, quite implicitly, of three
distinct Location nodes: a reference node u, namely Furope; the set of nodes V'
two levels below u, corresponding to the sub-subregions; and the sets of nodes W,
below each v € V| corresponding to locations of stores where a sale took place.
We are explicitly interested in the nodes in V', but also need a name for a node
w € W, in order to specify the association of w to a sale, so that we can ultimately
compute a sum over the sales amount. All in all, three self-joined instances of the
hierarchical table are required:

SELECT v.id, SUM(sale.amount)

FROM Location u, Location v, Location w, Store store, Sale sale,
WHERE u.name = 'Europe'

AND IS_DESCENDANT(v.pos, u.pos)

AND LEVEL(v.pos) = LEVEL(u.pos) + 2

AND IS_DESCENDANT (w.pos, v.pos)

AND IS_LEAF (W.pOS) = 1 —= store locations are leaves

AND w.id = store.location_id

AND store.id = sale.store_id
GROUP BY v.id;

Note the straightforward reading direction, which intuitively matches the direction
of navigation in the hierarchy. This example and the one from Figure 2.5 in
particular show how our language extensions maintain the join “look and feel” of
SQL, so even large queries look familiar to SQL programmers.

32 2.7. Architecture and Implementation Aspects

2.7 Architecture and Implementation Aspects

On the back end side, the foundation for implementing the functionality described
in sections 2.4 and 2.5 is the hierarchy indexing scheme underlying each hierar-
chical dimension. As Requirement #8 anticipates, no single scheme can serve all
application scenarios equally well; there is no “one size fits all” solution. Thus,
our design leaves the system the choice among different indexing schemes. Each
scheme comes with a set of built-in implementations of the hierarchy functions
(e.g., LEVEL). For efficient query processing, we employ hierarchy-aware join oper-
ators that work well with all supported indexing schemes (cf. Section 3.3). The
bulk-building operation is in large parts common to all indexing schemes. It is also
particularly important for supporting derived hierarchies (Section 2.5.1) and thus
legacy applications. Therefore, we cover this operation in detail (Section 2.7.3).
Due to space constraints and since the primary focus of this chapter is on the data
model and our language extensions, we omit certain technical details and refer to
cited works. Our intention is to convey a general intuition of how our concepts can
be implemented efficiently. Chapter 3 will then go into detail.

2.7.1 Hierarchy Indexing Schemes

In our framework, a hierarchy indexing scheme comprises the content of a NODE
column and possibly an auxiliary data structure. It contains the hierarchy structure
as non-redundant information. This is in contrast to traditional indexes such as
B-trees, which are entirely redundant auxiliary data structures. What data is
actually stored in the NODE column depends on the chosen indexing scheme. This is
why we explicitly specify NODE as opaque to the user (cf. Section 2.3).

Indexing schemes of varying complexity and sophistication are conceivable:
Among the simplest indexing schemes are those based on labeling schemes; they are
“simple” in that the labels can be stored directly in the NODE column (and possibly
indexed using ordinary database indexes); no special-purpose data structures are
required. Labeling schemes have been studied extensively in the XML context. Two
prominent subcategories are order-based schemes as studied by Grust et al. [41], and
path-based schemes such as ORDPATH [74]. In our prototype we have implemented
a simple yet effective order-based variant: the pre/size/level scheme (PSL) [15],
where we label each node with its pre-order rank, subtree size, and level. We have

Chapter 2. A Data Model and Front End For Hierarchical Data 33

pre/size/level ORDPATH DeltaNI

Al (1,6,1) 1 1, 14]
A2 (8,0,1) 3 [15,16]
Bl (2,0,2) 1.1 2, 3]
B2 (3,1,2) 1.3 [4, 7]
B3 (5,2,2) 1.5 8, 13]
Cl (4,0,3) 1.3.1 [5, 6]
C2 (6,0,3) 1.5.1 [9, 10]
C3 (7,0,3) 153 [11,12]

Figure 2.6: An example hierarchy and the contents of the NODE column using different
indexing schemes

also implemented a path-based scheme comparable to ORDPATH. Figure 2.6 depicts
the NODE column for an example hierarchy using these schemes.

We propose the more sophisticated dynamic indexing schemes Order Indexes and
DeltaNI in Chapter 3 and Chapter 4, respectively. Both represent the hierarchy
information in special-purpose data structures, and the NODE column contains
handles into those structures. The figure shows a possible NODE column for DeltaNI
but omits the auxiliary delta structures.

The choice among indexing schemes matters particularly with regard to their
varying degrees of support for updates. For example, while the PSL scheme allows
for an efficient evaluation of queries, it is totally static: Even a single-node update
can, in general, necessitate changes to O(n) labels of other nodes. This is obviously
not feasible for large hierarchies. More complex schemes, on the other hand, trade
off query processing efficiency and in return support update operations to a certain
degree. Our proposed dynamic indexing schemes support even complex update
operations, such as relocating an entire subtree, in O(logn) time.

The indexing scheme is meant to be chosen by the DBMS per hierarchical
dimension, transparently to the user. The user indirectly influences the choice
through the UPDATES option (Section 2.5). Our prototype decides as follows: For
derived hierarchies, which are by design static, and for immutable hierarchical
tables (UPDATES=BULK), the obvious choice is PSL. If the user requires support for
complex updates (SUBTREE), we choose one of our Order Indexes (the BO-Tree). For
system-versioned tables, we choose DeltaNI. For ordinary, non-versioned tables,

and if the user settles for simple updates (NODE), we resort to a read-optimized
Order Index (the O-List).

34 2.7. Architecture and Implementation Aspects

A deeper discussion of indexing is included in Chapter 3. Our main message here
is: the design as presented is extensible and flexible in that it anticipates further
indexing schemes to be plugged in. The user is not burdened with the decision for
the optimal scheme; it is up to the DBMS to pick among the available alternatives.

Hierarchy Functions in the SQL statement are translated into operations on the
underlying index. Consequently, every indexing scheme must provide the necessary
operations. For example, consider the LEVEL function: with PSL, we can decode
the result directly from the given NODE value; with a path-based scheme, we have
to count the number of elements in the path. We have carefully chosen the set
of functions to be supported such that all important use cases we identified are
covered and, at the same time, it is possible to evaluate the functions efficiently on
most existing indexing schemes proposed in the literature. All query functionality
is built upon the generic query primitives devised in Section 3.1, which can be
implemented efficiently for most existing indexing schemes. Most implementations
are straightforward and covered in the cited publications. The implementations for
our indexing schemes will be covered in the respective chapters.

Updates involving nodes are simply propagated to the index implementations,
which update the NODE column and the auxiliary data structures accordingly. As
we expect most existing applications to rely on derived hierarchies initially, we do
not cover individual update operations any further in favor of a detailed discussion
of bulk-building.

2.7.2 Hierarchy-Aware Join Operators

Like functions, binary predicates such as IS_DESCENDANT can be translated into
invocations of the underlying index. But this is not adequate if they are used as
join conditions, since the query optimizer would have to resort to nested-loops-based
join evaluation. Therefore, we enhance the optimizer such that joins involving
a hierarchy predicate are translated into efficient hierarchy-aware physical join
operators. Various hierarchy-aware join operators have been proposed in the
literature, mostly for XPath processing [6, 43, 19]. Basically any of these operators
can be used in our setting, with slight adaptions to account for SQL semantics.
An XPath axis step, for example, is implicitly a semi-join and performs duplicate
elimination. With SQL, we have to support general joins, and duplicate elimination

Chapter 2. A Data Model and Front End For Hierarchical Data 35

is not necessary in the default case. The joins used in our prototype will be

explained in Section 3.3.

2.7.3 Bulk-Building

As discussed in Section 2.5, we make extensive use of the bulk-building operation
for derived hierarchies on one hand, and for bulk-updates via MERGE on the other
hand. Our goal is an efficient implementation of the HIERARCHY expression, whose
definition we revisit here:
HIERARCHY
USING source__table AS source _mame
[START WHERE start_condition]
JOIN PARENT parent_mname ON join__condition
[SEARCH BY order]
SET node__column__name
Virtually any indexing scheme we have investigated can be built straightforwardly
during a depth-first traversal of the input hierarchy. Thus, the main task of the
bulk-build algorithm is to transform the adjacency list from the input table into an
intermediate representation that supports efficient depth-first traversal. Building
the intermediate representation is common to all indexing schemes; only the final
traversal is index-specific. Our prototype reuses existing relational operators for as
many aspects as possible, adding as little new code as necessary. The algorithm
proceeds as follows:
source__table is evaluated and the result is materialized into a temporary table T'.
For this we use an ordinary TEMP operator. To construct the hierarchy edges, we
evaluate T AS C LEFT QUTER JOIN T AS P ON join_ condition. The left join input C'
represents the child node and the right input P the parent node of an edge. Since
it is an outer join, we also select children without a parent node. In the absence of
a start_condition, these nodes are by default the roots of the hierarchy. We include
the row IDs rp and r¢ of both join sides in the result for later use. rp can be NULL
due to the outer join. If order is specified, we use an ordinary SORT operator to
sort the join result. Next, we remove all columns except for rp and r¢, so what
we have at this point is a stream of parent/child pairs (i. e., edges) in the desired
sibling order.
Next, building and traversing the intermediate representation is taken over by a
new operator, hierarchy build 5. The steps performed for this operator to build

36 2.7. Architecture and Implementation Aspects

Input m 2. Count Children 3.Sum

6) re| rp re| re S S,

0 ’@ 21 2 [1 0 40

4] - 4] - {2 10

o 1|4 1] 4 1 12
02 02 10 {3

Q e 3] - 3] - Y 1 43
51 51 10 4 4

Q 1. Max: | 5 | 2 14| V

4. Perfect Bucket So 5. Depth First Traversal

rc| re Sy rc| re Sm rc Sp| | Sm
2 [1 To 21| Jo0 J 2 =" 0o 0
4] - " 0 {501 42 |5 "% 0|1 2
Gl 2 A B | B

3| 3] 3

3] - 31— Tal-] Ta {2 —r—{3]:2
51 14 /: 3]-] 44 13 [~ 4|5 4
4 {6 % 46| 6

Figure 2.7: Steps of the bulk build algorithm

an example hierarchy are depicted in Figure 2.7. The hierarchy shown on the left
depicts the hierarchy that is to be built. The numbers inside the nodes are their
row-ids. The virtual root node 6 is not contained in the input. It is used during
the algorithm to become the parent of all nodes that are roots in the input.

First, the operator materializes all edges into an edge array E. During this
materialization, the operator also tracks the highest row-id m it has seen which
is depicted “max” in the figure (Step 1). Afterwards, it counts the number of
children each node has (Step 2) by allocating an array S of size m + 2 and counting
the children in it. Each entry S[i] corresponds to the number of children of the
node with row-id 7. All edges that have NULL as parent are counted in the last slot
S[m +1]. Once the counts are computed, the prefix sums S, over array S are built
(Step 3), i.e., Sp[k] = ¥4 S[i]. The sums can be computed in place as we no
longer need S. Note that the sums are delayed one element, so S,[1] becomes 0
because S[1] = 2 is first counted in S,[2].

We can now use the prefix sums to perform a “perfect” bucket sort by rp of
array E. We iterate over E and look-up the target position of a row (r¢,rp) by

Chapter 2. A Data Model and Front End For Hierarchical Data 37

1: i+0
2: A.push(m + 1)
3: while —T.isEmpty do

4: ¢ < A.peek()

5: if S,[c] = Si[c] then

6: T.pop()

T else

8: (re,rp) + E[Splc]]

9: n < addTolndex(rc, rp)
10: R.append(r¢,n)
11: A.push(r¢)
12: Sp[cH+

Figure 2.8: Depth first traversal

computing Sy[rp|. Afterwards we increment the value in S,[rp]. For example, the
tuple (2,1) is sorted into row 0, because Sy[1] = 0. Row (5,1) is sorted into row 1
because S,[1] = 1 now, as it was incremented when (2, 1) was processed.

The bucket sort is extremely fast as it can easily locate the target row of each
row. In addition, it has the nice property that rows which have the same parent
stay in the same relative order, that is, the sort is stable. For example, row (2, 1) is
guaranteed to stay before (5,1). This is important, because otherwise the desired
sibling order would be destroyed.

As the sort destroys the initial values of S, we must make a copy of it before
executing the sort. The old S, that was transformed by the sort is kept as well,
since we need it in the next step. We call it .S,,,.

We can now use S,, Sy, and the sorted F, to perform a depth first traversal to
build the index. Figure 2.8 depicts how this traversal is performed. We maintain
a stack A, which tracks the current position in the hierarchy. We start with the
virtual node m + 1, which is the parent of all root nodes. Then, as long as the
stack is not empty, we inspect its topmost element c. If Sy[c] = S,,[c|, then the
node c either has no children or we have already visited its children. We therefore
pop c from the stack and continue. If Sy[c] < Sy, [c], then ¢ has children left to be
visited. Thus, we retrieve its next child which is stored in E[Sy[c]].

For each discovered child we call addTolndex, which adds it to the index being
built. The method returns a NODE value that the index has chosen for the added
node. Note that this method call is the only part of the bulk building process
that is indexing scheme dependent; the rest of the algorithm is completely generic
and can be applied to any indexing scheme. For example, for the PSL scheme we

38 2.7. Architecture and Implementation Aspects

track the current pre-rank and level for each visited node during the traversal (the
pre-rank and level values are inserted before visiting children, the size after visiting
children) and encode them into the corresponding NoDE field. With DeltaNI, we
add an entry to the auxiliary structure and insert a handle to this entry into the
NODE field for each visited node.

After we have added the current child to the index, we append the pair (r¢, n) to
the tuple stream R. This stream represents the result of the 5 operator that will be
passed to an UPDATE operator to update the node column of the temporary table
T. After updating R, we push r¢ onto the stack to visit its children in a depth
first manner. Finally, we increment Sy[c|, because a child of ¢ has been visited, so
Sp[c] should point the next child.

The right side of Figure 2.7 depicts the order of steps that are taken by the
traversal algorithm for the example input. Note that only the ro part of E is
shown, as rp is not important here. The algorithm first visits the nodes 4,1,2,0
(arrows 0-7 in the figure) and pushes them onto the stack A. It then encounters
that S,[0] = S5,,,[0] = 0. It therefore pops 0 from A and checks 2. However, now also
Sp2] = Sm[2] = 3, so 2 is popped as well. Now, S,[1] =1 # S,,[1] is considered. So
the algorithm visits E[S,[1]] = (5,1) (arrow 9). Finally, after popping 5,1, and 4,
the algorithm also visits E[S,[6]] = (3, —) (arrow 10)> It has now visited all nodes
in pre-order (4,1,2,0,5,3).

To check for non-tree edges during the depth-first traversal, we maintain a bitset
that tracks for each rc whether it has been visited (not displayed in algorithm and
figure for brevity reasons). Once an r¢ is visited more than once, we must have a
non-tree edge and can abort or omit the non-tree edge.

Once the [operator has finished execution, the index (if there is one, i.e., if we
do not only use a labeling scheme without index) is updated, but the node column
is not yet updated. To update this column we use the usual UPDATE operator
that is also used for usual SQL UPDATE statements. It receives the stream R of

row-id /node tuples and updates the NODE column. Thus our final plan to execute
the bulk build is UPDATE(S(SORT(T" 1 T'))).

Handling sTART wHERE. The algorithm as described so far always builds the com-
plete hierarchy even if a START WHERE clause is specified. Handling the clause is
straightforward: Before executing 8, we mark all rows satisfying start_ condition o.
Then, during the traversal, we add only marked nodes and their descendants. All
other nodes are visited but not added to the index.

Chapter 2. A Data Model and Front End For Hierarchical Data 39

Of course, this way the whole hierarchy is traversed even if only a few leaf nodes
qualify for o. A recursive variant of 5 that traverses only the qualifying nodes
and their descendants is to first select all qualifying rows R,, and then perform a
recursive join starting from rows in R, in order to enumerate all reachable nodes.
However, as our experiments indicate (Section 2.8), a recursive join is much more
expensive than an ordinary join, so the recursive variant should only be chosen if
we can expect the sub-hierarchy H, spanned by R, to be very small in comparison
to the full hierarchy H. This is not easy to predict, since the size of H, is not
related to the size of R,: Suppose, for example, R, contains only a single node vy,
so a naive query optimizer might choose the recursive algorithm. If vy, however,
happens to be the only root of H, then H, = H and the optimizer’s choice is bad.
Our prototype therefore refrains from using the recursive algorithm.

Late Sorting. When a SEARCH BY term is specified, the algorithm as described
performs a complete SORT before executing the bulk-build. However, sorting can
also be deferred until after the bucket sort. This has the advantage that not all
rows but only rows within each bucket have to be sorted, which speeds up sorting
considerably. A disadvantage is that all columns appearing in the SEARCH BY term
(rather than just r¢ and rp) must be maintained in the edge list, so the bucket
sort is slowed down due to larger rows. Since SEARCH BY is only used for ordered
hierarchies, which are uncommon in customer scenarios, we have not implemented
late sorting. This way, our implementation of 8 remains compact and we can reuse

the existing SORT operator.

2.8 Experiments

Although this chapter focuses on concepts rather than on the performance character-
istics of alternative implementations, we conducted an experiment to demonstrate
that an efficient evaluation of our language constructs is possible. We derived a
BOM hierarchy from the materials planning data of a large SAP customer with a
few million nodes/rows. The original non-hierarchical table encodes the hierarchy
structure in the Adjacency List format. It contains an INTEGER primary key and an
INTEGER column referencing the superordinate part. For the equivalent hierarchical
table, we employ the PSL indexing scheme. In order to assess performance on
varying hierarchy sizes, we scale the data by removing or replicating nodes, covering
data sizes that easily fit into cache (10?) as well as sizes that by far exceed cache

40 2.8. Experiments

Hierarchy Size 103 10* 10° 108 107

a.) Hash Join 79ps 1310ps 12200 ps 170ms 1660 ms
b.) Bucket Sort 5us 133ps 2056ps 31ms 399ms
c.) Traversal 21ps 324ps 2867ps 23ms 218 ms
Total 105pus 1.77ms 17.1ms 224ms 2.27s

Recursive Join 125ps 1.60ms 20.6ms 278 ms 4.47s

Table 2.2: Bulk-building performance

Hierarchy Size 103 104 10° 106 107
Result Size 0 2 9 59 1293
HAJoin 60ps 431ps 4ms 42ms 439ms
RCTE 139ps 4604ps 70ms 897ms 14011 ms

HAJoin CHAR(16) 5lpus 484ps 5ms 52ms 521 ms
RCTE CHAR(16) 183 ps 6205pns 130ms 251 ms 52797 ms

Table 2.3: Query performance

capacity (107). The benchmark is executed on an Intel Core i7-4770K CPU at
3.50 GHz, running Ubuntu 14.04.

Table 2.2 shows measurements for deriving a hierarchy from the adjacency list
using our bulk-build algorithm: the times of the three steps of the algorithm on the
top; the total time of all steps together below that; and lowermost, for purposes
of comparison, the time of a recursive join over the super-part column. Such a
recursive join could be used to implement the recursive variant of 3, as outlined
in the previous section. Note that the measured recursive join does not perform
duplicate elimination (i.e., cycle elimination), which would make it considerably
slower. The table unveils the most expensive step of the bulk-build process: the
initial outer hash join building the edge list (a.). In contrast, all steps of the
bulk-build operator g together (b. and c.) take only around one third of the time
of the hash join. We therefore conclude that the proposed bulk-building mechanism
is indeed very efficient. Furthermore, we see that executing an ordinary join is
considerably faster than the recursive join, especially so for large hierarchies, so

the recursive variant of 3 is in most cases inferior to the non-recursive variant.

We measured query performance by executing the query from Figure 2.4 on the
hierarchy and comparing it with the equivalent RCTE from Figure 2.3 as baseline.

Chapter 2. A Data Model and Front End For Hierarchical Data 41

We use a 16 byte payload column, so the size of a result row containing 3 INTEGER
keys and 3 payload fields is 60 byte. Table 2.3 includes the runtimes of the two
algorithms and the sizes of the result sets. The last two rows show the results for
analogous measurements with the INTEGER key replaced by a CHAR(16) key. As we
see in the table, the hierarchy-aware join (HAJoin) easily outperforms RCTEs—for
large hierarchies by a factor of over 30. There is a simple explanation for that
huge speed-up, and it shows the general problem with RCTEs: Even though the
result set is not too large, the recursive join must iterate over large subtrees of the
hierarchy, yielding large intermediate results, only to find that there are almost
no matching parts in these subtrees. By contrast, a hierarchy-aware join does not
need to enumerate whole subtrees to find matching nodes; thus, the predicate can
be pushed down to the table scans and only parts that meet the filter condition
participate in the join in the first place. When we use CHAR(16) keys, the figures
(last two lines) reveal one more advantage over RCTEs: Hierarchy-aware joins
work on the join-optimized NODE column, while RCTEs must necessarily work on
the key column. Consequently, an unwieldy key type whose values are expensive
to compare hurts the performance of RCTEs, while hierarchy-aware joins do not
suffer. Thus, the hierarchy-aware join outperforms the RCTE by two orders of
magnitude in this scenario.

Note that a hierarchy-aware join is so fast that its execution is still much
faster than the RCTE even if we always perform a complete bulk-build prior to
executing the query. For example, for 107 nodes, bulk-building plus querying takes
2.71 seconds, while the RCTE takes 14 seconds, so the speed-up is still more than
a factor of 5. We therefore conclude that migrating from an RCTE-based approach
to a hierarchy dimension can yield a considerable query speed-up (Req. #8), even
more so if the hierarchy is not always bulk-built before each query. Since HANA
employs view caching, a bulk-build used in a view will not be re-executed unless
the input tables change. Thus, even applications that simply issue a bulk-build for
each query will run exceptionally fast most of the time, since the bulk-build will
often be elided in favor of a cached result.

2.9 Conclusion

Our work has been motivated by customer demand and findings from our investi-
gation of typical requirements of SAP applications featuring hierarchical data. Our

42 2.9. Conclusion

analysis leads us to conclude that the conventional approaches to handling such
data—particularly recursive CTEs—are not fully satisfactory to meet the require-
ments. As a solution, we propose to enhance the relational model to incorporate
hierarchies by means of a new data type NODE. This data type opaquely represents
the hierarchy structure without mandating a specific encoding, in order to leave
the system full flexibility in choosing the most appropriate indexing scheme. We
introduce extensions to the SQL language that allow the user to specify queries
over hierarchical data in a concise and expressive manner. The syntax extensions
are minimal in that they rely mostly on built-in hierarchy functions and predicates
operating on NODE values. Because of this, SQL programmers can adapt easily to
the new syntax, and its integration into an existing RDBMS is straightforward.
We propose efficient bulk-update operations for legacy applications, as well as fine
grained update operations for greenfield applications. In conclusion, we propose
a SQL based, user-friendly front end with means to build, alter, and query hi-
erarchical data in a relational setting. However, a user-friendly query and data
manipulation language is useless if it cannot be evaluated efficiently. Therefore, the
following chapter will cover a back end that can evaluate queries efficiently while
allowing a high rate of complex updates.

CHAPTER 3

Order Index: Indexing Highly
Dynamic Hierarchical Data

Parts of this chapter have previously been published in [37]. The paper
was invited for an extended version, which has been submitted for the
Special Issue of VLDB Journal. The extended version is also part of
this chapter.

Hierarchical data has always been ubiquitous in business and engineering applica-
tions, especially with the advent of the inherently hierarchical XML data format.
Relational database systems (RDBMS) continue to be the predominant platform
for such applications. These facts have repeatedly led to the challenge of repre-
senting hierarchical data in relational tables, or more specifically, encoding the
structure of a hierarchy in a table such that a table row represents a hierarchy
node. We solved parts of this challenge in the previous chapter by proposing a
user-friendly, SQL-based front end, which encodes hierarchy information in columns
of the abstract data type NODE. The performance of the system depends on the
representation of a hierarchy node through a value of this data type. Therefore, we
revisit the challenge of finding a representation that provides competitive query
capabilities without sacrificing update performance. This classic trade-off strikes
particularly hard with hierarchical data and numerous papers have been written
on working around it. Unlike many of those works, we place our focus on update
performance. In SAP’s application scenarios we encounter fine-grained, complex
updates—in particular relocations of large subtrees—and at the same time need
to provide a certain set of primitive query operations where we cannot tolerate

43

44

significant performance losses. A comprehensive literature survey revealed that a

robust, efficient solution is still missing to date.

Hereinafter we use indexing scheme as a collective term for any technique for
representing a hierarchy with the aim of providing an acceptable tradeoff between
query and update performance. Two major classes of schemes exist: Labeling
schemes [7, 16, 21, 43, 45, 46, 48, 55, 56, 57, 58, 67, 74, 95, 101, 103, 105}, on the
one hand, attach a label to each node and answer queries by considering only these
labels. The labels are maintained in one or more table columns, and those columns
are usually augmented by one or more general-purpose database indexes, such as
B-trees. Index-based schemes [36, 91|, on the other hand, enhance the RDBMS by
special-purpose index structures.

Especially labeling schemes are backed by a massive body of research on XML
databases, on techniques for storing XML fragments in an RDBMS backend, and on
evaluating query languages such as XPath and XQuery. However, in this thesis we
make a case for index-based schemes. Our first contribution is an analysis of query
versus update considerations (Section 3.1) and a taxonomy of existing indexing
schemes in that light (Section 3.2). This leads us to conclude that previously
proposed dynamic labeling schemes are unable to fulfill desired properties: they
either ignore important query primitives, or they inherently suffer from certain
problems inhibiting their update flexibility or robustness. Sophisticated index-based
schemes can help us overcome the inherent problems of plain labeling schemes
and support highly dynamic use cases efficiently. To show that the interface we
propose for index-based schemes is powerful enough, we outline how it can be
used to answer end-user queries (Section 3.3). Our main contribution is a family
of index-based schemes called Order Indezes (Section 3.4). We propose three
specific implementations, the AO-Tree, the BO-Tree, and the O-List, and discuss
performance optimization techniques and possible extensions (Section 3.5). We
conduct a number of experiments (Section 3.6) to assess the merits and drawbacks
of the implementation variants, and we show that they support complex updates
efficiently, avoid degeneration in case of unfavorable update patterns, and provide
the query capabilities of labeling schemes with highly competitive performance.
Order Indexes are a promising back end for the front end we proposed in Chapter 2.
However, they are also applicable to non-relational systems such as XML databases.

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 45

3.1 Dynamic Hierarchies in Relational Systems

We define a hierarchy as a forest of rooted trees. In a relational context, each node
in a hierarchy is represented by a row of an associated table, thus the table columns
carry possible node attributes. The considerations for representing hierarchical
data in relational systems differ somewhat from special-purpose systems, especially
XML DBMS: In business applications such as SAP ERP, which we analyzed in the
previous chapter, a hierarchy is rarely the primary dimension of a table. Therefore,
clustering the associated table by hierarchy structure is usually infeasible or not
preferable, and thus hierarchy indexes are generally secondary indexes in this
setting. XML indexing techniques, on the other hand, commonly rely on clustering
data by structure, for example by arranging it in pre-order and adding primary
indexes.

We base our considerations on the data model from Chapter 2. It represents a
hierarchy by a NODE column plus a secondary index structure. The column contains
the labels of the indexing scheme, that is, scheme-specific node identifiers. The
name of the node column serves as a user handle to issue hierarchical queries on.

Depending on the application, the order among siblings may be meaningful (e. g.,
document order in XML), so a hierarchy can be ordered. However, even in the
unordered case (e.g., human resources hierarchies), indexing schemes impose an
internal storage order. We therefore focus on the ordered case for related work and
our proposed indexes. Any index that supports ordered hierarchies can be used for
both types of applications.

3.1.1 Challenges

Existing indexing schemes lack important capabilities for highly dynamic use cases.
The three problems we identify in this section characterize these missing capabilities.
The hierarchy from Figure 3.1 helps us exemplify the problems; it also illustrates

several indexing schemes, which we explain later.

P1 Lack of Query Capabilities. Certain indexing schemes do support updates
decently, but fail to offer query capabilities to evaluate even fundamental queries,
which renders them infeasible for our use cases. An example is the adjacency list
model, a common way of naively encoding a hierarchy in SQL by storing the primary
key of the parent node (Parent in Figure 3.1): it cannot even handle the ancestor-

46 3.1. Dynamic Hierarchies in Relational Systems

e Key|Parent| PSL NI GapNl _ [Ordpath
A | null |0,8;0 [[0,17] |[0,1700] |1
B| A [1,0;1 [[L2] [[100,200] |1.1
C | A 2,41 [[3,12] |[300,1200] |1.3
® () @) () oo [4,5] |[400,500] |1.3.1
E| C |4,0;2 [[6,7] |[600,700] |1.3.3
. F| C [5,0,2 [[89] |[800,900] |1.3.5
o G| C 16,0;2 [[10,11]][1000,1100]1.3.7
K H| A [7,0,1 |[13,14]|[1300,1400] 1.5
: D) (E) (F)(G) [T 1 A [8:0;1 [[15.16][[1500.1600] |17
+ Relocate C (A) Key[Parent] PSL | NI GapNl__|Ordpath
' below H A | null [0;8,0 |[0,17] |[0,1700] |1
H B | A [1,0;1 [[L2] |[[100,200] [1.1
. C | H [3;4,2 [[413] [[1309,1390]|1.5.1
'\ ®HO D| C |4;0;3 [[56] |[1318,1327]1.5.1.1
> E| C [5,0;3 [[78] |[1336,1345][1.5.1.3 |>Q(s)
(C) F| _C 16:0;3 [[9,10] |[1354,1363]|1.5.1.5
G| C [7:0;3 [[11,12]][1372,1381][1.5.1.7
H| A [2;5:1 [[3,14] |[1300,1400]]1.5
Of(E) (F) (G [1 [A [8:0:1 [[1516]][1500.1600] 1.7

Figure 3.1: Various labeling schemes (top); labels that need to be changed when
subtree C is relocated (bottom)

~—

descendant relationship efficiently. In Section 3.1.2 we identify fundamental query

primitives to be supported sine qua non.

P2 Lack of Complex Update Capabilities. Various ERP use cases demand for an
indexing scheme that supports a rich set of update operations efficiently. However,
most existing schemes are confined to leaf updates, that is, insertion or deletion of
single leaf nodes, and fail to recognize more complex operations. Consider subtree
relocation, where a subtree of a certain size s rooted in a specific node is moved in
bulk to another location within the hierarchy. Ironically, the trivial adjacency list
model naturally supports this. However, virtually all labeling schemes by design
preclude an efficient implementation, because they inherently require relabeling
all nodes in the relocated subtree at a cost of €2(s). The bottom of Figure 3.1
shows the hierarchy from the top with the subtree rooted in C moved below H,
and highlights the Q(s) fields that need to be updated. In Section 3.1.3 we explore
further conceivable complex update operations.

P3 Vulnerability to Skewed Updates. Certain dynamic labeling schemes crumble
when confronted with skewed updates, such as when inserts are issued repeatedly
at the same position. In some scenarios these updates are more frequent than
is commonly acknowledged. For example, when inserting a new plant into an

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 47

BINARY PREDICATES

is_descendant(a,b) whether a is a descendant of b

is_child(a, b) whether a is a child of b

is_before_pre(a,b) whether a precedes b in a pre-order traversal
is_before_post(a,b) whether a precedes b in a post-order traversal

NODE PROPERTIES

level(a) number of edges on the path from a root to a
is_root(a) whether a is a root node
is_leaf(a) whether a is a leaf node, i.e., has no children

INDEX ACCESS

find(a) a cursor ¢ to node a

rowid(c) the row id corresponding to the node at ¢
TRAVERSAL

next_pre(c) a cursor to the next node in pre-order
next_post(c) a cursor to the next node in post-order
next_sibling(c) a cursor to the next sibling

next_ following(c) a cursor to the next node in pre-order

that is not a descendant of ¢

Table 3.1: Essential query primitives on hierarchies

enterprise asset hierarchy, many nodes will be added at one position. Fixed-length
labeling schemes commonly indulge in excessive relabeling in this case, while
variable-length schemes decay in their query performance and memory effectiveness

due to overly growing labels.

3.1.2 Query Capabilities

Query primitives are the building blocks for answering high-level queries on hier-
archies. Table 3.1 shows an essential set of primitives that are needed to answer
fundamental queries. In this and the upcoming figures, a and b represent node
labels (stored in a table column) and ¢ represents a cursor pointing to an entry of
the secondary index structure over these labels. An index that fails to support the
depicted primitives cannot be considered a general-purpose hierarchy index. How
to actually apply these primitives in an RDBMS will become clear in Section 3.3,
which demonstrates that they are in fact sufficient to evaluate common end-user
queries that appear in business scenarios.

48 3.1. Dynamic Hierarchies in Relational Systems

ORDINAL PROPERTIES

pre_rank(a) a’s rank in a pre-order traversal

post_rank(a) a’s rank in a post-order traversal
subtree_size(a) number of nodes in the subtree rooted in a
range_size([a,b]) number of nodes in all subtrees rooted in [a, b]

ORDINAL ACCESS
select_pre(n) a cursor to the n-th node in pre-order
select_post(n) a cursor to the n-th node in post-order

Table 3.2: Ordinal query primitives

We distinguish between four kinds of primitives. Binary predicates test whether
two nodes are related with respect to a certain axis. is_before_pre and is_before__post
are useful for ordering nodes in a depth-first, either parent-before-child (pre-
order) or child-before-parent (post-order) manner. Strictly speaking, the other two
predicates are redundant: is_descendant can be expressed in terms of is_before_pre
and is_before_post, and is_child in terms of is_descendant and level. However,
we found having dedicated, potentially optimized implementations for these two
primitives to be clearly beneficial, as most queries navigate along these axes. Node
properties are used to filter nodes, for example, when the user wishes to restrict
the result to leaf nodes or to nodes at certain levels. An example is the so-called
explosion query often found in ERP applications, which consists of finding all
descendants of a node up to a certain level. Index access primitives are used to
navigate between the table (i.e., the labels) and the index. Traversal operations
scan the index in various directions. They are useful to implement set-oriented
operators that enumerate subsets of the hierarchy nodes, such as a scan.

We found this essential set of primitives to be expressive enough to cover most use
cases, while at the same time allowing for efficient implementations in most existing
indexing schemes. That said, one may well decide to add further primitives to
support advanced applications, or just to improve performance through a redundant
primitive for a special case. For instance, a group of advanced primitives are the
ordinal query primitives shown in Table 3.2. They are based on the ordinal number
of a node with respect to a certain traversal. In the figure, the syntax [a, b] denotes
a sibling range of nodes: b must be a right sibling of a (or a itself), and [a, b] refers
to all siblings between and including a and b. pre_rank and post_rank return the
position of a node with respect to pre- or post-order traversal, respectively; given
such ranks, pre_select and post_select return the corresponding cursor. Rank and

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 49

BULK UPDATES (re)build the hierarchy as a whole
bulk_build(T") builds the hierarchy from tree representation 7'
LEAF UPDATES alter a single leaf node

delete_leaf(a) deletes a leaf node a

insert_leaf(a, p) inserts the new leaf node a at position p
relocate_leaf(a, p) relocates a leaf node a to position p

SUBTREE UPDATES alter a subtree

delete_subtree(a) deletes the subtree rooted in a
insert_subtree(a, p) inserts the new subtree rooted in a at position p
relocate_subtree(a,p) relocates the subtree rooted in a to position p
RANGE UPDATES alter subtrees rooted in a range of siblings
delete_range([a, b)) deletes all subtrees rooted in range [a, b]

insert_range([a, b],p) inserts all subtrees rooted in range [a,b] at position p
relocate_range([a, b], p) relocates all subtrees rooted in range [a, b] to position p

INNER UPDATES alter an inner node

delete_inner(a) deletes node a from the hierarchy; the former children
of a become children of a’s parent

insert_inner(a, [b,c]) inserts the new node a as child of the parent of b; nodes
in range [b, c| become children of a

relocate_inner(a, [b, ¢]) makes all children of a children of a’s parent; a becomes
the parent of all nodes in range [b, ¢|, and the child of
their previous parent

Table 3.3: Update operations on hierarchies

select are inverse: pre_rank(select_pre(n)) = n and select_pre(pre_rank(a)) = a.
With rank/select, we usually get support for subtree_size and range_size as a
byproduct, since subtree_size(a) = post_rank(a) — pre_rank(a) + level(a). Ranks
are, for instance, used to create compact representations from subtrees, so-called
tree signatures, for pattern matching purposes [104]. Use cases for select primitives
are, for example, top-N queries with an offset for displaying parts of the hierarchy
in a user interface. The subtree sizes provide useful statistics; they are also used in
user interfaces to indicate the sizes of currently folded subtrees. Moreover, they can
also be leveraged internally for cardinality estimations. In order to render Order
Indexes applicable in more applications, we consider ordinal primitives for Order
Indexes, too (Section 3.5.2). That said, we do not count them as essential. Their
implementation complexity and memory and maintenance overhead at runtime will

not pay off in every application.

50 3.1. Dynamic Hierarchies in Relational Systems

relocate_leaf(E, below J) relocate_subtree (C, below J)

Figure 3.2: Various classes of relocation updates on an example hierarchy: before
and after

is_before_pre, is_before_post, as well as any traversal and ordinal primitives
are undefined for wunordered hierarchies. These primitives will be less relevant
for applications featuring such hierarchies. However, in many situations it is still
desirable to have support for these operations in a deterministic way, even though

the underlying order is implementation-defined.

3.1.3 Update Capabilities

In Table 3.3 we present a taxonomy of update operations that a dynamic indexing
scheme shall support. p indicates a target position in the hierarchy. Depending on
whether the sibling order is meaningful, p can have different values, such as “as
first child of node x”, “as direct left sibling of z”, “below x”, or “as a sibling of z”.
How exactly p is represented is not important here.

The first class of updates is bulk-building an index from another hierarchy
representation. This is an important task when creating an indexing scheme on

existing relational data. Fortunately, all indexing schemes—even static ones—can be

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 51

bulk-built efficiently using, for instance, the index-independent bulk-build operator
from Section 2.7.3. The other classes are leaf node updates, subtree updates, sibling
range updates, and inner node updates, each named after the entities involved
in the update. Within each class, three kinds of updates are conceivable: delete
updates, which delete existing nodes, insert updates, which insert new nodes, and
relocate updates, which alter positions of existing nodes. Figure 3.2 illustrates the
various classes with regard to the relocate kind on an example hierarchy. The
other kinds, insert and delete, are similar; the only difference is that the updated
entities (green in the figure) enter or leave the hierarchy, respectively, instead of
being relocated. In a sense, the relocate kind subsumes the others: inserts and
deletes are relocations into and out of the hierarchy, respectively. Thus, any index

that handles relocation efficiently supports efficient insertion and deletion as well.

Most related works consider only leaf updates, which are most common in XML.
They are the simplest update class and implementing them efficiently is rather easy

in comparison to the other classes of updates.

Our focus is particularly on subtree updates. As a leaf node is also a trivial
subtree, they subsume the corresponding leaf updates. But since indexing schemes
usually afford optimized operations for leaves, distinguishing between leaf and
subtree operations is useful in practice. Most indexing schemes implement subtree
operations naively through node-by-node processing, requiring at least s leaf
updates for a subtree of size s. For small subtrees, {2(s) update cost might be
tolerable. However, real-world hierarchies—such as the hierarchies found in SAP’s
ERP applications—have a large average fan-out. Thus, even if a node that has only
leaves as children is relocated, s will often be in the magnitude of thousands. Of
course, updating larger subtrees will be detrimental to overall system performance
only if a lot of such operations appear in the workload. But in many ERP use cases,
a high percentage of updates (e.g., 31% in the enterprise asset hierarchy examined
in [36]) are indeed subtree relocations. Furthermore, note that although subtree
relocation may appear as an unnatural bulk operation in comparison to single
leaf insertion or deletion, the operation is quite fundamental to SQL users: In the
adjacency list model—the predominant format for representing hierarchies within
an RDBMS—any change to a parent field corresponds to a subtree relocation. For
example, we achieve the relocation in Figure 3.1 by simply setting the Parent of
C to H in the table. In other words, every issued UPDATE statement touching the

parent column incurs subtree relocations.

52 3.2. Related Indexing Schemes

The inner node updates are useful for inserting a new level into the hierarchy,
and for wrapping a subtree into a new root. As an example application, certain
tree differentiation algorithms such as MH-Diff [23] emit edit scripts featuring these
operations. An index that is being used for replaying such edit scripts has to
support them.

The sibling range update might seem obscure at first sight, but is in fact very
powerful: It subsumes subtree and leaf updates, because a subtree rooted in a or a
leaf @ are trivial sibling ranges [a, a]. It also subsumes inner node updates, because
moving all children of an inner node to another position makes this node a leaf,
so a leaf update can delete or relocate it. Thus, range updates subsume all other
updates, and indexes that support them—specifically, our Order Indexes—can
implement all mentioned operations in terms of range relocation.

Unlike the query primitives, the update primitives may be significantly more
complex for ordered than for unordered hierarchies, since ordered hierarchies need
the position among siblings maintained. Even if an index does support ordered
hierarchies, using it for unordered hierarchies may allow optimizations because it
can pick the sibling position which yields the cheapest update.

3.2 Related Indexing Schemes

In the following we explore existing indexing schemes and assess to which extent
they suffer from one of the identified problems P1 to P&. It turns out that most
indexing schemes suggested in the literature are variations of basic schemes with
similar capabilities and asymptotic properties, so we can group them into a small
taxonomy.

Table 3.4 shows the asymptotic amortized query complexities of all groups
of schemes in our taxonomy, for all essential query primitives we presented in
Table 3.1. All primitives work on labels, except the ones tagged with ['], which
work on cursors to index entries. Depending on the access method, such cursors
are already available during query execution or must first be obtained from the
label with the find function. Note that many of the query operations in the table
are not mentioned in the cited works, but inferring them is straightforward.

Table 3.5 shows the asymptotic amortized update complexities of all groups of
schemes in our taxonomy. The columns represent the different classes of updates.
Column skew|u] represents skewed leaf node insertions; it depicts the complexity of

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 53

ACCESS TRAVERSAL
find next__ next__ next__ next__
pre post sibling following
2| Adjacency 1 = = = =
2/ Linked 1 i i 1’ 1’
=| (Dyn-)NI log nt 1 1 1 1
L: (Dyn-)NI-Parent | logn' 1 1 1 1
8 (Dyn-)NI-Level | logn' 1 1 1 1
3| (Dyn-)Dewey llognt | 1/ llogn' llogn' llognt
B-BOX[B] B 1 1 1 1
AO-Tree 1 1 1 1 1
j-ﬁ BO-Tree[B] 1 i 1/ 1 1
| O-List[B] 1 i il i i
DeltaNI logu log u/ log u/ log v/ log v’
BINARY PREDICATES NODE PROPERTIES
is_desc. is_before is_child | level is_root is_leaf
pre/post
2| Adjacency l — 1 l 1 1
2| Linked y y i 7 i 1
2| (Dyn-)NI 1 1# v - v /1t
2| (Dyn-)NI-Parent | 1f 1# 1# [1 /1t
8| (Dyn)NI-Level | 1f 1 1 1 1 1//1t
s | (Dyn-)Dewey & & i & 1 It
B-BOX[B] loggn’ loggn’ ¥ = b 1/
AO-Tree logn’/ log n/ log n/ logn* logn/* 1
-ig BO-Tree[B] loggn’ loggn’ loggn’ | loggn'* loggn'* 1/
O-List[B] 1/ il 1’ 1/ 1/ 1/
DeltaNI 1 1 1 1 1 1

n: hierarchy size, [: level of node, b: number of siblings, u: number of updates, B: block size
—: not supported, ‘operates on cursors, 'only in the static variant, *O(1) during index scan
in the Dyn variant, performance may decrease over time due to growing labels
Qualitative rating: O efficient O mostly efficient O inefficient or unsupported

Table 3.4: Asymptotic query complexities for various indexing schemes (amortized,
average case)

o4 3.2. Related Indexing Schemes

Update Operations
LEAF SUBTREE INNER RANGE SKEW|[u]
2| Adjacency 1 1 c c
2| Linked 11 c c 1
=| NI n n n n n
% Dyn-NI 1 S 1 S U
£| Dyn-NI-Parent | 1 S c S U
8 Dyn-NI-Level |1 S s s U
/| Dewey lf W(f+s) Uf+s) Uf+s) UW(f+s)
s Dyn-Dewey l ls ls ls l+u
AO-Tree 1 logn logn logn 1
5| BO-Tree[B] 1 Bloggn Bloggn Bloggn 1
£| 0-List[B] 1 s/s+B s/s+B s/B+B u/p?
DeltaNI logu logu log u log u log u

n: hierarchy size, [: level of node, ¢: number of children
s: number of descendants, u: number of updates, B: block size
f: number of following siblings plus their descendants
Qualitative rating: O efficient O mostly efficient O inefficient

Table 3.5: Asymptotic update complexities for various indexing schemes (amortized,
average case)

a single skewed insertion after u other skewed insertions have taken place and thus

expresses how skew-resilient an indexing scheme is. All updates operate on cursors.

The figures include two naive hierarchy representations. They are pragmatic,
easy-to-implement solutions, which, however, do not provide the efficient query
capabilities of indexing schemes (P1). First, the Adjacency list introduced earlier.
Second, Linked, a simple in-memory tree representation whose structure matches
the hierarchy structure and which uses per-node pointers to the parent, the first
and last child, and the previous and next sibling. The problem with these schemes
is that the important query primitives level and is_descendant run in O(l) and
also are likely to cause O(l) cache misses, because they have to walk up the tree.
Adjacency uses a hash index for the key and parent columns, and Linked stores
direct pointers into the hierarchy representation, so both execute find in O(1).
Note that Adjacency does not maintain a sibling order. It is the only scheme that
supports only unordered hierarchies, and therefore has no support for order-based

traversal primitives.

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 55

Besides the naive schemes, there are three major categories of indexing schemes:
containment-based labeling schemes, path-based labeling schemes, and indez-based
schemes. Labeling schemes index their label columns with a B-tree that is also
used for traversal operations, so the find operation runs in logarithmic time for
them. Note that this B-tree also adds an O(B) term—where B is the block size
of the B-tree—to all update operations for these schemes (and for BO-Tree and
O-List), because the block in which the corresponding index entry lies has to be
updated. We omitted this term in Table 3.5 for simplicity reasons and because
O(B) = O(1), since B does not depend on the hierarchy size.

Containment-based Labeling Schemes, also known as order-based or nested
intervals schemes, label each node with a [lower, upper| interval or similar values.
As the term “nested” alludes to, their main property is that a node’s interval is
nested in the interval of its parent node. Queries are answered by testing the

intervals of the involved nodes for containment relationships.

Column NI in Figure 3.1 shows a nested intervals labeling that is commonly
used in XML and other database applications, e.g. [105, 45, 48]. We can see that
node E is a descendant of node A, because E’s interval [6, 7] is a proper subinterval
of A’s interval [0,17]. A variation is the pre/post scheme [43], where each node is
labeled with its pre- and post-order ranks. Considering updates, the mentioned
schemes are static (P2). Their fundamental problem is that each insertion or
deletion requires relabeling O(n) labels on average, as all interval bounds behind
a newly inserted bound have to be shifted to make space. This group of static
nested interval schemes is called NI in the tables. Considering queries, plain NI
and pre/post have similar, limited capabilities: For example, we cannot test the
important is_child predicate, because neither scheme allows us to compute the
distance between a node and an ancestor. This severe limitation makes a nested
intervals scheme without further fields useless (P1). It can be mitigated by either
storing the level of a node or its parent in addition to the interval (NI-Level and
NI-Parent in the tables, respectively).

Various mitigations for the nested intervals update problem have been proposed
(Dyn-NT in the tables). Li et al. [58] suggest pre-allocating gaps between the interval
bounds. Column GapNI in Figure 3.1 illustrates this. As long as a gap exists, new
bounds can be placed in it and no other bounds need to be shifted; once a gap
between two nodes is filled up, all bounds are relabeled with equally spaced values.
The caveats are that relabelings are expensive, and skewed insertions may fill up

56 3.2. Related Indexing Schemes

certain gaps overly quickly and lead to unexpectedly frequent relabelings (P38). In
addition, all s nodes in a range or subtree being updated still need to be relabeled
(P2).

Amagasa et al. [7] propose the QRS encoding based on pairs of floating-point
numbers. Schemes along these lines are essentially gap-based as long as they rely
on fixed-width machine representations of floats. Boncz et al. tackle the update
problem using their pre/size/level [16] encoding (PSL, cf. Figure 3.1) by storing the
pre values implicitly as a page offset, which yields update characteristics comparable
to gap-based schemes. W-BOX [91] uses gaps but tries to relabel only locally using
a weight-balanced B-tree; its skewed update performance is therefore superior to
basic gap-based schemes. The Nested Tree [103] uses a nested series of nested
interval schemes to relabel only parts of the hierarchy during an update and is

therefore comparable to gap-based schemes.

Another idea to tackle the update problem for NI is to use variable-length data
types to represent interval bounds: For example, the QED [55], CDBS [56], and
CDQS [57] encodings by Li et al. are always able to derive a new label between two
existing ones, and thus avoid relabeling completely. EXCEL [67] uses an encoding
comparable to CDBS. It tracks the lower value of the parent for enhanced query
capabilities. While these encodings never have to relabel nodes, they bear other
problems: The variable-length labels cannot be stored easily in a fixed-size table
column and comparing them is more expensive than comparing fixed-size integers.
In addition, labels can degenerate and become overly big due to skewed insertion
(P3). Cohen et al. [31] proved that for any labeling scheme that is not allowed
to relabel existing labels upon insertion, an insertion sequence of length n exists
that yields labels of size 2(n). Thus, the cost of relabeling is traded in for a
larger (potentially unbounded) label size. Query primitives that suffer from these
degenerating labels are marked with [*] in Table 3.4.

All gap-based and variable-length NI schemes can handle inner node updates
decently by wrapping a node range into new bounds. For example, GapNI in
Figure 3.1 is able to insert a parent node K above D, E, and F by assigning it
the bounds [350,950]. However, as soon as the node level [16] or its parent [67]
(Dyn-NI-Level and Dyn-NI-Parent in the tables) are to be tracked explicitly—which
is necessary for many queries (P1)—inner node updates turn expensive, as the
parent of all ¢ children of K (D, E, and F) or the levels of all s descendants change.
Updates to subtrees or ranges of size s always alter all s labels. So, since all

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 57

containment-based schemes suffer from the problems P2 and P&, their use in

highly dynamic settings is limited.

Path-based Labeling Schemes encode the path from the root down to a node
into its label. Dewey [95] is a prominent example, and the basis of several more
sophisticated schemes. It builds upon the sibling rank, that is, the 1-based position
of a node among its siblings. Each node is labeled with the label of its parent
node plus a separating dot plus its sibling rank. In the example hierarchy of
Figure 3.1, node G receives the Dewey label 1.2.4, as G is the fourth child of
C, which is the second child of A, which is the first root. Dewey is not dynamic
(P2): We can easily insert a new node as rightmost sibling, but in order to insert
a node a between two siblings, we need to relabel all siblings to the right of a
and all their descendants (as indicated by factor f in Table 3.5). For unordered
hierarchies, inserting rightmost siblings is sufficient, but for ordered hierarchies
insertion between siblings is a desirable feature. Therefore several proposals try
to enhance Dewey correspondingly: One prominent representative is Ordpath [74],
which is used in Microsoft SQL Server for the hierarchyid data type. It is similar
to Dewey, but uses only odd numbers to encode sibling ranks, while reserving
even numbers for “careting in” new nodes between siblings. This way, Ordpath
supports insertions at arbitrary positions without having to relabel existing nodes.
In Figure 3.1, for example, inserting a sibling between C and H results in the label
1.4.1. Note that the dot notation for labels is only a human-readable surrogate;
Ordpath stores it in a more compact binary format. A lot of further dynamic
path-based schemes have been proposed: DeweylD [46] improves upon Ordpath by
providing gaps that are possibly larger than the ones of Ordpath, thus resulting in
less carets and usually shorter labels. CDDE [101] also aims to provide a Dewey
encoding with shorter label sizes than Ordpath. The encoding schemes [55, 56, 57]
can also be used for building dynamic path-based schemes. In the tables, Dewey
refers to static path-based schemes such as Dewey itself and Dyn-Dewey refers
to dynamic ones (e.g., Ordpath and CDDE). Dynamic path-based schemes are
variable-length labeling schemes, and the proof of [31] holds as well, so they pay
the price of potentially unbounded label sizes. In addition, all path-based schemes
pay a factor [on all update and most query operations, since the size of each node’s
label is proportional to its level [.

Considering updates, the dynamic variants are able to insert leaf nodes, but
cannot handle inner node updates efficiently, as the paths and thus the labels of

58 3.3. Hierarchical Query Processing

all descendants of an updated inner node would change. An exception to this is
OrdpathX [21], which can handle inner node insertion without having to relabel
other nodes. All path-based schemes inherently cannot handle subtree and range
relocations efficiently, as the paths of all descendants have to be updated (P2).
When used for ordered hierarchies, they are also vulnerable to skewed insertions
(P3); however, update sequences that trigger worst-case behavior are much less

common than for a containment-based scheme.

Index-based Schemes use special-purpose secondary index structures to evaluate
queries rather than considering a label (all operations marked with ['] in Table 3.4).
Their advantage is that they generally offer improved update support. B-BOX [91]
uses a keyless BT-tree to represent a containment-based scheme dynamically. It has
the same update complexity as the BO-Tree in Table 3.5. However, it represents
only lower and upper bounds but does not support level or parent information
and thus has limited query capabilities (P1). Its find implementation runs in
O(B), because it always scans a block of size B when searching for index entries.
Our DeltaNI (Chapter 4) uses an index to represent a containment-based scheme
with level support. As a versioned index, it captures a whole history of updates
(factor w in the figures) and is able to handle time-travel queries. It can be used for
unversioned hierarchies by simply keeping all data in a single version delta. While
DeltaNI bears none of the three identified problems, its overall query performance
is generally inferior to unversioned schemes, as our evaluation shows. Both DeltaNI
and B-BOX can handle subtree and range relocations in logarithmic worst-case
complexity, so they do not show any of the update problems.

3.3 Hierarchical Query Processing

We already mentioned example scenarios for the various wupdate primitives we
introduced in Section 3.1.3. This section sheds light on how the query primitives
can be used for efficient processing of common end-user queries.

To get a feeling for what is needed for efficient query processing on hierarchical
data, we first have to look at what kinds of queries are performed in this context.
The most important functionality when querying hierarchical data is navigating
through the hierarchy on certain axes. In a relational context, such navigation
translates naturally into self-joins over the hierarchy nodes. Therefore, efficient join
algorithms are crucial for overall system performance. Other conceivable operations

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 59

SELECT u.pos, v.pos, LEVEL(v.pos)

FROM T as u

JOIN T as v ON IS_DESCENDANT(v.pos, u.pos)
ORDER BY PRE_RANK(u.pos), PRE_RANK(v.pos)

Figure 3.3: An example query using the SQL extensions from [18]

on hierarchies, such as sorting nodes in a specific order or aggregating information
up or down the hierarchy, map to relational operators quite naturally as well.
Hereinafter, we will exemplify certain efficient operators—especially joins—using
our query primitives. By providing this set of abstract, index-indifferent query
primitives, query processing can use the same algorithms irrespective of the actual
values in the node column (in fact, our prototype is able to process queries with all
nine indexing schemes we implemented for Section 3.6).

Our SQL extension from Chapter 2 actually does not extend the SQL grammar
at all; it only adds the NODE data type and functions for working with it. Thus,
it gets fully translated to relational algebra. In the following, we assume T is a
hierarchical table exposing a node column named pos. H denotes the associated
hierarchy index.

Figure 3.3 shows a simple example query associating each node with the level
and identity of its descendants, ordered in pre-order. All hierarchy capabilities
are encapsulated in a set of SQL functions: hierarchy properties and hierarchy
predicates. This query uses two hierarchy properties (LEVEL, PRE_RANK) and a
predicate (IS_DESCENDANT). The SQL functions from Chapter 2 can be translated
straight into the query primitives of Section 3.1.2; for example,

LEVEL (a) H level(a)
IS_ANCESTOR(a,b) H.is_descendant(b,a)
IS_PRECEDING(a,b) H.is_before_pre(a,b) A H.is_before_post(a,b)

The whole language could therefore naively be implemented by adding corresponding
map operators to the plan. However, many hierarchy-centric optimizations are
possible, as we will show hereinafter.

The two properties PRE_RANK and POST_RANK virtually always appear in conjunction
with ORDER BY, as in the example query. An implementation may therefore reasonably
decide to prohibit projecting PRE_RANK and POST_RANK and allow it only in order-by
clauses—as our prototype currently does. Otherwise, we can employ the ordinal

60 3.3. Hierarchical Query Processing

query primitives from Table 3.2. As long as ranks only appear in an order-by
clause, their evaluation boils down to ordinary sorting using is_before_pre and
is_before_post as comparison predicates, respectively. Alternatively, the index can
often even be used to enumerate the tuples in the desired order in the first place
and get rid of the sort altogether. We call the corresponding physical operator
hierarchy index scan (HIS). Its basic task is to enumerate the tuples corresponding
to a given subtree a in pre-order. This is where traversal primitives come into play:
Hierarchy Index Scan [pre-order| (T, H, a)
¢ + H find(a)
¢’ < H .next_following(c)
do
yield T'[H .rowid(c)] > table access
¢ < H.next_pre(c)
while ¢ # ¢

First, we look up a in the index structure using find, and determine a’s next
following node as a delimiter for the scan ([74] suggested a similar technique based
on a grdesc primitive comparable to next_following). The descendants of a are in
the range between ¢ and ¢’. We iterate over them using next_pre. A modification
to post-order is straightforward, as are variants for other hierarchy axes. This

makes the hierarchy index scan a versatile operator.

Similar to pre/post ranks, hierarchy predicates are rarely explicitly evaluated, as
they primarily appear in join conditions. Nested loop joins work out of the box,
but for decent performance the engine should provide specialized join operators.
One must-have is the hierarchy index nested loop join (HINL.J), which directly
enumerates the matching right input tuples for each left input tuple it consumes
by essentially running an index scan. This operator is quite appropriate for our
example query, which features a hierarchy join over the descendant axis and a

computation of the node level. The corresponding physical plan would be

XH.Ievel(HIS(T) NII?.EEiescendant T)

A modern query compiler [71] could produce the following tight code fragment
from this plan:

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 61

¢, + first root node in H
while ¢, # null do > HIS
¢y < H.next_pre(c,)
¢, < H.next_following(c,)
while ¢, # ¢/, do > HINLJ
yield [c,, ¢,, H.level(c,)]
¢y < H.next_pre(c,)

cy < H.next_pre(c,)

The outer scan enumerates all ¢, in pre-order and the nested scan enumerates their
descendants ¢,. No sorting is necessary, as the result already has the desired order.
Beyond the basic index join, more sophisticated join algorithms can be imple-
mented in terms of the index primitives. The following pseudo-code performs what
we call a hierarchy merge join (HMJ). It consumes two input relations L and R
that are sorted in pre-order and joins them along the ancestor axis. The left join
side is pipelined through, the right side is accessed through an iterator. The order
L—R is conveniently retained in the output.
Hierarchy Merge Join [IS_ANCESTOR| (L, R, H)
S <+ () > stack of R tuples
140 > position within R
for each [€ L do
while S # () A —H.is_descendant(l.pos, S.top().pos) do
S.pop()
while i # R.size() do
r < RJi]
if H.is_descendant(l.pos, r.pos) then
S.push(r)
1 1+1
if H.is_before_pre(r.pos,l.pos) then
14 1+1 > r precedes [— ignore

else
break > r follows [; process [now!

for each » € S do
yield [or

For each incoming L tuple [, the algorithm maintains the stack S in such a way
that it contains exactly the join partners of [, by first popping obsolete tuples

62 3.3. Hierarchical Query Processing

from S and then pulling in further R tuples. The main virtue over HINLJ is that
the HMJ can work on arbitrary inputs and thus can be used to construct bushy
query plans. Supporting outer joins and other axes are straightforward extensions
(as depicted in [6], for example).

The two joins we showed here are used for general-purpose hierarchy processing.
In certain fields like XPath processing, more specialized join algorithms can be
constructed using the query primitives. While most join algorithms in the literature
are defined in conjunction with a specific labeling scheme, they can be easily
adapted to work with our index-indifferent query primitives and thus remove
the dependency on a specific scheme. As an example, the following code shows
an adaption of the Staircase Join [43]—a prominent, optimized join for XPath
processing—for the descendant axis:

: function STAIRCASEJOIN _DESC(doc, context)

for each successive pair (¢, ¢2) in context do
scanpartition_desc(cy, ¢o)

¢ < last node in context

scanpartition_desc(c, n)
: function SCANPARTITION__DESC(cq, ¢3)
for (c < next_pre(cy); ¢ # ca; ¢ < next_pre(c)) do

1
2
3
4
5: n < end of doc
6
7
8
9

if is_before_post(c, ;) then

10: yield ¢
11: else
12: break > skip

Inferring this algorithm from the original definition—which is hard-coded to the
pre/post labeling scheme—is quite straightforward (cf. Algorithm 2 and 3 in [43] for
the original code). The same is true for other special-purpose join algorithms such
as MPMGJN [105], Stack-Tree [6], and variations of TwigStack [19]. Therefore, our
suggested query primitives are applicable to a broad range of existing applications
and allow implementers to effectively separate implementations of indexing schemes
from implementations of physical operators. Hence, we use them as the interface
for our proposed indexing schemes, which we present next.

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 63

Legend @ 0 Hierarchy (conceptual) A

— [Hierarchy edge Ao
S IBack ik Key RID M@G
o> [Back-lin
Association GQ % 1 NS
C)2

Table _Label [=lower]=upper

o
Q|
D

Key

PR |wWwN|=|O|level |

2lelrlelp 2|9 |lower
LeleTr1pls e [Alupper

ounbhwnNn~oO RID
AMm|OO|®m|>

Figure 3.4: A hierarchy with Order Index (AO-Tree)

3.4 Order Indexes

To overcome the mentioned problems of prior works, we propose the concept of
an Order Index and three specific data structures AO-Tree, BO-Tree, and O-List.
They combine various ideas, from keyless trees (B-BOX) to accumulation trees
(DeltaNI) through to gap allocation techniques (GapNl), to achieve increased update
efficiency and robustness for dynamic workloads.

Order Indexes are index-based schemes and as such must be tightly integrated
into the database system. They are designed as back ends for the hierarchy front
end discussed in Chapter 2, which is integrated into TUM’s HyPer [51] kernel and
the SAP HANA Vora in-memory query engine [85]. Consequently, we discuss them
in a main-memory context and cover disk-based systems only in a brief excursion
(Section 3.5.1).

3.4.1 The Order Index Concept

An Order Index conceptually represents each hierarchy node by two interval bounds
and its level. However, the bounds are not explicit numbers or other literals, but
rather entries in an ordered data structure. Therefore, the index can be viewed as
a dynamic representation of a containment-based scheme along the lines of NI, with
implicitly represented bounds and explicitly maintained level. According to our
model, an Order Index consists of one NODE table column plus the secondary index

64 3.4. Order Indexes

structure. Each field in the node column is composed of three components lower,
upper, and level. lower and upper are special links to the corresponding entries in
the index structure. We call them back-links, as they refer back from a table row
to an index entry, while common secondary indexes merely point from an index
entry to a row through its row ID (RID).

EXAMPLE. Figure 3.4 shows an example hierarchy (top) and a pair of an Order Index
and a table representing it. The index is actually an AO-Tree, which we explain in
Section 3.4.2. A few exemplary back-links are shown as red arrows. An opening bracket
denotes a lower and a closing bracket an upper bound; for example, |3 is the entry for
the upper bound of row #3.

The index structure maintains the relative order of its entries (hence the term
Order Index). Order Indexes provide the following interface:

entry(l) — a cursor to the entry for back-link [

rowid(c) — the id of ¢’s associated row

is_lower(c¢) — whether ¢ represents a lower bound
is_before(c1, c2) — whether ¢; is before ¢y in the entry order
next(c) — a cursor to the next entry in the entry order
adjust_level(c) — the level adjustment for ¢ (see below)

Here, [is a back-link and ¢, ¢1, and ¢y are cursors. A cursor is a reference to a specific
entry in the index—either to a lower or an upper bound. The implementation of
entry depends on how back-links and cursors are actually represented. Depending
on the underlying data structure there are several options, which we discuss in
Section 3.4.3. Regardless of which data structure is chosen, rowid and is_lower
are implemented by storing the RID and an is_lower flag with each index entry;
next corresponds to a basic traversal of the data structure. Therefore, we will
only need to cover how entry, is_before, and adjust_level differ among our three
implementations.

All query primitives introduced in Table 3.1 can be implemented in terms of the
six index operations, as shown in Table 3.6. We use three helper functions: label
looks up the label corresponding to an entry in the node column of the associated
table. to_lower and to_upper yield the respective lower or upper bound of the same
node, given a cursor to some entry.

The update primitives from Section 3.1.3 can be implemented as follows: in-
sert_leaf corresponds to inserting a lower and an upper bound as adjacent entries
into the data structure and storing the back-links and an initial level in the cor-

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 65

HELPER FUNCTIONS

label(c) table[rowid(c)].node
to_lower(c) if is_lower(c) then ¢ else entry(label(c).lower)
to_upper(c) if is_lower(c) then entry(label(c).upper) else ¢

BINARY PREDICATES

is_descendant(a,b) ¢ < entry(a.lower); is_before(entry(b.lower), ¢)
N is_before(c, entry(b.upper))

is_child(a, b) is_descendant(a, b) A level(a) = level(b) + 1

is_before_pre(a,b) is_before(entry(a.lower), entry(b.lower))

is_before_post(a,b) is_before(entry(a.upper),entry(b.upper))

NODE PROPERTIES

level(a) a.level + adjust_level(entry(a.lower))
is_root(a) level(a) =0
is_leaf(a) ¢ < entry(a.lower); rowid(next(c)) = rowid(c)
INDEX ACCESS
find(a) entry(a.lower)
rowid(c) rowid(c)
TRAVERSAL
next_pre(c) n < to_lower(c);

do n < next(n) until is_lower(n); n
next_post(c) n < to_upper(c);

do n < next(n) until —is_lower(n); n
next_sibling(c) next(to_upper(c))
next_following(c) next_pre(to_upper(c))

Table 3.6: Implementing the query primitives

responding table row. delete_leaf simply removes the two entries from the data
structure and the table row. For relocate_range, we conceptually “crop” the corre-
sponding range of bounds [a, b], then alter the level adjustment—the value returned
by adjust_level—for that range, and finally reinsert [a, b] at the target position. As
explained in Section 3.1.3, the other updates are implemented in terms of these
operations, so we do not cover them explicitly. Section 3.4.4 will explain updates
in full detail.

Level adjustments enable us to maintain level information dynamically. adjust_level
is always added to the level stored in the table row (cf. level(a) in Table 3.6). This
way we avoid having to alter the table in case of a range relocation; rather, we
update the level adjustment of the relocated range. To do this efficiently we reuse
a technique that we originally applied in DeltaNI [36] (cf. Chapter 4) for different

66 3.4. Order Indexes

purposes: accumulation. Accumulation works for any hierarchically organized data
structure that stores its entries in blocks, such as a B-tree or a binary tree (where
the “blocks” are just nodes). The idea is to store a block level with each block. The
level adjustment of an entry e is obtained by summing up the levels of all blocks on
the path from e’s block to the root block. This allows us to efficiently alter levels
during a range relocation: After cropping the bound range [a, b], we add the desired
level delta § to the block level of the root block(s) of that range, which effectively
adds ¢ to the levels of all entries within [a,b]. Accumulation brings along the cost
that level(a) becomes linear in the height of the data structure, usually O(logn).
However, during an index scan, the level adjustment can be tracked and needs to
be refreshed only when a new block starts. This yields amortized constant time for

level.

3.4.2 Order Index Structures

As specific Order Index structures, we propose the AO-Tree based on a keyless
AVL tree, the BO-Tree based on a keyless BT-tree, and the O-List based on a
linked list of blocks. Since the BO-Tree and the O-List organize their entries into
larger blocks of memory, we call these two block-based Order Indexes.

AO-Tree. Self-balancing binary trees, such as the AVL tree (our choice) or the
red-black tree, offer logarithmic complexity for most operations, which makes them
good candidates for an Order Index structure.

Because some required algorithms navigate from the bottom towards the root
rather than the other way round, we must maintain pointers to parent blocks.
Then, to compute adjust_level, for example, we sum up all block levels on the path
from an entry to the root block, as outlined before. Since the trees are balanced,
the worst-case complexity for this navigation is O(logn).

EXAMPLE. The top of Figure 3.5 shows the AO-Tree from Figure 3.4 in more detail.
The red numbers to the right of the entries are the block levels. The purple arrows show
how to evaluate level for node E: We start with the value 2 from the table row #4 and
sum up the block levels from [4 upwards to get 2+2 —2+1 = 3.

We check the entry order relation is_before(cy, ¢o) by simultaneously walking up
the tree, starting at the two corresponding entries e; and es, to their least common
ancestor €', and finally checking which of the two paths arrives at e’ from the left.

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 67

0(A)
1®0©

4 9y
oy [l [y el g,

\

BO-Tree o R S |

-y |

ad

// N | Table
EIot---- BT Ele
- 2
Nk N IEEE
/ N2 N B s u Pyl
1] [~ {11 S0 21811
[offa[f2[(3] 03l(4h4[t] [2[11[505] [6liello] | [21D]3
Mo A fmmmm == ——————— % E g
O-List .. > 51 < 204 <. 31Gl6

|
|
sl . l
51] -1 ${102] 1 $-{153] -1 $—~{204] 2 | |
[gl[l [2|L3 —43[[4014[1 +—42[11[[5]]5}46[I6]0| j

<. P — — — — —
Legend | Blocks Links Queries
o tnk_gloguerd | | pomter | | fevele) _
13[4[14] \[[3@3I[4]4| Back-link | | before([0,3)
Entries “Block Key before([3,]0)

Figure 3.5: Query evaluation in the Order Indexes

EXAMPLE. In Figure 3.5, we evaluate is_descendant(D, A) by checking is_before([0, [3)
(blue) and is_before([3,]0) (green).

Even though all desired operations can be implemented straightforwardly and yield
O(log n) worst-case runtime, using a binary tree has certain disadvantages: It uses
a lot of memory for storing three pointers (left, right, parent) and a block level per
entry. In addition, it is not cache-friendly as its entries are scattered in memory, so

a traversal will usually incur many cache misses.

BO-Tree. B'-trees are based on blocks of size B rather than single-entry blocks,
which greatly improves their cache-friendliness over binary trees. A BO-Tree can be
implemented by adapting a BT-tree as follows: each block additionally maintains

68 3.4. Order Indexes

a back-link to its parent block and a block level. In an inner block there are no
separator keys but only child block pointers. An entry in a leaf block consists of a
row ID and an is_lower flag. To save memory and allow some optimizations, we
can store the is_lower flags separately from the row IDs in a bitfield. BT -trees
have pointers between neighboring leaf blocks for faster scans. The BO-Tree also
has these pointers, but we omit them in our descriptions and figures for the sake
of simplicity. Most BT-Tree operations, including splitting and rebalancing, need
almost no adaptions. Key search is no longer required since BO-Trees are keyless
and the table stores back-links to leaf entries rather than keys (cf. Section 3.4.3).
A cursor directly references an entry within a leaf block; more precisely, a BO-Tree
cursor c¢ consists of a pointer c.block to the block hosting the entry and a position
index c.pos. Back-links to parent blocks are needed, because most operations involve
leaf-to-root navigation. adjust_level(c), for instance, is computed by summing up
all block levels on the path from the corresponding entry’s leaf block to the root
block.

EXAMPLE. The middle of Figure 3.5 shows a BO-Tree indexing the hierarchy from
Figure 3.4. Back-links are displayed as red arrows, block levels as red numbers. The
purple arrows show the level query for node E: We sum up the table level and the block
levels on the path from [4 to the root, yielding 2+ 1+04 0 = 3.

Since the tree height is in O(loggz n), that is the worst- and best-case complexity
of level. The wider the blocks in the BO-Tree, the faster level can be computed.
Note that a level query does not need to actually locate the corresponding entry
within its block (i.e., trace the back-link); only the block level is accessed.

is_before(cy, ¢2) is evaluated as follows: If the corresponding entries e; and ey are
located in the same leaf block, compare their positions within that block. Otherwise,
walk up the tree to the least common ancestor Ica of the two blocks containing
e; and eg; then determine which of the two paths enters lca from further left, by
comparing the positions of the two corresponding pointers to the children through
which the paths pass.

EXAMPLE. In the figure, entries [0 and [3 are on the same leaf block, so we compare
their positions (blue arrow). To evaluate is_before([3,]0) we walk up to the least common
ancestor, which happens to be the root block (green arrows). The [3 path enters the root
through child 0 and the |0 path enters through child 1, so [3 is indeed before]0.

In the worst case, is_before must walk up the whole tree of height O(loggzn)
and then compare the positions of the child blocks. Section 3.4.3 shows how to

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 69

obtain these positions in O(1) irrespective of the block size. Thus, the worst case
complexity is O(logz n), which is a very good asymptotic bound due to the large
logarithm base B. For example, a tree with B = 1024 is able to represent a
hierarchy with 500 million nodes at a height of only 3, and thus needs at most
3 steps for a containment or level query. Since the root block will probably reside
in cache, only 2 cache misses are to be anticipated in this case, so the BO-Tree is a

very cache-efficient data structure.

While a large block size B is desirable for speeding up queries, it slows down
updates. We can, however, take advantage of the fact that leaf blocks are updated
more frequently than blocks further up in the tree, and enhance the BO-Tree with
blocks of different sizes at different levels, based on the concepts described in [86].
As our evaluation shows, using small leaf blocks and larger inner blocks results in
updates almost as fast as in trees with small B and queries almost as fast as in
trees with large B and thus yields the best of both worlds.

O-List. Unlike AO-Tree and BO-Tree, the O-List is not a tree structure but merely
a doubly linked list of blocks—hence its name. The bottom of Figure 3.5 shows an
O-List for the example hierarchy. We use block keys to encode the order among
the blocks, an idea borrowed from GapNI. Block keys are integers that are assigned
using the whole key universe, while leaving gaps so that new blocks can be inserted
between two blocks without having to relabel any existing blocks, as long as there
is a gap. In addition to the block key, each block maintains a block level field for
the level adjustment. The blocks are comparable to BO-Tree leaf blocks without a
parent block, and we treat them in a similar manner: Inserting into a full block
triggers a split; a block whose load factor drops below a certain percentage (40%
in our implementation) is either refilled with entries from a neighboring block or
merged with it. adjust_level(c) simply returns the level of the corresponding entry’s
block. is_before(cy, co) first checks if the corresponding entries e; and ey are in the
same block; if so, it compares their positions in the block, if not, it compares the
keys of their blocks.

EXAMPLE. In Figure 3.5, we compute the level of node 4 by adding the block level 1 to
the table level 2. is_before([0, [3) can be answered by an in-block position comparison.
is_before([3,]0) holds because the block key 51 of [3 is less than the block key 204 of]0.

As both adjust_level and is_before reduce to a constant number of arithmetic
operations, they are in O(1), which makes them even faster than for the BO-Tree.

70 3.4. Order Indexes

But this query performance comes at the price of possibly non-logarithmic update

complexity, as shown in Section 3.4.4.

3.4.3 Back-Links in Block-Based Order Indexes

We now cover possible designs for back-links in block-based Order Indexes. Back-
links are used by entry(l) to locate an entry in the data structure and return a
corresponding cursor. Apart from that, we use the same mechanism in the BO-Tree
to look up positions of child blocks within their parent. In the AO-Tree back-links
and cursors are simply direct pointers to the AVL tree nodes, since these never
move in memory (so, entry({) = [). For the BO-Tree and the O-List, however,
entries are shifted around within their blocks or even moved across blocks by rotate,
merge, and split operations. In these cases, any pointers to the entries would
have to be adjusted. This causes a significant slowdown through random data
access, as adjacent entries in blocks do not necessarily correspond to adjacent table
tuples (recall that hierarchy indexes are secondary indexes). We investigate three
approaches for representing back-links in these data structures: scan, pos, and
gap. Figure 3.6 illustrates the three strategies for finding entry [3 in a BO-Tree
(shown on the left). The relevant contents of the table are shown on the right. The
address of a block is shown in its top-left corner. The table and block entries that
are touched during this process are highlighted in red.

scan (top of Figure 3.6) is a simple strategy also used by B-BOX [91]. Back-links
point only to the block containing the entry, which has to be scanned linearly for
the row’s ID to locate the entry. scan has the advantage that only entries that are
migrated to another block during merges, splits, and rotations need their back-links
updated. However, linear block scans add an unattractive O(B) factor to most
queries and thus hinder us from using larger blocks.

pos (middle of Figure 3.6) represents back-links exactly like cursors: by a block
pointer and the offset in the block. While this eliminates the O(B) factor and makes
entry a no-op, it requires us to update back-links even when an entry is just shifted
around within its block. As any insertion or deletion in a block involves shifting
all entries behind the corresponding entry, this slows down updates considerably,
especially for a larger B.

As a compromise, we propose gap (bottom of Figure 3.6), again using the idea of
gaps from GapNI: Each entry is tagged with a block-local key (1 byte in the example)
that is unique only within its block. A back-link consists of a block pointer and a

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data

71

BO-Tree
scan Ox1: 0x0

/ \
0x2: Ox1 | |0x3: Ox1

[9“1[2H3H3H4]4H2 JHHEHEEN
-------------- > Scan to entry [3

pos Oﬁlz T OTO 0
/’= 3\\
0x2: 0Ox1|0| |Ox3: 0Ox1(0

Table

lower

upper

0x2

0x3

0x2

0x3

0x2

0x2

0x2

0x2

0x2

0x2

0x3

0x3

ook, wNEFEO

0x3

0x3

lower

upper

0x2

0] 0x3

0x2

0x3

0x2

0x2

[0H1[2H§H3[4H4]2 11l5015]16[1610]
i Look up position #3 directly

gap Ox1: 0x0| O

/ \
0x2: Ox1| 85 | [Ox3: 0x1|171
=N w\'i—‘l—\l—‘l\)
NIRRT

[4]14]12] 11][5]]5]]6]16]]0
Interpolation search for key 114

[4
S
S8

6

0x2

0x2

0x2

0x2

0x3

0x3

ok, wNEO

0x3

WL VNWIN|[F-

0x3

BN~ (N O|U

lower

upper

0x2

28

0x3

219

0x2

57

0x3

37

0x2

85

0x2

227

0Ox2

114

0x2

142

0x2

170

0x2

199

0x3

73

0x3

109

0x3

146

0x3

183

Figure 3.6: Using back-links to find entry [3

key. Initially the keys are assigned by dividing the key space equally among the

entries in a block. When an entry is inserted, it is assigned the arithmetic mean

of its neighbors; if no gap is available, all entries in the block are relabeled. The

block-local keys are used to locate an entry using binary search or interpolation

search. Interpolation search is very beneficial, as block-local keys are initially

equally spaced and thus perfectly amenable for interpolation. A block may even

be relabeled proactively once an interpolation search takes too many iterations,

since this is a sign for heavily skewed keys. The occasional relabeling makes gap

significantly cheaper than pos, which effectively relabels half a block, on average,

on every update. Like with GapNI, an adversary can trigger frequent relabelings

through repeated insertions into a gap. That said, even frequent relabelings would

not pose a serious problem, as they are restricted to a single block of constant

size B.

72 3.4. Order Indexes

. 1
[Ol[1[[2[33[[4[14[12[11 [s[5]tellello]]

b=[1]1]1[1]0]1|0]0[0]1]0[1][0]0[0]O]
m=[1[1]1[1[1]1]1]1]1][0]0]0|00O[O][O]
b&m=[1[1]1]1[0[1]0[0[0|0[0[0|0[0[O]O]

2= ctz(b&m) = 10—
Fu=z-p p=7 i
=3 \ \

—3+4+1=2

LN [winof-| level
T|Om|m|Oj0|w|>| Key

NouswNneko RID

Figure 3.7: Inserting new leafs H and | in a BO-Tree

3.4.4 Updating Order Indexes

We now examine the update operations from Table 3.3 for AO-Tree, BO-Tree, and
O-List. Most operations are adaptions of the standard algorithms of the underlying
AVL- and BT-trees. Note that the position of a node or range to be relocated
or deleted, as well as the target position p of an insert or relocate, are always
known a priori: Regardless of the data structure, they are simply represented as
a cursor indicating a position in the bound sequence. Therefore, we can be even

more efficient than the standard algorithms, which issue a key search first.

Leaf Updates

In general, insert_leaf and delete_leaf correspond to insertions and deletions of
the two associated bounds in the index structure using adaptions of the standard

algorithms; relocate_leaf is performed by deletion and subsequent reinsertion.

AO-Tree & BO-Tree. As the position of an insert or delete is given, we avoid the
O(logn) key search and achieve an amortized runtime of O(1) in the AO-Tree and
O(B) in the BO-Tree. There is, however, one challenge when inserting a new leaf
node at a level [: The level of the new node has to be set correctly to account for
the effective level adjustment at the block where its lower bound is to be inserted.
The top of Figure 3.7 shows a BO-Tree with B = 16 where a new leaf H is to
be inserted on level 1. If we were to enter 1 into the level field in the table, the
level adjustment of —1 would result in an erroneous reported level of 0. Therefore,
insert__leaf first has to subtract the effective level adjustment from the real level [
and enter this value into level (in this case 2). Unfortunately, the computation
of adjust_level runs in O(logn) for the AO-Tree and O(logzn) for the BO-Tree.

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 73

But we can circumvent the adjust_level call and achieve O(1) average-case insert
complexity anyway, by inferring the level from a neighboring lower bound. We
traverse the data structure either forward or backward from the insert position
until we find a lower bound (recall that only lower bounds carry level information).
If we find none after a constant number s of steps, we fall back to the logarithmic
implementation. Otherwise we look up the level [in the table for this bound. Let
u be the number of upper bounds we traversed. The level to enter into the table is
then either [+ 1 — u if traversing backward or [+ u if traversing forward.
EXAMPLE. Figure 3.7 shows this process for scanning to the left. We traverse over u = 3
upper bounds (blue) and reach [4 so we take its level | = 4 from the table and calculate
4+1-3=2.

Since every second bound is a lower bound on average, a small s < 10 works well.
The BO-Tree with packed is_lower flags enables a significant optimization: Bitwise
operations allow us to scan 8 bytes of this bitfield (s = 64 bounds) at once, as shown
in Figure 3.7. We compute z = ctz(b& m) for backward traversal or z = clz(b& m)
for forward traversal, where mask m has all bits set in the direction of the scan,
and ctz/clz count the trailing/leading zeros (a hardware-accelerated operation on
modern CPUs). Within only a few CPU cycles, we can obtain u by subtracting
the insert position p from z, and also infer the index of the lower bound from z.

O-List. For the O-List, leaf updates have constant O(B) amortized average-case
time complexity, though insert_leaf has a linear worst-case complexity: If a block
overflows, it has to be split into two, and the new block needs an appropriate key. If
no gap is available, the keys of all blocks are relabeled, yielding equally spaced keys
again. For a block size of B, there are O(%) blocks, so the complexity of relabeling
is O(%). Splitting a block is in O(B). Therefore, the worst-case complexity of a
leaf insertion is O(% + B).

Although the O-List uses the same concept as GapNlI for its block keys, it mitigates
the relabeling problem in two ways: first, it reduces the time a relabeling takes by
factor B; second, it also multiplies the minimal number of inserts that can possibly
trigger a relabeling by that factor. In a basic GapNI encoding using 64-bit integers,
an adversary can force a relabeling every 64 —log n insertions by aiming all of them
into a specific gap. So a hierarchy of one million nodes would need a relabeling
every 44 inserts. For the O-List, this value is multiplied by B. For example, for
a huge hierarchy of one billion bounds with B = 1024 and 64-bit block keys, the
adversary would need roughly 35,000 insertions at the same position to trigger

74 3.4. Order Indexes

relabeling, and this would touch only around 1 million blocks rather than 1 billion
individual bounds. Thus, the amortized relabeling cost per skewed insertion is not
just a factor B but a factor of B? smaller than for basic GapNI. When insertions
happen in a less skewed manner, relabeling will rarely ever be triggered. To increase
robustness even further, a wider data type for block keys (e. g., 128-bit integers)
can be chosen without sacrificing too much memory, since only one key per block
is required. We could even use a variable-length encoding such as CDBS [56] to
avoid relabeling altogether. However, we settled for 64 bits in our implementation,
since variable-length encodings are less processing-friendly than fixed-size integers,

and relabeling happens rarely in sane scenarios.

Range relocation

Efficiently relocating ranges of nodes enables all other complex updates and is
therefore a very important operation. Since the required algorithms are non-trivial
and rarely found in AVL- and BT-trees on which AO-Tree and BO-Tree are based,
we provide a detailed discussion and pseudo code for our three indexes. In the
pseudo code we make use of some basic functions depicted in Table 3.7. Note
that in block-based Order Indexes, back-links must be updated whenever entries
are migrated from one block to another, and also—in case the pos approach is
used—whenever they are moved around in their block during an update. For
brevity reasons, we omit this detail in the pseudo code. In addition, operations
marked with [*] in Table 3.7 need to adjust the block levels so as to maintain a
constant effective level adjustment for the involved entries (cf. Section 3.4.4).

We implement relocate_range([a, b], p) in terms of move_range(cs, ¢, ¢, d). Cur-
sors ¢ and ¢, represent the first entry [a and the entry behind the last entry]b to
be relocated; cursor ¢; represents the target before which the range is to be placed;
0 is the level difference between the source and the target position. Each node in
[a, b] must have its level adjusted by this value.

AO-Tree. Range relocations are implemented in terms of the O(logn) operations
split and join as described in [36]: split splits a binary tree into two:

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 75

10:
11:
12:

1:
2
3
4
5:
6
7
8
9

AO-TREE

c.{left, right, parent}
c.level

rotate_ {left, right}(c)*
rebalance(c)*
unlink(c)*

link_{left, right}(c, c.)*
min(c)

remove(c)*
insert__before(c, ¢,)*

left child / right child / parent block of ¢
block level of block ¢

performs a left / right rotation at ¢
rebalances c if necessary, returns new root
unlinks ¢ from its parent block

links c. as left / right child of ¢

a cursor to the leftmost block in the tree
removes block ¢; rebalances if necessary
inserts ¢ before ¢, and rebalance

BO-TREE

b.{parent, level}

b.entries

b.size

find_pos(b)
is_leaf_block(b)
insert_block(b, b., p)
move__entries(b, p, n, b, p’)

rebalance(b)*

parent block / block level of block b
array of entries in block b

number of entries stored in block b
position of block b in its parent block
whether b is a leaf block

inserts block b. as p-th child of b

moves n entries from block b at position p
to block b at position p’

rebalances b, returns merged block or null

O-LIST

first, last

bcount

b.{key, level}
b.{prev, next}
count__blocks(b, b')

first / last block in the O-List

number of blocks in the O-List

block key / block level of block b

pointer to previous / next block

number of blocks in the block range [b, ']

Table 3.7: Basic functions and fields used during range relocation

function AO-TREE::SPLIT(c)

while c.parent # null do

if c.parent.left = ¢ then
¢ < rotate_right(c.parent)

rebalance(c.right)
else

¢ < rotate_left(c.parent)

rebalance(c.left)

¢ < c.left; ¢, < c.right
unlink(¢;); unlink(c;)

¢, < insert_before(c, min(c,))

return (¢, ¢,)

76 3.4. Order Indexes

We first rotate the block before which we want to split up the tree, until it is the
root. After each rotation we restore the balance with an additional rotation if
necessary (lines 2-8). Once the block is the root, we cut the left link to obtain the
left tree. We cut the right link and reinsert the root as smallest entry into the right
tree to obtain two balanced binary trees (lines 10-12). The inverse operation join
concatenates two binary trees:

1: function AO-TREE::JOIN(¢, ¢;)

2: ¢ < min(c,)

3 remove(c)

4: link_left(c, ¢;); link_right(c, ¢,.)
5 return rebalance(c)

We first remove the smallest entry ¢ from the right tree ¢, (lines 2-3). Then, we
link ¢; and ¢, below ¢ (line 4). Since ¢; and ¢, may have different heights, we must

restore balance afterwards and return the root of the tree after rebalancing (line 5).

1: function AO-TREE::MOVE_ RANGE(cs, Ce, ¢4, 0)

2: (c1, o) < split(cs); (c3,cq) < split(ce)
3: join(eq, cy)

4: cs.level < c3.level + &

5: (¢5,cq) < split(cy)

6: c7 < join(cs, ¢3); s < join(cr, ¢g)

7 return cg

Based on split and join, we perform move_range by first cropping out the range
[cs, ce| into a tree rooted in c¢3 (line 2) and re-joining the rest of the tree (line 3).
Then we apply the level delta to c3 (line 4). We split the tree at the target position,
insert c3 there, and return the merged tree (lines 5-7).

BO-Tree. To perform move_range(cs, ¢, ¢;,), we first crop out the range to be
relocated into an own tree b’ and rebalance underutilized blocks at the crop edges.
Then, we insert b" at the target position and again rebalance underutilized blocks:

1: function BO-TREE::MOVE__ RANGE(C;, Ce, ¢t, J)

2 (b, b1, by) < crop_rec(cs.block, cs.pos, null,

3: ce.block, c..pos, null, §)

4: check_underflow({cs.block, by, c..block, by })

5 b" < insert_block_rec(V/, ¢;.block, ¢;.pos, null)

6 check_underflow({¢;.block, b"})

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 7

The cropping of the range crop_rec is performed by starting at the leaf blocks
cs.block and ¢;.block and splitting blocks recursively upwards the tree until the
least common ancestor block is encountered:

1: function BO-TREE::CROP__REC(bs, ps, b, be, De, U, 9)
2 if b, # b. then

3 p1 < find_pos(bs); pe < find_pos(b.)

4 by < split(bs, ps, b,); by < split(be, pe, bL)

5: b < crop_rec(bs.parent, p1, by, b.parent, ps, by, J)
6 return (b, by, b)

7 else

8 b < new BLOCK > LCA found
9: move_ entries(bs, ps, Pe — Ps, b, 0)

10: if —is_leaf_block(bs) then

11: insert_block(b, b, 0)

12: insert__block(bs, b, ps)

13: b.level < block_level(bs) + 0

14: return (b, null, null)

15: function BO-TREE::BLOCK__LEVEL(b)
16: if b = null then 0 else b.level + block_level(b.parent)

Once we are at the least common ancestor (LCA) when by = b., we create a new
block b and move all entries in the range into it (lines 8-9). If this block is an inner
block, then there are extra child blocks b, and b, which originated from splitting
the blocks below the least common ancestor. We have to add these child blocks
at their respective positions (lines 10-12). Block b is now the root of a new tree
which contains all entries in the cropped range. By altering its block level by d, we

alter the effective levels of all nodes in the range (line 13).

The insertion insert_block_rec of the cropped block b is again done recursively
by splitting up blocks at the target position until a block of the same height is
reached:

78 3.4. Order Indexes

1: function BO-TREE::INSERT_ _BLOCK__REC(b, b, p, b..)
2 if b.height > b;.height then

3 pi < find_pos(b;)

4 b' <« split(b, p, b.)

5: insert_block_rec(b, b;.parent, p; + 1, V')

6 return 0/

7 else

8 alter_entry_levels(b, b.level — block_level(b,))
9 insert_block(b,, b, p)

10: move__entries(b, 0, b.size, by, p)

11: delete b

12: return null

Once such a block b, is reached, the levels of entries in b are adjusted by b.level —
block_level(b;) so that their effective level will stay the same in their new environ-
ment (line 8). The new child block b., which originated from the split of the lower
blocks, is inserted into b, and then all entries of b are moved into b, (lines 9-10).
Note that this may trigger a split of b;. Now, all entries are incorporated in b, so
b can be deleted. The altering of entries during insert_block_rec is performed as

follows:
1: function BO-TREE::ALTER__ENTRY__LEVELS(b, 9)
2 if is_leaf_block(b) then
3 for each ¢ in b do
4 if is_lower(c) then
5: label(c).level < label(c).level 4 ¢
6 else
7 for each c in b do
8 b’ < b.entries|c.pos|
9 b .level < ¥ .level + &

If b is a leaf block, we must alter the level column for lower bound entries (lines
3-5); otherwise, we must alter the block level of child blocks (lines 7-9).

Note that the used split function, which splits a block b at a position p, takes as
an additional parameter a child block b, split in the level below, which must be
incorporated as first child of the new (right) block &'

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 79

1: function BO-TREE::SPLIT(b, p, b.)

2 b < new BLOCK; b'.level < b.level; 0 < 0
3: if b. # null then

4 b'.entries[0] <— b.;0 1

5 for each i between p and b.size do

6 b’ .entries[i — p + o] < b.entries][i]

7: b'.size < b.size — p + 0; b.size < p
8

return ¢

Checking for block underflows is different from an underflow check in a standard
Bf-tree. It must be performed recursively up to the root (line 12), because there
may be underutilized inner blocks even if the leaf block below them has a valid
capacity:

1: function BO-TREE::CHECK__UNDERFLOW (S)
2 L+ 0

3 for each b in S do

4 if b # null A —L.contains(b) then

5: check_rec(b, L)

6 for each b in L do delete b

7: function BO-TREE::CHECK__REC(b, L)

8 if b # null then

9 if b.size < UNDERFILL__LIMIT then

10: bmerged <— rebalance(b)
11: if bmerged 7 null then L.add(bmerged)
12: check_rec(b.parent, L)

We need to check not only one leaf block but rather a whole set S of possibly
neighboring leaf blocks (line 3). Therefore, we cannot instantly delete blocks that
became obsolete due to a merge, since they may be in the set S to be processed
subsequently. So, we first move them to a free set L (line 11) and delete them
after S has been processed thoroughly (line 6).

EXAMPLE. Figure 3.8 shows how the subtree rooted in node B is relocated below node F
in the example BO-Tree. We omit back-links and block levels (except for the root). After
T) is cropped out (red lines), we apply § = +1 to its root, since the target parent F is
one level higher than the old parent A. We rebalance the trees (green arrows), which
shrinks 75. Now we split T» behind [5 to create a gap for T} (blue lines). This increases

80 3.4. Order Indexes

Legend o 0 0(A)
I spit after 5 SN 16{(BG)
<-| Rebalance ool [] 2Q > 6
[of[2]213] [3[4f4l | [201((515] [eliellol | 3@ ()4
1) T[+ [0+1 T[]0
Le |] * I |

P L B@:ﬁsf ------ LT
~Na) 1 N . 2
é BIAEC R OB 1] [Eelor]

2) 1, Lo o] T,]
RG] BEE 2R 8,055] [el6lo]]

3) o plf]]
T P[] I 1L
[102[31] N3lafial] n20af 1] folis T 151177 [feliefio]

Figure 3.8: Relocating B below F in a BO-Tree

its height by one. Now, we add T} as second child of the new root of T5. We rebalance
underutilized blocks for a properly balanced result.

In the worst case, we perform two block splits per level up to the least common
ancestor and as many block merges for rebalancing, so we perform up to O(loggz n)
splits and merges in total. Each operation touches O(B) entries in the worst case.
Thus, the overall worst-case complexity of range relocation is O(Blogzn). The
smaller the relocated range, the higher the chance that the least common ancestor
block has a lower height. So, relocation is faster for small ranges; O(Blogy s) in
the best case.

O-List. Range relocations are performed similarly to the BO-Tree, with the
difference that only one level of blocks has to be split and rebalanced and the block
keys of the moved bound range have to be updated:

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 81

1: function O-LIST::MOVE_ RANGE(cs, Ce, ¢t, 0)

2 (b1, by) < split(cs.block, ¢;.pos) > 1)
3 (b3, by) < split(c..block, c..pos)

4 bi.next <— by; by.prev < by

5: check_underflow({by, b4}) > 2)
6 (bs, bg) <— split(ct.block, ¢;.pos) > 3)
7 bs.next <— by; by.prev < by

8 bs.next <— bg; bg.prev < b3 4)
9: for each b from by to b3 do > 5)
10: b.level < b.level + ¢
11: g < bg.next.key — bs.prev.key

12: n < count_blocks(bs, bg)

13: if n < g then

14: reassign_block_keys(bs, bg, g,n)

15: else

16: reassign__block_keys(first, last, MAX__INT, bcount)

17: check_underflow({bs, b2, b3, bs }) > 6)
18: function O-LiST::SpLIT(b, p)

19: b <+ new BLOCK; U .level < b.level; I key < b.key
20: b'.next < b.next; b.next.prev < b/
21: b'.prev <— null; b.next < null

22: move_ entries(b, p, b.size — p, ¥, 0)
23: return (b, 1)

1) We crop out the range and 2) rebalance the crop edges. 3) We split at the target
position and 4) link the cropped range in. 5) We update the block levels (lines
9-10) and the block keys (lines 11-16) by either relabeling only the cropped range,
if it fits into the key gap g, or the whole O-List. Finally, 6) we rebalance the insert
edges. Reassigning keys for n blocks is done by subdividing the available gap g
into equal gaps of size ¢’:

1: function O-LIST::REASSIGN_ BLOCK__ KEYS(bs, be, g, n)

2 g «n/(g+1); k< bs.prev.key

3: for each b from b, to b, do

4: k< k-+qg; bkey <« k

82 3.4. Order Indexes

51 -1 [102] 1| [153] -1 [204] -2
[0f12[3] 13[4l | N2N1f[s]s/ T6lelol
1) [517-1] [102] 1] [i53] -1 511 -1 [153] 1] [204] =2
(2B BARC 2R [l s Tl
2) 511 -1 [102] 1| [153] -1 511 -1 [204] 2
A2 BRARC I [J Tseo
3) [51[1] [102] 1 | [153] 1 51] -1 51] -1 [204] 2
[1]2]3] 131[4]14] 12[11] | [ols| | 15] | [6]16110]
ay[51[1] [51] 1] [102] 1] [153] 1] [51] -1 [204] =2
o5 | [1][2][3] 131[4]14] 12011] | 15] | [6]16]]10]
5)[3a]-1] [68] 0| [102] 2 | [136] 0 | [170[-1 | [204] =2
folis| 11 230 i3l 20 s 1| Tellelio]
6)[3a] 1] [68] 0] [102] 2| [136] 0| [204] =2
[o[s] | [al2]3] 131[4[14] 12[11]15] 16116110]

Figure 3.9: Relocating B below F in an O-List

EXAMPLE. Figure 3.9 shows the relocation of subtree B under node F. 1) The block
range for node B is cropped out. 2) Underfull block 51 is merged with 153. 3) The list is
split after [5 and 4) the cropped block range is linked in. 5) The block levels are adjusted
by +1. The gap between 0 and 204 fits the five blocks, so their block keys are relabeled
to divide it evenly. 6) Underfull block 136 is merged with 170.

Splitting and merging blocks is in O(B); relabeling all cropped blocks is in O(3).
Thus, the runtime of subtree relocation is in O(4 + B) if the gap fits the cropped
range. Otherwise a total relabeling is performed, yielding O(% + B) worst-case
runtime. Although the runtime is linear in s, or even linear in n when relabeling,
the O-List still performs well in practice. In particular, it is much more dynamic
than GapNI, from which the idea of block keys with gaps originated. Its strong
point is the divisor of B in the complexity. By choosing a sufficiently large B, e.g.,
256 or 1024, we can minimize the cost of relabeling to a point where relabeling
becomes feasible even for very large hierarchies. Small and average-size subtrees
span only a few blocks in such an O-Lists, so relocating them is very efficient.

Rebalancing and Level Adjustments

Order Indexes must be rebalanced like the data structures they are based on. AO-
Tree maintains balance through rotations. BO-Tree and O-List fill underutilized

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 83

rotate left
----- i WA

Figure 3.10: Updating levels after left rotation in an AO-Tree [36]

B; B, RID|level merge B, B; RID level
e | -1 ° 1 0| 1 into B; e | -1 0] 1
of [] (5[5 | 5| 2 ee===p [0]5]5 5| 4

Figure 3.11: Adjusting levels after a leaf block merge

blocks by taking entries from neighboring blocks or merging two blocks. Overfull
blocks must be split. An additional challenge in these cases is maintaining the level
adjustment. For the AO-Tree, the adjustments to the levels of the rotated blocks is
illustrated in Figure 3.10 (for a left rotation; right rotation is analogous). For the
BO-Tree and the O-List any entry that is moved from a block B, to a neighboring
block B; during rebalancing must have its level adjusted by Bs.level — Bj.level. If
By and Bs are inner blocks in the BO-Tree, the values to be adjusted are the block
levels of their child blocks. If they are leaf blocks, the values to be adjusted are the
level fields in the table, but only for lower bound entries.

EXAMPLE. Figure 3.11 shows the merging of the two leaf blocks B; and By from
Figure 3.8. Entry [5 is moved to Bj, so its table level becomes 2+ 1 — (—1) = 4. No level
update is performed for]5 because it is an upper bound.

When splitting a block, the new block can simply inherit the block level from the
old block.

Bulk Building

Irrespective of the Order Index we use, bulk_build performs a single pre/post
traversal of the given tree representation: when a node is pre-visited, its lower
bound is appended to the index, and when it is post-visited, its upper bound is
appended. This traversal effectively constructs the index structure from left to
right. For the AO-Tree and the BO-Tree we use the standard O(n) algorithms

84 3.5. Order Index Extensions

for bulk-building such data structures. For the O-List, the algorithm is also O(n)
if we delay the assignment of evenly-spaced block keys until all blocks are filled.
During bulk building, each block initially receives a block level of 0 and the absolute
node levels are entered into the level component of the label column. To transform
a relational hierarchy representation into a representation that can be pre/post
traversed efficiently, we use the bulk-build operator described in Section 2.7.3. Thus
we are able to bulk build all Order Indexes efficiently.

3.5 Order Index Extensions

This section presents two extensions for Order Indexes in disk-based systems and
for ordinal query operations.

3.5.1 Disk-Based Systems

Even though we designed Order Indexes for main-memory database systems, they
can be tuned for disk-based systems as well. On first sight, the block-based indexes
BO-Tree and O-List seem particularly promising. By matching the block size with
the disk page size, we can minimize the anticipated 1/O operations. Using the
BO-Tree in a disk-based system is straightforward, as it is based on a BT-tree
which is traditionally used for such systems. Therefore, we focus on the O-List
in the following. As our evaluation shows, O-List generally outperforms BO-Tree
for most queries, since all query primitives can be answered by considering only
the blocks hosting the given entries, while BO-Tree often has to traverse the block
structure upwards. Usually, leaf updates also require only one page access—the
block hosting the corresponding bound entries—as long as no relabeling of block
keys is necessary. However, once this happens, an expensive update to all blocks is
needed. Moreover, when performing range relocations, all blocks in the relocated
range need to be updated. These cases are painfully inefficient, since a lot of pages
are loaded and written back to disk just for updating one or two values (block level
and block key) within each page.

Therefore, we propose a variant of O-List for disk-based systems: We separate
the header data of each block—i. e., the block level, the block key, and (logical)
next and previous pointers—from the entry array, and condense all block headers in
a separate layer of header pages. The bottom of Figure 3.12 illustrates this design.

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 85

Main memory

51 -1 102] 1 53] 1 5iT 5
Ol [2[3-—43[4 1 -—2]1[5]5+—6]60
Disk
| OB
17, 51 -1 P1%* -
5l102] 1 :{, :(/,* 130140141 |8
T11204| -1 Ye o =
3|[753] 1 fv [M2[12[5015] IE
[6[16110] |

Figure 3.12: Main memory and disk implementation of an O-List

Each yellow frame represents one page. The order of headers within the pages
does not have to match the list order. This allows us to perform range relocations
efficiently by only adjusting a few pointers instead of shifting headers.

With this O-List variant, adjusting the header information of a range of blocks
touches only one or a few header pages. The drawback is that we now need two
page accesses to work with the entries of a block. However, this is somewhat
alleviated as the header pages are frequently accessed and thus likely to be paged-in
already. Relabeling a very large O-List will still touch many header pages and issue
a lot of disk I/O, but the pages used during this relabeling are known in advance,
so they can be prefetched. Therefore, O-List is an attractive choice for disk-based

systems.

3.5.2 Supporting ordinal primitives with the BO-Tree

The BO-Tree can be enhanced to support the ordinal query primitives from
Section 3.1.2. Ranks are basically aggregated bound counts: pre_rank(a) is equal
to the number of lower bounds between the first entry in the index and a.lower,
inclusively. Similarly, post_rank(a) is the number of upper bounds up to a.upper.
Therefore, the basic idea is to add and maintain such bound counts within inner
blocks, and let pre_rank and post_rank reuse the appropriate counts rather than
count all bounds one by one. This is illustrated on the left side of Figure 3.13. In
addition to the child block pointer, each inner block entry e now has num_lower and
num__upper values counting the lower and upper bounds in all leaf blocks reachable
through e.

86 3.5. Order Index Extensions

Normal oA -4 +6<«-.._ Pre-Aggregated
1O B S TeTo] ™
........ 41 4] < 2Q° ® / [4]5]6]7 :
e [O] ™ 30 B4 / 10[0[2]5]7
num_lower +——{4[1]1]1 Lo o]
num_upper ———{0[2[32 } -0 +2 \
ad - e [1| [« |1 [e[1] [s[2
H0+2 i 0/1[2[3]4] [0[1]2] | [oJo[i[1] 0[1[1[T
S I O R N O . T A L A 0000;112 l_01223§|012
[O[1[2[3] [3[144] |: [1201[(5]15] - [[6]I6[10] [Olf[1]2]3] / 13I[4l14] |' [2[11][5]]5]" [[6]]6]]0
+1- S+1+1 41 +1 -0 +4- -0 +3 -0 +1
Hybrid
>-4 +H<eee
+ 10
_14]5]6]7
i0lo][2[5]7
Lo [N
0/ N, T~
A !
o | -1l 1| o | -1 o [-2
[o[[1]2[3] / 3[faf1al | (2011[[5[5 1[6[]6]0
+1+1+1+17 4141 41 41

Figure 3.13: Ordinal queries in the BO-Tree

To evaluate post_rank(a), we first locate the upper entry ¢ = entry(a.upper) and
count the upper bounds between c.pos and the beginning of c.block. Afterwards,
we locate the inner entry ¢’ pointing to c.block on the parent block and add up all
num_upper values from the beginning of that block up to but excluding ¢’. We
repeat this up to the root block to obtain the total count.

EXAMPLE. Figure 3.13 shows the query post_rank(F) in green. We start from the upper
bound |5 of F and add up the three upper bounds]2,]1, and]5. Then we walk up to
the parent block and add up the entries to the left, that is, 0 and 2. Thus, the result is
3+0+4+2=5.

For the inverse operation select_post(n) we must do the opposite: We start by
scanning the root block, subtracting the num_upper fields from n, until we reach the
first entry e where num_upper > n; then we follow e’s child pointer. We continue
like this until we reach a leaf block. Finally, we determine the n-th upper bound
within that block and return a cursor for the corresponding node.

EXAMPLE. Figure 3.13 shows the query post_rank(F) = 5, so we can visualize
select_post(5) by doing the inverse. We start with 5 at the root and subtract —0
and —2. The next subtraction —3 would yield 0, so we go down to the third child. We
scan the child for the third upper bound which is the correct entry]5.

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 87

pre_rank and select_pre are analogous. subtree_size(a) is just a shorthand for
range_size([a, a]). To implement range_size([a, b]), we start from e, = entry(a.lower)
and e, = entry(b.upper) and scan their leaf blocks to the right and to the left,
respectively, adding up the lower bound counts. Then we scan the parent block
in the same fashion (excluding the entries from which we came) while adding up
the num_upper fields. Once we reach the least common ancestor block we scan the

range between the entries and return the overall sum.

EXAMPLE. Figure 3.13 displays the query subtree_size(A) in blue. We start at the
entries [0 and]0. In their leaf blocks, we have 4 and 1 lower bounds, respectively. We
walk up to the parent block and add the two num_upper values 1 and 1 of the entries
between. Thus, the final result is4+1+1+1=7.

Maintaining the num_lower and num_upper fields increases the complexity of leaf
updates from O(B) to O(B + logz n), because one field per BO-Tree level has to
be updated. The described rank/select algorithms run in O(Bloggzn), because we
scan O(loggn) blocks of size B. range_size runs in O(Blogy s) on average where
s is the number of descendants, because we only need to go up logy s levels on
average. These runtimes are mediocre, especially for large block sizes B. If we are
willing to sacrifice more leaf update performance, we can get rid of this factor: If
we pre-aggregate the num_lower and num_upper fields such that each value is the
partial sum over all entries to its left and add these pre-aggregated fields to the
leaf blocks as well, we can save the block scans during the query. This is shown on
the top right side of Figure 3.13. A sum of field v from position = to position y
in a block can now be emulated by calculating v[y] — v[z — 1] (with v[—1] being 0
implicitly). For select_pre and select_post, we need to find the position where the
sum first becomes greater or equal to n. This is done through a binary search in
the block.

EXAMPLE. post_rank(F) is answered by calculating —0 + 3 for the scan in the leaf block
and —0+ 2 in the root for the final result —0+3 —0+2 = 5. subtree_size(A) is calculated
by the three scans —0 + 4, —4 + 6, and —0 + 1 yielding -0+4—-44+6—-0+1=7. To
answer select_post(5), we first use binary search to find the third entry whose num__lower
field is > 5. Then we subtract the value 2 from the second entry in the root and use
binary search in the leaf block to locate the first entry > 3, which is |5.

Pre-aggregation replaces block scans by constant computations and thus eliminates
the factor B for rank and range_size. For select, the scans are replaced by O(log B)
binary searches, so the runtime is O(loggn - log B) = O(logn). Maintaining the

88 3.6. Performance Evaluation

rank select size leaf update | memory
Basic BO = = = B 0
BO Ordinal Bloggn Bloggn Bloggs | B+loggn | o(1)
BO Pre-Agg. | loggn logn logp s Bloggn 2+ 0(1)
BO Hybrid B+loggn B+logn B+loggs | Bloggn o(1)
AO Ordinal logn logn logn logn 16
O-List Ordinal | /B+ B "/B+ B s/B+ B B o(1)

Table 3.8: Comparison of ordinal approaches

pre-aggregations, however, adds a factor B to leaf updates, because B/2 aggregates
per block have to be updated on average for each field that changes. Note that
the asymptotic runtimes for complex updates are not affected, because these are
already O(Bloggn) in the standard BO-Tree.

Concerning space utilization, the num_lower and num_upper fields do cost some
extra memory. But this does not hurt when they are only stored in inner blocks,
because we usually have few inner blocks due to the large fan-out of the BO-Tree.
In the leaf blocks, memory can be saved by using narrow data types for the counts.
For example, if leaf blocks hold at most 256 entries, one byte per value suffices. To
reduce space consumption even further, we can dispense with leaf block aggregates
and resort to scans (hybrid approach, bottom of Figure 3.13). Provided that
is_lower flags are packed into bitfields, multiple bounds can be processed at once
using bitwise instructions. This way the leaf block scan becomes significantly
faster than a scan in the inner blocks would be. We found this to be a good
memory /runtime tradeoff.

Table 3.8 summarizes all runtimes and the extra memory consumption (in extra
bytes per entry). It also includes figures for the other Order Indexes, though their
efficient support for these primitives is limited, since O-List is inherently linear
and AO-Tree would require too much memory. Therefore, the BO-Tree should be
chosen when support for ordinal primitives is required.

3.6 Performance Evaluation

We compare our Order Index implementations from the HyPer kernel with several

contending indexing schemes implemented in C++. All measurements are executed
on an Intel Core I7-4770K CPU running Ubuntu 14.10 with Kernel 3.16.0-23.

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 89

3.6.1 Test Setup

We use a test hierarchy H whose structure is derived from a real-world materials
planning application of an SAP customer. As scenarios featuring very large
hierarchies are most critical, we expand the size of H to 10" nodes by replicating
subtrees in such a way that the structural properties, especially the average depth
of 10.33, remain equal. Due to the large size, the indexes exceed L3 cache, yielding
“worst case” uncached results. For experiments involving subtrees of a specific
size, we derive a family of hierarchies H, containing 107 nodes like H, but with a
different shape: There is a single root r and all of its children are roots of subtrees
of size x. We obtain each subtree by choosing a random subtree of size > x from H
and then removing random nodes to downsize it to . Using H,, we can easily pick

a subtree of size x among r’s children.

For a complete picture of the assets and drawbacks of the indexing schemes,
we measure various update and query operations. The following update scenarios

assess single operations as well as mixed workloads.

bulk_build — Bulk-build hierarchy H using an edge list ordered in pre-order. This
simulates a scenario in which a hierarchical table is bulk-loaded from an existing
relational tree encoding.

insert — Build H by issuing leaf inserts in a random order, with the constraint
that a node has to be inserted before any of its children. This simulates a scenario
where the hierarchy is built over time through unskewed inserts.

delete — Delete all nodes from H by issuing randomly chosen leaf deletions. This
is the counterpart of insert.

skewed_insert — Choose a node a from H and then insert 10,000 nodes as children
of a. This represents a scenario where updates are issued at a single position
and assesses the ability of an indexing scheme to handle skewed inserts.

relocate_subtree[z| — Start with H, and relocate 10,000 subtrees of size x to other
positions below the root. We vary x in powers of 4 from 8 to 8192. This scenario
assesses the performance of complex subtree updates.

relocate_range[y] — Start with Hg and relocate 10,000 sibling ranges consisting
of /8 siblings (and hence y nodes) to other positions below r. Again we vary y
in powers of 4 from 8 to 8192. This scenario assesses the performance of this
most expressive, most complex class of updates.

90 3.6. Performance Evaluation

mixed__updates[p] — Start with H and issue 100,000 mixed random updates, con-
sisting of either a subtree relocate (probability p) or a leaf insert or delete
(probability 1 — p). As the number of inserts and deletes are roughly equal, the
hierarchy size does not change much over time. The size of the subtrees chosen
for relocation is 107.46 on average. It is derived from the update pattern we
observed in the materials planning hierarchy on which H is based. By varying p,

we simulate real-world update patterns with a varying relocation rate.

Even though our focus is on dynamic hierarchies and thus update operations, we
also measure query operations, because a highly dynamic index is useless if it
cannot answer queries efficiently. We first assess the query primitives is_descendant,
is_child, is_before_pre, is_before_post, level, is_leaf, and find, involving randomly
selected nodes of H. In addition, we measure the performance of a full index
scan using next_pre repeatedly, which corresponds to a pre-order traversal over H.
Beyond isolated query primitives, we also measure the query from Figure 3.3, which
uses a hierarchy index nested loop join over the descendant axis and evaluates the
level. The performance of an index join varies with the size of the subtree that
is scanned for each tuple from the left input u. Therefore, we again use H, and
pick random children of its root r as left input u. As the query basically executes
a partial index scan over x entries for each u tuple, we call this measure scan|z].
It represents an important query pattern and thus gives us a realistic hint of the
overall query processing performance we can expect.

3.6.2 Block Size & Back-Link Representation

We first want to determine a good block size B for BO-Tree and O-List, and assess
the three back-link variants from Section 3.4.3. We vary B in powers of 4 from 4
to 1024. Block size “mix” refers to a multi-level scheme: 16 for leaf blocks, 64 for
height 1 blocks, and 256 for height 2 blocks and above. Figure 3.14 shows results
for various update and query operations on the BO-Tree. We omit the O-List
figures as they lead to the same conclusions.

Concerning updates (top) it is clearly visible that a smaller block size B between
16 and 64 is most beneficial. Concerning queries (bottom), we see that larger
blocks are very beneficial, especially for the important is_descendant query (is_child,
is_before_pre, is_before_post behave similarly). We seek a B that provides a good
trade-off between query and update performance. For the BO-Tree, our favorite is

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 91

) insert delete relocate_subtree[1024]

D
L34 0.4

2

o 0.3 entryLocator
5 | B

g pos

) 0.2 © gap

1 -

g ' l 0.1 .I [sean
N

Z0- 0.0 "' .

16 64 256 1024 mix 16 64 256 1024 mix 16 64 256 1024 mix
find is_descendant level scan[1024]

N
ot
|

[N}
t
1

|lll||

T
4 16 64 2561024mix 4 16 64 2561024mix 4 16 64 256 1024 mix 4 16 64 2561024m1x
block size B

i

million operations/sec
3
1

o

Figure 3.14: Comparing BO-Tree performance for different back-link representa-
tions and block sizes B

mix: queries are not as fast as for B = 1024, but still quite fast, especially on the
compound scan[1024] query; in return, it is very efficient for updates, where large B
such as 1024 suffer, especially when relocating subtrees (cf. relocate_subtree[1024]).
For rather static data, 1024 can be a good choice nevertheless, as it maximizes
query speed.

Concerning the back-link representations, we observe that scan is infeasible:
queries are too slow, and the increased update speed it offers is not significant, as
pos and especially gap perform well enough. For the important scan[1024] query,
scan is up to 50 times slower than the other representations. A query where scan
seems acceptable is level, but this is only due to the fact that this query does not
involve back-links at all. pos performs fine for smaller B and is preferable there,
while gap becomes almost mandatory for B > 256, where pos loses too much insert
and delete performance.

In conclusion, a mixed block size is the best trade-off for the BO-Tree. The
scan back-links should be avoided; pos is preferable for small B and scenarios

92 3.6. Performance Evaluation

with few updates, while gap is preferable for larger B and dynamic scenarios. For
the remaining measurements we use gap back-links, B = mix for BO-Tree, and
B € {16,64,256} for O-List.

3.6.3 Comparison to Existing Schemes

Our indexing schemes aim at highly dynamic settings where high update perfor-
mance even for complex updates is desirable. To show that prior dynamic labeling
schemes cannot support these settings efficiently, we compare our schemes AO-Tree,
BO-Tree[B] and O-List[B] to promising contenders from different categories: Ord-
path [74] as a representative for path-based variable-length schemes; CDBS [56] for
containment-based variable-length schemes; GapNI [58] (with explicitly maintained
level) for containment-based schemes with gaps. All three are backed up by a
B-tree over the labels, which is used for scans where necessary (most queries can be
answered by only considering the labels). Our fourth contender is DeltaNI [36] as a
versioned, index-based scheme. Finally, we also measure the naive schemes Adja-
cency and Linked. Note again that Adjacency does not represent ordered hierarchies,
so the ordered query primitives are not defined (cf. Table 3.4). For comparison, we
implemented them anyway by using the (unstable) order within the hash index
buckets as sibling order.

To make a fair comparison, we implemented all contenders ourselves and tried
to be as efficient as possible everywhere. For example, the cited papers for Ordpath
and CDBS do not state how the variable-length labels are actually stored. Due to
their variable length, storing them in the columns is tricky; out of place storage,
however, introduces additional cache misses. We settle for a hybrid approach: We
reserve 8 bytes per label and store small labels in place. Once the label size exceeds
8 bytes, we store it out of place and place a pointer to the location in the column.
Due to their compact nature, we generally found most labels to fit in place for
those schemes, except when skewed updates were assessed which bump up the label
sizes.

Figure 3.15 shows the query performance for various types of queries. We
first observe that the AO-Tree performs very poorly, as its data is scattered and the
height of the AVL tree is large in comparison to a B-tree, so the index suffers from
a high number of cache misses. In contrast, block-based Order Indexes perform well
for all query types. For queries that labeling schemes can answer by considering
only the labels, the Order Indexes are slower than labeling schemes because they

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 93

is_descendant is_child is_before_pre is_before_post
10° ¢ 1F AF 1k E
10"+ A 4 3
Il l l | BRI
- lreeimix
g10° ElS ElS Els 1 Fglt %é
-List
g O-List[256]
= level is_leaf find traversal =2elta I
3} apNI
= B CDBS
T'108 1 I Ordpath
Linke
1074] Adjacency
106 -

Figure 3.15: Performance of different query primitives

need to consider also the index and thus suffer at least one extra cache miss. For
queries that need to access the index (e.g., is_leaf, traversal), the Order Indexes
offer a very good performance. The find operation is where Order Indexes excel over
labeling schemes, because they use fast O(1) back-links instead of O(logn) B-tree
key searches. DeltaNI appears to perform fine on most queries, but this is only
the case because all the complexity is hidden in find, which DeltaNI must always
perform before it can issue a query. The naive schemes Linked and Adjacency show
their greatest weakness here: they fail to offer robust query performance. While
some queries such as is_child are fast, other important queries such as is_descendant
and level are unacceptably slow.

As the queries in Figure 3.15 involve randomly selected nodes, Order Indexes are
expected to be slow due to extra cache misses on accessing the index at random
positions: The left side of Table 3.9 shows the average number of cache misses per
operation for these queries. Note that the figure omits some queries for the sake of
brevity. As we can see, block-based Order Indexes show around one to three cache
misses per operation. In contrast, labeling schemes show only half a cache miss for
these operations (except is_leaf and find), because Order Indexes need a random
access into the index while the labeling schemes can infer the answer directly from
the already-loaded labels. Thus, the performance numbers from Figure 3.15 already
show a worst-case scenario for Order Indexes in comparison to labeling schemes.
is_leaf also requires index access for labeling schemes, so they show more cache
misses here. find uses efficient back-links for Order Indexes and thus only involves

94 3.6. Performance Evaluation

Random Position Queries Scans Updates

1 o —_
= J ¥ S 5
S o — N =, lo
2 =2 L Y= th S b 9 L=
L 5 B S5 2 s = g £ 05 8%
| | | > | 2 @ s < g o022 O ¢
o 0 o 2 o = bt b - £ ¢33 ¢¢
AO-Tree 0.7 21.7 206 104 28 1.2 042 038 60 21 133 182
BO-Tree[mix] | 32 32 25 22 11 21 002 0.03| 15 15 320 277
O-List[16] 25 25 21 1.8 1.1 2.0 0.02 0.03 13 13 329 234
O-List[64] 2.1 2.1 2.0 1.8 09 2.0 0.02 0.03 16 19 170 154
O-List[256] 10 11 09 14 04 17 002 0.02]| 21 37 309 179
DeltaNI 06 07 06 03 03 144 0.34 044|118 93 41 90
GapNI 04 04 04 02 30 133 1.94 0.19| 23 27 31795 6467
CDBS 0.1 0.1 02 03 32 144 228 027| 36 32 619 945
Ordpath 03 04 03 02 37 126 0.04 012 | 21 23 900 468
Linked 90 1.1 127 57 09 1.0 0.06 0.05| 17 10 4 259
Adjacency 172 03 365 178 27 7.0 198 0.78 | 19 15 9 391

Table 3.9: Number of cache misses per operation

around two cache misses. In contrast, the B-tree lookup of labeling schemes costs
over ten cache misses.

In contrast to the random position queries, when scanning the index, the current
block is already in cache and level becomes an O(1) operation, so we expect our
schemes to perform better in this case. Figure 3.16 shows the hierarchy index
nested loop join performance scan[z| with varying x. All schemes benefit from
larger subtrees, because the initial find is the most expensive operation and always
incurs a cache miss. The subsequent index scan often incurs no further cache
misses due to prefetching. On this query, all block-based Order Index variants
are superior. Linked is second fastest as it just has to chase pointers, which is
fast but not as cache-friendly as scanning blocks. GapNI is also quite fast by
virtue of its processing-friendly integer labels, while CDBS and Ordpath suffer from
their variable-length labels. Ordpath additionally suffers from the level query that
requires counting path elements; without this, it would be on a par with CDBS.
DeltaNI is quite slow; it pays the price of a full-blown versioned scheme. The
slowest of all is Adjacency, which has to use its hash indexes repeatedly to find child
nodes to be scanned. When looking at the cache misses in the “Scans” columns
of Table 3.9, it becomes clear why Order Indexes excel once the index is scanned:
Block-based Order Indexes have almost no cache misses when scanning the index
and can therefore outperform labeling schemes.

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 95

100

O N, N, N, N/.NE
3 ‘g;‘/‘éé-%P :: s A P\ —: 9 AO'Tree
i 4 SR % — X] A BO-Tree[mix]
o 1 —O-List[16]
8 > O-List[64]
T 10+ A O-List[256]
) J X/ DeltaNI
N e D - S v A v o A v A V. ~—
& S 0] B4 GapNI
g VAVARRVAVARRVAVARRVAVARR v VAR | 1 | 1 CDBS
= AVASIAVAN AV, S VA Vi v AV Ordpath
2 . | P Linked
3 Adjacency
I]] I] I] I I] I I | I
20 21 22 23 24 25 26 27 28 29 210 211 212 213
size x of subtree being scanned
Figure 3.16: Compound query performance (scan[z])
bulk_build delete insert skewed_insert

) 6 i
) 10° 1 .
2107 - 10° ElS - B |
7 - =
< 0] - 1t 1 10t i
= - -
2 - .
= 1021 -

10° 1 -1 10° ¢ -1k = - .

Figure 3.17: Bulk build and leaf update performance

We conclude that Order Indexes excel at a hierarchy index nested loop join.
Since joins are at the core of common hierarchy queries, we anticipate outstanding
overall query performance in real-world scenarios.

Figure 3.17 depicts the update performance for bulk building and leaf updates.
As anticipated in Table 3.5, Order Indexes and the naive schemes perform very well
for most updates. For bulk building and non-skewed leaf updates, Order Indexes
are superior to labeling schemes, though the contenders—in particular GapNIl—also
perform reasonably. Skewed insertions, however, force frequent relabelings, so
GapNlI’s performance plummets. O-List has the same problem, as its block keys are
also gap-based and skewed insertions fill up these gaps. Still, as anticipated, O-List
significantly outperforms GapNI because new block keys are required less often; the
larger B, the better. So, an O-List with sufficiently large blocks can handle skewed
insertions quite well. BO-Tree even benefits from skewed insertions, as the blocks
where the insertions happen will usually be in cache, and so it outperforms labeling

96 3.6. Performance Evaluation
F= === ==
106 - A = = =S L,,M—: AO-Tree
FoX | w 3 BO-Tree[mix]
¢ [=k 0] oLig
g i 7 O-List[64]
710° — O-List[256]
< F 3 </DeltaNI
o] C 1 B4 GapNI
= CDBS
10 E 3 Ordpath
e - B Linked
i] EAdjacency
10° T T T T T T T
0% 1% .32% 1% 3.2% 10% 32%
(a) relocate percentage p
10" = — F
e 3 10°
108 = 3 i
c 3 10°%
10" z f
E E 104 -+
10" = E
10° —j —_ 10° ¢
10* £~ I 10

(b) size of relocated tree x

Ir
20

T
27
(c) size of relocated range y

2‘11

Figure 3.18: (a) mixed_updates[p] (b) relocate_subtree[z] (c) relocate_range[y]

schemes by a factor of around 20. Considering cache efficiency, block-based Order
Indexes are generally more cache efficient than labeling schemes, as can be seen in
columns delete and insert of Table 3.9.

Let us now consider complex updates. Figure 3.18 (a) shows the workload simu-
lation mixed_updates|p] with p varying exponentially between 0% (no relocations)
and 32%. While all indexing schemes perform acceptably for p = 0%, the contenders
drop rapidly on increasing p; starting at only p = 0.32% for labeling schemes. In
this scenario the size of the relocated subtrees is “only” 107; larger sizes exacerbate
the situation.

To investigate this, relocate_subtree[x] over varying z, the size of the relocated
subtrees, is shown in Figure 3.18 (b). As we anticipate, all contenders but the naive
schemes drop linearly in z, as they have to relabel all nodes. GapNlI is particularly
slow due to additional global relabelings. At x = 8192, labeling schemes can handle

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 97

bulk insert skewed
AO-Tree 96.0 96.0 96.0
BO-Tree[mix, pos] 43.3 55.8 72.0
BO-Tree[mix, gap] | 50.6 66.1 89.1
BO-Tree[mix, scan] | 41.3 52.3 68.9
O-List[16, pos] 41.8 GIING 65.5
O-List[64, pos] 38.9 48.0 59.9
O-List[256, pos| 38.2 47.1 58.7
O-List[16, gap] 478 608 79.5
O-List[64, gap] 4.9 574 73.9
O-List[256, gap] 442 587 72.7
O-List[16, scan] 39.8 49.5 63.5
O-List[64, scan] 36.9 46.0 57.9
O-List[256, scan] 36.2 45.1 56.7
DeltaNI 90.6 211.2 167.2
GapNI 53.8 66.1 54.0
CDBS 71.9 97.9 2579.0
Ordpath 27.0 33.9 41.5
Linked 56.0 56.0 56.0
Adjacency 81.4 81.4 40.0

Table 3.10: memory consumption in bytes per node

only around 100 updates per second, while Order Indexes remain fast at around
200,000 updates per second. The figures also attest that an O-List is just a list of
blocks as opposed to a robust tree structure: it turns slow when too many blocks
are involved (relabeled) in a relocation. The figure suggests a rule of thumb: Once
x exceeds 648, performance drops noticeably (at 1024 for O-List[16] and 4096 for
O-List[64]), so B should be chosen accordingly.

The naive schemes handle subtree relocation exceptionally well by just updating
single values or pointers. This advantage vanishes as soon as we consider the
more potent sibling range updates in Figure 3.18 (¢c). Now, the naive schemes
have to process all siblings individually, so their performance drops with increasing
range sizes. Only Order Indexes and DeltaNI handle these updates well, but again,
O-List turns slow when the range becomes too large. Considering cache efficiency,
Table 3.9 shows that Order Indexes cause around 100 to 300 cache misses per
complex update, but these figures are independent of the size of the relocated range.
In contrast labeling schemes cause more cache misses which also grow with the size
of the relocated entity. Only DeltaNI can handle all kinds of updates with less than
100 cache misses.

98 3.6. Performance Evaluation

insert skewed.insert relocate_subtree[1024]
& 9100 4
1 10°
10t =
i 11024 | 10°7
relocate_range[1024] is_descendant AO-Tree
F s E = A BO-Tree[mix]
(] N 2 A :
%1054 &= |10° O-List[16]
2100 E O-List[64]
g O-List[256]
-4;3 10 _j i 107 - V DeltaNI
< P4 GapNI
a103 -+ > CDBS
1) 2 1064 $ Qrdpath
€ Linked
ﬁ Adjacency

FE I |
10 108 -

107+ =
107 -

10° T T V' T i T T i i T T
10* 10° 106 107 10* 10° 10% 107 10* 10° 10% 107
hierarchy size

Figure 3.19: Performance over varying hierarchy size

For brevity reasons we do not include figures for inner node updates; they
are comparable to sibling range updates, because the implementation is similar:
Labeling schemes need costly relabelings for all nodes below the updated inner
node a. GapNI and CDBS update the levels of these nodes, other schemes update
the whole label. The naive schemes have to relabel all children of a, as for range
relocation. Order Indexes and DeltaN| implement inner node updates in terms of
range relocations.

We conclude that while all schemes handle leaf updates well, only Order Indexes
and DeltaNI can handle all complex updates efficiently. Thus, Order Indexes offer
large benefits for use cases featuring complex updates.

Table 3.10 compares the memory consumption of all indexes in bytes per
hierarchy node. The first column is the size after bulk-building H, the second

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 99

column after building H from random inserts; the third column is the average size
increase per skewed insertion after 10000 skewed insertions have taken place. We
see that gap back-links take the most space, 8 bytes extra: 2 bytes per key in the
entry and in the label, times two because each node has a lower and an upper
bound. pos back-links require only 2 extra bytes: 1 byte for the position stored
in the label, per bound. Smaller blocks incur a small overhead over larger ones.
Apart from that, the sizes are comparable to the contenders, with the exception of
Ordpath, which stores only one path label as opposed to two bound labels. Note
however, that the ordpaths in all our tests contained almost no carets, so this
represents a favorable case for this scheme. CDBS shows its greatest demerit:
Skewed insertions blow up the label size; each new label is 2 bits longer than the
previous one. The sizes for DeltaNl and AOTree are constantly large, since both
use space-costly binary trees with parent pointers. Adjancency’s memory usage is
dominated by its hash indexes. Linked constantly consumes 7 x 8 = 56 bytes per

node: five pointers plus a row ID, plus a pointer from the table to each node.

Until now, all experiments were conducted on a hierarchy of 107 nodes. To
assess the scalability of the indexing schemes, we also measured on hierarchies of
size 10%, 10° and 10°. Figure 3.19 shows the results for various kinds of updates
and queries. For space reasons we omitted some queries and updates that show
a comparable behaviour. Considering simple updates, Order Indexes and Linked
suffer the highest performance losses when going from 10° to 10°, because the index
no longer fits into L3 cache. For the other contenders, performance always drops
because their updates are in O(logn). Considering complex and skewed updates,
most contenders suffer almost no losses for larger hierarchies, as the operations
are mostly compute-bound and the constant overhead is large in comparison to
the log n factor some contenders possess. Only O-List and GapNI suffer more from
larger hierarchies, because their occasional relabeling becomes more expensive.

Considering the random position queries is_descendant and level, schemes access-
ing the index incur extra cache misses and therefore suffer between 105 and 10°,
where L3 cache size is reached. The drop for find is comparable for all contenders,
because they all need to access the index. However, Order Indexes and Linked keep
their performance between 10 and 10" nodes while other indexes drop further. The
reason for this is that the former use an O(1) find algorithm while the latter use a
O(logn) one. Finally, queries accessing the index linearly (traversal and scan[1024])

100 3.7. Conclusion

do not drop at all for all schemes which use a block-based index. Other indexes
suffer a bit when the hierarchy does not fit into L3 cache.

In conclusion, most contenders scale exceptionally well on almost all operations
and therefore can be used also for very large hierarchies. The only case where
performance drops more noticeably is on skewed and complex updates for GapNI
and O-Lists because of the relabeling, so the BO-Tree is preferable for very large
hierarchies with a lot of skewed and complex updates.

Altogether, our experiments show that our proposed Order Indexes handle
queries and updates competitively. Their largest benefit over the contenders is
robustness: Especially BO-Tree performs well throughout all disciplines, while each
contender has a problem in at least one of the disciplines. As we anticipate, Order
Indexes yield the largest gains over prior techniques in settings featuring complex
updates. AO-Tree performs poorly; it is thus only interesting in theory due to its
conceptual simplicity. BO-Tree with mixed block sizes is an excellent all-round
index structure with full robustness for all update operations; it should be the first
choice when the update pattern is unknown. O-List with sufficiently large block
size outperforms BO-Tree in queries by around 50% but is less robust in dealing
with skewed insertions and relocations of large subtrees and ranges.

3.7 Conclusion

In this chapter we have investigated indexing schemes for highly dynamic hierarchi-
cal data. Our first contribution is a set of abstract query and update primitives for
dynamic indexing schemes. This carefully designed interface manages a balancing
act between providing the required functionality for many common scenarios, and
allowing for efficient implementations for most indexing schemes. Our discussion of
applications in RDBMS and XML query processing demonstrates its usefulness.
The primitives also provide the foundation for our analysis of existing indexing
schemes with respect to the targeted dynamic scenarios. Our analysis leads us
to the finding that existing schemes bear three main problems: lack of query
capabilities, insufficient complex update support, and vulnerability to skewed
updates. We therefore propose Order Indexes as an efficient indexing technique
for highly dynamic settings. They can be viewed as a dynamic representation of
a nested intervals labeling, using the concept of accumulation to maintain node
levels while supporting even complex and skewed updates efficiently. Of our three

Chapter 3. Order Index: Indexing Highly Dynamic Hierarchical Data 101

implementations AO-Tree, BO-Tree, and O-List, the latter two yield robust and
competitive query and update performance. Order Indexes considerably outperform
prior techniques when considering complex updates on subtrees, sibling ranges,
and inner nodes. Our evaluation shows how carefully choosing a suitable back-link
representation and block size can further optimize performance. The BO-Tree with
varying block sizes yields a particularly attractive query/update tradeoff, making
it a prime choice for indexing dynamic hierarchies.

By using Order Indexes as a storage back end in conjunction with the operators
described in Section 3.3 and the front end proposed in Chapter 2, we can enrich a
relational database system with efficient and user-friendly hierarchical data support.

CHAPTER 4

DeltaNI: Indexing Versioned
Hierarchical Data

Parts of this chapter have previously been published in [36].

Various kinds of large hierarchies exist in Enterprise Resource Planning (ERP)
applications. For example, companies need to manage human resource (HR)
hierarchies which model the relationship between their employees (cf. Figure 4.1),
enterprise asset (EA) hierarchies which model all production-relevant assets and
their parts (e.g., plants, machines, machine-parts, tools, equipment), or material
hierarchies which model bills of materials (BOM), which constitute a hierarchical
arrangement of components to assemble an end product. These hierarchies (in
particular EA) can become tremendously large: We obtained statistics of a major
mechanical engineering company, which maintains an EA hierarchy of 59 million
nodes in its ERP system. BOMs of large products can also consist of millions of
nodes (e.g., a Boeing 747-400 consists of six million parts [14]). This data is also
used for reporting purposes that feature complex OLAP-style queries over various
recursive structural properties of the hierarchies.

For traceability and confirmability reasons, versioning is a central part of many
ERP applications. Consequently, delivering satisfying query performance is even
more difficult since queries should also be able to work on former versions of
the hierarchy. Efficient indexing of versioned data poses a major challenge, as
indexes for non-versioned data are not directly applicable. Our goal is to develop a
versioned, tree-aware index that can efficiently handle even very large hierarchies
like the aforementioned use cases. Such a hierarchy is usually versioned on a daily

103

104 4.1. Hierarchies in RDBMS

Employees

Name| Salary]...

Bob [Celia | (Felicia] | Gina | Agg;n ggggg

Celia |70000]...
Celia 1700001
A X Eddy [45000]...

G g Felicia|60000|...

i g ‘T' ; Gina [75000{...

s S T S e S SR e S ST e SN S Hana [45000]...

Figure 4.1: An HR hierarchy and its NI encoding

basis for several years, so the result is a versioned hierarchy with millions of nodes
and thousands of versions. Other applications may need even finer grained version
control resulting in millions of versions.

Labeling schemes are prominent approaches for indexing hierarchical data that
are used by most contributions in the field of XML query processing. Here, a
constant number of labels is assigned to each node and certain queries can be
answered by only considering the labels. A prominent labeling scheme is the nested
intervals (NT) scheme, in which each node v is labeled with an interval [lower, upper]
that is a proper subinterval of the interval of the parent node of v.

We propose the DeltaNI index applying the NI scheme to versioned hierarchies.
The index is efficient in space and time by representing only a base version as
a fully materialized NI encoding; other versions are represented by deltas which
transform the interval bounds between different versions. By grouping the deltas
in an exponential fashion, the index allows executing queries in each version of
a history of n versions while applying at most logn deltas. We also show how
various update operations—even sophisticated ones such as moving or deleting
ranges of nodes—can be reduced to a simple swap operation in the NI encoding. By
proposing an efficient algorithm for swap on our delta representation, we achieve
good update performance. By materializing additional base versions at carefully
chosen points in the history, we further increase the performance and reduce the
space consumption of the index.

4.1 Hierarchies in RDBMS

We base the work in this chapter upon the data model from Chapter 2. That is,
we represent a hierarchy by a NODE table column plus a secondary hierarchy index.

Chapter 4. DeltaNI: Indexing Versioned Hierarchical Data 105

While the Order Indexes proposed in Chapter 3 work on unversioned data, the
DeltaNT index proposed in this chapter can handle versioned hierarchical data.
Note however, that DeltaNI only versions the hierarchy structure. The attributes
of the hierarchy nodes stored in the table must be versioned with usual relational
versioning concepts, such as [50]. This relational versioning is out of the scope of
this chapter.

NI Encoding. Like our Order Indexes from the previous chapter, DeltaNI is
built upon the nested intervals (NI) labeling scheme. However, the two schemes use
different techniques to make NI dynamic. While Order Indexes rely on representing
interval bounds by entries in an ordered data structure, DeltaNI keeps the usual
integer bounds but maintains extra data structures to track their value changes.
Here, each node is represented by the integer interval [lower, upper]. The encoding
can be obtained by a depth-first traversal in which the lower bounds are assigned
in pre-order and the upper bounds are assigned in post-order from a global counter.
The NI encoding of the hierarchy in the upper part of Figure 4.1 is shown below it.
One can directly see the important property of the interval encoding: If a node
V9 is a descendant of another node v, its interval is a proper sub-interval of v;’s

interval, i.e., ni.lower < ny.lower and n;.upper > ny.upper.

Versioned Hierarchies. A version history Vp, Vi, ..., V, of a hierarchy depicts
certain states of that hierarchy and allows queries in each version. Updates are
only allowed in the latest version. Although we assume a linear version history
for brevity, our approach also supports the branching of version histories. A new
branch can be created based on any existing version and updates can be performed
on the latest version of each branch. We place no restrictions on when a new
version is created. Some applications might create a new version with each update

while others might create new versions on a regular basis (e. g., daily).

Queries. Our index yields a fully-featured NI encoding for each version of the
hierarchy. Consequently, all queries such an encoding can answer for a non-versioned
hierarchy can be answered for versioned hierarchies with DeltaNI. Especially, the
index supports all query primitives we have gathered in Section 3.1.2, so it can
also be used as a back-end for our hierarchy framework devised in the previous
chapters. As described in Section 3.3, it can also be used to implement various
other tree-aware join algorithms such as the staircase join [43], the Stack-Tree join
[6], or the TwigStack join [19] in order to answer XPath-style queries. In this capter,
we focus on providing an efficient NI encoding for each version of the hierarchy.

106 4.1. Hierarchies in RDBMS

Therefore, aggregate or diff queries that span more than one version are out of the

scope of this chapter.

As our contribution is a low-level index, we will not present the execution of
complex queries—this task is accomplished by a higher-level layer of the database
(e.g., the staircase join). A simple query which can be directly answered by the
index is the calculation of the size of the subtree rooted at a node v by calculating
(v.upper — v.lower — 1)/2. For example, a subtree query in the hierarchy from
Figure 4.1 may be: “How many employees are (transitively) supervised by Adam?”
Using the interval encoding, the answer is (15 — 0 —1)/2 = 7. In the versioned
case, the query would be extended to work on a certain version, e.g., “How many
employees are supervised by Adam in Version 427”. Although we only present such
simple (yet useful) queries for brevity reasons, keep in mind that the index can be
used by a database system to answer a wide range of complex queries efficiently, as

shown in Section 3.3.

Updates. Updating a hierarchy consists of adding, removing, or moving nodes
in the hierarchy. The following update operations are to be supported:

o insertBefore(b): Inserts a new node before interval bound b.

« moveSiblingRangeBefore(v, v/, b): Moves all siblings between v and v" (inclusively)
and their descendants before bound b. v must be a left sibling of v' or v = /.

o deleteSiblingRange(v, v'): Deletes all siblings between v and v’ (inclusively) and
their descendants. v must be a left sibling of v" or v = v'.

The defined set of update operations is very powerful, as it allows not only single
node insertion and deletion—which most related work is restricted to—but also
subtree deletion and the moving of nodes, subtrees, and even whole ranges of
siblings. These operations are important in many use cases: For example, a division
in an HR hierarchy receiving a new head (a comparatively frequent case) can be
modeled by simply moving all nodes in that division below the new head with a
single operation. In EA hierarchies, assets like equipment or vehicles (which form
a subtree, since they consist of various parts) are relocated frequently: Relocations
constituted almost 50% of all updates in some of the EA hierarchies of ERP

customers we inspected.

With insert and delete only, a relocation would result in one delete and one insert
per node in the range to be relocated. This would result in a very high update
cost and the resulting delta would contain many operations also yielding increased
space consumption. Consequently, such a powerful set of update operations is

Chapter 4. DeltaNI: Indexing Versioned Hierarchical Data 107

indispensable for the wide applicability of a hierarchy index. Our index supports
all these updates in worst-case logarithmic time. As described in Section 3.1.3,
sibling range relocation subsumes all other kinds of updates, so DeltaNI is able to
handle all complex kinds of updates efficiently (cf. Table 3.5).

Application Areas for DeltalNI. The most obvious application area for the
index is the version control of hierarchical data. Another possible use case are
transaction-time temporal hierarchies. The index (as any other version control
approach) can directly be used for this purpose. An additional lookup data structure
(e.g., a search tree) which maps time intervals to versions has to be maintained,
allowing to find the version that corresponds to a timestamp. We assume general
hierarchies that subsume XML, so the index can also be used for managing versioned
XML data.

The NI encoding is by default not dynamic (i.e., not efficiently updatable),
since an update needs to alter O(n) bounds on average. Contrarily, the DeltaNI
index can be used as an efficiently updatable NI labeling scheme for non-versioned
databases: Gathering all incoming updates in a single delta is sufficient for making
an NI encoding dynamic. However, Order Indexes should be preferred in the
non-versioned case (cf. Section 3.6). Finally, the deltas in this approach can also
be used for logging, as a delta accurately describes a set of changes.

4.2 Interval Deltas

In essence, our approach for efficiently storing the version history of a hierarchy
consists of saving one or more base versions explicitly using the NI encoding and
maintaining all other versions as interval deltas only. This allows for a space-efficient
compression of the version history while still supporting efficient querying.

We define an interval delta 6 : N — N as a bijective function mapping interval
bounds from a source version V' to a target version V'. When necessary, we
explicitly specify the source and target versions of a delta using the notation dy,,y-.
Given an interval bound b of a node in V', oy, (b) yields the corresponding bound
in V’ and 6;,.,,» maps back from V' to V. We denote the interval encoding of the
source version as source space and the one of the target version as target space.
Thus, ¢ is a function mapping from the source to the target space.

Obviously, the full interval encoding of the target version can be obtained by
applying ¢ to all interval bounds of the source version. However, the delta can

108 4.2. Interval Deltas

also be used to answer queries without computing the target version intervals
completely, as the delta allows transforming only the bounds which are relevant for
a query.

There is one pitfall when using interval deltas to represent the version history of
a hierarchy: Not all nodes may have existed in the base version V. These nodes do
not have any bounds in the base version, thus computing their bounds in other
versions V"’ using dy,y- is impossible. In addition, there might be nodes which were
deleted in intermediate versions. To handle insertions and deletions consistently,
we make the following enhancements, which we call active region approach: For
each version V' of the history, the maximum bound value in that version, denoted
as max(V), is stored. By definition, any bound value greater than max(V’) does
not exist in version V' (i.e., “is inactive”). In addition, for every base version V,
we define |V| as the number of bounds stored in V' also including bounds greater
than max(V’). These enhancements allow us to model bounds that do not exist
in a version. Consider a base version V' and a version V' which adds a new node
v with bounds [v.lower, v.upper]. This node insertion is modeled by adding the
two bounds b; = |V| 4+ 1 and by = |V| + 2 into the base version V' (which also
increments |V| by 2) but without increasing max(V'), because b; and by do not
exist in V. To yield the correct result in V', the delta is adjusted correspondingly:
dysv(by) = v.lower and v,y (by) = v.upper. Finally, max (V") is incremented by 2
because this version now contains two more bounds. A node deletion in a version
V' can simply be achieved by moving the bounds of the node to be deleted past
max (V') and reducing max (V") accordingly. We denote the interval [0, max(V)]
the active region of version V. The test whether a node v exists in a version V' to
which a delta § exists is performed by checking whether the lower bound of v (and
thus also the upper bound) is active, i.e., (v.lower) < max(V).

Note that each node is uniquely identified by its bounds in the base version, since
these bounds will never be updated. Thus, they constitute a durable numbering
for the nodes in a versioned hierarchy. Given a bound b in a version V', one can
obtain the node to which b belongs by applying reverse deltas to b, transforming
the bound back to the base version and looking up the corresponding node there.

Chapter 4. DeltaNI: Indexing Versioned Hierarchical Data 109

4.3 Implementing the Query Primitives

Now that we have defined the notion of a delta, we show how we implement
the query primitives from Table 3.1 (Page 47) with it. By implementing these
primitives, we are able to plug DeltaNI into our hierarchy framework from the
previous chapters. Indeed, we can reuse the interface of Order Indexes for DeltaNI.
Thus, we must only implement the Order Index functions entry, rowid, is_lower,
is_before, next, and adjust_level. Once we have these implementations, we can
implement the query primitives as shown in Table 3.6 on Page 65.

Before we can implement the Order Index interface, we must first define which
values are to be stored in the NODE column and what a back-link [and a cursor
¢ in the context of DeltaNI is. Given a base version 1}, another version V,, and
a delta dy,.v,, we store the base version interval of the node in the NODE column.
For a label a from this column, the integer values of this interval represent the
back-links a.lower and a.upper. Order Indexes also need a level field in the column.
For DeltaNI this field does not exist and is instead assumed to be always zero.

Since the back-links of a node are bound values of the base version V{, back-links
conceptually reside in the bound space of Vj. In contrast, a cursor ¢ resides in the
bound space of a specific version, which may be 1 but may also be another version
V. for which a delta is available. Since Order Indexes base all operations on cursors,
any query primitive executed on a cursor residing in V, will automatically yield
the correct results for this version. Of course, using cursors of different versions
in the same query primitive is meaningless, but this will never happen since any
query is issued in a specific version V,, and works only on cursors in V.

To implement all operations of the Order Index interface, we need some additional
data structures:

A row mapping M — a mapping from bounds in the base version V; to the id of
the corresponding table row. M can simply be implemented as a hash table.
Note that bounds in a base version never change their value, so M needs no
update if nodes are relocated in the hierarchy. Thus, node relocation stays
efficient even if large ranges are moved. In fact, the maintenance of M does not
change the asymptotic runtimes of any query or update operation.

A level delta Ay, — While dy,,y, represents changes to the values of interval
bounds between V; and V,, Ay, represents changes to the values of node
levels between these versions. When a node is newly inserted in V,, its A is set

110 4.4. Efficient Delta Representation

FuNCTION IMPLEMENTATION

entry(l) a(l)

rowid(c) M(57Y(c))

is_lower(c) table[rowid(c)].node.lower = §1(c)
is_before(cy,ca) ¢ < ¢

next(c) c+1

adjust_level(c) A(67(c))

Table 4.1: Implementing the Order Index interface for DeltaNI

to its initial level in the hierarchy. We can use exactly the same data structures
and algorithms for 4 and A, so we will omit A in the following sections and

instead explain all further concepts with § only.

With M and A we can now implement the Order Index interface as shown in
Table 4.1. entry performs the translation of a bound from Vj to V,. The rowid is
obtained by transforming a bound in V, (a cursor ¢) back to V; using ' and then
looking up the row id in M. By comparing a reverse-transformed bound 6~'(c)
to the lower bound stored in the table, we can check is_lower. The next function
simply increments the input bound. The level adjustment is read from A. Since A
tracks the level delta for a bound in V), we must first reverse transform the bound
in V, by applying 6~*(c). Now, the query primitive implementations from Table 3.6
can be used, thus enabling DeltaNI as an index for our hierarchy framework.
Note that the cursor representation (a simple integer bound in V,) has been
chosen for simplicity reasons. In our implementation, a cursor consists of more
than just the bound. For example, 6 '(c) is used in many primitives. Thus, we
could store this value in the cursor once we have computed it, so that it does
not have to be computed twice for one cursor. In addition, we can store a direct
pointer into the delta data structure to speed up further calculations. Aside from
all such possible optimizations, applying DeltaNI to our hierarchy framework is

conceptually straightforward.

4.4 Efficient Delta Representation

To render the interval delta approach feasible, the resulting delta representation
must be efficient in space and time. A reasonable space complexity requirement for
a delta 0 is O(c) where c is the number of change operations which led from the

Chapter 4. DeltaNI: Indexing Versioned Hierarchical Data 111

source to the target version. In the worst case, this is also the best possible bound,
because each change must be represented somehow, requiring at least a constant
amount of space per change. A reasonable upper bound for the time complexity of
J, that is, the time it takes to compute §(b) for any interval bound b in the source
version, is O(logc). Any higher non-logarithmic bound would make the approach
infeasible for deltas containing a large amount of changes. Our approach satisfies
both mentioned complexity bounds. Note that the space and time complexities of
our delta representation grow only with respect to the number of changes between
the source and the target version. Especially, the complexities do not grow with

the number of nodes or edges in the source or target version.

A first naive delta representation would be to store all bounds which have changed
between V' and V’. However, a node insertion changes an average of n/2 bounds,
yielding O(c - n) space complexity.

Our technique for delta storage leverages the fact that each change introduces
only a constant number of translations of ranges of interval bounds: Let Ry = [a, b]
and Rz = [b+ 1,c| be two adjacent intervals and let swap(Rsy, R3) be a function
that swaps all bounds in Ry with the bounds in Rj3, that is, all bounds in R, are
incremented (translated) by the size of R3 and all bounds in Rj3 are decremented
by the size of Ry. We call the intervals Ry and R3 translation ranges, since they
constitute ranges of bounds that are translated together. Since translation ranges
are intervals of interval bounds, the name “bound” is confusing in this context: All
values in a translation range are bounds, but the translation range has a lower
and upper bound itself. For clarification reasons, we distinguish between bounds
and borders: We call all values represented by a delta bounds. In contrast, we
use lower /upper border when referring to the least/greatest bound that lies in a

translation range.

The key observation is that each update of a tree, as defined in Section 4.1,
can be modeled in the interval bound space by a swap of two adjacent translation
ranges, followed by an update of the max value in case of insertion or deletion to
adjust the size of the active region. Figure 4.2 depicts the implementation of the
updates by swapping two ranges. The middle of the figure shows the relocation
of the subtree rooted at node C to the right of node E. The hierarchy before the
update with its NI encoding is shown on the left and the resulting hierarchy on the
right. This relocation is simply accomplished by a swap of the range Ry = [3, 6]
(all bounds of the subtree C) and Ry = [7,9] (all bounds between the subtree and

112 4.4. Efficient Delta Representation

|nsert
© G) ®
R1:10 Rs:-4 Ry:+2 Ra:
| A . +0
| B |
L, D |.F i E
0 o 5 ' 10max
(A)
—_— @ ©® © ®
0),
R1:20 | Rs:-4 Ry:+2 Rs: 0
. A
s £ Db E
| S PN P B =
O 0 I I I I 5 | | | Ilomax
delete ®
— (B) ®
© © F
Ry:20 Rs:-2 Ry:+4 |Ry:
. A 10
i B
o P
0 0 o 5 o Im‘axlO |

Figure 4.2: Updating with insertBefore(6) (top), moveSiblingRangeBefore(C, C',9)
(middle), and deleteSiblingRange(F, ') (bottom). These operations are
modeled by swapping Ry with R3 and updating max.

the target position). The ranges Ry = [0, 3] and Ry = [10, 00] do not take part in
the swap and are not altered. The swap consists of translating all bounds in the
range Ry by +2 and all bounds in R3 by —4. By storing only these translations,
we achieve O(c) space complexity. Node insertion and subtree deletion are similar:
The top of the figure shows the insertion of a new node F as rightmost child of
node B. The dashes around F depict that it is outside of the active region. Again,
this insertion is accomplished by swapping regions Ry = [6,9] and R3 = [10, 11]
and incrementing the max value of the resulting version by +2 because a new node
was added to the active region. The bottom of the figure shows how F is deleted
by swapping Rs = [6,7] and R3 = [8,11] and reducing max.

Chapter 4. DeltaNI: Indexing Versioned Hierarchical Data 113

Formally, let swap([a, b], [c, d]) be the function that swaps the interval [a, b] with
the interval [c, d] under the preconditions that ¢ = b+ 1 (the intervals are adjacent
and the second one is behind the first one), a < b A ¢ < d (the intervals are well-
formed, non-empty intervals). Let relocate([z,y], z) be the function that inserts
the non-empty interval [z, y] before z under the precondition that z ¢ [x,y]. The

function relocate is implemented through a swap:

relocate([z, y], z) = swap([z,z — 1], [z,y]), ifz<uw
T swap([z,y],[y + 1,2z —1]), otherwise

Using relocate and the active region approach, implementing all update operations
is straightforward:
o insertBefore(b) :

— relocate([max +1, max +2], b)

— max ¢— max +2
 moveSiblingRangeBefore(v, v, b) :

— relocate([v.lower, v".upper|, b)

o deleteSiblingRange(v,v’) :

— relocate([v.lower, v".upper]|, max +1)

— max <— max —(v".upper — v.lower + 1)

Since all update operations are now reduced to swap, updating a delta solely
relies on an efficient implementation of this function. An efficient approach for
implementing swap for our delta representation will be given in Section 4.5.2.

We represent version deltas compactly as the ordered set of all translation ranges
that were introduced by updates that happened between the source and the target
version (which is comparable to the XID-map approach used by Xyleme [65]). The
ranges are represented by storing the value of their lower borders in the source
and the target space. The value of the translation is computed by subtracting
the source from target value. Because the translation ranges are densely arranged
next to each other, it is sufficient to store only the lower borders of the ranges.
The upper border can be inferred by looking up the lower border of the successive
range and subtracting 1. The highest range is unbounded, i. e., its upper border is
the positive infinity. Figure 4.3 illustrates how our approach represents the delta
resulting from the node insertion depicted on the top of Figure 4.2. The vertical
bars represent the lower borders of the translation ranges and the arrows depict to
which position these borders are translated. An update introduces at most three

114 4.4. Efficient Delta Representation

Source Space R1 R, R3 R4
-4 +2

Target Space 0

0 5 10

Source Tree

Target Tree

Figure 4.4: Representation of translation ranges

new translation ranges: The two ranges R, and R3 that are swapped and the range
R, behind them. Since only the lower borders of translation ranges are stored, the
range R, before the swapped ones has its upper border adjusted implicitly. We
use the notation R(s,t) to denote a translation range which maps from s in the
source space to t in the target space. Thus, the delta depicted in Figure 4.3 is
{R(0,0), R(6,8), R(10,6), R(12,12)}.

Using this representation, the delta function §(b) is implemented as follows: Find
the translation range R(s,t) having the greatest s which is equal to or less than b
and compute d(b) = b+t — s. In Figure 4.3, the bound 7 in the source space lies in
Ry = R(6,8), so it is translated by +8 — 6 = +2, resulting in 6(7) = 9. Note that
this representation also allows to compute d~! similarly by applying the reverse
translation. For example, the bound 6 in the target space lies in R3 = R(10,6).
Therefore, 6(6) = 6 — (6 — 10) = 10.

The representation shown in Figure 4.3 is only a conceptual model. A suitable
data structure must allow the efficient computation of §, 6~*, and swap. Our
implementation comprises two self-balancing binary search trees representing source
and target space, called source tree and target tree. The keys in the trees are
the lower borders of the translation ranges, and the payload is a pointer to the
corresponding node in the other tree. Figure 4.4 shows the source and the target
tree for the translation ranges from Figure 4.3.

Chapter 4. DeltaNI: Indexing Versioned Hierarchical Data 115

Using the source/target tree representation, the implementation of §(b) is straight-
forward: A usual search tree lookup in the source tree is used to find the translation
range with the greatest lower border less or equal to b. By following the pointer
to the corresponding node in the target tree and looking up its value there, the
translation value is calculated. The implementation of 6~1(b) is equally straightfor-
ward: Look up b in the target tree instead of the source tree and apply the negated
translation value.

The size of the delta is in O(c) but is also bounded by the size of the hierarchy:
The largest possible delta contains one translation range for each bound of the
hierarchy. Note that repeated updates of a node or subtree (e.g., moving a tree

around twice) do not create extra translation ranges but only update existing ones.

4.5 Obtaining Deltas

We have shown an approach for storing version deltas by representing translation
ranges as nodes in two search trees, which are linked with each other. The remaining
challenge is to build this data structure efficiently. There are different possible
scenarios for building a delta: One is that the source and the target version are
available as usual NI encodings and the delta is to be inferred from them. A more
dynamic scenario consists of building the delta incrementally: Whenever an update
is performed on the hierarchy, the resulting swap is performed on the data structure.
Handling this scenario efficiently requires specially augmented search trees.

4.5.1 Static Scenario

In this scenario we assume that the source and the target version for which to build
a delta are available as NI encodings. This could be the case in applications where
a user fetches a version from the database, edits it with a third-party program (e.g.,
a graphical tree editor) and then saves the result back to the database creating a
new version. Another use case would be the periodic gathering of snapshots from
the web [65]. The operations performed on the hierarchy are not known in this
scenario, only the resulting NI encoding is available or is constructed on the fly. A
matching of nodes must be available; such a matching is either implicit if the nodes
carry unique identifiers (as in our example, and in many other use cases [20]), or a

116 4.5. Obtaining Deltas

Targetl o@)9 Target2 g(B)9
1(0°2 518
3 6(A)7
Bound [A{[B|[C|C]|ID|D]|B]|[E|E]|A]| |[A|[B|[C|C]|[D|D]|B]|[E|E]|A]
Source Value| |0|1]2|3[4|5[/6(7|8|9||0[1|2|3|4|5|/6|7|8|9
TargetValue | |0[1(2(3|/6|/7|8]|4|5[/9||6/0[1]2[5[8/9(3/4]|7
Translation 0(0|0]|0|+2[+2]+2|-3|-3| 0| |+6]-1|-1|-1|+1|+3|+3|-4|-4|-2

Figure 4.5: Inferring deltas from source and target interval encoding

diff algorithm such as [30] or our RWS-Diff, which we will propose in Chapter 5,
must be used to match nodes in the two versions.

The algorithm for inferring the delta d between two given hierarchy versions V'
and V' is as follows: Initialize ¢ with 0 and insert R(0,0) into §. Traverse V/
depth-first in pre/post order: For each node v, consider its lower bound before
visiting its child nodes and its upper bound after visiting its child nodes. For each
considered bound b, find the corresponding bound ¢ in V'’ by looking up the node
v' that matches node v and retrieving its corresponding bound #'. Compute the
translation ¢ by subtracting o' from b. If ¢t # ¢/, then the translation value has
changed. Consequently, insert a new translation range R(b,0’) into 6. Set t' =t
and traverse the next bound until all bounds have been traversed.

Figure 4.5 shows the result of the algorithm comparing a source hierarchy (left)
with two target hierarchies. The lower and upper bounds belonging to each node
are displayed to its left and right, respectively. The middle of the figure shows a
target hierarchy where only one update has occurred (node E was moved) while
the right side shows a target with more updates. The table on the bottom of
the figure shows the bounds which are traversed ([X denotes the lower bound of
node X and X] the upper bound), their values in the source and target space, and
the resulting translations. The delta is inferred by inserting a range for the first
column and for each other column in which the translation value is different to
the value of the previous column (highlighted in the figure). Thus, the resulting
delta for the target hierarchy in the middle contains the four translation ranges
{R(0,0), R(4,6), R(7,4),R(9,9)}. The right side of the figure shows a target
hierarchy where more changes were introduced. Consequently, there are also more
translation ranges (six) in the resulting delta.

Chapter 4. DeltaNI: Indexing Versioned Hierarchical Data 117

Figure 4.6: Updating a version delta by swapping translation range Ry with Rj

4.5.2 Dynamic Scenario

The previous section introduced a scheme which bulk-builds a delta from two
fully-materialized interval encodings. However, this approach requires that the
full interval encoding of the target version is present, has a time complexity linear
in the size of the hierarchy, and cannot handle updates directly. It would be
more appropriate if a version delta could directly be updated efficiently without
having to infer any explicit NI encodings. As mentioned in Section 4.2, we model
each atomic update by a swap of two consecutive bound intervals. Thus, an
efficient update mechanism must perform this swap efficiently. The operation
swap(Ry = [a,b], R3 = [¢,d]) for a delta § performs the swap in the target space.
The bounds a, b, c,d are given as target space coordinates. Conceptually, the
operation is implemented as follows:

1. Insert the lower borders of the swapped ranges Ry = R(67'(a),a) and R3 =
R(67%(c), ¢), and of the range behind Rz which is Ry = R(6~'(d +1),d + 1). If
any of the ranges already exists, do not insert it again.

2. For all translation ranges R(s,t) in 6 with ¢ € [a, b], translate ¢ by the size of
[c,d] (i.e., by d—c+1). For all translation ranges R(s,t) with ¢ € [c, d], translate
t backwards by the size of [a, b].

118 4.5. Obtaining Deltas

The top of Figure 4.6 depicts a delta in which the ranges Ry = [2,4] and R3 = [5, 14]
are to be swapped. The delta already contains nine translation ranges (A, ..., I).
The middle of the figure shows the result after performing the first step of the
algorithm: C” = R(5,2), which is the lower border of Ry, and £’ = R(11,5), which
is the lower border of Rj, are inserted. The lower border H = R(20,15) of the
range R, is already included in the delta and is reused. The bottom of the figure
shows the delta after performing the second step of the algorithm: The target
values of ranges that lie in Ry in the target space are translated by +10 and the
target values of those in Rj3 are translated by -3.

The implementation of swap must adjust the target values of all borders in Ry
(marked orange in the figure) and R3 (marked green). Since the target values are
also keys in a search tree, the nodes in that tree also have to be rearranged to
reflect the swap. On average, this results in a number of adjustments linear to the
number n of ranges in the delta, which has an infeasible runtime if done naively.
The swapping of nodes in the search tree by naive deletion and reinsertion would
even yield O(nlogn) time complexity.

To allow efficient updates of an interval delta in O(logn), the search tree which
models the target space has to be augmented to allow adjusting multiple keys at

once and swapping ranges of search tree nodes efficiently.

Swapping Node Ranges: Split and Join. The efficient swapping of nodes
can be accomplished by adding the split and join functionality to the self-balancing
search tree: The split(7', k) function splits the search tree T before a key k, resulting
in a tree that holds all keys < k and one that holds all keys > k. Both resulting
trees must be appropriately balanced. Given two search trees T7 and Ty where all
keys in Ty are greater than all keys in T}, the join(T}, T%) function concatenates the
trees, resulting in a new balanced tree which contains all their keys. Although both
functions are quite uncommon since they are not needed by usual tree indexes,
O(log n) implementations exist for most common self-balancing search trees. In
fact, Section 3.4.4 contains split and join implementations for the AO-Tree, which
can also be used for usual AVL trees and thus for deltas.

We can swap two ranges of search tree nodes by splitting the tree at the borders
of these ranges and then joining the resulting trees in a different order. One can
imagine this as simply cutting the tree into smaller trees representing the different
ranges and then gluing them together in the desired order. Such a swap consists of
three splits and three joins and is therefore in O(logn).

Chapter 4. DeltaNI: Indexing Versioned Hierarchical Data 119

Source Tree

Target Tree
(accumulation)

(12)

Figure 4.7: Using the accumulation tree as target tree

Adjusting Multiple Keys: Accumulation Tree. We achieve the adjustment
of a key range in O(logn) by replacing the ordinary search tree with a slightly
adapted implementation which we call accumulation tree (cf. Section 3.4.1). An
accumulation tree is a search tree in which each node only stores a part of its own
key. The real key of a node v is obtained by adding (accumulating) all values on
the path from v to the root. Since a search tree already traverses this path during
the key lookup, the accumulation of the key of v is cheap. Figure 4.7 shows the
delta from Figure 4.4 with an accumulation tree used as target tree. The resulting
accumulated values (which are equal to the values of the original target tree in
Figure 4.4) are shown in parenthesis below the nodes. For example, the rightmost
node has a value of 12. This value is obtained by accumulating all values (6, 2, and
4) on the path from the root.

Although the idea behind the accumulation tree is quite simple, it yields an
important improvement: All keys in a subtree rooted at a node v can be translated
by simply adjusting the value of v, resulting in a time complexity which is constant
instead of linear in the size of the subtree. However, the tree introduces a small
maintenance overhead: Whenever performing rotations to restore the balance of
the tree, the values of the two rotated nodes and the value of the root of the
“middle” sub-tree below the nodes have to be adjusted. Otherwise, the rotation
would alter the accumulated values. Figure 4.8 depicts the rules for updating the
values after a left rotation. For example, the root of the subtree in the middle
has x 4+ y + 2z as accumulated value before the rotation. Afterwards, it still has
(y +) + (—y) + (#+y) =z + y + 2. Right rotation is similar.

Implementing swap. The first (simple) step of the algorithm consists of adding
the borders of the swapped ranges. The second step of performing the swap from

120 4.6. Delta Version Histories

QA

Figure 4.8: Left rotation in the accumulation tree

Figure 4.6 is depicted in Figure 4.9. On the top of the figure, the target tree
without accumulation is shown. The source tree is omitted, as it is not altered by
a swap, except that range borders are added at appropriate positions. Next, the
figure (Step 1) shows the tree from the top, but now using accumulations. The
dashed lines represent the positions where the tree is split. Step 2 of the figure
shows the resulting trees after the splits are performed. Note that the split also
rebalances the resulting trees. The next step (3) is to apply the translations to
the two ranges. The accumulation tree allows this operation by simply adjusting
the value in the root. The root of R3 (F) is translated by —3 and the root of Ry
(E) is translated by +10. Finally, the trees are joined in the order C, F, E, G to
yield the resulting tree, which is shown on the bottom of the figure. Since the time
complexity of split and join is in O(logn) and the complexity of the translation
in the accumulation tree is in O(1), the resulting time complexity for the swap
operation is O(logn). As any kind of update is reduced to this operation, the index

can execute all proposed updates in logarithmic time.

4.6 Delta Version Histories

A delta maps interval bounds from a version V' to another version V'’ and vice
versa. Now assume a large version history with n versions V;,...,V,_1. To be able
to answer queries for an arbitrary version V;, one or more deltas must exist which
eventually lead from a base version to V;. We will now show how to efficiently
build, manage, and query all deltas necessary for a complete history. Although we
only use bound deltas ¢ in this chapter, all findings also hold for level deltas A.
Without loss of generality, we will hereinafter assume a linear version history
without any branches and with only one base version which is the eldest version Vj.
The version indexes are sorted by the age of the version, so V; is the version right

Chapter 4. DeltaNI: Indexing Versioned Hierarchical Data 121

2) After Split

o e

3) After Translation +1$ -3

Figure 4.9: Performing the swap operation on the (accumulation) target tree.

122 4.6. Delta Version Histories

before Vi1 and right after V;_;. We define the size of a delta, written as |J], as
the number of versions covered by it. For example, the delta dy,,,1;, would have
the size 10, because it covers all changes introduced in the ten versions versions
Va1, ..., Vao. If a constant number of changes per version is assumed, the memory
consumption of the delta is proportional to its size.

4.6.1 Querying the History

The interval bounds of each node are materialized for the base version Vj. Deltas
are used to transform these bounds into any other version. The bounds in V{ serve
as durable identifiers for all the nodes, since they never change.

Let 61,...,6,, be a sequence of deltas where each delta ; maps from a version to
the version of the subsequent delta 9, 1. If the first delta §; maps from V; and the
last delta 9,, maps to V;, then we can retrieve the bound b; in V; for a bound b,

in V; by applying all deltas in the sequence:

b= O(G1 (o 5201 (b))

By applying the inverse deltas in the reverse order, we can also map back from V;
to Vs. By mapping a bound back to V{, we can look up the node corresponding to
that bound.

Assuming a constant number of changes per version, the time complexity of
such a query is in O(m). So, for fastest query times, a sequence length of 1 would
be best. This, however, implies that a delta from a base version to each other
version must exist, resembling a star topology. In a linear version history, a change
introduced in a version V; will also be stored in the interval deltas for all versions
which are more recent than V;. When assuming a constant number of changes
per version, maintaining deltas from the base version to each other version would
require O(m?) space in the worst and best case, because each change is contained
in m/2 deltas on average. This is not feasible for hierarchies with millions of
versions. Another extreme would be to store only the deltas from version V; to
Vii1. Assuming a constant number of changes per version would yield O(m) space
complexity, because each change is only stored in the delta of the version in which
it was introduced. This is the strategy with the least space consumption. However,
a query in version V; would then require i delta applications since all deltas of

Chapter 4. DeltaNI: Indexing Versioned Hierarchical Data 123

0—4
Query for V 4—6 g

(]

;& 4
Delta Size 0|2)1 1] 17| 2
Source Version 0 0 2 0 4 4 0 8 8
Target Version 1 2 4 5 6 7 8 9 10
Target Binary 1 10 11 | 100 | 101 | 110 | 111 | 1000|1001 | 1010

Figure 4.10: Using the number of trailing zeros in the binary representation of the
target version for deciding delta sizes.

versions older than V; have to be applied one by one. On average, this yields O(m)
query complexity which is infeasible for large hierarchies, as well.

4.6.2 Exponential Deltas

We achieve a good space/time trade-off by enforcing an exponential distribution
of the delta sizes. That is, some few deltas cover huge version ranges while most
deltas cover only a few versions. The large deltas can be used to get “near” the
target version quickly. Then, the small deltas are used to get exactly to the target
version. This approach is comparable to the one of skip lists or to the finger tables
in the Chord [93] peer-to-peer protocol.

Our approach uses the number of trailing zeros in the binary representation
of the id of a version to determine the size of the delta leading to this version.
Precisely, given a version V;, the size of the delta ¢ which has V; as target version is
calculated as |0 = 2°%() | where ctz(i) is the number of trailing zeros in the binary
representation of 7. For example, version 27 has the binary representation 11011,.
Since this binary string has no trailing zeros, this version will be represented by
the delta dy,,-v,,, which has a size of 1. In contrast, version 36 corresponds to
the binary string 100100, which has two trailing zeros. This results in the delta
Ovsys1ss Of size 22 = 4. Figure 4.10 depicts the size of the first ten interval deltas
of a version history.

To query a version V; using this technique, one has to start at the base version
and execute “hops” which become smaller and smaller. The red arrow in Figure 4.10
shows how a query for version 7 is processed. The algorithm for finding the hops for
version V; simply consists of scanning the bit positions j of the binary representation

124 4.6. Delta Version Histories

of ¢ from most-significant bit to least-significant bit. Whenever a 1 bit is found at
position j, take one hop. The target version is ¢ with all less significant bits than j
zeroed out. For example, a query in version ¢ = 19 = 100115 would be processed
as follows: The highest 1 bit is j = 4 (j is counted from least- to most-significant
bit, starting with zero for the least significant one), so the first hop is to version
100002 = 16. The next one is at 7 = 1, resulting in the hop to 10010, = 18. The
final hop for the last 1 bit at j = 1 is 10011, which reaches the target version 19.
The resulting deltas to be applied are Vi — Vig, Vig — Vig, and Vig — Vig.

Since the algorithm takes one hop per 1 bit of the version id ¢ and version id
bit lengths are logarithmic in the number of versions, the number of deltas to be
applied to reach a version V; is [log,(i)] in the worst case (when the version id
consists only of 1 bits) and 1 in the best case (when the version id is a power of 2).
When maintaining a version history of n versions with n being a power of 2, each
bit of a randomly chosen version id i is one or zero with the same probability, so
the algorithm applies log,(n)/2 deltas on average.

A change introduced in version V; is contained in the version delta for V; and all
version deltas of higher versions V; where j is a power of 2. For example, a change
introduced in version 7 is contained in the deltas V; — V7, Vo — Vs, Vo — Vig,
Vo — Vi, and so on. Obviously, for a version history of n versions, there are
logarithmically many versions which are a power of 2, so each change is contained
in at most 1 + [log,n| versions. Since one change needs a constant amount of
space, a version history with n versions and constant number of changes per version
can be stored using O(nlogn) space (O(n) changes in total, each being stored in
O(logn) versions).

As already shown, applying a delta of size s to a single bound has a time
complexity of O(logs). However, the computation of the value of a bound b in a
version V,, usually needs to apply more than one delta. In the worst case, when
the binary representation of x has only 1 bits in it, the algorithm must apply
log, = deltas. The last delta covers one version and the number of covered versions
doubles with each further delta, so the i-th delta covers 2¢ versions. If we assume
a constantly bounded number of changes per version, then the complexity of
applying a delta covering n versions is O(logn). Consequently, the complexity
of applying all required deltas for reaching V, is O(X1 %" log 21) = O(X,827 i) =
O((log, z)(1+1og, 2)/2) = O(log? x) in the worst case. In the best case, the version
number is a power of 2 and only one delta has to be applied, yielding O(log x).

Chapter 4. DeltaNI: Indexing Versioned Hierarchical Data 125

Merging Deltas. During the generation of the exponential deltas, smaller deltas
have to be merged to yield larger ones. For example, the delta V[— Vg is to be
built by first merging the deltas Vo — V4, Vy — V4, and V5 — V7, which yields the
delta Vo — V7. Now, there are two equally applicable strategies: One strategy is
to apply the incoming changes for Vg directly to the delta Vi — V7, yielding the
delta Vy — Vg without further merges. Another strategy is to gather the changes
for Vg in a small delta V7; — V3 and finally merge Vy, — V7 with V7 — V3 to yield
the final delta Vj — Vg. Regardless of the strategy used, an operation for merging
two deltas is required.

Let, dy_y and dys_y» be two deltas which are connected via the version V’,
that is, V' is the source of the one and the target of the other delta. We define
the operation merge(dy v, dys—1») which merges the changes in the two deltas
yielding the delta dy_,y~». The resulting delta function must be the composition

(5 /O(S ’ " i.e.:
V=V VIV,

Vb S N . 5V_>V//(b) - 5V/_>VH (5V_>V/(b))

The merge(dy, d2) function can be implemented as follows: Start with an empty
delta d. For each translation range R(s,t) in d;, compute ' = d2(¢) and insert
R(s,t') into §. Next, for each translation range R(s,t) in dy, compute s’ = &; *(s).
If no translation rule with source value s’ exists in d, then add R(s,t) to 0.

The implementation adjusts all translation ranges in the two deltas to incorporate
the changes of the other delta, as well. Ranges in the prior delta d; need their
target values adjusted by ds, since the resulting delta maps to the target space of
d5. The source values of the ranges in d need to be adjusted “backwards” by the
inverse of 97, because the resulting delta maps from the source space of ¢;. Since
each range in ¢; and d, adds at most one translation range to the resulting delta,
the delta size |0] is at most |d1| 4 |d2|. When the ranges of d, are processed, they
are only added if no delta with the same source value already exists. Thus, the
resulting delta size may be smaller than [d;| + |d2]. A range is omitted if both
versions transform the range. For example, if 4; moves a node X and d moves the
same node again, then they will both contain a range starting at the lower bound
of X. The resulting delta will only contain one rule for this lower bound.

Figure 4.11 shows an example for a merge. The source version Vj is shown on
top. In version V; (left), the subtree B was moved below F. In V5 (right), node E
was moved below B. The deltas 6; (Vo — V1) and 05 (V) — V5) are displayed below

126 4.6. Delta Version Histories

ViV,

Figure 4.11: Merging two deltas

the respective tree. A merge of these deltas results in the delta V; — V5, which
is shown on the bottom of the figure. The letters a to h show which translation
ranges in the resulting delta originate from which ranges in the source deltas. For
example, the leftmost translation rule R(0,0) is contained in both deltas as a and e,
respectively, and is merged into one range a/e. Another example is the range ¢/ f.
The first delta has the rule ¢ which is R(8,2). When applying d2(2), the resulting
target value is 8 (2 lies in range f which is translated by +6), so the resulting rule
is R(8,8) which is ¢/f. The second delta contains the rule f which is R(2,8). The
resulting source value for this rule is §;'(2) = 8 (2 in the target space of §; lies in
rule ¢ which has a translation of —6, so the inverse translation is +6). Since R(8,8)
already exists, no further range is added.

Since each translation range in the deltas has to be processed (linear) and for
each range, a delta must be computed (log) and a range must be inserted (log),

Chapter 4. DeltaNI: Indexing Versioned Hierarchical Data 127

the resulting time complexity of the merge operation is O(nlogn), where n is the

number of ranges in the merged deltas.

4.6.3 Optimizations

Query Routing. Merging two deltas takes O(nlogn) time and building a delta
of size s requires log s merges, so building a large delta may take some seconds for
large histories. Consequently, if a large delta for a version V,, is currently being
built and a query is issued in V,, at that time, then a stall in the query processing
is to be anticipated. To prevent this stall, the query is routed over the partial
deltas as long as the merged delta is not fully built yet. Hence, all merging can
be done in the background and no stall is to be anticipated for any query, even if
the deltas for that query are not yet fully merged. As a delta is not used before
it is thoroughly merged, multiple merges can even be executed concurrently by
multiple low-priority background threads without any locking necessary. By using
this optimization, the merging process has no influence on the query performance
and queries can be answered efficiently in all versions, regardless of the time the
delta merging takes.

Epochs. Until now, we have only considered a single base version, yielding
O(log®n) worst-case query complexity and O(nlogn) space consumption for a
history with n versions. From time to time, we can fully materialize the NI encoding
of a version, thus creating a new base version. Subsequent versions then start a new
exponentially distributed delta history. We refer to a base version with its following
delta history as epoch. With multiple epochs, a query in version V' is executed by
first finding the epoch E of V' and then starting the hops from the base version of
E. If we start a new epoch regularly after x versions, then we can find the epoch of
a version with id u by simply calculating u/z. Additionally, each epoch only covers
a constant number of deltas. Thus, the asymptotic query complexity becomes O(1)
and the space consumption becomes O(n), assuming that the hierarchy size and
the number of changes per version stay constantly bounded in all versions.

To achieve a reasonable space/time tradeoff, an epoch should not be created too
often. As a rule of thumb, if a new delta would be larger than the materialization of a
version, then a new epoch should be created. The figure to consider for determining
%}W: The more changes are to be anticipated, the
quicker the space consumption of deltas grows. The larger the hierarchy, the more

the epoch length is

memory a new base version consumes.

128 4.7. Evaluation

Again, the query routing optimization can be used: The materialization is done
in the background and deltas are used for queries as long as the materialization is
not finished. This prevents any possible stalls.

Note that epochs can also be used for efficient vacuuming of old versions, as an
epoch is a self-contained piece of the version history. Hence, old epochs can easily
be archived to disk or discarded to reduce memory consumption.

Static Deltas. All deltas but the latest one are static. Therefore, all these deltas
do not need a data structure that supports the swap operation and can instead
be represented by a read-optimized or even a read-only data structure such as an

implicit complete binary tree or a B-tree.

4.7 Evaluation

Baseline. To assess the performance of DeltaNI in comparison to other sophisti-
cated versioned indexing schemes, we built a baseline consisting of a state-of-the-art
labeling scheme backed up by a versioned index. For the labeling scheme, we
chose the prominent path-based scheme ORDPATH [74] as it shows very good
performance and low space consumption in comparison to other path-based schemes
[84] and is practically used, for example, in the XML engine of Microsoft SQL
Server. For the versioning, we chose the asymptotically optimal multiversion B-tree
(MVBT) [11]. The combination of ORDPATH and the MVBT, which we call ORD-
MVBT, is comparable to the data structure used in the MVBT-Twigstack approach
of Woss and Tsotras [99]. By indexing the tuples and their ORDPATHs with the
MVBT, the index is able to efficiently answer various kinds of queries in all former
versions of the hierarchy and thus yields a promising baseline implementation to
compare DeltaNI against.

Test Setup. The evaluation is based on a dataset derived from an EA hierarchy
of a mechanical engineering company. Our obtained history starts with a snapshot
containing 2.9 million nodes with an average depth of around 7 and a maximum
depth of 16. The hierarchy is versioned on a daily basis for 22 years from 1990 to
2012 resulting in 8035 versions. The average number of updates per day is 638
and hence 5.1 million updates for the whole history. 36% of the updates are
inserts, 35% are removes and 31% are subtree relocations. The size of the relocated
trees is 8 nodes on average. To measure query performance, we chose the check
whether two nodes lie on an XPath axis (ancestor, following, preceding, descendant)

Chapter 4. DeltaNI: Indexing Versioned Hierarchical Data 129

as query primitive for the following reasons: 1) The primitive is used for many
important queries such as axis steps. 2) The query suites range-based (DeltaNI) and
path-based (ORD-MVBT) schemes equally well in contrast to other queries which
inherently favor either range-based (e. g., subtree size) or path-based (e.g., parent
node retrieval) ones. 3) The query assesses a recursive property of the hierarchy

which is hard to evaluate with recursive SQL (cf. experiments in Section 2.8).

After each version V; is built, the query is executed repeatedly for randomly
chosen versions Vj ; to measure the query performance in relation to the history
length. We compare the baseline (ORD-MVBT) to DeltaNI with exponential hops
without epochs (EXP) and with epochs of length 256 (EXP256), 512 (EXP512),
and 1024 (EXP1024). We further measure the performance of the naive delta
grouping schemes which are the linear scheme (Linear), that is, one delta between
each successive version V; and V;;;, and the star scheme (Star), that is, deltas
from the base version Vj to each other version. Finally, we also measure the naive
approach of materializing each version thoroughly (Naive).

All tests were carried out on a HP Z600 Workstation with a 6-core Intel Xeon
X5650 CPU at 2.66 GHz, 12 MB cache, and 24 GB RAM. The operating system is
SuSE Linux Enterprise Server, kernel version 2.6.32.

Query Performance. Figure 4.12(a) shows the time in seconds to answer one
million queries. The Linear scheme is obviously infeasible, while the other naive
schemes show good query performance but were aborted at version 88 (Naive) and
231 (Star) since the test machine ran out of memory. Thus, they are infeasible for
this hierarchy. The EXP scheme requires around 6.3 seconds in the final version
(resulting in around 160,000 queries per second). The schemes with epochs are faster:
The one with the most epochs—EXP256—is almost twice as fast as EXP (around
285,000 queries per second). Fewer epochs lead to longer histories thus decreasing
performance. ORD-MVBT requires around 40% more time than EXP and around
150% more time than EXP256. This is due to the facts that 1) the MVB-tree
also contains dead entries in its nodes while deltas only contain entries relevant
for their version 2) integer comparisons in the deltas are faster than ORDPATH
comparisons 3) B-tree variants such as the MVBT are optimized for fixed-size
keys and require additional overhead for variable-sized keys such as ORDPATH.
Obviously, specialized indexes like DeltaNI and ORD-MVBT outperform recursive
SQL by orders of magnitude, as previously shown by Al-Khalifa et al. [6].

130 4.7. Evaluation

(a) Query Performance

9 A W

8 L
2 ool
£ 9]
= AW VW
S 4
S JRUSVISH YOV VY SV VWY WENSUU TPV VS S
3 3
£
w 2

1

0

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

Version

(b) Space Consumption

Total Size (GB)
w

[y

_o

< v

>

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
Version

(c) Update Performance

%>

106 |

pil! * u

Execution Time (s)
=
o
o

o WWWWWWWWWWWWN

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
Version

‘ —o— EXP —=— EXP256 —+— EXP512 —— EXP1024 —— Linear —— Star —=— Naive --— ORD-MVBT ‘

Figure 4.12: Time for executing one million queries (a), space consumption (b),
and time for executing one million updates (c).

Chapter 4. DeltaNI: Indexing Versioned Hierarchical Data 131

Memory Consumption. The memory consumption is shown in Figure 4.12(b).
EXP uses 2.2 GB for the whole history. The schemes with Epochs use more memory.
EXP256 uses three times as much memory (6.8 GB) due to the large number of
fully-materialized versions, which are visible as “staircases” in the diagram. Note
however that the schemes with hops grow linearly, while the one without grows
log-linearly: The little step in the line for EXP at version 4096 shows the large
delta that is built by this approach. The larger the power of 2, the larger these
steps in the graph of EXP will become, while the steps in the schemes with epochs
keep their constant size. Using epochs is a clear space/time tradeoff in this scenario,
since the shorter the epochs, the higher the query performance (cf. Figure 4.12).
For other scenarios where the hierarchy size is smaller in comparison to the number

of changes, long epochs can even yield an advantage in time and space.

ORD-MVBT requires 4.8 GB of memory for the whole history. The fact that
the line already starts at 1.4 GB is due to ORD-MVBT having no notion of a base
version and thus needing to insert the 2.9 million starting nodes into the MVBT
while DeltaNI can store them compactly in a base version. For a scenario that
starts with an empty base version, in which the memory consumption of both
approaches starts at zero, the memory consumption of ORD-MVBT is between the
EXP512 and EXP256. Thus, the memory consumption of the two index structures
is similar and varies only slightly for different use cases.

Update Performance. The time needed for one million updates is shown in
Figure 4.12(c). The only exponential scheme displayed is EXP, since all exponential
schemes have similar update behaviour (around 200,000 updates per second). This
is because epochs are only created during the creation of a new version and thus
have no influence on update performance. DeltaNI outperforms ORD-MVBT
(around 10,000 updates per second) by around a factor of 20 since ORD-MVBT has
to handle subtree relocations by repeated removes and inserts. We also measured
the update performance for a synthetic dataset without relocations (not in the
figure). Here, ORD-MVBT reaches around 35,000 updates which is still almost
an order of magnitude less than DeltaNI, since the swap operation is extremely
efficient compared to a MVBT insertion or deletion which has to compare various
ORDPATHS to find the leaf to insert the new entry.

Besides the time consumption of the update operations, DeltaNI incurs an
additional cost when creating a new version, which we also measured: The larger
the power of 2, the longer the merging of the resulting delta takes, as more deltas

132 4.8. Related Work

need to be merged. Full materialization for a new epoch takes around 5 to 10
seconds. The merging of the largest delta, which is the delta 4096 for EXP, takes
20 seconds, while most smaller deltas need less than a second (380 microseconds
for deltas of size 1). Since there is only one new version per day, delta building
performance is absolutely sufficient. As the build process can be done in parallel
in the background while the queries are routed via partial deltas (query routing
optimization), a server with multiple cores could even handle several new versions
per second.

In conclusion, DeltaNI shows superior update performance and an acceptable
memory consumption, enabling the storage of a history of decades in main memory.
The query times promise to yield a tremendous speedup compared to relational
approaches. DeltaNI outperforms other contemporary approaches such as the ORD-
MVBT used in this benchmark and is especially suited if the workload consists of
more complex updates such as subtree relocations. It therefore aligns nicely into
the spirit of Order Indexes which show their greatest merits in dynamic scenarios

featuring complex updates.

4.8 Related Work

Related work about general relational hierarchy support and indexing schemes in
general has already been covered in Sections 2.2 and 3.2, respectively. Therefore,
we will focus on related work about hierarchy versioning here.

Versioned Index Structures. Many of the traditional tree indexes used in
relational databases have been augmented to be used for versioned indexing: The
fully persistent B*-tree [53], the Time-Split B-tree [62], the BT-tree [49], and the
multiversion B-tree [11] to name a few. Like labeling schemes, these indexes cannot
be directly applied to versioned hierarchies. Instead, they form building blocks
used by various versioning approaches discussed below.

Hierarchy Version Management. Versioning of XML data has been a hot
topic in the last decade. However, most of the (especially earlier) contributions
in this field are not concerned with indexing but rather the fast reconstruction
of a version or the difference between versions. Consequently, the resulting data
structures are not useful for efficient query support. Examples for this are the
early contributions of Chien et al. [29], which focus on version management. They
consequently compare their approach to text-based version control systems like

Chapter 4. DeltaNI: Indexing Versioned Hierarchical Data 133

SCCS and RCS. Rusu et al. [81, 82] propose and compare different delta storage
techniques. Marian et al. [65] are concerned with version management in an XML
Warehouse in the Xyleme project. Their concepts like the XID-map and their diff
algorithm [30] are important for our contribution. They also evaluate different delta
storage techniques. Rosado et al. [80] present a version management technique
storing the version history of an XML document in an XML document, thus
allowing queries using usual XML technology. Buneman et al. [20] propose an
archiving technique for scientific XML data.

Versioned Hierarchy Indexing. Considering more tree-aware version control
of XML data, the more recent contributions of Chien et al. [27, 28] introduce the
SPaR versioning scheme which is basically an adapted NI encoding with gaps. It
relies on “durable” labels, i.e., labels that do not change even if new nodes are
inserted. As noted in many publications (e.g., [101, 91]), encodings with gaps are
problematic, because frequent insertions at the same positions quickly fill up the
gaps. This makes relabeling necessary again and thus invalidates the durable labels.
The SPaR authors suggest to mitigate this problem by replacing the integer labels
with floats of arbitrary precision. However such techniques yield labels with a size
of O(n) bits (proven in [31]) resulting in high memory consumption, costly label
comparisons, and the complication of index structures relying on keys of a fixed
size, such as B-tree variants. Our scheme can efficiently handle any number of
insertions or relocations at any position and yields a gapless fixed-size integer NI
encoding with all its benefits. It also includes durable fixed-size node identifiers

that never need to be relabeled.

Cursory ideas were presented in workshop publications of Vagena, Tsotras, et al.
covering XML versioning with the PathStack join on an NI encoding in conjunction
with a document map [97] (no branching) and a BT-ElementList [96] (allows
branching). More recently, Woss and Tsotras [99] carry on with the topic now
using the Twigstack join on an ORDPATH encoding in conjunction with the MVBT
tree. This approach neither allows branching histories (due to the MVBT) nor
efficient complex updates (due to ORDPATH).

The concept of versioning is closely related to the concept of transaction time
in temporal databases. Therefore, work from the field of temporal XML can be
applied to versioned hierarchies (and vice versa). Rizzolo et al. [66, 78] propose a
temporal XML index for efficient TXPath query evaluation. It is based on so-called
continuous paths which are timestamp-augmented label paths. Unfortunately, label

134 4.9. Conclusion

paths are not generally applicable to hierarchies, as these do not necessarily possess
labels. Zhang et al. [108] propose a labeling scheme for temporal SQL, which,
however, relies on schema information that is not available for hierarchies.

In conclusion, most related work from the XML field is only partially applicable
to versioned hierarchies in general. Another drawback of almost all aforementioned
contributions is that complex updates are not supported efficiently. While such a
relocation scenario may not be important for XML, it is indeed important for other
hierarchies (especially for EA hierarchies). By supporting subtree and even range
relocations efficiently, the DeltaNI index is widely applicable as a general-purpose
hierarchy index.

4.9 Conclusion

In this chapter, we proposed a technique for efficiently storing and indexing versioned
hierarchical data. Our index yields a nested intervals encoding for each version by
maintaining exponential deltas leading to each version with a logarithmic number
of hops. The deltas represent changes in a space- and time-efficient manner by
storing only the translation ranges that are introduced by updates. Such updates
are executed on the deltas using a special-purpose accumulation search tree which is
able to swap ranges of keys in logarithmic time. By reducing all update operations
to a swap operation, our index facilitates even complex updates like subtree or
sibling range relocation efficiently. By using epochs, the index can be tuned further.
Our evaluation shows that the index is able to handle even large use cases with
very long version histories efficiently and outperforms alternative approaches in
a relevant use case. Consequently, our index is a worthy addition for relational
databases that need to handle dynamic versioned hierarchical data. To our best
knowledge, DeltaNI is currently also the only indexing scheme that yields a gapless
fixed-size integer labeling for versioned trees while still facilitating complex updates.
By adding DeltaNI to our potpourri of indexing schemes, we enhance our framework
to versioned hierarchies.

CHAPTER 5

RWS-Diff: Flexible Change
Detection in Hierarchical Data

Parts of this chapter have previously been published in [38].

When tree data changes or versions of a data item are independently modified, it
is necessary to compute the difference to reconcile or display the changes. The
changes are often expressed as a so-called edit script: a compact sequence of
operations that transforms one tree into the other. Computing edit scripts has
many important applications. Consider, for example, revision control systems
that deal with trees like XML data warehousing [5], source code revision control
[24], or HTML warehousing [25]. The goal in these applications is to compute a
compact and intuitive representation of the history. Computing compact tree diffs
is also crucial for various other applications, for example, data synchronization
[60], genomic and proteomic data [92, 47], RNA secondary structures [107], or
image analysis [17]. As outlined in the previous chapter, our hierarchy versioning
approach also requires tree diffs in some scenarios.

Our goal is to compute compact edit scripts for very large trees, for example, two
file systems with tens or hundreds of thousands of nodes. Furthermore, operations
that lead to short and intuitive edit scripts are to be supported. In particular, not
only edits on individual nodes (e.g., deletion of a node), but on whole subtrees
should be considered (e.g., moving of a subtree). Again, this fits into our overall
goal of enabling complex updates on hierarchies. As an example, consider a diff for
synchronizing a remote file system. A locally moved subdirectory requires sending
all files one-by-one to be inserted into the remote file system if moves are not

135

136

Q rename AtoZ
@ rename Jto O

rename L to P D!

B’
insert R below H [/R
E :' N o \/l

\ 7 ’

(> =unmatched N
0 o ‘3 o {3 =changed O ‘p (R

Figure 5.1: Slightly different trees make top-down and bottom-up matching fail

Eay

O
©-©
@

detected. Our approach should work for both ordered and unordered trees to be
generally applicable. An example of ordered trees are HTML documents, were the
order of the paragraphs matters; file systems are unordered trees.

Ideally, a tree difference algorithm computes a minimal edit script. Unfortunately,
for unordered trees, the problem is MAX-SNP hard [106] even for a limited set
of node operations; for ordered trees, exact solutions require O(n?®) time in the
number of nodes and thus do not scale either. Our approach is to approximate
the minimal edit script. The result is a small (albeit not necessarily minimal) edit
script that is correct, that is, it turns the first input tree into the second.

Most previous attempts to approximate the minimal edit script run in O(n?) and
consequently do not scale to large trees. The few solutions that run in O(nlogn)
use comparably simple matching algorithms which start either at the root (top-
down) or at the leaves (bottom-up). The matching is continued as long as identical
nodes or subtrees are found. These approaches rely on large subtrees that can be
matched exactly and fail otherwise, as illustrated in Figure 5.1: Top-down cannot
match any node since the root labels differ. Bottom-up subtree matching can only
match single leaf nodes (I, C, K), although many inner nodes are unchanged. The
changes in the leaves alter the containing subtrees and prevent them from matching.
Changes in the leaf nodes are a frequent scenario, for example, files in a file system
and text values in XML.

Our solution is RWS-Diff (Random Walk Similarity Diff), a novel robust algorithm
for tree differences. RWS-Diff supports both node and subtree edits. It is robust
because it does not rely on exact subtree matching, but is also able to match
similar subtrees. Similarity computations are costly and the challenge is to find
similar subtrees efficiently. We present a new technique which represents each
subtree by a d-dimensional feature vector using random walks. This allows us to

Chapter 5. RWS-Diff: Flexible Change Detection in Hierarchical Data 137

use well-established indexes for similarity search in d-dimensional space to find
similar subtrees.

RWS-Diff is the first algorithm that runs efficiently in O(nlogn) and deals well
(due to subtree similarity matching) with all kinds of node edits for which top-down
and bottom-up based approaches with the same asymptotic runtime fail. RWS-Diff
does not rely on any application specific assumptions (like node identifiers) that
simplify the matching. It is configurable to work on both ordered and unordered
trees and supports a large set of edit operations. Our evaluation using synthetic
and real-world data shows substantial gains in the matching quality (up to ten
times smaller edit scripts on average compared to other quasi-linear methods) and
robustness (more than 200 times smaller edit scripts for certain real-world trees)
and confirms the scalability of RWS-Diff.

5.1 Tree Edit Scripts

For a pair of input trees A and B, a tree difference algorithm (diff) computes a
sequence of edit operations (called edit script) that transforms A into B. Tree diffs
vary in the kinds of supported operations and the underlying tree definition.
Tree Definition. Our diff algorithm works on all rooted, labeled trees with a
(non-strict) order defined on the labels (i.e., the labels can be sorted and compared
for equality) and a hash function that maps labels to numeric values. Our algorithm
can be configured for both ordered trees (where the sibling order matters) and
unordered trees. The sibling order is not related to the label order.

The labels carry application specific data. XML nodes, for example, may be
labeled with element tags or text content, but also more complex labels are possible.
Our flexible tree definition suites a wide range of applications such as HTML
documents, XML, file systems, or RNA secondary structures, and sets us apart
from many other works with restricted input trees.

Edit Operations. We allow edit operations on both nodes and subtrees. Let a
and @’ be two nodes in tree A; the following edit operations are allowed in an edit
script:

« rename(a,!) Change the label of node a to [.

o insertlLeaf(l, a,i) Insert a new leaf node with label [as a new child of node a

before the i-th child of a.

o deleteLeaf(a) Remove leaf node a.

138 5.1. Tree Edit Scripts

o insertSubtree(S, a,?) Insert a new subtree S before the i-th child of node a.

o deleteSubtree(a) Remove the subtree rooted in node a, that is, a and all its
descendants.

o move(a,d’,i) Remove the subtree rooted in a and insert it before the i-th child
of a.

o copy(a,a’,i) Insert a copy of the subtree rooted in a before the i-th child of a'.

The child position 7 is omitted in the case of unordered trees. The root node is
extended with a dummy parent node to allow all edit operations also on the root
node. Subtree edit operations lead to more compact and intuitive edit scripts that
can be applied fast. For example, moving a chapter of a document is faster and
more expressive than deleting all sections and paragraphs and reinserting them at
the target position individually. Node insertion and deletion are defined on leaf
nodes; an inner node is deleted by first moving all its children (with their subtrees)

to its parent.

Our tree difference algorithm is flexible as it can be configured to work with
either the ordered or the unordered version of the edit operations. Furthermore,
the operations for copying, inserting, and deleting subtrees can be switched off, in

which case they are expressed by other operations.

A cost is assigned to each edit operation and the edit script is the better the
lower the accumulated costs of the contained operations are. RWS-Diff does not
imply a specific cost model. The only restriction is that the cost of each operation
must be less than the cost of a sequence of other operations that can emulate it,
because otherwise the operation would be useless. For example, deleting a subtree
using deleteSubtree must be cheaper than deleting the same subtree node by node
using deleteLeaf. The cost for subtree insertion should be a function of the subtree
size, as it must encode the whole subtree S to be inserted; otherwise the best edit
script would always consist of deleting tree A and inserting tree B if the trees are
large enough.

Edit Mapping. An edit mapping maps nodes between two trees and is used to
express the difference between the trees; intuitively, two nodes are mapped if they
correspond to each other. We produce an edit mapping in the first step and infer
the edit script from the mapping in a second step.

We define the edit mapping M between a tree A that should be transformed
into tree B to be a function from the nodes of B to the nodes of A. The mapping

Chapter 5. RWS-Diff: Flexible Change Detection in Hierarchical Data 139

function is partial and neither injective nor surjective, that is, not all nodes of B

or A need to be mapped and a node of A can be the image of multiple nodes of B.

5.2 Related Work

Edit scripts have been discussed from two points of view. Works on the edit distance
compute the similarity between trees, where two trees are considered similar if a
short edit script can transform one tree into the other. Tree diff algorithms are
interested in the edit script itself.

5.2.1 Tree Edit Distance Computation

The tree edit distance is defined as the minimal cost of an edit script that transforms
one tree into the other. The classical algorithm by Zhang and Shasha [107] for
ordered trees only allows the node edit operations discussed in Section 5.1. For
these operations, the exact distance for two trees T} and T; is computed in O(njns
min(dy, [;) min(ds, l3)) time and O(nyns2) space, where ny (ng) is the number of
nodes, {; (lz) is the number of leaf nodes, and d; (dz) the depth of 77 (T3). Thus,
for trees with O(n) leaves and depth O(n), the runtime complexity is O(n*). Klein
et al. [52] and Dulucq et al. [33] improve the runtime to O(n®logn). Demaine
et al. [32] present an algorithm that runs in O(n®) time and show that this is
the best worst case complexity that can be achieved. Unfortunately, the worst
case is a frequent scenario in this algorithm, rendering it slower than the classical
algorithm by Zhang and Shasha for many practical scenarios. Recently, the RTED
[77] algorithm solved this problem; it maintains the optimal worst case complexity
and runs as fast or faster than any of the previously proposed algorithms. For each
of these algorithms the minimal edit script for the edit distance can be computed
within the same complexity bound [107].

Overall, computing the minimal edit script requires O(n?) time and ©(n?) space
for ordered trees, even when only node edit operations are allowed. An extension of
Zhang and Shasha’s algorithm with deleteSubtree and insertSubtree runs in O(n?)
time [10]. With the move operation that we allow in our approximation, the edit
distance problem is NP-complete even for the case of flat strings [88].

Approximations of the tree edit distance that run more efficiently have been
proposed. Guha et al. [44] propose an upper bound for the tree edit distance by

140 5.2. Related Work

computing the string edit distance between the pre-order (or post-order) sequences
of the tree node labels in O(n?) time. An edit script can be computed using this
method.

With p,q-grams [9] Augsten et al. propose a concept of “g-grams for trees”. The
grams are constructed using the ancestor relationship (configurable by p) and
the sibling relationship (¢). The method decomposes the input trees into small,
besom-shaped subtrees with depth p and ¢ leaves. Each of these small subtrees
is then serialized to a string and hashed. A list of these hashes represents the
data in the tree and its hierarchical relationships. The algorithm calculates the
p,g-grams in O(n) time and space. Our approach also makes use of p,q-grams
for finding similar subtrees but adds a dimensional reduction step to speed up
similarity search. Similar to p,q-grams, the binary branch technique [102] splits
trees into small subtrees, but binary branches keep less structure information than
p,q-grams [9]. Neither p,q-grams nor binary branches compute edit scripts.

For unordered trees, finding the exact tree edit distance is MAX SNP-hard [106]
since the matching algorithm can not rely on the sibling order. Zhang et al. [89]
propose an exact, enumeration-based algorithm for unordered trees which runs in
O(n316") and a heuristic solution based on searching in the enumeration space
which runs in O(n?). By sorting siblings lexicographically by label the concept
of p,g-grams can be adapted to unordered trees. The p,q-gram approximation
runs efficiently in O(nlogn) and is shown to work well in practice [8]. We use this

technique for supporting random walk similarity on unordered trees.

5.2.2 Computing Diffs between Trees

Numerous approaches for computing approximately cost-minimal edit scripts have
been proposed, but most of them either suffer from a prohibitive runtime of at
least O(n?), are restricted to very specific types of data, or do not show a robust
behaviour.

Chawathe et al. propose LaDiff [26], which imposes restrictions on the hierarchical
order between labels: An example are KTEX documents, where a subsection is
always within a section. This bottom-up algorithm uses a heuristic optimized
for text. As a bottom-up tree edit distance, it is sensitive to changes in the leaf
nodes. LaDiff combined with another method [24] is implemented in the tree-diff
tool Difft XML [69]. Le et al. [54] remove the hierarchical order restriction from
LaDiff. The family of algorithms based on LaDiff runs in O(ne) time, where e is

Chapter 5. RWS-Diff: Flexible Change Detection in Hierarchical Data 141

the size of the edit script. In the worst case, when the trees are very different, the
runtime is O(n?) and the approach does not scale. In our experiments we compare
to Difft XML as a representative of these algorithms.

In [59, 60] a three-way merging algorithm for XML is described, which includes
an algorithm for calculating diffs between XML documents (3DM). It works in a
bottom-up fashion, mapping trees using their content. It also uses the neighborhood
of tree nodes to produce mappings, for example, when the left and right siblings of
a node are mapped, a mapping for the node in between is inferred. The algorithm
has worst-case complexity O(n?) and runs in O(nlogn) if the changes between

trees are small.

The MH-DIFF algorithm [23] allows the operations insert, rename, delete, move,
and copy. Here, insert and delete work on single inner or leaf nodes. In the first step,
all possible mappings between the nodes of two trees are considered and mappings
that can only increase the cost are pruned in the second step. The problem is
then solved as a bipartite weighted matching problem by assigning an approximate
cost to each mapping between a pair of node. The overall runtime complexity is
O(n*logn).

Wang et al. [98] only allow insertLeaf and removeleaf. Furthermore, only nodes
with the same path to the root are mapped. The algorithm produces large edit
scripts if these assumptions are not met. When the maximum number of children
of all nodes is assumed to be a constant (i.e., independent of the tree size), O(n?)
runtime complexity is achieved. [92] improves the average runtime of this algorithm

for hierarchical biological data without altering the worst case complexity.

The KF-Diff+ algorithm [100] is specific to a particular kind of XML documents,
in which each node has a key that is unique between all siblings. In this case, a
diff which allows move operations only between nodes with the same parent can
be computed in O(n) time.

The only algorithm without strong assumptions that runs in less than quadratic
time is XyDiff [64]. XyDiff uses tree hashes that are invariant to the sibling
order [98] to efficiently find and map moved subtrees. In the next step, nodes in the
vicinity of mapped subtrees are mapped. The overall algorithm runs in O(nlogn)
and produces good results if large unchanged subtrees are present. In addition to
the operations supported by XyDiff, our algorithm also supports subtree deletion.
Subtree deletion is useful to remove surplus data from one of the trees, for example,
the citation elements present in some DBLP entries that otherwise dominate the

142 5.3. The RWS-Diff Algorithm

edit distance. We experimentally compare our algorithm to XyDiff and show that
(even without subtree deletion) our algorithm produces significantly smaller edit

scripts with a similar runtime.

5.3 The RWS-Diff Algorithm

A good edit mapping is one that maps as many nodes as possible and maps nodes

which are very similar to each other. The better the mapping, the smaller the

generated edit script will be. A perfect mapping would be one that produces a

cost-minimal edit script. However, such a mapping is extremely hard to compute

(MAX SNP-hard for unordered trees even if only node operations are allowed, cf.

Section 5.2). Thus, RWS-Diff is an approximate method which tries to find a

good—but not always perfect—mapping. However, our focus is on finding a better

mapping than previous approximate approaches by using an elaborated similarity
measure to find non-obvious mappings.

This section introduces RWS-Diff which constructs the approximate cost-minimal
edit mapping and then creates an edit script from it. Our method can roughly be
separated into five steps:

1. A simple matching step which tries to find obvious common structures in both
versions of the tree. The nodes mapped in this step do not have to be considered
in subsequent matching steps and thus significantly improve their speed.

2. Construction of feature vectors for unmapped subtrees of both trees, that is,
small fixed-length vectors which are similar if subtrees are similar. The squared
euclidean distance between the vectors constitutes our random walk similarity
measure.

3. Creation of appropriate index structures for nearest neighbors queries among
the feature vectors.

4. Mapping of previously unmapped subtrees by looking up possible candidates
using nearest neighbors queries.

5. Generation of the edit script from the edit mapping.

5.3.1 Finding Simple Mappings

In the first step, we try to match large parts of the trees rapidly. The goal is not
to find all possible mappings but to find only the obvious ones which are easy to

Chapter 5. RWS-Diff: Flexible Change Detection in Hierarchical Data 143

@) h,=17(hy+hg+h.)+h(A)

Figure 5.2: Sibling order invariant subtree hashes

compute. We use methods and concepts already described in the literature and
successfully applied. These are top-down matching [87, 100] and matching using
subtree hashes [64].

Top-down Matching. The top-down matching starts at the roots of the trees
to be compared and maps nodes with the same label to each other. If a node is
mapped and is not a leaf node, the same matching method is recursively applied
to its children. If more than one sibling has the same label, we do not map it in
this step, since we might map the wrong pairs of nodes. When using this method,
if a node’s label is changed, the whole subtree rooted in this node is not mapped
anymore.

Hash Matching. Hash matching between trees A and B is performed bottom
up by calculating a hash value of each unmapped subtree in A and inserting it
into a hash table. Then, the unmapped subtrees of B are hashed as well and the
hash table is probed to find equivalent subtrees in A. For unordered trees, we
have to use a position-independent hash function. Simply adding the hash of the
node label and the hash values of all children multiplied with a prime number is
position-independent since addition is a commutative operator (cf., Figure 5.2).
For ordered trees it suffices to multiply the hash of each child with a prime number
that is different for each child position.

5.3.2 Random Walk Similarity Matching

Using hash matching and top-down matching, we can usually map a large portion
of the tree nodes if there is a moderate number of differences (which is usually the
case). The top-down matching finds all paths from the root that have not changed.
The hash matching finds smaller subtrees which have not changed. However, the
quality of the resulting mapping is usually not sufficient because these simple
matching methods are not robust at all. For example, renaming the root totally

144 5.3. The RWS-Diff Algorithm

disables top-down matching and a single renaming in a node or insertion of a node
disables hash matching for all subtrees that contain this node. Since even such
“trivial”, non-structural edit operations disable the simple matching methods, we
need a method for finding trees that are similar but not equal.

Our core contribution finds trees that are not necessarily equal but similar and
thus are missed by the simple matching approaches. The idea is to represent each
subtree by a d-dimensional feature vector (with fixed d) that constitutes a random
walk in d-dimensional space. The random walks are generated in a way that ensures
that their squared euclidean distance, which we call random walk distance (RWD)
is approximately proportional to the edit distance of the corresponding trees. How
these random walks are generated in detail will be discussed in Section 5.4.

We find similar subtrees in trees A and B by generating all feature vectors for
subtrees in A and inserting these vectors into an index structure for d-dimensional
nearest neighbors queries. If the copy operation is allowed, we insert all subtrees,
because even already mapped subtrees could be mapped again for a copy. Otherwise,
we only insert subtrees with an unmapped root. Then, we generate feature vectors
for all unmapped subtrees in B. Next, we iterate over tree B in pre-order and
for each unmapped subtree b, we use its feature vector to probe into the index
structure to find the ¢ (with fixed ¢) nearest neighbors which are candidates for
being similar. We retrieve ¢ > 1 neighbors, because a low RWD does not always
(but often) imply a similarity in the subtrees (i.e., false positives are possible).
Therefore, the ¢ nearest neighbors in the feature vector space are merely used as
mapping candidates and we use the one with the least edit distance or none if all
are false positives (which should happen very infrequently due to the stochastic
properties of the RWD). For the similarity comparison of the ¢ mapping candidates,
we use an iterative deepening top-down matching that stops after a fixed number
of compared nodes and is thus in O(1). Although the premature stopping might
reduce approximation quality, it is important to meet the desired log-linear runtime
bounds. If the copy operation is not allowed we skip candidates which have an
already mapped root. Once the best candidate subtree a for subtree b is determined,
we map the roots of a and b and perform an ordinary top-down matching starting
from a and b to map cheaply as many descendants as possible. Afterwards, we

continue the pre-order iteration over B to map remaining subtrees.

We can use standard index structures to efficiently find nearest neighbors in
d-dimensional space. We focus on prominent indexing schemes which are k-d trees,

Chapter 5. RWS-Diff: Flexible Change Detection in Hierarchical Data 145

0: function GENERATEEDITSCRIPT(A, B, M)
1 for each nodes b of B in pre-order do
2 if fa.(b,a) € M then
3: Emit insertLeaf(label(b), M (parent(b)), pos(b))
4: else
5: a < M(b)
6 if 3. (V,a) € M A pre(t/) < pre(b) then
7 Emit copy(a, M (parent(b)), pos(b))
8: else if M (parent(b)) # parent(a) then
9: Emit move(a, M (parent(b)), pos(b))
10: if label(b) # label(a) then
11: Emit rename(a, label(b))
12: for each nodes a of A in post-order do
13: if #b.(b,a) € M then
14: Emit deleteLeaf(a)

Figure 5.3: Algorithm for generating edit scripts

k-means locality-sensitive hashing (KLSH), and hierarchical k-means (HKM). These
methods have been shown to be useful in practice [63, 73, 76]. However, note
that any scheme for finding nearest neighbors in d-dimensional space can be used.
The k-d tree is an established multidimensional index structure which repeatedly
separates the space by hyperplanes. The exact nearest neighbors algorithm on
the k-d tree is quite costly, so we use the approximate best bin first (BBF) [12]
algorithm. Hierarchical k-means clustering has been successfully used to cluster
high dimensional data [73]. It works by recursively finding k centroids for the data
point clusters and then arranging those clusters into a tree structure. K-means
locality-sensitive hashing [76] uses k-means clustering to convert space coordinates
into locality-sensitive hashes.

5.3.3 Edit Script Generation

An edit script is a sequence of edit operations that transforms tree A into tree B.
The algorithm shown in Figure 5.3 produces the edit script from an edit mapping
(which maps nodes of B to nodes of A). Figure 5.4 shows an example for each kind
of edit operation produced by the algorithm. The algorithm traverses all nodes
of B in pre-order, that is, parents are visited before their children. If a node b in
B has no mapping (b,a) in M, b is inserted (Lines 2-3, node H in figure). If a
mapping (b, a) exists, we check whether we already have visited a node b which

146 5.3. The RWS-Diff Algorithm

deleteLeaf

Figure 5.4: Edit mapping with implied edit operations

maps to a as well. The node V' is already visited if its pre-order rank pre(d’) is
smaller than the one of b (Lines 4-6). If such a node exists, we already have “used”
subtree a and must thus copy it (Line 7, right node F in figure); otherwise, we
check if the parents of the mapped nodes differ. If they do, we move node a to its
new parent (Lines 8-9, left node F in figure). In addition to updating the node
position, we must also rename node a if the labels of the mapped nodes differ (Lines
10-11, node B — C' in figure). After the pre-order iteration over B, we perform a
post-order iteration over A and delete all nodes that are not mapped (Lines 12-14,
node [in figure).

Whenever an edit operation is emitted, it is applied to tree A and subsequent
edit operations are defined on the new version of A. In addition, the mapping M
is updated after each insertLeaf and copy operation with mappings to the newly
added node(s). After executing the algorithm, the sibling order is adjusted for
ordered trees, which is separately discussed below.

Line 8 of the algorithm requires that M maps the parent of the current node b to
some node of A. This is guaranteed by traversing B in pre-order and updating the
mapping after each insert operation. In the second phase of the algorithm (Lines
12-14), unmapped nodes in A are removed using the deleteLeaf operation, which
requires the nodes to be leaves at the time of being removed. This holds since (a)
the mapped child a of an unmapped node in A satisfies the condition in Line 8,
that is, the subtree rooted in a is moved to a mapped parent in the first phase
of the algorithm; (b) the nodes of A are traversed in post-order, thus unmapped
children are removed before their unmapped parents.

The algorithm does not produce subtree insertions and deletions. By generating
the insertLeaf and deleteLeaf operations in pre-order and post-order, respectively,

Chapter 5. RWS-Diff: Flexible Change Detection in Hierarchical Data 147

we ensure that all inserts and deletes that belong to the same subtree are adjacent
in the edit script. We merge sequences of leaf insertions and deletions into subtree
insertions and deletions in a simple postprocessing step. By omitting this step, we
can switch off subtree insertion and deletion. If subtree copy is switched off, the

mapping is injective, so the condition in Line 6 is never true.

After executing the algorithm, A is identical to B except for the sibling order,
and all nodes of A and B are mapped. We use the approach of XyDiff [64] to
fix the sibling order. The ¢ children of each node in A are numbered with the
sibling positions of the respective (mapped) nodes in B, that is, each child in
A gets assigned a position between 1 and ¢. We compute the longest increasing
sub-sequence X of the position numbers in O(clogc) time [40]; all nodes that are

not in X are moved to the right position by emitting moveSubtree operations.

5.3.4 Complexity of RWS-Diff

RWS-Diff must have an O(nlogn) worst case runtime complexity in order to yield
a scalable solution. The simple matching methods that are also applied in existing
O(nlogn) methods obviously fall into this bound. The generation of the random
walk feature vectors for all subtrees in a tree is in O(n) (cf. next Section). Since
there may be O(n) subtrees in both trees that must be mapped by the RWS,
mapping one subtree may only cost O(logn). A nearest neighbors lookup is usually
in O(logn) in the index structures. We adjust the index structures to yield even
worst case O(logn) behaviour by simply decreasing the approximation quality in
pathological cases. For example, HKM has its height limited to O(logn) and if there
are more than ¢ candidates in the final Voronoi cell, only the ¢ first are considered.
Although the approximation becomes worse in some cases, our evaluation shows
that the overall quality is still good. For finding the best candidate between the ¢
candidates, we use the constantly bounded iterative deepening top-down matching
which is in O(1), so a single RWS mapping stays in O(logn). An insertion or
lookup in the mapping M is in O(1) since dense integers can be assigned to each
node in tree B and M can be implemented as an array indexed by these integers.
Finally, the edit script generation loops only twice over both trees and is thus in
O(n), so we meet the desired overall complexity bound of O(nlogn).

148 5.4. Random Walk Similarity

5.4 Random Walk Similarity

To find similar subtrees rapidly, we reduce the information content of each subtree
to a fixed-size d-dimensional feature vector and use indexed d-dimensional nearest
neighbors queries. To obtain the feature vector, we first serialize each subtree into
a bag of p,q-gram hashes. The more similar two trees are, the more hashes are
equal. Each of the hashes becomes a step in a d-dimensional random walk and the
final feature vector is the endpoint of the walk. Consequently, the more similar two
trees are, the more steps in their random walks are equal and thus the distance
of the random walk end points is the smaller the more similar two trees are. We
prove certain stochastic properties of the proposed random walk to show that it is

indeed a valid approximate similarity measure.

5.4.1 Grams for Trees

Grams (also shingles or tokens) are tree summaries that represent a tree by a set
of small excerpts. Using such grams, the problem of finding similar subtrees is
reduced to the problem of finding bags of grams with large intersections. This
approach has been widely applied to strings before and has shown to be useful also
for trees.

We use p,q-grams, which are besom-shaped subtrees consisting of ¢ leaf nodes
(called base) and a chain of p non-leaf nodes (called stem). In the original tree, the
base nodes are siblings and the stem nodes their p closest ancestors. p,q-grams
capture both ancestor and sibling relationships and can be made invariant to small
order changes. In addition, they have already been successfully applied to tree
similarity computations in various scenarios [9, 8.

The p,q-grams for all subtrees of a tree of size n can be generated in O(n)
time. The p,q-gram construction is illustrated in Figure 5.5 for an example tree
(p = ¢ = 2). In the first step, the tree is sorted lexicographically by labels (the
sort order of identical labels is irrelevant for the p,q-gram construction). Next, for
each node a in the tree, a window of size w > ¢ is slidden over the children of the
node and p,q-grams are produced. The bases are formed by the first node of each
window and any sub-sequences of the remaining nodes in the window. If a node
does not have enough ancestors or enough children, dummy nodes (labeled with an
asterisk in the figure) are used to produce the p,q-grams. In Figure 5.5, the sorting
changes the order of the children of the node with label “A”. The window size is

Chapter 5. RWS-Diff: Flexible Change Detection in Hierarchical Data 149

1. sort siblings
(if ordered matching)

E E B E E 2. Slide p,g-window
over siblings and
©® O

Sodoh

[*laBID| [*|A[BIE| [F|A[DIE| [F[A[D|B] [*|A[E|B] [|A[E|D]

Figure 5.5: Partial construction of p,q-grams

w = 3 and six bases are formed for three window positions (the window is wrapped
around at the right border).

Invariance to order changes is obtained through sorting siblings. Augsten et al.
show in [8] that this way the permutation of a constant amount of siblings changes
only a constant amount of p,q-grams. The construction of the base using a window
makes the p,q-grams robust to modifications that change the sort order of children,
called “children error” in [8], while still capturing sibling relationships. The “stem”
captures ancestor relationships in the p,q-grams. If sibling permutations should not
be allowed (ordered trees), the trees are not sorted and windows of size ¢ are used.

The p,g-grams are finally serialized into arrays of size p + ¢, which is straightfor-
ward due to the fixed shape of the p,q-grams. The bottom of Figure 5.5 shows the

serializations of the respective p,q-grams.

The similarity of two trees can now be expressed over their bags of p,q-grams. Let
bs and bg be the bags of grams of tree A and B, respectively, then the symmetric
bag difference D(A, B) is defined as |Sa W Sp| —2|bsa Nbp|. This difference directly
reflects the number of elements we have to remove from A and add to B if we want
to transform A to B and as such approximately reflects the required edit operations.
It is a distance measure, that is, the distance D(A, B) between identical sets is
zero while the distance between entirely different sets is |A| + | B].

150 5.4. Random Walk Similarity

5.4.2 Random Walk Distance

Even though the comparison of trees is now easier, the actual size of the tree
representations has gone up. If there are a and b unmapped subtrees in tree A
and B, respectively, we have to compute a x b bag differences to find the best
matches. Each of these computations has linear runtime in the bag sizes, which
would clearly violate the O(nlogn) runtime bound. To speed up the similarity
search, we do not explicitly calculate the bag difference between any two bags.
Instead, we compress each bag of grams to a fixed-size d-dimensional vector and
then use a nearest neighbors search in the d-dimensional space to find mapping

candidates.

The d-dimensional feature vector for a tree A which has a bag of grams b, is
generated as follows: First, compute a hash value h, for each p,g-gram g in the
bag bs. Then, use h, to generate a random point v, on the d-dimensional unit
sphere (e.g., use h, as seed for a random number generator that generates the
vector components). To get the final feature vector v for A, add up all the vectors
vy. To approximate the symmetric bag difference, we use the d-dimensional squared
euclidean distance. The vector v4 constitutes the end point of a d-dimensional
random walk with |b4| steps of length one. Therefore, we call the resulting distance
random walk distance (RWD):

D(A,B) =~ RWD(A, B) = |lva —vp||* = va - vp

By using the random walk distance, we reduce the problem of finding similar
subtrees to the problem of finding points which are close in euclidean space. It is
intuitive that this is a valid similarity measure: The more grams differ between the
bags by and bg, the more steps from which v, and vg are assembled differ.

All grams that are in both bags by and bg yield the exact same steps in the
random walk. Consequently, these steps do not alter the distance at all. The
number of remaining grams is © = [b4\bg| and y = |bp\ba| which constitute the two
random walks whose squared euclidean distance is the RWD. The distance between
the end points of two random walks with x and y steps is equal to the distance
between the origin and an end point of a random walk with z = D(A, B) =z +y
steps. Figure 5.6 shows the transformation of two bags of grams b4 and bg into
corresponding two-dimensional random walks v4 and vg. The numbers below the

Chapter 5. RWS-Diff: Flexible Change Detection in Hierarchical Data 151

B
B

Figure 5.6: Transforming bags of grams into corresponding two-dimensional random
walks

grams show their hash values. In this example, the trees have 4 common grams
and 2+ 4 = 6 different grams. Thus, the expected euclidean distance is v/6.

Of course, the RWD is only an approximation since random walks with totally
different steps might end up at points that are close to each other. To argue that the
measure is useful indeed, we examine its stochastic properties: Let v = v1 +...+ v,
be the endpoint of a random walk starting from the origin and taking z steps in
d-dimensional space and let RWDZI be the squared euclidean distance between the
origin and v. For each step v;, we have E[v;] = 0, ||vs]|*> = 1 with all v; being
independent random variables. Then we have RWD? = ||v||> = v - v. By expansion
of the dot product we obtain RWD? = Y7 ()2 + 32 vy, - ve. With E[(v;)?4] =1
and Elvy, - v] = Elvg] - Elve] = 0 for every k # ¢, we have

E[RWDY] = 2z = D(A, B) (5.1)

Thus, the RWD is indeed an approximation of the symmetrical bag distance
regardless of the number of dimensions. The squared RWD is as follows:

(RWDS)? = 22 +22 3 vg - v+ (3 vk - ve)?
. oy ey,

b c

and thus for the variance:

Var[RWD?] = E[ffl - E[,bl +E[c] — ERWDY? = E[¢]

152 5.4. Random Walk Similarity

and for E[c|:
Ele] =% El(vr - ve)(vi - v5)]
kAL i

All terms with {k, ¢} # {i,j} in this summation are zero. The remaining 2z(z — 1)
terms have a mean of m = E[(v; - v;)?]. Let the f-th component of vector v; be v?.
Due to independence of v; and v; and because v; and v; are equally distributed,
we can expand the dot product and simplify to m = 2% | E[(v!)?]2. Since all d
components v/ are identically distributed with [|v;[|? = 1, we have E[(v})?] = 1 by
symmetry and thus m = é. Consequently

22(z —1)

Var[RWDY] = 2z(z — 1)m = y

(5.2)
The first consequence of Equation 5.2 is that the number of dimensions reduces the
variance and thus makes the approximation more precise. For an infinite number
of dimensions, the RWD would even be exactly the symmetric bag difference. This
implies that a high number of dimensions is desirable. However, a high number of
dimensions makes computations more costly and renders the index structures that
we use for the nearest neighbors search ineffective due to the curse of dimensionality.
Hence, too many dimensions are prohibitive as well. We obtained best results
with 10 < d < 20. The second consequence of Equation 5.2 is that the variance
is proportional to z(z — 1). Thus, the larger the distance, the less reliable the
approximation is. In contrast, the RWD is a very reliable approximation for small
distances. This fact is extremely beneficial for our application: As we want to
execute a nearest neighbors search, we are especially interested in points with a
small distance. For these points, the RWD is very precise, so there are no false
negatives. As mentioned, the problem of false positives is mitigated by choosing
the best of ¢ nearest neighbors. In conclusion, the stochastic properties of the
d-dimensional random walk make the RWD an excellent approximate distance
measure for our purposes. Note that while the RWD is defined as the squared
euclidean distance since this is a direct approximation for the bag distance, the
index structures use the usual euclidean distance. As we are not interested in the
value of the RWD itself but only in the nearest neighbors, this is not an issue.

Chapter 5. RWS-Diff: Flexible Change Detection in Hierarchical Data 153

5.4.3 Weighting Grams

Until now, we assumed that each step in the random walk has a length of one.
However, we can also weight the grams and multiply the step length by that
weight to give certain grams more or less significance. A general assumption we
can make is that having less frequent grams in common is more significant than
having frequent grams in common. If we look, for example, at HTML documents,
two subtrees having a br element in common are not that rare, while having a
long text node in common which appears infrequently in the document is a strong
indication of a correct mapping. Therefore, we use the inverse gram frequency,
that is, the reciprocal value of the number of times a gram occurs in both trees as
weight. Although this is a quite simple heuristic, it improved the edit script quality
noticeably in our tests. Of course, more elaborate heuristics could be used as for
example proposed in [83]. What we want to emphasize here is not the concrete
choice of heuristic, but the fact that the random walk similarity can be tuned easily
by such a heuristic.

5.5 Evaluation

Index Structure Comparison. In order to find out which of the feature vector
indexes presented in Section 5.3.2 is best suited we compare them with test data.
We generate that data by taking 10,000/100,000 random subtrees with 10 to 100
nodes from various freely available XML files [94]. For each subtree S;, we generate
a feature vector f; with d = 10 dimensions, modify the tree randomly, and calculate
another feature vector f/. We then insert the feature vectors f; into an index.
Afterwards, we issue [-nearest neighbors queries with [= 10 for 1000 randomly
chosen f/s. We measure precision, that is, the fraction of returned nodes which
are correct [-nearest neighbors, average distance to query point, setup time (i.e.,
time for generating the index) and runtime for the 1000 queries. All figures are
averaged over 20 runs on identical hardware (Core i5 M460).

We assess exact approaches and approximate approaches. The exact approaches
are a linear scan (comparison to all points) and a k-d tree with exact querying.
The approximate approaches are KLSH, HKM, and a k-d tree with best-bin-first
(BBF') querying.

154 5.5. Evaluation

Method Precision AVG dist Runtime Setup time
Linear scan 1 3.45 625 ms 0 ms
Exact k-d tree 1 3.45 1197 ms 8 ms
BBF k-d tree 0.46 3.85 54 ms 8 ms
KLSH 0.74 3.60 30 ms 131 ms
HKM 0.54 3.75 13 ms 261 ms

Table 5.1: Comparison of indexes with 10,000 points

Method Precision AVG dist Runtime Setup time
Linear scan 1 3.02 6454 ms 0 ms
Exact k-d tree 1 3.02 15041 ms 160 ms
BBF k-d tree 0.33 3.55 88 ms 160 ms
KLSH 0.76 3.15 470 ms 1988 ms
HKM 0.40 3.39 21 ms 3461 ms

Table 5.2: Comparison of indexes with 100,000 points

Table 5.1 shows the result for 10,000 subtrees and Table 5.2 for 100,000 subtrees.
Of course, the exact methods have a precision of 1. They also show that the
“perfect” average distance, that is, the distance of the real 10-nearest neighbors is
3.44 and 3.02 (for 10,000 nodes and 100,000 nodes, respectively). The runtime of
the exact methods is prohibitively long even for a small dataset consisting of only
10000 points. The approximate methods, in contrast, show good results. Although
the precision is not too good (46%-74% and 33%—76%), the average distance of
3.60-3.85 and 3.15-3.55 shows that the wrongly selected nodes are still close to the
perfect average distance and thus are still good mapping candidates (in comparison,
the distance of randomly selected points was 8.51 and 8.63). In conclusion, the
approximate indexing methods, especially HKM and KLSH, are well suited for
RWS-Diff. HKM is very fast even for larger datasets while KLSH has very precise
results close to the exact solution. Since HKM is much faster than KLSH while its
average distance is not much worse, we use HKM for the further experiments.

Comparison to Other Methods. To evaluate the quality of our method we
compare the results with other proposed solutions. Here, the problem is that most
methods have only a limited set of operations or they work only on unordered or
ordered data. Even when they are comparable they often suffer from excessive

Chapter 5. RWS-Diff: Flexible Change Detection in Hierarchical Data 155

runtime or enormously large edit scripts. Other comparative studies have found
these shortcomings as well [79, 47]. Both studies have also found that XyDiff [64]
is the only serious contender. In addition to XyDiff, we measure Diff XML [69] as
an example for a widely used open source tool for XML change detection [70] with
a worst-case complexity of O(n?).

To make the comparison fair we switch off insertSubtree, deleteSubtree, and copy
for our method as XyDiff does not support them. Diff XML uses deleteSubtree,
but we grant that advantage. We use a uniform cost model, so the cost of the
resulting edit script is equal to its length. Both contenders work in ordered mode.
Since this can introduce additional work and edit operations, we use our method
in ordered mode as well. The measured time does not include reading and parsing
the XML/HTML trees or writing the edit script to a file.

Synthetic Changes. To show the runtime and quality for different tree sizes and
change patterns, we first measure the results for synthetically changed trees. The
trees are generated by extracting an increasing amount of nodes from the real-world
dataset nasal [94], which contains astronomical XML data, and modifying the
extracted tree. The size of the extracted tree ranges from 100 to 100,000 nodes,
but we stop Diff XML early after 10,000 nodes because of its tremendous runtime.
The modification consists of (a) either random renames of one child of every node
(one change per parent) or (b) of 10 random inserts, deletes, renames, or moves
within the tree. The former change pattern represents a scenario where many small
changes are introduced across the whole tree. Since one child of every node is
modified simple methods might fail in this scenario. The latter change pattern
of 10 random changes represents a scenario where only a comparably small part
of the tree is changed. Of course, a very short edit script is anticipated in this
case. Finally (c), we also measure an increasing amount of changes on a tree of
constant size (20,000 nodes). This change pattern shows how the methods behave

for a growing number of changes.

Figures 5.7—5.9 show the resulting number of edit operations (top) and the
runtime (bottom) for the three different change patterns on the nasal dataset. The
data points are smoothed by calculating the moving average of 20 points. The error
bars depict the minima and maxima smoothed away. For the two change patterns
with a growing number of nodes in Figure 5.7 and Figure 5.8 the horizontal axis
shows the tree size, while for the change pattern with a growing number of changes

156 5.5. Evaluation

120000 T T T T
» 100000 | ® RWS-Diff
c m XyDiff
-% 80000 - .a DiffXML
E’_ 60000 L Changes
2 40000 |
©
w 20000 |
0 i I 1 1
0 20000 40000 60000 80000 100000
Number of nodes
(a) Edit script size
3000 T T T T
2500 i
(2]
£ 2000 .
°§’ 1500 a
€ 1000 -
T 500 d
0 1 1
0 20000 40000 60000 80000 100000

Number of nodes
(b) Runtime

Figure 5.7: One change per parent on the nasal data set.

in Figure 5.9 the horizontal axis shows the number of changes. Note the logarithmic
vertical axis for the number of edit operations in Figure 5.8(a).

The runtime plots at the bottom of the figures show that RWS-Diff is around two
to three times slower than a simple matching approach like XyDiff. The runtime
of RWS-Diff always stays in the same order of magnitude as XyDiff and therefore
qualifies for the same application scenarios. The runtime of both XyDiff and our
method is almost linear which backs up the claimed O(nlogn) runtime bound. As
anticipated, the O(n?) runtime of DiffXML is infeasible for larger scenarios.

The plots for the number of edit operations at the top of the figures depict the
quality gain of the similarity-based matching: For the case with one change per
parent (Figure 5.7), the edit script of RWS-Diff is only around half as long as the one
of XyDiff. Surprisingly, it is also slightly smaller than the more complex approach
of DifftXML. Especially the scenario with only 10 changes (Figure 5.8) shows the
quality and robustness gains of our solution: XyDiff emits 74.5 changes on average

Chapter 5. RWS-Diff: Flexible Change Detection in Hierarchical Data 157

1000

100

Edit operations

—_
o

1 1 N
0 20000 40000 60000 80000 100000
Number of nodes

(a) Edit script size
2500 . T T T
2000
1500
1000
500

O | |
0 20000 40000 60000 80000 100000

Number of nodes
(b) Runtime

(ms)

Runtime

Figure 5.8: 10 changes on the nasal data set.

while RWS-Diff emits only 16.6 on average which is only about 50% more than the
exact solution and around 4.5 times less than XyDiff. In addition, our method is
very robust as it never emits more than 68 operations, that is, 6.8 times more than
the exact solution. In comparison, XyDiff sometimes yields comparably good results
but often creates edit scripts with 100-1000 edit operations. Its largest edit script
even consists of 3255 operations which is more than 300 times longer than the exact
solution. Such an edit script is almost useless and demonstrates the huge robustness
problem of simple matching approaches. DiffXML is even much worse than XyDiff
for these few changes: It generated the astronomical amount of 850.8 changes on
average and a peak number of 2477 changes. Consequently, the experiment shows
that especially for common scenarios with few changes per version, similarity-based
matching can lower the edit script size and increase robustness significantly—mnot
only in comparison to simple matching methods but also in comparison to more
expensive methods like Diff XML.

158 5.5. Evaluation

21000
18000 |-
15000 |-
12000 |-
9000 -
6000 |-
3000 -

0 | | | | |
0 2000 4000 6000 8000 10000

Number of changes

Edit operations

(a) Edit script size

0 2000 4000 6000 8000 10000
Number of changes

(b) Runtime

Figure 5.9: Growing number of changes on the nasal data set.

When examining a growing number of changes in Figure 5.9, our method always
shows a considerable edit script quality gain. For a very large number of changes (in
this case 8000+ changes for 20000 nodes), the edit script quality of both methods
becomes more similar. This is due to the large amount of changes that alter the
subtrees so much that they are no longer similar (i.e., do not share any p,q-grams
anymore) and thus also render similarity-based approaches like ours ineffective.
However, using edit scripts for such a large number of changes (almost half the
tree size!) is very likely to be inferior to saving all versions explicitly anyway. Note
that we did not measure Diff XML here as the tree consisted of too many nodes to
yield a reasonable runtime.

Website Data. We inspected the two news websites www.bbc.co.uk/news and
www.tagesschau.de in 20-minute intervals. These websites were selected because
they change frequently. After collecting 900 different versions, we used our approach,
XyDiff, and DifftXML to calculate the difference between each consecutive pair

Chapter 5. RWS-Diff: Flexible Change Detection in Hierarchical Data 159

Method — AVG(#Edits) o(#Edits) AVG(Runtime) o(Runtime)

RWS-Dift 81.41 42.41 120.93 ms 9.61 ms
XyDiff 1034.14 405.46 37.12 ms 6.32 ms
DiftXML 359.12 278.37 2649.49 ms 244.99 ms

Table 5.3: Result for the bbc data set

of versions. DifftXML was sometimes not up to the task and aborted with an
exception; the following averages thus only considered the runtimes and results
where it did not crash. While our previous experiment only revealed the behavior
on a synthetic set of changes, this experiments shows how the methods perform in
a real scenario.

Tables 5.3 and 5.4 show the results for the two datasets. In this real-world
scenario, the quality gain by using our similarity approach is even higher than
for the synthetic changes: While XyDiff is between 4 and 5 times faster than
our method because the number of changes is comparably high, the quality of its
edit script is highly inferior to our method: For the bbc data set, our method
produces on average an edit script that is almost 13 times smaller than the one
of XyDiff. In addition, our edit script is also around 4.5 times smaller than the
one of Diff XML-—even though Diff XML is an O(n?) method and should therefore
yield better results. For the tagesschau data set, the edit script length of our
method is around 6 times smaller than those of XyDiff and DiffXML. The low
standard deviation of our method for both data sets shows that similarity-based
matching drastically increases the robustness of the method and thus leads to
a more constant edit script quality. In contrast, the methods without similarity
sometimes produce very inflated edit scripts: XyDiff produced 2083 edit operations
between two versions of the bbc dataset while our method produced only 7 for
these versions which is around 238 times less.

Our experiments revealed that the theoretical advantage of similarity matching is
indeed also a practical one. The edit script quality is considerably increased (even
in comparison to an O(n?) method) while the runtime stays comparable to simple
matching approaches. The similarity also increases the robustness by drastically
reducing the variance of the edit script quality. Consequently, similarity-based edit
script generation is a viable tool for scenarios where a short edit script is desired
but runtime is still important.

160 5.6. Conclusion

Method — AVG(#Edits) o(#Edits) AVG(Runtime) o(Runtime)

RWS-Dift 61.32 87.37 126.58 ms 10.76 ms
XyDift 381.02 736.58 25.15 ms 8.39 ms
DifftXML 313.39 299.90 1399.85 ms 309.64 ms

Table 5.4: Result for the tagesschau data set

Although the runtimes of our algorithm and XyDiff are comparable, XyDiff is still
faster which was to be expected since similarity computations are more expensive
than simple matching computations. In contrast, edit script quality and especially
robustness is consistently improved a lot by the similarity matching. In almost
all applications, this quality /runtime tradeoff is in favor RWS-Diff, since an edit
script is read more often than it is generated: A smaller edit script makes applying
that script faster. Since applying an edit script to go back to a former version
is the core of most version control systems that use edit scripts, the additional
generation runtime will pay off by a reduced runtime for applying the script. Also
when changes are used to reconcile or visualize changes, a shorter script uses less
bandwidth and yields a better visualization of the changes and is thus always
preferable. In conclusion, similarity-based matching is usually worth its increased
runtime.

5.6 Conclusion

We proposed a method for rapidly generating an approximately cost-minimal
edit script between two trees. Our approach uses subtree similarity for finding a
comparably good mapping in cases where simple matching methods like top-down or
hash matching fail. Nevertheless, it retains the quasi-linear runtime of such simple
methods. The similarity matching is executed by first summarizing each unmapped
subtree by a bag of p,q-grams, hashing each of the grams, and generating a random
d-dimensional vector from each hash. Then, the vectors are added generating a
random walk feature vector. The random walks possess the property that the
squared euclidean distance of two walks approximates the symmetric bag distance
of the corresponding bags and is therefore a suitable similarity measure. By using
index structures, we perform a rapid nearest neighbors search on the feature vectors

Chapter 5. RWS-Diff: Flexible Change Detection in Hierarchical Data 161

to complete the edit mapping. The proposed algorithm is flexible as it can handle
various types of edit operations and works for ordered and unordered trees.

Our evaluation has shown that the similarity search is able to decrease the
length of the edit scripts up to an order of magnitude while the runtime stays
similar to previously published simple matching approaches. This constitutes an
important advancement, since a short edit script is extremely beneficial for all
applications. In addition to the overall decrease in edit script length, the chance
that the matching fails—leading to a huge edit script—is drastically reduced by the
similarity matching, so the quality of the generated edit script is far more constant
than the quality of previous contributions. RWS-Diff is thus the first generally
applicable robust tree diff algorithm with log-linear runtime complexity.

CHAPTER 6

Conclusions

In this thesis, we have investigated in the challenges of integrating hierarchical data
support into relational database systems. We depicted shortcomings of existing
techniques and proposed a holistic framework for handling hierarchical data in the
front end and in the back end of a relational database system.

We started by proposing a data model for integrating hierarchical data into the
relational model. Based on this model, we created a query, DML, and DDL language
which blends seamlessly into SQL and can be evaluated using traditional relational
algebra without any new logical operators. We demonstrated the expressiveness

and conciseness of our query language with various real-world customer queries.

Next, we laid our focus on indexing of hierarchical data and efficient hierarchi-
cal query evaluation. We elaborated a generic interface, which general purpose
hierarchy indexes must possess. Based on this interface, we conducted a study of
existing hierarchy indexing techniques and found that most techniques share similar
asymptotic properties and expressiveness. We also concluded that no existing in-
dexing scheme is able to handle dynamic hierarchies satisfactorily. As a mitigation
of this shortcoming, we proposed Order Indexes as an efficient indexing scheme
with unprecedented update and competitive query performance. Our experiments
showed that Order Indexes are indeed the first indexing technique feasible for
our scenarios. In order to expand our hierarchy support to versioned hierarchies,
we proposed the DeltaNI indexing scheme. We demonstrated its unprecedented

163

164

performance in the versioned case and showed that it is also the first versioned
technique to handle complex updates.

Finally, we proposed the RWS-Diff algorithm for finding the approximately
cost-minimal edit script. We introduced the concept of random walk similarity
as a general concept for measuring the similarity between objects that can be
decomposed into small excerpts. Therefore, our findings do not only apply to
hierarchies but can be used in all areas where similarity of decomposable objects is
required. Since RWS-Diff runs in quasi-linear time, it is feasible for comparing even
huge hierarchies. Our conducted experiments demonstrate that the approximation
quality of RWS-Diff is even superior to algorithms with a higher asymptotic runtime
complexity.

In conclusion, we proposed a holistic framework for handling hierarchical data in
relational systems and showed that it is superior to existing approaches in terms
of expressiveness, user-friendliness and especially query and update performance.
Our indexing techniques are the first ones to allow for very large hierarchies in
highly dynamic settings. Especially, all our contributions enable the efficient use
of complex updates, which no existing approach can handle efficiently. Our query
language is expressive and yet blends so well with SQL that it does not even require
additions to the SQL grammar. We evidenced the feasibility in business scenarios
by basing our experiments on real business data of SAP customers. In fact, the
necessity of our proposed framework for SAP’s customers is witnessed by the fact
that large parts of the framework have already been enabled for customer use in
the latest release of the SAP HANA Vora in-memory query engine [85]. We are
therefore certain that our findings are not only of theoretical scientific interest but

are also applicable in practice.

Bibliography

1]
2]
3]
[4]

[5]

[10]

[11]

Books Online for SQL Server 2014 — Database Engine — Hierarchical Data.
Oracle Database SQL language reference 12c release 1 (12.1). E17209-15.
Information technology — database languages — SQL, 2011.

Information technology — Database languages — SQL, Part 14: XML-
Related Specifications (SQL/XML), 2011.

S. Abiteboul, V. Aguilera, S. Ailleret, B. Amann, F. Arambarri, S. Cluet,
G. Cobena, G. Corona, G. Ferran, A. Galland, et al. Xyleme, a dynamic
warehouse for XML data of the web. In IDEAS, 2001.

S. Al-Khalifa, H. Agadish, N. Koudas, J. M. Patel, D. Srivastava, and Y. Wu.
Structural joins: A primitive for efficient XML query pattern matching. In
ICDE, 2002.

T. Amagasa, M. Yoshikawa, and S. Uemura. QRS: A robust numbering
scheme for XML documents. In ICDE, 2003.

N. Augsten, M. Bohlen, C. Dyreson, and J. Gamper. Approximate joins for
data-centric XML. In ICDE, 2008.

N. Augsten, M. Bohlen, and J. Gamper. The pg-gram distance between
ordered labeled trees. TODS, 35(1), 2005.

D. Barnard, G. Clarke, and N. Duncan. Tree-to-tree correction for document

trees. Technical report, Queen’s University, Kingston, 1995.

B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymp-
totically optimal multiversion B-tree. VLDB Journal, 5(4), 1996.

165

166

[12] J. S. Beis and D. G. Lowe. Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces. In C'VPR, 1997.

[13] K. Beyer, R. J. Cochrane, V. Josifovski, J. Kleewein, G. Lapis, G. Lohman,
B. Lyle, F. Ozcan, H. Pirahesh, N. Seemann, et al. System RX: One part
relational, one part XML. In SIGMOD, 2005.

[14] Boeing. 747 fun facts. http://www.boeing.com/commercial/747family/
pf/pf_facts.html.

[15] P. Boncez, T. Grust, M. Van Keulen, S. Manegold, J. Rittinger, and J. Teubner.
MonetDB/XQuery: A fast XQuery processor powered by a relational engine.
In SIGMOD, 2006.

[16] P. Boncz, S. Manegold, and J. Rittinger. Updating the pre/post plane in
MonetDB/XQuery. In XIME-P, 2005.

[17] L. Boyer, A. Habrard, and M. Sebban. Learning metrics between tree
structured data: Application to image recognition. In FCML, 2007.

(18] R. Brunel, J. Finis, G. Franz, N. May, A. Kemper, T. Neumann, and F. Faer-
ber. Supporting hierarchical data in SAP HANA. In ICDE, 2015.

[19] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: Optimal XML
pattern matching. In SIGMOD, 2002.

[20] P. Buneman, S. Khanna, K. Tajima, and W. Tan. Archiving scientific data.
TODS, 29(1), 2004.

[21] J. Cai and C. K. Poon. OrdPathX: Supporting two dimensions of node
insertion in XML data. In DEXA, 2009.

[22] J. Celko. Trees € Hierarchy in SQL for Smarties. Morgan Kaufmann, 2004.

23] S. Chawathe and H. Garcia-Molina. Meaningful change detection in structured
data. In SIGMOD, 1997.

[24] S. S. Chawathe. Comparing hierarchical data in external memory. In VLDB,
1999.

http://www.boeing.com/commercial/747family/pf/pf_facts.html
http://www.boeing.com/commercial/747family/pf/pf_facts.html

Chapter 6. Bibliography 167

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

[37]

S. S. Chawathe, S. Abiteboul, and J. Widom. Representing and querying
changes in semistructured data. In ICDFE, 1998.

S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change
detection in hierarchically structured information. SIGMOD, 1996.

S. Chien, V. Tsotras, C. Zaniolo, and D. Zhang. Efficient complex query
support for multiversion XML documents. EDBT, 2002.

S. Chien, V. Tsotras, C. Zaniolo, and D. Zhang. Supporting complex queries
on multiversion XML documents. TOIT, 6(1), 2006.

S. Chien, V. J. Tsotras, and C. Zaniolo. XML document versioning. SIGMOD
Rec., 30(3), 2001.

G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in XML docu-
ments. In ICDE, 2002.

E. Cohen, H. Kaplan, and T. Milo. Labeling dynamic XML trees. SIAM
Journal on Computing, 39(5), 2010.

E. D. Demaine, S. Mozes, B. Rossman, and O. Weimann. An optimal
decomposition algorithm for tree edit distance. TALG, 6(1), 20009.

S. Dulucq and H. Touzet. Analysis of tree edit distance algorithms. In CPM,
2003.

A. Eisenberg and J. Melton. Advancements in SQL/XML. SIGMOD Rec.,
33(3), 2004.

F. Farber, N. May, W. Lehner, P. Grofle, I. Miiller, H. Rauhe, and J. Dees.
The SAP HANA Database—an architecture overview. IEEE Data Eng. Bull.,
35(1), 2012.

J. Finis, R. Brunel, A. Kemper, T. Neumann, F. Faerber, and N. May.
DeltaNI: An efficient labeling scheme for versioned hierarchical data. In
SIGMOD, 2013.

J. Finis, R. Brunel, A. Kemper, T. Neumann, N. May, and F. Faerber.
Indexing highly dynamic hierarchical data. In VLDB, 2015.

168

[38]

[39]

[40]

[41]

[42]

[46]

[47]

[48]

[49]

[50]

J. Finis, M. Raiber, N. Augsten, R. Brunel, A. Kemper, and F. Faerber.
RWS-Diff: flexible and efficient change detection in hierarchical data. In
CIKM, 2013.

S. J. Finkelstein, N. Mattos, I. Mumick, and H. Pirahesh. Expressing recursive
queries in SQL. ANSI Document X3H2-96-075r1, 1996.

M. L. Fredman. On computing the length of longest increasing subsequences.
DM, 11(1), 1975.

T. Grust. Accelerating XPath location steps. In SIGMOD, 2002.

T. Grust, J. Rittinger, and J. Teubner. Why off-the-shelf RDBMSs are better
at XPath than you might expect. In SIGMOD, 2007.

T. Grust, M. van Keulen, and J. Teubner. Staircase Join: Teach a relational
DBMS to watch its (axis) steps. In VLDB, 2003.

S. Guha, H. V. Jagadish, N. Koudas, D. Srivastava, and T. Yu. Approximate
XML joins. In SIGMOD, 2002.

A. Halverson, J. Burger, L. Galanis, A. Kini, R. Krishnamurthy, A. N. Rao,
F. Tian, S. Viglas, Y. Wang, J. Naughton, and D. DeWitt. Mixed mode
XML query processing. In VLDB, 2003.

M. Haustein, T. Harder, C. Mathis, and M. Wagner. DeweylDs—the key to
fine-grained management of XML documents. In SBBD, 2005.

C. Hedeler and N. W. Paton. A comparative evaluation of XML difference
algorithms with genomic data. In SSDBM, 2008.

H. Jagadish, S. Al-Khalifa, A. Chapman, L. Lakshmanan, A. Nierman,
S. Paparizos, J. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu.
Timber: A native XML database. VLDB Journal, 11(4), 2002.

L. Jiang, B. Salzberg, D. Lomet, M. Barrena, et al. The BT-tree: A branched
and temporal access method. In VLDB, 2000.

M. Kaufmann, A. A. Manjili, P. Vagenas, P. M. Fischer, D. Kossmann,
F. Féarber, and N. May. Timeline index: A unified data structure for processing
queries on temporal data in SAP HANA. In SIGMOD, 2013.

Chapter 6. Bibliography 169

[51]

[52]

[56]

[57]

[63]

[64]

[65]

A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP main memory
database system based on virtual memory snapshots. In ICDE, 2011.

P. N. Klein. Computing the edit-distance between unrooted ordered trees.
In ESA, 1998.

S. Lanka and E. Mays. Fully persistent B+-trees. In SIGMOD, 1991.

K.-H. Lee, Y.-C. Choy, and S.-B. Cho. An efficient algorithm to compute
differences between structured documents. TKDE, 16(8), 2004.

C. Li and T. W. Ling. QED: A novel quaternary encoding to completely
avoid re-labeling in XML updates. In CIKM, 2005.

C. Li, T. W. Ling, and M. Hu. Efficient processing of updates in dynamic
XML data. In ICDE, 2006.

C. Li, T. W. Ling, and M. Hu. Efficient updates in dynamic XML data:
From binary string to quaternary string. VLDB Journal, 17(3), 2008.

Q. Li and B. Moon. Indexing and querying XML data for regular path
expressions. In VLDB, 2001.

T. Lindholm. XML three-way merge as a reconciliation engine for mobile
data. In MobiDFE, 2003.

T. Lindholm. A three-way merge for XML documents. In DocFEng, 2004.

Z. H. Liu, M. Krishnaprasad, and V. Arora. Native XQuery processing in
Oracle XMLDB. In SIGMOD, 2005.

D. Lomet and B. Salzberg. Access methods for multiversion data. In SIGMOD,
1989.

D. G. Lowe. Object recognition from local scale-invariant features. In IC'CV,
1999.

A. Marian. Detecting changes in XML documents. In ICDE, 2002.

A. Marian, S. Abiteboul, G. Cobena, L. Mignet, et al. Change-centric
management of versions in an XML warehouse. In VLDB, 2001.

170

[66]

[67]

[68]

[69]

[74]

[75]

A. Mendelzon, F. Rizzolo, and A. Vaisman. Indexing temporal XML docu-
ments. In VLDB, 2004.

J.-K. Min, J. Lee, and C.-W. Chung. An efficient XML encoding and labeling
method for query processing and updating on dynamic XML data. JSS, 82(3),
2009.

K. Morton, K. Osborne, R. Sands, R. Shamsudeen, and J. Still. Pro Oracle
SQL. Apress, second edition, 2013.

A. Mouat. XML diff and patch utilities. BSc thesis, Heriot-Watt Univer-
sity, Edinburgh, Scotland, 2002. http://prdownloads.sourceforge.net/

diffxml/dissertation.ps.
A. Mouat. Diff XML, 2013. http://diffxml.sourceforge.net/.

T. Neumann. Efficiently compiling efficient query plans for modern hardware.
In VLDB, 2011.

P. Nielsen and U. Parui. Microsoft SQL Server 2008 Bible. John Wiley &
Sons, 2011.

D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In

CVPR, 2006.

P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. ORD-
PATHs: Insert-friendly XML node labels. In SIGMOD, 2004.

S. Pal, I. Cseri, O. Seeliger, M. Rys, G. Schaller, W. Yu, D. Tomic, A. Baras,
B. Berg, D. Churin, et al. XQuery implementation in a relational database
system. In VLDB, 2005.

L. Paulevé, H. Jégou, and L. Amsaleg. Locality sensitive hashing: A com-
parison of hash function types and querying mechanisms. PRL, 31(11),
2010.

M. Pawlik and N. Augsten. RTED: a robust algorithm for the tree edit
distance. PVLDB, 5(4), 2011.

F. Rizzolo and A. Vaisman. Temporal XML: modeling, indexing, and query
processing. VLDB Journal, 17(5), 2008.

http://prdownloads.sourceforge.net/diffxml/dissertation.ps
http://prdownloads.sourceforge.net/diffxml/dissertation.ps
http://diffxml.sourceforge.net/

Chapter 6. Bibliography 171

[79]

[80]

[81]

[82]

[84]

[85]

[36]

[87]

[38]

[89]

[90]

[91]

[92]

S. Rénnau, J. Scheffczyk, and U. M. Borghoff. Towards XML version control
of office documents. In DocEng, 2005.

L. Rosado, A. Marquez, and J. Gonzalez. Representing versions in XML
documents using versionstamp. ECDM, 2006.

L. Rusu, W. Rahayu, and D. Taniar. Maintaining versions of dynamic XML
documents. WISFE, 2005.

L. Rusu, W. Rahayu, and D. Taniar. Storage techniques for multi-versioned
XML documents. In DASFAA, 2008.

G. Salton and C. Buckley. Term-weighting approaches in automatic text
retrieval. IPM, 24(5), 1988.

V. Sans and D. Laurent. Prefix based numbering schemes for XML: techniques,
applications and performances. PVLDB, 1(2), 2008.

SAP SE. Solutions — Data Management — SAP HANA Vora. http: //
go. sap. com/ germany/ product/ data-mgmt/ hana-vora-hadoop. html
Dec. 2015.

S. Sasaki and T. Araki. Modularizing B*-trees: Three-level BT -trees work
fine. In ADMS, 2013.

S. M. Selkow. The tree-to-tree editing problem. IPL, 6(6), 1977.

D. Shapira and J. A. Storer. Edit distance with move operations. In CPM,
2002.

D. Shasha, J. T. L. Wang, K. Zhang, and F. Y. Shih. Exact and approximate
algorithms for unordered tree matching. TSMC, 24(4), 1994.

T. Sigaev and O. Bartunov. ltree, 2002. http://www.postgresql.org/
docs/9.1/static/ltree.html.

A. Silberstein, H. He, K. Yi, and J. Yang. BOXes: Efficient maintenance of
order-based labeling for dynamic XML data. In ICDE, 2005.

Y. Song and S. S. Bhowmick. BioDIFF: an effective fast change detection
algorithm for genomic and proteomic data. In CIKM, 2004.

http://go.sap.com/germany/product/data-mgmt/hana-vora-hadoop.html
http://go.sap.com/germany/product/data-mgmt/hana-vora-hadoop.html
http://www.postgresql.org/docs/9.1/static/ltree.html
http://www.postgresql.org/docs/9.1/static/ltree.html

172

[93]

[94]

[95]

[100]

[101]

[102]

[103]

[104]

[105)

I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, F. Dabek,
and H. Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for
internet applications. TON, 11(1), 2003.

D. Suciu. XML data repository, 2012. http://www.cs.washington.edu/

research/xmldatasets/www/repository.html.

I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and
C. Zhang. Storing and querying ordered XML using a relational database
system. In SIGMOD, 2002.

Z. Vagena, M. Moro, and V. Tsotras. Supporting branched versions on XML
documents. In RIDE, 2004.

7. Vagena and V. Tsotras. Path-expression queries over multiversion XML
documents. In WebDB, 2003.

Y. Wang, D. J. DeWitt, and J. yi Cai. X-Diff: An effective change detection
algorithm for XML documents. In ICDE, 2003.

A. Woss and V. Tsotras. Experimental evaluation of query processing tech-
niques over multiversion XML documents. In WebDB, 2009.

H. Xu, Q. Wu, H. Wang, G. Yang, and Y. Jia. KF-Diff4: Highly efficient
change detection algorithm for XML documents. In ODBASE, 2002.

L. Xu, T. W. Ling, H. Wu, and Z. Bao. DDE: From Dewey to a fully dynamic
XML labeling scheme. In SIGMOD, 2009.

R. Yang, P. Kalnis, and A. K. H. Tung. Similarity evaluation on tree-
structured data. In SIGMOD, 2005.

J.-H. Yun and C.-W. Chung. Dynamic interval-based labeling scheme for
efficient XML query and update processing. JSS, 81(1), 2008.

P. Zezula, F. Mandreoli, and R. Martoglia. Tree signatures and unordered
XML pattern matching. In SOFSEM, 2004.

C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman. On supporting
containment queries in relational database management systems. In SIGMOD,
2001.

http://www.cs.washington.edu/research/xmldatasets/www/repository.html
http://www.cs.washington.edu/research/xmldatasets/www/repository.html

Chapter 6. Bibliography 173

[106] K. Zhang and T. Jiang. Some MAX SNP-hard results concerning unordered
labeled trees. IPL, 49(5), 1994.

[107] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance
between trees and related problems. SIAM Journal on Computing, 18(6),
19809.

[108] Y. Zhang, X. Wang, and Y. Zhang. A labeling scheme for temporal XML. In
WISM, 2009.

	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	Introduction
	The Hierarchy/Table Impedance Mismatch
	Contribution and Outline

	A Data Model and Front End For Hierarchical Data
	Requirements Review
	From Status Quo to Our Proposal
	Hierarchical Tables: Our Model
	Querying Hierarchies
	Creating and Manipulating Hierarchies
	Deriving a Hierarchy from an Adjacency List
	Hierarchical Base Tables
	Manipulating Hierarchies

	Advanced Customer Scenarios
	Architecture and Implementation Aspects
	Hierarchy Indexing Schemes
	Hierarchy-Aware Join Operators
	Bulk-Building

	Experiments
	Conclusion

	Order Index: Indexing Highly Dynamic Hierarchical Data
	Dynamic Hierarchies in Relational Systems
	Challenges
	Query Capabilities
	Update Capabilities

	Related Indexing Schemes
	Hierarchical Query Processing
	Order Indexes
	The Order Index Concept
	Order Index Structures
	Back-Links in Block-Based Order Indexes
	Updating Order Indexes

	Order Index Extensions
	Disk-Based Systems
	Supporting ordinal primitives with the BO-Tree

	Performance Evaluation
	Test Setup
	Block Size & Back-Link Representation
	Comparison to Existing Schemes

	Conclusion

	DeltaNI: Indexing Versioned Hierarchical Data
	Hierarchies in RDBMS
	Interval Deltas
	Implementing the Query Primitives
	Efficient Delta Representation
	Obtaining Deltas
	Static Scenario
	Dynamic Scenario

	Delta Version Histories
	Querying the History
	Exponential Deltas
	Optimizations

	Evaluation
	Related Work
	Conclusion

	RWS-Diff: Flexible Change Detection in Hierarchical Data
	Tree Edit Scripts
	Related Work
	Tree Edit Distance Computation
	Computing Diffs between Trees

	The RWS-Diff Algorithm
	Finding Simple Mappings
	Random Walk Similarity Matching
	Edit Script Generation
	Complexity of RWS-Diff

	Random Walk Similarity
	Grams for Trees
	Random Walk Distance
	Weighting Grams

	Evaluation
	Conclusion

	Conclusions
	Bibliography

