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Abstract

Highly automated driving is currently being widely discussed and likely to enter series
vehicles within the next few decades. While the system takes over longitudinal and lateral
control, the driver is still needed as a fall-back level in case system limits emerge. In
those situations, the system prompts a take-over request, and the driver has to regain
vehicle control within a limited time budget. These take-over situations will be one key
controllability aspect of future highly automated vehicles, while a change of paradigms
due to the automation of the driving task challenges traditional controllability methods.
An approach to model drivers’ performance is proposed in this thesis to address the
changed demands on methods and provide a basis for the evaluation of the take-over
situations in highly automated vehicles.

By conducting six driving simulator experiments, different parameters were identified
which influence drivers’ take-over performance, and the take-over performance was mod-
eled under consideration of these different identified predictors, namely the available time
budget, the current lane, surrounding traffic density, number of previously experienced
take-overs, driver’s load, eyes-off-road and age.

Among the different model approaches that were compared, regression methods showed
the best combination of accuracy with simultaneous transparency regarding the influence
of each predictor, as well as the interaction between the predictors. In total, 753 recorded
take-overs served as a database for setting up regression models, depicting gaze reaction
time, take-over time, maximum lateral and longitudinal accelerations, brake and crash
probabilities and minimum time to collision. As the maneuver type significantly influenced
the models’ prediction, separate regressions for braking and non-braking drivers were
set up and robust regression methods were used to address the occurrence of outliers in
the data.

The different regression models’ adequacy was assessed to be accurate with limitations
when modeling brake reactions. The models proposed were validated by a comparison
to results of a new driving simulator experiment and also by contrasting the models’
predictions with results of four experiments of other authors. Results of these experiments
were precisely predicted by the models in most of the cases, which confirmed models’
accuracy and a high range of validity.

Traffic density, the time budget available for taking over vehicle control, the repetition
(training), and driver’s age played a major role when modeling take-over performance,
whereas driver’s load due to non-driving-related tasks had an rather low effect. The es-
tablished models of human performance fit the behavior of drivers in take-over situations.
Learning effects, for instance, were present and followed a logarithmic trend. Additionally,
by employing mixed-effect models, the driver was recognized to be a major source of
variance within the data, which is why knowledge of drivers’ strategies and predisposition
significantly improves the accuracy of the predictions.

The thesis makes it possible to predict and substitute driving simulator experiments. It
provides an in-depth understanding of interdependency and importance of the different
predictors and facilitates the controllability assessment of highly automated vehicles.
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Acronyms
ABS Anti-lock Braking System.
ACC Adaptive Cruise Control.
ADAS Advanced Driver Assistance Systems.
AEB Advanced Emergency Braking Systems.
ANN Artificial Neural Network.
AUC Area Under the Curve.
BASt Bundesanstalt fir StraBenwesen.
DARPA Defense Advanced Research Projects Agency.
DGPS Differential Global Positioning System.
ESC Electronic Stability Control.
ESP Electronic Stability Program.
GPS Global Positioning System.
HAD Highly Automated Driving.
HAV Highly Automated Vehicle.
HMI Human Machine Interface.
LIDAR  Laser llluminated Detection And Ranging.
LKAS Lane Keeping Assistant Systems.
LRR Long Range Radar.
LVS Lead Vehicle Stationary.
NHTSA National Highway Traffic Safety Administration.
OEM Original Equipment Manufacturers.
OLS Ordinary Least Squares.
RMSE  Root-Mean-Square Error.
ROC Receiver Operator Characteristic.
SAE Society of Automotive Engineers.
SD Standard Deviation.
SRR Short Range Radar.
STDLP  Standard Deviation of Lateral Position.
SuRT Surrogate Reference Task.
B Time Budget.
TJA Traffic Jam Assist.
TOR Take-Over Request.
TTC Time To Collision.
Va2X Vehicle-to-X communication.
VIF Variance Inflation Factor.
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Definitions

Take-Over:

Transition from higher levels of automated vehicle guidance to manual or assisted driving
by reallocating control of the driving task back to the driver.

Automation Scenario:

Environmental conditions that allow the usage of the automated system.
Take-Over Situation:

Temporary and localized conditions among which a take-over is conducted.
Take-Over Scenario:

Environmental conditions among which a take-over is conducted.

System Limit:

Summary of situational conditions that cause the necessity of a take-over or triggers a
minimal risk maneuver.

Take-Over Request:

Information of stimulative nature, emitted by the automated vehicle with the purpose of
initiating a take-over.

Time Budget:

Time provided for the take-over and the execution of a maneuver, as an adequate
response to the system limit.

Take-Over Performance:

Combination of timing and quality aspects of driver’s input within a take-over scenario.
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1 Introduction

Within the last few years, automated driving has evolved as one of the most widely
discussed topics in road transportation research. Thanks to advances in sensor technol-
ogy and by merging data from sensors currently used for Advanced Driver Assistance
Systems (ADAS), automatization of several parts of the driving task was enabled. Due
to this progress, Highly Automated Driving (HAD) became a realistic vision for the near
future. Proponents expect vehicle automation to have a positive impact, such as improved
traffic flow, a reduced accident rate and a reduction of fuel consumption. Those aspects
will only take effect if the automation is designed appropriately, utilized and accepted by
the potential target group and the surrounding traffic. In order to address this coherence,
the driver has to be considered within a system that covers not only the properties of the
automation, but also the vehicle and the environmental conditions. Automation-induced
changes of driver’s behavior and performance must be considered as well as the change
of demands on the driver’s abilities such as staying vigilant or taking over control after
driving in automated mode. Automated systems that take over parts of the driving task
are already entering the market, but currently requiring the driver to continuously monitor
the system. It is estimated that highly automated systems which do not have to be
monitored constantly will emerge within the next decade (Schreiner, 2014).

In this setting, the driver is no longer in charge of executing longitudinal or lateral control,
but remains the fallback level of the automation in case of system limits or when the end
of the automation scenario is approached. The task, then, has to be reallocated to the
driver - he has to take over vehicle control. In the same way that the automation must
perform accurately and flawlessly, the evaluation of drivers’ behavior and performance
interacting with the system in such take-over scenarios is an essential requirement to
enable automated driving in series vehicles and ensure traffic safety. This includes a
profound understanding of the effects that arise when humans are exposed to vehicle au-
tomation. The examination of the interaction of driver, vehicle and automation in specific
circumstance, for example in critical take-over scenarios, is an inevitable research focus
and required for the discussion of ethical, legal, liability, insurance and especially safety
aspects.

At the same time, the current state of knowledge is very limited and huge efforts in the
form of driving simulator experiments, on-track driving experiments and naturalistic driving
studies have to be undertaken to provide a sufficient knowledge base for the controllability
assessment of highly automated vehicles. This traditional approach of controllability
assessment is likely to be insufficient and not practical considering the extent of studies
necessary. In this context, the ability to model the driver-vehicle-automation system
would be very advantageous. By modeling the impact of automated driving on drivers’
behavior and driving performance, elaborate experiments can be substituted and coher-
ence can be discovered that otherwise could hardly be derived from isolated experiments.
Therefore, this thesis focuses on modeling take-over performance, based on a series of
driving simulator studies, in dependence on different influencing preconditions.







2 Automation in Vehicle Guidance

2.1 Vehicle Guidance

When driving, the main goal is to cover the distance to a destination by the use of a
vehicle and with the constraints of avoiding harm to the passengers, other road users
and objects. There may also be other subordinate goals such as minimization of fuel
consumption or maximization of joy. In order to achieve these goals, the driver has the
possibility to make different inputs on the control elements, such as steering, braking,
accelerating and operating other functions like headlights or wipers. The former are
parts of the primary driving task, whereas operating functions necessary for driving but
not directly correlated to vehicle guidance are secondary driving tasks (Geiser, 1985).
The third group of driving tasks, the tertiary driving tasks, are all operations serving to
maximize comfort or joy, for example adjustments on the air conditioning, windows or
radio (Geiser, 1985; Bubb, 2015b). Figure 2.1 summarizes the different tasks.

Transportationtask ~ Primary Driving Task Secondary Tertiary
AL Driving Task Driving Task
Driver Environment
Navigation Road Indicators, .
Audio
level network low beam
I\/Ialneulver  Drivespace Wiper d_p:_r )
ele Vehicle conditioning
L .
Stabilization System ong. and System Roadway- Cruise Navigation
- lateral = ’
level input X output surface Control, ACC devices
dynamics
Current track and speed
etc. etc.
Area of safe reference
Possible routes

Figure 2.1: Levels of vehicle guidance and subdivision of the driving task. Derived from
Donges (1982) and Negele (2007).

With respect to automating the driving tasks, focus is clearly on the primary driving task.
Secondary or tertiary tasks can also be the target of automatization, however, in general
and in this thesis specifically, solely the automation of the primary driving task is attributed
to “automated driving”. This primary driving task can further be subdivided into three
different levels (cf. Figure 2.1), probably originating from the aviation domain and widely
used in road transportation (Crossman & Szostak, 1968; Bernotat, 1970; Donges, 1982).
On the highest level, the driver plans aspects for navigation considering different routes
to the destination in dependence of influencing factors such as the current traffic situation.
The second level represents the maneuvering of the vehicle, including lane-changes,




2 Automation in Vehicle Guidance

turns, passing and others. The third level describes all actions necessary to stabilize the
vehicle within the current lane (lateral) and concerning vehicle speed (longitudinal).

The driver can therefore be considered a controller within a closed driver-vehicle-
environment control loop as depicted in Figure 2.2. It combines aspects of the information-
processing theory of Wickens, Hollands, Banbury, and Parasuraman (2013) and aspects
of regular control theory. The driving task is considered to be a pursuit control (Bubb,
2015a), although it is argued that it is rather a combination of pursuit and compensatory
control (Bubb, 2015a). Considering the driving task a compensatory control, the sum of
reference and system output in Figure 2.2 would take place not within the information pro-
cessing, but previous to the perception. The driving task, as described above, represents
the reference signal which the driver perceives via his sensory system and processes.
Deviations of the system output are assessed and necessary system inputs for reducing
this error are derived. The vehicle transforms the driver’s input and thus determines
the system output. As the driver is part of the closed control loop and continuously
contributes to the system output, he is considered to be “in-the-loop”. This manual control
was the focus of huge research efforts over the last few decades in order to describe and
model the driver and his abilities and behavior.

Driver Vehicle
Informatllonf Vehicle Dynamics
pr0c+essmn Measured| Response selection System | | definded by System output
”- Error and execution input response g
characteristics

Perceived Perceived
Reference Qutput

Reference

» Perception

-~

Figure 2.2: Driver-vehicle-environment control loop (based on Wickens et al. (2013) and
Bubb (2015a)).

2.2 Perception and Cognition

Driving a vehicle is based on different processes of perception and cognition. When
driving, a variety of different stimuli are available to the driver. In order to continuously
select and execute a response to the control system’s output, the driver has to perceive
the relevant stimuli such as the environment, the current vehicle state, its parameters,
and the reference representing the goal he wants to achieve with the selected response.
To derive a basis for decision-making, the perceived stimuli have to be processed and
matched with short-term memory and previous experiences. Both the perception and
processing of information need attention resources, which are physiologically limited.
This process is described by Wickens et al. (2013) and depicted in Figure 2.3. Because
of the limitation of attention resources, performing non-driving-related tasks while driving




2.2 Perception and Cognition

impairs driving performance. Many other effects, for example what is referred to as the
“looked-but-failed-to-see” (Herslund & Jargensen, 2003) effect, can be described using
the model of Wickens et al. (2013). As this model can also be applied to effects arising
with automated driving, the model is an important basis of considerations within this
thesis. The subdivision of information processing into information perception, cognition,
decision, and execution is formulated in accordance with other models, e.g. by Schlick,
Bruder, and Luczak (2010), or similar to Endsley (1988), although the cognition step is
replaced by projection in this case.

~ Attention ™
N Resources i

5 |

! |} ]

. | i

i~ Long-term X \

\ '—  Memory ! !

! ' i |

i l : l T- : :

Selection | | :::g:;nrg ! !

A ' | Cognition [,/ i ¥
Sensory = Percention Response | | Response
Processing [ P Selection Execution

System
Envircnment
(Feedback)

Figure 2.3: Model of human information processing (Wickens et al., 2013).

In experiments with mice, Robert Yerkes and John Dodson (Yerkes & Dodson, 1908)
found an effect that was assigned to human performance later on and named Yerkes-
Dodson Law (Teigen, 1994) or “Inverted U Function” as shown in Figure 2.4. This principle
reveals a correlation between performance and the arousal level, namely “that there
is an optimum level or most desirable amount of arousal for any activity” (Basavanna,
2000, p.465), while the level of arousal is being defined as “a general pattern of bodily
response in which several psychological systems are activated at the same time including
heart rate, sweat gland, activity and EEG” (Basavanna, 2000, p. 25). Low arousal
levels (simple, monotonous tasks) as well as very high levels (difficult, complex tasks)
lead to reduced performance. As the model of information processing by Wickens et al.
addresses impaired performance due to high, but not low arousal, the Yerkes-Dodson
Law extends this model moderated by a performance aspect. For the manual control of
a road vehicle, this underload arises in very monotonous circumstances such as traffic
jams or long night drives, whereas overload occurs predominantly in very demanding
situations, for example when experiencing excessive stress while driving. Besides, the
Yerkes-Dodson Law also has implications for automated driving, as automation may
bidirectionally influence the arousal and therefore impair human performance.

There are many other factors interfering with human performance. The concept of
workload plays an important role and is defined “as the mental effort that the human
operator devotes to control and / or supervision relative to his capacity to expend mental
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High
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Figure 2.4: Inverted U function for simple (left) and difficult (right) tasks (Klein, 1982).

effort” (Moray, 1979, p. 236), while “capacity of a human operator is the limiting level
of performance on any action which is part of a task” (Moray, 1979, 263). Following
this definition, Wickens (2008b) states that workload is closely related to the multiple
resource theory and therefore affects information processing as depicted in Figure 2.3.
High levels of workload claim more attention resources and thus deteriorate a person’s
ability to perceive and process information.

In the context of automated driving, results show that workload significantly decreases
(Winter, Happee, Martens, & Stanton, 2014). This could lead to underload, which is likely
to pose a problem (Young & Stanton, 1997) related to the reduced performance due to
low arousal levels according to the Yerkes-Dodson Law. This is not exclusively the case,
however, as other factors such as aspects of motivation or job satisfaction seem to play a
role as well (Moray, 1979).

When looking at human performance, attention is “the focal activity of consciousness
leading to heightened awareness of a limited range of stimuli” (Basavanna, 2000, p.
29) and an important construct that was already included in the model of information
processing and which is also related to arousal (Kahneman, 1973). As information
processing is dependent on attentional resources (Wickens et al., 2013), apparently a
lack of attention due to limited resources, for example when performing multiple tasks or
when there is a focus of attention on the “wrong” task, deteriorates human performance.
The multiple resource theory, derived from the research of different authors (Moray, 1967,
Kahneman, 1973; Wickens, 2008b), claims that attention resources can be divided into
different segments that differ, for example, with regard to the modalities of perceptional
channels. While tasks requiring attention from different segments can be executed
simultaneously with only small impairments on performance, tasks requiring attention
from the same segment compete for the same attention resources and therefore distinctly
deteriorate human performance. When performing non-driving-related tasks such as
writing a text message while driving, for example, visual attention resources have to
be allocated between the driving task and the text task, so that driving performance is
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impaired, which is also referred to as distraction (Bengler, 2014) and which has a long
tradition in human factors research.

In human memory, experiences and previous contacts with a certain task are stored and
used for recognizing and solving similar or different / unknown tasks. With increasing
experience, the information process is performed faster and fewer attention resources
are required. Rasmussen (1983) describes this effect and distinguishes between three
general skill levels (cf. Figure 2.5). New tasks are normally handled based on knowledge
and under use of problem-solving mechanisms such as the trial-and-error principle.
Based on these mechanisms and experiences, humans derive rules for achieving certain
goals, while the rules that have proved successful are stored. If the rules can be applied
to solve a certain task, the process is referred to as rule-based behavior and belongs to
the second skill level. Rule-based behavior is faster than knowledge-based behavior and
requires fewer resources. With higher training levels, task handling reaches the faster
skill-based level that can be allocated to the psychomotor processes and requires only
few resources. Skill-based behavior is developed by excessive training and executed
without conscious control. Persons normally cannot report how they derived a decision
or executed an action.

GOALS
KNOWLEDGE-BASED ¢

BEHAVIOUR

SYMBOL IDENTI- DECISION
% —»| OF | PLANNING |
FICATION TASK

RULE-BASED

BEHAVIOUR |

SIGN RECOG ASSOCIA- STORED
|y TION p| RULES |
NITION STATE/ FOR
TASK TASKS

KNOWLEDGE-BASED v
BEHAVIOUR

FEATURE (SIGNS) AUTOMATED

FORMATION SENSORI-MOTOR

PATTERNS
SENSORY INPUT SIGNALS ACTIONS

Figure 2.5: Skill levels defined by Rasmussen (1983).

The thesis proceeds on the following summary of above-mentioned models: human
information processing and thus task handling increases in speed and performance with
experience and training, and information processing is further dependent on the attention
resources available, which are affected by arousal, focus of attention and workload.
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2.3 Automated Driving

Efforts of automating the driving task in the public space must follow the same goals
regarding safety as manual driving, described in Section 2.1. When talking about
automated driving, the automation of parts of the primary driving tasks is addressed,
particularly, but not exclusively, the stabilization and maneuvering of the vehicle.

The idea of automating the driving task was first documented in 1925 in an article in the
New York Times (New York Times, 1925). General Motors showed their vision of the
future at the 1939 New York World’s Fair, which included the development of automated
cars until the 1960s (Geddes, 1940). The vision was followed by the GM Firebird Concept
/1l featuring “automated steering, which could be adapted to an Auto-Control highway”
(Electronic Chauffeurs, 1959, p. 875). Up to 1979, the concepts regarding automated
driving had in common that they were dependent on elements in the infrastructure such
as inductive guidance, implemented in the road surface (Guang Lu & Tomizuka, 2002).

A rover, introduced by Moravec (1980), was the first approach that was independent from
infrastructural preconditions, as it moved and avoided obstacles only based on the view of
a camera. In the 1980s, several projects such as the ALV (Schefter, 1985), CMU (Goto &
Stentz, 1987) and the VaMoRs (Dieckmanns, 1989) followed. Further efforts were made
entering the 1990s, for example with the projects PROMETHEUS (Williams & Preston,
1987), PATH (Shladover, 2006), or NAVLAB (Thorpe, Herbert, Kanade, & Shafer, 1991).
“These projects have significantly advanced research in sensor hardware and software”
(Bengler et al., 2014, p. 10) and remarkable results, such as a long-distance drive of
1,750 kilometers with speeds of up to 180 km/h from Germany to Denmark in 1995 and
with a share of automated driving of about 95% (Maurer, Behringer, Furst, Thomanek, &
Dickmanns, 1996) were achieved.

Based on the progress in automated driving, with the beginning of the century, the
Defense Advanced Research Projects Agency (DARPA) announced three Challenges:
Grand Challenge | in 2004, Grand Challenge Il in 2005 (Buehler, lagnemma, & Singh,
2007) and the Urban Challenge in 2007 (Buehler, lagnemma, & Singh, 2009). Several
teams from different countries competed in developing automated vehicles and further
encouraged automated driving research. Vehicles, in some cases directly resulting from
the DARPA challenges, quickly entered public roads for example Leonie (Wille, Saust, &
Maurer, 2010), AutoNOMOS (Rojo, Rojas, & Raul, 2007), or the Google Car (Markoff,
2010). At the same time, different research projects were launched, focusing, for example,
on urban environments, such as the CityMobil project (van Dijke & van Schijndel, 2012),
and considering human factors issues in case of system failures or unexpected events
(Toffetti et al., 2009).

The efforts in automated driving research were accompanied and empowered by the
development of driver assistant systems and ADAS, which enhanced integrated and
active safety (Bengler et al., 2014). Starting with systems like the Anti-lock Braking
System (ABS) or the Electronic Stability Control (ESC), drivers were assisted in situations
of excessive demand arising from the driving task. Longitudinal control was further
supported by distance warning systems (Mitsubishi in 1992) and later successively
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extended by deceleration via throttle (Mitsubishi in 1995) and active braking (Mercedes-
Benz in 1999). For lateral vehicle guidance, a similar evolutionary path from lane
departure warning systems towards active Lane Keeping Assistant Systems (LKAS) in
2002 is observable (Winner & Hakuli, 2015). Additionally, the first in-vehicle navigation
systems were installed in series vehicles in 1989 (Akamatsu, Green, & Bengler, 2013).
Different sensors were used for enabling the different system functions of ADAS. The
sensors had to be developed to meet the demands of series production regarding cost
and reliability, further promoting sensor-related research and technology.

Simultaneously, due to advances in sensor and information technology, automated driving
became an increasingly realistic scenario for series vehicles in the near future. The
idea of implementing automated functions in regular vehicles quickly evolved during
the last few years, leading to further intensified research and several press releases of
different Original Equipment Manufacturers (OEM) and tier-one suppliers, announcing
that hands-free driving would b achieved between 2020 (Preisinger, 2013; Continental
Strategy Focuses on Automated Driving, 2012) and 2025 (Bereszewski, 2013). In this
context, numrous joint research projects have recently been launched, for example on
a European level with the AdaptlVe (Langenberg, Bartels, & Etemad, 2014), HAVEit
(Hoeger et al., 2008) or D3CoS (Zimmermann & Bengler, 2013) projects, or on a national
level, for example with the KoHAF (ZENTEC GmbH, 2015) project. This exemplary
selection of projects emphasizes the huge effort that is being made in order to enable
automated vehicle functions in general and HAD in particular.

2.4 Levels of Vehicle Automation

The various activities in the field of automated driving research and the emerging of
automated functions for vehicle guidance have led to a need for definitions and clas-
sifications, to support a common understanding across domains and to facilitate the
exchange of knowledge. Based on results of a body of experts, Gasser (2012) from the
public German road agency Bundesanstalt fir StraBenwesen (BASt) has published a
definition of different vehicle automation levels (Gasser & Westhoff, 2012) (cf. Figure 2.6),
subdividing vehicle automation into five stages.

The level Driver Only corresponds to manual driving, possibly under the presence of
lower levels of driver assistance. ADAS executing either longitudinal or lateral guidance
are considered to belong to the Driver Assistance level. Examples are the Adaptive
Cruise Control (ACC) or Active Lane Assist. In Partial Automation, both longitudinal and
lateral guidance are conducted by an automated system, but the driver “shall perma-
nently monitor the system” (Gasser & Westhoff, 2012, p. 3). As Gasser does not further
define the term “monitor”, the Traffic Jam Assist (TJA) or systems like the DISTRONIC
PLUS with Steering Assist introduced by Mercedes Benz in 2014 can be considered
partial automation, although drivers have to keep their hands on the steering wheel
(Mercedes-Benz, 2015) as a part of the monitoring task. High Automation, or HAD, is de-
fined similarly as Partial Automation, but the driver is “no longer required to permanently
monitor the system” (Gasser & Westhoff, 2012, p. 3). Instead, the driver is allowed to
deal with other tasks than driving, but must take over “control with a certain time buffer”
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BASt-Expert-Group definitions of mmm = bast
vehicle automation-degrees:

* Full automation: The system takes over longitudinal and
lateral control completely and permanently. In case of a take-
over request that is not followed, the system will return to
the minimal risk condition by itself.

* High automation: The system takes over longitudinal and
lateral control; the driver is no longer required® to
permanently monitor the system. In case of a take-over
request, the driver must take-over control with a certain time
buffer.

* Partial automation: The system takes over longitudinal and
lateral control, the driver shall permanently monitor the
system and shall be prepared to take over control at any
time.

* Driver Assistance: The driver permanently controls either
longitudinal or lateral control. The other task can be
automated to a certain extent by the assistance system.

* Driver Only: Human driver executes manual driving task

Figure 2.6: Automation levels, defined by the BASt.

(Gasser & Westhoff, 2012, p. 3). This implies that the driver is still needed as a fallback
level of the automation. The highest automation level in the taxonomy of the BASt is Full
Automation. Here, the automated system is able to “return to the minimal risk condition
by itself” (Gasser & Westhoff, 2012, p. 3), meaning that if the driver fails as fallback level,
the system initializes a maneuver that reduces the risk of someone getting harmed.

In 2013, the American National Highway Traffic Safety Administration (NHTSA) defined
automation levels (NHTSA, 2013) similar to the ones of the BASt. The five levels are
named ascendingly from “Level 0 - No Automation” (BASt: Driver Only) up to “Level 4 - Full
Self-Driving Automation” (BASt: Full Automation). Just as with the High Automation level
in the BASt-taxonomy, the NHTSA defined its “Level 3 - Limited Self-Driving Automation”
as a system where the driver does not have to permanently monitor the system, but “is
expected to be available for occasional control, but with sufficiently comfortable transition
time” (NHTSA, 2013, p. 5) (see full definition on page 11).
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Level 3 - Limited Self-Driving Automation: Vehicles at this level of automa-
tion enable the driver to cede full control of all safety-critical functions under
certain traffic or environmental conditions and in those conditions to rely heav-
ily on the vehicle to monitor for changes in those conditions requiring transition
back to driver control. The driver is expected to be available for occasional con-
trol, but with sufficiently comfortable transition time. The vehicle is designed to
ensure safe operation during the automated driving mode. An example would
be an automated or self-driving car that can determine when the system is
no longer able to support automation, such as from an oncoming construction
area, and then signals to the driver to reengage in the driving task, providing
the driver with an appropriate amount of transition time to safely regain manual
control. The major distinction between level 2 and level 3 is that at level 3, the
vehicle is designed so that the driver is not expected to constantly monitor the
roadway while driving.(NHTSA, 2013)

The Society of Automotive Engineers (SAE) also defined vehicle automation levels (SAE
International, 2014). It distinguishes between six levels, one more level than BASt and
NHTSA. Figure 2.7 provides an overview of the three definitions. The SAE levels 0, 1
and 2 correspond to the definitions of first levels defined by BASt and NHTSA, whereas
higher levels show deviations. BASt Highly Automated and NHTSA level 3 are further
subdivided into two levels in the SAE definition. SAE level 3, which is also referred to as
Conditional Automation cannot deal with a failure of the driver to respond to a request to
intervene, while a SAE level 4 High Automation system is capable of dealing with a driver
who does not “respond appropriately” (SAE International, 2014, p. 2). It is questionable if
this distinction is necessary, as there might not be a realistic use case for a SAE level 3
system, “since the automation system should continue to control the vehicle in case that
the driver cannot take over the driving task” (Amditis et al., 2013, p. 160). It further has
to be mentioned that this distinction leads to inconsistencies between the definitions, as
SAE High Automation refers to another level than the BASt High Automation (Conditional
Automation in SAE). Regarding SAE level 5 - “Full Automation” definitions are similar
just like at lower levels of automation. All three definitions of Full Automation guarantee
the security of the system in all situations, without the need for any contribution of the
driver.

This thesis examines the take-over of the driving task in NHTSA level 3, SAE Conditional
Automation, and BASt Highly Automated driving (HAD). Whenever the expressions
“highly automated”, “high automation”, Highly Automated Vehicle (HAV), or HAD are
used, they refer to those definitions and differ explicitly from the SAE definition of high
automation (Level 4).

Take-Over.
Transition from higher levels of automated vehicle guidance to manual or assisted
driving by reallocating control of the driving task back to the driver.
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Figure 2.7: Automation levels, defined by the SAE (SAE International, 2014).
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2.5 Change of Paradigms

Automating the driving task seems to be the next consecutive step in a world of increasing
driver assistance. In fact, automated systems are based on ADAS, concerning sensor
technology as well as implemented functions and the integration into the Human Machine
Interface (HMI). The appearance of systems like the TJA does not obviously differ
from what drivers are used to from ADAS. Furthermore, automated systems can partly
be implemented by merely joining functions of already existing ADAS. Nevertheless,
concerning the interaction principles between driver and vehicles, introducing partially
and highly automated systems in road transportation will lead to a change of paradigms
just like the introduction of the automobile in a world moved by horses and coaches.

An incremental approach may not be sufficient to address the urgent topics accompanying
the development of automated vehicle guidance. Removing the driver from control adds
new questions of concern to human factors researchers (Akamatsu et al., 2013) and to
other domains that distinctly differ from questions that emerged with ADAS as depicted
below.

e Mobility. As driving automated vehicles is assumed to reduce workload and
increase comfort, mobility behavior is likely to change. Even if the possibility of
an extended group of possible drivers / passengers is not considered, automated
driving may lead to more and longer drives. The time spent in the vehicle could be
used for office-related tasks, or for any kind of entertainment, so that longer drives
become more likely. This challenges the prospect of reducing fuel consumption
and congestion, as traffic volume may increase disproportionately to a possible
gain in efficiency due to a smoother traffic flow.

e Safety. Increasing traffic safety and reducing fatalities is one of the most frequently
mentioned motivators for automated driving. This relation seems obvious, as
humans are regarded as the major cause of accidents (cf. Treat et al., 1979;
National Highway Traffic Safety Administration, 2008). Nevertheless, there is a
number of very successful and effective control actions by the driver which are
not to be underestimated. Drivers perform very well and do have a good reliability,
proved by a significantly low number of accidents per mile driven. Drivers are
able to manage new and very complex situations and have good anticipation
abilities. Especially the latter is complicated to implement into automated systems,
as “most of the environmental states are not directly observable” (Gindele, Brechtel,
& Dillmann, 2010, p. 1625). Before a safety gain due to an automated system
could take effect, those systems would have to be able to perform at least at an
equivalent level to a driver in all the situations currently not leading to accidents
because of a successful driver input and communication. Furthermore, even if
the crash probability per mile driven decreases, the above-mentioned possible
increase in traffic volume may lead to a higher absolute number of crashes within
the transport system.

e Law and Ethics. In manual driving as well as in partially automated systems, the
driver is responsible for his vehicle and has to intervene if the system fails. As soon
as the driver is removed from this closed loop and allowed to deal with tasks other
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than driving, he cannot be held responsible for the actions the automation conducts.
It still is questionable who or which organization will be liable for automation-induced
accidents or failures. Besides, there are a lot of different ethical questions arising
that have to be discussed and solved. Drivers cannot be blamed for wrong decisions
they probably made intuitively within fractions of seconds in emergency situations.
An automated system can consider numerous different solutions in a split second,
including those that reduce the risk for other road users but simultaneously increase
the risk for the driver.

The Driver. Figure 2.8 depicts the enhancement of the driver-vehicle-control loop
(Section 2.1) by introducing vehicle automation. The driver neither continuously
contributes to the system output nor, in dependence of his current attention focus,
does he perceive the system output, indicated by the dashed lines. Therefore, the
driver is considered to be out-of-the-loop. Taking the driver out of the loop leads
to performance problems, known from other domains such as aviation (Endsley &
Kiris, 1995). Several researchers assume that similar effects will arise by automat-
ing the driving task (Stanton & Marsden, 1996; Young & Stanton, 1997). Humans
are not made to sit and stare (Reason, 1990) and performance decreases after a
maximum of 15 minutes (Othersen, Petermann-Stock, & Vollrath, 2014). As soon
as the driver is released from the monitoring task by introducing HAD, the workload
decreases (Young & Stanton, 2007b), which could lead to underload (Young &
Stanton, 1997) and thus reduced performance (Yerkes & Dodson, 1908). Partic-
ipants are therefore more likely to engage in non-driving-related tasks (Carsten,
Lai, Barnard, Jamson, & Merat, 2012) and they were measured to be less likely
to intervene in critical situations (Stanton, Young, Walker, Turner, & Randle, 2001;
Waard, Hulst, Hoedemaeker, & Brookhuis, 1999).

This correlates with possible problems due to mode awareness (Sarter & Woods,
1995), an uncertainty of the current allocation of responsibilities regarding the driv-
ing task. Several other automation effects are also likely to emerge (Parasuraman
& Riley, 1997), among them skill degradation (Stanton, Young, & McCaulder, 1997),
possibly leading to accidents in situations where automation would not be con-
sidered to be an issue. The misuse and abuse (Parasuraman & Riley, 1997) of
automated systems correlate with effects such as complacency (Parasuraman &
Manzey, 2010; Reichenbach, Onnasch, & Manzey, 2010; Kérber & Bengler, 2014)
and could further affect traffic safety. Results indicate that in higher automation
levels, drivers increasingly fail to detect and handle system failures (Shen & Neyens,
2014; Strand, Nilsson, Karlsson, & Nilsson, 2014). Hence, take-over situations in
HAV become very challenging for the driver. They will probably occur in complex
scenarios, as those are most likely to overexert the automation. Additionally, they
are possibly time-critical and occur out of a rather undefined driver state. It must
be ensured that the driver is able to perceive the relevant information, develop a
strategy for solving the take-over and execute an appropriate maneuver. For this
reason, several design considerations apply (Beukel & Voort, 2014a) in order to
ensure safety of the driver-vehicle-automation system (Gold, Kérber, Lechner, &
Bengler, 2016).
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Figure 2.8: Automation-vehicle-environment control loop (based on Wickens et al. (2013)
and Bubb (2015a)).

2.6 The Take-Over in Highly Automated Vehicles

2.6.1 Technical Realization of Automated Driving

As illustrated in Section 2.3, partially automated systems are already entering the market
and highly automated driving is likely to enter series production within the next decade.
While level 2 systems do differ from level 3 concerning driver demand, driver interface as
well as ethical and legal requirements, the functional realization of automated vehicle
guidance in those systems is rather similar. In order to gather information on the driving
environment, a set of different sensors is employed to generate a 360-degree image
of a vehicle’s surroundings (Figure 2.9). The sensors used are briefly described in the
following, as an understanding of the technical background is beneficial for assessing
controllability of HAVs. Detailed knowledge is provided for instance by Winner and Hakuli
(2015).

& Four-Layer

Laser scanner

2 Single-Layer
Laser scanner

3 Radar
4 Mono Camera

5 Ultrasonic

Figure 2.9: Sensor configuration for highly automated vehicles (Aeberhard et al., 2012).

e Mono Camera. Monocular camera systems are widely used in the road vehicle
domain, for example for ego-motion estimation (Yamaguchi, Kato, & Ninomiya,
2006) or pre-crash detection of objects (Zehang, Miller, Bebis, & DiMeo, 2002).
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Driving-relevant attributes can be extracted by image processing and supplied for
higher evaluation processes (Winner & Hakuli, 2015). The economical sensors
are the basis for many Advanced Emergency Braking Systems (AEB) and are also
used for lane detection (Felisa & Zani, 2010), which is required in current steering
support systems.

Stereo Camera. Similar to systems in the early 1990s, images retrieved from a
stereoscopic camera are an important data source for environmental perception.
By recording images from different angles, stereo cameras allow depth detection
and therefore the orientation in three-dimensional space. They are used for object
detection (Baig, Aycard, Vu, & Fraichard, 2011), detection of patterns such as
lane markings (Bertozzi & Broggi, 1998), and for recording accurate maps (Broggi,
Buzzoni, Felisa, & Zani, 2011), wich is important for automated vehicle guidance.
As extracting useful information from relatively large amounts of video data is
difficult (Broggi et al., 2011), different algorithms are currently being developed
(e.g. Dai Bin, Liu Xin, & Wu Tao, 2005; Ranft & Strauf3, 2014), enabling real-time
processing of high-resolution video images (Mark, van der W. & Gavrila, 2006). With
40 to 100 meters, the range of stereoscopic cameras is rather limited (Bajracharya,
Moghaddam, Howard, Brennan, & Matthies, 2009; Dickmann, Appenrodt, & Brenk,
2014; Hadsell et al., 2009).

LIDAR. Laser llluminated Detection And Ranging (LIDAR) sensors are optical
sensors which scan the environment by emitting (pulsed) laser light and analyze
intensity (reflectivity) and phase shift of the reflections (distance). Depending on the
sensor’s design, one (Lu & Tomizuka, 2006) or multiple layers (Moras, Cherfaoui,
& Bonnifait, 2010) are recorded. In common LIDAR sensors that are used for
research purposes or in the DARPA challenges, up to 64 lasers work in parallel
(Velodyne Scoustics Inc., 2014). The range of LIDAR sensors differs between
the systems and depends on the reflectivity of the surface. Declarations differ
between 50 meters for pavements (Velodyne Scoustics Inc., 2014), 100 meters
(Lindner & Wanielik, 2009), 150 meters for objects with good reflectivity (Velodyne
Scoustics Inc., 2014; Lu & Tomizuka, 2006), and reach up to 200 meters (Moras et
al., 2010). In HAD they are used for detecting the road and road-edge (W. Zhang,
2010), vehicles (Guang Lu & Tomizuka, 2002), and other moving objects (Baig et
al., 2011) as well as lane markings (Kammel & Pitzer, 2008; X. Chen et al., 2009).

Radar. Radar technology entered the conventional vehicle domain with the Dis-
tronic, an ACC-system of Mercedes Benz (Marsden, McDonald, & Brackstone,
2001). The sensor emits pulsed electromagnetic waves and detects the reflections
of objects and terrain. There are Short Range Radar (SRR) systems (24 GHz) with
a range of about 30 meters and Long Range Radar (LRR) (77 GHz) with a range
of about 150 meters (Wenger, 2005). Requirements for the sensor-range of future
LRR in HAVs are in the region of 200 meters (Dickmann, Appenrodt, Bloecher, et
al., 2014; Wenger, 2005). In automated vehicles, radar is also used for the purpose
of map building (Kimoto & Thorpe, 1998).

GPS. Global Positioning System (GPS) tracks vehicles position by comparing time
stamps, received from geostationary satellites. Although the accuracy of GPS lies
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within a range of approximately 3 meters (Bajaj, Ranaweera, & Agrawal, 2002),
the position can be estimated more accurately in combination with other sensors.
The more elaborate and costly Differential Global Positioning System (DGPS) uses
ground-based reference stations to enhance accuracy up to a few centimeters,
allowing accurate positioning of the vehicle within a single lane (e.g. Moon, Kim, &
Lee, 2012).

e Accelerometer. Accelerometers are commonly used sensors for assessing ac-
celerations and spatial position of the vehicle. They are widely used for ADAS
such as the Electronic Stability Program (ESP). In the field of vehicle automation,
acceleration data is used for several purposes, including a plausibility check of
other sensor data as well as data fusion.

e Ultrasonic Sensors. In addition, ultrasonic sensors, known from parking assistant
systems, are used for detecting nearby objects, such as vehicles in the neighboring
lanes (Aeberhard et al., 2012).

Future HAVs will further profit by vehicle-to-vehicle, vehicle-to-infrastructure or other
communications (Vehicle-to-X communication (V2X)) (Bengler et al., 2014; Gunthner,
Schmid, Stahlin, & Jurgens, 2014). Several projects have already shown the successful
application of V2X systems in the field of automated driving (e.g. Geiger et al., 2012;
Fuchs, Hofmann, Léhr, & Schaaf, 2015). Furthermore, in order to enable HAD, accurate
maps including landmarks and continuous updates are necessary. The data of the
sensors listed are fused within the automation software on different levels (Amditis et
al., 2013; Becker, 2000), objects are classified (Niknejad, Takahashi, Mita, & McAllester,
2011; Baig et al., 2011), and safe paths calculated, which referred to as trajectory
planning (S. Zhang, Deng, Zhao, Sun, & Litkouhi, 2013; Glaser, Vanholme, Mammar,
Gruyer, & Nouveliere, 2010). Redundancies are crucial here in order to guarantee validity
of data, accuracy of trajectory planning and reliability (Aeberhard et al., 2012). It is
ensured that every object is captured by at least two independent sensor systems, for
instance radar and LIDAR. Thus, object recognition is still feasible in the case of single
sensor failures. Otherwise it would hardly be possible to prove the controllability of the
system. There are ways of detecting these sensor failures (Bouibed, Aitouche, & Bayart,
2010), although the effort of failure recognition is very high, especially in safety-critical
systems (Dziubek, Winner, Becker, & Leinen, 2012). There are various types of possible
sensor failures such as glare by sunlight or headlights of other vehicles, dirt on the
sensors, destruction (e.g. by stone chip), or software shortcomings.

2.6.2 Causes for a Take-Over

The above-noted effort will likely enable automated driving, initially on highways. Never-
theless, there will still be scenarios where the driver is needed as a fallback level and has
to take over vehicle control again. From the current point of view, the exact circumstances
of take-over scenarios cannot be predicted, as further information of the capabilities of
HAVs is vague. There are, however, different types of reasons for a machine-initiated
take-over of the driving task (cf. Table 2.1).
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According to Geyer et al. (2014), there is a differentiation between situations and scenar-
ios. Adopted for the take-over, take-over situations are represented by a localized and
specific set of criteria and their current state, whereas take-over scenarios include the
set within which a take-over may occur and include at least one take-over situation. A
stranded vehicle blocking the current ego-vehicle’s lane on a three-lane highway would
be considered a take-over scenario. The driver-vehicle system responding to the Take-
Over Request (TOR) in this scenario and evading to the left lane would be a take-over
situation.

Automation Scenario. Environmental conditions that allow the usage of the automated
system.

Take-Over Scenario. Environmental conditions among which a take-over is conducted.

Take-Over Situation. Temporary and localized conditions among which a take-over is
conducted.

e End of automation scenario. It is assumed that HAD will initially be available
on highways and probably only on certain routes. Thus, the automation scenario
is limited and a take-over will be necessary when approaching the end of an
automation scenario, for example when exiting the highway. As such boundaries
are map-based and stationary, the driver can be informed and retrieved in a timely
way. The automation scenario will also be dependent on driving conditions such as
daylight, fog, snow, ice, rain, or others. If conditions change to improper states, the
driver is required to regain control.

o Failure of sensors. As HAD is enabled by a large set of sensors, the availability of
HAD strongly depends on the accuracy and availability of sensor data. Sensors are
redundant and a failure of single sensors does not necessarily imply a sudden break
down of automated vehicle guidance. Nevertheless, the range of object detection
could be reduced and the lack of sensor redundancy impairs safety (degradation of
the automated system). The driver will have to re-engage by monitoring the system
or taking over vehicle control completely. If several sensors fail simultaneously, the
vehicle may be guided based on the last available image of the environment for a
few seconds, without the ability to recognize further changes in the environment.
The time budget for taking over control would be very limited, in accordance with
the above mentioned sensor ranges.

o Situation-related take-over. Apart from the end of the automation scenario de-
scribed above, situation-related aspects within the automation scenario could cause
a TOR. Although HAVs will be able to deal with most of the situations occurring on
public roads, there will still be situational conditions the automation is not capable of
dealing with. This could either be the detection of objects the system is not able to
classify, inconsistencies that occur while fusing sensor data, a failed classification of
scenarios, or scenarios that require a higher level of anticipation or communication
(e.g. persons in/next to the road). Those scenarios are likely to be detected based
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on on-board sensor data and therefore within the range of the sensors. Depending
on the vehicle’s speed, the time budget for regaining control is limited to a few
seconds, also depending on the listed sensor ranges.

Table 2.1: Examples of take-over scenarios

Temporal
Scenario criticality  Implication
End of automation scenario:
Exiting highway Low take-over
Construction zone (map based) Low take-over

End of automation scenario (conditions) Medium  take-over/monitor
Failure of sensors:

Temporary loss of single sensor Medium  monitor/non
Failure of single sensors Medium  take-over/monitor
Failure of multiple sensors High take-over
Situation-related take-over:

Map or V2X-based detection of limit Low take-over/monitor
On-board detection of system limit High take-over
Situation classified as too complex High take-over/monitor
Situation/object cannot be classified High take-over/monitor

2.6.3 Take-Over Scenarios

As shown in Table 2.1, there are scenarios where monitoring the automation might be
sufficient. Although the request for monitoring the HAV brings along some interesting
research questions and is part of current research (Gold, Lorenz, Dambdck, & Bengler,
2013), this thesis focuses on scenarios requiring a take-over, as the automation is not
able to solve a scenario without the driver’s intervention. Moreover, time-critical take-over
scenarios with a limited time budget are of special interest (Gasser, 2013), as they can be
very demanding for the driver and represent the most critical transitions within HAD. They
are therefore a valuable tool to assess driver’s performance, relevant for controllability
aspects of HAVs.

Although there are transitions to manual control triggered by the driver, which may also
imply safety-relevant aspects, these are not considered further in this thesis. As the
driver causes these take-over situations, he is likely to be prepared to take over control
and in a state that allows successful continuation of the driving task. Nevertheless, it
should be ensured that automation effects such as skill degradation or the process of
task switching do not impair driving performance when drivers initiate a take-over.

In time-critical take-over scenarios caused by a system limit, the demand on the driver
is much higher. Because the automation is no longer able to perform the driving task,
failure to take over the vehicle’s control will necessarily lead to critical situations with a
possibly severe outcome. It is therefore of great interest how the driver, who is pressed
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for time who comes from a state of being a passenger in an automated vehicle, handles
such situations.

System Limit. Summary of situational conditions that cause the necessity of a take-
over or triggers a minimal risk maneuver.

In HAD, all system limits are detected by the system (Gasser, 2012), and the system
informs the driver that a limit is approached by emitting a Take-Over Request (TOR).
The TOR can be of different types, although several design rules apply. As the driver is
allowed to engage in non-driving-related tasks, his eyes are probably off the road and
information displays are not in the driver’s current field of view. Visual displays for the
TOR have to be designed in a way which ensures that his attention is attracted, without
depending on the driver’s current focus of attention. In the same manner, haptic feedback
must be presented in places that are guaranteed to be in contact with the driver. This
is why the steering wheel and pedalry are less suitable. Another common modality of
presenting warnings is the auditory channel, as it is independent from the direction of
drivers’ visual attention and physical position. Acoustic warnings seem to represent an
advisable way for issuing a TOR. It stands to reason that such TORs should be designed
according to existing standards for warnings in the vehicle domain as described, for
example, by NHTSA (Campbell, Richard, Brown, & McCallum, 2007).

The perceptual process of the TOR stimulus conforms to common models of human
perception as found in Wickens et al. (2013). Due to the occupation with a non-driving-
related task, attention resources for perceiving the TOR may be limited, so the stimulus
intensity should be large enough to ensure successful perception. The occupancy of
cognitive resources could further lead to buffering of the stimulus in the working memory
and to delayed processing. This relates to the issue of task switching and the resulting
alternation costs. It includes an increase of error probability and delayed reactions in the
range of several hundred milliseconds (Nieuwenhuis & Monsell, 2002) when switching
from one task (non-driving-related task) to another (driving). In many tasks switching
situations, these costs can be reduced by switching tasks in advance, which reduces
or eliminates alternation costs (Pashler, 2000; Nieuwenhuis & Monsell, 2002). This
strategy fails when taking over vehicle control from HAVs, as the TOR is triggered by
the automation. Assuming that there is a limited time budget, such automation-induced
delays in perception and processing could extend the take-over in a safety-relevant
magnitude. Not least because of these automation effects, the timing and the appropriate
design parameters of the TOR will be one of the major research questions in the years
ahead.

Take-Over Request. Information of stimulative nature, emitted by the automated
vehicle with the purpose of initiating a take-over.

Taking over the control from a HAV includes and requires several steps which form the
take-over procedure. Perception, processing and initiating a response to the TOR takes
fractions of a second, which is considered the reaction time. Subsequently, the driver
starts (at best) immediately allocating his attention back to the driving task, most likely by
a gaze to the scenery. In dependence of the driver's comprehension of the necessity of
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Figure 2.10: Take-over procedure, adopted from Gold and Bengler (2014). Times for
reaction, gaze reaction and motoric allocation approximated from Dambéck
(2013).

taking over vehicle guidance, he will get back in driving position by repositioning his hands
on the steering wheel and his feet on the pedalry. The time for this glance and these
motion processes can be estimated by looking at motion times, as done by Dambdck
(2013). Figure 2.10 shows an exemplary take-over procedure. Times for processes on
the motoric and perceptional level that are indicated at the bottom are obtained from
Dambdck (2013). They were measured in a driving simulator experiment, involving an
engagement in a non-driving-related task in the center console. Focusing on the scenery
again took approximately 1.1 seconds, and repositioning the hands on the steering
wheel more than two seconds. The reallocation is followed by processes of information
perception and regaining an understanding of the current situation, in dependence of the
scenario’s complexity. Subsequently or simultaneously, the driver selects and executes
a response / maneuver, which requires additional time in dependence on the selected
maneuver. The take-over time is the span between the TOR and the start of a maneuver
as a reaction to the system limit and must not be confused with the Time Budget (TB).
While the Time Budget (TB) represents the time available for the take-over, the take-over
time marks the point in time when the transition of the driving task from the automation to
the driver can be considered to be complete. This does not imply the time needed for the
maneuvering, which can be further impaired by automation effects.

Time Budget. Time provided for the take-over and the execution of a maneuver, as an
adequate response to the system limit.
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Dambdck (2013) reasonably constitutes the take-over process as a primarily sequential
sequence of actions. This differentiated approach is a promising way of operationalizing
the take-over process and assessing the main aspects of a driver’s behavior in a HAV.
Nevertheless, some steps are considered to be rather parallel, as already indicated in
Figure 2.10. A gaze reaction may be performed in parallel to a motoric allocation, and
the maneuver execution may be started in parallel to current information perception
and processing. Additionally, the description should further be complemented by driver
performance aspects, which are required to evaluate the controllability of the take-over in
HAVs.

2.6.4 Evaluation of Take-Over Situations

The success of the take-over and the quality of the subsequent manual driving can be
assessed by timing aspects of the take-over, such as reaction times or the time it takes
the driver to take over vehicle control, and by the quality of driver’s input, for example
by evaluating accelerations. Both timing and quality aspects have to be considered in
order to evaluate the take-over performance and to receive a holistic picture (Gold &
Bengler, 2014; Lorenz, Hergeth, Kerschbaum, Gold, & Radlmayr, 2015). There is a wide
range of driving parameters and other measures that could be considered for assessing
the take-over performance. In the following, some assorted and promising parameters
are discussed and used in the studies subsequently presented and in the modeling
process.

Take-Over Performance. Combination of timing and quality aspects of driver’s input
within a take-over scenario.

2.6.4.1 Timing Metrics of the Take-Over

The take-over is characterized by a temporal sequence of actions. In the case of a
system-initiated take-over, it is reasonable to measure times in reference to the moment
of the TOR, so that all reported times are time intervals starting with the TOR.

o GazeReactionTime. The GazeReactionTime tgg is the first measurable response of
the driver and is measured based on the first gaze reaction after the TOR (Dambdck,
2013). This measure represents the driver’s reaction time, but is further referred
to as GazeReactionTime to clarify the measures’ origin and prevent confusion with
other timing measures. It indicates the driver’'s processing speed and whether the
message which the TOR delivers is perceived as urgent, for example due to a high
amplitude (Keuss, 1972; Schmidtke, 1961). It is assumed that results from simple
reaction time research can be assigned to GazeReactionTime. Hence, the modality
with which the TOR is presented can have an effect on the GazeReactionTime
(Green & Gierke, 1984), just like the driver’s workload (Makishita & Matsunaga,
2008) due to non-driving-related tasks as also illustrated in Subsection 2.6.3. It
can also be assumed that experience with previous take-over situations (Krinchik,
1969) and the trust in automation and thus the expectation regarding the automated
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function could influence this measure. Additionally, GazeReactionTime may depend
on many other factors (Welford, Brebner, & Kirby, 1980) such as driver's age
(Kovac, 1969), time of day (H6hne, 1974), duration (Schmidtke & Micko, 1964), or
arousal (Welford et al., 1980). Moreover, cross-correlations between these factors,
for example between driver's age and workload may exist (Cantin, Lavalliére,
Simoneau, & Teasdale, 2009).

e EyesOnRoadTime. After leaving the non-driving-related task, the driver's gaze
switches directly to the scenery or passes a visual display first. The following
EyesOnRoadTime teonr is measured from the TOR until the moment when the
driver's gaze has reached the scenery. At this point in time, drivers can start to
gather information about the situation and relevant objects to enable the selection
of an adequate response. Just like the GazeReactionTime, the EyesOnRoadTime is
dependent on different individual factors, experience and the perceived urgency of
the TOR.

e HandsOnTime. In order to execute the driving task, at least one hand has to
grasp the steering wheel, when considering a conventional vehicle interface, which
are brought up for discussion as HAVs may lead to new approaches, for example,
transforming steering wheels (cf. Kerschbaum, Lorenz, & Bengler, 2015). The
time drivers need to reposition their hands on the steering wheel is referred to
as HandsOnTime ty. It is defined as the time between the TOR and the moment
when at least one hand touches the steering wheel. Although it indicates the speed
for returning to a driving position, it does not necessarily imply complete physical
readiness to continue with all aspects of the driving task. For this reason, readiness
to brake or execute a steering maneuver cannot be derived from this measure.
The measure is dependent on the driver’s position previous to the TOR and on
motion times. Just like with the GazeReactionTime, correlations with urgency of the
take-over, individual predispositions and with previous experiences are likely to
exist.

e Take-OverTime. The Take-OverTime ty is defined as the time from the TOR until
the driver takes over the primary driving task. Defining this point in time is not trivial,
as a successful execution of the driving task should imply a cognitive understanding
of the situation. If the take-over scenario only requires lateral stabilization of
the vehicle, the transition is rather fluent and the moment of active driver input
hard to define, as seen in a study by Merat, Jamson, Lai, Daly, and Carsten
(2014). For other scenarios, where braking or evasive maneuvers are required, the
Take-OverTime can be assessed by defining thresholds for the steering wheel angle
or braking pedal position. According to the studies of the author reported below
and based on the evaluations of hundreds of take-over situations, the moment
when the steering wheel angle exceeds 2 degrees or the braking pedal position
exceeds 10%, is considered the Take-OverTime and interpreted to be the beginning
of a conscious maneuver by the driver in order to react to the system limit. This
distinction was adopted by other authors (cf. Zeeb, Buchner, & Schrauf, 2015;
Louw, Merat, & Jamson, 2015; Kerschbaum et al., 2015) and can be considered the
current state-of-the-art for take-over research in driving simulator studies. Whether
these thresholds are useful for on-road studies is up for discussion. The thresholds
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are usually exceeded by only a few milliseconds after the driver initiates the input,
which means that this delay can be ignored when measuring Take-OverTime in a
range of 2 to 4 seconds.

There are further useful measures of timing aspects of the take-over process, as listed by
Gold, Lorenz, et al. (2013) and Lorenz, Kerschbaum, and Schumann (2014), including
gazes to the mirrors, turning on the indicators, or the end of the maneuver, which are
mentioned here but not considered further in this thesis.

2.6.4.2 Quality Metrics of the Take-Over

There are several driving performance metrics that can be used to evaluate take-over
quality. The relevance of the different measures depends on situational aspects and the
required maneuver for handling the take-over scenario. If stabilizing the vehicle within
the current lane is a sufficient response, measures such as the Standard Deviation of
Lateral Position (STDLP) or the number of steering wheel reversals per minute could
be assessed (Naujoks, Mai, & Neukum, 2014). The aim of this thesis is to measure
and model human take-over performance. This is why more challenging scenarios were
examined, which required brake reactions or evasive maneuvers. For the evaluation of
take-over quality in these scenarios, the following measures were used.

¢ Longitudinal Acceleration. The Long.Acc. aiong COrresponds to the maximum
absolute value of the acceleration in a longitudinal direction that occurred within
the take-over situation. This could either be maximum positive accelerations or
decelerations due to braking. In most of the cases, and especially in the scenarios
implemented, a high longitudinal acceleration corresponds to intense braking for
the purpose of gaining time before reaching the system limit or avoiding a collision
with an obstacle ahead.

e Lateral Acceleration. The Lat.Acc. aLy is the maximum absolute value of acceler-
ations transversely to the vehicle’s longitudinal axis. High values indicate a sudden
or dynamic evasive maneuver.

Both measures, Long.Acc. and Lat.Acc., are based on the assumption that high accel-
erations indicate a less safe maneuvering and therefore a lower take-over quality, as
these high accelerations are most likely the result of hectic driver input in a time-critical
situation. Nevertheless, there might be situations where high accelerations could also
indicate a good take-over quality, for example if strong braking or steering is the preferable
maneuver.

e Time To Collision. The TTC is a surrogate safety metric and a common parameter
for the criticality of traffic situations (ISO International Organization for Standard-
ization, 2013-07-23). In take-over situations, it represents the time theoretically
remaining until a potential collision with an obstacle, assuming constant speeds
of the vehicle as well as of the obstacle. At the moment of the TOR, TTC equals
the TB. For assessing take-over quality, the minimum Time To Collision (TTC)
that occurred in a take-over situation is considered. Smaller numbers imply a
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more critical situation, as the remaining time until collision was shorter. A TTC
of 0 seconds corresponds to a collision. If the leading object is decelerating, the
“Enhanced TTC” (Winner & Hakuli, 2015) can be used, as it takes into account the
resulting non-linearity. For the scenarios considered in this thesis, differences of
TTC and Enhanced TTC are marginal. The lead vehicle was stationary and solely
the minimum of the TTC that occurred was used, leading to very similar results for
both measures (Happee, Gold, Radlmayr, Hergeth, & Bengler, 2016).

e Crash. The variable Crash Pgcrash represents the frequency of crashes and results
from the number of crashes that occurred divided by the total number of take-over
situations considered. It is self-evident that a higher frequency of crashes indicates
a lower take-over quality.

As already mentioned, there are several other measures such as the usage of accel-
eration potential (Gold, Dambock, Lorenz, & Bengler, 2013; Kerschbaum, Lorenz, &
Bengler, 2014), overshoots and minimum distance to the obstacle (Happee et al., 2016),
time to line crossing or STDLP (Naujoks et al., 2014). Nevertheless, this thesis focuses
on the four above-mentioned parameters for assessing take-over quality, as they have
proved to be valuable estimators in the time-critical scenarios considered. In any case,
in the context of driving simulation experiments, caution should be used when drawing
conclusions from absolute values of these parameters.

2.6.5 State of Take-Over Research

Triggered by increased capabilities of hard- and software, advanced digitization and ex-
pedited by huge development efforts of several international companies, the examination
of human-automation interaction in ground transportation mainly evolved around the
turn of the century. Previously, similar aspects were discussed in context of ADAS, e.g.
mode confusion when using ACC systems (Larsson, 2010). In many respects, driving
assistant systems research forms the basis for methods and approaches used to assess
automated driving. However, with an increase of automated vehicle functions, effects
arise that require new methods and metrics. Applied to human factors research for HAVs,
different aspects can be transferred from other domains, whereas others demand new
approaches.

As an example, research on human physiology, such as movement times, gaze behavior,
reaction times, or thresholds of perception, form a valuable basis for HAD research.
Standardized tasks that are used for driver distraction research can also be employed
to generate reproducible experiments in HAVs. Methods such as driving simulators or
questionnaire techniques are widely used and the design of the HMI in HAVs follows
similar rules compared to current design standards.

On the other hand, the transferability of some cognitive models and models of interaction
principles are yet to be verified. There are many automation effects known from other
domains, such as aviation or production, which are likely to emerge when automating
the driving task, but have never been considered in the context of road transportation
research. Furthermore, many methods of evaluating controllability of assistant systems
are not effective or too extensive when assessing the effects of introducing HAD (Winner

25



2 Automation in Vehicle Guidance

& Wachenfeld, 2013). Modeling driver performance in take-over scenarios is one way to
face this issue.

Interaction Design

In the H-Mode project, the arbitration of control between the human and the automated
vehicle was compared to a metaphor derived from the interaction between human and
horse while riding (Flemisch, 2003), and transitions and interactions between automated
vehicles and the driver were examined. The interaction principle within H-Mode includes a
dynamic distribution of control (shared control) between the driver and the automated ve-
hicle (Bengler & Flemisch, 2011). Automation levels are, inspired by the horse metaphor,
referred to as “manual”, “tight rein” and, “loose rein” (Geyer et al., 2014), and a shift
between these levels was examined using different approaches, such as changing the
automation mode by applying different grip forces (Dambdck, Kienle, Bengler, & Bubb,
2011). Although later publications include the extension of the automation levels towards
HAD with the driver being out of the loop (“secured rein”; Altendorf et al., 2015), the main
focus of H-Mode were levels involving an active input of the driver with shared control.
In another project called Conduct-by-Wire, interaction between human and automation
was implemented on a maneuver-based level. The automated system suggests maneu-
vers that are selected by the driver and executed by the automation (Flemisch, Bengler,
Bubb, Winner, & Bruder, 2014; Franz, Kauer, Sebastian, & Hakuli, 2015). This approach
of a maneuver-based driver input in HAVs is likely to emerge in future automated vehicles
and is also present in the EU project D3CoS, where cooperation between human and
machine is assessed in different domains. For road transportation, the driver-automation
cooperation is assessed, e.g. when performing a lane change (Zimmermann & Bengler,
2013).

During the last few years, the EU project HAVEIt pursued another approach of human-
automation interaction. The interaction concept considered the driver state (Rauch, 2009)
and adapted HMI parameters accordingly. TORs and other experiments of a different
type were also considered (Flemisch et al., 2011). Additionally, the project tackled several
functional aspects of HAD, such as sensor fusion, trajectory and maneuver planning
(Flemisch et al., 2010).

The projects showed valuable approaches for facing necessary changes in human-
machine interaction when introducing automated vehicle functions. Nevertheless, the
expected design in future HAVs differs in many aspects, as vehicle functions evolve
rather evolutionarily, and technological capabilities are still limited. Unlike the above-listed
research projects, the interaction design of HAVs may not depict the paradigm change in
road transportation appropriately. The take-over on emerging system limits in HAVs is no
desired interaction principle, but an emerging necessity, resulting from the balancing of
market demands, current technology capability and the legislative setting. It is an interim
stage on the way to higher levels of automated driving, but remains a key aspect for the
controllability assessment of HAD in the near future.
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Interface Design

In the context of automating the driving task, researchers have examined different new
interface designs, in some cases replacing the established control elements. Input
devices known from aviation, such as side sticks (Dambdck et al., 2011) and a yoke,
a two-axis input device (Kienle, 2015), were used. When retaining the current control
elements, there are reasons for decoupling the steering wheel while driving in a highly
automated mode. Kerschbaum et al. (2014) examined if a decoupled steering wheel
and the phase of coupling back in influences the take-over. They did not find differences
between the groups, indicating that it may be possible to decouple the steering wheel
in some scenarios. Another concept of Kerschbaum et al. (2014) considered a steering
wheel without spokes. This concept led to an improved take-over performance, which
proves that adjustments or changes of input devices may become necessary, or that they
will have supportive character at least.

Apart from changes to the control elements, other HMI adjustments could help to improve
human-automation interaction (Beukel & Voort, 2011). The question arises how the
driver could be supported in take-over experiments to shorten temporal aspects of the
take-over and improve take-over quality. Different design implications apply for the HMI
of HAVs with respect to improving the performance of the driver-vehicle-automation
system (Beukel & Voort, 2014a, 2014b). The HMI design includes the design of the TOR.
Lorenz et al. (2014) evaluated different representations of a safe corridor which the driver
can use for the take-over maneuver and found implications on the maneuver type that
participants selected as a response to the system limit. Several HMI concepts attempt
to keep the driver aware of the situation and thus ready for taking over control. Lange,
Maas, Albert, Siedersberger, and Bengler (2014) describe design considerations for
desirable accelerations of maneuvers in HAVs to improve situation and state awareness.
Blommer et al. (2015) have recently replicated parts of Carsten et al. (2012) and have
implemented a scheduled driver engagement strategy.

A supportive HMI design that enables a decent level of mode awareness is important to
reduce impairments due to mode confusion. Petermann and Schlag (2010) identified
mode confusion as a relevant issue. They looked at users’ expectations regarding the
transitions and performed a Wizard of Oz study in a real vehicle, examining transitions
between different automation levels. They further assessed mode confusion in a driving
simulator experiment (Petermann & Kiss, 2010) and observed confusion of modes and
misinterpretation of control arbitration. It is also evident that drivers who have previously
driven in automated mode are less likely to intervene (in line with results of Waard et
al. (1999) and Stanton et al. (2001)) and intervene later than participants who drive
manually. In a study of Gold, Lorenz, Dambéck and Bengler (2013), drivers were asked
to monitor the scenery six seconds before an uncertain scenario. Two seconds later
and therefore four seconds before reaching the system limit, the situation changed and
required a take-over. In more than 20% of the situations, participants did not intervene,
which leads to very risky situations of passing a pedestrian on the highway in a distance
of approximately 20cm. This, again, is an issue of mode confusion and should be
addressed by an appropriate HMI design.

The design of the TOR itself was the focus of different studies. Although the repre-
sentation of the TOR differs between the studies, the TOR is either presented visually
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and acoustically (Gold, Lorenz, et al., 2013; Lorenz et al., 2014; Kerschbaum et al.,
2014; Petermann-Stock, Hackenberg, Muhr, & Mergl, 2013; Zeeb et al., 2015) or solely
acoustically (Beukel & Voort, 2013; Merat & Jamson, 2009). While Beukel and Voort
(2014b) find negative implications of too much visual information within the TOR, there is
clear evidence that exclusively visual TORs are not sufficient (Naujoks et al., 2014) and
should be complemented with an auditory warning in order to ensure (fast) responses
of the driver. There are currently no simulator studies known to the author considering
other warning types in HAVs except for a theoretical approach of a vibrotactile interface
(Petermeijer, Winter, & Bengler, 2015) and studies in the context of ADAS, for example
on a tactile rear-end collision warning system (Scott & Gray, 2008).

As illustrated, there are lots of necessary design considerations when adapting the HMI
to automated driving. While many principles can be transferred from former research,
several questions will arise within the next few years, as the detailed design of the
automated functions is not known yet and will significantly influence the interaction design
parameters between the human and the automated system.

Take-Over Performance

Take-over situations can occur in a variety of different settings, with different driver states,
skills and experience. There are lots of potential factors which probably influence the
take-over performance and which have to be examined in order to obtain a holistic picture
of take-overs in HAVs. Results regarding different aspects of take-over research are
based on system-initiated take-overs, triggered by a TOR. Failures of the automation, as
considered in several publications (e.g. Beller, Heesen, & Vollrath, 2013; Shen & Neyens,
2014; Strand et al., 2014; Levitan, Golembiewski, & Bloomfield, 1998; Toffetti et al., 2009)
will not be addressed further in this thesis.

Only in the last few years has the focus shifted to transitions between an automated
system which executes the entire driving task, back to the driver retaking the vehicle
guidance. Several research groups have mostly performed driving simulator studies,
assessing the take-over in HAVs. There is evidence that automating the driving task
impairs the driver’s performance. Young and Stanton (2007a) have measured longer
brake reaction times under automated conditions compared to manual driving, which
could be caused by a reduction of workload due to automation (Stanton et al., 2001),
leading to low levels of activation, which can induce slower reactions (Welford et al.,
1980). Merat and Jamson (2009) examined different aspects of the take-over. They
found later responses to the TORs when compared to manual driving. Apart from slower
reactions, increased accelerations are observed when reacting to a system limit (Louw et
al., 2015). Currently, the main research focus is to develop an understanding of factors
that influence take-over performance, such as the Time Budget (TB), non-driving-related
tasks, driver’s age or other factors such as fatigue, trust and training, which are briefly
outlined below.

The TB the driver needs to react appropriately to the TOR was subject to several
studies. On the one hand, the TB is important in order to validate if those take-overs can
reasonably be demanded of the driver, on the other hand, to find out how much time the
automation has to provide, with implications on required sensor ranges and reliability.
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In a driving simulator study, Dambdck, Farid, Ténert, and Bengler (2012) compared TBs
of four, six, and eight seconds. Only with eight seconds did they not find significant
differences regarding successful maneuvers compared to participants driving manually.
Nevertheless, take-over quality was only evaluated on the level of a binary success
variable, without considering additional quality aspects such as accelerations or TTC.
Dambdck also found that smaller TBs increase errors and that the TB influences the
take-over process, for example extending the time for repositioning the hands on the
steering wheel (HandsOnTime) (Dambdck, 2013). Beukel and Voort (2013) tested very
small TBs in typical rear-end near-crash situations. They offered TBs between 1.5 and 2.8
seconds for reacting to a braking lead vehicle, which led to accidents in 47.5% and 12.5%
of the situations, respectively, indicating that transition, even in simple, straightforward
brake situations, requires several seconds, which is in line with the results of Dambdck
et al. (2012). Participants in the study of Zeeb et al. (2015) had slightly higher TBs (4.9
to 6.6 seconds), but similar accident rates (15 to 45%). This can be attributed to more
complex take-over scenarios, again including a near rear-end crash situation, but with
vehicles occupying the neighboring lane, preventing an evasive maneuver.

Merat, Jamson, Lai, and Carsten (2012) and Petermann-Stock et al. (2013) followed a
different approach. They presented rather uncritical scenarios and measured the take-
over time. Merat et al. (2012) issued a warning 48 seconds before a system limit and did
not find differences in vehicle speeds and time of lane change between manually driving
participants and those experiencing automated driving. In the study of Petermann-Stock
et al. (2013) 70 of 72 participants managed to take over vehicle control within ten seconds
(m=3.2s; max=8.8s). However, while this approach of presenting uncritical scenarios is
valuable for assessing take-over performance at the end of the automation scenario or
other map-based system limits, for example, conclusions on the minimally required TB
should not be drawn without cautious consideration.

Various non-driving-related tasks are used for different purposes in HAD research. On
the one hand, engagement in non-driving-related tasks can be expected to influence
the take-over performance; on the other hand, non-driving-related tasks are used to
distract the driver and generate reproducible results, which differ from results of partially
automated systems, where the driver should be attentive and aware of the situation. As
a stronger engagement in non-driving-related tasks is present when driving in automated
mode (Jamson, Merat, Carsten, & Lai, 2013), less attention is paid to the situation on
the road (Carsten et al., 2012), and participants who tend to be distracted more easily
perform worse and possibly react inappropriately in take-over situations (Zeeb et al.,
2015; Petermann-Stock et al., 2013), a consideration of non-driving-related tasks in HAD
research is necessary.

Results of an expert analysis show that several tasks are imaginable while driving
in automated mode, including changing clothes or shaving (Petermann-Stock et al.,
2013). The effect on take-over performance of some of these tasks has already been
examined, for example texting and browsing the internet (Zeeb et al., 2015), the verbal
“20 Questions Task” (Merat et al., 2012), cell phone use (Neubauer, Matthews, & Saxby,
2012), interaction with the in-vehicle information system (Toffetti et al., 2009), tracking
tasks (Dambdck et al., 2012), watching videos, or listening to the radio (Blommer et al.,
2015).

Within this context, Neubauer et al. (2012) compared a group of participants driving in
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automated mode who were engaged in a phone call with participants driving without
an additional task and measured brake reaction times. Remarkably, they found quicker
reactions in the group engaged in a phone call. This could be explained by higher levels
of activation in the phone-group, enabling fast reactions.

While the results provide evidence that non-driving-related tasks have an effect (positive
or negative) on the take-over in HAVs, the possibility of a successful integration in an
overall context, outlining the relation among the tasks and comparing them to other
factors, is limited.

Other factors like age, fatigue, and trust have been considered as influencing factors
as well. In a driving simulator study, take-over times were measured in dependence
of driver’s age (Petermann-Stock et al., 2013). Although they had two groups of 36
participants each, with a mean age of 34 years and 60 years, respectively, they did
not find age-related effects regarding the take-over time. This might be caused by
rather uncritical take-over scenarios, with an extended TB, not requiring an immediate
take-over. The results are in line with findings concerning age effects when responding
to forward collision warnings (Kramer, Cassavaugh, Horrey, Becic, & Mayhugh, 2007).
Regarding driver’s fatigue, results indicate that fatigue delays braking response in take-
over scenarios (Neubauer et al., 2012). Additionally, other dependent variables such
as trust in automation (Beukel & Voort, 2014a; Gold, Kérber, Hohenberger, Lechner, &
Bengler, 2015) and situation awareness (Beukel & Voort, 2014b) are being assessed and
a negative influence of trust on driver’s performance was found in the context of system
failures (Shen & Neyens, 2014).

It is known that behavioral adaptation to support systems changes over time (Markkula,
Benderius, Wolff, & Wahde, 2012). Several studies indicate that learning effects are
present (Gold & Bengler, 2014; Beukel & Voort, 2014a; Carsten et al., 2012; Petermann-
Stock et al., 2013). Participants repeatedly experiencing take-over situations get trained
for taking over vehicle control and show improved take-over performance, especially if the
scenarios are very similar, an aspect that has to be considered when designing take-over
experiments, especially as previously instructing the participants can have similar effects
on the performance (Hergeth, Lorenz, & Krems, 2016).

Research shows many different relevant aspects when assessing take-over performance
in HAVs and has found important issues that arise with an automation of the driving task.
Most of the experiments mentioned considered one or two possible influencing factors at
a time. However, while the effects found are of specific value, the experiments allow a
rather implicit view and hardly enable a merging of results into a holistic picture.

2.7 Modeling of Take-Over Situations

There is an urgent need for modeling take-overs in HAVs. Considering that these systems
will be almost flawless, the transition from automated driving back to the driver is probably
the most critical safety aspect. Simultaneously, the effort involved in examining take-over
scenarios is extensive, as a huge variety of situations, drivers, states, and activities
as well as system specifications have to be considered for the development and safety
assessment of HAD. Covering all controllability aspects by implementing experiments
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in driving simulators and on-road is not feasible within a limited time frame and with
limited resources, whereas different methods are needed in order to assess the safety
of HAVs. The timely modeling of take-over scenarios can help to identify and quantify
critical aspects and influencing factors on the take-over performance and thus reduce
the necessary experimental effort. Modeling, based on a series of experiments, allows a
deeper understanding of the take-over compared to a consideration of separate experi-
ments. By enabling a quantification of influencing parameters, potentials to support and
improve the take-over can be identified and thus lead to increased take-over performance
and safer vehicle automation. Automated driving on highways is considered to be the
initial use case of HAVs. For modeling the take-over and conducting experiments within
this thesis, situations have been limited to driving on a highway in HAVs. Here, system
limits are very likely to be ahead of the vehicle. That is why experiments and modeling
are focused on system limits on the current lane of the automated vehicle, represented
by a stationary vehicle. The following modeling approaches are selected accordingly
to model near-crash situations focused on rear-end collisions. Different driver models
are discussed and in addition, further modeling approaches are considered to satisfy
aspects specific for drivers’ behavior in HAVs.

2.7.1 Modeling Driver Behavior in Near-Crash Situations

Assuming that a take-over in a HAV is a scenario with an obstacle ahead and the take-over
time is limited to a few seconds due to sensor range, these scenarios resemble situations
in manual driving with a lead vehicle that suddenly stops or brakes. There are several
authors who model these scenarios with regard to brake reactions (Subsection 2.7.1.1)
as well as steering maneuvers (Subsection 2.7.1.2).

2.7.1.1 Models for Brake-Reactions

Just like with take-over behavior, models for timing and quality aspects of brake reactions
exist. For the timing of a brake reaction in manual driving, a popular model was introduced
by Lee (1976), assuming that the brake reaction correlates with “the rate of dilation of the
retinal image of the obstacle” (Lee, 1976, p. 441). The inverse of the rate of dilation (7(¢))
specifies the TTC. Following the model, drivers brake as soon as 7 exceeds a certain
margin value ,,,. For different constant decelerations and vehicle speeds, 7,, can be
derived from Figure 2.11.

Kiefer, LeBlanc, and Flannagan (2005) also correlate the timing of brake reaction with
the inverse TTC, based on 3,536 brake reactions while approaching a surrogate target
lead vehicle. For stationary obstacles, the number of brake reactions is lower (54 trials
with 30 and 69 mph), but allows expressive conclusions. For the stationary lead vehicle,
the authors set up Equation 2.2, while x is a variable forced to map onto a logistic
Equation 2.1. The resulting p is the probability “that the existing kinematic conditions are
a hard (rather than a normal) braking” (Kiefer et al., 2005, p. 299). The authors suggest
values of p = .75 and p = .95. Solving the equations for TTC leads to Equation 2.3.
A hypothetical vehicle speed of 120 km/h (74.56 mph) results in TTC values of 3.91

31



2 Automation in Vehicle Guidance

(p = .75) and 3.01 seconds (p = .95), respectively, for the timing of the brake reaction to
a stationary lead vehicle. This corresponds to stronger braking reactions of about 0.6 g
to 0.8 g in the model of Lee (1976).
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Figure 2.11: Thresholds of 7,,, for brake-reaction to stationary obstacles (Lee, 1976).
According to the model, drivers brake as soon as the inverse of the rate of
dilation exceeds 7,,.
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Another common “follow-the-leader model” was published by Gazis, Herman, and Rothery
(1961) and is called the GHR-model (Equation 2.4). While x represents the position
of the following and leading vehicle respectively, T' is the response time of the driver
and )\ is what is referred to as “sensitivity”, which can either be set to constant or as a
function of the spacing A = f(Zicading — T foliowing)- Different driver models build upon
this approach (Markkula et al., 2012), such as the model of Gipps (1981)(Equation 2.5),
which is cited particularly often. According to the model of Gazis et al. (1961), b is the
“most severe braking that the driver wishes to undertake” (Gipps, 1981, p. 106) and s the
dimension of the vehicle.

ifollowing (t + T) - A[j:leading (t) - Cbfollowing<t>] (24)
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Figure 2.12: Examples for driver braking models with LVS (Markkula et al., 2012).
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In an example, Markkula et al. (2012), who revised models for driver behavior in near-
crash situations, compared the models for Lead Vehicle Stationary (LVS) and another
model of Wada et al. (2007) (cf. Figure 2.12). To model vehicle speed and accelerations,
the headway to the stopped vehicle was set to 300 meters and the speed to 30 m/s. While
braking starts immediately in the model of Gazis et al. (1961), the brake response in the
model of Gipps (1981) is delayed and starts at about 5 seconds. This corresponds to a
position 150 meters ahead of the stationary vehicle and therefore to a TTC of 5 seconds,
a faster response compared to the above mentioned models of Kiefer et al. (2005) and
Lee (1976). Nevertheless, as with the majority of the models, variables are present that
can be adapted to different drivers and situations to increase the model fit. This means
that the model could be applied to take-over behavior by increasing the response time 7',
modeling the delayed reaction due to non-driving-related tasks and the time needed to
refocus on the driving task.
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2.7.1.2 Models for Steering Maneuvers

Just like for brake reactions, several authors have proposed models for lane change
maneuvers for the purpose of crash avoidance. The models are based on path following
control theory and need a desired path as input for the modeling. Markkula et al. (2012)
compared different models for a 20-meter single lane change at 20 m/s (cf. Figure 2.13).
As trajectory modeling is not desired for the purpose of take-over modeling in this thesis,
these models are not presented in detail. The paper of Markkula et al. (2012) is recom-
mended, however, to gain a detailed insight.
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Figure 2.13: Examples for lane change models (Markkula et al., 2012).

2.7.2 Modular Additive System Modeling

A different approach for modeling take-over behavior consists of dividing the take-over
into segments, which represent a sequence of relevant actions when taking over vehicle
control. Segments could be the driver’s reaction time, motoric allocation, cognitive
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take-over, and response execution. Influences on these segments due to automation or
non-driving-related tasks could be measured and effects on the take-over performance
assessed. By a modular additive merging of the different segments, a prediction of
take-over performance could be made. The modular additive system modeling approach
implicates that the take-overs can be modeled as a linear, sequential process, questioning
validity, as some aspects of the take-over are likely to be rather parallel (cf. Figure 2.10).

Figure 2.14 depicts an example for such a modular additive system model, based on
literature and estimations. The model serves as an example and does not include further
scientific claims. Values for the simple reaction time, influences of the non-driving-related
task, the gaze reaction, and motoric movements were derived from relevant literature.
A quantification of the time required to regain cognitive resources for the take-over
will still have to follow. The process of information perception was approximated by
the accompanying visual scanning. In a similar way, information processing and the
effect of training was assessed by applying the cognition models for choice reactions
(Hicks Law; Card, Moran, & Newell, 1986) and the Power Law of Practice (Card et al.,
1986). For predicting a take-over, times can easily be derived by a horizontal sum-up
of the appropriate cells of each column. In accordance with the take-over procedure in
Figure 2.10, the model supplies relevant timing aspects such as the GazeReactionTime,
the time until the gaze reaches the scenery (Gaze on Scenery), the time until the driver
has returned to his driving position (Hands-On Time), the Take-OverTime, or the time
until the maneuver is finished.

This model, as shown in Figure 2.14, only considers timing aspects of the take-over. Take-
over quality could be modeled accordingly or in dependence of the timing aspects derived
from the model. The latter would describe variables such as the accelerations occurred
as a result of time pressure in the situations, which is induced by the TB and the length of
the process, modeled by the modular additive system approach. It could be claimed that
a lack of time will lead to increased accelerations and lower TTC values. If the resulting
time for the take-over is close to the available TB, maneuvering can be expected to be
rather intense, whereas, if the TB is significantly larger, maneuvering would probably be
smoother, inducing lower accelerations and higher TTC values. However, the capability
to draw conclusions on the take-over quality is rather limited.

There are additional aspects which are not represented in the model, but which literature
indicates to have an effect on the take-over. Fatigue, for example, influences the reaction
time (Welford et al., 1980); so does the time of day (H6hne, 1974), the age of the driver
(Cantin et al., 2009; Héhne, 1974; Kovac, 1969), gender (Welford et al., 1980), the driver’'s
expectation regarding the warning (Delaigue & Eskandarian, 2004), or the frequency of
the warning (Krinchik, 1969).
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2.7 Modeling of Take-Over Situations

2.7.3 Artificial Neural Networks

An Artificial Neural Network (ANN) and the regression described below are mathematical
methods used to model different types of systems. Both try to describe the correlation
of input (predictors) and output (response) variables by minimizing cost functions. The
ANN is inspired by neuronal brain cells. In a neuron, several inputs of other neurons
are summed up, and if the sum exceeds a threshold, the neuron itself emits a signal to
subsequent neurons.

Figure 2.15: Artificial Neural Network containing two hidden layers.

Figure 2.15 shows a feed-forward ANN. Such networks have an input and an output
layer and at least one “hidden layer” in between, consisting of what is referred to as
knots or neurons. In Figure 2.15, a feed-forward network with two hidden layers is
depicted exemplarily. Each input parameter u serves as an input for the first hidden
layer. Furthermore, the inputs of the knots are weighted by a factor w. Within the knots,
the output is calculated by the use of different functions and under consideration of the
weighted input. Subsequently, the outputs of the first hidden layer serve as input for the
second hidden layer. On the right side, outputs of the last hidden layer are summed up
within the output layer. ANN that feed the output of a knot back to previous layers are
called recurrent networks and used, for example, for modeling dynamic systems. In order
to model a system, the ANN is trained by a data-set of input and output parameters. In
an iterative process, weights are adjusted to reduce the prediction error by the use of
different cost functions. There are several algorithms and different methods to train an
ANN. Commonly, the data-set is divided in order to use one part for training and the
other part for validating the model. By the use of ANNs, very complex systems can
be modeled without the need for assumptions or extended knowledge of the systems’
properties. They can also be applied to model human behavior, and there are different
authors who model driving behavior by the use of ANNs, for example for car-following
behavior (Colombaroni & Fusco, 2014) or for maneuvers that combine longitudinal and
lateral control (Wei, Ross, Varisco, Krief, & Ferrari, 2013). Panwai and Dia (2007) showed
that ANNs enable significant improvements compared to various other car-following
models, such as the previously mentioned GHR Model. Prakash, Patil, and Kalyani
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(2013) reported similar findings. They developed a driver model and found that “the
ANN driver model predicts vehicle performance better than PID-based driver models”
(Prakash et al., 2013, p. 1). ANNs are further considered in different contexts of road
transportation research, for example for driver drowsiness (Daza et al., 2011; Sayed &
Eskandarian, 2001) or fatigue detection (Chang & Yi-Ru Chen, 2014; Liu et al., 2014), for
identifying the driver based on his driving profile (Wahab, Chai Quek, Chin Keong Tan,
& Takeda, 2009), predicting drivers’ route choice (Kim & Kim, 2011), or for developing
steering algorithms (Darter & Gordon, 2005). ANNs are able to reproduce almost any
behavior, however, interpretation afterwards is difficult. The complexity of ANNs makes
it difficult to draw conclusions regarding individual influencing factors, and knowledge
about coherence and causalities is limited.

2.7.4 Regression Analysis

By the use of regression analysis, mathematical relationships between several predictor
(input) parameters and a response (output) parameter can be estimated based on a
mathematical model. The fitted model that results from this can be used for predicting
outputs based on a set of weighted predictors and, furthermore, the regression analysis
can identify the contribution of the different predictors to the response variable. An
example is the general linear regression, shown in Equation 2.6. The output y is described
as a linear combination of the input variables x; multiplied with the coefficients j;.

y = Bo+ Prxr + Boxa + ... + Bix; + € (2.6)

The regression estimates [3; by the use of different optimization functions. The most com-
mon method is calculating /3; by minimizing the sum of the squared residuals (Ordinary
Least Squares (OLS)), reducing the distance between measures and calculated values.
The regression equations can also contain non-linear input parameters and variables
such as exponential functions requiring non-linear regressions (cf. Equation 2.7).

y = Bo+ Bix1 + Bo(Bs + 12)> + ... + Biwi + € (2.7)

A wide range of regression variants exists, for example logistic regressions for predicting
discrete response variables and mixed-effect models that consider random parameters.
In general, regression methods assume a normal distribution of the response, which
is why methods exist to address violations of this assumption. The robust regression
addresses an increased occurrence of outliers, and the generalized linear models can
consider distributions that differ from the Gaussian distribution.

Similar to ANNSs, regression models are a well-established method in human factors
and road transportation research. They are used for modeling rear-end accidents (Yan,
Radwan, & Abdel-Aty, 2005), finding covariates leading to accidents (Famoye, Wulu, &
Singh, 2004), modeling acceleration and lane changing behavior (Ahmed, 1999), driver
distraction (Weller & Schlag, 2009), or drowsiness (Chin-Teng et al., 2005).
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Regression methods have a wide area of application and are able to accurately model the
output of various systems. In order to do so, regressions require a basic understanding of
the underlying coherence of predictors to generate valid regression equations. Accuracy
can further be improved by considering assumptions and restrict the variables’ range. In
return, regressions reveal the correlation between the predictors and make it possible
to identify the main factors that determine a model’s output. The resulting regressions
support the utilization of results, as equations and coefficients can be described easily,
whereas an ANN would require the exchange of model-files and additional source code.
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3 Take-Over Experiments and Model Selection

This thesis aims to model the take-over in a Highly Automated Vehicle (HAV). Although
several studies have already been conducted as described in Subsection 2.6.5, the
available data is not adequate for modeling take-over performance. Only a few influencing
factors have been considered in particular scenarios, partially difficult to compare among
themselves. In order to build an adequate model, it is necessary to identify all major
factors influencing the take-over. Although the reported studies indicate some parameters,
several driving-simulator studies were conducted and published during the last few years
in order to gain a better understanding of the take-over in HAVs and enable a profound
modeling. Some of these studies were conducted previously to the studies reported
in Subsection 2.6.5 and have thus influenced the field of research in question and the
current state-of-the-art of take-over experiments.

3.1 Selection of Influencing Factors

For the experiments, seven explanatory variables were selected as the possibly most
relevant influencing factors of take-over performance. The selection was based on the
above-mentioned take-over research (cf. Subsection 2.6.5), although the number of
relevant publications regarding take-over in HAVs was small when the experiments were
planned. The Time Budget (TB) was identified as a main relevant factor, because the TB
limits the time the driver has to handle the take-over. This restriction of the TB determines
the quality of the driver’s activities, defined by the (limited) capability of the driver in the
available time. Therefore, as the driver has limited resources (cf. Wickens et al., 2013)
and the required driver response remains similar, a limited time budget is expected to
reduce the driver’'s performance.

This goes along with the idea of presenting an automated braking function in order to
prolong the TB and thus improve take-over performance, which is why automated braking
was selected as a second factor.

Another selected factor is traffic density. Increased traffic density involves a higher
number of relevant objects that have to be perceived, a time-consuming process, not
only due to limited resources. Increasing traffic density implies a raise of the take-over
scenario’s complexity and is therefore a suitable method to vary the demand of the
scenario.

If these resources are additionally occupied by preceding non-driving-related tasks,
performance is expected to further decrease. This is the main reason for taking non-
driving-related tasks into account; however, the possible change in arousal (cf. Teigen,
1994) also justifies a closer look at this factor.

The experience of a take-over may change the expectation regarding further take-overs
and influence the driver’s behavior. Additionally, behavioral adaption is likely to occur
(cf. Rasmussen, 1983), and the driver’s behavior may change from knowledge-based to
rule-based behavior during the first take-overs, referred to as the factor Repetition in the
experiments.
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During the experiments, stationary vehicles had to be passed. The trajectory planning for
this maneuver represents rule-based behavior. It was expected that there are common
rules to pass stationary vehicles in the right lane but not in the left lane, as German
drivers are only allowed to pass on the left side in regular traffic conditions. In addition,
a stationary vehicle in the center lane increases possible options and may therefore
increase the choice reaction time (cf. Uncertainty Principle Card, Moran, & Newell, 1983),
whereas the take-over situations took place in different lanes.

The last explanatory variable that was considered is drivers’ age. Although the study of
Petermann-Stock et al. (2013) did not reveal age-related effects on take-over performance,
there might be an effect when designing take-over in a more time-critical and thus more
challenging way. Due to economic limitations, no other factors could be considered,
although there might be more possible explanatory variables that might make a valuable
contribution to clarifying variance and understanding the take-over in HAVs.

3.2 General Experimental Design

The experiments conducted focus on measuring timing aspects of the take-over as well
as take-over quality, as both, times and quality, are the focus of posterior modeling.
Considerable effort was expended to clarify different aspects of the take-over; however,
constraints were necessary, as this work cannot cover all possible aspects. For this
reason, the automation scenario was limited to automated highway driving. In this setting,
the relative speeds of relevant road users are comparatively low and the variety of road
users is limited. Furthermore, compared to urban traffic, object density on highways is
lower and no close passing of contraflow traffic takes place. The maximum speed of the
automation and the speed of the vehicle when entering the take-over scenario was set to
120 km/h (approx. 75 mph) in all studies. In addition, the studies are limited to a certain
class of system limits, represented by broken down vehicles in the current participant’s
lane. This type of near rear-end collision, or more generally any type of stationary object
blocking a lane (LVS), seemed to be the most relevant take-over scenario (Najm, Smith,
& Yanagisawa, 2007). The vehicle moves in its lane and system limits are therefore likely
to occur on this path. Furthermore, when considering crashes between two vehicles,
“lead vehicles stopped” is currently the most relevant cause for light vehicle crashes
(Najm et al., 2007). As described in Subsection 2.6.2, capabilities of future HAVs may
vary and the scenarios examined are likely to be handled by the automation without
the necessity of a take-over, or at least by a degradation to AEB functionality and thus
collision avoidance via braking maneuvers. Nevertheless, the implemented take-overs
are exemplary and served to measure take-over performance under time pressure in
order to evaluate human capabilities in such situations. Due to the limited TB available
and the imminent collision with the obstacle, the scenario is very demanding, enabling an
observation of drivers’ maximum performance and thus effects of the selected influencing
factors. Additionally, the scenario and method can be described unambiguously and
enhance the reproducibility of the experiments, which supports the deployment of a
common methodology for the take-over in HAVSs.
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To secure the desired TB, the system limit must not be detectable prior to the TOR, which
is why all studies include a vehicle which conceals the system limit and changes lane
just in the moment of the TOR, or the system limit suddenly appears in the simulation
environment. The latter prevents influencing the participants’ maneuver selection, as
otherwise they might be likely to simply follow the lead vehicle which changes the lane,
without considering other options. The TOR was implemented as an audio-visual warning,
including a red icon indicating the necessity for taking over vehicle control and an urgent
sinusoidal double beep (approx. 2800 Hz, 75 dB). The auditory part is essential, as a
large share of the participants was visually distracted and the detection probability for
visual icons was rather low. In Experiment 5 (Subsection 3.3.5), the auditory double
beep was replaced by voice giving the instructions “Brake!”, “Left!”, and “Right!” (in
German), and the visual icon was replaced by a stop sign and two arrows pointing to
the left and the right lane according to the voice command. This was implemented in
order to support the decision-making process and represent an advanced HMI, but is not
further considered within the modeling. Parts of the experiments were conducted in the
dynamic driving simulator of the BMW Group Research and Technology and parts in the
fix-based driving simulator at the Institute of Ergonomics of the Technical University of
Munich. Both driving simulators are very high-fidelity and include a full vehicle mockup,
surrounded by several projectors enabling a front view of about 200 degrees and the
representation of all driving mirrors. The dynamic driving simulator has the additional
capability of representing accelerations and therefore kinesthetic stimulation by the use
of a hexapod allowing small lateral movements and rotations around the three axes.
Accelerations of up to about 2.5m/s* can be displayed by moving the mock-up.

3.3 Summary of Experiments Conducted

Six experiments were conducted to measure the influence of the seven selected factors
TimeBudget, AutoBrake, TrafficDensity, Load due to non-driving-related tasks, Repetition,
Lane and drivers’ Age. Table 3.1 summarizes the experiments and lists the various factors.
The variables which are in the focus of the studies are marked in bold. Variables that
varied between subjects are presented in separate lines, variables that varied within
subject are given in one line. The different experiments are published in English in
either journals or conference proceedings and are therefore only briefly described in this
thesis. Please refer to the publications for detailed results and further information on the
experimental setup, methods, and hypotheses.
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Table 3.1: Overview of take-over experiments conducted.

Experiment  Participants SAE-Level TB! AB?  TD? NDRT* REP®° Lane® Age
Experiment 1 n=15 3 5 - 0 SuRT 1 R m=28y

n=13 3 7 - 0 SuRT 1 R

n=5 0 5 - 0 - 1 R

n=8 0 7 - 0 - 1 R
Experiment 2 n=16 3 5 - 0,30 SuRT 4 L/C/R

n=16 3 5 35 0,30 SuRT 4 L/C/R m=31y

n=16 3 5 5.0 0,30 SuRT 4 L/C/R
Experiment 3 n=16 3 7 - 0,30 SuRT 4 L/C/R m=34y

n=16 3 7 - 0,30 2-Back 4 L/C/R

n=16 0 7 - 0,30 2-Back 4 L/C/R
Experiment 4 n=35 3 7 - 0,10,20 20-Questions 3 L/C/R m=45y

n=36 3 7 - 0,10,20 None 3 L/C/R
Experiment 5 n=24 3 7.8 - 0 SuRT,Text,Manual,2-Back 12 C m=28y
Experiment 6 n=36 3 7 - 0,10,20 20-Questions,None 3 L/C/R m=23y

n=35 3 7 - 0,10,20 20-Questions,None 3 L/C/R m=67y

'TB = Time Budget [s]
2AB = Automated Braking [m/s?]

3TD = Traffic Density [vehicles/km)]

“NDRT = Non-Driving Related Task

°REP = Repetitions (number of take-overs experienced)
SLane: Left (L), Center (C), Right (R)
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3.3 Summary of Experiments Conducted

3.3.1 Experiment 1: Comparison of Different Time Budgets

The first experiment' (Gold, Dambock, et al., 2013), conducted in the dynamic driving
simulator, compared TBs of 5 and 7 seconds and considered manual drivers as a
reference condition. In total, 49 drivers participated in the study, whereof 41 could
be considered in the evaluation. Thirteen of these were manual reference drivers,
who experienced the same take-over scenarios without the automated system. No
TOR or other warning was presented to the reference drivers. The automated-driving
participants were distracted by the visual-manual Surrogate Reference Task (SuRT)
(1ISO, 11.2012) in order to simulate non-driving-related tasks which are carried out prior
to the take-over. The take-over occurred in the right lane, and there was no other
traffic present in the setting, enabling an evasive maneuver or lane change. For the
evaluation of the experiment, a variety of timing metrics was assessed, among them the
GazeReactionTime, EyesOnRoadTime, HandsOnTime, as well as the Take-OverTime (cf.
Figure 3.1). Regarding the take-over quality, the maneuver type (brake / lane change),
as well as Long.Acc. and Lat.Acc. were considered.

Gaze reaction 0.41 s

2}
g Road fixation 0.69 s
=S
e P Hands on 1.45s
s >
§ ] Intervention 2.10 s Remaining action time 2.90 s
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Figure 3.1: Timing aspects of the take-over in Experiment 1 (Gold, Dambock, et al.,
2013).

Results: The results indicate that timing aspects of the take-over are prolonged for the
participants with the 7-seconds TB. Conversely, participants with a TB of 5 seconds
showed faster reactions in all timing-related measures, while the magnitude of the timing
metrics in the experiment (Figure 3.1) is in line with the values of the study of Zeeb et al.
(2015), Kerschbaum et al. (2014), or Lorenz et al. (2014). The quality metrics, however,

'The experiment was designed in cooperation with Dr. Lutz Lorenz (BMW AG) and conducted with the
assistance of Claudia Pétzinger as part of her diploma thesis (Pétzinger, 2013)
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indicate a worse take-over quality with more braking for the participants with a TB of
only 5 seconds. According to literature (Dambdck et al., 2012; Beukel & Voort, 2013),
shorter TBs lead to a reduced take-over performance. When comparing the take-over
performance to the manual-driving reference group, manual drivers performed better
than automated drivers, although they had no preliminary warning, which is in line with
other research (Young & Stanton, 2007a; Shen & Neyens, 2014). They produced less
than half of the accelerations and managed the situations almost without any usage
of the vehicle’s brakes, whereas more than 50% of the participants in the automated
condition braked in the take-over situation, which is in line with ratios found by Lorenz et
al. (2014).

Summary: An increased TB leads to slower but improved driver reactions. The drivers
seem to use the additional two seconds for an extended assessment of the situation
and a more judicious and calm response. The results further indicate that distracted
automated driving with a TB of up to 7 seconds in take-over situations still leads to a
worse performance compared to attentive manual driving.

With respect to the modeling of take-over scenarios, the experiment forms the basis of
the established data base with two sampling points for modeling the influence of the
factor TimeBudget on take-over performance.

3.3.2 Experiment 2: Automated Brake Application

Providing a sufficient TB in future HAVs will be especially challenging in take-over sce-
narios, in which the system limit is detected by in-vehicle sensors, as sensor ranges will
be limited. The second study? therefore focused on extending the TB by an automated
brake application simultaneous with the TOR (Gold, Lorenz, & Bengler, 2014). This is
also considered to be a promising way of reducing the criticality of take-over situations
and showed effectiveness in the context of partially automated driving (Itoh, Horikome,
& Inagaki, 2013). By automated brake applications, the kinetic energy of the vehicle is
reduced and additional parts of a second are gained for the take-over. This means that
the driver has additional time, which showed the potential to improve the take-over quality.
It was further hypothesized that braking leads to a more urgent character of the TOR and
thus to faster reactions.

In the experiment, a deceleration lasting 1.8 seconds was applied together with the TOR,
with a magnitude of 5m/s? in one group of participants and 3.5m/s? in another. The
duration of the deceleration was limited to 1.8 seconds in order to end the automated
braking before the participants started their maneuver. By means of this design, the
deceleration could not interfere with the response of the drivers. The automated de-
celeration gained an additional 1.09 and 0.5 seconds, leading to a TB of 6.09 and 5.5
seconds, respectively. As the representation of the accelerations was essential, the
experiment was conducted in the dynamic driving simulator. A third group was tested
without automated brake application and thus had a TB of 5 seconds. In total, 48 drivers
participated in the study, forming three groups of 16 participants each. In a within-subject

2The experiment was designed in cooperation with Dr. Lutz Lorenz (BMW AG) and conducted with the
assistance of Georg Soyer as part of his master thesis (Soyer, 2013)
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Figure 3.2: Take-over scenarios (Gold et al., 2014).
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Figure 3.3: Selected results of Experiment 2 (Gold et al., 2014).

design they experienced four take-over situations, while the lane where the take-over
occurred was altered. Moreover, one situation included dense traffic in the neighboring
lanes, meant to prevent an initial lane change in the situation (cf. Figure 3.2) and increase
the complexity of the scenario. In all conditions, participants were engaged in the SuRT.
The take-over performance was assessed by the Take-OverTime, Long.Acc., Lat.Acc.,
TTC, and Crash.

Results: Surprisingly, the automated brake application did not shorten temporal aspects
of the take-over (cf. Figure 3.3), and more than two thirds of the participants did not
notice the automated brake applications, an effect also found in real vehicle experiments
(Hoffmann, 2008). Overall, automated braking did not have a strong influence on take-
over performance. Lateral accelerations appeared to be lower (p = .079), which is likely
caused by a combination of the extended TB and a lower vehicle speed due to automated
braking. There is also an indication that automated braking reduces crash probability
(p = .064) in the high-traffic condition. The high complexity, represented by a high traffic
density of 30 vehicles/km, had a strong influence on take-over performance, inducing
higher crash probabilities, higher longitudinal accelerations and shorter minimal TTCs
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(cf. Figure 3.3). This effect was dominant in the results and significant in most of the
dependent variables.

Summary: While the automated brake application was shown to potentially improve take-
over performance without impairing the driver in the take-over scenarios, the complexity
due to dense traffic significantly reduces take-over performance and leads to an increased
crash risk.

The experiment introduces the factors TrafficDensity, Lane and AutoBrake into the model
data base, enabling the consideration of these factors in the following modeling ap-
proach.

3.3.3 Experiment 3: Cognitive and Visual Tasks

The third study® compared the visual-manual SuRT with the cognitive 2-Back task
(Reimer, Mehler, Wang, & Coughlin, 2010) in an experiment in the dynamic driving
simulator (Radlmayr, Gold, Lorenz, Farid, & Bengler, 2014). With the cognitive task,
participants were able to keep their eyes on road and thus had the possibility to remain
partially in the control loop by monitoring the system and the situation. It was hypothesized
that drivers with their eyes on the road and a solely cognitive distraction show higher
take-over performance, compared to the visually engaged group.

Apart from the absence of automated brake applications, the scenarios were similar to
those implemented for Experiment 2 (Subsection 3.3.2, Figure 3.2). Participants had
a TB of 7 seconds, and the system limit was represented by the accident blocking the
current lane. The experiment also contained the high traffic scenario.

Forty-eight drivers participated in this study and were subdivided into three groups of 16
participants each. Apart from the groups engaged with the SURT and 2-Back task, a third
group drove without the automated system but was also engaged in the cognitive 2-Back
task. This group served as a reference condition. Unlike the manually driving group in
Experiment 1, the auditory warning was also provided to the the reference group. Driver’s
performance was assessed by the Take-OverTime, Long.Acc., TTC, and Crash risk.

Results: In line with Experiment 1, participants driving manually started their maneuver
sooner than drivers in the automated conditions (cf. Figure 3.4), an automation effect
that has already been described (Young & Stanton, 2007a; Shen & Neyens, 2014).
There were only small differences in the performance between the SuRT and the 2-Back
group. The Load was only found to influence Crash (more crashes in the SuRT condition,
Figure 3.4), whereas it did not have an effect on Take-OverTime nor on the quality metrics
Long.Acc. and TTC. Regarding TrafficDensity, results of this study were in line with
Experiment 2, as participants generated higher decelerations, more crashes and lower
minimum TTC-values when there was traffic present.

Summary: “Cognitive non-driving[-related] tasks can lead to a similar distraction and
thus loss of situation awareness compared with mainly visual tasks” (Radlmayr et al.,
2014, p. 5). Furthermore, the complexity of the scenario, represented by high traffic

3The experiment was designed in cooperation with Dr. Lutz Lorenz (BMW AG) and conducted with the
assistance of Jonas Radlmayr as part of his diploma thesis (Radimayr, 2013)
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Figure 3.4: Selected results of Experiment 3 (Radimayr et al., 2014).

densities, proved to be an important factor that plainly impairs the drivers’ take-over
performance.

Regarding the subsequent modeling approach, the experiment expands the data by
a standardized cognitive task in different traffic conditions and additional take-overs in
various lanes (factors Load & Lane).

3.3.4 Experiment 4: Traffic Density

Experiment 2 and 3 showed distinct differences in take-over performance when comparing
scenarios without traffic to a scenario with a very high traffic density in the neighboring
lanes. The chosen number of vehicles per kilometer was approximately 30 vehicles/km.
Under normal traffic conditions, such densities are not stable and therefore likely to
occur in traffic jams or at lower vehicle speeds only (cf. Schépplein, 2013; Kihne et al.,
2004). As the complexity of the scenario and thus the surrounding traffic proved to be
an important influencing factor and as only the anchor points 0 and 30 vehicles/km had
been considered in the previous experiments, Experiment 4* assessed the influence of
medium traffic densities on take-over performance (Gold et al., 2016).

Seventy-two participants took part in this study in the fix-based driving simulator. Apart
from a no-traffic condition, medium traffic conditions with 10 and 20 vehicles per kilometer
were implemented and varied among subjects. The lane in which the take-over took
place was also changed for the individual subjects.

As cognitive distraction was identified as a relevant influencing factor in Experiment
3, the 20-Questions task was introduced, which is used in experimental conditions
as a substitution for cell-phone conversations (Merat et al., 2012). Neubauer et al.
(2012) identified faster brake reactions when participants were involved in a phone call,

4The experiment was conducted with the assistance of Shiquiang Xie and David Lechner as part of their
master/bachelor thesis (Xie, 2014; Lechner, 2015)
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Figure 3.5: Selected results of Experiment 4 (Gold et al., 2016).

compared to a group of drivers with no additional task. To reproduce this interesting
finding, half of the participants in Experiment 4 performed the verbal 20-Questions
task, while the other half did not have to complete any non-driving-related task. In
both conditions, participants were able to keep their eyes on the road. The take-over
performance was assessed by the variables Take-OverTime, HandsOnTime, Long.Acc.,
Lat.Acc., TTC, and Crash.

Results confirmed the impairment of the take-over performance due to the presence
of surrounding traffic. In the two conditions involving traffic, the take-over time was
prolonged, measured accelerations and crash risks were higher and the TTCs were lower.
These effects arose between the no-traffic condition and the conditions involving traffic,
while there were no significant effects between conditions with 10 and 20 vehicles/km.
In general, effects due to the task conditions were minor. The non-driving-related task
only showed a significant effect for the TTC-values, with lower, more critical TTCs in
the 20-Questions task condition. The results therefore could not confirm the findings of
Neubauer et al. (2012).

Summary: The 20-Questions task, a substitution for a cell-phone conversation, showed
minor effects on take-over performance, compared to the no-task condition. An increased
complexity of the scenario, however, showed an impaired take-over performance in
the vast majority of measures. The pure presence of traffic causes the decrease in
performance, rather than the amount of traffic.

In connection with modeling the take-over, the experiment adds another non-driving-
related task to the factor Load and two additional sampling points, crucial for modeling
the influence of the factor TrafficDensity and thus a scenario’s complexity.

3.3.5 Experiment 5: Non-Driving-Related Tasks

As shown above, different non-driving-related tasks have already been examined. Even
with studies with a design very similar to this thesis, it is difficult to compare performance
in dependence of the task across experiments, as the conditions, methods, and inde-
pendent factors vary among the authors. Petermann-Stock et al. (2013), for example,
compared an auditory, auditory-visual, and an auditory-visual-motoric non-driving-related
task in take-over scenarios of HAVs. However, the take-over scenarios were imple-
mented in a rather uncritical way and, unlike the scenarios reported on in this thesis,
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Table 3.2: Qualitative assignment of tasks (Gold, Berisha, & Bengler, 2015).
Visual Motoric Cognitive

SURT X X
Text X X X
MT X X
2-Back X

did not demand an immediate take-over, strong braking, or an evasive maneuver. The
Take-OverTime, for instance, showed effects of the non-driving-related tasks, but because
of a reduced urgency, times are comparatively long.

Therefore, the fifth experiment® focused on comparing non-driving-related tasks of differ-
ent types (Gold, Berisha, & Bengler, 2015), involving different modalities (cf. Table 3.2)
and a similar design as in the previous experiments. Apart from a mainly manual task
(MT) and a naturalistic fill-in-the-blank text task (Text), the SuRT and 2-Back task were
considered in order to prove comparability of the prior experiments. The study was
conducted in the fix-base driving simulator with 24 drivers. During a familiarization drive,
participants experienced twelve take-over scenarios in manual mode, represented by a
broken down vehicle in the current lane. The last three of the twelve training situations
were used as a baseline condition. In the subsequent experimental condition, the four
tasks were varied in a within-subject design. Participants had to engage in the tasks,
while twelve take-overs occurred unpredictably. Similar to the baseline condition, drivers
had a time budget of 7.8 seconds, and there was no other traffic in the neighboring
lanes. The Take-OverTime, Lat.Acc., Long.Acc., and TTC were selected as measures of
take-over performance.

Results: Results regarding the influence of the non-driving-related task were divergent.
The manually driven baseline and the 2-Back task showed the fastest Take-OverTime;
the manual task had the longest Take-OverTime, but at the same time the lowest Lat.Acc.
The 2-Back task resulted in higher TTC values compared to all other conditions. In a
subjective rating, the fill-in-the-blank text task was assessed to be the most impairing
task with regard to the stressfulness of the take-over scenario, although this task did not
induce a worse take-over performance. In the third experiment (Radimayr et al., 2014), no
significant differences between the SuRT and 2-Back task were found. In this experiment,
the SuRT led to a longer Take-OverTime and a lower TTC, indicating a lower take-over
performance compared to the cognitive 2-Back task. Altogether, the non-driving-related
tasks showed smaller effects than initially hypothesized (cf. Figure 3.6).

Summary: While several effects of the tested non-driving-related tasks were found, the
magnitude of these effects was rather small. The 2-Back task appeared to be the most
prominent as it induced a higher take-over performance compared to the other tasks.

For modeling driver’s performance in take-over scenarios, the experiment spanned a
wide range of non-driving-related tasks (Load), allowing a profound mapping of different
non-driving-related tasks in the subsequent modeling.

5The experiment was conducted with the assistance of llirjan Berisha as part of his bachelor thesis
(Berisha, 2013)
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Figure 3.6: Selected results of Experiment 5 (Gold, Berisha, & Bengler, 2015).

3.3.6 Experiment 6: Age and Trust in Automation

Another factor that has been identified is the driver with his varying abilities and skills,
leading to variance among the dependent variables. This means that reaction times
(Kovac, 1969; Welford et al., 1980) and the ability to process information (Kérber &
Bengler, 2014) can vary in dependence of a person’s age and can lead to an impaired
take-over performance of elderly drivers. The participants of Experiment 4 were therefore
selected depending on their age, forming two age groups, one with drivers younger
than 28 years, the other one with drivers older than 60 years. Technically, Experiment
6 is not a separate experiment, but the evaluation of Experiment 4 regarding the factor
Age, presented also in a separate article (Korber, Gold, Lechner, & Bengler, 2016). For
measuring the influence of driver’s age, the variables Take-OverTime, Lat.Acc., Long.Acc.,
and TTC were considered.

Results: In line with results of Petermann-Stock et al. (2013), the factor of driver’s age
did not reveal an effect on the Take-OverTime, although the scenarios were designed in
a significantly more complex and time-critical way. In contrast to simple reaction time
research, the Take-OverTime seems to be less sensitive to the age of the participants,
either because of a less controlled experimental condition, or due to (over-)compensatory
strategies of elderly drivers. Although the Take-OverTime did not differ among the groups,
elderly braked more intensively and generated higher minimum TTC values compared
to the younger drivers (cf. Figure 3.7). This also indicates that driving strategies differ
among the groups. In addition, elderly drivers caused fewer accidents, although this
lacks statistical significance.
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Results of an ANOVA on minimum TTC.

F df Partial n? p
Age 5.19* 1,50 .09 .027
Task 5.53%* 1,50 .10 .023
Traffic Density 18.48%** 2,100 27 .001
Age*Task 0.00 1,50 .00 981
Age*Traffic Density 0.23 2,100 .01 793
Task*Traffic Density 0.05 2,100 .00 .954
Age*Task*Traffic Density 0.75 2,100 .02 A75
Note. * p<.05; *** p <.001.
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Figure 3.7: Selected results of Experiment 6 (Kbrber et al., 2016).

Summary: While the Take-OverTime of the age groups did not differ, elderly drivers
showed a differing driving strategy, involving intensified braking, which lead to a reduced
criticality of the take-over situations.

In terms of modeling the driver in take-over scenarios, the experiment completes the
selected factors by introducing a relevant number of elderly participants to the data-set
and thus enabling a consideration of the factor Age in the subsequent modeling.

3.4 Model Selection

In Section 2.7, different ways of modeling the driver in take-over scenarios were proposed.
Based on the experimental results, the suitability of these approaches is discussed
below and a model is selected, promising an adequate quantitative model of take-over
performance which makes it possible to draw conclusions about the influencing factors
and enables a deeper understanding of human-automation interaction in take-over
scenarios of HAVs.

3.4.1 Common Driver Models in Near-Crash Situations

The models reviewed for near-crash situations (Subsection 2.7.1) are based on manual-
driving data and do not model automation effects that can arise in take-over experiments.
While the perception of driving-relevant signals is continuous in manual driving, drivers
in HAVs do not have to and are unlikely to monitor the system and the driving-related
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situational parameters. Compared to manual drivers in near-crash situations, automated
driving participants in take-over scenarios first have to regain awareness of the situation,
the state of the automation, the system limit, and the different possible responses to
the TOR. The time drivers need for this process of re-engagement could be modeled by
an increased delay of the drivers’ responses within the existing models in near-crash
situations. Nevertheless, experiments show an impaired driving performance right after
the take-over. In addition, different explanatory variables such as the strain on the driver
or the time budget exist and cannot be considered in the current models of near-crash
situations. Even for very similar manual-driving scenarios, “it seems likely that the high
complexity of driver behavior will continue to force researchers to limit their modeling
scope so as to fit the specific application at hand, just as it has for the authors of the
reviewed articles” (Markkula et al., 2012, p. 1135). Take-over scenarios deviate even
more from the reviewed models, which is why different model approaches should be
pursued when modeling take-over performance.

The models describe driver’s response in the time domain, which appears to be hardly
feasible for automated driving at the current point in time, due to limited knowledge of
the human-automation interaction in HAVs, but also because the task of taking over
vehicle control is not as continuous as manual driving. Given the resulting variability of
driver responses, the model should be simplified to response metrics as a function of
the different influencing parameters, rather than modeling take-over behavior in the time
domain.

3.4.2 Modular Additive System

The modular additive system approach in Subsection 2.7.2 has several characteristics
that are valuable for modeling take-over performance in automated vehicles. This
approach enables the validation and supplementation of the model by other authors, and
the operationalization is straightforward. The elements can be combined independently,
which is why the approach covers a wide variety of different take-over scenarios and
combinations of factors. By simply adding elements, a future diversification of the modular
additive system is possible. Additionally, segments can be derived from existing research,
such as the simple reaction times, and be based on established models, such as the
Model Human Processor.

On the other hand, the approach is based on the assumption that the dependent variables
can be described by a linear combination of the explanatory variables. The take-over
process, however, is a sequential process, at least in parts. The visual and motoric
reorientation, for example, are likely to be performed in parallel (cf. Figure 2.10 and Zeeb
et al., 2015). Simplification to a sequential process, as in the additive model, might impair
the prediction accuracy to an uncertain extend. Additionally, as seen in the experiments,
the segments are not independent from each other. Drivers compensate shorter TBs,
for instance, by accelerating the take-over by a shortening of different segments. The
worsening of the take-over quality in more time-critical scenarios further indicates that
responses are selected and executed by the driver before the cognitive take-over can be
considered to be complete (cf. Figure 2.10), which could have been predicted, “since in
most tasks the cognitive processes run partly parallel (particularly under time pressure
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conditions)” (F. Chen, 2006, p. 78). This proves the existence and relevance of parallel
processes in the take-over behavior, and in these cases, a linear combination of the
segments no longer provides a valid prediction of take-over times.

Another drawback of this modeling approach is the limitation with regard to quantifying
and predicting take-over quality. It can only be roughly estimated by looking at the TB in
comparison to the predicted take-over and maneuver time. As necessary assumptions
for the model approach are violated and the ability of the model to limit take-over quality
is restricted, the modular additive system is not considered further.

3.4.3 Artificial Neural Networks

In most cases, ANNs have the ability to model a wide variety of behavior with an excellent
model fit. The examiner does not have to make presuppositions which is why effects
in the data are modeled that could not be revealed with the help of other descriptive
methods.

In a pre-test, the data-set was fed to an ANN with two hidden layers. Seventy percent of
the data was used for training the network (algorithm: Levenberg-Marquardt), 15% for
validation purposes, and the remaining 15% for testing the model. Figure 3.8 does not
indicate any problems when training the data, as results of validation and test converge
and only slightly differ from the training.

When looking at the model fit (Figure 3.9), the R-values indicate that the major part of
the variance within the data can be explained by the model. By feeding the model with
new data, the take-over performance can be predicted. For a TB of 5 seconds, a traffic
density of 0 vehicles/km, the SuRT task as a non-driving-related task, and a driver’s
age of 26 years, the model predicts a GazeReactionTime of 0.46 seconds for the first
take-over, which is reasonable, when compared to, for example, Figure 3.1 of Experiment
1, where drivers of a similar age showed a mean GazeReactionTime of 0.41 seconds
under equivalent conditions.

While the ANN proved to be a suitable method for modeling driver’s take-over perfor-
mance, it is a rather untransparent way of modeling the system, replacing one black box
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Mean Squared Error (mse)

13 Epochs

Figure 3.8: Performance of training, validation, and test of the ANN.
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Figure 3.9: Model fit for training, validation, and test data of the ANN.

by another. The resulting model cannot be described by linear algebra and dependen-
cies of input and output variables are not exposed, which is why conclusions about the
adverse effect of factors on take-over performance can only be approximated. As the
model should support and enable an understanding of the take-over process, human
performance and the influencing factors on safety, ANNs are avoided for the subsequent
modeling.

3.4.4 Regression Analysis

Compared to ANNSs, regression analysis requires a basic understanding and previous
examination of the system subject to the modeling in order to be able to set up valid
regression equations. In return, regression analysis provides a representation of the
system by a set of linear or non-linear equations that also yield a plain description of the
adverse effect of explanatory variables on the output. As a disadvantage, the model fit
is dependent on the regression equations and likely to show an inferior fit compared to
ANNSs. Nevertheless, this leads to a minor probability of over-fitting the test data and
thus to a higher potential of predicting the actual take-over performance. As the goal
is not only to create a quantitative model of take-over performance, but also to explain
the governing factors, regression analysis was chosen for the modeling approach in
this thesis. It has the ability to model a variety of correlations, only limited by the effort
invested to set up the regression equations. It further serves as a model disclosing the
coherence between the variables, and the modeling can be extended by introducing
advanced regression methods such as mixed-effects regression analysis or regressions
allowing for consideration of different distributions of test data. Hereafter, regression
analysis is used for modeling take-over performance in different time-critical take-over
scenarios.
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4 Modeling Take-Over Performance Using Regression
Analysis

In the following chapter, a modeling approach using regression methods is proposed,
first describing principles of regression models, the data, input and output parameters,
derived assumptions, the regression equations and discussing the models and their fit.

4.1 Algorithms for Parameter Determination and Regression
Implications

The most common type of regression is the linear regression (Equation 4.1). The re-
sponse y is modeled by a linear combination of a set of predictors  and regression
parameters 3. The regression is considered linear in 3, while the predictors do not
necessarily have to be of linear type (Montgomery & Peck, 1992). As soon as at least
one (3 shows non-linearity, the regression is considered non-linear (Equation 4.2). Many
non-linear systems can be transformed to linear ones by the use of data-transformation,
such as logarithmic functions or changes in the regression equation (Equation 4.3). As
a drawback, this may complicate the interpretation of the equations and the regres-
sions’ results and induce problems of collinearity (cf. Subsection 4.1.2), which is why
transformation is avoided in some regressions of this thesis. There are several other
regression methods used in this thesis, namely robust regression (Subsection 4.5.1.2)
and generalized linear models (Subsection 4.5.2.2) for handling outliers and non-normally
distributed errors, mixed-effect models (Subsection 4.5.3) for modeling random variance
and logistic regressions (Subsection 4.4.7 & Subsection 4.5.2.1) for nominal response
variables.

Linear Regression :y = Bo+ brx1 + Poxa + ... + Bpy + € (4.1)
Non — Linear Regression :y = By + 1 * (Ba + 2)* + ¢ (4.2)
Linear Regression, equal to 4.2 1y = By + fra1 + Box] + € (4.3)

4.1.1 Least Squares Estimation

In a regression, (3, is estimated so that the output resembles the measured data. This is
done by estimating /5 such that the sum of the squared distances between the measured
data and the output data is minimized, which is by far the most commonly used method
(Cohen, 2003) and is referred to as Ordinary Least Squares (OLS). OLS is assumed to be
the best linear unbiased estimator; however, violations of assumptions, such as outliers,
may be too influential (Cohen, 2003). Testing and detection of violations is therefore
important when conducting OLS-regressions, to ensure adequacy of the model.
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4 Modeling Take-Over Performance Using Regression Analysis

FOLS) =min()_ (Y; = Y,)?) (4.4)

4.1.2 Impaired Model Adequacy

Fitted models have to be checked for model adequacy and validity. While model adequacy
can be assessed based on the evaluation of parameters and meaningfulness of the
resulting equation, new data is needed for the validation of the model. There are several
issues possibly leading to a lack of model adequacy and different ways to detect and
face them.

Under- and Overfitting

Figure 4.1 shows examples of underfitted and overfitted models. On the left side, an
exponential correlation (dashed line) of the training data is represented by a linear model
(straight, solid line). Besides a possibly high error, extrapolation would lead to poor
predictive characteristics of the model. An overfit is characterized by a model which is
tailored for the current data-set (e.g. by high exponential terms or too many predictors),
but not valid for new data or extrapolation. On the right side of Figure 4.1, the model
matches all data points by the use of a high exponential term (solid line). The degree of
the term matches the degree of freedom of the model, whereas the real correlation seems
to be rather linear (straight, dashed line). When considering new data or extrapolating,
high deviations become evident, proving that the model is not valid. The regression
equation should therefore be confirmed by theoretical models, physics and knowledge
from literature in order to avoid over- and underfitting and thus impaired validity.

Underfit Overfit

20

15

10

0 2 4 6 8 10 0 2 4 6 8 10
® Training Data A Validation Data

Model =~ -ooeeeee Actual correlation

Figure 4.1: Examples for under- and overfitting of regression models.
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Non-normally Distributed Errors

For different reasons, every data-set raised by measuring the response of a system
is subject to variance in the system and the measuring instrument. For parameter
estimation and interference statistics, estimators assume the variance in the resulting
data to be normally distributed. As a consequence, the error of the model is considered
to follow a normal distribution as well. If this assumption is violated, for example due to a
skew distribution of measures, model adequacy is impaired. Although regressions are
rather robust regarding the distribution of input data, “gross non-normality is potentially
more serious as the t- of F-statistics, and confidence and prediction intervals depend on
the normality assumption” (Montgomery & Peck, 1992, p. 136).

Multi-collinearity and Variance Inflation Factor (VIF)

Some predictors may correlate, either accidentally or causally. The quantity of sunshine
hours in a day is, for example, likely to correlate with the maximum temperature. |If
both sunshine hours and temperature are used as predictors within the same model,
contribution of the different predictors cannot be reliably estimated, and variance in the
estimators increases. The result may fit the data, but interpretation is possibly misleading.
Belsley, Kuh, and Welsch (1980) defined that two variables are collinear if one of the
vectors (representing the variable) is a linear combination of the others. Some sources
of collinearity can be avoided by selecting a suitable method for data collection and
appropriate predictors. Collinearity is revealed by high correlations within the predictors.
Furthermore, the Variance Inflation Factor (VIF) was introduced. “The VIF for each term
in the model measures the combined effect of the dependencies among the regressors
[predictors] on the variance of that term” (Montgomery & Peck, 1992, p. 296). Large VIFs
indicate that the term is affected by collinearity.

4.1.3 Checking Model Adequacy

The quality of the models and their predictions can be evaluated by means of various
methods. It makes sense to examine the difference between the prediction of the model
and the measured values. This difference is called residual (Equation 4.5), and smaller
residuals suggest a better model fit (an exception is a possible model overfit). Residuals
should be normally distributed, meaning that the majority of the residuals’ modulus should
be small, and positive and negative residuals should appear equally. If the distribution of
the residuals is skewed, predictions tend to estimate either too high or too low values.
Furthermore, the variance of the residuals should be independent from the predictions. If
residuals show a higher variance for certain ranges of prediction, the model’s prediction
in this range is less accurate. Another very common method for evaluating model fit is the
consideration of the r-squared (12?; Equation 4.9) or coefficient of determination, as an
indication for the percentage of variance in the data that can be explained by the model.
R? approaches 1 for a high proportion of explainable variance and 0 for no variance
in the data that is explained by the model. Furthermore, R? rises with the number of
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Coefficient of Determination
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Figure 4.2: Visualization of SSE, SSR & SST.

dependent variables as the degrees of freedom decrease. In order to correct for this error,
the adjusted R? (denoted as EQ) is reported in this thesis as shown in Equation 4.10.

Ti = Yi—observed — Yi—predicted (45)
SSE = | (Yi-observed = Yipredicied)” = D 7 (4.6)
=1 i=1
SSR = Z (yifpredicted - gobsem;ed)2 (47)
=1
S5T = SSE T S5 = Z (yi—observed - yobserved)2 (48)
=1
SSR SSE
=S = ' gor 4.
R = 5ot SST (4.9)
52 n—1 SSE
=1- SoT 4.1
. n—p SST (4.10)

The achievable R? is dependent on the variance present in the data. To model human
behavior, according to the measure, a low R? can still indicate a good model, as a large
degree of variance that cannot be explained by objective factors may be induced by
the human. It has to be further mentioned that, although a high R? suggests a strong
correlation of the model and the dependent variables, there does not necessarily have to
be a causal relationship. In order to argue for a causal relationship, the regression has
to be supplemented with knowledge gained otherwise. The Root-Mean-Square Error
(RMSE) correlates with the residuals, as it is the root of the mean of squared residuals
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4.1 Algorithms for Parameter Determination and Regression Implications

(Equation 4.11) and another common measure for assessing model fit. It also makes it
possible to estimate the mean deviation of predicted and observed values.

As already mentioned, modeling with regression methods is an iterative process. Origi-
nating from a regression equation that is based on explanatory data assessments and
theoretical models, the resulting regression is used to further improve the equation. In
order to do so, the contribution of each of the explanatory variables has to be evaluated.
On the one hand, regression analysis provides p-values for each of the predictors for the
null hypothesis that the predictor does not influence the model. Considering a significance
level of a=.05, a p<.05 of a coefficient indicates that this coefficient is likely to have an
effect on the model (significant influence). As regression also offers t-statistics of the coef-
ficients, the size of the effect has been estimated by calculating effect sizes like Pearson
r (Equation 4.12; r>.10 — small, r>.30 — medium,r>.50 — large (Cohen, 1992))
or the Cohen’s d (Equation 4.13; d>.20 — small,d>.50 — medium,d>.80 — large
(Cohen, 1988)).

r=\era (4.12)
2t

d= —— 413

Vap 1

The charts in Figure 4.3 allow for a further assessment of the residuals and therefore the
model.

Normal probability plot of residuals 0 04Case order plot of Cook’s distance 4 Plot of residuals vs. fitted values
B o |
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Figure 4.3: Examples of Normal Probability Plot (left), Cook’s Distance (center) and
residuals over fitted values (right).

By using the Normal Probability Plot of Residuals (Figure 4.3, left), it is possible to
evaluate whether it is reasonable to assume that the residuals are normally distributed.
In the Normal Probability Plot, the percentiles of a normal distribution (line) and the
percentiles of the measures (dots) are plotted. Deviation of the measures (dots) from the
line indicate a skewness of the distribution. A disproportional amount of outliers would
appear on the left or right of the plot and deviate from the line. In non-normally distributed
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data-sets of OLS regressions, outliers have an unproportionally large influence on the
model.

The centered chart depicts Cook’s Distance (Cook, 1977) of the data points (Figure 4.3,
middle), helping to identify outliers in the data and their impact on the model. These
“influential data points, of course, are not necessarily bad data points; they may contain
some of the most interesting sample information” (Belsley et al., 1980, p. 3). Equa-
tion 4.14 shows the equation for calculating Cook’s Distance, while y;_p,cdicted(j) i the
fitted response of data point ¢ without observation of ;. In this way, the influence of j is
estimated and depicted in the chart. Data points with a high Cook’s Distance as the point
in the upper left have a disproportional influence on the model and should be checked
for observational errors or errors made when recording the data. Legitimately occurring
extreme observations often contain valuable information that improves the estimation
(Belsley et al., 1980) and are kept for the modeling.

D. — Zi:l (yzfpredzcted yz—predzcted(J)) (41 4)

! k+ MSE

The chart on the right plots the residuals versus the fitted values (Figure 4.3, right). If the
distribution of residuals changes over the fitted values, the model’s fit is dependent on
the range of the response. In the example, residuals on the left are smaller compared to
those on the right side. This indicates that the model has a better fit for low output values
and worsens with increasing predicted output (“heteroscedasticity”).

4.2 Data Pool and Processing

The data used for the modeling approach was recorded during the six experiments
summarized in Chapter 3 and extracted from the driving simulation and eye-tracking
data. The resulting data-set consists of a database with every line / entry representing
one take-over. Attributes of the take-overs are the different input and output parameters
(Table 4.1 & Table 4.1).

Table 4.1: Input parameters in the data-set.

Name Type Range Unit
TimeBudget Input  5;7;7.78 [s]
AutoBrake Input  0;3.5;5 [m/s?]
Lane Input 1-3 [—]
TrafficDensity Input 0;10;20;30 [vehicles/km]
Repetition Input 2-20 [—]

Load Input 0-5 [—]
EyesOffRoad  Input 0/1 [binary]
Age Input 19-79 [years]
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Table 4.2: Output parameters in the data-set.

Name Symbol Type Range Unit
GazeReactionTime  tecg ~ Output >0 [s]
Take-OverTime tr Output >0 [s]
Lat.Acc. ar  Output >0 [m/s?]
Long.Acc. aong  Output <=0 [m/s?]
TTC TTC  Output >=0 [s]
Brake Perake) Output  0/1 [binary]
Crash P(Crash) Output 0/1 [bmary]

For the purpose of performing regression analysis, the data was further processed,
missing cells were replaced and irregular trials were excluded. Beginning with all recorded
take-overs, the following adaptions were made.

Data

Data

Inconsistency and Adjustments of Input Variables:

If the non-driving-related task included a visual distraction and was classified
as such, take-over situations in which participants were not completely visually
distracted and showed glances to the scenery right before the take-over were
excluded from the data-set. This was the case in 18 take-overs. It was thus made
sure that participants with visually distracting non-driving-related tasks actually
were visually distracted when the TOR was prompted.

In one case, a participant did not recognize the TOR. This was rather unexpected,
as the TOR was designed according to NHTSA guidelines (Campbell et al., 2007)
and plainly audible with a volume of 75 dB. This take-over was excluded from the
data-set and the issue is further discussed in the paper of Gold et al. (2016).

In 192 take-over situations, originating from Experiment 5 (Subsection 3.3.5),
the vehicle model induced rounding errors, leading to a wrong representation of
vehicle’s speed. While the speedometer indicated a vehicle speed of 120 km/h,
actual speed was only 107 km/h. This led to a prolonged TB of 7.78 seconds instead
of the desired 7 seconds. As this experiment is essential for the modeling, the
differing speed was neglected, and instead the TB was adjusted to the actual 7.78
seconds. In this way, the only error that could arise would be from a differing speed
perception of the drivers, but as this error was already present in the familiarization
drive and speed perception in the driving simulator is limited to visual perception,
this is considered to be insignificant.

Inconsistency and Adjustments of Output Variables:

Among other variables, the longitudinal acceleration induced by the driver was
assessed. When there was no braking input, Long.Acc. was set to 0m /s>, For this
reason, small drag torques were not taken into account, as drivers’ performance
rather than vehicle characteristics are of interest. In those experiments in which
automated braking was applied, the recording of Long.Acc. started after the auto-
mated brake application, which lasted 1.8 seconds, was completed, or as soon as
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4 Modeling Take-Over Performance Using Regression Analysis

the driver’'s deceleration exceeded the automated braking. In this way, no other
longitudinal accelerations, except those generated by the driver, were considered.

e For measuring Take-OverTime (see Subsection 2.6.4.1), a threshold of a 2-degree
steering wheel angle had to be exceeded. This did not happen in one take-over,
although the participant successfully managed to change lanes. In this case,
Take-OverTime was manually determined by the progression of the steering wheel
angle.

e As the simulation did not feature a reverse gear, in three cases, participants who
braked and came to a full stop right in front of the obstacle found themselves in a
dead-lock situation, as they were too close to pass the obstacle without colliding.
In this case, the participants had to drive through the obstacle to proceed the
experimental drive. This intentional collision was not considered in the data. The
minimal TTC was recorded within the time frame previous to the stopping of the
participants’ vehicle.

¢ In the driving environment of the Institute of Ergonomics, the left lane was edged by
a small step similar to a curbstone. When this is touched, the simulation software
records unrealistic lateral peak accelerations of up to 22m/s? for parts of a second.
In four cases, these outliers of Lat.Acc. had to be removed from the data and
replaced by values manually identified by the progression of lateral accelerations.

e In a further six situations, Lat.Acc. was not recorded due to an error in the software.
For these situations, the lateral accelerations could be subsequently calculated by
differentiating vehicles’ coordinates.

¢ In the driving environment of the Institute of Ergonomics, sidewise collisions with
vehicles in the neighboring lane did not impact the TTC. Therefore, in five situations,
the TTC was set to zero as the ego-vehicle had contact with a vehicle in the
neighboring lane. In this way, a collision is consistently represented by a TTC of
zero seconds.

The final data-set contains 753 take-overs from 203 different participants, with a complete
description of all attributes. As regression analysis requires a metrically scaled input,
the ordinal / nominal variables Lane, EyesOffRoad and Load have to be encoded. For
Lane, the lanes were numbered from 1 (right lane) to 3 (left lane). Another way would
be to encode each lane as a separate binary variable. As this could lead to correlations
within the data, this coding was rejected. EyesOffRoad was implemented as a binary
variable with 0 for “eyes on road” and 1 for “eyes off road”. Encoding Load is more
elaborate, as the different tasks have to be ordered regarding their influence on the
take-over performance. Retrieving an order from literature is hardly feasible, as sufficient
data only exist for manual driving, and transferability of those data to automated driving
is at least questionable. As an alternative, the different tasks were rated regarding their
manual and cognitive demand as listed in Table 4.3. This does not necessarily have
to correlate with take-over performance, which is why comparable data points from the
experiments (time budget 7 seconds and 7.78 seconds; traffic density 0 vehicles/km)
were plotted over the tasks to support this rating in the context of take-over performance.
Data showed a higher impairment of take-over performance in the no-task conditions,
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4.2 Data Pool and Processing

Table 4.3: Rating of tasks regarding their manual and cognitive load.

Task Manual Load Cognitive Load Total Encoding
None 0 0 0 1
20 Questions 0 3 3 0
SURT 3 0 3 2
N-Back 0 9 9 3
Text 3 6 9 4
Manual Task 9 3 12 5
Take-Over Time Lat. Acc. Long. Acc. TTC
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Figure 4.4: Dependent variables over tasks; only data-points with a TimeBudget of 7 and
7.78 seconds and TrafficDensity = 0 vehicles/km. SuRT (2) and Text (4) are
EyesOffRoad-Tasks.

compared to the 20-Questions task. This would be in line with results of Neubauer et
al. (2012), who measured quicker brake reactions when subjects were engaged in a
phone-task compared to the no-task condition in a take-over situation. Therefore, contrary
to Table 4.3, the 20-Questions task was considered to be the lowest load condition (=0)
and the no-task condition second (=1). The charts are shown in Figure 4.4 and indicate
a linear influence of the ordered tasks. A discussion of the tasks, their influence and the
selected order is given in reference to the results of the modeling in Section 4.7.
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4.3 Multicollinearity

While preparing and reviewing the data-set, multicollinearity was detected. Figure 4.5
provides a correlation table of the different predictors which were used for the modeling
approach. There are different suggestions for what correlations indicate serious problems
due to collinearity, ranging from 0.35 up to 0.9 (Mason & Perreault, 1991). This thesis fol-
lows the rather conservative suggestions by Dormann et al. (2013) and Montgomery and
Peck (1992) that correlations above 0.5 should be considered as potentially influencing
the results. With this boundary value, four significant correlations were found, three of
them involving the TimeBudget:

o TimeBudget & AutoBrake (r= —.68)

The strongest correlation is found between the TimeBudget and AutoBrake. This
correlation is explained by a limited combination of independent variables (predic-
tors) in the experiments. For example, AutoBrake was only applied together with a
TB of 5 seconds.

TimeBudget & Repetition (r = .59)

The second strongest correlation exists between the TimeBudget and Repetition.
Again, insufficient permutation of independent variables is the cause for this strong
correlations. High repetitions were measured in one experiment with a TB of 7.78
seconds, whereas repetitions between 2 and 4 were measured with TBs of 5 and 7
seconds.

TimeBudget & EyesOffRoad (r= —.50)

The TimeBudget further shows correlations with EyesOffRoad. Once more, permu-
tation of variables caused this correlation. A TB of 5 seconds was only tested with
eyes off road, but not with eyes on road.

Load & Repetition (r = .58)

Similar issues lead to a correlation between Repetition and Load, as several tasks
were only tested in the experiment with high repetitions, while others appeared
solely in experiments with low repetitions.

66



9

TimeBudget

AutoBrake

[

TrafficDensity Lane
HS oM . o

—
=

Repetition

(= =]

Load

EyesOffRoad
B8 8o

Age
M &

(== I R

0568 0.05 2.2 059 0.23 0.50 0.03
S ) : . L A e e e 4 s
'"“'H-.____H_ — - ’/" L— —— _
e ” D
068 w3 . 00 : 04 am 0.43 : 0,137
- . . . . . . . — [T
\"\\}_H . — _ o . o —
e . N B . . . . eres EEEmessss e o+ o+ o+ 0 s P . SR ———————
0.05 0.03 0.05 0,06 0.00 008 004
. S . N | U | SN -
A2 0.04 0.05 . 0.29... a3 . . 0143 . 115 -
—_— 3 I s o e | e
. e . . . . PR ceTEreesss e - T — e o o
0.59 H 024 ; 0.06 H 0.29; 058 5 ¢+ i i oM : 022, ¢
i - : 4 i [ S B S t ety =
i ; ; | I ol I BE
. — . T =t . N A
P i s e i i i . . "8 i i T e Fa e
0.3 . a0, 000 230, 058 017 3. . .
S . - . cres aeageris . e
:__'___,—'——r‘_'_f__ Tr— . crpae T eer s nenes L —— e -
. . . . . e T . - ey |
: 1 1 1 i i 1 1 il i (oon - i -
050 043 008 113 0.04 0.47 0.30
&-H - . -_dﬁﬂ_:___,_,-: . B . | + . P Beesebb et A _._ 1 h_\_a_\_nmucd.-ou»»
""m.h___ i —_fﬂ' | _‘_———._\___\_h e | _"‘“—H-._\______
[T I 013 u[m ; ! 0.15 | | i n.zziti il].j-i 411{1
: N | A ; l H i o s se as [ P i 1
H 1 . ; P i H [ T R 11 SRR S + N S \L
S— i [ " - T -
I N AT D st ¢ T ] ] —]

TimeBudget

AutoBrake

2 3 40 0 W 20 2 o 5 W 1 @m0 2 4 B 0D 05 1 15 2 W0 40 B B
Lane TrafficDensity Repetition Load EyesOfRoad Age

Figure 4.5: Correlation between explanatory variables.

Ajresuljjooin €'t



4 Modeling Take-Over Performance Using Regression Analysis

Methods of Reducing Collinearity

The collinearity in the data has been reduced by combining TimeBudget and AutoBrake.
The main effect of the automated brake maneuver is the extension of the TB. This
extension is added to the TimeBudget assuming a completely automated brake application
of 1.8 seconds, and the explanatory variable AutoBrake is removed from the data-set.
A TOR of 5 seconds prior to the limit with an automated braking that adds 1 second
to the TimeBudget is treated like a TOR with a 6-seconds TB from the start. In this
way, possible effects arising due to other consequences of AutoBrake than an additional
TB are neglected, but the models gain in validity and reliability due to a significant
reduction of collinearity. Thus, AutoBrake could induce a more urgent warning and
therefore quicker responses (Gold et al., 2014), but it did not show significant effects
on GazeReactionTime in the corresponding dynamic driving simulator study (Gold et al.,
2014), and an integration of AutoBrake into TimeBudget appears to be reasonable and
completely legitimate, especially as the TimeBudget did not show strong effects in the
experiment.

o
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Figure 4.6: Correlation between TimeBudget and the other explanatory variables with
AutoBrake included in TimeBudget.

Evaluation of Remaining Collinearity

The remaining correlations above the 0.5 threshold that should be considered as a
possible source of multicollinearity are TimeBudget & Repetition (r = .62) and Load &
Repetition (r = .58). Both are most likely caused by the permutation of the variables, but
the magnitude of the correlations is not regarded as severe for the modeling process, as
some authors suggest significantly higher thresholds of 0.7 or 0.9 (Mason & Perreault,
1991). Regarding the VIF score (Table 4.4) of the resulting explanatory variables, which
is considered “an overall indication of collinearity” (Belsley et al., 1980, p. 93), the
TimeBudget, Repetition, and Load show slightly increased values. Rules of thumb suggest
5to 10 (Montgomery & Peck, 1992) as a threshold for the indication of relevant collinearity.
None of the VIF of the current data-set comes even close to this threshold, which is why
multicollinearity is not considered to be an important influencing factor for the following
regression analysis, but is still kept in mind for the subsequent interpretations and
discussion of the models.

Table 4.4: VIF of variables with AutoBrake included in TimeBudget.

TimeBudget Lane Traff.Dens. Repetition Load EOR Age
VIF 2.333 1.015 1.144 2.511 1.702 1.581 1.227
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4.4 Regression Equations

4.4 Regression Equations

Below, the different regression equations' are listed, the process of setting up the
equations is described, followed by a short discussion of parameters and the resulting
model. In most cases, finding the regression equations and choosing the appropriate
regression method is an iterative process (Montgomery & Peck, 1992) that should be
explained, which is why preliminary results as steps toward the final model are detailed
in this chapter as well. Some general assumptions were made when setting up the
equations, which were derived from perception and cognition theory (Section 2.2) and
take-over research (Section 2.6).

Assumptions:

e Skill levels and training quicken processing speed, response selection and response
execution. The corresponding factor Repetition, similar to the theory of learning
effects, is assumed to follow a logarithmic trend (Buck, 2006), with fast improve-
ments at the beginning and a flattening, converging behavior with an increasing
level of training.

e The combination of experience, training, and age effects leads to an exponential
(quadratic) influence of the factor Age on performance. Reaction times are known
to be age-dependent (Hohne, 1974; Kovac, 1969; Welford et al., 1980) and do
not show a linear behavior, as young as well as elderly persons generate longer
reaction times compared to persons at an age of between 20 and 40 years (Kovac,
1969; Hdhne, 1974). A quadratic influence of the age factor is also in line with the
main-accident-perpetrator statistic in road traffic, with higher rates of young and
elderly drivers, and a minimum at approximately 45 years (Statistisches Bundesamt,
Wiesbaden, 2012).

e The Lane factor with its three manifestations right (1), center (2) and left (3) is
initially considered quadratic, to ensure a fit through all three data points.

e The TrafficDensity influences take-over performance by extending the perception
and response selection processes (Figure 2.3).

e The Load and EyesOffRoad factors influence take-over performance in accordance
with attention and resource theory, and arousal (Section 2.2).

e The take-over is characterized by a series of parallel processes, which can be
addressed by additive regression models (unlike in the modular additive system).

4.4.1 Gaze Reaction Time

The GazeReactionTime (tg) is the first reaction shown by participants after the TOR and
measured by the first gaze directing away from the non-driving-related task. Therefore,

'The calculations were performed in MATLAB R2015b. The code (Appendix D) was based on source
code of Javensius Sembiring from the Institute of Flight System Dynamics of the Technical University of
Munich, and might still include minor parts of the original code and structure.
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4 Modeling Take-Over Performance Using Regression Analysis

tr is only defined if participants are engaged in a visually distracting task (EyesOffRoad
=1). The data-set was subdivided regarding visual distraction, and only those take-overs
were considered for modeling ¢ in which participants were actually engaged in a visually
distracting task, namely SuRT and Text. This leads to a restricted data-set of 378 take-
over situations and a reduced variety of tested explanatory variables. Consequently,
TrafficDensity has the sampling points 0 and 30 vehicles/km and Age varies between 20
and 57 years.

Setting up the Regression Equation for Gaze Reaction Time

By definition, the GazeReactionTime can only be dependent on predictor variables that
do not emerge from the traffic situation, as GazeReactionTime is measured before the
first gaze to the scenery takes place. This is not true for the second and the following
take-overs. Some variables, like the TimeBudget, are kept constant for the participants,
wherefore for example the urgency arising out of the limited TB can influence subsequent
take-overs. For this reason, such situational parameters have to be included in the model,
as significant variance may emerge due to this effect. For TrafficDensity, there are the two
sampling points of 0 and 30 in the relevant data-set, while 30 vehicles/km solely appear in
one experiment and within the experiment only once for each of the participants. The high
traffic condition could therefore not be anticipated, and TrafficDensity is not considered in
the regression. This is not the case for visually monitoring participants (whose reactions
cannot be considered by the gaze reaction) and TrafficDensity could indeed influence
the reaction time. This is brought up for discussion but cannot be explained by the
current data. Lane was varied for the individual subjects, is therefore also not likely to be
anticipated and is neglected for the model. The other remaining variables are kept in the
equation and can be reasonably expected to influence ti. The TimeBudget represents
the urgency of a take-over and thus motivates faster reactions. The Repetition of the
take-over is included, as Krinchik (1969) showed that simple reaction times decrease
with the probability of a signal and Repetition also represents relevant learning effects.
The resulting regression equation is given in Equation 4.15.

tR = BO + BllTimeBudget + BQ In IRepetition + 63ILoad + 54(65 + IAge)2 (41 5)

Discussion of Parameters for Gaze Reaction Time

Table 4.5 shows the estimated g; including the standard error, t-statistics, p-values and
effect sizes. The explanatory variables TimeBudget, Load and Age indicate a significant
influence on the model in the expected direction. Load and a long (less critical) Time-
Budget increase GazeReactionTime, while the shortest GazeReactionTime occurs with
participants of medium Age, similar to simple reaction times in literature (Kovac, 1969).
Repetition does not show significant effects. It should be remembered that the predictor
Load only has two sampling points (SURT & Text) in this model and that the Text task was
only part of one of the experiments. Results should therefore be interpreted carefully. The
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Table 4.5: Coefficient estimates for GazeReactionTime.

Coef.  Expl. Var. Est. SE tStat p-Value Pearsonr Cohen'sd
Bo - .228 .039 5.835 <.001 210 429
51 TimeBudget .028 .007 3.822 <.001 139 .281

B2 Repetition -.013 011 -1.128 .260 .041 -.083
B3 Load .030 .010 2.891 .004 .106 212
B4 Age .0002 .0001 2.716 .007 .099 .200
Bs Age -32.940 2.025 -16.264 <.001 513 -1.195

final regression equations with the reduced set of predictors are given in Equation 4.16
and Equation 4.17

Resulting Regression Equation for Gaze Reaction Time

lr = 60 + BIITimeBudget + BQILoad + 63(54 + IAge)2 (41 6)
tr = 0.249 4 0.023 * IrimeBudger + 0.026 % I1pqq + 1.81 % 10 % (1440 — 32.914)?
(4.17)

Discussion of the Resulting Model for Gaze Reaction Time

Figure 4.7 shows the fitted and measured values and the .95 confidence interval, including

variance of both model and data. With }_%2:.109, the model does not perform much better
than predicting the mean of all reaction times, regardless of the predictor variables. The
model does not add much value for predicting the GazeReactionTime to a TOR. Figure 4.8
displays the contribution of the different explanatory variables to GazeReactionTime.
GazeReactionTime is modeled by a constant fraction of 0.25 seconds, plus the contribution
of the influencing factors. Consequently, Load (only SURT and Text could be considered)
slightly increases GazeReactionTime in a magnitude of up to an additional 0.05 seconds.
The same is true for the TimeBudget (up to 0.07 seconds), and the contribution of
the factor Age varies between 0 and 0.04 seconds, with a minimum of 3, = 33 years,
which matched the observations made in simple reaction-times research. It has to be
emphasized that regarding Age, only data from persons between 20 and 57 could be
used for the modeling with very few participants being 40 years and older. The model
is therefore mainly fitted for younger drivers, and the further increase of reaction times
above 57 years suggested by Figure 4.8 was extrapolated. It is not validated and likely
not to match GazeReactionTime for elderly persons.

The normal probability plot of residuals (Figure 4.9, left) shows only few deviations from
the normal distribution, indicating a spread that is a little higher than expected. Regarding
Cook’s Distance (Figure 4.9, center), some values stand out. Considering the highest
six values, we see outliers in both directions: a high GazeReactionTime of 1.0, 0.92 and
0.88 seconds, as well as very low GazeReactionTime of 0.08, 0.12 (age=50) and 0.40
seconds (age=57). Video analysis did not show unusual behavior of participants with a
high GazeReactionTime. With regard to the very small GazeReactionTime values, it cannot
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4.4 Regression Equations

be ruled out that those quick glances were random control glances to the scenery rather
than reactions to the TOR. As the explanatory variables are not continuous but disjoint,
the plot of residuals (Figure 4.9, right) shows that estimations are also disjoint as only a
limited measured combination of predictors’ sampling points exist. Besides, the residuals
seem to be equally distributed and the quality of prediction is not dependent on the
magnitude of the predicted GazeReactionTime.

Summary: In total, GazeReactionTime varies within a comparatively narrow distribution
(for normal distribution: 1 = .469s; 0 = .114s) with a mean of 0.47 seconds, which
calls into question the necessity of a more detailed and elaborate modeling approach.
According to the model, the SuRT leads to reactions that are 0.05 seconds faster than
those with the Text task. With a similar magnitude, a TB of 5 seconds decreases the
GazeReactionTime by 0.07 seconds when compared to a TB of 7.78 seconds. The fastest
reactions are shown by participants between 28 and 38 years of age, whereas younger
and older drivers generate a longer (by up to 100 ms) GazeReactionTime.

4.4.2 Take-Over Time

The Take-OverTime was measured between the TOR and the start of the maneuver,
defined by the point at which a steering wheel angle of two degrees or a braking pedal
position of 10% is exceeded (cf. Subsection 2.6.4.1).

Setting up the Regression Equation for Take-Over Time

The Take-OverTime, as the moment when the participants start their maneuver, includes
processes of perception and decision-making, which is why all explanatory variables
can be reasonably expected to influence the response. The perception of the situational
parameters is likely to be dependent on drivers’ Age (Cantin et al., 2009; Bao & Boyle,
2009), the current Load of the driver (Makishita & Matsunaga, 2008), and the complexity
of the situation due to limited resources (cf. Wickens, 2008a), represented in the
studies by TrafficDensity and Lane. If the drivers have more time to react to the TOR
(predictor TimeBudget), they intervene later (Gold, Dambock, et al., 2013). On the other
hand, if the subject’s eyes are on the road prior to the TOR (EyesOffRoad =0), this
could expedite perceptional processes, as some knowledge of the situation could have
already been perceived. Additionally, with more training (Repetition), decision-making
may move from knowledge-based to rule-based behavior (Rasmussen, 1983) and thus
shorten the duration of task selection and execution. TimeBudget is initially considered
linear and based on an exploratory data analysis (cf. Figure 4.10, left). The influence
of EyesOffRoad and Load are considered linear and Lane is considered exponential,
as described in Figure 4.4 and Section 4.4. The exploratory data analysis revealed
that the Take-OverTime decreases with very low and very high TrafficDensity and a
maximum arises with medium TrafficDensity (cf. Figure 4.10, center). For drivers’ age
(cf. Figure 4.10, right), the analysis confirmed the assumption of a quadratic influence of
age, with the fastest take-over at medium Age, while young and elderly drivers initiate
their maneuvers later. Therefore, for TrafficDensity and Age, exponential behavior is
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Figure 4.10: Estimated order of selected explanatory variables for modeling
Take-OverTime, based on a selection of comparable data.

assumed for the modeling. Repetition as a representation of the learning effect is
considered logarithmic for the previously mentioned reasons. Equation 4.18 summarizes
the explanatory variables in form of the initial regression equation.

tT - 60 + ﬁlITimeBudget + 52 (53 + ]Lane)2 + 64(55 + ITTafficDensity)2 + ...

(4.18)
et ﬁﬁ In [Repetition + 57IW0rkload + 58[EOR + 69 (ﬁlOIAge>2

Discussion of Parameters for Take-Over Time

Table 4.6 shows the estimated g; including standard error, t-statistics, p-values, and effect
sizes. The explanatory variables TimeBudget, Lane, TrafficDensity, Repetition, and Age
indicate a significant influence on the model. Load and EyesOffRoad are not significant
and therefore excluded from the resulting regression equation.

Table 4.6: Coefficient estimates for Tuke-OverTime.

Coef.  Expl. Var. Est. SE tStat p-Value Pearsonr Cohen'sd
Bo - 2.010 .369 5.452 <.001 196 401
b1 TimeBudget .351 .055 6.387 <.001 .228 469
B2 Lane -.181 .082 -2.202 .028 .081 -.162
B3 Lane -2.012 132 -15.283  <.001 490 -1.123
Ba TrafficDensity ~ -.005 .001 -7.377  <.001 .262 -.542
Bs TrafficDensity  -15.912 498  -31.925 <.001 761 -2.346
Be Repetition -.588 .075 -7.813 <.001 276 -574
Br Load -.046 .038 -1.228 .220 .045 -.090
Bs EyesOffRoad -.125 .085 -1.487 142 .054 -.108
Bo Age .0001 .0002 .616 .538 .023 .045
B1o Age -55.561 22.415 -2.479 .013 .091 -.182
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4.4 Regression Equations

Resulting Regression Equation for Take-Over Time

tT = 60 + BlITimeBudget + 62(ﬁ3 + ILane)2 + ..

(4.19)
oo+ Ba(Bs + IrrasficDensity) + Bs In Ipepetition + B7(Bs + Lage)?

tr = 1.826 + 0.378 * IrimeBudget — 0-168 % (Irane — 2.030)% — ...
coe = 0.005 * (Irraf ficDensity — 15.801)% — 0.630 * In I repetition + --- (4.20)
oo+ 2.00% 107 % (1490 — 47.616)*

Discussion of the Resulting Model for Take-Over Time

The model shows a good explanation of variance }_%2:.347, with a RMSE of 0.865
seconds. The two parameters Load and EyesOffRoad that were expected to influence the
Take-OverTime did not show significance in the regression analysis, although in the case
of Load, there were significant differences in the experiments, for example in Experiment
5 (Subsection 3.3.5, (Gold, Berisha, & Bengler, 2015)). The effect may be covered
because the Take-OverTime is dependent on the subsequent maneuvering and the
decisions of the driver for a specific maneuver, which is why the driver contributes a large
variance to the data. Collinearity (cf. Section 4.3) to Repetition could also cover the effect
of Load on Take-OverTime, although multicollinearity was not considered to seriously
influence the modeling (Section 4.3). The significant explanatory variables show small to
medium effect sizes and reasonable characteristics. Consequently, as expected, a longer
TimeBudget leads to later interventions (Gold, Dambock, et al., 2013), and the number
of Repetition reduces the Take-OverTime. The contributions of the different explanatory
variables are shown in Figure 4.11. TrafficDensity causes a reduced Take-OverTime for
very low and very dense traffic. The longest Take-OverTime is estimated for between
10 and 20 vehicles/km, probably because consideration of an evasive maneuver is the
most elaborate, with medium TrafficDensity leading to an extended decision-making
process. The logarithmic character of Repetition indicates a converging in the range
of >30 repetitions, based on extrapolation. This saving of time due to training is also
responsible for the comparatively short Take-OverTime in the group with a TB of 7.78
seconds (Figure 4.12, left), as the Repetition variable varies between 9 and 20 in this
specific experiment because of additional training in the familiarization drive, which
results in a Take-OverTime that is 1 to 1.5 seconds shorter. As a negative correlation
between TimeBudget and Repetition became apparent in Section 4.3, both contributions
to Take-OverTime may vary in magnitude and are possibly smaller than indicated by the
model. Statements regarding the magnitude of time-savings due to training have to be
treated with care. The explanatory variables Lane and Age have minor (approx. 0.2
seconds) influence on the Take-OverTime. Taking over vehicle control in the center lane
slightly increase Take-OverTime, possibly because of more potential maneuvers and thus
longer choice reaction times (Card et al., 1986). With Age, the Take-OverTime is slightly
higher with young and elderly drivers and shortest with drivers between 40 and 60 years
of age, which is in line with the findings from the GazeReactionTime model.
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The normal probability plot (Figure 4.13, left) indicates a right (positive) skewed distri-
bution, as it is known from human reaction time. Large positive residuals and thus high
values of Tuke-OverTime occur more often than expected in normally distributed data.

Cook’s Distance (Figure 4.13, middle) reveals several data points with an overproportional
influence on the model. The outliers are late interventions under the presence of medium
to high traffic densities that led to collisions. Considering the six largest values of Cook’s
Distance, one driver changed lanes very late (without applying the brake), four drivers
intervened very late and were subsequently involved in a crash, and one driver braked
very quickly while the model assumed a rather late intervention. None of them can
reasonably be excluded based on video analysis. The right-skewness of the distribution
and the influential long Take-OverTime point to a rather overestimating behavior of the
model, which should be considered when interpreting the data. From a controllability
perspective, this bias may be acceptable, as overestimating drivers’ Take-OverTime would
lead to a safer design of the system. The plot of residuals vs. fitted values (Figure 4.13,
right) shows a slightly coned shape, indicating that variance is lower in situations with a
very small predicted Take-OverTime. It further emphasizes the right-skewed distribution,
as there seem to be very few outliers on the bottom of the diagram and therefore a
border on the left side of the distribution, which reasonably accounts for participants not
intervening more quickly than approximately within one second.

Summary: The factors TimeBudget, Repetition, and TrafficDensity are the main predic-
tors for the Take-OverTime. While elaborate training (Repetition) leads to a Take-OverTime
that is more than one second faster and therefore to a better take-over performance,
a medium traffic density as well as longer TBs delay the Take-OverTime by more than
one second each. The Lane and Age have minor influence on the Take-OverTime, with a
slightly slower Take-OverTime in the center lane and the fastest Take-OverTime at about
48 years of age.

4.4.3 Maximum Lateral Acceleration

The maximum lateral acceleration (Lat.Acc.), as a measure for take-over quality, was
assessed as the peak absolute value of lateral accelerations of the ego-vehicle in the
section between the TOR and about 150 meters after passing the obstacle. The exact
section is dependent on the particular experiment and its design.

Setting up the Regression Equation for Lateral Accelerations

Similar to the Take-OverTime (Subsection 4.4.2), all explanatory variables can be rea-
sonably expected to affect Lat.Acc. Restricting the available time for a lane-change
maneuver by shortening the TimeBudget leads to higher accelerations, as the same
maneuver has to be performed within less time by increasing lateral speed and thus ac-
celerations. Additionally, TrafficDensity is expected to have a major influence on Lat.Acc.,
as the lane-change behavior of the driver and therefore accelerations should depend
on the lane occupancy of the target lane. Figure 4.14 depicts the estimated order of
selected explanatory variables, based on a pre-evaluation of parts of the data-set. The
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Figure 4.14: Estimated order of selected explanatory variables for modeling Lat.Acc.,
based on a selection of comparable data.

same behavior for Lat.Acc. can be seen as it likewise emerged for the Take-OverTime
(cf. Figure 4.10). Therefore, the initial modeling approach and equation are identical to
Equation 4.18. Preliminary regression results, not separately presented here, indicate a
linear rather than quadratic behavior of the Lane variable, which is why this simplification
is introduced to the model, leading to Equation 4.21.

tT = BO + 51[TimeBudget + 52[Lane + B4(ﬁ5 + [TrafficDensity)2 + ..

. (4.21)
et 56 In [Repetition + B7IWorkload + BSIEOR + 59(5101Age)

Discussion of Parameters for Lateral Accelerations

Table 4.7: Coefficient estimates for Lat.Acc.

Coef. Expl. Var. Est. SE tStat p-Value Pearsonr Cohen’sd
Bo - 5.178 .627 8.266 <.001 291 .607
b1 TimeBudget -.219 .094  -2.323 .020 .085 -171
B2 Lane .245 .082 3.003 .003 110 221
B3 TrafficDensity ~ -.007 .001  -6.066  <.001 218 -.446
B4 TrafficDensity -14.487 460 -31.505 <.001 757 -2.315
Bs Repetition -.278 122 -2.289 .023 .083 -.167
Be Load -.074 .064  -1.152 .250 .042 -.085
Bz EyesOffRoad -.087 146 -0.596 551 .022 -.044
Bs Age .0008 .0003 2.534 .012 .093 .186
Bo Age -43.720 2412 -18.128 <.001 .554 -1.332

Table 4.7 shows the estimated j3; including standard error, t-statistics, p-values, and effect
sizes. The predictor variables TimeBudget, TrafficDensity, Repetition and Age indicate a
significant influence on take-over quality. Load and EyesOffRoad are not significant and
therefore excluded from the regression equation. Again, as Load showed correlations to
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Repetition, this collinearity may have covered parts of the effect of Load on the response
variable.

Resulting Regression Equation for Lateral Accelerations

Qlat = 60 + BlITimeBudget + 62ILane + ...

(4.22)
.t BS (64 + ]TrafficDensity)Q + 65 In IRepetitz'on + BG(ﬂ? + IAge)2

a1t = 9.093 — 0.208 * ]TimeBudget +0.251 = ]Lane -
coe = 0.007 % (Iryaf ficDensity — 14.500)% — 0.341 % In I peperition + --- (4.23)
o+ 9.483 % 107 % (I a0 — 43.071)?

Discussion of the Resulting Model for Lateral Accelerations

The model shows a rather low explanation of variance (}_22:.199) with a RMSE of
1.49m/s?. The contribution of all explanatory variables considered varies by at least
0.5m/s? within the considered range, while TrafficDensity (up to 1.7 m/s?) and Age (up
to 1.2m/s?) show the largest contribution to Lat.Acc. (cf. Figure 4.15). The progres-
sion of TrafficDensity and Age proved a quadratic trend as expected and are similar to
Take-OverTime. The lowest values occur with medium TrafficDensity (14.5 vehicles/km)
and Age (43 years). For Age, this is again in accordance with age effects in simple
reaction time research. The other variables, namely TimeBudget and Repetition, are also
plausible regarding their progression and magnitude. Lane, which has an unexpected
linear behavior, shows increasing accelerations from the right to the left lane with accel-
erations that are approximately 0.5m/s? larger in the left lane. For this characteristic
of Lane, no explanation in literature could be found. Probably, passing the obstacle on
the right side is less common and drivers are not as used to it as to passing on the left
(for German drivers, who are not allowed to pass on the right on highways), which is
why accelerations may differ depending on the lane. Figure 4.16 also indicates the large
influence of TrafficDensity on Lat.Acc., which fits the expectations of occupation of the
target lane being an important factor when modeling Lat.Acc..

Similar to the Take-OverTime, the normal probability plot for Lat.Acc. (Figure 4.17, left)
shows a distinct positive skew, also apparent when plotting the residuals vs. the fitted
values (Figure 4.17, right). There are very few values below 2m/s?, resulting from
the fact that drivers need a certain minimum acceleration to change lanes. In contrast,
the distribution shows many measures with high accelerations. Accordingly, outliers
identified by Cook’s Distance (Figure 4.17, middle) are data-points with unexpectedly
high Lat.Acc. Just like the model for Take-OverTime, this indicates that the model rather
overestimates the mean lateral accelerations, originating from the skewed distribution
and over-proportional influence of outliers in OLS regression.

Summary: The factors TimeBudget, Repetition, TrafficDensity, Age, and Lane are all
relevant predictors for Lat.Acc. While elaborate training (Repetition) and longer TBs lead
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Figure 4.17: Normal probability plot of residuals (left), Cook’s Distance (middle) and plot
of residuals vs. fitted values (right) for Lat.Acc.
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4.4 Regression Equations

to 0.5 to 1m/s? lower Lat.Acc. and thus to a better take-over quality, a medium traffic
density generates about 1.5m/s? higher Lat.Acc., with a maximum at a TrafficDensity
of 14.5 vehicles/km. The factor Age, similar to the GazeReactionTime and Take-OverTime,
showed an improved take-over performance at a medium driver age (43 years of age),
with higher accelerations by approximately 1m/s* for young and elderly drivers. Addi-
tionally, the Lane also proved to influence the Lat.Acc., with increasing accelerations from
the right to the left lane (magnitude of 0.5m/s?).

4.4.4 Maximum Longitudinal Acceleration

Similar to lateral accelerations, the maximum longitudinal acceleration (Long.Acc.) was
measured as the peak absolute value of all longitudinal, negative accelerations (braking)
of the ego-vehicle in the section between the TOR and about 150 meters after passing
the obstacle.

Setting up the Regression Equation for Longitudinal Accelerations

Braking and with it Long.Acc. can be influenced by different explanatory variables. A
shorter TimeBudget may lead to a lack of time for the driver’s reaction and to a brake
application for gaining additional time. Although this effect did not show significance
during the experiments (cf. Gold, Dambock, et al., 2013), it is considered a (linear)
factor in the regression, as this analysis considers all experiments and, similar to a
meta-analysis, could reveal effects that do not emerge in one single experiment. The
TimeBudget may also be exponential (cf. Figure 4.18), but as no other evidence could
be derived from literature or mental models and Figure 4.18 consists of a rather small
selection of data points, TimeBudget remained to be modeled as linear. Two different
types of brake responses interfere in this model, as there are indications that drivers
brake in order to gain time for the decision-making process under the presence of traffic
(Gold et al., 2014), and, on the other hand, drivers brake in order to stop the vehicle
because it is impossible to change to blocked lanes. As driver’s age is known to impair
the ability to switch tasks (Kray & Lindenberger, 2000) and processing speed (Salthouse,
1991), elderly drivers are expected to show intensified braking in order to compensate for
possible limitations, as also indicated by recorded experimental data (Kérber et al., 2016).
According to the data analysis (cf. Figure 4.18), Age and TrafficDensity are considered
exponential in the regression equation. Following the same argumentation of limited
cognitive resources and limited time span for response selection and execution, several
other explanatory variables could influence longitudinal accelerations. One of these is
the current Lane, as drivers have more possible solutions (brake / pass left / pass right)
to the TOR in the center lane. Therefore, Lane is considered an exponential factor for
modeling Long.Acc.Load due to a non-driving-related task and with EyesOffRoad could
further exacerbate the take-over and likewise affect Long.Acc., which is why both variables
are considered (as linear terms, cf. Section 4.2) in the equation. On the other hand,
experience (Repetition logarithmic) could shorten decision-making, possibly making it
less necessary to brake in order to gain time for the take-over process. Preliminary
regression analysis indicated a linear influence of Lane, which is why Lane is reduced
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Figure 4.18: Estimated order of selected explanatory variables for modeling Long.Acc.,
based on a selection of comparable data.

to a linear term. The resulting regression equation is similar to the initial equation for
modeling Lat.Acc. (Equation 4.21).

Discussion of Parameters for Longitudinal Accelerations

The variables Lane, Load and EyesOffRoad do not show a significant influence on the
model and are excluded from the model approach, leading to the resulting Equation 4.24
and Equation 4.25.

Table 4.8: Coefficient estimates for Long.Acc.

Coef. Expl. Var. Est. SE tStat p-Value Pearsonr Cohen’sd
Bo - -15.105 1.436 -10.520 <.001 .360 -773
b1 TimeBudget 1.254 224 5.607 <.001 .202 412
B2 Lane 178 194 .922 .357 .034 .068
B3 TrafficDensity ~ -.005 .003 -2.128 .034 .078 -.156
B4 TrafficDensity ~ -2.841 5.319 -.534 .593 .020 -.039
Bs Repetition 1.300 .290 4.486 <.001 .163 .330
Be Load -.065 153 -.424 672 .016 -.031
Br EyesOffRoad -.451 347 -1.300 194 .048 -.096
Bs Age .001 .0008 1.643 101 .060 21
Bo Age -61.744 11901 -5.188 <.001 187 -.381

Resulting Regression Equation for Longitudinal Acceleration.

Along = BO + 61[TimeBudget + 62 * (ﬁS + [T'rafficDensity)2 + ...

9 (4.24)
et Bll In [Repetition + ﬂ5(56 + [Age)
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Qlong = —15.598 + 1.368 * Irimenudger — 0.007 % (Irraf ficDensity — 5-394)% + ...

. (4.25)
o 4 1.226 % In Tpeperition + 0.0014(1 450 — 58.355)

Discussion of the Resulting Model for Longitudinal Accelerations

The Long.Acc. is modeled by an offset of -15.3m/s?, while TimeBudget, Repetition and
Age contribute positive figures and TrafficDensity negative ones. The direction of predic-
tors is as expected, as training (Repetition) and larger TBs lead to lower accelerations,
whereas TrafficDensity intensifies braking. Similar to previous models, young and elderly
drivers show slightly higher absolute values, with a minimum of Long.Acc. at 58 years of
age.

The model seems to explain large parts of the variance in the data (}_%2:.345), but this
seems to be the case predominantly in very challenging or rather uncritical situations,
where the model correctly predicts very high or very low longitudinal accelerations, re-
spectively. Considering Figure 4.20, three classes of situations can be identified: those
situations with low demand (left), where very little braking occurred, situations that are
very challenging (right), where almost every driver showed full brake applications, and
situations with medium demand (middle) where full braking as well as an absence of
brake application is observed at the same time, within similar scenarios. The latter
induces much variance even under constant preconditions, and is therefore difficult to
predict based on the selected predictors. Here, while predictors are basically constant,
Long.Acc. varies within the full range of 0 to -11 m/s®. This poorer prediction leads to
the comparatively high RMSE of 3.53 m/s>. It has to be mentioned that modeling mean
values has to generate high residuals with this bimodal distribution, as it models mean
brake applications of many trials, but no real brake accelerations of single trials. Insuffi-
cient representation of accelerations in the driving simulation may increase bimodality of
the distribution and also act a part and increase the number of severe braking maneuvers
(McGehee, Mazzae, & Baldwin, 2000). For this reason, the presented model approach
may lead to better results and less deviation when predicting performance on the road in
real vehicles.

In the distribution of brake accelerations, most weight is located on the ends of the
distribution due to the cumulative appearance of full and no-brake applications. This is
also the case in the normal probability plot and the plot of residuals vs. fitted values
(Figure 4.21, left & right). The normal probability plot indicates a bimodal distribution
and two clear borders can be identified in the plot of residuals vs. fitted values, namely
of no brake application (upper limit) and full brake application (lower limit). When
calculating Cook’s Distance, six values stand out, among them one measure where no
braking occurred, although the situation was very challenging and five measures from
participants who were 79 years of age, and who showed severe braking, underestimated
by the model and indicating that the factor of age is under-represented when modeling
the performance of elderly persons. This is supported by the results of Experiment 6
(Subsection 3.3.6), where higher Long.Acc. were measured in the elderly group.
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Figure 4.20: Estimation and measures of Long.Acc. TB = Time Budget; TD = Traffic

Density.
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Figure 4.21: Normal probability plot of residuals (left), Cook’s Distance (middle) and plot
of residuals vs. fitted values (right) for Long.Acc.
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4.4 Regression Equations

Summary: The factors TimeBudget, TrafficDensity, Repetition, and Age influence the
Long.Acc. A smaller TimeBudget as well as a higher TrafficDensity lead to a up to 5m/s?
higher Long.Acc. In a similar magnitude, elaborate training of take-over scenarios (Repeti-
tion) reduces the Long.Acc. Elderly and middle-aged drivers induce brake accelerations
that are up to 3m/s? higher when compared to young drivers. The model’s performance
is impaired by a non-normal, bimodal distribution of the Long.Acc. measures.

4.4.5 Minimum Time-to-Collision

The TTC was measured as a minimum of all TTC values of the ego-vehicle in the section
between the TOR and about 150 meters after passing the obstacle. Collisions are
represented by a TTC of zero, regardless of whether the participant collided with the
obstacle or with vehicles in the neighboring lanes.

Setting up the Regression Equation for Time-to-Collision

The TTC mathematically depends on the TimeBudget, as in the moment of the TOR, the
TTC equals the TimeBudget and decreases until participants brake or change lanes. It is
evident that the TimeBudget influences the minimum TTC and is therefore considered
(as a linear factor, cf. Figure 4.22) in the regression equation. Like the other take-over
quality metrics, TTC is expected to depend on cognitive processing speed and quality of
response execution. Therefore, all explanatory variables could impair the TTC, namely
Load, EyesOffRoad, Lane, Age, TrafficDensity, and Repetition. The latter is considered to
be logarithmic, while Age and TrafficDensity showed exponential behavior in preliminary
data analysis (Figure 4.22). A first regression revealed a rather linear influence of Age,
which is why this factor is considered as such in the equation. Lane is considered to
be exponential for already mentioned reasons (Section 4.2). The remaining Load and
EyesOffRoad are considered linear for similar reasons as depicted in previous models.
See Equation 4.26 for the resulting regression equation.
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Figure 4.22: Estimated order of selected explanatory variables for modeling TTC, based
on a selection of comparable data.
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trre = 50 + 51[TimeBudget + 52(63 + [Lane)2 + ..

(4.26)
et 54(65 + ITrafficDensity)2 + 66 In IRepetition + 67ILoad + ﬁSIEOR + BQIAge

Discussion of Parameters for Time-to-Collision
Most of the explanatory variables show a significant influence on the model (cf. Ta-

ble 4.9). Only EyesOffRoad fails the criteria and is excluded from the model. The resulting
regression equations are presented in Equation 4.27 and Equation 4.28.

Table 4.9: Coefficient estimates for TTC.

Coef.  Expl. Var. Est. SE tStat p-Value Pearsonr Cohen’sd
Bo - -3.233 453 -7.131  <.001 .253 -.524
B1 TimeBudget .543 069 7917  <.001 279 .582
Ba Lane -.124 103 -1.208 .228 .044 -.089
B3 Lane -1.499 467 -3.209 .001 17 -.236
Ba TrafficDensity .002 .0008 2.763 .006 101 .203
Bs TrafficDensity -25.882 4.565 -5.670 <.001 .204 -417
Be Repetition 418 .094 4457 <.001 162 327
Br Load 74 .045 3.868 <.001 41 .284
Bs EyesOffRoad -.039 106 -.372 710 .014 -.027
Bo Age .008 .003 2.778 .006 102 -.204

Resulting Regression Equation for Time-to-Collision

lrre = 60 + BllTimeBudget + 62(&3 + ]Lane)2 + ...

(4.27)
et B4(ﬁ5 + [TrafficDensity>2 + BG In [Repetition + ﬁ?ILoad + BBIAge

tTTC = —3.326 + 0.554 * ITimeBudget — ...
e — 0123 % (Ipane — 1.5)* + 0.0021 * (I7yaf ficDensity — 26.420)% + ... (4.28)
coo + 0.413 % In T pepetition + 0175 % I1paq + 0.008 % 144,

Discussion of the Resulting Model for Time-to-Collision

The TTC model explains half of the variance in the data (}_%2:.509) with quite a low
RMSE of 1.081 seconds. The variables TrafficDensity, Repetition, TimeBudget, and Age
influence the TTC as expected. A high TrafficDensity leads to a shorter and therefore
more critical TTC, converging for a TrafficDensity of more than 20 vehicles/km. With the
current model, extrapolation for higher traffic densities of more than 30 vehicles/km would
lead to a re-increase of the TTC, which is not reasonable. A more meaningful way would
be to substitute the exponential term by a 1/x term, introduced in Equation 4.29. This
way a re-increase of the TTC above 30 vehicles/km is prevented and the progression of
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Figure 4.24: Estimation and measures of TTC. TB = Time Budget; TD = Traffic Density.
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Figure 4.25: Normal probability plot of residuals (left), Cook’s Distance (middle) and plot
of residuals vs. fitted values (right) for TTC.
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TrafficDensity below 30 vehicles/km remains similar. Training (Repetition) and a longer
TimeBudget increase the TTC, while the TimeBudget has a strong influence on the TTC
and a one second longer TimeBudget leads to a TTC that is almost one second longer
within the considered range. This underlines the importance of the TimeBudget for safety
in take-over scenarios. Age, in accordance with Korber et al. (2016), induces more brake
reactions and thus a longer TTC. The Lane shows a slightly shorter TTC for the left lane,
compared to the middle and right lane, which would fit the slightly higher Lat.Acc. in
the left lane, identified when modeling Lat.Acc. What is unexpected is the influence of
Load, as tasks considered to be more complex actually lead to a longer TTC. This is
in accordance with the preliminary data analysis in Figure 4.4 and will be discussed
separately in Section 4.7.

trre = —3.77T1 + 0.554 % IrimeBudger — 0.131 % (Ipane — 1.532)% + ...
oo + 18112 % (Iraf icDensity + 9:497) 7" + 0.408 * In I peperition + --- (4.29)
e+ 0.174 % I1p0q + 0.008 * L4y,

The normal probability plot of residuals indicates an almost perfect normal distribution of
the residuals (cf. Figure 4.25, left). The six data points with the highest Cook’s Distance
are consistently long TTC values. For this reason, the model is influenced by those
outliers and estimates TTC values that are rather too large. Regarding controllability
aspects of the take-over, this should be considered when interpreting the model output,
as too high estimations of for TTC could lead to an underestimation of risk. The residuals
in the plot of residuals vs. fitted values (cf. Figure 4.25, right) are decently distributed
and within normal limits, not suggesting much need for model improvement.

Summary: TimeBudget, Repetition, TrafficDensity, and Age are the main influencing
factors for TTC. A shorter TimeBudget and a higher TrafficDensity evoke a reduction of
TTC with a magnitude of more than one second, leading to a plain increase of risk in the
take-over scenario. Training the take-over (Repetition), however, leads to an increased
TTC and therefore safer take-overs (higher take-over performance). With a rise of driver’s
age, the TTC is also extended (by up to 0.5 seconds), indicating a safer outcome with
older drivers.

4.4.6 Linearization of the Models

Some of the optimization and subsequent methods require linear models, and the
models can be transferred to linear models through data-set transformations. So far,
this was avoided to keep interpretability high, but linearization is inevitable for some
of the following sections. Exponential terms in the model equation can be linearized
according to Equation 4.3. For linearization of the logarithmic Repetition, the data is
transformed by the logarithmic function 2’=1nz. The resulting linearized models are
shown in Equation 4.30 to Equation 4.34. The transformation of the data-set is indicated
by 2 and’ in the equations.
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tr = 0.444 4 0.023 * I7imeBudger + 0.026 % I1o0q — 0.012 % Tyge + 1.807 % 107* I3,
(4.30)

tr = 0.230 + 0.378 * Iimesudger -+ 0.683 % Iane — 0.168 % 12, + ...
..+ 0.165 * [TrafficDensity —0.005 * I%rafficDensity —0.630 * I;%epetition o (431)
o= 0.020 % Lage +2.087 % 107" I3,

Alat = 5.343 — 0.208 x* ITimeBudget + 0.251 * ILane + ...
..+ 0.208 * [TrafficDensity — 0.007 * I%TafficDensity —0.341 = I;%epetition o (432)
o —0.082 % Lyge +9.483 % 107 I3,

Qlong = —10.885 + 1.368 * ITimeBudget +0.074 * ]TrafficDensity BEEER

4.33
.. —0.007 % I7, +1.226 % Iy, — 0.168 x Lage + 0.001 % I3, (4.33)

raf ficDensity epetition

trre = —2.158 + 0.554 * Ipimepudger + 0.369 % Ipgne — 0.123 % 17, —
.. —0.109 * ITrafficDensity +0.002 = I%rafficDensity + . (434)
o+ 0413 % I, + 0.175 * I 1004 + 0.008 * 1 44¢

epetition

4.4.7 Nominal Regression for Crash Probability

Apart from the already mentioned measures for take-over performance, crashes in the
take-over scenarios occurred unintentionally. A crash is the most severe outcome and
can also be considered as a performance or safety metric for take-over scenarios. During
the experiments, different crash types occurred, namely head-on collisions with the
obstacle due to late or insufficient braking and collisions with vehicles in the neighboring
lanes while executing a lane change. There are more conceivable types of collisions,
among them rear-end collisions due to strong braking of the drivers, collisions with static
obstacles in the surroundings, or loss of control while performing a maneuver with no
involvement of other vehicles. It has to be emphasized that a driving simulator is probably
not well-suited to derive absolute values such as crash frequencies. For different reasons,
the number of crashes in similar scenarios may vary in real traffic. The surrounding traffic,
for example, was not cooperative and did not anticipate a possible lane change of the
participant. Nevertheless, crashes are considered to be an important relative predictor
for take-over quality and must not be neglected when modeling take-over performance.

To model crash probability, the dependent variable Crash is introduced. Contrary to
previous measures, Crash is not metric, which is why a different regression method
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applies. Nominal variables, like Crash, can be modeled by Logistic Regressions, pre-
dicting a probability for Crash between 0 and 1. The logistic function that is used for
the regression is shown in Equation 4.35, while ¢ is a linear function considering the
explanatory variables x,, as a linear combination (Equation 4.36).

1
14t

g

(4.35)

Setting up the Regression Equation for Crash Probability

As the predictor variables selected for the modeling approach in this thesis all influence
take-over performance, they can also be reasonably expected to influence Crash, as
longer Take-OverTime, shorter TTCs, and higher accelerations make crashes more likely.
TrafficDensity and Age are considered exponential, Repetition is considered logarithmic
and the other variables TimeBudget, Load and EyesOffRoad linear (cf. Equation 4.37).
Due to the limited permutation within the training data, 28 out of 35 crashes occurred
in the center lane. For this reason, the variable Lane was not considered for modeling
Crash, in order to avoid a biased estimation.

t= 60 + ﬁlITimeBudget + /BQITrafficDensity + ﬁ3[72’rafficDensity + ... (4 37)
v+ BaIpepesition + BsIroad + BeIpor + Brlage + ﬂsfige -

Table 4.10 displays results of the nominal regression. Successively eliminating insignif-
icant factors with small effect sizes leads to the three significant predictor variables
TrafficDensity (p<.001), TrafficDensity * (p=.002) and Repetition (p=.046) in the final
regression equations Equation 4.38 and Equation 4.39.

Table 4.10: Coefficient estimates for Crash Probability.

Coef. Expl. Var. Est. SE tStat p-Value Pear.r Cohen’sd
Bo - 7.994 3.310 2.415 .016 .088 A77
b1 TimeBudget -512 313 -1.637  .102 .060 -.120
B2 TrafficDensity -414 203 -2.039 .041 .075 -.150
B3 TrafficDensity > .009 .007  1.333 .183 .049 .098
Ba Repetition 1.366 .641 2.131 .033 .078 157
Bs Load .104 .465 .223 .824 .008 .016
Be EyesOffRoad -1.064 .885 -1.201 .230 .044 -.088
B7 Age -015 104 -.146 .884 .005 -.011
Bs Age? .0002  .001 210 .884 .008 .015
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Resulting Regression Equation for Crash Probability

1

1+ 650+51mefficDensity+ﬁ21%,.afficDe,mty+/3’31Repemion
1

1 _I_64~108*0~360*1TrafficDensityJFO-OO?*I%

(4.38)

OCrash =

OCrash =

(4.39)

'ra,fficDensity+1'275*1R€P€titi0n

Discussion of the Resulting Model for Crash Probability

Figure 4.26 shows the contribution of the explanatory variables to ¢ and thus (inverted)
to Crash. TrafficDensity and Repetition have a large influence, similar in magnitude, but
not in direction. While Repetition reduces the crash probability, TrafficDensity increases
Crash with a maximum at about 25 vehicles/km, similar to previous models. As only
two predictors determine Crash, the resulting probability can be displayed in a two-
dimensional matrix (Figure 4.27). Higher Crash probabilities are marked in red, lower
ones in green. The values in column one (Repetition = 1) are extrapolations, as there
were no take-overs in the data for which the subjects had not experienced at least one
take-over before the experimental drive. Figure 4.28 shows the estimation and measures
of Crash. For depiction, data was sorted by ascending predicted Crash probability, and
the binomial measure of crash occurrence Crash was averaged over 50 data points to
derive a frequency that can be compared to the model’s predictions. Furthermore, the
Receiver Operator Characteristic (ROC) curve is presented in Figure 4.28. The ROC
curve plots the true positive rate against the false positive rate. A random performance
of the model would be represented by a diagonal line from (0,0) to (1,1), whereas ROC
curves of good models approach the upper left corner. The Area Under the Curve (AUC)
is an important statistical property and “is equivalent to the probability that the classifier
will rank a randomly chosen positive instance higher than a randomly chosen negative
instance” (Fawcett, 2006, p. 872). With an AUC of > 0.9, the model for Crash can be
considered to show high accuracy (Swets, 1988), and the estimated probabilities also fit
the measures.
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Figure 4.26: Contribution of the different explanatory variables to t for estimating Crash
Probability.
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Figure 4.27: Model output for Crash Probability.
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4.5 Model Improvements

The proposed models show restrictions, for example regarding the consideration of
outliers or deviations of residuals from the normal distribution. In the following, possibilities
of facing these limitations are introduced and adapted to the models’ requirements.

4.5.1 Handling Outliers

Ouitliers in the data-set influence the (-estimation and lead to biased OLS predictions.
This can be prevented by excluding outliers (Subsection 4.5.1.1) or using algorithms that
are more robust to outliers than OLS (Subsection 4.5.1.2).

4.5.1.1 Excluding Crashes from Regression

One major source for outliers in the data-set are situations leading to a collision, as
behavior differs in crash and near-crash situations. Additionally, crashes with vehicles in
the neighboring lane lead to a TTC of zero, and those values are treated equally to TTC
values measuring time distance to the obstacle ahead.

Out of 753 take-over situations, 35 crashes occurred. Although excluding those crashes
is reasonable, this only leads to minor changes in the models as listed in Table 4.11. A
division into crash and no-crash models therefore appears disproportionate.

Table 4.11: Model quality with and without(*) crash-situations.

Variable B R* RMSE RMSE* Neow Neooos®
GazeReactionTime .109 .107 0.11 0.11 27 27
Take-OverTime 347 .316 0.87 0.82 69 64
Lat.Acc. 199 197 1.49 1.38 67 64
Long.Acc. 345 352 3.53 3.51 52 50
TTC 509 .484 1.08 1.08 65 62

* Regression without crash-samples. N¢,o is the number of values of
Cook’s Distance D that are larger than 3 times the mean of all D.

4.5.1.2 Robust Regression

As outliers may contain the most interesting sample information (Belsley et al., 1980;
Montgomery & Peck, 1992), they are kept in the regression. In order not to distort the
model by considering outliers, robust regression methods can be applied, which are
more resilient regarding outliers and violation of heteroscedasticity than OLS. In robust
regression, weight functions are applied to the errors, usually reducing the magnitude
of large residuals. There are several different robust regression weight functions, and
eight of the most common were applied to the regression models. Figure 4.29 shows the
effect of the robust regression weight functions on the models’ performance.
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Mone Andrews | Bisquare Cauchy Fair Huber Logistic Talwar Welsch
RMSE| R? |RMSE| RZ [RMSE| R® |RMSE| RE |[RMSE| RZ [RMSE| RE |RMSE| R? [RMSE| R? |RMSE| RE
ReactionTime [0 1070109 0.099(0.145(0.099(0.144|0.100|0.143]0.1010.149|0.099(0.133 | 0.100 | 0.143 [0L0S6(0.129(0.100|0.142
Take-OverTime|0.865(0.347|0.511 (0.431|0.810(0.429|0.802(0.417(0.812|0.431|0.790|0.402(0.803|0.418|0.774|0.360|0.803(0.414

Lof.Acc. 1.490(0.199(1.139|0.230|1.143|0.230|1.182(0.244|1.231)|0.264|1.186|0.229|1.201 |0.249|1.050|0.224|1.158|0.234
Long.Acc. 3.533[0.345|3.746|0.398|3.747|0.398|3.755(0.423|3.514|0.482|3.837|0.381 | 3.736|0.434|3.533|0.345| 3.758|0.406
T7c 1.081]0.509|1.158|0.547]1.136|0.555|1.071{0.603|1.07/1)0.627|1.074|0.576|1.071|0.600|1.086|0.525|1.267|0.437

Figure 4.29: Comparison of different robust weight functions regarding RMSE and R,

The robust regression leads to an improved performance in almost all models, while the
“Fair” weight function (Equation 4.40) shows the best combination of maximizing R’and
minimizing the RMSE. This is why it is chosen as the most suitable robust regression
method and used for the following optimization of the models.

(4.40)

4.5.2 Handling Non-Normal Distributions

Apart from outliers, OLS estimates [3; based on the assumption of a normal distribution
of measures. Distinct skewness leads to a biased prediction and can be addressed by
different methods that are described hereafter.

4.5.2.1 Multinomial Logistic Regression

Long.Acc. showed large deviations of errors from normal distribution and Lat.Acc. also
deviated, but to a much smaller extent. To a certain degree, generalized linear models
can deal with different distributions (cf. Subsection 4.5.2.2), but Long.Acc. is rather
bi- or multinomial than distributed around one mean and should be modeled as such.
Multinomial regressions are performed for Long.Acc. (based on the linearized version of
Equation 4.18) and Lat.Acc. (based on linearized Equation 4.21), similar to the procedure
in Subsection 4.4.7. Therefore, the accelerations are transformed to ordinal scale by
assigning them to the three groups of 0 — 3.5m/s?, 3.5 — 7.0m/s* and > 7m/s?,
representing low, medium and high accelerations.

While modeling, consecutively excluding insignificant parameters with low effect sizes
leads to the terms for Long.Acc. (Equation 4.44) and Lat.Acc. (Equation 4.42), in which
t resembles the regression equations of Subsection 4.4.3 and Subsection 4.4.4 with
regard to the composition of predictors, with one difference for the longitudinal model,
where TrafficDensity shows linear instead of exponential influence.

1

— 4.41
T o (4.41)

Olat/long =
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Zflat = 50 + ﬂllTimeBudget =+ 52[Lane + BSITrafficDensity + ..

) ) (4.42)
et 64]TrafficDensity + 65 In IRepetition + /8611496 + ﬁ7[Age

tlat = 50 +0.458 * ITimeBudget — 0.386 * ILcme - 0-261[TrafficDensity + ..
4 0.009 % T2, piepensity + 0-695 % I Tepesition + 0.101  Lage — 0.001 % 13, (4.43)
with By = —3.419 and — 1.126

tlong = ﬁO + BllTimeBudget + 52ITrafficDensity + ...

(4.44)
-t 53 In IRepetitz’(m + 5511496 + Bﬁlige

Zflong = ﬁO + 0.679 * ITimeBudget —0.062 ITrafficDensity + ..
..+ 1031 % In Treperition — 0.125 % Lage + 0.001 % 17, (4.45)

with By = —2.756 and — 2.062

To assess the models’ accuracy, Figure 4.30 and Figure 4.31 display the estimated
probabilities and measured frequencies of accelerations as located in the different
acceleration bandwidths. High lateral and medium longitudinal accelerations are both
rather rare, which leads to low variance within the model and is represented by a low
probability of occurrence. While for some conditions, estimations fit the data, the fit
of the model deviates up to approximately 0.2 or 20% in others. The ROC curves
(Figure 4.32) show a medium quality of the models, indicating that the logistic regression
could not address the majority of variance. Nevertheless, when looking at Long.Acc.,
the logistic regression has the advantage of predicting values on an individual level,
rather than predicting a theoretical mean acceleration that is actually not present in the
data, as it is composed of very high and low accelerations. As this is the aim of the
model approach, the logistic regression appears to be superior to the OLS regression for
modeling Long.Acc. in take-over scenarios of HAVs.
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Figure 4.31: Multinomial logistic regression of Long.Acc.

—— Estimated probability 61]55| 5
— Measured frequency (mean occurrence of 50 take-over each) 30 L3OJ 30
778 7 61 | 55 5 7 7 7 B
0 0 0 0 0 10 20 30 D
T T T T T T T
) | T
Il 1 " A W T e
T T T T T T T
I -
d
L L 1 1 | 1 L
0 100 200 300 400 500 600 700 800
trial
Figure 4.30: Multinomial logistic regression of Lat.Acc.
—— Estimated probability 81]55| 5
— Measured frequency (mean occurrence of 50 take-over each) 30 GOJ 30
7.78 7 61 | 55 5 7 7 7 B
0 0 0 0 0 10 20 30 D
T T T T T T T ‘
.Wb | 1 | 1 |
T T T T
P — m
. ,fwmllm " ‘ ey Aol
e T T T T T
1 | | 1 1 | Muu
0 100 200 300 4_OC|) 500 600 700 800
tna

96



4.5 Model Improvements

o o
[=2] o
W
1,

2
B
e

Long=>-3.5, AUC=0.81
0.2 —-3.5>Long>-7.0, AUC=0.68
Long=<-7.0, AUC=0.79

Lat<3.5, AUC=0.77
— 3.5<Lat<7.0, AUC=0.74
Lat=7.0, AUC=0.83

©
[}

True positive rate - Lateral
True positive rate - Longitudinal

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
False positive rate - Lateral False positive rate - Longitudinal

Figure 4.32: ROC-curve for Lat.Acc. (left) and Long.Acc. (right).

4.5.2.2 Generalized Model

In contrast to OLS, generalized models can consider error distributions that deviate
from the normal distribution. In this way, skewness of data can be attributed and ad-
equately considered. Apart from Long.Acc., which is modeled by logistic regression
(Subsection 4.5.2.1), especially Take-OverTime and Lat.Acc. indicate skewed deviations
(cf. Section 4.4) and are therefore selected for calculating generalized regressions. Both
are characterized by having a minimum size (lower border) and a positive skewness
like a gamma distribution. Using gamma for the generalized regression leads to only
slight and insignificant changes in the models’ characteristics (Table 4.12), supporting the
assumption that OLS regression is rather unaffected by the skewness of the measures.

Table 4.12: Model quality with(*) and without Generalized Regression (gamma distribu-

tion).
Variable R R™ RMSE RMSE*
Take-OverTime .347 .368 0.87 0.85
Lat.Acc. 199 193 1.49 1.49

4.5.3 Mixed-Effect Models - Driver Induced Variance

It is assumed that a large share of unexplained variance is induced by different strategies
and preconditions of the drivers rather than by so-far unconsidered situational parameters.
To draw conclusions about the magnitude of driver-induced variance, mixed-effect models
are used to calculate the magnitude of a random (driver) predictor z (Equation 4.46) that
shifts the prediction function in dependence of the random factor.

MixedE f fectModel : y = By + fr1x1 + ... + Bpxy +uz + € (4.46)
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Figure 4.33: Histograms of estimated random effects.
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Figure 4.34: Comparison of fit for GazeReactionTime of NonLinearModel, and MixedEf-
fectModel.

The current data-set has a three-level structure of 753 take-overs, 203 participants, and
on average 3.7 take-overs per participant. To extract the influence of individual drivers,
several sampling points for each driver are necessary, which is hardly the case in the
current data-set with 3.7 take-overs per participant. Calculating mixed-effect models in
this level is therefore limited by the quantity of sampling points and has only low statistical
power. On the second level, the source of variance for all drivers, a sample of 203 implies
more power (Snijders, 2005). The resulting regression equations of the different models
are used for calculating the mixed-effect regressions. Figure 4.33 shows histograms of
the estimated random effects induced by the drivers. The narrower those distributions of
random effects are, the less influence is attributed to the drivers. Figure 4.34 shows a
fit example of the different regression methods for GazeReactionTime. The mixed-effect
estimation clearly shows more variance and therefore a larger explanation of variance in
the data. The remaining plots can be found in Appendix A.
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Table 4.13: Model quality with(*) and without random effects.

Variable R® R*™ RMSE RMSE*
GazeReactionTime .109 .509 0.11 0.08
Take-OverTime 347 569 0.87 0.70
Lat.Acc. 199 497 1.49 1.18
Long.Acc. .345 .736  3.53 2.25
TTC 509 731 1.08 0.80

According to expectations, Table 4.13 shows a significant improvement of R’and RMSE
when considering the driver as a simple additive random effect and mixed-effect models
are able to explain the majority of variance in almost all models, while smaller parts
are still unexplained and caused by other random effects or unconsidered predictors.
Especially those models that showed less adequacy while modeling (GazeReactionTime,
Lat.Acc., Long.Acc.) benefit most from the mixed-effect estimation and gain between 0.3

and 0.4 in k. On the downside, model output can only be predicted when the random
effect of the driver is somehow assessed, for example by driver monitoring and modeling
the random effect based on parameters such as vigilance, trust, attention and others.
In consequence, Age and Repetition could be moved to the model estimating drivers’
disposition.

4.5.4 Variance due to Maneuver Type

Evaluation revealed that much variance within the data is produced by participants braking
in the take-over scenarios. Some participants showed prompt but slight braking as a
reaction to the TOR, others performed a full-force braking after they arrived at the decision
that no evasive maneuver was possible or adequate. This change in maneuver type is
also present for individual participants. There is less variance within the situations with
no brake application and the evasive maneuvers are of a more similar kind. One way to
deal with this variance due to braking is the subdivision of data into groups, based on the
occurrence of brake applications. The probability for the occurrence of brake applications
can be modeled similar to Crash by logistic regression, and different models for the
dependent variables could be derived, forming a model tree. The logistic regression for
Brake leads to a very similar composition of variables as in the regression for Long.Acc.,
but with TrafficDensity considered as linear. Table 4.14 contains the resulting predictors
and statistics.

Table 4.14: Coefficient estimates for Brake

Coef. Expl. Var. Est. SE tStat p-Value Pear.r Cohen’sd
Bo - -3.142 1.232 -2.551 .011 .093 -.187
51 TimeBudget .804 148 5418  <.001 195 .398
B2 TrafficDensity  -.049  .011 -4.612 <.001 167 -.339
B3 Repetition 1115 198 5.622  <.001 .202 413
B4 Age -200 .043 -4-665 <.001 .169 -.343
Bs Age? .002 .0005 4.399 <.001 .160 .323
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Figure 4.36: Left: Estimation and measures of Brake Probability, ordered by estimated
Brake Probability. Brake frequency of measures is represented by the mean
of 50 take-over situations each. Right: Receiver Operator Characteristics
Curve for the Brake Probability model.

With an AUC of >0.8, the estimation of Brake probability seems reasonable. Nevertheless,
Subsection 4.5.3 showed a high dependence of Long.Acc. on a random effect attributed
to the driver. Knowing the drivers’ predisposition would therefore likewise improve
predictions of the logistic Brake model.

In addition to the logistic regression of Brake, the other take-over performance metrics
are modeled for both sets of situations, those with and without brake application. The
procedure is similar to the modeling in Section 4.4 and therefore not described in detail.
The data-set is split in situations with brake application and situations where the driver
handled the situation without braking. Based on these data-sets, the regression analysis
for Take-OverTime, Lat.Acc., and TTC is conducted under consideration of the robust
regression weight function “Fair” (cf. Subsection 4.5.1.2). Furthermore, the logistic
regression for Long.Acc. is repeated with the data-set that contains the situations with
brake application. The final models, including equations and graphs, can be found in
Appendix B. Models’ fit, measured by the coefficient of determination R’and RMSE,
varies compared to the models that consider the whole data-set (cf. Table 4.15).
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Table 4.15: Model quality with and without divided data-set.

Variable R R R, RMSE RMSE, RMSE,
Take-OverTime .431 221 252 0.812 0.935
Lat.Acc. 264 164 1.231 1.518
TTC 627 442 1.071 1.200

Ezo / RM S Ej: Situations without the occurrence of brake application.
Ezl / RM S E;: Situations with the occurrence of brake application.

A reduction in R can be expected, as much variance in the data is already explained
by the logistic brake model and cannot be explained by predictors of the separated
regressions. In contrast, the RMSE should decrease, as the prediction should gain
accuracy due to the segmentation. Looking at the results, there are only minor changes
in the quality of the Take-OverTime model. The segmentation based on brake application
did not lead to a significant improvement for predicting the Take-OverTime. For Lat.Acc.
and TTC, accuracy improves when modeling the non-braking take-overs, but decreases
for the braking ones, which meets the expectations.

The quality of the Long.Acc. model decreases (AUC1=0.70; AUC2=0.58; AUC3=0.69)
which is, similar to less explainable variance in the other regression models, likely to be
caused by the substitution of situations with no brake application and thus substitution of
explainable variance. The final logistic brake model considers TimeBudget, TrafficDensity,
and Load, while higher values for Load and TimeBudget lead to reduced braking, whereas
a higher TrafficDensity leads to intensified braking.

4.6 Final Modeling Approach

In this thesis, different models have been proposed and improved, leading to a mixed
approach for modeling performance in take-over scenarios. It is evident that model quality
could be significantly improved by introducing the driver as a predictor (Subsection 4.5.3),
as driver strategies play a dominant role with regard to take-over performance. This
would imply that the driver-induced variance must be somehow assessed in order to
predict the models’ output. The mixed-effect models are an important approach, but
cannot be further applied in this thesis, as modeling the predisposition of the driver is not
part of this thesis.

The resulting combined modeling approach is depicted in Figure 4.37, and the corre-
sponding final regression equations are given below. Linked to the previously introduced
take-over procedure (Figure 2.10), the GazeReactionTime, and Take-OverTime can be
derived from t,r and tr by means of the weighted generalized linear models. These
timing aspects could also have been modeled by a modular additive system (Figure 2.14),
but without a reliable link to take-over quality. The final model approach addresses the
take-over quality by modeling Long.Acc., Lat.Acc., and TTC in dependence on the ma-
neuver type (braking vs. no braking) by generalized non-linear models and a multinomial
ordinal logistic regression. Additionally, the Crash probability is modeled by a nominal
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logistic regression, completing the characterization and modeling of take-over quality.
An impaired take-over performance due to non-driving-related tasks, as suggested by
multiple resources and mental-workload theory of Wickens (2008a) or the theory of
arousal (Yerkes & Dodson, 1908), does not become apparent in the models with the
selected experimental design. While GazeReactionTime, Long.Acc., and TTC actually
include Load in the regression, tasks considered to use more resources lead to a better
take-over quality, as further discussed in Section 4.7. The other fundamental models of
human perception and cognition could be affirmed by the experiments and the final model
approach. The theory of learning and skill improvement (cf. Figure 2.5) is present in
several models, and the assumed logarithmic trend could also be confirmed. In a similar
manner, the models meet assumptions derived from the human information processing
theory of Wickens et al. (2013) (cf. Figure 2.3). It could be verified that demanding
scenarios, for example due to a high traffic density, impair the take-over performance,
explainable by limited attention resources of the driver, which are needed for perception,
cognition, response selection, and execution. Hereinafter, the final regression equations
are stated.

Input Parameter Set

T

ter [S] tr [S] Pcrash [%]
[ ]
Pnocrash [%]
PNoBrake [%] Psrake [%] toe
\
rao [M/$?] trreo [S] trrea [S] aLars [M/s?] Pas-3.5 [%]

P-3.5>a>-7.0 [%]

Pa<-7.0 [%]

Figure 4.37: Final model tree.

Final Regression Equations
e GazeReactionTime: Modeled by a generalized non-linear model with the weight
function “Fair”, considering TimeBudget, Load, and Age. RMSE=0.101; R°=0.149.

tr = 0.255 4 0.024 % Ipimepudger + 0.020 % I1oqq + 2.09 % 104 % (L4500 — 32.254)°
(4.47)
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e Tuke-OverTime: Modeled by a generalized non-linear model with the weight func-
tion “Fair’, considering TimeBudget, Lane, TrafficDensity, Repetition, and Age.
RMSE=0.812; R’=0.431.

tr = 2.068 + 0.329 * InimeBudger — 0-147 % (Inane — 1.936)% — ..
coe = 0.006 * (I7raf ficDensity — 15.667)% — 0.571  In Irepetition + --- (4.48)
e+ 2121 % 107 % (Tage — 46.235)?

e Brake: Modeled by a nominal logistic regression, predicting probability of brake ap-
plication, considering TimeBudget, TrafficDensity, Repetition, and Age (AUC=0.824).

(4.49)

tBrake = —3.142 4+ 0.804 * ITz'meBudget —0.049 * ]TrafficDensity + ...

(4.50)
oo 1115 % Ind pepesivion — 0.200 % Lage + 0.002 5 I 2

e Lat.Acc.: Modeled by two generalized non-linear models with the weight func-
tion “Fair”, subdivided based on brake application, considering TimeBudget, Lane,

TrafficDensity, Repetition, and Age for non-braking (RMSE=0.989; §2=0.432) and
TrafficDensity and Age for braking situations (RMSE=1.518; R’=0.1 64).

Arat0 — 6.514 — 0.487 * ITimeBudget +0.343 % [Lcme —
coo = 0.004 % (Iryaf ficDensity — 17-200)% — 0.267 * In I peperition =+ --- (4.51)
e+ 6.322% 107k (L4, — 47.432)?

ALat1 = 3.744 — 0.007 % (]TTaffiCDensity — 14769)2 + ...

4.52
e+ 4.353 % 107 % (Lage — 35.306) 4-52)

e Long.Acc.: Modeled by a multinomial ordinal logistic regression, predicting prob-
ability of accelerations > —3.5m/s* (AUC=0.70), —3.5 > Long.Acc. > —7Tm/s*
(AUC=0.58), < —7.0m/s* (AUC=0.69), considering TimeBudget, TrafficDensity,
and Load.

(1 + 650+0-388*1TimeBudgct_0-049*1Traffichnsity+0-438*IL0ad>_1

with By = —4.511 and — 3.282

OLong —

(4.53)

e TTC: Modeled by two generalized non-linear models with the weight function
“Fair”, subdivided based on brake application, considering TimeBudget, TrafficDen-

sity, Repetition, and Load for non-braking (RMSE=0.917; }_%2=O.727) and Time-
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Budget, Lane, TrafficDensity, Repetition, Load, and Age for braking (RMSE=1.200;
—2 . .
R =0.442) situations.

tTTCO = —4.283 + 0.699 * [T'imeBudget + 0.0043 * (ITrafficDensity — 17518)2 + ...

oo+ 0.521 * In T gepetition + 0.148 * I1p0q
(4.54)

tTTCl = —3.584 4+ 0.513 * [TimeBudget — ...
oo — 0.082 % (Ipgne — 1.314) + 0.0022 * (Irraf ficDensity — 26.086)% + ... (4.55)
coo 4+ 0.425 5 In Tpepetition + 0.243 % I00q + 0.019 % L age

e Crash: Modeled by a nominal logistic regression, predicting probability of brake
application considering Lane, TrafficDensity, and Repetition (AUC=0.910).

1

1+ 64.108—0.360*1Tmmc,3mmy+0.007*1%mfficDWity+1.275*1Repemion

(4.56)

OCrash =

4.7 Discussion of Load Modeling

When ordering the different non-driving-related tasks with regard to their expected impair-
ment of take-over performance based on manual and cognitive load, a direct data analysis
showed an ascending order of dependent variables, but in an unexpected direction (Fig-
ure 4.4). For tasks that are considered to lead to greater loads, Take-OverTime, Lat.Acc.,
and Long.Acc. decrease, and TTC increases, indicating an improved performance for the
tasks assumed to be highly loading. When modeling TTC (Figure 4.23, Equation 4.54
and Equation 4.55), Load became significant and showed the same unexpected behavior.
Although not reported in the thesis, different ways of re-arranging the non-driving-related
task were tested. None of them showed improved results, emphasizing that the proposed
order is the best solution for a linear order of the tasks considered with regard to the
modeling approach. There are several possible explanations. The effect of the non-
driving-related task only has minor effects on the take-over performance in the selected
experimental setting (Gold, Berisha, & Bengler, 2015), and quite different tasks showed
similar results (Radlmayr et al., 2014). This may change when longer automated drives
are considered or new non-driving-related tasks introduced. Furthermore, correlations of
Load, for example with Repetition, could have led to a biased recording of data. Likewise,
the influence of Load may differ when considering additional data recorded in a different
experimental setup. Furthermore, an overcompensation of the task impairment by the
driver may be present. In any case, the influence of Load on take-over performance
was of small magnitude in the reported experiments and did not play a major role when
modeling take-over performance.
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The proposed models were shown to fit the data and predict take-over performance within
certain limits. Nevertheless, overfitting (Figure 4.1) or limited permutation of independent
variables could lead to poor model performance, which can only be detected by validating
the model with new data. The data-set is usually divided into training and validation / test
data. This leads to a reduced training data-set and thus to reduced model accuracy, as
the estimation is based on fewer values. Furthermore, the method of data splitting is
called into question and was found to provide only little incremental information regarding
the assessment of validity (Kozak & Kozak, 2003). To avoid this, a new experiment was
conducted and additional data was recorded.! This is “the most effective method of
validating a regression model with respect to its prediction performance” (Montgomery &
Peck, 1992, p. 375). The validation data-set should represent the training data regarding
its composition (Kozak & Kozak, 2003). As this could not be completely achieved with
a single experiment, the model is further compared to take-over experiments of other
authors (Section 5.3). This also addresses validity aspects that arise from possible
restrictions due to the experimental design and simulator properties. Concerning the
validation experiment, it was not possible to vary every dependent variable in it’s full range.
Therefore, the variance within the validation data is limited and significantly smaller than
in the training data. The less variance is generated by parameter variation, the smaller is
the proportion of the variance explained by the model. Comparing coefficients that are
related to variance, such as the AUC and }_%2, is therefore not meaningful and leads to
biased or wrong evaluations.

5.1 Experimental Design and Validation Parametrization

The additional data was recorded in the fix-based driving simulator of the Institute of
Ergonomics, similar to Experiment 4, 5, and 6 (Chapter 3). Literature suggests a number
of at least 100 test cases (Harrell, 2001). Other sources provide lower numbers of 15 to
20 cases (Montgomery & Peck, 1992). For the validation, 120 take-overs of 30 different
participants were recorded.

The parametrization of the validation experiment was governed by different objectives
that do not correlate with the modeling approach in this thesis. In this way, the experiment
was expected to be comparable with former experiments, which leads to a selection of
parameters which is more than sufficient, but not ideal for the models’ validation, as not
all combinations could be tested.

e TimeBudget: Was set to 6 seconds, a value only represented as a combination of a
TB of 5 seconds and a strong automated brake application.

The validation experiment was conducted with the assistance of Anna Feldhiitter as part of her Master
thesis (Feldhutter, 2015).
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o TrafficDensity: Was varied between 0 and 10 vehicles per kilometer.

e Load: For the majority of take-overs, the SuRT task was applied as a non-driving-
related task. Furthermore, half of the participants experienced the take-over with
no prior task activity.

e Age: Was set to 20 to 30 years.
e Lane: Was varied between left, center, and right lane.

e Repetition: Each participant experienced one take-over in the familiarization and
four take-overs in the experimental condition. As there was an additional take-over,
not relevant for validation, repetition varied between 2 and 6.

Parameters were selected in order to obtain both situations with and without brake
application. The experiment included five different take-over scenarios, out of which one
was not used for validation. The other four scenarios were take-overs with a traffic density
of 0 vehicles/km in the right, center, and left lane, and one situation with a traffic density
of 10 vehicles/km in the left lane. The order of the situations was randomized, except for
the scenarios with a traffic density of 0 vehicles/km in the left lane, which was always
the last scenario for examining a different research question. According to the previous
experiments, the system limit was represented by a stationary lead vehicle in the current
lane on a straight section of the course and with the known audio-visual TOR.

5.2 Results Validation Experiment

Three trials had to be excluded, as participants looked up from the SuRT occasionally
just before the TOR. In another situation, technical problems led to the exclusion of a
fourth take-over. The remaining 116 situations were used for the validation, including 28
situations with a traffic density of 10 vehicles/km. In 101 of the 116 situations, the SuRT
was implemented, and in the remaining 15 situations there was no non-driving-related
task. Participants had a mean age of 24.4 years (SD = 2.4).

Altogether, nine models have to be validated (cf. Figure 4.37). Therefore, the RMSE is
calculated based on the validation data (The robust weight function was not considered
for estimating the RMSE) and mean values, Standard Deviation (SD), and the proportion
of measures within the predicted confidence interval are estimated for drivers in the
TrafficDensity = 0 and TrafficDensity = 10 condition, respectively. To estimate Lat.Acc.
and Long.Acc. in dependence on brake applications, the data has to be further subdivided,
leading to reduced numbers of trials in some cases (e.g. n=8 non-braking drivers in the
TrafficDensity = 10 condition).

Table 5.1 summarizes the results of the validation experiment. The SD of the models’ pre-
dictions is derived from the confidence intervals, as predicted by the models. Equation 5.1
shows the mathematical relationship between the SD and the upper 0.95 confidence
interval. To enable this transformation, a normal distribution of errors was assumed.
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Table 5.1: Model fit for validation data.

Model TD n RMSE RMSE m m SD SD  Within
Train. Validat. FExp. Pred. FExp. Pred. Cligs
For 0/10 101 0.233 0.107 0.62 045 0.16 0.12 69%
Fr 0 88 0.767 0.860 2.54 1.95 082 0.97 94%
Fr 10 28 0.767 0.860 3.01 324 082 0.98
FBrake 0 88 - - 42.0% 61.7% - - -
Frake 10 28 - - 71.4% 76.8% - - -
Forash 0 88 - - 23% 0.4% - - -
Forash 10 28 - - 71% 7.6% - - -
Frao 0 51 1.188 1.209 2.75 3.00 1.21 1.20 97%
Frao 10 8 1.188 1.209 2.82 3.75 0.81 1.21
Fran 0 37 1.934 1.674 2.49 2.25 1.84 1.82 91%
Fran 10 20 1.934 1.674 2.81 364 179 183
Frreo 0 51 0.549 0.906 1.83 218 053 1.11 100%
Frreo 10 8 0.549 0.906 1.07 1.03 0.04 1.12
Frre 0 37 1.190 1.182 2.33 2.26 1.27 1.45 97%
Frren 10 20 1.190 1.182 1.73 1.43 1.10 1.47
FLcmg—low 0 37 - - 14% 19% - - -
Frong—mea 0 37 - - 16%  25% - - -
FrLong—high 0 37 - - 70% 56% - - -
FlLong—tow 10 20 - - 0% 14% - - -
Frong—mea 10 20 - - 15% 22% - - -
Frong—nign 10 20 - - 85% 64% - - -

Exp. = Data from validation experiment; Pred. = Models’ prediction.

SD = Cligs —m (5.1)
x
while : x = percentilegs = 1.645 (5.2)

The model shows slight deviations regarding GazeReactionTime, Take-OverTime (TD=0),
Lat.Acc. (TD=10), and Brake (TD=0). In the experiment, GazeReactionTime (0.62s)
appeared to be approximately 0.15 seconds longer than predicted (0.45s) and only 69%
of the GazeReactionTime values are located within the confidence interval. However,
this accuracy is still considered sufficient for predicting gaze reactions in HAVs. In the
no-traffic condition, 42% braked as a reaction to the TOR, while the model predicted 62%
brake applications. Brake was introduced to segment the data and calculate Lat.Acc. and
TTC separately for braking and non-braking drivers. Although the deviation between
prediction and measures is obvious and reveals a deficiency of the Brake model, it has
a minor influence on the prediction of Lat.Acc. and TTC, as those are rather similar for
braking and non-braking drivers. The Take-OverTime shows a deviation of 0.59 seconds
in the no-traffic condition, while the RMSE is of the same magnitude. This indicates
an offset in the validation experiment with higher values throughout, compared to the
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Figure 5.1: Measured and predicted means and standard deviations for GazeReaction-
Time, Lat.Acc. and TTC. Indices of the models correspond to Figure 4.37.

model. This could either be an artifact, e.g. due to a different instruction 2, or a hint of
an inaccurate model. Nevertheless, 94% of data are located within the 0.95 confidence
interval of the model. In the condition with a traffic density of 10, lateral accelerations are
predicted higher for both braking and non-braking drivers (3.75/3.36 m/s?) than actually
measured (2.82/2.81 m/s?). Considering the small number of cases on the one hand
and a good conformity of RMSE and fit of data within the confidence interval on the
other, validity can neither be refused nor confirmed. While the model for longitudinal
acceleration expectably shows moderate prediction accuracy, all other models are very
accurate based on the validation data. Especially Crash, Lat.Acc. (TD=0), and TTC
showed good prediction based on a high number of cases. Thus, almost all TTC values
are located within the confidence intervals of the model (97% to 100%). Take-OverTime
(TD=10) and Brake (TD=10) also performed precisely, although only a smaller amount of
data was used for validation.

5.3 Comparisons with Other Experiments

If a detailed reporting is provided, results of experiments by other authors can be
compared to the models’ predictions, and these external data can therefore be used for
validation. As a requirement, the explanatory variables in the experiments need to be
known and experimental conditions such as the the TOR / HMI and the take-over scenario
should be at least similar. The experiments described below fulfill these requirements,
and the authors reported all information needed to model the experimental output by
the use of the proposed models. Data on a participant-based level is not accessible
by extracting information from scientific papers. Nevertheless, means and standard

2Participants in the validation study read newspaper articles and watched a video explaining and advertis-
ing highly automated vehicles, which might have influenced trust in automated vehicles and thus the
take-over time.
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deviations can be derived. The validation can be carried out by comparing predictions of
mean values, SDs and frequencies with figures reported in the publications.

5.3.1 Comparison to Lorenz, Kerschbaum, and Schumann 2014

The first validation is carried out using the experiment of Lorenz et al. (2014), who
compared different HMI concepts for HAVs. Forty-three valid take-overs were recorded
in the BMW AG dynamic driving simulator. The participants experienced one TOR in a
familiarization drive and another TOR in the experiment, which was used for validation and
included a TB of seven seconds. The system limit was similar to, for example, scenario 2
in Figure 3.3, with a stranded vehicle in the participants’ lane. All parameters needed
for the modeling can be retrieved from the paper. The data on the participants’ age,
reported as mean (31.7 years) and standard deviation (10.1 years), served to generate
a normal distribution, reproducing distributed age data for the modeling. The different
HMI concepts, which showed significant differences in the experiment, could not be
considered in the model and are neglected for the validation. The Repetition was set to 2,
as participants experienced one take-over during the familiarization.

GazeReactionTime, Take-OverTime, Brake, and Lat.Acc. can be compared regarding mea-
sured and predicted means, while GazeReactionTime and Take-OverTime can be modeled
under consideration of the whole data-set, and Lat.Acc. is calculated by averaging the
models for braking and non-braking drivers under consideration of the braking ratio
reported in the paper.

e GazeReactionTime is modeled by Equation 4.47 with a mean of 0.48 seconds
(SD=0.12) and measured to be 0.53 seconds (SD=n.a.)

e Brake is modeled by Equation 4.50 with a mean probability of 32% and measured
to be 58%

e Crash: No crashes occurred in the experiment, in line with the expected low crash
probability of 0.7% (Equation 4.56).

e Lat.Acc. is modeled by Equation 4.51 and Equation 4.52 with a mean of 2.25m,/s*
(SD=1.55) and measured to be 2.82m/s? (SD=1.63)

e Tuke-OverTime is modeled by Equation 4.48 with a mean of 2.54 seconds (SD=0.98)
and measured to be 2.92 seconds (SD=0.87)

GazeReactionTime, Take-OverTime, and Crash provide very good predictions of the mea-
sured values, for mean as well as standard deviations. Long.Acc. and Lat.Acc. deviate
to a slightly larger extent, but under considerations of higher errors during the modeling
process still provide an adequate fit. Overall, the experiment of Lorenz et al. (2014)
supports the assumption of validity for the tested models, while the model of Brake proved
to be more inaccurate.
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5.3.2 Comparison to Zeeb, Buchner, and Schrauf 2015

The experiment of Zeeb and colleagues (Zeeb et al., 2015) also matches the requirements
for consideration as validation data. They conducted a simulator experiment in the
dynamic driving simulator of Daimler AG and compared different types of drivers, which
are merged for validation. Among other data, they report road fixation time, brake reaction
time, and crash probability, which can be modeled by GazeReactionTime, Take-OverTime,
and Crash. The data-set includes 89 take-overs. In 80 of these, participants braked as
a response to the TOR. In 53 take-overs, drivers were visually distracted, which is why
these situations can be considered for validating GazeReactionTime. The participants’ age
varied between 20 and 72 years, similar to the training data, with a mean of 41.8 years
(SD=12.6). Again, this information was used to generate normally distributed age data to
provide adequate model input. The take-over scenarios are very similar to Experiment
1 (Subsection 3.3.1) with a lead vehicle swerving into the neighboring lane and thus
revealing a stranded vehicle ahead with the TOR being announced simultaneously. The
neighboring lane was blocked by traffic with an approximate density of 30 vehicles/km
(extracted from Figure 3, p. 216). At the moment of the take-over, participants were
distracted by a task similar to the Text task (Load =4). The automated system also
featured an automated brake application of 2.5m/s? together with the TOR, leading to
a group specific total TimeBudget of 4.15 seconds, 4.65 seconds, and 5.15 seconds,
respectively. The participants experienced two take-over situations previously to the
measured take-over. Repetition was also set to 3 for the modeling. Altogether, the
take-overs seem to be recorded in a more critical setup than situations in the training
data, as they include and combine very short TBs with very high traffic densities.

e GazeReactionTime: Gaze behavior was recorded, and the time to road-fixation value
of the 53 visually distracted drivers was measured to be 0.69 seconds (SD=0.20).
The road fixation measure differs from GazeReactionTime, as GazeReactionTime
refers to the first gaze directed away from the non-driving-related task after the
TOR, whereas road fixations also include road-fixation time, which varies between
150 and 300 ms in take-over scenarios (Kerschbaum et al., 2015, 2014; Gold,
Dambock, et al., 2013; Dambdck, 2013). In line with these findings, the predicted
duration of the GazeReactionTime model (Equation 4.47) is 190 ms shorter (0.50 s)
with a comparable SD of 0.13, indicating that the GazeReactionTime model can also
be used to model road fixations by adding an offset of approximately 200 ms.

e Brake: Nine participants did not brake as a reaction to the TOR and have been
excluded from the evaluation by the authors. The reported values therefore only
include data of braking drivers. Nevertheless, this information indicates a brake
probability of 89.9%. The model for Brake predicts (Equation 4.50) an 8% higher
probability of 97.8%.

e Crash: Out of the 89 participants, 25 (28.1%) collided with the obstacle or vehicles
in the neighboring lane, while the Crash model (Equation 4.56) predicts 22 collisions
(24.5%).

e Tuke-OverTime: The authors also reported brake reaction times of the 80 par-
ticipants who braked, under consideration of a similar threshold (10% braking
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pedal position). These brake reactions can be modeled by the Take-OverTime
model (Equation 4.48). The model predicts brake reaction times of 1.75 seconds
(SD=0.98), while Zeeb and colleagues measured 1.88 seconds (SD=0.55).

Validation of the models Brake, Crash, GazeReactionTime, and Take-OverTime showed
accurate prediction capabilities regarding this study. Results further emphasize the
validity of the models involved, especially when considering that the authors are not
associated with the author of this thesis, driving simulator as well as method are likely
to differ, and the scenario was more critical than scenarios considered in the training
data-set.

5.3.3 Comparison to Kerschbaum, Lorenz and Bengler 2015

The study of Kerschbaum et al. (2015) compared a transformable steering wheel for HAVs
to a conventional steering concept. In a within-subject design, participants experienced
three take-over situations with each concept. While the different concepts cannot be
considered in the model, the other criteria meet the requirements, and the experiment
can be used for further validation of the models by averaging the dependent measures
regardless of the steering wheel concepts. In contrast to the situations in the training
data, two out of three situations took place in a bend instead of on a straight road section,
possibly extending the area of validity if the data matches the models’ predictions. The
system limit was, similar to other experiments, represented by a car accident in the
ego-vehicle’s lane, with a TB of seven seconds. The participants were engaged in the
SuRT. For the validation of GazeReactionTime 114 take-over situations can be considered,
and 270 take-overs are available for the other variables.

The reported data allows for validation of GazeReactionTime, Crash, Lat.Acc., as well as
Take-OverTime, whereas no brake frequency (Brake) or TTC values (TTC) are reported.
As the brake ratios are unknown, the Lat.Acc. model cannot be divided to predict lateral
accelerations for braking and non-braking drivers and the joint Lat.Acc. model (F.;
Figure 4.37; Equation 4.23) is used for the prediction instead. The Long.Acc. model
cannot be validated either, as brake accelerations for each of the take-overs would be
necessary, which cannot be derived from the paper, but solely from the raw data, which
is not accessible.

e GuazeReactionTime: Participants in the experiment reacted after 0.42 seconds
(SD=0.13) which is accurately predicted by the GazeReactionTime model (0.47s,
SD=0.12; Equation 4.47).

e Crash: No crashes are reported in the publication, which fits the Crash model’s
prediction of a crash probability of 0.25% (Equation 4.56).

e Take-OverTime: Very slight deviations are found for the Take-OverTime, which are
reported with a mean of 2.64 seconds (SD=0.86) and thus 340 ms longer than the
model’s prediction of 2.30 seconds (SD=0.98; Equation 4.48). For the condition
with the transformable steering wheel, participants reacted about 100 ms later,
which would explain parts of the small deviation and indicate a very good model fit.
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e Lat.Acc.: For lateral accelerations, the model (Equation 4.23) predicts accelerations
of 2.22/m/s? (SD=1.48), which matches the reported 2.51 m/s* (SD=0.80).

All considered models showed very good predictions, further supporting the assumption
of validity, even for take-overs in curved road sections.

5.3.4 Comparison to Hergeth 2016

Hergeth et al. (2016) compared four different ways of introducing the HAV to participants
of a driving simulator study in a fix-based driving simulator of the BMW AG, which was
not used for any of the previously mentioned experiments. Each of the 110 participants
received a “basic description” of the system and the TOR. Furthermore, one group
was provided with additional information on the system limits, another group received
additional information on system limits and experienced two take-over scenarios in the
familiarization drive, and a third group experienced the two take-overs but without the
additional instruction. For comparing this experiment with the model predictions, the
groups without the training in taking over vehicle control were merged, and so were
the groups with experience in take-over situations. During the experiment and after
the familiarization drive, the 110 participants experienced two take-overs in the center
lane, with no traffic in the neighboring lanes and with previous engagement in the SuRT.
The models’ parameters were adjusted accordingly, while Repetition was set to 1/2 for
non-experienced drivers and 3/4 for experienced ones, as the latter experienced two
take-overs during the familiarization drive. Age distribution was generated based on the
specifications in the paper (20-59 years; mean=29.59; SD=6.87).

The data facilitates validation of Take-OverTime, Brake, Crash, and TTC. The required
data was retrieved from the charts provided with the best possible accuracy. The
SDs could not be derived accurately and are therefore not considered for validation.
To calculate the TTC, values of the models for braking and non-braking drivers were
summed up under consideration of the reported braking probability of 78%.

e Take-OverTime: Participants took over vehicle control after 2.28 seconds in the
experienced and 2.55 seconds in the inexperienced group. Predictions of the
Take-OverTime model (Equation 4.48) suggest 2.36 seconds for experienced and
2.85 seconds for inexperienced drivers.

e Brake: In both groups, approximately 78% of the participants showed brake re-
sponses, while the model (Equation 4.50) predicts only 53.2% for experienced, but
72.9% for inexperienced drivers.

e Crash: One collision occurred in the group of inexperienced participants (0.9%),
matching the model’'s (Equation 4.56) predictions of 1.1%. With experience, no
collision was reported (0.0%), also in line with the model-based expectations
(0.3%).

e TTC: Regarding TTC, both groups created equal mean minimum values of 3.28
seconds, while the model’s predictions differ for experienced (3.02 s) and inexperi-
enced (2.62 s) drivers (Equation 4.54 and Equation 4.55).
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5.4 Interpretation and Summary of Validation

The consideration of experimental data of Hergeth et al. (2016) confirms the previous
findings. Take-OverTime and Crash show very good predictive characteristics, while Brake
deviates to a larger extent. The prediction of TTC for experienced drivers is accurate,
but drivers without take-over training are underestimated by the model. To a greater
extend, this is caused by very performant take-overs in the second situation and not
by an inappropriate modeling of the first take-over, which was outside the range of the
training data. The different instructions regarding the HAV have a significant influence on
take-over performance and could not be taken into account completely by the models.
This may have led to inaccuracy of an unknown extent.

5.4 Interpretation and Summary of Validation

Table 5.2 summarizes the comparison of mean and SD of the model prediction and
measures for the different experiments, which were used for validation. The probability of
brake application (Brake) and the magnitude of braking (Long.Acc.) are modeled with a
moderate fit. The models for lateral acceleration (Lat.Acc.) provide adequate predictions,
although rather small parts of variance can be explained by the model. In all considered
experiments, predicted means deviated less than 1 m/s? from the measured values. The
mentioned models would significantly improve and explain an additional 30 to 40% of
variance (cf. Subsection 4.5.3) if the drivers’ predisposition had been available and could
have been considered as a predictor. Unless this predisposition can be retrieved from
other sources, such as driver monitoring (which would be recommended and subject to
further research), or by recording several take-overs of the particular driver, the accuracy
of the modeling, especially for brake application and lateral accelerations, remains limited.
The take-over time (Take-OverTime) could be validated with a large data-set of 729
new take-overs. Standard deviations are predicted precisely, and means show a good
fit of 130 to 670 ms in deviation, which is a strong indication of the model’s validity,
when considering the wide variety of validation data. The time-until-first-gaze reactions
(GazeReactionTime) were shown to fit with maximum deviations of the mean of less than
200 ms in the additional 326 situations considered, which is regarded as sufficiently
precise for evaluating take-overs in HAVs. As a side effect, the GazeReactionTime model
also predicts the “eyes-on-road-time”, as this measure was consistently 200 ms longer
than the values predicted by the GazeReactionTime model. The surrogate safety measure
time-to-collision (TTC) showed a high accuracy in most cases, indicating that the model
can be assumed valid. Furthermore, the probability of collisions during a take-over (Crash)
could be predicted with very high precision in 729 take-overs of all tested validation
experiments, emphasizing the good model suitability, which was determined while setting
up the model. By considering not only the validation experiment conducted for this thesis,
but also including several studies of different authors, a huge validation data-set could be
assembled, including aspects such as curvy roads, shorter time budgets, other driving
simulators, and new non-driving-related tasks. In this way, it can be assumed that the
models are valid and an extension of the range of validity is likely to be legitimate.
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Table 5.2: Comparison of measured and predicted means, standard deviations and frequencies.

Experiment Gold (TD =0) Gold (TD = 10) Lorenz Zeeb Kerschbaum Hergeth.E Hergeth.I
Trials n 88 28 46 53 — 89 114 — 270 110 110
Meas. Pred. Meas. Pred. Meas. Pred. Meas. Pred. Meas. Pred. Meas. Pred. Meas. Pred.

Fr m 0.63 0.45 0.59 0.45 0.53 0.48 ca.0.5 0.50 0.42 0.47 - - - -
(n=326) om 0.18 0.14 0.05 - -0.05 - -

SD 0.18 0.12 0.10 0.12 n.a. 0.12 <0.20 0.13 0.13 0.12 - - - -
Fr m 2.54 1.95 3.01 3.24 2.92 2.25 1.88 1.75 ca.2.5 2.30 2.36 2.28 2.85 2.55
(n=1729) om 0.59 -0.23 0.67 0.13 ca. 0.2 0.08 0.30

SD 0.82 0.97 0.82 0.98 0.87 0.98 0.55 0.98 0.86 0.98 - - - -
FBrake 42.0% 61.7% 71.4% 76.8% 58% 32% 89.9% 97.8% - - 78% 53.2% 78% 72.8%
(n=1738) 6 -19.7 -5.4 26% -7.9% 34.8% 24.8% 5.2
Ferash 2.3% 0.4% 71% 7.6% 0% 0.7% 28.1% 24.5% 0% 0.3% 0.0% 0.3% 0.9% 1.1%
(n=1729) 1) 1.9% -0.5% -0.7% 3.6% -0.3% -0.3% -0.2%
Frat m 2.64 2.54 2.82 3.67 - - - - 2.51 2.22 - - - -
(n=386) om 0.10 -0.85 - - 0.29 - -

SD 1.51 1.47 1.58 1.48 - - - - 0.80 1.48 - - - -
Frato m 2.75 3.00 2.82 3.75 2.82 2.25 - - - - - - - -
(n=170) om -0.25 -0.93 0.57 - - - -

SD 1.21 1.20 0.81 1.21 1.63 1.55 - - - - - - - -
Fra1 m 2.49 2.25 2.81 3.64 2.82 2.25 - - - - - - - -
(n=89) om 0.24 -0.83 0.57 - - - -

SD 1.84 1.82 1.79 1.83 1.63 1.55 - - - - - - - -
Frrco m 1.83 2.18 1.07 1.03 - - - - - - 3.28 3.02 3.28 2.62
(n=99) om -0.35 0.04 - - - 0.26 0.66

SD 0.53 1.11 0.04 1.12 - - - - - - - - - -
Frrel m 2.33 2.26 1.73 1.43 - - - - - - 3.28 3.02 3.28 2.62
(n=237) om 0.07 0.30 - - - 0.26 0.66

SD 1.27 1.45 1.10 1.47 - - - - - - - - - -
FLongow 14% 19% 0% 14% - - - - - - - - - -
(n=65) 1) -5 -14 - - - - -
FLong,mia 16% 25% 15% 22% - - - - - - - - - -
(n=65) 1) -9 -7 - - - - -
Frongnig 70% 56% 85% 64% - - - - - - - - - -
(n=65) 5 14 21 - - - - -

Meas. | Pred. = Measured / Predicted values

Gold (TD = 0/1) = Experiment of Gold with TrafficDensity = 0 / TrafficDensity = 10 (Section 5.2)

Lorenz = Experiment of Lorenz et al. (2014) (Subsection 5.3.1)

Zeeb = Experiment of Zeeb et al. (2015) (Subsection 5.3.2)

Kerschbaum = Experiment of Kerschbaum et al. (2015) (Subsection 5.3.3)

Hergeth.E /I = Experiment of Hergeth et al. (2016) with Experienced / Inexperienced drivers (Subsection 5.3.4)
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6 Limitations

Research findings are restricted to the circumstances of the studies they are based on.
Similarly, the findings in this thesis have a limited range of validity and must be handled
with care when drawing inferences or assigning them to other settings or domains.

6.1 Limitation of Driving Simulator Experiments for Assessing
Take-Over Performance

Assessing take-over performance in a driving simulator induces limited transferability
to problems on the road, as the representation of visual, haptic, and vestibular stimuli,
as well as risk perception and other factors, may differ from real vehicles. For example,
accelerations must be scaled in dynamic driving simulators or are only perceived over
the visual channel in fix-based driving simulators. Driving simulator experiments are
less suited to record absolute values, such as absolute figures for the accelerations
that occurred, in such take-over scenarios, but very well suited for relative comparisons
of different systems, for example measuring the effect of different non-driving-related
tasks on take-over performance. In this way, the proposed models can be used for
gaining a better understanding of the take-over and factors influencing the performance,
but predicted values are likely to differ when assigned to real vehicles on the road.
Nevertheless, there is a good chance that only small adaptations will lead to valid models
for predicting take-over performance on the road, once such data becomes available,
as the model of driver’s performance should remain valid, independent from the actual
setting.

During the last few years, take-over research was based on a rough estimation of future
system properties. Situations, HMIs, TORs and other characteristics were designed for
experimental purposes and to address specific questions, but they also represent a rather
generic implementation of future HAVs, probably resulting in a loss of accuracy. For
example, the majority of studies consider SAE Conditional Automation, although these
systems are rather unlikely to be applied. The setting, based on conditional automation,
is still a very valuable approach for assessing human performance in HAVs and should be
further pursued. Nevertheless, SAE High Automation is more likely to be implemented in
future vehicles, and here the system features an alternative fallback level in case of an
absent take-over of the driver. While very few experiments have actually implemented
emergency maneuvers when participants failed to take over appropriately, this could, for
instance, influence (reduce) collision probability.

In a similar way, to limit the experimental effort, automated driving only lasted a few
minutes until the take-over occurred. A decrement in vigilance starts between 5 and
15 minutes (Warm, Parasuraman, & Matthews, 2008) and therefore could probably not
come to light in the experiments. Longer automation periods should be examined, not
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6 Limitations

least because they are addressed in very few studies in the literature, and the TORs will
probably not occur that often.

A wide range of non-driving-related tasks has been considered, but they also had to
be performed by the participants, regardless of their willingness to perform non-driving-
related tasks while driving in automated mode. Although they proved to have a minor
influence on the take-over, it is of interest what drivers engage in and to which extent
when they are driving in automated mode and are free to choose an activity themselves.

A further limitation of the studies could be caused by the selection of participants, as they
were mainly recruited within the university environment and among employees of BMW.
This may cause a bias, which can be found in other studies as well, and might influence
the validity of the results.

6.2 Limitation of the Model Approach

The results in this thesis are based on a very large but still limited data-set with depen-
dencies among the predictor variables. There is no complete permutation, but a limited
combination of the implemented time budget, traffic density, and so forth. Therefore,
it is inevitable that new tests are likely to cause changes in the model. The selection
of scenarios also plays a role, since it does not cover the whole possible spectrum,
such as different weather conditions, alcohol intoxication, take-over scenarios at night,
long-term effects of automated driving, sleepiness, or scenarios with a plain underload
of the driver. Although the main predictors are represented in the models, different
restrictions regarding the range of validity apply, as factors not present in the training data
cannot be covered by the model. Studies are also limited to time-critical scenarios with a
limited time budget, as these promise the best way of measuring human performance in
safety-relevant take-over scenarios, and they provide important insights. Other authors
pursue a different approach of uncritical take-overs with very large time budgets, which
correspondingly cannot be predicted by the models.

This thesis establishes and proves a causal relationship as depicted by the models. How-
ever, significance of factors does not necessarily have to indicate a causal relationship
between predictor and output parameter. It is impossible to completely rule out that
predictors explaining variance are misleading and have no or little causality, although
results are in line with literature and cognitive models.
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7 Discussion

Knowing influencing factors and being able to predict take-over performance is a key
aspect of HAD research; it can substitute experiments and help to cross-validate findings
in this field. It can also contribute to assessing the controllability of HAVs, an important
aspect, as new methods for ensuring safety in HAVs are urgently required (Winner &
Wachenfeld, 2013).

Predictor Variables

TimeBudget, TrafficDensity, Repetition, and Age were identified as main influencing fac-
tors, and the results matched the expectations regarding their direction of influence.
These predictors were significant in the majority of models. The TimeBudget has a strong
linear influence in the considered range of 5 to 8 seconds. Raising the TimeBudget
above this range is expected to lead to a decreasing benefit regarding performance, as
above a certain threshold, following the data, more time will not further improve take-over
performance. A model considering long TBs as well as short ones would most likely lead
to a logarithmic trend of the TimeBudget, rather than a linear one. Nevertheless, for this
modeling attempt, mainly time-critical take-over scenarios with certain system specifica-
tions (see also Chapter 6) were selected. This is reasonable and valuable, as the current
development and design process requires information regarding human performance in
such take-over scenarios, and human-machine-interaction is currently the most important
requirement of HAD-related research (Gasser, 2013). With regard to the TimeBudget, it
is remarkable that it does not show a significant effect when modeling Crash, probably
because the number of collisions was rather small, and an imperfect permutation of
factors among the experiments could not be completely avoided. Especially when further
decreasing the TimeBudget, more crashes will occur, which is currently not represented
in the model.

TrafficDensity was identified as a second main contributor to the response variables,
as it significantly contributes to all models (except for the GazeReactionTime model).
Furthermore, TrafficDensity shows an exponential behavior with a maximum between
15 and 30 vehicles’km when modeling Crash, Lat.Acc., and Take-OverTime. Above this
range, it shows a re-decrease in criticality for higher traffic densities, explained by quicker
decision-making and braking in scenarios with very dense traffic. Of the considered
scenarios, the most difficult seem to involve a medium traffic density, where the possibility
to change lanes is not obvious and requires extended perception and consideration by
the driver.

The predictor Repetition was identified as another important influencing factor on take-
over time and quality aspects. A logarithmic trend was assumed and, while modeling,
proved to be appropriate. Repetition represents learning effects and experience in take-
over scenarios and is considered one of the main effects when assessing take-over
performance. Training take-over scenarios showed to improve driver’'s performance and
reduce the criticality of the situations. On the other hand, if system performance increases
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7 Discussion

and the frequency of take-over scenarios decreases at the same time, drivers could
experience a loss of skills and therefore re-raise the criticality of take-over situations.

A fourth factor, Age, proved to have a large influence in certain models, especially
when modeling GazeReactionTime and Lat.Acc. In most cases, the influence of Age is
exponential, with higher effects in young and elderly drivers, and it is lowest between
30 and 50 years. This is similar to characteristics of simple reaction times of different
age groups (Kovac, 1969; Héhne, 1974) and also brings to mind crash statistics with
middle-aged drivers, who are less often causing fatal crashes than other age groups
(Statistisches Bundesamt, 2015). The results also indicate that elderly drivers can
compensate possible age-related limitations by increased braking and thus significantly
raise the take-over quality. This refutes the concern that studies involving younger drivers
only draw a too positive picture.

The other predictors Load, EyesOffRoad, and Lane had a minor influence. Lane was
significant for Take-OverTime, Lat.Acc., and TTC, but to a small degree. This is in line
with findings in the studies, where no effect of Lane on take-over performance was found
(Radimayr et al., 2014; Gold et al., 2014). The small effect of Load and EyesOffRoad,
which map the non-driving-related task, was rather unexpected, although studies did
not indicate strong effects of the tasks (Gold, Berisha, & Bengler, 2015). Partially, the
correlation of Load and Repetition, caused by an imperfect variation of factors in the
experiments, may have covered effects of the non-driving-related task and assign them
to Repetition. Only in GazeReactionTime and TTC did the predictor Load show significant
influence, whereas EyesOffRoad did not have an impact on any model. Furthermore,
for the TTC, the direction of Load was contrary to expectations, which was separately
discussed in Section 4.7.

Models of Response Variables

In order to model take-over performance, a number of dependent variables had to be
selected. The decision for the parameter set was based on prior research, physics,
cognitive science, and established surrogate safety metrics. Although this parameter
set proved to provide a valid assessment of the take-over (Happee et al., 2016), other
variables could also act as valid metrics. Assessment of scenarios in which only the
stabilization of the vehicle has to be ensured, is limited with the current set of variables.

The validation confirmed very good predictive characteristics for GazeReactionTime,
Take-OverTime, TTC, and Crash, and still good characteristic for Lat.Acc. Furthermore,
validation indicated that the “eyes-on-road” time can also be predicted by the GazeReac-
tionTime model by adding 200 ms to the model output.

Regarding brake applications, Brake and Long.Acc. deviated from the validation data
to a greater extent and also showed less explained variance while modeling. These
models in particular improve most when the driver is introduced as a predictor to the
equations, which is why knowledge on drivers’ predisposition would significantly improve
models such as GazeReactionTime, Lat.Acc., Long.Acc., and Brake in particular. For the
prediction of single responses of particular drivers, this additional knowledge is inevitable
for a meaningful prediction. On the other hand, if mean values are of interest, for example
if the influence of different traffic densities in a certain scenario is to be analyzed, the
models presented can predict valid data for a larger group of drivers. Here, the variance
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between single drivers is dropped while building the group’s average. Unless predisposi-
tions of drivers are known, the strength of the models is rather the prediction of responses
of the population than the individual, which is also the case for most driving simulator
studies. Nevertheless, if drivers are known, the proposed models can be used to predict
individual take-overs of certain drivers in dependence on the situational factors.

The models are interpolation equations in the range of the explanatory variables used
to fit the model, but they may not be valid for extrapolation (Montgomery & Peck, 1992).
Nevertheless, if models are well adjusted and show adequacy, limited extrapolations may
be feasible, which could be shown when models were compared to experiments of other
authors. The prediction matched the results of the authors, even if they were located
at the edge or outside the range of the training data. Overall, the validation showed
that the models are not only in line with the results of other authors’ research, but are
also valid predictors for take-over experiments. For the first time, the models enable
a unique understanding of the interaction between different predictors, as they allow a
simultaneous consideration of seven predictor variables, revealing their relevance for
modeling drivers’ take-over performance in HAVs.
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8 Summary

Based on the research need to ensure safety of Highly Automated Vehicles (HAVs) by
assessing and understanding human performance in take-over scenarios, this thesis
introduced a quantitative approach to model take-over performance in time-critical situa-
tions of Highly Automated Driving (HAD). The models assess and predict the outcome
of those take-overs, which is most likely to be the most important key factor when con-
sidering controllability of HAVs. Different aspects of highly automated vehicle guidance
were examined, and a broad overview of take-over research was provided. Additionally,
HAD-related definitions were proposed, and relevant models of human performance and
information processing recalled. In order to select a suitable approach for modeling take-
over performance, a variety of methods was discussed and weighed under consideration
of the research goal to achieve a valid prediction of performance and simultaneously gain
knowledge on interactions of predictors and their influence on the response variables.
A combination of different regression methods was selected as most appropriate and
beneficial, as regression features good predictive characteristics, while disclosing the
relations of the predictors.

To generate a data-set for training the models, six driving simulator studies were con-
ducted in different high-fidelity driving simulators. The experiments contained take-over
requests (TORs) in Lead Vehicle Stationary (LVS) take-over scenarios on a highway
with a limited Time Budget (TB) to create demanding situations, suitable to assess
drivers’ performance. Previous analysis of literature and models of cognition and infor-
mation processing led to the identification of seven main influencing factors regarding the
take-over performance. These seven predictors, namely the TimeBudget, Lane, Traffic-
Density, Repetition, Load, Eyes-Off-Road (EyesOffRoad), and Age were examined during
the experiments. In this way, a database containing 753 valid take-overs was created.
The GazeReactionTime, Take-OverTime, Lat.Acc., Long.Acc., Brake, Crash, and TTC were
identified as the most promising response variables that assess timing and quality aspects
of the take-over. Correlations between these measures, obstructive for the modeling
process, could have been prevented to a certain degree, but not avoided completely.
Although the remaining correlations are considered to be uncritical, a distortion of the
models cannot be ruled out completely.

Based on literature and a preliminary data analysis, the contribution of the different
parameters was supposed to have either a linear, logarithmic, or exponential influence
on the response. For the different response variables, different regression methods
were applied. GazeReactionTime, Take-OverTime, Lat.Acc., and TTC were modeled by
the use of non-linear regressions. For Lat.Acc. and TTC separate models for braking
and non-braking drivers were implemented, improving the prediction capability of the
non-braking group. In order to provide information regarding the brake probability and
thus the allocation of data to the separated models for Lat.Acc. and TTC, the Brake model
was established, a logistic model calculating brake probabilities. Additionally, logistic
models for modeling the crash probability (Crash) and the probability of the occurrence of
low, medium, and high longitudinal accelerations (Long.Acc.) were set up.
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8 Summary

Only those predictors were kept in the regression equation that showed significance when
evaluated by a t-test. TimeBudget, TrafficDensity, Repetition, and Age were identified
as the strongest influencing predictors while Load, EyesOffRoad, and Lane explained
minor variance with no significance in many models. The assessment of the models’
adequacy showed good characteristics for the Take-OverTime, TTC, and Crash model.
The Lat.Acc. models showed a slightly less accurate performance, and the Long.Acc.
and Brake model were assessed to have moderate adequacy. The GazeReactionTime
model explained only minor variance, but the model is still regarded as valuable, as the
data shows only low standard deviations. The reaction times are therefore located within
a narrow range, which can be predicted without the need to explain large shares of the
variance within that range. The errors in some of the models were found to not always
be normally distributed, but the regressions appear to be rather resilient, as generalized
models that address different distributions did not improve the models’ adequacy by a
relevant degree. On the contrary, the established models could be further improved by
reducing the effects of outliers in the data by the use of the robust weight function “Fair”.
A mixed-effect regression revealed a large variance induced by the drivers and significant
model improvements under consideration of the drivers’ predisposition. This contribution
of the driver could and should be considered as a predictor, but is only available for
drivers with several recorded take-overs or retrievable by driver monitoring. This data is
so far not available for prediction, and the validation was performed with the less accurate
driver-independent regression models.

The models’ predictions were compared to a new set of data, recorded for validation in an
additional driving simulator experiment. Furthermore, based on published descriptions
of the experiments, the models enabled the prediction of take-over performance of
four driving simulator studies of different national and international authors. Validation
strengthened the modeling results and the previous assessments of models’ adequacy.
Prediction characteristics of the validation experiments matched the characteristics
identified while modeling, as the models for GazeReactionTime, Take-OverTime, Lat.Acc.,
TTC, and Crash were able to adequately - and in some cases very precisely - predict
the results of the tested experiments, whereas Brake and Long.Acc. showed higher
deviations. As validation results were in line with the modeling, validity of the models is
assumed.

In conclusion, this thesis provides an effective way of estimating performance in time-
critical take-over scenarios and proved the potential to even substitute driving simulator
experiments, facilitating the controllability assessment of the take-over in HAVs. Fur-
thermore, the thesis enables a profound comprehension of the effect and magnitude of
different factors that influence take-over performance and for the first time facilitates their
simultaneous consideration.
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A Plots of Non-Linear Mixed Effect Models

Plot for GazeReactionTime can be found in Figure 4.383.
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B Regression Models for Braking and Non-Braking
Drivers
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B Regression Models for Braking and Non-Braking Drivers
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B Regression Models for Braking and Non-Braking Drivers
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Figure B.6: Estimation and measures of TTC for non-braking drivers.
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C Plots of Validation Data
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Figure C.6: Estimation and measures of TTC for validation data of braking drivers.
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%% Modeling Take-Over Performance of Highly Automated Vehicles
% Matlab source code of the dissertational thesis of Christian Gold,
% Institute of Ergonomics, Technical University of Munich.

% *** Introduction to the structure

% MLETakeover.m

% * Main code file

% * Includes main body of source code

% * Estimated several take-over performance metrics and creates models output
% fcndataconfig

% * Includes config files and data bases

%  config.m

%  *Includes definitions and user input mask

% estnime.m

%  * Estimation of Non-Linear-Mixed-Effect models

% models.m

% * Model equations

% valconfig.m

%  * Configuration file for validation data

% fcnplot

% * Includes functions for the purpose of plotting the results
% fcnval

% * Includes functions for validation purpose

% *** Author and affiliation:

% * Christian Gold, Institute of Ergonomics, TUM

% *Inspired by code of:

% * Sembiring, Javensius

% * Institute of Flight System Dynamics, TUM

% *** Bug or revision, please contact:

% * gold@Ife.mw.tum.de

% *** Instruction:

% *all user input is required in config.m

%% m-file implementation
clear; %Setting up a clear workspace
clc; %clear

fprintf('Defining workspace..\n");
workingdir = {'fcnplot’,'fcndataconfig’, fcnval'};

for i = Lilength(workingdir) %Add pathes of working directories
addpath(workingdir{i});
end

fprintf('Loading Config..\n");
[data,label,con] = feval('config’); % *** load data and plot configuration

%% Nominal Regressions

fprintf('Calculating Nominal Regression for Braking (all cases)..\n");

[B.beta,B.dev,B.stats] = mnrfit(data.in_brake,data.brake_ord,'model’,'ordinal’); %calculate regression model
B.est = mnrval(B.beta,data.in_brake); %calculate probabilities for plotting braking regression
fprintf('Calculating Nominal Regression for Crashes (all cases)..\n");

[C.beta,C.dev,C.stats] = mnrfit(data.in_crash,data.crash_ord,'model’,'ordinal’); %calculate regression model
C.est = mnrval(C.beta,data.in_crash); %calculate probabilities for plotting crash regression
fprintf('Calculating Nominal Regression for Crashes (non-braking drivers)..\n");

[CO,devCO,statsCO] = mnrfit(data.in_crash0,data.crash_ord0,'model’,'ordinal’); %calculate regression model
est_crash0 = mnrval(CO,data.in_crash0); %calculate probabilities for plotting crash regression
fprintf('Calculating Nominal Regression for Crashes (braking drivers)..\n");

[C1,devCl,statsC1] = mnrfit(data.in_crashl,data.crash_ordl,'model’,'ordinal’); %calculate regression model
est_crashl = mnrval(C1,data.in_crashl); %calculate probabilities for plotting crash regression

if con.Multinomial ==
fprintf('Calculating Nominal Regression for Lateral Accelerations (all cases)..\n");
[LA.b,LA.dev,LA stats] = mnrfit(data.in_lat,data.lat_ord,'model’,'ordinal’); %calculate regression model
LA.est = mnrval(LA.b,data.in_lat,LA.stats,'model’,'ordinal’); %calculate probabilities for plotting lateral accelerations
fprintf('Calculating Nominal Regression for Longitudinal Accelerations (all cases)..\n’);
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[LO.b,LO.dev,LO.stats] = mnrfit(data.in_long,data.long_ord,'model’,'ordinal’); %calculate regression model

LO.est = mnrval(LO.b,data.in_long,LO.stats,'model’,'ordinal’); %calculate probabilities for plotting lateral accelerations

fprintf('Calculating Nominal Regression for Longitudinal Accelerations (braking drivers)..\n’);

[LO1.b,LO1.dev,LO1.stats] = mnrfit(data.in_longl,data.longl_ord,'model’,'ordinal’); %calculate regression model

LOl.est = mnrval(LOl.b,data.in_longl,LOL.stats,'model’,'ordinal’); %calculate probabilities for plotting lateral accelerations
end

%% Non Linear Regressions

fprintf('Setting Parameters..\n");

stats = statset('TolX',1e-4, TolFun',le-4,'Maxlter',200); %Sets parameters for nimefit
fprintf('Loading all models..\n');

[model] = models(); %load models

%Fitting Reaction Times

%for all cases where eyes were off road (eor = 1)

fprintf('Calculating Nonlinear Mixed Effect Regression for Reaction Time (all cases)...\n");
[nIme_r.b,nIme_r.PSL,nIme_r.stats,nime_r.random] = nImefit(data.in_eor,data.out_eor(:,1),data.participant_eor,[],modelirim,model.r.l/
s,'REParamsSelect’,1,'Options’,stats);

[nIme_r.mu,nlme_r.sigma] = normfit(nlme_r.random); %Calculating normal distribution parameters for estimated random effects
fprintf('Calculating Nonlinear Regression for Reaction Time (all cases)..\n");

nl_r = fitnim(data.in_eor,data.out_eor(;, 1), model.r.m,model.r.s,'Options’,con.optsr);

%for non braking drivers (eor = 1)

fprintf('Calculating Nonlinear Mixed Effect Regression for Reaction Time (non-braking drivers)..\n");

%[nlme_r0,PSIr0,statsr0,zufallr0] = nImefit(data.in,eorO,data.out,eorO(:,1),data.participant,eorO,[],model.rO,start.rO,‘REParamsSeIect',l/
[1],'Options’,stats);

%fprintf('Calculating Nonlinear Regression for Reaction Time (non-braking driver)..\n");

%nl_r0 = fitnIm(data.in_eor0,data.out_eor0(;,1),model.r0.m,model.r0.s,'Options’',con.optsr);

%for braking drivers (eor = 1)

%fprintf('Calculating Nonlinear Mixed Effect Regression for Reaction Time (braking drivers)..\n");

%[nlme_r1,PSIrl,statsrl,zufallrl] = nImefit(data,in,eorl,data.out,eorl(:,1),data.participant,eorl,[],model.rl,start.rl,‘REParamsSeIect',l/
[1],'Options’,stats);

%fprintf('Calculating Nonlinear Regression for Reaction Time (braking drivers)..\n");

%nl_rl = fitnIm(data.in_eorl,data.out_eorl(;,1),model.rl.m,model.rL.s,'Options’,con.optsr);

%Fitting Take Over Times

fprintf('Calculating Nonlinear Mixed Effect Regression for Take Over Time (all cases)..\n");
[nIme_t.b,nlme_t.PSI,nime_t.stats,nlme_t.random] = nimefit(data.in,data.out(; 2),data.participant,[],model.t.m,model.t.s,REParamsSelect’, v
1,'Options',stats,'RefineBeta0','off');

[nIme_t.mu,nIme_t.sigma] = normfit(nime_t.random); %Calculating normal distribution parameters for estimated random effects
fprintf('Calculating Nonlinear Regression for Take Over Time (all cases)..\n");

nl_t = fitnIm(data.in,data.out(; 2), model.t.m,model.t.s,'Options’,con.optst);

fprintf('Calculating Nonlinear Mixed Effect Regression for Take Over Time (non-braking drivers)..\n’);

%[nlme_t0,PSIt0,statst0,zufallt0] = nImefit(data4inO,data.outO(:,Z),dataparticipantO,[],model.tO,start.tO,‘REParamsSeIect',[l],'Options‘,l/
stats,'RefineBeta0’,'off");

fprintf('Calculating Nonlinear Regression for Take Over Time (non-braking driver)..\n’);

nl_t0 = fitnlm(data.in0,data.out0(; 2),model.t0.m,model.t0.s,' Options',con.optst);

fprintf('Calculating Nonlinear Mixed Effect Regression for Take Over Time (braking drivers)..\n’);

%[nlme_t1,PSIt1,statstl,zufalltl] = nImefit(data.inl,data.outl(:,Z),data.participantl,[],model.tl,start.tl,‘REParamsSeIect',[l],'Options‘,l/
stats,'RefineBeta0’,'off");

fprintf('Calculating Nonlinear Regression for Take Over Time (braking drivers)..\n’);

nl_t1 = fitnlm(data.in1,data.out1(;2),model.t1.m,model.t1.s,'Options’,con.optst);

%Fitting Lateral Accelerations

fprintf('Calculating Nonlinear Mixed Effect Regression for Lateral Accelerations (all cases)..\n");
[nIme_lat.b,nIme_lat.PSI,nIme_lat.stats,nlme_lat.random] = nImefit(data.in,data.out(:,3),data.participant,[],model.lat.m,model.lat.l/
s,'REParamsSelect’,1,'Options',stats, RefineBeta0','off');

[nIme_lat.mu,nIme_lat.sigma] = normfit(nlme_lat.random); %Calculating normal distribution parameters for estimated random effects
fprintf('Calculating Nonlinear Regression for Lateral Accelerations (all cases)..\n');

nl_lat = fitnlm(data.in,data.out(; 3),model.lat. m,model.lat.s, Options',con.optslat);

fprintf('Calculating Nonlinear Mixed Effect Regression for Lateral Accelerations (non-braking drivers)..\n’);
%[nlme_lat0,PSIlat0,statslat0,zufalllat0] = nImefit(data4inO,data.outO(:,3),data4participantO,[],model.latO,start.IatO,'REParamsSeIect',l/
[1],'Options’,stats,'RefineBeta0','off");

fprintf('Calculating Nonlinear Regression for Lateral Accelerations (non-braking driver)..\n’);

nl_lat0 = fitnlm(data.in0,data.out0(;,3),model.lat0.m,model.lat0.s,' Options',con.optslat);

fprintf('Calculating Nonlinear Mixed Effect Regression for Lateral Accelerations (braking drivers)..\n’);
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%[nlme_latl,PSllatl,statslatl,zufalllatl] = nImeﬁt(dataAin1,dataAoutl(:,3),dataAparticipantl,[],modeIAIatl,StartAIatl,'REParamsSeIect',l/
[1],'Options’,stats,'RefineBetal’,'off");

fprintf('Calculating Nonlinear Regression for Lateral Accelerations (braking drivers)..\n");

nl_latl = fitnlm(data.in1,data.outl(;,3),model.latl.m,model.latl.s,'Options’,con.optslat);

%Fitting Longitudinal Accelerations

fprintf('Calculating Nonlinear Mixed Effect Regression for Longitudinal Accelerations (all cases)..\n");
[nlme_long.b,nIme_long.PSL,nIme_long.stats,nime_long.random] = nImefit(data.in,data.out(:,4),data.participant,[],model.long.m,model.long.l/
s,'REParamsSelect’,1,'Options’,stats,'RefineBeta0','off");

[nlme_long.mu,nIme_long.sigma] = normfit(nime_long.random); %Calculating normal distribution parameters for estimated random effects
fprintf('Calculating Nonlinear Regression for Longitudinal Accelerations (all cases)..\n");

nl_long = fitnlm(data.in,data.out(;,4),model.long.m,model.long.s,'Options’,con.optslong);

%for braking drivers

%fprintf('Calculating Nonlinear Mixed Effect Regression for Longitudinal Accelerations (braking drivers)..\n");
%[nime_longl,PSllongl,statslongl,zufalllongl] = nImefit(datajnl,data.outl(:,4),dataparticipantl,[],model.longl,startl/
longl,'REParamsSelect’,[1],'Options’,stats,'RefineBeta0’,'off');

%fprintf('Calculating Nonlinear Regression for Longitudinal Accelerations (braking driver)..\n");

%nl_longl = fitnim(data.inl,data.out1(;4),model.longl.m,model.longl.s,'Options',con.optslong);

%Fitting TTC

fprintf('Calculating Nonlinear Mixed Effect Regression for TTC (all cases)..\n");
[nIme_ttc.b,nIme_ttc.PSLnIme_ttc.stats,nime_ttc.random] = nimefit(data.in,data.out(;5),data.participant, []model.ttc.m,model.ttc. 4
s,'REParamsSelect’,1,'Options’,stats,'RefineBeta0', 'off");

[nIme_ttc.mu,nIme_ttc.sigma] = normfit(nlme_ttc.random); %Calculating normal distribution parameters for estimated random effects
fprintf('Calculating Nonlinear Regression for TTC (all cases)...\n’);

nl_ttc = fitnim(data.in,data.out(;,5),model.ttc.m,model.ttc.s,'Options’,con.optsttc);

fprintf('Calculating Nonlinear Mixed Effect Regression for TTC (non-braking drivers)..\n’);

%[nlme_ttcO,PSIttcO,statsttcO,zufallttcl] = nImefit(data.inO,data.outO(:,5),data.participant0,[],model.ttcO,start.ttcO,‘REParamsSeIect',1/
[1],'Options',stats,'RefineBeta0','off");

fprintf('Calculating Nonlinear Regression for TTC (non-braking driver)..\n");

nl_ttcO = fitnim(data.in0,data.out0(;,5),model.ttc0.m,model.ttc0.s,' Options',con.optsttc);

fprintf('Calculating Nonlinear Mixed Effect Regression for TTC (braking drivers)..\n’);

%[nlme_ttcl,PSIttc],statsttcl,zufallttc2] = nImeﬁt(data.inl,data.outl(:,5),data.participantl,[],model.ttcl,start.ttcl,‘REParamsSeIect',1/
[1],'Options’,stats,'RefineBeta0','off");

fprintf('Calculating Nonlinear Regression for TTC (braking drivers)..\n");

nl_ttcl = fitnim(data.inl,data.out1(;,5),model.ttcl.m,model.ttcl.s,' Options',con.optsttc);

fprintf('Calculationg Generalized Linear Model for Take Over Time..\n");

glm_t = fitglm(data.in_lin_t, data.out(,2), 'distribution’, 'gamma’);

glm_t_RMSE = sqrt(1/753*sum(glm_t.Residuals.Raw.” 2));

fprintf('Calculationg Generalized Linear Model for Take Lateral Accelerations..\n’);

glm_lat = fitglm(data.in_lin_lat, data.out(;3), 'distribution’, 'inverse gaussian’);

glm_lat_RMSE = sqrt(1/753*sum(glm_lat.Residuals.Raw.”2));

%% Predict take-over parameters based on the models

[val] = feval('valconfig',con.exp); %load validation data

fprintf('Predicting means and confidence intervals, based on the calculated models..\n");
[est_r.est_r_ci] = predict(nl_r,data.in_eor, 'Prediction’,'observation’);
%[est_r0,est_r0_ci] = predict(nl_r0,data.in_eor0, 'Prediction’,'observation’);
%l[est_rl,est_rl_ci] = predict(nl_rl,data.in_eorl, 'Prediction’,'observation’);
[est_t,est_t_ci] = predict(nl_t,data.in, 'Prediction’,'observation’);

[est_t0,est_t0_ci] = predict(nl_t0,data.in0, 'Prediction’,'observation’);
[est_t1,est_t1_ci] = predict(nl_tl,data.inl, 'Prediction’,'observation’);
[est_lat,est_lat_ci] = predict(nl_lat,data.in, 'Prediction’,'observation’);
[est_lat0,est_latO_ci] = predict(nl_lat0,data.in0, 'Prediction’,'observation’);
[est_latl,est_latl_ci] = predict(nl_latl,data.in1, 'Prediction’,'observation’);
[est_long,est_long_ci] = predict(nl_long,data.in, 'Prediction’,'observation’);
%l[est_longl,est_longl_ci] = predict(nl_longl,data.in1, 'Prediction’,'observation’);
[est_ttc,est_ttc_ci] = predict(nl_ttc,data.in, 'Prediction’,'observation’);
[est_ttcO,est_ttcO_ci] = predict(nl_ttc0,data.in0, 'Prediction’,'observation’);
[est_ttcl,est_ttcl_ci] = predict(nl_ttcl,data.inl, 'Prediction’,'observation’);

fprintf('Predicting means and confidence intervals of validation data, based on the calculated models..\n’);
[est_val_r,est_val_r_ci] = predict(nl_r,val.in_eor, 'Prediction’,'observation’);
%[est_val_r0,est_val_r0_ci] = predict(nl_rO,val.in0, 'Prediction’,'observation’);
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%[est_val_rl,est_val_rl_ci] = predict(nl_r1,val.in1, 'Prediction’,'observation’);
[est_val_t,est_val_t_ci] = predict(nl_t,val.in, 'Prediction’,'observation’);
[est_val_t0,est_val_t0_ci] = predict(nl_t0,val.in0, 'Prediction’,'observation’);
[est_val_t1,est_val_t1_ci] = predict(nl_t1,val.inl, 'Prediction’,'observation’);
[est_val_lat,est_val_lat_ci] = predict(nl_lat,val.in, 'Prediction’,'observation’);
[est_val_lat0,est_val_latO_ci] = predict(nl_latO,val.inQ, 'Prediction’,'observation’);
[est_val_latl,est_val_latl_ci] = predict(nl_latl,val.in1, 'Prediction’,'observation’);
[est_val_long,est_val_long_ci] = predict(nl_long,val.in, 'Prediction’,'observation’);
%l[est_val_longl,est_val_longl_ci] = predict(nl_longl,val.inl, 'Prediction’,'observation’);
[est_val_ttc,est_val_ttc_ci] = predict(nl_ttc,val.in, 'Prediction’,'observation’);
[est_val_ttc0,est_val_ttcO_ci] = predict(nl_ttcO,val.in0, 'Prediction’,'observation’);
[est_val_ttcl,est_val_ttcl_ci] = predict(nl_ttcl,val.inl, 'Prediction’,'observation’);

fprintf('Estimating Brake and Crash Probabilities of Validation Data...\n");

est_brake_val = mnrval(B.beta,val.in_brake); %calculate estimated braking probabilities
est_brake_val_total = mean(est_brake_val(;,1)); %mean estimated brake probability of all validation lines
est_crash_val = mnrval(C.beta,val.in_crash); %calculate estimated braking probabilities

est_crash_val_total = mean(est_crash_val(;,1)); %mean estimated brake probability of all validation lines
est_crash0_val = mnrval(CO,val.in_crash0); %calculate estimated braking probabilities

est_crash0_val_total = mean(est_crash0_val(;,1)); %mean estimated brake probability of all validation lines
est_crashl_val = mnrval(C1,val.in_crashl); %calculate estimated braking probabilities

est_crashl_val_total = mean(est_crashl_val(;1)); %mean estimated brake probability of all validation lines

fprintf('Estimating Data of NLME..\n");

in_datasort = [data.participant data.in];

out_datasort = [data.participant data.out];

in_datasort_eor = [data.participant_eor data.in_eor];

out_datasort_eor = [data.participant_eor data.out_eor];

[nIme_r.est, nime_r.R, nime_r.R_adj] = estnime(in_datasort_eor, out_datasort_eor, 1, nime_r.random, model.r.m, model.rk, nime_r.b, nl_r.e
NumObservations); %estimate reaction time

[nIme_t.est, nime_t.R, nime_t.R_adj] = estnlme(in_datasort, out_datasort,2, nime_t.random, model.t. m, model.t.k, nime_t.b, data.n); %estimate ¥’
take-over-time

[nlme_lat.est, nime_lat.R, nime_lat.R_adj] = estnlme(in_datasort, out_datasort,3, nime_lat.random, model.lat.m, model.lat.k, nime_lat.b, data.
n); %estimate lateral accelerations

[nIme_long.est, nime_long.R, nime_long.R_adj] = estnime(in_datasort, out_datasort,4, nime_long.random, model.long.m, modeLIong.k,l/
nlme_long.b, data.n); %estimate longitudinal accelerations

[nIme_ttc.est, nime_ttc.R, nime_ttc.R_adj] = estnime(in_datasort, out_datasort,5, nlme_ttc.random, model.ttc.m, model.ttc.k, nime_ttc.b, data.
n); %estimate time to collision

%% Validation

fprintf('Calculating RMSE of Validation Data..\n);

%Calculate R and RMSE for validation data and compares results to training data
%Not valid for robust regression functions

[val.rmse.r] = valrmse(est_r, est_val_r, data.out_eor(; 1), val.out_eor(;1));
[val.rmse.t] = valrmse(est_t, est_val_t, data.out(;,2), val.out(;2));

[val.rmse.lat0] = valrmse(est_lat0, est_val_lat0, data.out0(;3), val.out0(;3));
[val.rmse.latl] = valrmse(est_latl, est_val_latl, data.outl(;,3), val.outl(;,3));
[val.rmse.ttc0] = valrmse(est_ttcO, est_val_ttc0, data.outO(;5), val.outO(;5));
[val.rmse.ttc1] = valrmse(est_ttcl, est_val_ttcl, data.outl(;,5), val.outl(,5));

B.est_val = mnrval(B.beta,val.in_brake); %calculate probabilities for plotting braking regression
C.est_val = mnrval(C.beta,val.in_crash); %calculate probabilities for plotting braking regression
LOL.est_val = mnrval(LOl.b,val.in_long1,LOL.stats,'model’,'ordinal’); %calculate probabilities for plotting braking regression

%The following is only useful if validation data is "Thesis", otherwise quitting.
if con.exp > 1

fprintf('Foreign validation file, quitting without printing results'\n’);

return;
end

fprintf('Calculating whether validation data is located within the confidence intervals..\n’);
[withinci.r,withinci.r_per] = valwithinci(length(val.in_eor),est_val_r_ci,val.out_eor(;1));
[withinci.t,withinci.t_per] = valwithinci(val.n,est_val_t_ci,val.out(;2));
[withinci.latO,withinci.latO_per] = valwithinci(val.n0,est_val_lat0_ci,val.outO(; 3));
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[withinci.latl,withinci.latl_per] = valwithinci(val.n1,est_val_latl_ci,val.outl(;3));
[withinci.ttcO,withinci.ttcO_per] = valwithinci(val.n0,est_val_ttcO_ci,val.out0(;,5));
[withinci.ttc1,withinci.ttc1_per] = valwithinci(val.n1,est_val_ttcl_cival.outl(,5));

fprintf('Sorting Validation Data for easy calculation of mean and SD..\n");
meansd.tBC_data = [est_val_t B.est_val(;,2) C.est_val(;,2) est_val_t_ci(;,2)];
meansd.tBC_data_td0 = meansd.tBC_data(1:val.n_tdO0,:);

meansd.tBC_data_td10 = meansd.tBC_data((val.n_td0+1):val.n,);

meansd.latttcO_data = [est_val_latO est_val_ttcO est_val_lat0_ci(;,2) est_val_ttcO_ci(;,2)];
meansd.latttcO_data_td0 = meansd.latttcO_data(1:val.n_td0_brO0,);
meansd.latttcO_data_td10 = meansd.latttcO_data((val.n_td0_br0+1):val.n0,:);
meansd.latlongttcl_data = [est_val_latl LOl.est_val est_val_ttcl est_val_latl_ci(;,2) est_val_ttcl_ci(:2)];
meansd.latlongttcl_data_tdO = meansd.latlongttcl_data(1l:val.n_td0_brl,:);
meansd.latlongttcl_data_td10 = meansd.latlongttcl_data((val.n_td0_brl+1):val.n1,);
fprintf('Calculating mean..\n");

meansd.m.ttd0 = mean(meansd.tBC_data_td0(;,1));

meansd.m.ttd10 = mean(meansd.tBC_data_td10(;1));

meansd.m.Btd0 = mean(meansd.tBC_data_td0(;,2));

meansd.m.Btd10 = mean(meansd.tBC_data_td10(;2));

meansd.m.Ctd0 = mean(meansd.tBC_data_td0(;3));

meansd.m.Ctd10 = mean(meansd.tBC_data_td10(;,3));

meansd.m.lat0td0 = mean(meansd.latttcO_data_tdO(;,1));

meansd.m.ttcOtd0 = mean(meansd.latttcO_data_td0(;2));

meansd.m.latOtd10 = mean(meansd.latttcO_data_td10(,1));

meansd.m.ttcOtd10 = mean(meansd.latttcO_data_td10(;2));

meansd.m.latltd0 = mean(meansd.latlongttcl_data_td0(,1));

meansd.m.ttc1td0 = mean(meansd.latlongttcl_data_tdO(:,5));

meansd.m.latltd10 = mean(meansd.latlongttcl_data_td10(;1));

meansd.m.ttc1td10 = mean(meansd.latlongttcl_data_td10(;5));

meansd.m.LOllowtd0 = mean(meansd.latlongttcl_data_td0(:2));
meansd.m.LO1medtd0 = mean(meansd.latlongttcl_data_td0(;3));
meansd.m.LO1hightd0 = mean(meansd.latlongttcl_data_td0(:4));
meansd.m.LOllowtd10 = mean(meansd.latlongttcl_data_td10(;,2));
meansd.m.LO1medtd10 = mean(meansd.latlongttcl_data_td10(:3));
meansd.m.LO1hightd10 = mean(meansd.latlongttcl_data_td10(:4));

fprintf('Calculating SD..\n");

meansd.sd.ttd0 = (mean(meansd.tBC_data_td0(;4)-meansd.m.ttd0))/1.645;
meansd.sd.ttd10 = (mean(meansd.tBC_data_td10(;,4)-meansd.m.ttd10))/1.645;
meansd.sd.lat0td0 = (mean(meansd.latttcO_data_td0(;,3)-meansd.m.lat0td0))/1.645;
meansd.sd.ttc0td0 = (mean(meansd.latttcO_data_td0(;,4)-meansd.m.ttc0td0))/1.645;
meansd.sd.lat0td10 = (mean(meansd.latttcO_data_td10(;,3)-meansd.m.lat0td10))/1.645;
meansd.sd.ttc0td10 = (mean(meansd.latttcO_data_td10(;,4)-meansd.m.ttc0td10))/1.645;
meansd.sd.latltd0 = (mean(meansd.latlongttcl_data_td0(;,6)-meansd.m.lat1td0))/1.645;
meansd.sd.ttc1td0 = (mean(meansd.latlongttcl_data_td0(,7)-meansd.m.ttc1td0))/1.645;
meansd.sd.latltd10 = (mean(meansd.latlongttcl_data_td10(;,6)-meansd.m.lat1td10))/1.645;
meansd.sd.ttc1td10 = (mean(meansd.latlongttcl_data_td10(,7)-meansd.m.ttc1td10))/1.645;

%% Plotting/Printing Results

fprintf('\nPlotting Results\n');
printnominalresults(B.beta,C.beta,C0,C1,B.stats,C.stats,statsCO,statsC1,data,label);

fprintf(\nModell Fitt R* for Non Linear Models (all data)\n');

fprintf('R? of Reaction Times = %5.2f\n",nl_r.Rsquared.Adjusted*100);

fprintf('R? of Take-Over Times = %5.2f\n’,nl_t.Rsquared.Adjusted*100);

fprintf('R? of Lateral Accelerations = %5.2f\n",nl_lat.Rsquared.Adjusted*100);
fprintf(R? of Longitudinal Accelerations = %5.2f\n',nl_long.Rsquared.Adjusted*100);
fprintf('R? of TTC = %5.2f\n’,nl_ttc.Rsquared.Adjusted*100);

fprintf("\nModell Fitt R? for Non Linear Models (non-braking drivers)\n');
%fprintf('R? of Reaction Times = %5.2f\n",nl_r0.Rsquared.Adjusted*100);
fprintf('R? of Take-Over Times = %5.2f\n’,n|_t0.Rsquared.Adjusted*100);
fprintf(R? of Lateral Accelerations = %5.2f\n’,nl_lat0.Rsquared.Adjusted*100);
fprintf('R? of TTC = %5.2A\n’,nl_ttc0.Rsquared.Adjusted*100);
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fprintf("\nModell Fitt R? for Non Linear Models (braking drivers)\n');

%fprintf('R? of Reaction Times = %5.2f\n",nl_r1.Rsquared.Adjusted*100);

fprintf('R? of Take-Over Times = %5.2f\n’,n|_t1.Rsquared.Adjusted*100);

fprintf('R? of Lateral Accelerations = %5.2f\n",nl_lat1.Rsquared.Adjusted*100);
%fprintf('R? of Longitudinal Accelerations = %5.2f\n',nl_long1.Rsquared.Adjusted*100);
fprintf('R? of TTC = %5.2f\n’,nl_ttc1.Rsquared.Adjusted*100);

fprintf('\nPercentage of validation data within estimated confidence intervals (all data):\n");

%fprintf('Reaction Time: %7.4f\nTake-Over Time: %7.4f\nLateral Accelerations: %7.4f\nLongitudinal Accelerations: %7.4f\nTime To¥
Collisions: %7.4f\n",withinciper);

%fprintf("\nPercentage of validation data within estimated confidence intervals (non-braking drivers):\n');

%fprintf('Reaction Time: %7.4f\nTake-Over Time: %7.4f\nLateral Accelerations: %7.4f\nLongitudinal Accelerations: %7.4f\nTime To¥’
Collisions: %7.4f\n",withinciper0);

%fprintf("\nPercentage of validation data within estimated confidence intervals (braking drivers):\n');

%fprintf('Reaction Time: %7.4f\nTake-Over Time: %7.4f\nLateral Accelerations: %7.4f\nLongitudinal Accelerations: %7.4f\nTime To¥
Collisions: %7.4f\n",withinciperl);

%For the reasons of plotting, data for reaction times must be set to the same length than the other variables, as eor lines are missing.

for i = length(data.in_eor)+1:data.n
est_r(i) = 0;
nlme_r.est(i) = 0;
data.out_eor(i,;)) = [00 00 0];
est_r_ci(i,:) = [0 0];

end

for i = length(data.in_eor0):data.n0
%est_r0(i) = 0;
data.out_eor0(i,) = [00 0 0 0];
%est_r0_ci(i,;) = [0 0];

end

for i = length(data.in_eorl):data.n1
%est_rl(i) = 0;
data.out_eorl(i,)) = [00 0 0 0];
%est_rl_ci(i,)) = [0 0];

end

%For similar reasons, empty confidence intervals for the nominal regressions are generated
est_brake_ci = zeros(data.n,2);

est_brake0_ci = zeros(data.n0,2);

est_brakel_ci = zeros(data.n1,2);

est_crash_ci = zeros(data.n,2);

est_crashQ_ci = zeros(data.n0,2);

est_crashl_ci = zeros(data.n1,2);

plot_dataout = data.out; %Data.out has to be modified for plotting

plot_dataout(;,1)=[]; %Deleting Reaction time responses as data.out_eor is going to be plotted
plot_dataout0 = data.out0; %Data.out0 has to be modified for plotting

plot_dataout0(;1)=[];  %Deleting Reaction time responses as data.out0_eor is going to be plotted
plot_dataoutO(;3)=[]; = %Deleting brake responses as they are not plotted

plot_dataoutl = data.outl; %Data.outl has to be modified for plotting

plot_dataoutl(;1)=[l; = %Deleting Reaction time responses as data.outl_eor is going to be plotted
plot_dataoutl(;3)=[;  %Deleting brake responses as they are not plotted

%Plotting brake and crash probability in dependence of brake/crash probability
%Plotting the Graphs
%Graphs for all data
if con.ConsiderCrash == 1;
plot_capture = {'Estimated Output and Measurement for all data'};
plot_measured = [data.out_eor(; 1) plot_dataout data.brakesegmented data.crashsegmented]; %Array with measured y-data
plot_estimated = [est_r est_t est_lat est_long est_ttc B.est(;2) C.est(;,2)]; %Array with estimated y-data
plot_ci = [est_r_ci est_t_ci est_lat_ci est_long_ci est_ttc_ci est_brake_ci est_crash_cil; %Array with confidence bounds

plot_labels = {'Reaction Time [s]', Take Over Time [s]','Lat. Acc. [m/s?]','Long. Acc. [m/s?]',' TTC [s]','Brake Probability [-]','Crash Probability 4

1% %Array with labels
plot_x = (0:1:data.n*1-1)"; %X-Values Array with labels
plot_n = data.n; %Number of trials
plot_nfigures = 7; %Number of Figures
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plot_properties = [1 2 4]; %Properties for plotting: [FigNo. Rows Collums]
plotresults(plot_capture, plot_measured, plot_estimated, plot_ci, plot_x,plot_n, plot_nfigures, plot_labels, plot_properties);

%Plotting the Graphs NLME-Models

plot_capture = {'Estimated Output and Measurement for NonLinearMixedEffectModels'};

plot_measured = [data.out_eor(;1) plot_dataout data.brakesegmented data.crashsegmented]; %Array with measured y-data

plot_estimated = [nIlme_r.est nime_t.est nlme_lat.est nime_long.est nime_ttc.est B.est(;,2) C.est(;2)]; %Array with estimated y-data

plot_ci = [est_r zeros(data.n,1) est_t zeros(data.n,1) est_lat zeros(data.n,1) est_long zeros(data.n,1) est_ttc zeros(data.n,1) B.est(;,2) zeros "4
(data.n,1) C.est(;2) zeros(data.n,1)]; %Array with confidence bounds

plot_labels = {'Reaction Time [s]', Take Over Time [s]','Lat. Acc. [m/s?]','Long. Acc. [m/s?]','TTC [s]','Brake Probability [-]','Crash Probability [—l/
1% %Array with labels

plot_x = (0:1:data.n*1-1)"; %X-Values Array with labels

plot_n = data.n; %Number of trials

plot_nfigures = 7; %Number of Figures

plot_properties = [4 2 4]; %Properties for plotting: [FigNo. Rows Collums]

plotresults(plot_capture, plot_measured, plot_estimated, plot_ci, plot_x,plot_n, plot_nfigures, plot_labels, plot_properties);
else

plot_capture = {'Estimated Output and Measurement for all data'};

plot_measured = [data.out_eor(; 1) plot_dataout data.brakesegmented]; %Array with measured y-data

plot_estimated = [est_r est_t est_lat est_long est_ttc B.est(;2)]; %Array with estimated y-data

plot_ci = [est_r_ci est_t_ci est_lat_ci est_long_ci est_ttc_ci est_brake_cil; %Array with confidence bounds

plot_labels = {'Reaction Time [s]', Take Over Time [s]', Lat. Acc. [m/s?]','Long. Acc. [m/s?]', TTC [s]','Brake Probability [-]}; %Array with &’
labels

plot_x = (0:1:data.n*1-1)'; %X-Values Array with labels

plot_n = data.n; %Number of trials

plot_nfigures = 6; %Number of Figures

plot_properties = [1 2 4]; %Properties for plotting: [FigNo. Rows Collums]

plotresults(plot_capture, plot_measured, plot_estimated, plot_ci, plot_x,plot_n, plot_nfigures, plot_labels, plot_properties);

%Plotting the Graphs NLME-Models

plot_capture = {'Estimated Output and Measurement for NonLinearMixedEffectModels'};

plot_measured = [data.out_eor(;1) plot_dataout data.brakesegmented]; %Array with measured y-data

plot_estimated = [nlme_r.est nime_t.est nime_lat.est nime_long.est nime_ttc.est B.est(;,2)]; %Array with estimated y-data

plot_ci = [est_r zeros(data.n,1) est_t zeros(data.n,1) est_lat zeros(data.n,1) est_long zeros(data.n,1) est_ttc zeros(data.n,1) B.est(;,2) zeros v
(data.n,1)]; %Array with confidence bounds

plot_labels = {'Reaction Time [s]', Take Over Time [s]','Lat. Acc. [m/s]','Long. Acc. [m/s?]','TTC [s]','Brake Probability [-]}; %Array withe’
labels

plot_x = (0:1:data.n*1-1)'; %X-Values Array with labels

plot_n = data.n; %Number of trials

plot_nfigures = 6; %Number of Figures

plot_properties = [4 2 4]; %Properties for plotting: [FigNo. Rows Collums]

plotresults(plot_capture, plot_measured, plot_estimated, plot_ci, plot_x,plot_n, plot_nfigures, plot_labels, plot_properties);
end

%Graphs for non-braking drivers

plot_capture = {'Estimated Output and Measurement for non-braking drivers'};

plot_measured = [plot_dataoutO data.crash0]; %Array with measured y-data

plot_estimated = [est_t0 est_lat0 est_ttcO est_crash0(;2)]; %Array with estimated y-data

plot_ci = [est_tO_ci est_latO_ci est_ttcO_ci est_crash0_ci]; %Array with confidence bounds
plot_labels = {Take Over Time [s]','Lat. Acc. [m/s?]','TTC [s]','Accidents [-]};  %Array with labels
plot_x = (0:1:data.n0*1-1)'; %X-Values Array with labels

plot_n = data.n0; %Number of trials

plot_nfigures = 4; %Number of Figures

plot_properties = [2 2 2]; %Properties for plotting: [FigNo. Rows Collums]
plotresults(plot_capture, plot_measured, plot_estimated, plot_ci, plot_x,plot_n, plot_nfigures, plot_labels, plot_properties);

%Graphs for braking drivers

plot_capture = {'Estimated Output and Measurement for braking drivers'};

plot_measured = [plot_dataoutl data.crashl]; %Array with measured y-data

plot_estimated = [est_t1 est_latl est_ttcl est_crash1(;,2)]; %Array with estimated y-data

plot_ci = [est_t1_ci est_latl_ci est_ttcl_ci est_crashl_ci]; %Array with confidence bounds
plot_labels = {'Take Over Time [s]','Lat. Acc. [m/s?]','TTC [s]','Accidents [-]};  %Array with labels
plot_x = (0:1:data.n1*1-1); %X-Values Array with labels

plot_n = data.nl; %Number of trials

plot_nfigures = 4; %Number of Figures
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plot_properties = [3 2 2]; %Properties for plotting: [FigNo. Rows Collums]
plotresults(plot_capture, plot_measured, plot_estimated, plot_ci, plot_x,plot_n, plot_nfigures, plot_labels, plot_properties);

%Print Multinomial Regression Results for Lateral and Longitudinal Accelerations
est_ci_zero = zeros(data.n,12);
%plot_dataout(;,2:3)=[];

plot_capture = {'Estimated Output and Measurement for Logistic Lateral and Longitudinal Accelerations'};
plot_measured = [data.latsegmented data.longsegmented]; %Array with measured y-data

plot_estimated = [LA.est LO.est]; %Array with estimated y-data

plot_ci = zeros(data.n,12); %Array with confidence bounds

plot_labels = {'Lat < 3.5''3.5 < Lat < 7.0",'Lat > 7.0','Long > -3.5'-3.5 > Long > -7.0"Long < -7.0%; %Array with labels
plot_x = (0:1:data.n*1-1)'; %X-Values Array with labels

plot_n = data.n; %Number of trials

plot_nfigures = 6; %Number of Figures

plot_properties = [5 2 3]; %Properties for plotting: [FigNo. Rows Collums]

plotresults(plot_capture, plot_measured, plot_estimated, plot_ci, plot_x,plot_n, plot_nfigures, plot_labels, plot_properties);

plot_capture = {'Estimated Output and Measurement for Logistic Longitudinal Accelerations of Braking Drivers'};
plot_measured = [data.longsegmentedl]; %Array with measured y-data

plot_estimated = [LOl.est]; %Array with estimated y-data

plot_ci = zeros(data.n1,6); %Array with confidence bounds

plot_labels = {'Long > -3.5'/-3.5 > Long > -7.0'/Long < -7.0%;  %Array with labels

plot_x = (0:1:data.n1*1-1); %X-Values Array with labels

plot_n = data.n1; %Number of trials

plot_nfigures = 3; %Number of Figures

plot_properties = [6 1 3]; %Properties for plotting: [FigNo. Rows Collums]

plotresults(plot_capture, plot_measured, plot_estimated, plot_ci, plot_x,plot_n, plot_nfigures, plot_labels, plot_properties);

%Print ROC Curve for Crash

figure(7);

clf;

set(gcf, 'Color', [1,1,1]); %White background

set(gcf, 'Position’, [0 0 600 285]); %Size of plot

%Brake ROC

subplot(1,2,1);
[B.roc_x,B.roc_y,B.roc_t,B.roc_auc]=perfcurve(data.brake,B.est(;2),'1);
plot(B.roc_x,B.roc_y);

xlabel('False positive rate - Brake'); ylabel('True positive rate - Brake');
%Crash ROC

subplot(1,2,2);
[C.roc_x,C.roc_y,C.roc_t,C.roc_auc]=perfcurve(data.crash,C.est(;2),'1);
plot(C.roc_x,C.roc_y);

xlabel('False positive rate - Crash'); ylabel('True positive rate - Crash’);

%Plots for evaluation fit and distribution.

%Please uncomment if needed.

figure(8);

clf;

set(gcf, 'Color', [1,1,1]); %White background

set(gcf, 'Position’, [0 0 1050 300]); %Size of plot

set(gca, FontSize',10); %FontSize

subplot(1,3,1);

%plotResiduals(nl_r, 'probability’, 'ResidualType', 'Standardized");
%plotResiduals(nl_r0, 'probability’, 'ResidualType’, 'Standardized");
%plotResiduals(nl_rl, 'probability’, 'ResidualType’, 'Standardized’);
%plotResiduals(nl_t, 'probability’, 'ResidualType', 'Standardized’);
plotResiduals(glm_t, 'probability’, 'ResidualType', 'Raw’);
%plotResiduals(nl_t0, 'probability’, 'ResidualType', 'Standardized");
%plotResiduals(nl_t1, 'probability’, 'ResidualType', 'Standardized");
%plotResiduals(nl_lat, 'probability’, 'ResidualType', 'Standardized");
%plotResiduals(gim_lat, 'probability’, 'ResidualType', 'Raw');
%plotResiduals(nl_lat0, 'probability’, 'ResidualType', 'Standardized");
%plotResiduals(nl_latl, 'probability’, 'ResidualType’, 'Standardized’);
%plotResiduals(nl_long, 'probability’, 'ResidualType', 'Standardized’);
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%plotResiduals(nl_longl, 'probability’, 'ResidualType', 'Standardized’);
%plotResiduals(nl_ttc, "‘probability’, 'ResidualType', 'Standardized’);
%plotResiduals(glm_ttc, ‘probability’, 'ResidualType’, 'Raw');
%plotResiduals(nl_ttcO, 'probability’, 'ResidualType', 'Standardized’);
%plotResiduals(nl_ttcl, 'probability’, 'ResidualType', 'Standardized");

subplot(1,3,2);
%plotDiagnostics(nl_r, 'cookd");
%plotDiagnostics(nl_r0, 'cookd");
%plotDiagnostics(nl_rl, 'cookd");
%plotDiagnostics(nl_t, 'cookd");
plotDiagnostics(glm_t, ‘cookd");
%plotDiagnostics(nl_t0, 'cookd");
%plotDiagnostics(nl_t1, 'cookd");
%plotDiagnostics(nl_lat, 'cookd’);
%plotDiagnostics(gim_lat, ‘cookd');
%plotDiagnostics(nl_lat0, 'cookd");
%plotDiagnostics(nl_latl, 'cookd");
%plotDiagnostics(nl_long, 'cookd’);
%plotDiagnostics(nl_longl, '‘cookd’);
%plotDiagnostics(nl_ttc, 'cookd’);
%plotDiagnostics(glm_ttc, 'cookd");
%plotDiagnostics(nl_ttcO, 'cookd’);
%plotDiagnostics(nl_ttcl, 'cookd’);

subplot(1,3,3);
%plotResiduals(nl_r, 'fitted");
%plotResiduals(nl_r0, ‘fitted");
%plotResiduals(nl_r1, ‘fitted");
%plotResiduals(nl_t, ‘fitted");
plotResiduals(glm_t, 'fitted");
%plotResiduals(nl_t0, ‘fitted");
%plotResiduals(nl_t1, ‘fitted");
%plotResiduals(nl_lat, 'fitted");
%plotResiduals(gim_lat, 'fitted");
%plotResiduals(nl_lat0, fitted");
%plotResiduals(nl_latl, 'fitted");
%plotResiduals(nl_long, ‘fitted");
%plotResiduals(nl_longl, 'fitted");
%plotResiduals(nl_ttc, fitted");
%plotResiduals(glm_ttc, 'fitted");
%plotResiduals(nl_ttcO, fitted');
%plotResiduals(nl_ttcl, fitted");

%plot estimated random effects calculated in NLME-models
figure(9);

clf;

set(gcf, 'Color!, [1,1,1]); %White background
set(gcf, 'Position’, [0 0 1400 300]); %Size of plot
title('Random Effects of NLME');
subplot(1,5,1);

histogram(nlme_r.random);

xlabel('Reaction Time [s]');

ylabel('‘Quantity [-]);

ylim([0 70]);

subplot(1,5,2);

histogram(nlme_t.random);
xlabel('Take-Over Time [s]');

ylim([0 70]);

subplot(1,5,3);

histogram(nlme_lat.random);

xlabel('Lateral Accelerations [m/s”2]');
ylim([0 70]);

subplot(1,5,4);
histogram(nlme_long.random);
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xlabel('Longitudinal Accelerations [m/s”2]');
ylim([0 701);

subplot(1,5,5);

histogram(nlme_ttc.random);

xlabel('Time To Collision [s]");

ylim([0 701);

%Print ROC Curve for Lateral Accelerations
figure(10);
clf;
set(gcf, 'Color', [1,1,1]); %White background
set(gcf, 'Position’, [0 0 900 285]); %Size of plot
%Lateral ROC
subplot(1,3,1);
cache = repmat(data.lat_ord,1,3);
fori=13
cache(,i) = cache(;i)-(i-1);
cache(cache(;,i)~=1,i) = 0;
end
[LA.roc_x1,LA.roc_y1,LA.roc_tl,LA.roc_aucl]=perfcurve(cache(;1),LA.est(,1),'1");
[LA.roc_x2,LA.roc_y2,LA.roc_t2,LA.roc_auc2]=perfcurve(cache(;2),LA.est(;2),'1");
[LA.roc_x3,LA.roc_y3,LA.roc_t3,LA.roc_auc3]=perfcurve(cache(;3),LA.est(,3),'1");
hold on;
plot(LA.roc_x1,LA.roc_yl);
plot(LA.roc_x2,LA.roc_y2);
plot(LA.roc_x3,LA.roc_y3);
legend(['Lat<3.5, AUC="num2str(LA.roc_aucl,2)],['3.5<Lat<7.0, AUC=" num2str(LA.roc_auc2,2)],['Lat>7.0, AUC=" num2str(LA.roc_auc3,2)]);
xlabel('False positive rate - Lateral’); ylabel('True positive rate - Lateral');

%Longitudinal ROC
subplot(1,3,2);
cache = repmat(data.long_ord,1,3);
fori=13

cache(,i) = cache(,i)-(i-1);

cache(cache(,i)~=1,i) = O;
end
[LO.roc_x1,LO.roc_y1,LO.roc_t1,LO.roc_aucl]=perfcurve(cache(;1),LO.est(;1),'l");
[LO.roc_x2,LO.roc_y2,LO.roc_t2,LO.roc_auc2]=perfcurve(cache(;2),LO.est(;,2),'l");
[LO.roc_x3,LO.roc_y3,LO.roc_t3,LO.roc_auc3]=perfcurve(cache(;,3),LO.est(;3),'1");
hold on;
plot(LO.roc_x1,LO.roc_y1);
plot(LO.roc_x2,LO.roc_y2);
plot(LO.roc_x3,LO.roc_y3);
legend(['Long>-3.5, AUC="num2str(LO.roc_aucl,2)],['-3.5>Long>-7.0, AUC=" num2str(LO.roc_auc2,2)],['Long<-7.0, AUC=' numZStr(LO.l/
roc_auc3,2)]);
xlabel('False positive rate - Longitudinal’); ylabel('True positive rate - Longitudinal’);

%Longitudinal ROC for braking driver
subplot(1,3,3);
cache = repmat(data.longl_ord,1,3);
fori=13

cache(,i) = cache(,i)-(i-1);

cache(cache(,i)~=1,i) = 0;
end
[LOl.roc_x1,LO1.roc_yl1,LOLl.roc_t1,LOLl.roc_aucl]=perfcurve(cache(;,1),LOl.est(;,1),'1");
[LOl.roc_x2,LO1.roc_y2,LOl.roc_t2,LOl.roc_auc2]=perfcurve(cache(;,2),LO1l.est(;2),'1");
[LO1.roc_x3,LO1.roc_y3,LOLl.roc_t3,LO1.roc_auc3]=perfcurve(cache(;,3),LO1.est(;3),'1");
hold on;
plot(LOl.roc_x1,LO1.roc_yl);
plot(LOl.roc_x2,LOLl.roc_y2);
plot(LO1.roc_x3,LO1.roc_y3);
legend(['Long>-3.5, AUC="num2str(LO1.roc_aucl,2)],['-3.5>Long>-7.0, AUC=" num2str(LOl.roc_auc2,2)],['Long<-7.0, AUC=" num2str(LO1. 4
roc_auc3,2)]);
xlabel('False positive rate - Longitudinal’); ylabel('True positive rate - Longitudinal’);
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%Bringing Validation Data to the same length for plotting
fori = length(val.in_eor)+1:val.n
val.out_eor(i,) =[000 0 0];

est_val_r_ci(i,;) = [0 0];
est_val_r(i) = 0;

end

for i = length(val.in0)+1:val.n
val.outO(i,) =[00000];
est_val_latO_ci(i,)) = [0 0];
est_val_ttc0_ci(i,:) = [0 O];
est_val_lat0(i) = O;
est_val_ttcO(i) = O;

end

fori = length(val.in1)+1:val.n
val.outl(i,:) =[00000];
est_val_latl_ci(i,)) = [0 0];
est_val_ttc1_ci(i,:) = [0 0];
est_val_latl(i) = O;
est_val_ttcl(i) = 0;

end

%Plotting Validation Data

plot_capture = {'Estimated Output and Measurement for Validation Data'};

plot_measured = [val.out_eor(;,1) val.out(;,2) val.outO(;3) val.outl(;3) val.outO(;,5) val.outl(.,5)]; %Array with measured y-data
plot_estimated = [est_val_r est_val_t est_val_lat0 est_val_latl est_val_ttcO est_val_ttc1]; %Array with estimated y-data

plot_ci = [est_val_r_ci est_val_t_ci est_val_lat0_ci est_val_latl_ci est_val_ttcO_ci est_val_ttcl_cil; %Array with confidence bounds
plot_labels = {'Reaction Time [s]', 'Take Over Time [s]', 'Lat. Acc. Non-Braking [m/s?]', 'Lat. Acc. Braking [m/s?]', TTC Non-Braking [s]', TICY
Braking [s]'; %Array with labels

plot_x = (0:1:val.n*1-1)'; %X-Values Array with labels

plot_n = val.n; %Number of trials

plot_nfigures = 6; %Number of Figures

plot_properties = [11 2 3]; %Properties for plotting: [FigNo. Rows Collums]

plotresults(plot_capture, plot_measured, plot_estimated, plot_ci, plot_x,plot_n, plot_nfigures, plot_labels, plot_properties);

%% remove working directory from Matlab's path
for i = Lilength(workingdir)

rmpath(workingdir{i});
end
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function [data,label,con] = config()
optsr = statset('nlinfit’);

optst = statset('nlinfit’);

optslat = statset('nlinfit’);

optslong = statset('nlinfit');
optsttc = statset('nlinfit’);

%%%% % %% % %% % % %% % %% % % %% %o %% % % %% %o %% % % %% %o %% % % %% %o %% % % %% %o %% % % %% %o %% % % %% %o %% % % %% % %% % %o
%% %0 %o %o %6 %6 %6 %% %% % % % % %o Yo Yo Yo Yo Yo %6 %6 % % %% % % %o %o %o Yo Yo Yo Yo %6 %6 %6 % %% % % %o %o %o Yo Yo Yo Yo %0 %6 %6 % %% % % % %o %o %o Yo Yo %o %o %6 %6 % %% % %
% BEGIN OF USER INPUT

%% %0 %o %o %6 %6 %6 %% %% % % % % %o Yo Yo Yo Yo Yo %6 %6 % % %% % % %o %o Yo Yo Yo Yo Yo %6 %6 %6 % %% % % %o %o %o Yo Yo Yo Yo %6 %6 %6 % %% % % % %o %o Yo Yo Yo %o %o % % %% % % %
% %% %% %% % %% % % %% % %% % % %% %o %% % % %% %o % % %o % %% %o %% %o % %% %o %% %o % %% %o % % %o % %% %o %% % % %% %o %% % % %% % %% % %o

%Edit to change consideration of crash situations
ConsiderCrash = 1; %0/1

%Multinomial modeling of Lateral and Longitudinal Accelerations?
Multinomial = 1; %0/1

%Options for Robust Regression
%Fair for Robust Regression, [] for regular regression.
func = 'fair’;
%optsr.RobustWgtFun = [J;
optsr.RobustWgtFun = func;
%optst.RobustWgtFun = [J;
optst.RobustWgtFun = func;
%optslat.RobustWgtFun = [J;
optslat.RobustWgtFun = func;
%optslong.RobustWgtFun = [J;
optslong.RobustWgtFun = func;
%optsttc.RobustWgtFun = [];
optsttc.RobustWgtFun = func;

%Option to sort the dataset for plotting the results:
sortdata = 0;

%0 = No sorting of dataset

%1 = Sort for TimeBudget and TrafficDensity

%2 = Sort for TimeBudget and Task

%3 = Sort for Column "x
x = 14;

%Select Validation Data Set
%1 = Thesis; 2 = Lorenz; 3 = Zeeb; 4 = Kerschbaum; 5 = Hergeth
exp = 2;

% %% %% %% % %% % % %% % %% % % %% % %% % % %% %o %% % % %% %o %% % % %% %o %% % % %% %o %% % % %% %o %% % % %% %o %% % % %% % %% % %o
%% %% %o %6 %6 %6 %% %% %% % % %o Yo Yo Yo Yo Yo %6 %6 % % %% % % %o %o %o Yo Yo Yo Yo %6 %6 % % %% % % %o %o %o Yo Yo Yo %o %60 %6 %6 % %% %% % % %o Yo Yo Yo Yo %o %6 % % % % % %
% END OF USER INPUT

%% %0 %o %o %6 %6 %6 % %%%% % % % %o Yo Yo Yo Yo Yo %6 %6 % % %% % % %o %o Yo Yo Yo Yo Yo %6 %6 %6 % %% % % %o %o %o Yo Yo Yo Yo %6 %6 %6 % %% %% % %o %o %o Yo Yo Yo %o %6 % %% % % %
%% % %% %6 %6 %6 %6 %% %% % % %o %o Yo Yo Yo Yo %o %6 %6 % %% % % % %o %o %o Yo Yo Yo Yo % %6 %6 % %% % % %o %o %o Yo Yo Yo Yo %o % %6 %6 %% % % % %o %o Yo Yo Yo Yo %o % % %% % % %

%% Loading the Data

[num,txt] = xIsread('data.xIsx’,' Tabellel','A2:X754"); %Read data file
sizedata = size(num); %Measure size of dataset
num = [num rot90(linspace(sizedata(1),1,sizedata(1)))]; %Add a sort variable to the dataset

if sortdata ==
num(,sizedata(2)+1) = num(:,4)./(1+num(,6))+1./num(;,2); %Sort algorythm
num = sortrows(num,sizedata(2)+1); %Sort dataset ascendind
num = flipud(num); %Flip for descending order

elseif sortdata ==
num(;,sizedata(2)+1) = num(;4).*num(,8)+1./num(;,2); %Sort algorythm
num = sortrows(num,sizedata(2)+1); %Sort dataset ascendind
num = flipud(num); %Flip for descending order
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elseif sortdata ==
num(,sizedata(2)+1) = num(;,x); %Sort algorythm
num = sortrows(num,sizedata(2)+1); %Sort dataset ascendind
num = flipud(num); %Flip for descending order
end
crash = num(;,17); %Read crash variable 0/1
if ConsiderCrash == 1
lines = find(crash<2); %Consider all lines when reading data
else
lines = find(crash<1); %Consider only lines with no crash wenn reading data
end

eor = num(lines,9); %Read EOR Data

brake = num(lines,16); %Read brake application variable 0/1

didbrake = find(brake>0); %Find lines where participants braked
didntbrake = find(brake<1); %Find lines where participants did not brake

% save output Variables:

out = num(lines,11:15); %Reading output
out0 = out(didntbrake,:);

outl = out(didbrake,);

% save input variables

in = num(lines,4:10); %Reading input
in0 = in(didntbrake,:);

inl = in(didbrake,’);

%save linear data

%linearized input variables, needed for generalized linear model
input_lin_t = [4 520 6 21 22 10 23];

in_lin_t = num(lines,input_lin_t);

input_lin_lat = [4 5 6 21 22 10 23];

in_lin_lat = num(lines,input_lin_lat);

% number of datapoints
n = length(out);

% Save Grouping Variable for nimefit
participant = num(lines,2);

participant0 = participant(didntbrake,);
participantl = participant(didbrake,:);

%Ordinal Regression for Lat and Long Accelerations:

% output Variables for multinominal regression braking (ord = ordinal)
lat_ord = double(ordinal(num(lines,13),{'0",'1",'2'},1,[-0.5,3.5,7.0,12]));
%input_lat = [4 56 21 22 8 9 10 23]; %start

input_lat = [4 5 6 21 22 10 23]; %final

in_lat = num(lines,input_lat);

% output Variables for multinominal regression braking (ord = ordinal)
long_ord = double(ordinal(-num(lines,14),{'0','1",'2'},[1,[-0.5,3.5,7,12]));
longl_ord = long_ord(didbrake,);

%input_long = [4 520 6 21 22 8 9 10 23];%start

input_long = [4 6 22 10 23];%final

in_long = num(lines,input_long);

%input_longl = [4 6 22];%test

input_longl = [4 6 8];%final

in_longl = num(didbrake,input_longl);

% output Variables for multinominal regression braking (ord = ordinal)
brake_ord = double(ordinal(num(lines,16),{'0','1'},[],[-0.5,0.5,1.5]));
crash0 = crash(didntbrake);

crashl = crash(didbrake);

n0 = length(crash0);
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nl = length(crashl);

% output Variables for multinominal regression crashes (ord = ordinal)
crash_ord = double(ordinal(num(;,17),{'0','1'},[1,[-0.5,0.5,1.51));
crash_ordO = crash_ord(didntbrake);

crash_ordl = crash_ord(didbrake);

% input variables for multinominal regression braking

input_brake = [4 6 22 10 23];

in_brake = num(lines,input_brake);

label_in_brake = {Ttimebudg', Itrafdens’, Ireptraining', Tage’, Tage2'}; %Label brake explanatory variables
size_in_brake = size(in_brake);

% input variables for multinominal regression crashes

%input_crash = [3 6 21 22 8 9 10 23]; %start

input_crash = [6 21 22]; %final

in_crash = num(;input_crash);

%label_in_crash = {Itimebudg', Ttrafdens', Ttrafdens2','Ireptraining*',' ILoad’, IEOR', TAge’, IAge2'}; %Label crash explanatory variables
label_in_crash = {Itrafdens’, 'Itrafdens2’,'Ireptraining*'}; %Label crash explanatory variables
size_in_crash = size(in_crash);

in_crashO = in_crash(didntbrake,:);

in_crashl = in_crash(didbrake,:);

%% Editing and processing the loaded data for reaction time and brake response divided regressions

%Delete crash situations for regression if ConsiderCrash = 0

% Output for eor

eyesoff = find(eor>0); %Read lines of data with eyes off road

%Variables for Reaction Time Regression

out_eor = out(eyesoff,:); %Output for reaction time regression

in_eor = in(eyesoff,:); %Input for reaction time regression

participant_eor = participant(eyesoff,:); %Participant Number for reaction time regression
brake_eor = brake(eyesoff,:); %Brake for reaction time regression

%Sort eor_data for brake application
eor0 = find(brake_eor<1);
eorl = find(brake_eor>0);

%Data without brake application
out_eor0 = out_eor(eor0,:);
in_eor0 = in_eor(eor0,);
participant_eor0 = out_eor(eor0,:);

%Data with brake application
out_eorl = out_eor(eorl,);
in_eorl = in_eor(eorl,);
participant_eorl = out_eor(eorl,:);

%% Brake / Crash / Lat / Long probability is calculated for segments of 50 measures
%Set number of columns in dependence of considered data

if ConsiderCrash ==
rows = 15;

else
rows = 14;

end

%Average brake (1/0) over 50 measures each

m = mean(reshape(brake(1:rows*50,:), 50, [1)); %Average each column

brakesegmented = m(ones(50,1), :); % duplicates vector 50 times

brakesegmented = brakesegmented(:); % vector representation of array using linear indices

remaining = (brakesegmented(rows*50)*50+sum(brake(rows*50:n)))/(n-(rows-1)*50); %Include remaining datapoints
brakesegmented((rows-1)*50:n) = remaining; %Rewrite remaining and last 50 means

%Average crash (1/0) over 50 measures each
m = mean(reshape(crash(l:rows*50,:), 50, [])); %Average each column
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crashsegmented = m(ones(50,1), :); % duplicates vector 50 times

crashsegmented = crashsegmented(:); % vector representation of array using linear indices

remaining = (crashsegmented(rows*50)*50+sum(brake(rows*50:n)))/(n-(rows-1)*50); %Include remaining datapoints
crashsegmented((rows-1)*50:n) = remaining; %Rewrite remaining and last 50 means

%Average Lateral Accelerations (0/1/2) over 50 measures each

latsegmented = zeros(n,3); %latsegmented

longsegmented = zeros(n,3); %longsegmented

longsegmentedl = zeros(nl,3); %longsegmented

fori = 1:3 %Rearrange data to three colums with 0/1
%Lateral
cache = lat_ord-(i-1);
cache(lat_ord~=i) = 0;
m = mean(reshape(cache(l:rows*50), 50, [])); %Average each column
segmented = m(ones(50,1),:); % duplicates vector 50 times
segmented = segmented(:); % vector representation of array using linear indices
remaining = (segmented(rows*50)*50+sum(cache(rows*50:n)))/(n-(rows-1)*50); %Include remaining datapoints
segmented((rows-1)*50:n) = remaining; %Rewrite remaining and last 50 means
latsegmented(;i) = segmented;

%Longitudinal

cache = long_ord-(i-1);

cache(long_ord~=i) = 0;

m = mean(reshape(cache(l:rows*50), 50, [1)); %Average each column

segmented = m(ones(50,1), :); % duplicates vector 50 times

segmented = segmented(:); % vector representation of array using linear indices

remaining = (segmented(rows*50)*50+sum(cache(rows*50:n)))/(n-(rows-1)*50); %Include remaining datapoints
segmented((rows-1)*50:n) = remaining; %Rewrite remaining and last 50 means

longsegmented(;i) = segmented;

rowsl=7;
%Longitudinal braking drivers
cache = longl_ord-(i-1);
cache(longl_ord~=i) = 0;
m = mean(reshape(cache(l:rows1*50), 50, [])); %Average each column
segmented = m(ones(50,1), :); % duplicates vector 50 times
segmented = segmented(:); % vector representation of array using linear indices
remaining = (segmented(rows1*50)*50+sum(cache(rows1*50:n1)))/(n1-(rows1-1)*50); %Include remaining datapoints
segmented((rows1-1)*50:n1) = remaining; %Rewrite remaining and last 50 means
longsegmented1(.i) = segmented;

end

%% construct data struct as function output

data.in = in;
data.out = out;
data.in0 = in0;
data.out0 = out0;
data.inl = inl;

data.outl = outl;
data.participant = participant;
data.participant0 = participant0;
data.participantl = participantl;
data.lat_ord = lat_ord;
data.long_ord = long_ord;
data.longl_ord = longl_ord;
data.in_long = in_long;
data.in_longl = in_longl;
data.in_lat = in_lat;

data.brake = brake;
data.brake_ord = brake_ord;
data.crash = crash;

data.crashO = crash0;
data.crashl = crashl;
data.crash_ord = crash_ord;
data.crash_ord0 = crash_ord0;
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data.crash_ordl = crash_ord1;
data.n_in_brake = size_in_brake(2);
data.n_in_crash = size_in_crash(2);
data.out_eor = out_eor;

data.in_eor = in_eor;
data.participant_eor = participant_eor;
data.out_eor0 = out_eor0;

data.out_eorl = out_eorl;

data.in_eor0 = in_eor0;

data.in_eorl = in_eorl;
data.participant_eor0 = participant_eor0;
data.participant_eorl = participant_eorl;
data.in_brake = in_brake;

data.in_crash = in_crash;

data.in_crash0 = in_crashO;
data.in_crashl = in_crashl;

data.n = n;
data.n0 = nQ;
data.nl = nl;

data.crashsegmented = crashsegmented;
data.brakesegmented = brakesegmented;
data.latsegmented = latsegmented;
data.longsegmented = longsegmented;
data.longsegmentedl = longsegmented1;
label.in_brake = label_in_brake;
label.in_crash = label_in_crash;
data.in_lin_t = in_lin_t;

data.in_lin_lat = in_lin_lat;
con.ConsiderCrash = ConsiderCrash;
con.Multinomial = Multinomial;

con.optsr = optsr;

con.optst = optst;

con.optslat = optslat;

con.optslong = optslong;

con.optsttc = optsttc;

con.exp = exp;

165



D Matlab Code

19.03.16 16:44 C\Users\Gold\Documents\MATLAB\Take-Over-Model Gold Dissertatio..\estnime.m 1 of 1

function [est_nlme, r, r_adj] = estnlme(in, out,var, random_effect, model, k, b, n)
%in = Input variable

%out = dependent variables

%var = selector for selecting the current dependent variable

%random_effect = estimated random effect of nimefit

%model = regression model

%b = estimated betas

%n = length of dataset

width = size(out); %size of input vektor

out = [out rot90(linspace(n,1,n))]; %add line numbers

in_sorted = sortrows(in,1); %sort input data

out_sorted = sortrows(out,1); %sort output data

out = [out_sorted(;,var+1) out_sorted(;width(2)+1)]; %select the current dependent variable

=0
selected = 0;

%Assign estimated random effects to dataset
fori=1n
if selected == in_sorted(i,1)
in_sorted(i,1) = random_effect(j);
else
j=j+1
selected = in_sorted(i,1);
in_sorted(i,1) = random_effect(j);
end
end

%estimate model output
estimation = model(b, in_sorted(;2:8));

fori=1n
estimation(i) = estimation(i) + in_sorted(i,1);
end

%calculate residuals

res = out(;,1) - estimation;

%calculate r squared

r = 1-(sum(res.”2)/sum((out(;,1)-mean(out(;,1))).A 2));
r_adj = r - (k*(1-n)/(n-k-1);

%resort estimations to original order
estimation = sortrows([estimation out_sorted(;,width(2)+1)],2);

%hand over erstimated model output
est_nlme = estimation(;1);
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%%Lookup - Table:
%x(:,1) = TimeBudget 5-7.78
%x(;,2) = Lane 1-3

(:2)
%x(,,3) = TrafficDensity 0-30
%x(:4) = RepTraining 2-20
%x(:,5) = Workload 0-5
%Xx(,6) = EyesOfRoad 0-1
%x(:,7) = Age 19-79

function [model] = models()
%Model Definitions

o,
o

%Model Reaction Times All

%r.m = @(b,x)(b(1) + b(2)*x(:,1) + b(3)*(log(x(:4))) + b(4)*x(,5) + %b(5)*(b(6)+x(:7)).A2); %start
%r.s =[0.10.10.10.10.10.1];

%r.k = 4;

rm = @(b,x)(b(1) + b(2)*x(;1) + b(3)*x(;,5) + b(4)*(b(5)+x(;7)).*2); %final
rs=1[0101010.10.1];

rk=3;

%r.m = @(b,x)(b(1) + b(2)*x(;,1) + b(3)*x(:,5) + b(4)*x(;,7) + b(5)*x(;,7).2); %Linearized

%r.s =[0.10.10.10.10.1];

%r.k = 4;

%Model Take Over Times All

%t.m = @(b,x)(b(1) + b(2)*x(;,1) + b(3)*(b(4)+x(;,2)).72 + b(5)*(b(6)+x(:,3)).72 + b(7)*(log(x(;4))) + b(8)*x(;,5) + b(9)*x(:,6) + b(10)*(b(11)+x(, "4
7)).72); %start

%ts=00101010101010101010.101];

%tk =7;

tm = @(bx)(b(1) + b(2)*x(;1) + b(3)*(b(4)+x(:2)).A2 + b(5)*(b(6)+x(:3)).72 + b(7)*log(x(:4))+ b(8)*(b(9)+x(,7)).*2); %final
ts=0010101010101010.101];

tk =5

%tm = @(bx)(b(1) + b(2)*x(,1) + b)**(,2) + bE@)*X(;2).A2 + b(5)*x(;3) + b(6)*X(;3).2 + b(7)*x(;4)+ b(8)*x(;7) + b(9)*x(,7).72); % ¥
Linearized

%t.s=100101010101010.10.10.1];

%tk =8;

%Model Lateral Accelerations All

Wlatm = @(b,x)(b(1) + b(2)*x(:1) + b(3)*x(:.2) + b(4)*(b(5)+x(:.3)).72 + b(6)*(log(x(:4))) + b(7)*x(:,5) + b(8)*x(:,6) + b(9)*(b(10)+x(:7))."2); % v
start

%lat.s =0.10.10.10.10.10.1010.10.10.1];

%lat.k = 7;

lat.m = @(bx)(b(1) + b(2)*x(; 1) + b(3)*x(;2) + b@)*(b(5)+x(;3)).A2 + b(6)*(log(x(:4))) + b(7)*(b(8)+x(;7)).A2); %final

lats =[0.10.10.10.10.10.10.10.1];

latk = 5;

%lat.m = @(b,x)(b(1) + b(2)*x(;1) + b(3)*x(;,2) + b(4)*x(;,3) + b(5)*x(;,3).A2 + b(6)*x(;4) + b(7)*x(;,7) + b(8)*x(,7).22); %Linearized
%lat.s =[0.10.10.10.10.10.10.10.1];

%lat.k = 7;

%Model Long. Accelerations All

%long.m = @(b,x)(b(1) + b(2)*x(: 1) + b(3)*(b(4)+x(;2)).22 + b(5)*(b(6)+x(;3)).22 + b(7)*(log(x(;4))) + b(8)*x(:,5) + b(9)*x(:,6) + b(10)*(b(11) v
+X(;,7)).12); %start

%long.s =[0.10.10.10.10.10.10.10.10.10.10.1];

%long.k = 7;

%long.m = @(b,x)(b(1) + b(2)*x(;,1) + b(3)*x(:2) + b(4)*(b(5)+x(;3)).A2 + b(6)*(log(x(:4))) + b(7)*x(,5) + b(8)*x(:,6) + b(9)*(b(10)+x(;,7)).A2); v
Ystart

%long.s =[0.10.10.10.10.10.10.10.10.10.1];

%long.k = 7;

long.m = @(bx)(b(1) + b(2)*x(:,1) + b(3)*(b(4)+x(,3)).22 + b(5)*(log(x(:4))) + b(6)*(b(7)+x(:7))."2); %final

long.s =[0.10.10.10.10.10.10.1];

long.k = 4;

%long.m = @(b,x)(-5.5 +

%6*(((b(1)+b(2)*x(;, 1)+ b(3)*x(,4)+b(4)*X(;,5) +b(5)*x(.,6)+b(6)*x(8))./((b(1) +b(2)*X(; 1)+ b (3)*X(;,4) + b(4)*x(;,5) + b(5)*X(;,6) + b(6)*X(;,8)).A 2+0.5). &
AO.5))); Ystart

%long.s =[0.10.10.10.10.10.1];

%long.k = 10;
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%long.m = @(bx)(b(1) + b(2)*x(: 1) + b(3)*x(:,3) + b(4)*x(:,3).72 + b(5)*x(:4) + b(6)*x(..7) + b(7)*x(:,7).72); %Linearized
%long.s =[0.10.10.10.10.10.10.1];
%long.k = 6;

%Model TTC All

%tte.m = @(b,x)(b(1) + b(2)*x(,1) + b(3)*(b(4)+x(:,2)).22 + b(5)*(b(6)+x(;3)).A2 + b(7)*(log(x(:4))) + b(8)*x(:,5) + b(9)*x(.,6) + b(10)*x(;7)); % "4
start

%ttc.s =[0.10.10.10.1010.10.10.10.10.1];

%ttck = 7;

%ttc.m = @(b,x)(b(1) + b(2)*x(;,1) + b(3)*(b(4)+x(:2)).72 + b(5)*(b(6)+x(:,3)).A-1 + b(7)*(log(x(:4))) + b(8)*x(.,5) + b(9)*x(:,7)); %1/><l/
TrafficDensity

%ttc.s =[0.10.10.10.10.10.10.10.10.1];

%ttck = 6;

ttem = @(b,x)(b(1) + b(2)*x(;1) + b(3)*(b(4)+x(;2)).72 + b(5)*(b(6)+x(:3)).72 + b(7)*(log(x(:4))) + b(8)*x(..5) + b(9)*x(.7)); %Exponentiall/
TrafficDensity

ttcs =[0.10.10.1010.10.10.10.10.1];

ttck = 6;

%tte.m = @(b,x)(b(1) + b(2)*x(;,1) + b(3)*x(:,2) + b(4)*x(:,2).22 + b(5)*x(;,3) + b(6)*x(:,3).2 + b(7)*x(;,4) + b(8)*x(:,5) + b(9)*x(;,7)); %Linearized
%ttc.s =[0.10.10.10.1010.10.10.10.1];

%ttck = 8;

%Models for non braking drivers

%r0.m = @(b,x)(b(1) + b(2)*x(;1) + b(3)*(log(x(:4))) + b(A)*x(.,5) + b(5)*(b(6)+x(;,7)).A2); %start
%r0.s =[0.10.10.10.10.10.1];

%r0.k = 4;

%t0.m = @(b,x)(b(1) + b(2)*x(;1) + b(3)*(b(4)+x(:2)).72 + b(5)*(b(6)+x(:3)).72 + b(7)*(log(x(:4))) + b(8)*X(.5) + b(9)*x(.6) + b(10)*(b(11)+x(;, 4
7)).72); %start

%t0.s =[0.10.1010.10.10.101010.10.10.1];

%t0.k = 7;

t0.m = @(b,x)(b(1) + b(2)*x(: 1) + b(3)*(b(4)+x(:.2)).72 + b(5)*(b(6)+x(:,3)).72 + b(7)*(log(x(;4)))); %final

t0.5s=100.1010.10.1010.10.1];

t0.k = 4;

%lat0.m = @(b,x)(b(1) + b(2)*x(;1) + b(3)*x(;,2) + b(4)*(b(5)+x(:3)).72 + b(6)*(log(x(:4))) + b(7)*x(.,5) + b(8)*x(..6) + b(9)*(b(10)+x(;7))."2);
%lat0.s =[0.10.10.10.10101010.10.10.1];

%lat0.k = 7;

lat0.m = @(bx)(b(1) + bR)*x(;1) + b(3)*x(;2) + b(4)*(b(5)+x(;3)).A2 + b(6)*(Iog(x(;4))) + b(7)*(b(8)+X(;7)).A2); %final

lat0.s =[0.10.10.10.10.10.1 0.1 0.1];

lat0.k = 5;

%ttc0.m = @(b,x)(b(1) + b(2)*x(;1) + b(3)*(b(4)+x(.2)).72 + b(5)*(b(6)+x(:,3)).72 + b(7)*(log(x(:4))) + b(8)*X(:,5) + b(9)*x(:,6) + b(10)*x(:,7)); "4
Y%start

%ttc0.s =[0.10.10.10.10.10.1010.10.10.1];

%ttc0.k = 7;

ttc0.m = @(b,x)(b(1) + b(2)*x(;1) + b(3)*(b(4)+x(:3)).72 + b(5)*(log(x(:4))) + b(6)*x(;,5)); %final

ttc0.s =[0.10.1 0.1 0.1 0.1 0.1];

ttc0.k = 4;

%Models for braking drivers

%rl.m = @(b,x)(b(1) + b(2)*x(;1) + b(3)*(log(x(;4))) + b(4)*x(.,5) + b(5)*(b(6)+x(;,7)).A2); %start
%rls =[0.10.1010.1010.1];

%rlk = 4;

%tl.m = @(b,x)(b(1) + b(2)*x(;1) + b(3)*(b(4)+x(:2)).72 + b(5)*(b(6)+x(:3)).72 + b(7)*(log(x(:.4))) + b(8)*x(.5) + b(9)*x(.6) + b(10)*(b(11)+x(;, v
7)).72); %start

%t1.s=100.1010101010101010.10.10.1];

%tlk =7;

tl.m = @(b,x)(b(1) + b(2)*x(: 1) + b(3)*(b(4)+x(:,2)).72 + b(5)*(b(6)+x(:,3)).72 + b(7)*(log(x(;4))) + b(8)*x(:,5) + b(9)*x(;,6)); %final
t1.s=1[01010.10101010.10.10.1];

tlk =6

%latl.m = @(b,x)(b(1) + b(2)*x(;1) + b(3)*x(;,2) + b(4)*(b(5)+x(:3)).72 + b(6)*(log(x(:4))) + b(7)*x(.,5) + b(8)*x(..6) + b(9)*(b(10)+x(;7))."2); v
Ystart
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%latl.s =[0.10.101010.10.101010.10.1];

%latl.k = 7;

latl.m = @(bx)(b(1) + bQR)*(b(3)+x(:3)).A2 + b@)*(b(5)+x(.7)).A2); %final
latl.s = [0.1 0.1 0.1 0.1 0.1];

latlk = 2;

%longlm = @(b,x)(b(1) + b(2)*x(:; 1) + b(3)*(b(4)+x(;2)).A2 + b(5)*(b(6)+x(:,3))."2 + b(7)*(log(x(;4))) + b(8)*x(:,5) + b(9)*x(:,6) + b(10)*(b(11) v

+x(;,7)).12); %start

%longl.s =[0.10.10.10101010.10.1010.10.1];

%longlk = 7;

%ttcl.m = @(b,x)(b(1) + b(2)*x(:1) + b(3)*(b(4)+x(:,2)).72 + b(5)*(b(6)+x(:3)).72 + b(7)*(log(x(:4))) + b(8)*X(:,5) + b(9)*x(:,6) + b(10)*x(:,7)); "4

Yostart

%ttcl.s =[0.101010101010101010.1];

%ttclk = 7;

ttcl.m = @(b,x)(b(1) + b(2)*x(;1) + b(3)*(b(4)+x(;2)).72 + b(5)*(b(6)+x(:3)).72 + b(7)*(log(x(:4))) + b(8)*Xx(..5) + b(9)*x(..7)); %final
ttc1s=10.10.1010101010.10.10.1];

ttclk = 6;

%% construct data struct as function output

model.r =r;
%model.r0 = r0;
%model.rl = rl;
model.t = t;
model.t0 = t0;
model.tl = t1;
model.lat = lat;
model.lat0 = lat0;
model.latl = latl;
model.long = long;

%model.longl = longl;

model.ttc = ttc;
model.ttcO = ttcO;
model.ttcl = ttcl;
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function [val] = valconfig(exp)

fprintf('Loading validation dataset..\n");
switch exp %Selection of validation experiment
case 1l
[data,txt] = xIsread('Validierungsdaten.xlsx', Tabellel',A2:W117");
case 2
[data,txt] = xIsread('ValidierungsdatenLorenz14.xlsx', Tabellel',A2:W44");
case 3
[data,txt] = xIsread('ValidierungsdatenZeeb15.xlsx', Tabellel',’A2:W81"); %W90 for Brake estimation
case 4
[data,txt] = xIsread('ValidierungsdatenKerschbaum15.xIsx’,' Tabellel','A2:W271"); %W271 for TakeOverTime and Lat, 115 fore’
ReactionTime
case 5
[data,txt] = xIsread('ValidierungsdatenHergeth16.xlsx', Tabellel',A2:W221");
end

brake = data(;,15); %Read brake application variable 0/1

didbrake = find(brake>0); %Find lines where participants braked
didntbrake = find(brake<1); %Find lines where participants did not brake
long_ord = double(ordinal(-data(;,13),{'0",'1",'2'},[1,[-0.5,3.5,7,12]));
longl_ord = long_ord(didbrake,);

input_longl = [3 5 7];%final

in_longl = data(didbrake,input_longl);

%All Inputs

in = [data(;,3) data(;,4) data(;,5) data(;,6) data(;,7) data(;8) data(;9)];
in0 = in(didntbrake,:);

inl = in(didbrake,:);

%Inputs needed for brake probability estimation

in_brake = [data(;,3) data(;,5) data(;,21) data(;9) data(;,22)];
%in_brake = [data(;,3) data(;,5) data(;,6) data(;,7) data(;9)];
%Inputs needed for crash probability estimation

%in_crash = [data(,2) data(;,5) data(;,20) data(;,21) data(;,7) data(;8) data(;9) data(;,22)];
in_crash = [data(;,5) data(;,20) data(;,21)]; %final

in_crashO = in_crash(didntbrake,:);

in_crashl = in_crash(didbrake,:);

%outputs of validation data

out = [data(,10) data(;,11) data(;, 12) data(;,13) data(;,14)];

out0 = out(didntbrake,:);

outl = out(didbrake,);

%Brake IO for sorting the validation data to in respect to braking and non braking participants
brake = data(;,15);

%Crasgh IO

crash = data(;,16);

% input variables for multinominal regression braking

%Length of validation data
n = length(data(;1));

eor = data(;,8); %Read EOR Data

eyesoff = find(eor>0);

out_eor = out(eyesoff,:); %Output for reaction time regression
in_eor = in(eyesoff,:); %Input for reaction time regression

n0 = length(in0);

nl = length(inl);

n_td0 = length(find(in(;,3)==0));
n_td0_br0 = length(find(in0(;,3)==0));
n_td0_brl = length(find(in1(;3)==0));

%% construct data struct as function output

val.n = n;
val.n0 = n0;
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val.nl = nl;

valin = in;

val.in_eor = in_eor;

val.in0 = in0;

valinl = inl;

val.in_brake = in_brake;
val.in_crash = in_crash;
val.in_crash0 = in_crasho0;
val.in_crashl = in_crashl;
val.out = out;

val.out_eor = out_eor;
val.out0 = outQ;

val.outl = outl;

val.brake = brake;
val.didbrake = didbrake;
val.didntbrake = didntbrake;
val.crash = crash;
val.longl_ord = longl_ord;
valin_longl = in_longl;
val.n_td0 = n_tdO;
val.n_td0_br0 = n_td0_br0;
val.n_td0_brl = n_td0_brl;
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function plotresults(capture, measured, estimated, ci, x, n, nfigures, labels, properties)
% *** function description:

% * plot input vs time in single/multiple axes

% *** usage:

% * plotoeminput(pplot,tout,uinp,nu)

% *** input:

% * pplot data structure contain plot information (figno,nrow,ncol)

% *t time

% *uinp input variables
% *nu number of input
% *ulab input name

% *** output:

% a plot of input in single/multiple axes

% *** Author and affiliation:

% * Sembiring, Javensius

% * Institute of Flight System Dynamics, TUM
% *** created on:

% *13Jun. 2013 - created

% *** revision:

% *01 Oct. 2014 - add function description

% * - plot in multiple axes defined through pplot
% * Edited by Christian Gold
%

%% function implemantation

nrow = properties(2);
ncol = properties(3);
ci_low = zeros(n,nfigures);
ci_high = zeros(n,nfigures);

k=0;

fori = Linfigures
ci_low(,i) = ci(,k+i);
ci_high(.i) = ci(.k+i+1);
k =k+1;

end

% *** createa a blank figure, clear if exist

figure(properties(1));

clf;

set(gcf, 'Color', [1,1,1]);

axis([0 800 0 1]);

for k = Linfigures
ax = subplot(nrow,ncol k);
set(gcf, 'Position’, [0 0 3200 700]);
plot(x,measured(;k),'LineWidth',1,'Color",[0.6 0.6 0.6]);
hold on;
plot(x,estimated(;k),'LineWidth',0.5,'Color',[0 0 1]); %Also used for Ordinal Regression
plot(x,ci_low(;k),'LineWidth',0.5,'Color',[0.5 0.5 1]);
%plot(x,ci_low(:k),'LineWidth',0.25,'Color',[1 0.2 0.2]); %Line inserted for plotting NLME Model
plot(x,ci_high(;k),'LineWidth',0.5,'Color',[0.5 0.5 1]);
%plot(x,measured(;k),'LineWidth',1.5,'Color',[0 0 0]); %Line inserted for plotting Ordinal Regression
set(ax,'Box’,'On");
ylabel(labels{k});
xlabel(‘trial');

end

% *** set legend and figure title
%legend(‘estimated’,'measured’); %Line inserted for plotting Ordinal Regression
legend('measured’,'estimated’,'ci_{low}','ci_{high}');

%legend('measured’,'NonLinearMixedEffectModel','NonLinearModel'); %Line inserted for plotting NLME Model

txTitle = suptitle(capture);
set(txTitle,'FontSize',12);
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function printnominalresults(B,C,C0,C1,statsB,statsC,statsCO,statsC1,data,label)
% Print Regression Results for Braking
fprintf('\nResults of Multinominal Regression Braking\n');
fprintf(In(P(0)/P(1)) = %7.4f ',B(1));
for i = 2:(data.n_in_brake+1)
fprintf('+ (%7.4f*%13s)",B(i),label.in_brake{i-1});
end
fprintf(\n');
for i = 2:(data.n_in_brake+1)
fprintf('Stats.p: = %7.4f\n",statsB.p(i));
end
% Print Regression Results for crashes all cases
fprintf('\nResults of Multinominal Regression Crashes - All Cases\n');
fprintf('In(P(0)/P(1)) = %7.4f ',C(1));
fori = 2:(data.n_in_crash+1)
fprintf('+ (%7.4f*%13s)",C(i),label.in_crash{i-1});
end
fprintf(\n');
for i = 2:(data.n_in_crash+1)
fprintf('Stats.p: = %7.4f\n",statsC.p(i));
end
% Print Regression Results for crashes non braking drivers
fprintf('\nResults of Multinominal Regression Crashes - Non-Braking Drivers\n');
fprintf('In(P(0)/P(1)) = %7.4f ',CO(1));
fori = 2:(data.n_in_crash+1)
fprintf('+ (%7.4f*%13s)",C0(i),label.in_crash{i-1});
end
fprintf(\n');
fori = 2:(data.n_in_crash+1)
fprintf('Stats.p: = %7.4f\n",statsC0.p(i));
end
% Print Regression Results for crashes braking drivers
fprintf(\nResults of Multinominal Regression Crashes - Braking Drivers\n’);
fprintf(In(P(0)/P(1)) = %7.4f ',C1(1));
fori = 2:(data.n_in_crash+1)
fprintf('+ (%7.4f*%13s)',C1(i),label.in_crash{i-1});
end
fprintf(\n');
fori = 2:(data.n_in_crash+1)
fprintf('Stats.p: = %7.4f\n",statsC1.p(i));
end
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function [rmse] = valrmse(est, valest, data, valdata)
%rl = 1 - sum((data-est).”2)/sum((data-mean(data)).*2);
rmsel = sqrt(sum((data-est).”2)/length(data));

%r2 = 1 - sum((valdata-valest).”2)/sum((valdata-mean(valdata)).”2);
rmse2 = sqrt(sum((valdata-valest).”2)/length(valdata));

%r = r2-rl;
rmse = [rmsel, rmse2, rmse2-rmsel];

end
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function [y,per] = valwithinci(n,estci,out)

% *** function description:

% * Comparing Confidence Intervals & Validation Data Sets

% * Checks each line of validation data and all 5 dependent variables if
% * means are within the confidence interval (->1) or not (->0)

res = zeros(n,1);

fori=1n
if out(i) > estci(i,1) && out(i) < estci(i,2)
res(i) = 1;
else
res(i) = 0;
end
end

%Calculating Percentage of Values within Confidence Interval
percentage = mean(res);

y = res;
per = percentage;
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