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1. Abstract

The main goal of this thesis is to extend the numerical methods for analyzing
general open periodic structures both in the radiation and scattering states.
Especially, metamaterials made up of subwavelength constructing unit cells
are investigated in order to study the electromagnetic wave manipulation with
the inhomogeneous periodic structures.
The work is started by studying the basic definition of metamaterial and

initial realization of the desired dispersive features by using metamaterials
properties. Ranging from low frequencies up to the light frequencies and for
the applications of dispersive media we seek a mathematical and physical ex-
planation of metamaterials. Therefore, understanding the wave behavior in
dispersive structures is the first step in the field of metamaterials. Since meta-
materials can be designed to show the desired dispersion in arbitrary frequency
bands, there are a variety of applications for these artificial structures like as
flat lenses for evanescent wave enhancement and subwavelength super resolu-
tion focusing. Using metamaterials, below cutoff waveguide and beam steering
leaky wave antennas could be presented in a new paradigm. Moreover, decou-
pling of the antenna elements over an artificial ground as well as enhancing the
gain of resonant antennas by eliminating surface waves of the substrate have
been introduced. However, still there are plenty of other properties that can-
not be easily explained based on the material properties and demand a more
accurate method.
Since realizing these structures is performed by using subwavelength unit

cells in periodic arrangement, source free eigenproblems are among the most
efficient asserted methods to analyze their properties. However, treating eigen-
value computations in periodic structures is usually complicated. Moreover,
including open boundaries in periodic structures will add more challenges due
to nonlinearity of the dispersion equation.
The most recent numerical methods based on the moment method decom-

position of the unit cells are generally restricted to periodic Green’s function
computations of the unit cell. In this thesis it is tried to pave a way to explain
some scattering phenomena from metanaterials in the spectral domain.
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2. introduction

2.1. Background
By introducing the negative permittivity and negative permeability to the clas-
sic Maxwell’s equations by Russian physicist Victor Veselago in 1967 [Veselago
and Narimanov, 2006], some fascinating wave propagation effects could be ob-
served and explained more feasibly. The first deduction of the negative index
material is the negative phase velocity of a monochromatic propagating plane
wave, which describes the propagation of the wave fronts in a group, is op-
posite to the energy flux direction represented by Poynting vector. However,
until 30 years the concept was discussed only in theory. In 2001, a group of
physicists [Shelby et al., 2001b] could realize the negative refractive index in
microwave frequencies by employing the combination of two types of microwave
electric and magnetic resonators placed in a periodic arrangement. The idea
was originating from the introducing extra ordinary permeability by using non-
magnetic resonant particles [Pendry et al., 1999] together with the introduced
plasma like behavior of closely placed square array of wires [Pendry et al.,
1996]. Combining these two particles in different configurations results in the
negative refractive index materials known as left handed materials [Smith et al.,
2000b, Shelby et al., 2001a]. Also, epsilon near zero (ENZ) materials first in-
troduced in [Silveirinha and Engheta, 2006] and µ near zero (MNZ) materials
[Engheta et al., 2006, Sihvola et al., 2007] are the other interesting behaviors
of metamaterials as bulk material properties.
The most important feature of metamaterials is their dispersive behavior.

From the entropy condition, it is shown that the left handed media have to be
dispersive to keep the condition [Caloz and Itoh, 2005]. From the continuity
of the tangential fields at the boundary of two media, it is concluded that
normal component of the Poynting vector is continuous. On the other hand, the
tangential component of the Poynting vector is not affected by the dispersivity
of the media. Therefore, the time expression for the Poynting vector is held
in general dispersive media. By taking the time average of the divergence of
the Poynting vector, the rate of change of the energy per volume in a desired
volume is computed. For fields whose amplitude varies sufficiently slowly with
time, it has been shown that by some approximations in the left handed media
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the stored energy is resulting in that the left handed medium is necessarily
dispersive. This feature helps to design new devices based on the dispersion
engineering of metamaterials.
In physics, it is tried to explain the behavior of this so called metamaterials

as bulk materials by extracting the material properties using the scattered field.
While, in engineering the macroscopic behavior of the metamaterials are more
interesting. Therefore, the equivalent circuit models were realized by lumped
elements to imitate the dispersion properties of the metamaterials [Caloz and
Itoh, 2004]. Implementation of metamaterials by lumped or distributed ele-
ments resulted in some new planar waveguide structures called composite right
left handed (CRLH) transmission lines. These CRLH transmission lines later
were extended to bulk 3D metamaterials [Grbic and Eleftheriades, 2005]. The
advantage of transmission lines over resonant particles is their broader band
widths as well as possible linear dispersion behaviors.
To analyze transmission lines, supposing the periodic repetition of the unit

cells, different techniques are employed. Among them, distributed circuits
on the microstrip technology are using currents and voltages of the unit cell
terminals by transmission line method (TLM) in the time domain [So et al.,
2005] or in the frequency domain [Eleftheriades et al., 2002, Caloz and Itoh,
2004, Oliner, 2003] to obtain the dispersion curves. This method is restricted
to the fundamental quasi TEM mode of the structures because of the definition
of the current and voltage for these modes. Using the scattering parameters
could be an alternative to take all the possible excited terminal modes into
account which is called scattering matrix approach (SMA) [Valerio et al., 2011,
Cao et al., 2002].
In general, to compute the dispersion curves of the transmission lines, the

source free waveguide sections are analyzed subjected to the corresponding
boundary conditions. The field distribution of eigensolutions, inside the unit
cell, is calculated. Afterwards, the eigenvalues of the guiding structures are
computed using Bloch theory applied to the terminal’s field [Collin, 1991]. Us-
ing the Bloch theory, the periodicity is automatically applied to the field values
in the terminals. The resulting guided waves are called Bloch modes. This
method can be employed for multimode guiding structures in closed boundary
waveguides. To employ the Bloch theory for every periodic closed waveguide,
the inhomogeneous part of the problem is discretized by using a numerical
method, usually finite element (FEM) [Jin, 2014], finite difference time do-
main (FDTD) [Kunz and Luebbers, 1993], finite difference frequency domain
(FDFD) [Xu et al., 2003] and so on. The resulting variational equation together
with the periodic boundary condition will make a boundary value problem. In
cylindrical waveguides, the field distribution on the port is initially solved as
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a 2D eigenproblem and the all possible eigenmodes of the port are computed.
Afterwards, these eigenmode field distributions are applied to the internal field
problem as the boundary conditions over the port region. The coefficients of
every eigenmode are obtained from the final equation together with the cor-
responding boundaries as a function of the eigenvalue and are known as the
scattering parameters. The last step is to assign the periodic boundary condi-
tion to the scattering parameters and compute the eigenvalues corresponding
to every mode [Bongard et al., 2009].
The Bloch theory will guarantee the exact periodic eigenvalues when the

field is expanded based on an infinite number of modes at the terminal. How-
ever, it is not possible to take infinite number of modes into account and some
truncation errors should be accepted. Moreover, in practical waveguiding ap-
plications the first propagating mode is desired for which some first modes are
enough to compute the eigenvalues effectively.
The Sturm Liouville problems are the linear eigenvalue problem for differ-

ential equations which is equivalent to the solution of Maxwell equations in
the source free problem [Felsen and Marcuvitz, 1994]. From the excitation
problems, the Green’s function is the response of the impulse excitation of a
differential equation in the space domain. This excitation problem is solved
for a source free region part of the problem and the excitation is considered as
a jump condition [Dudley, 1994]. The resulting spectral representation of the
point source with closed boundary conditions, Neumann or Dirichlet, is a sum-
mation of all possible discrete eigenmodes. For a problem with open boundary
conditions, there exist continuous egienmodes in the spectrum and therefore
an integral is representing these continuums [Felsen and Marcuvitz, 1994].
In field decomposition problems based on complete entire domain basis, the

choice of basis functions is depending on the solution domain and boundary con-
ditions. In closed waveguides, the most feasible solution domain is the waveg-
uide cross section. However, in open traveling wave structures, the waveguide
cross section has an infinite domain. Therefore, the modes will have a contin-
uum spectrum besides the possible discrete modes where the continuous part
represents the radiation modes [Dudley, 1994]. This continuous part when em-
ployed in mode matching techniques will result in Sommerfeld type integral
computations which in turn will slow down the computation procedure. To
conquer this difficulty, enclosing the open boundary with reflection less bound-
ary conditions in a way that the field distribution of the guided modes and
therefore corresponding eigenvalues are not affected strongly is an alternative
[Derudder et al., 2001a]. The perfectly matched layers (PML)are one group of
reflection less boundary conditions [Gedney, 1996]. Physically, PMLs are re-
alized as layers of uniaxially anisotropic media. To terminate the thickness of
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the absorbing layer, PML is backed by a perfectly electric conductor. Yet this
termination yields some reflections. To avoid these reflections, a small amount
of loss is added to the PML layer. The mathematical interpretation of PMLs
might be better explained by complex coordinate stretching [Chew et al., 1997,
Chew and Weedon, 1994]. In this presentation, the finite dimensions of the
PML are transformed into a complex coordinate to imitate the absorption.
Employing the PML layers to terminate the open boundary in layered media

will discretize the branch line in spectral domain Green’s function such that the
radiation part of the spectrum can be represented as a summation of complex
eigenmodes called quasi leaky modes [Olyslager, 2004]. These leaky modes
are more concentrated inside the layered waveguide. In addition to the leaky
modes, another type of complex modes called Berenger modes will arise because
of PML layer. These modes are more concentrated inside the PML layer.
Therefore, it is possible to use finite number of discrete leaky and Berenger
modes to approximate the field distribution in an open waveguide port.
The most effective numerical technique to model the open boundaries in scat-

tering and radiation problems is utilizing the integral equation based methods
over the open boundary. These so called boundary integral (BI) methods are
modeling the equivalent source current utilizing the equivalent principle [Har-
rington and Harrington, 1996]. These integral equation (IE) methods are solved
by the method of moment and the advantage of them over differential meth-
ods is that they automatically incorporate the radiation condition. Therefore,
despite the finite element method (FEM) and finite difference time domain
(FDTD), IEs do not require absorbing boundary conditions. To incorporate
the radiation condition through the Sommerfeld radiation condition, an appro-
priate Green’s function is used in the integral equation. The disadvantage of
IE methods is the difficulty of their implementation into the complex objects
besides the full matrix production whose treatment requires large storage and
computation time. To overcome these disadvantages, a hybrid method of the
combination of FEM and IE has been developed [Silvester and Hsieh, 1971].
This hybrid method is called finite element boundary integral (FEBI) method
and make use of the advantage of FEM to model inhomogeneities and having
sparse matrices as well as the advantage of IE to satisfy the radiation condition
effectively.
FEM methods are usually developed in frequency domain therefore more ap-

propriate for eigenvalue computation and waveguide applications. On the other
hand, IE methods are more appropriate for excitation based open problems like
as scattering problems. In this thesis, it is tried to use the excitation to com-
pute for eigenvalues in open structures in periodic stratified media. Therefore,
the concept of eigenvalues in open periodic stratified media is demanded to be
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developed. In this purpose, the theory of Green’s function for layered media
is employed to extract the eigenvalues and eigenmodes for infinite 2D periodic
media.

2.2. Motivation
Concealing scatterers by making them invisible to an external electromagnetic
detector using the compensation of the scattered field is known as cloaking
[Pendry et al., 2008]. Beyond the scattering suppression application, the scat-
tering free sensors and detectors are also among the devices which may serve
as the realization of metamaterial cloaks. Ranging from microwaves and mil-
limeter waves to terahertz and optical frequencies, the cloaking devices and ab-
sorbers are widely investigated [Alu and Engheta, 2008, Schurig et al., 2006a,
Engheta, 2002b]. The main endeavor in these designs is to realize cloaking by
isotropic lossless structures.
Some other interesting applications of open metamaterials are in leaky wave

antennas for the continuous beam steering in the whole spatial angle, high
impedance surfaces (HIS) for resonant antenna substrates to remove undesired
surface wave modes and improving the antenna functionality, super resolution
near field imaging devices and etc.
The popularity of metamaterial applications motivated us to find an effi-

cient method to analyze and explain some physical behaviors of 2D periodic
structures. Especially, the focus in this thesis is on the scattering from subwave-
length unit cells to solve for the eigenproblem in periodic configurations. In
comparison to mathematical eigenvalue computation methods, the introduced
method in this thesis is excitation of eigenmodes using physical behavior of
the open resonators which eliminates the mathematical eigenvalue decompo-
sition complexities of conventional methods. There are two general methods
of excitation, internal excitation and external excitation methods depending
on the location of the exciting source. In this thesis, plane waves are em-
ployed to model the external excitation of a spectral impulse function suited
for eigenvalue sweeping.

2.3. Organization
In this work, after the introduction of metamaterials, a brief review over the
previous methods of modeling of metamaterials and dispersion engineering us-
ing these materials is given. In chapter 4, the Bloch method for closed struc-
tures is employed to extract the eigenvalues of one unit cell in a periodic ar-
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rangement. The behavior of complex modes in closed structures is investigated
and it is shown that these modes do not carry any net power along the waveg-
uide. The effect of higher order modes over the fundamental propagating mode
is taken into account by considering the highest possible number of eigenvec-
tors over the terminals of the unit cell. The method of scattering matrix is
then extended to open waveguides by enclosing them using PML layers. The
transformation of the continuous spectrum to discrete modes is investigated
in the following and it is demonstrated that the modal decomposition in open
structures can be performed by accepting some approximations.
To compute the eigenvaleus of open structures more accurate, the bound-

ary integral technique is employed to model the radiation condition efficiently.
In chapter 5, the hybrid finite element boundary integral method is explained
mathematically and the scattered field yielded from the equivalent surface cur-
rent through the Huygens principle is computed. In order to implement pe-
riodic boundary conditions, the 2D periodic Green’s function of free space is
considered over the open boundary, while the periodicity in finite element part
is considered as the complex phase shifts along the unit cell on the parallel
edge walls over corresponding mesh cells.
In the following, in chapter 6, the Sturm Liouville problems as the connection

between the eigenvalue problem (oscillatory response of the problem without
excitation) and the Green’s function (excited travelling wave response of the
problem) are reviewed. The approximation of periodic subwavelength struc-
tures as homogeneous layered media are explored and the singularities of the
Green’s function of layered media are computed by the excitation method. The
method is examined for homogeneous slab waveguides and the properties of the
complex leaky modes as well as real surface wave modes are investigated.
In chapter 7, the method of excitation of eigenvalues is inspected for periodic

structures. Moreover, the other fascinating behaviors of the scattered field from
periodic loss less structures are studied. The proper and improper behavior of
the complex modes in the fast wave region of the dispersion diagram for right
handed and left handed modes is explained explicitly in this chapter.
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3. Metamaterials

The term metamaterial refers to artificial materials exhibiting some extraordi-
nary behaviors in the presence of electromagnetic waves. The initial introduc-
tion into these materials by Veselago [Veselago, 1968], conceptually considered
homogeneous materials with negative ε and negative µ to make a left handed
material (LHM). The direct consequence of LHMs is the opposite direction of
phase and group velocities which stimulates some fascinating applications like
as

• Reversal of Doppler effect,

• Reversal of the Vavilov-Cerenkov radiation,

• Negative refractive index at the interface between a right handed medium
(RHM) and a LHM,

• Perfect lens behavior of a slab with refractive index n = −1,

and some other fundamental phenomena like necessary frequency dispersion
of constitutive material parameters to keep the entropy condition, plasmonic
expressions of the constitutive parameters in resonant type LH media and so
on. Metamaterials, based on their effective bulk material properties for the
time dependence e−jωt, are categorized into four general categories, Fig. 3.1.

3.1. Electromagnetic parameter retrieval in
homogeneous slabs

Practical metamaterials are made up of periodic arrangement of inclusions with
the unit cell dimensions less than a quarter of the operating wavelength there-
fore they are not originally continuous media. Henceforth, defining the material
properties for these structures can be interpreted with two concepts. The con-
ventional method of effective material parameters (EMP) and an alternative
concept of characteristic material parameters (CMP) will describe the behav-
ior of metamaterials [Simovski, 2011]. The CM parameters are independent
of the external sources and therefore do not depend on the electromagnetic
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Figure 3.1.: Permittivity – permeability (ε− µ) diagram.

field distribution in the material sample. However, EMP are retrieved from
the reflection and transmission of plane waves, Scattering S-parameters, from
the homogeneous slabs of material. The procedure of introducing material pa-
rameters to the media of particles is called homogenization. In this approach
the sample formed by an array of artificial particles in the dielectric matrix
is replaced by a body of the same shape and size filled with uniform contin-
uous magneto-dielectric medium with unknown ε and µ. These two complex
quantities are then retrieved from S-parameters at a specific angle of the wave
incidence and polarization. These quantities are apparently applicable only
to the same case of the wave incidence in which they were retrieved. In 2005,
Smith introduced a method to retrieve EMP for slabs of materials [Smith et al.,
2005]. This theory replaces the electromagnetic response of the complicated
metamaterial structure with the electromagnetic response of a homogeneous
isotropic or anisotropic slab.
To model metamaterials by full wave methods, the unit cell of the 3D periodic

metamaterial can be treated as a two-port structure with incoming and outgo-
ing waves, the amplitudes of which are related to each other by the scattering
matrix. The fundamental mode in the ports is the TEM-mode, equivalent to
a plane wave illuminating the structure. This so-called scattering matrix ap-
proach (SMA) is very often used in the retrieval process for effective material
parameters. To imitate the TEM behavior of the incident wave in a single
unit cell of a 3D periodic structure, the PEC/PMC boundary condition can be
employed as shown in Fig. 3.2.
The mathematical solution of this problem is generally not unique. To get a

unique solution, physically justified constrains must be imposed. Moreover, the
retrieval algorithm has two limitations. In order to determine the real part of
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Figure 3.2.: Modeling of a periodic array by simulating of a single unit cell with
appropriate excitation and boundary conditions.

the refractive index, a complicated iterative method based on a Taylor series is
required. Besides, by imposing the passivity condition, =(ε) 6 0 and =(µ) 6 0
for time dependency of e−jωt, the method cannot find any effective material
parameters for some frequency regions.
To retrieve the effective parameters of the unit cell, the scattering parameters

are computed using a full wave solver. As presented in [Smith et al., 2005], for a
plane wave with normal incidence on a homogeneous slab, the wave impedance
and the refractive index are related to the S-parameters as follows

S11 = R01(1− ej2Neffk0deff)
1−R2

01ej2Neffk0deff
, (3.1)

S21 = (1−R2
01)ej2Neffk0deff

1−R2
01ej2Neffk0deff

, (3.2)

where the reflection coefficient from the slab is expressed based on the com-
plex wave impedance as

R01 = Zeff − 1
Zeff + 1 . (3.3)

Neff is the complex refractive index, k0 the free space wavenumber, deff is
the thickness of the slab and ω the angular frequency. Therefore, the effective
impedance and complex refractive index can be computed as

Zeff = ±
√

(1 + S2
11)− S2

21
(1− S2

11)− S2
21

(3.4)

Neff = 1
k0deff

{=[ln(ejNeffk0deff)] + 2mπ − j<[ln(ejNeffk0deff)]}. (3.5)
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To assign the sign of Zeff and choose the correct branch in the logarithm
in the formulation of Neff which is determined by m, two physical constraints
namely causality and passivity conditions are read as

=(Neff) > 0, (3.6)
=(Zeff) > 0. (3.7)

The first condition is equivalent to |ejNeffk0deff | < 1. Separating the real and
imaginary parts of the refractive index yields

neff,real = =[ln(ejNeffk0deff)]
k0deff

+ 2mπ
k0deff

= n0
eff + 2mπ

k0deff
(3.8)

neff,imag = −<[ln(ejNeffk0deff)]
k0deff

. (3.9)

As it is seen from (3.9), the imaginary part of the refractive index is not
affected by the branches of the logarithmic function. Therefore, it can be
calculated without ambiguity. Knowing the imaginary part of the refractive
index, one can determine the real part by applying the Kramers-Kronig relation
[Szabo et al., 2010]. Moreover, this method enforces the continuity of the
refractive index versus frequency.

3.2. Kramers-Kronig relation
For a causal system, the impulse response of the system should have the form
of

g(t) = sgn(t)h(t), (3.10)

to confirm the existence of the response for t > 0 where sgn is the sign func-
tion. Fourier transform of this response function results in a convolution in the
frequency domain

G(jω) = 1
jπpv

+∞ˆ

−∞

H(jω′)
ω − ω′

dω′. (3.11)

pv is the Cauchy principal value of the integral. Splitting (3.11) into real
and imaginary parts results in

12



U(ω) = 1
π
pv

+∞ˆ

−∞

V (ω′)
ω − ω′

dω′ (3.12)

V (ω) = −1
π

pv
+∞ˆ

−∞

U(ω′)
ω − ω′

dω′, (3.13)

and G(jω) = U + jV . Applying this relation which is known as Kramers-
Kronig relation to imaginary part of the refractive index yields the continuous
and un-ambiguous refractive index. Finally, effective material parameters can
be obtained as

εeff = Neff
Zeff

, (3.14)

µeff = NeffZeff. (3.15)

3.3. Parameters of periodic metamaterials
Long after the theoretical introduction to LHM, the first practical implemen-
tations of metamaterial were proposed by Pendry’s group [Smith et al., 2000a,
Shelby et al., 2001b]. This realization of metamaterials was inspired by re-
ducing the plasma frequency of artificial dielectrics in metallic grids [Pendry
et al., 1996] giving a negative ε below the plasma frequency somewhere in the
gigahertz together with the artificial magnetism introduced by electric conduc-
tors [Pendry et al., 1999]. The significant assumption in making these artificial
materials is that the dimensions of the resonant inclusions is much smaller than
the wavelength such that they can be considered as homogeneous materials.
The artificial magnetism arises from the resonant behavior of the inclusions in
the presence of electromagnetic field.
Artificial plasma realized by long but closely spaced wires are excited by

electric field parallel to the wire. Therefore, the wave propagating through
the slab made up of the wires like as shown in Fig. 3.3, will experience a
dispersive medium with negative ε in the direction parallel to the wire length.
This is because that the polarizability of the wires is only possible along their
longitude. The wire medium therefore shows a permittivity in the form of

εz
ε0

= 1−
ω2
p

ω2 + jζω (3.16)
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Figure 3.3.: Periodic arrangement of metallic subwavelength inclusions to realize
metamaterial, left: negative εz, right: negative µy.

where ωp is the plasma frequency which is related to the wire radius and ζ
is the dissipation factor depending on the conductivity of the metal [Pendry
et al., 1996]. The dispersion relation in (3.16) is known as the Drude dispersion
which has no resonant behavior, hence a broad band phenomenon.
To achieve the dispersion behavior of magnetic resonator, the exciting mag-

netic field has to be perpendicular to the surface of the magnetic resonator.
These resonators are generally known as split ring resonators (SRR) where
they have a split in the metallic ring to realize the resonance. The effective
magnetic permeability is as

µy
µ0

= 1−
Fω2

p

ω2 − ω2
0m + jζω

(3.17)

where ω0m is the resonant frequency of the resulting capacitance due to the
splits and the inductance due to the metallic ring [Smith et al., 2000a]. The
dispersion relation (3.17) is known as Lorentz dispersion where the negative
permeability is achieved for frequencies ω0m < ω < ω0m√

1−F and therefore a
narrow band resonant phenomenon. It should be noted that the other material
components are the same as the background material.
By this explanation, it is obvious that to obtain the material properties of the

periodic inclusions with the aforementioned Kramers-Kronig relations, the ori-
entation of the metallic inclusions in the electromagnetic field is of importance.
For transverse electromagnetic (TEM) modes inside a slab of 3D periodic meta-
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material, Fig. 3.2 can effectively model the field distribution around one unit
cell to obtain the scattering parameters.
The combination of SRR-wire has been extensively utilized to realize nega-

tive index materials. This construction is convenient because it is more easy to
overlap the narrow band resonant negative permeability of SRR with broad-
band non-resonant negative permittivity of wire. An alternative artificial elec-
tric medium was introduced in [Schurig et al., 2006b] known as electric LC
resonator (ELC), in which the resonance of the medium was set by the inter-
nal inductance and capacitance of the unit cell. For the unit cells shown in
Fig. 3.4, the material parameters are retrieved for TEM incidence with Ez,
Hy and propagating in the x direction. Therefore, the computed permittivity
is εz for electric resonator and the computed permeability is µy for magnetic
resonator, Fig. 3.6. These resonators have a resonant frequency at 11.4 GHz
which can be seen from S-parameters in Fig. 3.5.

x

y

z

h

p

g

l

w

a

d

(a) Electric resonator

h

pd

g1

g2

w

s

a

x
y

z

(b) Magnetic resonator

Figure 3.4.: h = p = 10
3 mm, d = 2.381 mm, w = 0.3 mm, s = 0.25 mm,

l = 0.8 mm, a = 2.9 mm, g = 0.2 mm, g1 = 0.8 mm, g2 = 1.4 mm,
substrate thickness is 0.381 mm with εr = 2.33.

As it is depicted in Fig. 3.6, the ELC unit cell is behaving like as a negative
permittivity after the resonant frequency while before the resonant frequency
it is a complex valued permittivity and permeability. Also, the SRR shows the
negative permeability after its resonant frequency. These resonant particles,
which show band stop around their resonant frequencies, are called single neg-
ative materials (SNG). As mentioned in this section, the retrieval of material
parameters is restricted to the fundamental mode of the guiding medium. On
the other hand, most of the resonant particles are very narrow band and it is
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(b) S-parameters of SRR

Figure 3.5.: Amplitude of the scattering parameters of resonators in Fig. 3.4
computed for TEM wave incidence.

very hard to adjust their resonant frequency especially to make LHM from two
separate resonators. One of the fascinating applications of the resonant par-
ticles is in below cutoff waveguides and cavity miniaturization [Hrabar et al.,
2005, Belov and Simovski, 2005].
It can be easily shown that these resonators behave completely different when

loaded in below cutoff waveguides and make some pass bands when resonat-
ing. These pass bands cannot be explained by material properties anymore.
The best to now explanation for these behaviors is computation of dispersion
diagram of the constructing unit cell using the image theory of dipoles [Belov
and Simovski, 2005, 2006], where every resonator is modeled as an electric or
magnetic dipole. However, modeling the resonators with only one polarized
dipole in most cases is not possible. Besides, by complicating the resonators
configuration, modeling them as single dipoles in not straightforward. The
other challenge in the modeling of periodic structures by material properties,
is the lack of considering higher order modes which can degrade the behavior
of the unit cell even in fundamental TEM mode [Bandlow et al., 2008].
The next section is devoted to the analysis of periodic waveguides by em-

ploying the modal decomposition of the field distribution over specific planes
transverse to the direction of wave propagation to compute the dispersion prop-
erties of periodic structures.
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Figure 3.6.: Material parameters of ELC and SRR shown in Fig. 3.4.
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4. Closed waveguide structures
analysis

Cylindrical waveguides are the basic guiding media in electromagnetics where
the cross section of the guiding medium is uniform along the cylinder. To
compute the field distribution inside the guided structure, usually modal de-
composition of the field is accomplished at a cross section of the waveguide.
For homogeneously filled waveguides the field preserves its distribution and
only a linear phase shift can represent the traveling behavior of the guided
wave. In this case, it is enough to solve the Maxwell’s equations only on a
reference transversal cross section with closed boundary conditions for trans-
verse geometrical variables, let’s say ρ and ϕ in cylindrical coordinates. The
functionality of longitudinal, z, variable is imposed by inspecting the wave
propagation as e−γz from the reference plane with γ the complex wavenumber
in the z direction.

z
ρ

φc

s

Figure 4.1.: The cylindrical homogeneous waveguide with arbitrary cross section.

Therefore the field is expressed as
E(ρ, ϕ, z) = E(ρ, ϕ)e−γz, (4.1)
H(ρ, ϕ, z) = H(ρ, ϕ)e−γz. (4.2)

In the absence of the excitation, the vector Helmholtz equation in three
dimensions is then converting to a scalar two dimensional equation [Collin,
1991]
∇2
tψh + k2ψh = 0 (4.3)
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where ∇2
t is the transverse part of ∇2 and k2 = k2

0 + γ2 with k0 the free space
wavenumber. The functions ψhe−γz are called modes of the cylindrical waveg-
uide. The number of modes satisfying the homogeneous Helmholtz equation
with closed boundary conditions are infinite but countable. Since these modes
are countable, they are called discrete modes. These modes make a complete
orthogonal set of entire domain basis functions for the transverse cross section
with respect to the closed boundary condition. This property can be shown by
multiplying (4.3) by a solution function like as ψj when the equation is satisfied
by ψi and vice versa

ψj∇2
tψi + (k2

0 + γi)ψiψj = 0, (4.4)
ψi∇2

tψj + (k2
0 + γj)ψjψi = 0. (4.5)

Subtracting two equations yields

(γ2
i − γ2

j )
¨
s

ψiψjds =
¨
s

(ψj∇2
tψi − ψi∇2

tψj)ds =
˛
c

(
ψi
∂ψj
∂n
− ψj

∂ψi
∂n

)
dl,

(4.6)

where s is the surface of transverse cross section and c is the peripheral of s. By
inspecting the Dirichlet or Neumann boundary condition for the field function
ψ, the integration over c vanishes. For two different mode functions ψi and
ψj the corresponding wavenumbers γi and γj are different, consequently, one
achieves the orthogonality of two mode functions as¨

s

ψiψjds = 0, i 6= j. (4.7)

For degenerate modes, γi = γj this procedure needs to take a new subset
of modes for ψi and ψj as ψ′1 = ψi and ψ′2 = ψj + αψi where α is such that˜
s
ψ′1ψ

′
2ds = 0.

However, the above orthogonality property does not satisfy in waveguides
with finite conducting walls. The presence of conductivity results in the cross
coupling between modes which is considered as attenuation.
For a waveguide with perfectly conducting walls and homogeneously filled,

the modes can be categorized into two groups as transverse electric, TE, and
transverse magnetic, TM, modes. TE modes have no electric field component
along the guiding axis while TM modes have no magnetic field component along
the guiding axis. By adding inhomogeneity into the waveguide, the modes
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can no longer be separated into TE and TM modes but a linear combination
of them. Consequently, a general orthogonality relation must be considered
to expand any arbitrary field distribution in a waveguide based on a series
of normal modes. This general orthogonal relation follows as a result of the
Lorentz reciprocity principle.
Let Em , Hm and En , Hn be two linearly independent solutions of the

Maxwell’s equations. It is known that ∇ × Em = −jωµHm and ∇ × En =
−jωµHn. Multiplying two curl equations by Hn and Hm respectively and
subtracting them results in

Hn · ∇ ×Em −Hm · ∇ ×En = 0. (4.8)

Interchanging the electric and magnetic fields yields

En · ∇ ×Hm −Em · ∇ ×Hn = 0. (4.9)

Adding two equations (4.8) and (4.9) results in

∇ · (En ×Hm −Em ×Hn) = 0. (4.10)

Separating the z component of the divergence operator gives

∇ · (En ×Hm −Em ×Hn) = ∇t · (En ×Hm −Em ×Hn)

+ z ∂
∂z
· (En ×Hm −Em ×Hn)

= ∇t · (En ×Hm −Em ×Hn)
− (γn + γm)z · (En ×Hm −Em ×Hn).

(4.11)

Using the divergence theorem¨
s

∇t · (En ×Hm −Em ×Hn)ds =
˛
c

n · (En ×Hm −Em ×Hn)dl

− (γn + γm)
¨
s

z · (Etn ×Htm −Etm ×Htn)ds.
(4.12)

The integration over the contour c enclosing the surface s of the transverse
cross section is vanishing due to the perfect conducting walls. Thus one obtains

(γn + γm)
¨
s

z · (Etn ×Htm −Etm ×Htn)ds = 0. (4.13)

This equation also holds for imperfect conducting walls by inspecting the
impedance boundary condition as Et = Zmn×H which makes the integration
over the contour vanishing.
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Using the variable separation for transverse components of the field in the
form

Htn = hn(ρ, ϕ)e−γnz, (4.14)
Etn = en(ρ, ϕ)e−γnz, (4.15)

where hn(ρ, ϕ) and en(ρ, ϕ) are the transverse vector functions of the transverse
field components. Substituting (4.15) and (4.14) into (4.13) results in

(γn + γm)
¨
s

z · (en × hm − em × hn)ds = 0. (4.16)

Moreover, in (4.16), each term vanishes separately. Consider two sets of
solutions En ,Hn and E′m ,H ′m such that the second set is a back propagating
mode with eγz functionality and E′m = emeγz , H ′m = −hmeγz. Thus the
equation (4.16) for this set becomes

(γn − γm)
¨
s

z · (−en × hm − em × hn)ds = 0. (4.17)

From (4.16) and (4.17) it is concluded that

¨
s

z · (en × hm)ds = 0, (4.18)

¨
s

z · (em × hn)ds = 0, (4.19)

which is the general form of the orthogonality. In case of loss free medium
inside the waveguide, the orthogonality relation is expressed as
¨
s

z · (en × h∗m)ds = 0. (4.20)

Equation (4.20) indicates that the power transferred through the cross sec-
tion of a waveguide is the sum of carried power by every individual mode.
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4.1. Bloch theory in periodic waveguides
We further assume the waveguide has periodic inhomogeneity in the longitudi-
nal direction. The periodic material satisfies M(p+ x) = M(x) where p is the
length of a period. Therefore, any function ψ(x) has a periodic behavior in the
form of [Sjöberg et al., 2005]

ψ(x+ p) = ψ(x)e−γp. (4.21)

where γ is the complex wavenumber of the guiding medium.
In a cylindrical waveguide loaded by periodic inhomogeneity, the electric and

magnetic field components for a period are written as

E(x, y, z0 + p) = E(x, y, z0)e−γp, (4.22)
H(x, y, z0 + p) = H(x, y, z0)e−γp. (4.23)

To compute the field components at z = z0 and z = z0 + p cross sections of
the wavegudie, using commercial simulators like as CST MWS [CST, 2014], the
2D eigenproblem over the cross section is solved. This eigenproblem solution
will compute a set of complete basis functions over the z = z0 and z = z0 + p
cross sections which are called port modes. Consequently, the field distribution
over the ports of a two port waveguide can be written as a combination of port
modes

Ep1(x, y, z0) =
M∑
n=1

anen,p1(x, y, z0) + bnen,p1(x, y, z0), (4.24)

Hp1(x, y, z0) =
M∑
n=1

anhn,p1(x, y, z0)− bnhn,p1(x, y, z0), (4.25)

where an and bn are the inward and outward traveling modes coefficients. The
modal decomposition for the second port by considering the Bloch theorem is

Ep2(x, y, z0 + p) =
M∑
n=1

anen,p1(x, y, z0)e−γnp + bnen,p1(x, y, z0)e−γnp,(4.26)

Hp2(x, y, z0 + p) =
M∑
n=1

anhn,p1(x, y, z0)e−γnp − bnhn,p1(x, y, z0)e−γnp,(4.27)
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where ane−γnp = a′n and bne−γnp = b′n are the coefficients of the eigenfunctions
at the second port. To compute the dispersion diagram of different modes one
needs to calculate equation (4.26) and (4.27) for every frequency. The desired
eigenvalues for every modes are γn.

4.2. Eigenvalue computation for closed waveguides
To obtain the eigenvalues γn corresponding to every eigenfunction another
relation between the eigenfunction at two ports has to be considered. For a
multimode guiding medium, the amplitude of modes of different ports can be
related through the generalized scattering matrix as



b1
...
bN
b′1
...
b′N


=

[S11
] [
S12
][

S21
] [
S22
]


a1
...
aN
a′1
...
a′N


, (4.28)

where [Sij ] =
[
Smnij

]
is the ijth scattered parameter from mode n to mode

m. The nontrivial solution to matrix equations Ax = λx is obtained from the
eigenvector decomposition of matrix A−λI. The procedure known as singular
value decomposition (SVD), produces three different matrices as

A = UΣV T , (4.29)

where the U and V are orthogonal and their rows are eigenvectors and Σ
is a diagonal matrix where its elements are eigenvalues. To transform the
generalized scattering matrix of a multimode waveguide into a form to compute
the eigenvalues of the modes, the transfer matrix of the waveguide can be
employed. The transfer matrix of a waveguide is written as

b1
...
bN
a1
...
aN


=

[T11
] [
T12
][

T21
] [
T22
]


a′1
...
a′N
b′1
...
b′N


. (4.30)
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If the number of port modes at two ports are the same, the T matrix will be a
square matrix. When the T matrix is non-singular, the matrix diagonalization
will result in T = V DV T with

D =



e−γ1p · · · 0 0 · · · 0
... . . . ...

... . . . ...
0 · · · e−γNp 0 · · · 0
0 · · · 0 eγ1p · · · 0
... . . . ...

... . . . ...
0 · · · 0 0 · · · eγNp


. (4.31)

The terms e−γip correspond to forward waves while the terms eγip correspond
to backward waves. In general, γ = α+jβ is complex value where the real part
α indicates the loss along the waveguide and β indicates the phase shift. In a
closed loss less structure, when the modes are not coupled, |e−γp| = 1 which is
equivalent to α = 0 in the pass bands.

4.3. Complex modes in closed waveguides
As it was mentioned in the previous section, the orthogonality of modes is ap-
plicable for real and complex wavenumbers. The presence of complex modes in
closed waveguides is known for a long time in waveguides loaded by dielectrics
[Clarricoats and Taylor, 1964]. Especially, these modes are the result of the cou-
pling of two forward and backward waves in a dissipation less waveguide [Clar-
ricoats and Slinn, 1965]. These complex modes are always in conjugate pair and
therefore when a set of parameters (γn,Et, Ez,Ht, Hz) is satisfying the source
free Maxwell’s equations in a closed waveguide, then (−γn,Et,−Ez,−Ht, Hz)
and (±γ∗n,E∗t ,±E∗z ,±H∗t ,±H∗z ) are also meeting this equation [Rozzi et al.,
1998, Islam and Eleftheriades, 2010, Omar and Schonemann, 1986]. For the
existence of the complex modes in closed waveguides some rules have be sum-
marized in [Rozzi et al., 1998] using the Lorenz’s reciprocity theorem. Consid-
ering the electric and magnetic field in the transverse cross section of a closed
homogeneous wavegudie as

E(x, y, z) = e1(x, y)e−γ1z + e2(x, y)e−γ2z, (4.32)
H(x, y, z) = h1(x, y)e−γ1z + h2(x, y)e−γ2z, (4.33)

where γ1 = γ∗2 = α + jβ and the pairs (e1,h1) and (e2,h2) are complex
conjugate. Consider the Lorentz’s theorem for a source free region over the
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cross section of the waveguide

∂

∂z

¨
s

(
Et ×H ′t −E′t ×Ht

)
· zds

= −jω
¨
s

[
(ε− ε′)E ·E′ − (µ− µ′)H ·H ′

]
ds.

(4.34)

Substituting the three other possibilities for field and wavenumber in the
conjugate pairs instead of E′, H ′, ε′ and µ′, the orthogonality relations can
be examined. By defining the power coupling between modes in two real and
imaginary senses

Pij =
¨
s

(eti × h∗tj) · zds, i, j = 1, 2, (4.35)

Qij =
¨
s

(eti × htj) · zds, i, j = 1, 2. (4.36)

It can be shown for all choices, that Pii = 0. This implies the Poynting
vector integration over the cross section of the waveguide for every individual
complex mode is vanishing, namely no net power is carried by every single
mode of a complex pair. Therefore, these modes which always are present
in a complex conjugate pair, cannot transfer any net real or complex power
along the waveguide. Such modes behave in this aspect like modes at cutoff.
Furthermore, the orthogonality relation (4.35) confirms that P12 = −P ∗21. This
relation indicates the exchange power between 1 and 2 are complex conjugate
and opposite of each other. Therefore, a pair of complex modes can only carry
pure reactive power so that they behave as a whole evanescently.
In the past, it was believed that the complex pairs are excited together.

However, recently there has been some investigations that show these modes
can be excited completely independently [Islam and Eleftheriades, 2010].
In the following, the effect of considering higher order modes in evaluating

the eigenvalues is investigated in a unit cell of left handed material. The left
handed behavior is realized by the combination of an electric resonator (ELC)
and a split ring resonator (SRR) as depicted in Fig. 4.2. The unit cell sizes are
p = h = 10/3mm, w = 2.775mm. Substrate is Rogers RT5870 with εr=2.33
and thickness of 0.381 mm. The unit cell is periodic in three dimensions. To
extract the material property, however, the wave propagation along y direction
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Figure 4.2.: Unit cell of a periodic structure made up of electric and magnetic res-
onators.
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(b) Permeability

Figure 4.3.: Bulk material properties extracted for one unit cell of Fig. 4.2

is considered in the simulation. Therefore, the periodicity has been modeled
by PEC/PMC boundary condition in z and x directions respectively. By this
configuration, the ports are placed directly at two end faces of unit cell along
y direction.
The material properties obtained using Kramers-Krönig relations explained

in section 3.2, are depicted in Fig. 4.3. As it is seen, the permittivity and
permeability have negative sign from 10.55 GHz to 12 GHz while from 12 to
12.7 GHz the unit cell is behaving as single negative material with negative
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Figure 4.4.: Refractive index extracted for one unit cell of Fig. 4.2.
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Figure 4.5.: Dispersion diagram of first Bloch mode of the unit cell Fig. 4.2 by con-
sidering 20 port modes and one port mode.

permeability. The refractive index computed from these material properties is
shown in Fig. 4.4. The left handed region and the band gap behavior of the
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unit cell is inferred from the refractive index.
To account for the higher order modes, twenty port modes in the excita-

tion are considered. The computed scattering matrix is converted to transfer
matrix. After that, the eigenvalues of the transfer matrix are computed with
respect to the Bloch-Floquet theorem. This procedure has been repeated for
one mode excitation. The dispersion diagram of the fundamental mode is com-
pared for one mode excitation and twenty modes in excitation in Fig. 4.5. As
it is depicted in the attenuation diagram of Fig. 4.5, the attenuation in the
guided region is becoming lower by considering higher order modes. Since this
structure has no right handed propagating mode at the same left handed band
to be coupled to left handed mode and make a complex band region, it is ex-
pected that all the eigenvalues in this structure become real or imaginary. This
is confirmed by increasing the number of excited modes, where, the attenuation
constant is decreased in the guided wave region.

4.4. Scattering matrix approach for open waveguides

Open structures are waveguides with an unbounded boundary. Therefore, in
the cross section of these wavegudies, the 2D Sturm Liouville equation of the
third type (SLP3) should be solved [Dudley, 1994]. However, in most geomet-
rical configurations it is not possible to compute the eigenmodes of the SLP3
problems. Consequently, the scattering matrix approach based on a complete
basis mode decomposition is not applicable to all open waveguide structures.
To extend the method of modal decomposition to open waveguides like mi-
crostrip structures and slotted waveguides, one method is to enclose the open
boundary of the waveguide by PEC walls at a distant large enough to not dis-
turb the guided modes inside the wavguide [Mittra et al., 1980, Solbach and
Wolff, 1978]. However, this assumption only works for non-radiating structures.
The difficulty of applying this method for radiating structures, is the reflection
from PEC wall. To minimize the reflections from PEC walls, it is possible to
enclose the wavegudie with an artificial absorbing boundary condition (ABC)
[Derudder et al., 2001b]. For the mode matching technique the superior ab-
sorbing boundary condition is perfectly matched layer (PML). These PMLs
are designed such that the enclosed waveguide can still behave like an open
waveguide and the field distribution of the modes inside the wavegudie are not
affected by PML layer.
The perfectly matched layers are uniaxial anisotropic material which are

included in the field equations in the form of
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Figure 4.6.: Layered slab covered by a symmetric PML at top and bottom.

D = ε ¯̄α ·E, (4.37)
B = µ ¯̄α ·H, (4.38)

such that in a stratified structure layered in the z direction it is written as

¯̄α =

α(z) 0 0
0 α(z) 0
0 0 1

α(z)

 (4.39)

where α(z) = 1 + (κ0−1)f(z)− j σ0
ωε0

f(z). α, κ0, σ0 and f are the constructing
parameters which indicate the type of PML.
Introducing this PML to Maxwell’s equation results in two separate sets of

TE and TM mode equations in the direction of wave propagation within the
PMLs.

1
α

∂

∂z

( 1
α

∂Ex
∂z

)
+ γ2Ex = 0, (4.40)

1
α

∂

∂z

( 1
α

∂Hx

∂z

)
+ γ2Hx = 0, (4.41)

with γ2 = ω2µε− k2
y. Due to symmetry, the equation for x components is also

the same as that for y components.
By implementing the PML at the open boundary the Helmholtz equation is

transformed into the complex coordinates such that the thickness of the PML
layer can be considered as a complex value

d̃PML =
dPMLˆ

0

αz′dz′. (4.42)
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In case of an air slab terminated by PML layers at top and bottom, the dis-
persion equations results in discrete TE and TMmodes with complex wavenum-
bers which are known as PML or Berenger modes. These modes have their
highest field values inside the PML layer. When covering a slab of dielectric
material with PMLs, two other groups of modes rather than Berenger modes
are achieved. A group with real eigenvalues, which are discrete surface modes
confined within the dielectric known as propagating modes and a group of
complex modes with their fields more concentrated inside the dielectric layer.
These modes are called leaky modes.
By this method, the complete basis for describing the field at the cross section

of a waveguide with open boundary can be determined. In [Olyslager, 2004],
it has been mathematically shown that the Green’s function of slab waveguide
terminated by PML layers can be discretized into a series of discrete modes.
Assume the Green’s function equation for free space as

∇2
xyg(x, y) + g(x, y) = δ(x)δ(y). (4.43)

Subjected to the radiation boundary condition

lim
ρ→+∞

[
∂

∂ρ
g(x, y) + jg(x, y)

]
= 0, (4.44)

with ρ =
√
x2 + y2. The radiation condition which is known also as the Som-

merfeld radiation condition considers the time harmonic behavior of the func-
tion as ejωt. Using the Fourier transform for x variable

G(λ, y) =
+∞ˆ

−∞

g(x, y)ejλxdx, (4.45)

the Green’s function equation becomes

d2

dy2G(λ, y) + (1− λ2)G(λ, y) = δ(y). (4.46)

This one dimensional Green’s function can be easily solved to

G(λ, y) = je−j
√

1−λ2|y|

2
√

1− λ2
. (4.47)

From (4.47), it is seen that over the λ complex plane the Green’s function has
two branch cuts originating from λ = ±1. Transformation of the Green’s func-
tion from spectral to spatial domain is performed by inverse Fourier transform
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as

+∞ˆ

−∞

je−j
√

1−λ2|y|

2
√

1− λ2
e−jλxdλ = j

4H
2
0 (ρ). (4.48)

The integration path over the real λ axis and the branch cunts of (4.48) are
depicted in Fig. 4.7. From the Cauchy theorem, the integration over the real
λ axis can be replaced by the integration around the branch cut, since the
integration over the semi circle at infinity does not contribute to the final
response.
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Figure 4.7.: Complex λ plane for the spectral Green’s function (4.47).

To extend the closed form Green’s function (4.47) to an air region terminated
at the distance ±d, the boundary condition for the tangential field at the
termination is considered to be vanishing

g̃(x, y = ±d) = 0, (4.49)

where d ∈ R. Transforming the Green’s function into the spectral domain and
computing the closed from Green’s function results in

G̃(λ, y) =
sin
[√

1− λ2(|y| − d)
]

2
√

1− λ2 cos
[√

1− λ2d
] . (4.50)
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Inverse Fourier transform of (4.50) gives the Green’s function as

g̃(x, y) =
+∞ˆ

−∞

sin
[√

1− λ2(|y| − d)
]

2
√

1− λ2 cos
[√

1− λ2d
]e−jλxdλ. (4.51)

As it is seen from (4.50), the Green’s function has no branch cut and has
simple poles at

λ±n = ±

√
1− (2n+ 1)2π2

4d2 , n = 0, 1, 2, ..., (4.52)

which are shown on the complex λ plane in Fig. 4.8
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Figure 4.8.: Discrete poles of the approximated Green’s function (4.50).

Using the Cauchy theorem, the Green’s function (4.51) can be written as the
summation of eigenmodes

g̃(x, y) = − j

2d

+∞∑
n=0

cos (2n+ 1)πy
2d

e−j
√

1− (2n+1)2π2
4d2 x√

1− (2n+1)2π2

4d2

. (4.53)

In this method, the branch cut which is indicating the continuum part of the
spectral Green’s function, has been replaced by a discrete set of poles over the
complex λ plane. The poles of the Green’s function which are dependent on d
are PML modes.

33



Another general structure which can include leaky modes can be represented
by replacing the free space with an interface of two semi infinite medium trun-
cated by PMLs at top and bottom. One medium is free space, y > y′, with
k = 1 and the other medium, y < y′, with k = ky, Fig. 4.9.

x

y

PML

y=y'

y=d

k=1

k=ky

PML
y=0

Figure 4.9.: Discrete poles of the approximated Green’s function (4.50).

The Green’s function equation is in the form of

∇2
xyg(x, y) + k2(y)g(x, y) = δ(x)δ(y − y′), y′ > 0. (4.54)

Then, the spectral domain Green’s function is achieved as

d2

dy2G(λ, y) + (k2(y)− λ2)G(λ, y) = δ(y − y′). (4.55)

The Green’s function can be written as

G̃(λ, y) = −sin[κ2(λ)(d− y′)] sin[κ1(λ)y]
N(λ) , 0 < y < y′, (4.56)

G̃(λ, y) = −sin[κ1(λ)y′] sin[κ1(λ)(d− y)]
N(λ) , y′ < y, (4.57)

where κ1(λ) =
√
k2
y − λ2 and κ2(λ) =

√
1− λ2.

The denominator of the Green’s function is

N(λ) = κ2(λ) sin[κ1(λ)y′] cos[κ2(λ)d] + κ1(λ) cos[κ1(λ)y′] sin[κ2(λ)d].(4.58)

The Green’s function in this case will have four branch cuts emanating from
±1 and ±ky. The branch cuts at ±1 will again result in the same PML modes
which are dependent on d while the branch cuts at ±ky when discretized,
result in modes depending on y′ and are called quasi leaky modes [Rogier and
De Zutter, 2001].
PML layers are generally anisotropic which makes it difficult to handle the

numerical modeling of these artificial boundary conditions. Therefore, realizing
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the absorbing boundary conditions by isotropic material will be an advanta-
geous. In this regard, lossy materials can be implemented to minimize the
reflection of an incident wave at all frequencies and all incident angles [Weitsch
and Eibert, 2011]. These PML layers are designed by adding a gradually in-
creasing loss to higher layers, Fig. 4.10.

grounded structure
Air layerd1d2d3d4d5d6

ε''1

μ''1

ε''2ε''3ε''4ε''5ε''6

μ''2μ''3μ''4μ''5μ''6

Figure 4.10.: Layered PML with increasing loss by going away from the structure.
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Figure 4.11.: A unit cell of the Sievenpiper mushroom with corresponding boundary
condition, blue: PMC, green: PEC, open boundary at ports. Unit cell
size: p = 3.5 mm, hsub = 1.75 mm, patch size = 3 mm, rvia = 0.125
mm, εr = 2.2.

The unit cell of a mushroom structure introduced by Sievenpiper [Sievenpiper
et al., 1999] is analyzed using SMA approach. To enclose the unit cell, the top
face of the unit cell is covered by PEC boundary condition. The unit cell has
been excited using waveports with two fundamental modes. The dispersion
diagram computed using Bloch-Floquet theorem is depicted in Fig. 4.12. As
it is observed, the first mode, on the left, shows a complex band from 12
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Figure 4.12.: Dispersion diagram for two fundamental modes of the SMA approach
for unit cell of Fig. 4.11, left: first mode, right: second mode

GHz to 16 GHz. As it was mentioned in section 4.3, the complex modes in
closed structures are due to the coupling between a right handed mode of the
background waveguide and the left handed mode of the structure. The left
handed mode of the structure can be observed in the dispersion diagram of the
second mode, on the right, from 12 to 16 GHz.
To compensate the effect of the right handed mode of the background waveg-

udie which is coupled to the left handed mode, the structure is covered by a
multilayer homogeneous lossy absorber like as Fig. 4.10 with d1 = 2 mm, d2 = 2
mm, d3 = 2.5 mm, d4 = 2.5 mm, d1 = 3 mm, d1 = 5 mm. The electric and
magnetic losses for every layer are equal and are indicated as tan δ1 = 0.02,
tan δ2 = 0.08, tan δ3 = 0.2, tan δ4 = 0.4, tan δ5 = 0.65, tan δ6 = 0.8. The
dispersion diagram of the fundamental mode confirms the compensation of the
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coupling between the right handed and left handed modes using PML layers,
Fig. 4.13.
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Figure 4.13.: Dispersion diagram for the fundamental mode of the SMA approach for
unit cell of Fig. 4.11 with and without absorber shields.

Consideration of PML layers to account for the guided radiating modes in
open structures is only useful for the guided wave applications. However, by
increasing the technology very rapidly, there is an increasing demand to develop
quick and accurate methods to describe the wave propagation in new media. In
this purpose, in the next chapters, the computation of eigenmodes by excitation
is introduced.
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5. Finite element boundary integral
method

Metamaterial structures analyzed in this thesis are periodic arrangement of
subwavelength unit cells with possibly open boundaries at top or bottom of
the unit cell. The external excitation in this work is plane wave excitation and
the eigenvalues are sought in the scattered field from the unit cell. To take the
advantage of finite element method for modeling arbitrary unit cell configura-
tions together with boundary integral method for modeling global open bound-
aries, the hybrid finite element boundary integral method is one of the most
widely used methods. This method, therefore, is used to efficiently solve the
Maxwell’s equations together with corresponding open boundary conditions.
In this chapter, the finite element boundary integral for periodic structures is
reviewed.

5.1. Maxwell’s equations

For a medium of linear, inhomogeneous and anisotropic material, a system of
four coupled equations can describe the behavior of a time harmonic electro-
magnetic field with the time dependency of the form ejωt. These four equations
make a set of equations known as Maxwell’s equations

∇×E(r) = −jωB(r)−M(r), (5.1)
∇×H(r) = jωD(r) + J(r), (5.2)
∇ ·D(r) = −ρe(r), (5.3)
∇ ·B(r) = ρm(r), (5.4)

where E , H are electric and magnetic field intensity, B , D are the elec-
tric and magnetic flux density, J , M are the electric and magnetic currents
density and ρe , ρm are the electric and magnetic charge density, respectively.
Equations (5.1)-(5.2) are the differential form of Faraday’s and Ampere’s law,
equation (5.3) is the Gauss’s law for electric charge while (5.4) is the Gauss’s
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law for magnetic field. By taking the divergence of Faraday’s and Ampere’s
laws and using the Gauss’s laws, another set of equations are achieved which
indicate the conservation of the charge

∇ · J(r) = −jωρe(r), (5.5)
∇ ·M(r) = −jωρm(r). (5.6)

These equations are known as continuity equations for electric and magnetic
charges respectively.
The effect of constitutive medium in the general anisotropic form is consid-

ered as

B(r) = µ0µr(r) ·H(r), (5.7)
D(r) = ε0εr(r) ·E(r). (5.8)

Substituting (5.7) and (5.8) into the (5.2)-(5.4), the Maxwell’s equations are
reduced to

∇×E(r) = −jωµ0µr ·H(r)−M(r), (5.9)
∇×H(r) = jωε0εr ·E(r) + J(r), (5.10)
∇ · εr ·E(r) = −ρe(r), (5.11)
∇ · µr ·H(r) = ρm(r). (5.12)

Equations (5.9) , (5.10) are the rotation of electric and magnetic fields which
also show the coupling of these two field intensities. By eliminating E or H
from these equations, a second order differential equation is obtained which is
known as vector wave equation either based on electric or magnetic field
intensity

∇× µ−1
r · ∇ ×E(r)− k2

0εr ×E(r) = −jk0Z0J(r)−∇× µ−1
r ·M(r), (5.13)

∇× ε−1
r · ∇ ×H(r)− k2

0µr ×H(r) = −jk0Y0M(r)−∇× ε−1
r · J(r). (5.14)

where Y0 = 1/Z0 =
√
ε0/µ0 is the wave admittance of free space and k0 =

ω
√
µ0ε0 is the free space wavenumber.
The wave equation is a partial differential equation which can be satisfied

by an infinite number of solutions. To obtain a unique solution, appropriate
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boundary conditions should be enforced. The radiation condition which guar-
antees the physical behavior of the field at infinity, is Sommerfeld condition
[Sommerfeld, 1949]

lim
r→∞

r

[
∇×

(
E
H

)
+ jk0r̂ ×

(
E
H

)]
= 0, (5.15)

with r = |r| the magnitude of position vector r and its unit direction of r̂ = r
r .

The wave equation subjected to the boundary conditions is only possible to be
solved analytically in very specific geometries of the scatterers and radiating
structures. Accurate and complete solution of wave equation in complex media
needs to employ numerical computations. Because of this, a variety of numeri-
cal techniques both in time domain and frequency domain have been developed
to solve for the transient and steady state response of wave equation.
Most numerical methods discretize the unknown quantity in the spatial or

temporal domain. The accuracy of the solution mostly depends on the dis-
cretization. However, too much refinement of the discretizations increases the
solution time and sometimes the condition number of the system matrix is
increased badly for discretizations finer than λ/10. Therefore, a trade-off be-
tween the number of unknowns and the condition number of the system matrix
is always a limit for the quality of discretizations.
There are a variety of numerical techniques to solve the Maxwell’s equations

[Taflove and Hagness, 2005] ,[Peterson et al., 1998] , [Harrington and Harring-
ton, 1996, Jin, 2014]. In electromagnetics, the Finite element method is a
general purpose technique that solves for volumetric electromagnetic fields and
can be used to accurately characterize microwave components and antennas
in diverse configurations. For antenna or scattering problems, the air region
surrounding the model must be included and terminated with an absorbing
boundary condition (ABC). The integral equation (IE) approach, which solves
directly for currents on object surfaces is not as general as the FEM, but is
often more efficient for large open problems since it does not require the sur-
rounding air volume. Combining these two techniques in hybrid finite element
boundary integral (FEBI) method gives this opportunity to reduce the size of
the FEM domain of a given open boundary problem. In the following, the finite
element and boundary integral methods and their combinations are reviewed.

5.2. Integral equations and solution methods
The major disadvantage of partial differential equations is the need of extending
the discretization to the far field region to enforce the radiation condition. In
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contrast to FEM, the integral equation (IE) procedure, computes the equivalent
currents that are induced on the surface of objects in the model. For conducting
objects the electric currents are computed and for finite dielectric objects the
equivalent electric and magnetic currents are computed. The solution method is
often referred to as the Method of Moments (MoM). These equivalent currents
are computed through the Huygens’s principle over a surface enclosing the
scatterer or radiator [Harrington and Harrington, 1996]. The more general
form of the Huygens’s principle can be cast as the equivalence theorem [Chen,
1989].

5.2.1. Huygens’s principle

Using the Green’s theorem, the Huygens’s principle can be derived [Harrington,
1961]. Consider a closed surface S surrounding the source of radiation and
any other objects such that the infinite space exterior to the closed surface is
homogeneous (Fig. 5.1).

Sources

Objects

Exterior medium

ε  , μ
n

Figure 5.1.: Huygens’s principle.

The total electromagnetic field at the observation point r can be obtained as

E(r) =
¨

S

[
−jωµ[n̂′ ×H]G0(r, r′) + [n̂′ ·E]∇G0(r, r′)

+[n̂′ ×E(r′)]×∇G0(r, r′)
]
ds′,

(5.16)

H(r) =
¨

S

[
jωε[n̂′ ×E]G0(r, r′) + [n̂′ ·H]∇G0(r, r′)

+[n̂′ ×H(r′)]×∇G0(r, r′)
]
ds′,

(5.17)
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where n̂′ indicates the unit vector normal to the S at r′ and pointing outward
the closed surface. By inspecting the relation between the surface currents and
the tangential fields as

n̂′ ×H(r′) = Js(r′), (5.18)
E(r′)× n̂′ = M s(r′), (5.19)
n̂′ · εE(r′) = ρe(r′), (5.20)
n̂′ · µH(r′) = ρm(r′) (5.21)

equations (5.16) and (5.17) are expressed in terms of the equivalent currents
and charges as

E(r) =
¨

S

[
− jωµJs(r′)G0(r, r′) + 1

ε
ρe(r′)∇G0(r, r′)

+M s(r′)×∇G0(r, r′)
]
ds′,

(5.22)

H(r) =
¨

S

[
− jωεM s(r′)G0(r, r′) + 1

µ
ρm(r′)∇G0(r, r′)

+ Js(r′)×∇G0(r, r′)
]
ds′.

(5.23)

E and H are the total electric and magnetic fields in the free space and G0 =
1

4π
e−jk|r−r′|
|r−r′| is the scalar Green’s function of the free space.

When there is an incident field in the free space region, a term including the
incident field has to be added to the right hand side of the equations (5.16)
and (5.17).
The surface integral expressions (5.22) and (5.23) are describing the exact

field values in terms of surface currents and charges. However, using the con-
tinuity equations, the charges can be replaced by the corresponding current
densities and the equation can be written only based on the currents. In order
to obtain the equivalent currents, the observation point has to be located at the
boundary surface of S. To guarantee that the IE is valid for all the points over
the boundary surface, the singular points on the boundary, where the observa-
tion point is very close to the source point and the Green’s function becomes
infinite, are needed to be excluded from the equation. For this purpose, the
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boundary surface is deformed such that the singularity point is excluded by a
hemisphere [Eibert, 1997].
In computation of the total electric field inside the exterior region of the

closed surface S, it is noted that the following integration is performed over
the hemisphere

˚

Vb

E(r′)δ(r − r′)dv′ = 1
2E(r). (5.24)

By the assumption of (5.24) and considering the incident field in the problem,
the surface integral field equations become

1
2E(r) =

¨

S

−jωµJs(r′)G0(r, r′)ds′ +∇
¨

S

1
jωε∇ · Js(r

′)G0(r, r′)ds′

+
¨

S

M s(r′)×∇G0(r, r′)ds′ +Einc(r),
(5.25)

1
2H(r) =

¨

S

−jωεM s(r′)G0(r, r′)ds′ +∇
¨

S

1
jωε∇ ·M s(r′)G0(r, r′)ds′

−
¨

S

Js(r′)×∇G0(r, r′)ds′ +H inc(r),

(5.26)

By multiplying the n × n× by (5.25) and the n× by (5.26)and replacing
the tangential field by the tangential currents two integral equations are ob-
tained. The resulting equations are called electric field integral equation (EFIE)
and Magnetic Field Integral Equation (MFIE)respectively. In both EFIE and
MFIE, the surface currents are unknown and generally numerical methods are
taken to solve these equations.

1
2n×M(r) = n× n×

¨
S

−jωµJs(r′)G0(r, r′)ds′ +

∇
¨

S

1
jωε
∇ · J(r′)G0(r, r′)ds′ +

¨

S

M s(r′)×∇G0(r, r′)ds′ +Einc(r)

,
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(5.27)

1
2J(r) = n×

¨
S

−jωεM s(r′)G0(r, r′)ds′ +

∇
¨

S

1
jωµ
∇ ·M(r′)G0(r, r′)ds′ −

¨

S

Js(r′)×∇G0(r, r′)ds′ +H inc(r)

.
(5.28)

The disadvantage of these integral equations is the problem of interior reso-
nance such that the IEs result in nonunique or unstable responses at the vicinity
of resonant frequencies of the cavity formed by the surface S covered by a PEC
and filled with the homogeneous material of the exterior region. To overcome
this problem, the linear combination of both EFIE and MFEI is regarded as
the desired IE which is known as combined field integral equation (CFIE)

αEFIE + (1− α)Z0n×MFIE, (5.29)

where α ∈ [0, 1] and Z0 =
√

µ
ε . By this formulation, the cavity resulting from

EFIE and MFIE is modelled as a cavity with impedance boundary condition
and therefore the interior resonant frequencies become complex subsequently
a unique and stable solution will be obtained [Mautz and Harrington, 1977].

5.2.2. Solution of the integral equations by moment method

In order to solve the integral equation, especially in complex geometries, the
numerical discretizations are employed to replace the integral with a summa-
tion. In these methods, the idea is to reduce the functional equation to the
matrix equation and then solve it by known techniques [Harrington and Har-
rington, 1996]. In boundary integral formulation of the problems, the boundary
surface S is discretized by two dimensional triangular meshes. The next step
is to approximate field over these triangles by some basis functions. Until now,
the most complete basis functions which satisfy the continuity of the currents
on triangular common edges are Rao Wilton Glisson (RWG) basis functions
shown in Fig. 5.2. Therefore, the currents over the BI are approximated as
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Figure 5.2.: Vector basis function for BI discretization

Js(r) =
N∑
n=1

Unβn(r), (5.30)

M s(r) =
M∑
n=1

Vnβn(r). (5.31)

The coefficients Un and Vn are unknown and are to be computed via the
solution of integral equation and vectors βn are RWG basis functions. These
subdomain functions were first introduced in [Rao et al., 1982] and are defined
as

βj(r) = ∓r − r4−j
2AT

(n̂A · n̂(r))
{
−, j = 1, 3
+, j = 2 (5.32)

where r4−j is the position vector of the (4− j)th vertex and AT is the surface
of the triangle mesh element and n̂A is the normal unit vector on the particular
triangle.
The main property of these vector functions is that the continuity of the

surface magnetic and electric currents over Huygens surface can be realized by
them. Therefore, the electric and magnetic field intensity can be approximated
as

Es(r) = −
N∑
n=1

Unαn(r), (5.33)

Hs(r) =
M∑
n=1

Vnαn(r), (5.34)
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with
βn(r) = n̂(r)×αn(r). (5.35)

Vector functions α are called Whitney edge elements [Jin, 2014].
By using RWG basis functions as the test function in the method of moment

formulation, the resulting is called Galerkin’s method. Applying the Galerkin’s
method to IEs for every test function a system of linear equations is obtained.
For test function βm(rm) and source point at rm the EFIE is written as

1
2

N∑
n=1

Un

¨

S

βm(rm) · [βn(rn)× n̂(rn)]

+ jωµ
N∑
n=1

Vn


¨

S

βm(rm) ·

¨
S

G0(rm, rn)βn(rn)ds′
 ds


+ 1
jωε

N∑
n=1

Vn


¨

S

∇s · βm(rm)

¨
S

G0(rm, rn)∇′s · βn(rn)ds′
 ds


+

N∑
n=1

Un


¨

S

βm(rm) ·

¨
S

∇G0(rm, rn)× βn(rn)ds′
 ds


=
¨

S

βm(rm) ·Einc(rm)ds.

(5.36)

The MFIE and CFIE also can be written in the form of matrices by Galerkin’s
method [Eibert, 1997]. However, choosing the test function for CFIE is not
very obvious. The CFIE with RWG as the basis and testing functions leads
to a very unstable solution [Sheng et al., 1998] therefore, the implementation
of RWG+ n×RWG as test functions is suggested [Yla-Oijala and Taskinen,
2003]. Due to the 1

R dependence of Green’s function to the distance between the
source and observation point, the Green’s function and therefore, the integral
shows some singularities which are overcome by singularity extraction methods
[Wilton et al., 1984, Graglia, 1993] or with some analytic methods [Eibert and
Hansen, 1995].

5.3. Finite element method
The partial differential equation methods have the advantage of simple for-
mulation even in the case of complex media and result in the simple numeri-
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cal implementations. In addition, they produce highly sparse matrices which
can be efficiently solved by special algorithms [Jin, 2014]. The finite element
method, which is a partial differential equation method, is a technique for ob-
taining approximate solution to boundary value problems. The principle of the
method is to replace a continuous domain by a number of subdomains which
are usually referred to as elements. The behavior of the solution inside the
element domains is modeled by interpolation functions containing the few un-
known values of the elements nodes. Thus, the behavior of the whole system
is approximately represented by a finite number of nodal values. Then a sys-
tem of algebraic equations is obtained and the solution of the boundary value
problem is achieved by solving the system of equations.
After the discretization of the solution domain and choosing the interpolation

function, the element equation inside every element has to be derived which
is usually performed by using variational techniques [Jin, 2014]. The resultant
is a functional which is to be minimized by finding the stationary points of
it. This stationary point corresponds to the solution of the aforementioned
boundary value problem.
The appropriate functional corresponding to the wave equation can be ob-

tained from the equation (5.13) as

Fv(E) = 1
2

˚

V

[ 1
µr

(∇×Ead) · (∇×E)− k2
0εrEad ·E

]
dv

+ 1
2

¨

S

[Ead · (n̂×∇×E)]da+
˚

V

Ead ·
[
jk0Z0Js +∇×M s

µr

]
dv.

(5.37)

The partial differential equation based numerical techniques do not include
any Green’s function. This makes these methods inefficient especially for mod-
eling the open boundaries. On the other hand, the integral equation methods
have the advantage of simple numerical implementation with a minimum dis-
cretization region. This advantage is because of the modeling of the open
boundaries by Green’s function. However, they have a drawback when model-
ing of the complex media.

5.3.1. Solution of finite element

To solve the finite element functional (5.37), the volume of the object V has to
be discretized using subdomains known as elements. The 3D elements are in
the form of tetrahedra, triangular prisms or rectangular bricks. Among them,

48



0

1

2

3

(a) The tetrahedron element with local co-
ordinate numbers

edge n

αn 
(r)

(b) Edge element basis function

Figure 5.3.: Vector basis function for FE discretization

tetrahedrons are the simplest and best suited for arbitrary volume domain [Jin,
2014]. After numbering of elements the next step is defining an interpolation
function to approximate the unknown solution within an element. In general
there are two strategies to select the interpolation function depending on the
degrees of freedom in the element. The first developed interpolation functions
are node functions where they approximate the field value linearly over the
nodes of tetrahedrons. The drawbacks of these linear tetrahedrons are arising
spurious modes because of the lack of enforcement of the divergence condition
to the field, the difficulty of imposing the boundary conditions at material
interface as well as at conducting surfaces. The suggested approach to overcome
these difficulties is vector basis that assign degrees of freedom to the edges of
the tetrahedron.
The desired edge elements are zeroth order edge elements αn(r) depicted in

Fig. 5.3.
As it was shown in (5.35), these edge element functions are normal to the

RWG basis functions where the triangles meet the BI surface. The electric
and magnetic fields are expanded based on this basis inside the FE volume for
element e as

Ee(r) =
6∑
i=1

Eiα
e
i (r), (5.38)

Ee
adj(r) =

6∑
i=1

Ei,adα
e
i (r), (5.39)

Hs(r) =
6∑
i=1

Hiα
e
i (r), (5.40)
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where, the maximum number 6 in summations indicates the tetrahedrons with
6 edges.
Substituting (5.39)-(5.40) into (5.37) and considering M s = 0, a system of

matrix for element e is obtained as

0 = 1
2

M∑
e=1
{Ee}T [Ke]{Ee}+ 1

2

Ms∑
e=1
{Es}T [Bs]{Es} −

Mv1∑
e=1
{bs}, (5.41)

where

[Ee] =
˚

V e

[ 1
µr
{∇ ×αe} · {∇ ×αe} − k2

0ε
e
r{αe} · {αe}

]
dV, (5.42)

[Bs] =
¨

Ss

jk0Z0{n×αe} · {n×αe}dS, (5.43)

[bs] =
˚

V s

jk0Z0α
e · J idV, (5.44)

with M the total number of volume elements, Ms the number of surface ele-
ments on the dielectric part of open boundary and Mv1 the number of volume
elements containing the source. This system of equations can be written in the
matrix form and to solve it, the solution domain needs to be terminated out-
side the open boundary. For closed structures, usually Neumann or Dirichlet
boundary conditions or a combination of them is describing the field behavior
at the surface enclosing the FE discretization. For open structure, to termi-
nate the computational finite element domain, artificial boundary conditions
are utilized. These boundary conditions can be of two major types, absorbing
boundary condition (ABC) and perfectly matched layers (PML). The final re-
sulting matrix equation from FE discretization can be solved by Galerkin or
Ritz methods [Jin, 2014].

5.4. Hybrid finite element boundary integral / FEBI
The idea of combining differential equations based with integral equations
based methods is coming from mechanical engineering with the method of finite
element - boundary element [Jin, 2014]. By introducing an artificial boundary
enclosing the scatterer, the field internal to the boundary is expressed by a
variational equation while the field exterior to the boundary is expanded based
on the eigenmodes of the scatterer by involving the Green’s function of the

50



free space over the boundary. The field obtained from the boundary integral
part is then imposed to the variational equation as a boundary condition over
the aforementioned artificial boundary. The variational equation is then solved
by using the finite element method. A configuration for the FEBI object in
Fig. 5.4 indicates the closed surface surrounding the whole object which is a
composition of dielectric and PEC parts. In the presence of incident fields, the
BI formulation is applied to the open boundary which is composed of surfaces
A1 +A∞. A∞ is the closed surface surrounding the volume V1 at the infinity.

surface A2

surface A1

dielectric

PEC

PEC

closed surface
Va

V1

V2

Figure 5.4.: The FEBI object.

In this configuration, the CFIE is written as

1
2n×MA1(r) = n× n×

¨
A1

−jωµJA1(r′)G(r, r′)da′ +

∇
¨

A1

1
jωε∇ · J(r′)G(r, r′)da′ +

¨

A1

MA1(r′)×∇G(r, r′)da′ +Einc(r)


, r ∈ A1

(5.45)
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and

1
2JA1(r) = n×

¨
A1

−jωεMA1(r′)G(r, r′)da′ +

∇
¨

A1

1
jωµ∇ ·M(r′)G(r, r′)da′ −

¨

A1

JA1(r′)×∇G(r, r′)da′ +H inc(r)


, r ∈ A1.

(5.46)

Also, the homogeneous region A2 interior to volume V2 can be the solution
domain of the BIM where there is no incident field

1
2n×MA2(r) = n× n×

¨
A2

−jωµJA2(r′)G(r, r′)da′ +

∇
¨

A2

1
jωε∇ · J(r′)G(r, r′)da′ +

¨

A2

MA2(r′)×∇G(r, r′)da′


, r ∈ A2

(5.47)

and

1
2JA2(r) = n×

¨
A2

−jωεMA2(r′)G(r, r′)da′ +

∇
¨

A2

1
jωµ∇ ·M(r′)G(r, r′)da′ −

¨

A2

JA2(r′)×∇G(r, r′)da′


, r ∈ A2.

(5.48)

Therefore, the CFIE is written for all open boundaries except for the part
of A2 located in the internal PEC thin layer [Tzoulis, 2009].

The field inside the dielectric region is modeled by finite element where in-
homogeneous and anisotropic materials can be supported too. In this purpose,
the functional 5.37 is fomulated over the finite element region Va surrounded
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by surfaces A1 and A2

0 =
˚

Va

[
(∇×Eint

ad (r)) · µ−1
r (r) · (∇×Eint(r))− k2

0Ead(r) · εr(r) ·Eint(r)
]
dv

+ jk0Z0

‹

A1+A2

[
Eint
ad (r) ·

[
H int(r)× n

]]
da− jk0Z0

˚

Va

Eint
ad (r) · J(r)dv.

(5.49)

As mentioned, the system of coupled equations resulted from hybrid finite
element boundary integral is solved by the variational method in the FE part
and moment method in the BI part. The coupling is performed at the dielectric
boundary A1 + A2. This implies the continuity of tangential fields over the
surfaces A1 and A2

n×Eint(r) = n×Eext(r), (5.50)
n×H int(r) = n×Hext(r). (5.51)

5.5. Periodic boundary condition in FEBI
The metamaterial structures investigated in this thesis are doubly periodic
stratified media. The constructing unit cell has a regularly shaped boundary
at the side walls, see Fig. 5.5. This array is assumed to be periodic in the
xy−plane and (m,n)th cell of the array is obtained by shifting the (0, 0)th cell
in the direction of ρmn = mρa +nρb. ρa and ρb are the lattice vectors parallel
to x and y directions.

To analyze the periodic structure, the advantage of periodicity is taken where
one unit cell is modeled by the numerical modeling and the field intensity is
forced to satisfy the periodic boundary conditions [Eibert et al., 1999]

E(r +mρa + nρb) = E(r)e−jkt00·ρa+nρb , (5.52)

H(r +mρa + nρb) = H(r)e−jkt00·ρa+nρb , (5.53)

where kt00 = kx00x̂ + ky00ŷ is the incident plane wave corresponding to the
incident angle of θ0 and φ0 in the spherical coordinate as

kx00 = k0 sin(θ0) cos(φ0), (5.54)
ky00 = k0 sin(θ0) sin(φ0). (5.55)
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ρa

ρb

z

y

x

Figure 5.5.: The two dimensional configuration of periodic unit cells for FEBI mod-
eling, O.B.C: open boundary condition, P.B.C: periodic boundary condi-
tion.

k0 is the free space wavenumber at the operating frequency. The FE func-
tional to describe the unit cell inhomogeneity can be obtained from the general
form of FE functional (5.37). For a region free of magnetic source current the
functional is written as

F (Ead,E) =
˚

V

[ 1
µr

(∇×Ead) · (∇×E)− k2
0εrEad ·E

]
dv

+ jk0Z0

¨

S

[Ead · (H × n̂)]da+ jk0Z0

˚

V

Ead · J intdv.
(5.56)

where J int indicates the volume excitation current interior to the FE domain
and S is the surface surrounding the FE domain with n̂ the unit vector normal
to the surface of the FE directed to the outside of FE domain. To rearrange
the functional in terms of only electric field intensity the integration of the
magnetic tangential field over the BI should be replaced by the MFIE (5.26).
By inspecting non PEC boundary and E(r′)× n̂ = M s(r′) the MFIE is

H(r) =
¨

S

−2jωε(E(r′)× n̂)G0(r, r′)ds′+

∇
¨

S

1
jωε∇ · (E(r′)× n̂)G0(r, r′)ds′ +H inc(r),

(5.57)
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substituting (5.57) into (5.58)and inspecting the divergence theorem one
achieves

F (Ead,E) =
˚

V

[ 1
µr

(∇×Ead) · (∇×E)− k2
0εrEad ·Edv

+ jk0Z0Ead · J int
]
dv − 2k2

0

¨

S

¨

S

G(r, rs)
[
(n̂×

Ead(r)) · (n̂×E(rs))−
1
k2

0
∇s · (n̂×Ead(r))∇s · (n̂×E(rs))

]
dssds

+ jk0Z0

¨

S

(n̂×Ead(r)) ·Hext(r)ds.

(5.58)

nfront

nback

mright

mleft

Γleft

Γfront

Γback

Γright

Figure 5.6.: FE mesh of 2D periodic structure.

The periodic boundary conditions at the vertical side walls in the FE domain
are the phase boundary condition which yield a unique solution to the field
problem. Moreover, to assure the periodicity of the field distribution in free
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space, the free space Green’s function must be replaced by the periodic Green’s
function.
The phase boundary condition to be employed in the FE domain is the same

as the phase shift in the planar arrays [McGrath and Pyati, 1994]. For this the
mesh configuration should be the same at opposite side walls, Fig. 5.6.
Using the edge element basis functions for FE discretization, then if em

is the field at an edge of the vertical walls, the value en of the field at the
corresponding edge on the opposite side wall is given as

en = eme−jkt00·∆r (5.59)

with ∆r = (ρaorρb) is the vector connecting the two edges. Therefore, the
unknown fields on the edges over Γback and Γleft are eliminated by replacing
the shifted field over edges on Γfront and Γright respectively through relation
(5.59).
The surface meshes of the FE part are compatible by the BI vector basis

functions. Therefore the surface integrals in (5.58) are discretized over the
BI using RWG basis functions. In order to implement the periodic boundary
conditions for the field over the BI and surface currents on it, the Green’s
function in (5.58) also, must be periodic. The spectral domain Green’s function
for free space can be written as

GP (r, r′) =
+∞∑

m=−∞

+∞∑
n=−∞

e−jktmn·(ρ−ρ′)

2jAkzmn
e−jkzmn|z−z′|. (5.60)

with A = |ρa × ρb| is the cross section of the unit cell, r = ρ+ zẑ and

ktmn = kt00 + 2π
A

[m(ρb × ẑ) + n(ẑ × ρa)]. (5.61)

At the end, the matrix form of the FEBI for periodic structure is

 Aint Across1,top Across1,bot
Across2,top Aboundtop 0
Across2,bot 0 Aboundbot




eint
eboundtop

eboundbot


+

0 0 0
0 Ztop 0
0 0 Zbot




eint
eboundtop

eboundbot

 =


f int

f boundtop

f boundbot


(5.62)
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where A matrices are associated to FE portion and therefore, highly sparse
matrices. Z matrices are the fully populated matrices resulted from moment
method over the boundary integral on the top and bottom discretized periodic
unit cell. f are the excitation field both in the FE and BI parts. Due to the
periodic boundary condition and periodic Green’s function, the matrices in
(5.62) are non-symmetric and all the elements have to be computed separately
which means the complexity of matrices in the BI portion are of the order of
O(n2

s) with ns the number of edge elements over the BI and the complexity of
the FE portion is of the order of O(nv) with nv the number of volume edges.
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6. Sturm Liouville problems and
eigenmode decomposition

In section 5, the application of BI equations over the open boundary was inves-
tigated to model the radiation condition effectively. For a known excitation, the
computation of the scattered field needs to implement the impulse response of
the scatterer to the spatial point dipole excitation. Afterwards, the scattered
field to every arbitrary excitation can be computed through the integration
over the source.

On the other hand, by modal analysis synthesized in chapter 4, electromag-
netic fields in inhomogeneously filled waveguide were represented as superpo-
sition of eigenmodes. As it was shown, this method for solving eigenvalue
problems leads to difficulties in open regions (one or both domain endpoints at
infinity), since the mode spectra may then be continuous and the eigenfunction
becomes improper. Furthermore, the suggested PML termination has approxi-
mations which need to consider the excluded improper modes like as Berenger
modes.
A more powerful and direct technique is provided by the characteristic Green’s

function procedure based on the connection between source free resonant so-
lutions (eigenfunction) and the traveling wave response to point source excita-
tion. This connection is known as the Sturm-Liouville theorem for differential
equations. The Sturm-Liouville differential equation is in the form of

[ d
dx
p(x) d

dx
− q(x) + λmw(x)]fm(x) = 0, x1 6 x 6 x2, (6.1)

where fm is the eigenfunction and λm is the corresponding eigenvalue. The
equation is solved subjected to the homogeneous boundary condition at x =
x1,2 in the form of pdfmdx + α1,2fm = 0. p , q and the weight function w are
assumed to be piecewise continuous functions of x in the solution domain. The
orthogonality relation is derived in a method like as the 2D vector eigenfunc-
tions in (4.16) where the integration is performed with respect to the weight
factor
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(λm − λn)
x2ˆ
x1

w fm f∗n dx = 0 m 6= n. (6.2)

By this eigenmode computation, the completeness relation is read as

δ(x− x′)
w(x′) =

∑
m

fm(x) f∗m(x), x1 <
x
x′
< x2, (6.3)

therefore, the Green’s function of this equation can be decomposed based on
the eigenfunctions with

g(x, x′;λ) = −
∑
m

fm(x) f∗m(x′)
λm − λ

, (6.4)

which is concluded from the Cauchy’s theorem

δ(x− x′)
w(x′) = − 1

2πj

˛
c

g(x, x′;λ)dλ. (6.5)

The assumptions above are that the eigenvalue spectrum is simple and dis-
crete. As it is inferred from (6.4), the poles of the Green’s function are the
discrete eigenvalues of the Sturm-Liouville problem (6.1).

6.1. Semi-infinite solution domain
As the interval of (6.1) becomes semi-infinite or infinite, the eigenvalues of
the Sturm-Liouville are no longer only discrete values. These Sturm-Liouville
problems of type 3 [Dudley, 1994] are called open boundary problems. In this
case the delta representation (6.3) is written based on the both discrete and
continuous spectrum eigenfunctions as

δ(x− x′)
w(x′) =

∑
m

fm(x) f∗m(x′) +
+∞ˆ

−∞

fν(x, λν)f∗ν (x′, λν)dν. (6.6)

To illustrate the application of this method, the simplest open boundary
problem is a homogeneous dielectric slab waveguide, Fig. 6.1. To obtain the
eigenmodes for reconstructing the Green’s function in this structure, the best

60



choice for a complete basis is a set of modes transverse to z namely TEz and
TM z modes. This presentation results in two alternatives for dyadic Green’s
function [Michalski and Zheng, 1990]. The goal in this thesis is not to formulate
the Green’s function nevertheless the knowledge of the singularities needs the
derivation methods of Green’s function. The most common form of the dyadic
Green’s function for the electric potential is

G(r, r′) =

Gxx 0 0
0 Gyy 0
Gzx Gzy Gzz

 (6.7)

z

y
ε1

ε0

0

d

Figure 6.1.: A dielectric slab waveguide in an infinite background.

Every component of the dyadic Green’s function (6.7) is obtained by the
assumption of the free space delta representation based on the TE or TM
scalar eigenfunctions [Felsen and Marcuvitz, 1994]

Φi(ρ) = 1
2π e−j(kxx+kyy), −∞ < kx <∞, −∞ < ky <∞;

k2
ti = k2

x + k2
y.

(6.8)

where kti is the transverse wavenumber. The delta representation in two di-
mensions is therefore as

δ(ρ− ρ′) =
∑
i

Φi(ρ)Φ∗i (ρ′) = 1
4π2

+∞ˆ

−∞

dkx

+∞ˆ

−∞

dkye−j(kxx+kyy)e+j(kxx′+kyy′),

−∞ <
x
x′
<∞, −∞ <

y
y′
<∞.

(6.9)

These scalar free space eigenfunction then are used in the multilayer struc-
tures to compute for the Green’s function by applying appropriate boundary
conditions.
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6.2. Green’s function of layered media
Consider a layered medium as Fig. 6.2 in which every layer is a homogeneous
dielectric medium. The traveling waves (eigenfunctions) are considered as plane
waves as it was explained in the previous section. By this assumption it is
possible to utilize the transmission line model for every layer

ρ
z

z=di-1

ai-1

ai
-

ai
+

ai+1
bi+1

bi
+

bi
-

bi-1

z=di

z=z'

z=di+1

z=di+2

layer i-1

layer i

layer i+1

Figure 6.2.: A multilayer dielectric medium in an infinite background.

− d

dz
U i(z) = jkziZiIi(z), (6.10)

− d

dz
Ii(z) = jkziYiU i(z), (6.11)

where Zi = 1/Yi and kzi are respectively the wave impedance and the wavenum-
ber in layer i, U i is equivalent to the electric field amplitude and Ii is equivalent
to the magnetic field amplitude. By considering the electric or magnetic source
at z = z′ the dyadic Green’s function can be obtained. The waves in layered
media are considered as plane waves. Therefore, the general response for the
electric and magnetic fields can be obtained as the superposition of incoming
and outgoing waves in every layer

U i(z) = Aie−jkzi −Bie+jkzi , (6.12)
Ii(z) = YiAie−jkzi + YiBie+jkzi . (6.13)

Applying the continuity of the fields at the boundaries of the layers results
in the Green’s function for layered medium. However these Green’s functions
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depend on the orientation of the source. For vertical and horizontal electric
and magnetic dipoles, the complete Green’s functions can be found in [Dural
and Aksun, 1995]. For example the vector electric potential of a horizontal
electric dipole at the same layer of the source is in the form of

ĜAxx = µi
2jkzi

[e−jkzi|z| +Aehejkziz + Cehe−jkziz]. (6.14)

Aeh and Ceh are combination of reflection and transmission coefficients from
layers above and below the source layer. For the source and observation points
in different layers, the relation between the field amplitudes in two adjacent
layers is obtained as

a−j = a−j+1
tj+1,je−j(kzj+1−kzj )(h+z−m+1)

1− rj,j+1Rj,j−1e−jkzj2dj , (6.15)

and

a+
j = a+

j−1
tj−1,je−j(kzj−1−kzj )(zm−1+dj−h)

1− rj,j−1Rj,j+1e−jkzj2dj , (6.16)

where tj+1,j is the Fresnel’s transmission coefficient of the plane wave passing
from the layer j + 1 to layer j and rj,j+1 is the Fresnel’s reflection coefficient
of the plane wave from layer the j + 1 to layer j and Rj,j+1 is the generalized
reflection coefficient at the interface of the layers j and j+1. zm is the distance
between the source layer i and layer j with m = i− j. Therefore, starting from
the source layer, the field expression for other layers can be found.
The reflection coefficient given in (6.15) and (6.16) and the Green’s function

(6.14) are all in the spectral domain. From (6.9), the procedure of converting
the spectral domain to time domain needs the integration over real wavenum-
bers which is called Sommerfeld integration path. The important point in our
application to compute the dispersion diagram, is computing for the singular-
ities of the Green’s function. From (6.14), it can be concluded, for a general
stratified layered medium, generalized reflection and transmission coefficients
have the same poles of the Green’s function. On the other hand, from the
Sturm-Liouville equations, they are the same as the desired eigenvalues. In the
next section the reflection and transmission coefficients for a slab waveguide
and corresponding eigenvalues are studied.
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6.3. Homogeneous slab waveguide
The reflection and transmission coefficients from a slab waveguide, Fig. 6.1,
can be written in the form of

R = r(1− e−2jkz1d)

1− r2e−2jkz1d
, (6.17)

T = (1− r2)e−2jkz1d

1− r2e−2jkz1d
, (6.18)

where for TM modes r = kz1/εr−kz0
kz1/εr+kz0

. kz1 and kz0 are the wavenumbers in the z

direction inside the slab and in free space. For TE modes r = kz1/µr−kz0
kz1/µr+kz0

. It can
be seen that the denominators of the generalized reflection and transmission
coefficients in a slab waveguide are the same. This denominator is known as
the characteristic function of the slab. Therefore, the poles of the reflection
coefficient can be computed as discrete values from the following equation for
TM modes

kz1/εr tan(kz1d/2) = kz0 , (6.19)
k2
y + k2

z1 = ω2εrε0µ0, (6.20)
k2
y − k2

z0 = ω2ε0µ0. (6.21)

6.3.1. Surface waves in slab waveguide

Solving equations (6.19)-(6.21) for real wavenumbers will result in the tangen-
tial wavenumber ky for every given frequency. To solve these coupled nonlinear
equations, the Newton-Raphson method can be employed. The other schematic
method is observing the intersection of (6.19) with a curve resulted from sub-
stituting (6.20) into (6.21) as shown in Fig. 6.3. The circles are foot prints of
iso-frequency equations yielded by combining (6.20) and (6.21).

For every frequency, as is shown, there is at least one response for positive
kz0 . These discrete modes are called proper modes since the positive kz0 is
equivalent to the decaying wave in free space. The response for kz0 < 0 is
called improper where the resulting mode is growing in free space.
The dispersion curves for sweeping the frequency for TM and TE modes

are depicted in Fig. 6.4. These discrete modes are called surface wave modes,
since they are confined into the slab thickness. The tangential wavenumber ky
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Figure 6.3.: Intersection of tangent and iso-frequency circles for a slab waveguide with
d= 3.5 mm and εr=4.
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Figure 6.4.: Dispersion diagrams for a slab waveguide with d= 7 mm and εr=10.5.
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for these modes is always greater than the free space wavenumber k0 therefore,
the dispersion curves only exist after the light line in the dispersion diagram.

6.3.2. Leaky waves in slab waveguide
Solving the coupled equations (6.19)-(6.21) for complex values of wavenumbers
results into another interesting set of modes known as leaky modes. As can
be observed from Fig. 6.3, there exist frequencies for modes higher than TM0
where the circles are becoming tangential to the tangent curves. These fre-
quencies however exist at the lower plane of kz0. By reducing the frequency
from this point, the complex wavenumbers are appeared in the solution of the
coupled equation. Therefore, to solve the coupled characteristics equations by
the Newton-Raphson method, the initial guess is the point where two curves
are tangential. This point is equivalent to the minimum of the improper mode
curve in the dispersion diagram, Fig. 6.4. It can be inferred from Fig. 6.4,
TM0 and TE1 modes don’t have any minimum, therefore they will not have
any complex eigenvalue. In Fig. 6.5 the dispersion diagram of complex modes
are computed for TM2 mode.
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Figure 6.5.: Dispersion diagrams for complex TM2 mode in a slab waveguide with
d= 7 mm and εr=10.5.

The response is in the form of ky = β − jα where β/k0 = 1.4 at 8.6 Ghz
as the initial guess which corresponds to the minimum of the TM2 dispersion
curve.
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7. Open structure analysis

7.1. Excitation of eigenmodes
The method of external excitation of eigenvalues has been proposed in [Reut-
skiy, 2010] and [Reutskiy, 2008]. This method solves the eigenporblem of a
generalized Sturm-Liouville equation by applying an external excitation and
maximizing the norm of the mean value of the response with respect to the
eigenvalues. The particular property of these methods is that they do not
need to solve the eigenproblem algebraically but seeking among the repeated
solution of the excitation problem. In analogy with resonators, the method of
internal excitation has been employed to look for eigenvalues of periodic unit
cells in closed and open structures in [Eibert et al., 2012].
The internal excitation method has been extensively utilized in cavity res-

onators [Matthaei et al., 1963]. In these applications, to excite a distinct mode,
depending on the field distribution of the desired mode, an appropriate probe
is employed to couple the electromagnetic energy to the cavity. Normally two
types of probes are utilized in microwave engineering applications known as
electric probe and magnetic probe. The electric probe is positioned at the lo-
cations where the mode has electric field parallel to the probe. The magnetic
probes, also known as loop currents , are positioned at the locations where the
magnetic field of the desired mode is perpendicular to the surface of the loop.
Aperture coupling is another type of excitation where from the equivalence
theorem, the magnetic current over the open aperture is responsible for energy
coupling between the two sides of the aperture. Normally, the coupling type is
decided based on the strongest field component. Besides the internal excitation,
external excitation is also performed based on the coupling of modes.
In this section the introduced method based on the scattering of electro-

magnetic waves is implemented in order to investigate the behavior of periodic
metamaterials. This method is categorized as the method of external excita-
tion. The goal is to compute the eigenvalues of the unit cell by excitation.
As it was shown in previous chapter, the eigenmodes of the layered media

are in the form of plane waves. Moreover, metamaterial periodic stratified
structures are to be investigated in this thesis. Approximation of these material
by layered media allows us to consider the excitation of eigenmodes as plane
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waves.

7.2. Plane wave excitation of layered media

As an external excitation for layered media, plane waves can be the best can-
didates. This enables the simpler wave decomposition in both free space and
layered medium. Especially, considering the Berenger (PML) modes to account
for the open boundary approximating the continuous spectrum is not needed
anymore. As it was shown in section 6.3, modes in homogeneous layered media
are real surface wave or complex leaky modes. The real surface wave modes
are confined into the layers of the medium.

As it was shown in Fig. 6.4, surface wave modes have tangential wavenum-
bers as kt > k0. The corresponding plane waves to be coupled to these surface
wave modes have the transverse wavenumbers as kz = ±j

√
k2
t − k2

0. The sign of
imaginary wavenumber indicates an evanescent or growing plane wave which
results in proper or improper surface wave mode. With respect to the time
dependence of ejωt and spatial dependence of e−jk·r, the minus sign will in-
dicate the proper modes and the plus sign will indicate the improper modes.
Therefore, with these definitions, when =(kz) < 0 the modes are proper and
when =(kz) > 0 modes are improper.

Consider the TM0 mode in a slab waveguide with thickness 7 mm and εr =
10. The reflection and transmission coefficients of the TM0 mode have been
swept for evanescent waves at 7 GHz in Fig. 7.1. As it is observed, at kx/k0 =
1.68 there is a singularity in both reflection and transmission coefficients. This
value is satisfying the dispersion characteristic of (6.19)-(6.21) which indicates
the excitation of TM0 surface wave mode. It should be noted that a slab
waveguide is a symmetric structure in both x and y direction henceforth we
have considered the kt = kx and ky = 0.

The field distribution inside and outside of the slab at 7 GHz and kx/k0 =
1.68 are shown in Fig. 7.2. The present field components, as it is seen, are Ez,
Ex and Hy which confirm the excitation of TM0 mode. From the distribution
of Hy it is clear that the field has a maximum at the center of the slab.

The field components of the TM mode are related to each other through the
following relations
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Figure 7.1.: The reflection and transmission coefficients of the evanescent plane wave
incident onto a slab waveguide with d= 7 mm and εr=10.
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Figure 7.2.: Distribution of electric and magnetic fields of TM0 mode inside and out-
side of the slab waveguide at 7 GHz and kx/k0=1.68, h = 7 mm, εr =
10.
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Ez = −kx
ωε

∂ψ

∂z
(7.1)

Ex = 1
jωε(k2 − k2

x)ψ (7.2)

Hy = −∂ψ
∂z

(7.3)

where for TM0 mode ψ = A cos(
√
ω2µ0ε0εr − k2

xz)e−jkxx inside the slab and
ψ = Be−

√
k2
x−ω2µ0ε0|z|e−jkxx outside the slab. The above equations also confirm

the field distribution of Fig. 7.2. The interesting point in the field distribution
of this surface wave mode is the electric field intensity has two maxima outside
the slab and after these maxima the field is decaying very fast. In the next
sections it is shown that this behavior is adequate for near field imaging.

7.2.1. Excitation of complex leaky modes in slab waveguide

To excite the leaky modes, the required wavenumbers are complex. In terms of
plane waves, these waves are inhomogeneous plane waves which decay or grow
while propagating. As it was mentioned in section 6.3, the dispersion diagram
of the complex mode is starting from the minimum of the improper surface
wave mode curve. Thus, the TM0 mode has no complex part. Therefore the
complex mode for TM2 is computed.
For a slab of 7 mm thichness and εr = 10, the minimum of TM2 dispersion

curve is at 8.9 GHz and kx
k0

= 1.48. Consequently, for a frequency less than 8.9
GHz the complex mode can be excited.
In the computation of the transmission and reflection coefficients by FEBI

method, since the slab waveguide is a homogeneous structure, the scattered
field from the unit cell only contains the fundamental Floquet mode and all
higher order modes have the coefficient of zero. Henceforth, the scattered field
in the upper side of the slab, where the incident field is illuminating the slab,
will represent the reflection coefficient and at the bottom it is the same as
transmission coefficient.
In Fig. 7.3, the transmission coefficient computed by FEBI method has been

swept at 8.8 GHz for wavenumbers kxreal
k0
∈ [1.44, 1.48] and kximag

k0
∈ [−0.2, 0.2].

As it is observed, there exist two singularities in the reflection coefficient. These
two singular values are a complex conjugate pair. This behavior can be ex-
plained by complex function analysis. It should be noted that these singular
values are observed in the reflection coefficient also.
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Figure 7.3.: Transmission coefficient of the inhomogeneous plane wave incident onto
a slab waveguide with d= 7 mm and εr=10 at 8.8 GHz.

As it was discussed in section 4.3 for closed waveguides, in every eigenvalue
equation in the form of H(kt, ω) = 0, the general response is in the form of
complex pair of (kt, ω) where each of variables can be complex [Hanson and
Yakovlev, 1998]. In this thesis, the frequency is considered as real values but the
wavenumber kt is allowed to be complex. By this assumption, if kt fulfills the
dispersion equation, then −kt, k∗t and −k∗t also meet the same equation. The
accuracy in the computation of the scattered field in FEBI method, strongly
depend on the number of discretizations. The slight difference between the real
part of the two conjugate pairs in Fig. 7.3 is due to this discretization.
By sweeping the frequency for proper and improper real modes as well as

complex modes, the dispersion diagram of the TM2 mode has been calculated as
Fig. 7.4. The results from FEBI are compared with the results directly obtained
from the solution of dispersion equations (6.19)-(6.21) by Newton-Raphson
(NR) method. As it is observed, the theoretical solution of the dispersion
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Figure 7.4.: Dispersion diagram of the improper leaky wave TM2 and proper sur-
face wave TM0 and TM2 modes for a slab waveguide with d= 7 mm
and εr=10 computed by finite element boundary integral (FEBI) and
Newton-Raphson (NR) methods.

equation is exactly the same as that one obtained by FEBI method.

7.3. Scattering from one sided open structures :
absorption and minimum scattering, cloaking

Most of the guided wave open structures in microwave engineering are real-
ized by microstrip technology which has the advantage of low weight and easy
fabrication. The dielectric layer in these structures is terminated by a ground
plane. Evaluating the Green’s function in the spatial domain result in the
Sommerfeld integrals which are time consuming. Therefore, several methods
to approximate the Green’s function have been introduced. Among them is the
discrete complex image method [Fang et al., 1988, Ling and Jin, 2000] which
uses the approximation of the kernel of the Sommerfeld type integrals by a
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Figure 7.5.: Dispersion diagram of the surface wave modes for a grounded slab waveg-
uide with d = 7 mm and εr = 10.5 computed by Newton-Raphson (NR)
method.

series of exponential functions with different complex coefficients. Physically,
each term of the series represents a discrete image with complex amplitude and
location. The moment method for the analysis of the structures is utilizing then
the approximated Green’s function to accelerate the computations.
In this section, the scattering of inhomogeneous plane wave from grounded

slab wavegudies is investigated. Consider a grounded slab waveguide with
thickness d = 7 mm and εr = 10.5. The dispersion diagram of the proper and
improper surface wave modes is computed by the Newton-Raphson solution of
the dispersion equation for the grounded slab shown in Fig. 7.5.
Comparing the dispersion diagrams in Fig.s 6.3 and 7.5, the cutoff frequen-

cies of the grounded slab are half of the slab waveguide’s cutoffs which is due to
the symmetric field distribution in the z direction. To excite the TM0 mode like
the procedure taken in previous section, the evanescent wave is employed. An
evanescent TM plane wave has been swept over the real tangential wavenum-
bers as kt = ky and kx = 0 in Fig. 7.6. The singularity is observed at ky

k0
= 2.52

and f = 5 GHz. The field distribution of the excited TM0 mode is shown in
Fig. 7.7.
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Figure 7.6.: Reflection coefficient of the incident evanescent plane wave from a
grounded slab waveguide with d = 7 mm and εr = 10.5 computed by
FEBI method.

As it was already explained, TM0 mode has no improper part. Also, the
dispersion curve of the improper TE1 mode has no minimum. Therefore, the
first mode which has the complex leaky part is TM2 mode. The minimum of
TM2 mode in this slab is occurring at 4.27 GHz. To show the complex behavior
of the leaky mode, the reflection coefficient of incident inhomogeneous plane
wave is calculated by the FEBI method for the kyreal

k0
∈ [−1.47,−1.45] and

kyimag
k0

∈ [−0.2, 0.2] at 4.26 GHz. As it is observed in Fig. 7.8, the detected
singular values are exactly complex conjugate of each other.
An interesting behavior of these grounded structures is the zeros observed

in the reflection coefficient. The reflection coefficient of the plane wave from a
grounded slab with thickness d and relative permittivity of εr is

R = 1 + re2jkz1d

1 + re−2jkz1d
(7.4)

where for TM incident wave r = kz1/εr−kz0
kz1/εr+kz0

with kz1 the wavenumber inside the
slab and kz0 the wavenumber in free space. Simplifying both the numerator
and denominator of the reflection coefficient respectively result in
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Figure 7.7.: Distribution of electric and magnetic fields of TM0 mode inside and out-
side of the grounded slab waveguide at 5 GHz and ky/k0=2.52, h = 7
mm, εr = 10.5.

kz1
εr

tan(kz1d)− kz0, (7.5)

kz1
εr

tan(kz1d) + kz0. (7.6)

With a simple mathematical manipulation it can be perceived that the dis-
persion equation of numerator and denominator of the reflection coefficient
have the same complex responses. However, since in the reflection coefficient
the poles result in the infinity in the scattered field, zeros of the reflection are
not observable. To make the zeros observable, a slight loss is added to the
permittivity of the slab waveguide. The loss will degrade the location of the
poles and zeros in different directions, since the equations for poles and zeros
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Figure 7.8.: Reflection coefficient of the incident inhomogeneous plane wave from a
grounded slab waveguide with d = 7 mm and εr = 10.5 computed by
FEBI method.

are not the same. The reflection coefficient of the inhomogeneous plane wave
from a lossy grounded slab waveguide with εr = 10.5 − j0.03126 at 3.85 GHz
is depicted in Fig. 7.9. As it is shown, rather than the poles in Fig. 7.9a, there
exist two zeros where for better appearance of zeros the inverse of the reflection
coefficient is drawn in Fig. 7.9b.
The effect of the zeros in the fast wave region of the dispersion diagram is

more interesting. Recently, scattering from random rough surfaces is becoming
more popular. It is often assumed that the incident field is a homogeneous
plane wave for the simplification of the analysis. Especially, for controlling
the propagation and transmission of the wave in a spectrum and demonstrate
the potential to make an object invisible by periodic coverings, the analysis
of the scattering of plane waves from the periodic media is helpful. However,
investigating the accurate behavior of the scatterers in the complete spectrum
has not been performed until now. In the following we try to demonstrate the
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Figure 7.9.: Poles and zeros of the reflection coefficient from a lossy grounded
slab waveguide with d = 7 mm and εr = 10.5 − j0.03126 at 3.85
GHz computed by FEBI method

reason for complete absorption and cloaking by spatial modes decomposition
of the scattered wave.

7.4. Riemann sheet for right handed and left handed
modes

In the slow wave region, because the real part of the swept tangential wavenum-
ber is greater than the free space wavenumber, the propagating wave is always
confined to the dielectric slab. Therefore, there is no constraint on the scat-
tered field. However, moving to the fast wave region, <(kt) < k0, the physical
constraint on the scattered field is read as [Felsen and Marcuvitz, 1994]

=(kz) < 0, (7.7)

which is translated to the evanescent waves when z → +∞. These modes are
called proper modes. The definition of the proper and improper modes for a
stratified medium extended in x− y plane only depends on the wavenumber in
the z direction. The branch cuts on the Riemann sheet in a dielectric slab are
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emanating from the branch points at ky = k0 by assuming that kt = ky and
kx = 0.
For a complex wavenumber ky = β − jα, on the top Riemann sheet where
=(kz) < 0, the right handed modes are defined as the spectrum where <(ky) > 0
and the left handed modes are the ones with <(ky) < 0. The relation k2

y +k2
z =

k2
0 between the tangential and normal complex wavenumbers outside the slab

waveguide can be written as

k2
0 − β2 + α2 = k2

z0r − k2
z0i, (7.8)

αβ = kz0rkz0i, (7.9)

where kz0 = kz0r + jkz0i is the wavenumber normal to the slab surface in the
free space. By this assumption the definition of proper and improper modes on
the right handed and left handed parts of the top Riemann sheet is depicted
in Fig. 7.10
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Figure 7.10.: The top Riemann sheet for complex wavenumbers.

With respect to the (7.9), the improper wavenumbers are in the fast wave
region where the =(kz0) < 0 and <(kz0) < 0. As it is observed, this condition
is met both for right handed and left handed wave propagation. In commercial
softwares, the condition on tangential wavenumbers is considered as =(ky) < 0
or equivalently α > 0. This guarantees the evanescent waves propagating in
the y direction along the waveguide while the right handed modes in the fast
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wave region of this condition become improper and will be removed from the
solution of a system equation.
By this explanation, from the reflection coefficient of the grounded slab

waveguide, the dispersion diagram of complex leaky and surface wave modes
of TM2 mode as well as TM0 mode are computed as shown in Fig. 7.11.

0 50 100 150 200 250 300

4

5

6

7

8

9

10

β [1/m], α [Np/m]

f
[G

H
z]

 

 β, NR

β, NR

α, NR

β, FEBI

α, FEBI

β, FEBI

β, FEBI

light line

β, NR

β

TM0, proper
surface mode

TM2, proper
surface mode

α

TM2 improper
leaky mode TM2, improper

leaky mode

Figure 7.11.: Dispersion diagram of grounded slab with εr = 10.5 and d = 7 mm.

As it was explained for grounded slab waveguide in the slow wave region, in
the fast wave region also there exist zeros at the same location of the poles. By
removing the improper poles by applying the radiation condition on wavenum-
bers in fast wave region, in the location of the poles, zeros can be observable.
These complex zeros, especially when there is only the fundamental Floquet
mode existing in the field expansion, result in the zero scattered field from the
stratified scatterer illuminated by the plane wave.
Reducing the scattered field from scatterers by covering them with artificial

engineered materials is among the interests of the wave engineering. The proce-
dure of concealing of scatterers from the external sources is known as cloaking.
To our knowledge, until now all the attempts to explain this behavior have
been on the experimental observation and some few researchers have explored
it theoretically by introducing the concept of transmission eigenvalue that is
not covered by the standard theory of eigenvalue problems for elliptic operators
[Cakoni and Haddar, 2012].
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7.5. Periodic open boundary structures

To realize the broadside radiation by wavegudies, the slotted wavegudies are
introducing a new alternative to microstrip structures. Especially by intro-
ducing the slots to hollow wavegudies, a series capacitance is produced which
together with the right handed circuit model of a hollow waveguide will result
in a composite right/left hand, CRLH, behavior. The CRLH transmission lines
enable the radiation from backfire to the endfire direction continuously.

7.5.1. Interdigital leaky wave antenna

A unit cell has been designed to provide the continuous beam steering for a
leaky wave antenna in [Weitsch and Eibert, 2010]. This unit cell is balanced at
3.8 GHz and has a guided wave band from 3 to 6 GHz in the fast wave region.
In [Weitsch and Eibert, 2010] the unit cell has been analyzed by scattering
matrix approach (SMA) to compute for the eigenvalues. In this section the
unit cell is investigated by scattering of plane waves by FEBI method.

h

l

w

x

y

z

Figure 7.12.: Unit cell of an interdigital leaky wave antenna, h =1.524 mm, l = 20
mm, w = 5.9 mm, rvia = 0.25 mm, slot width = 0.2 mm and εr = 3.38.
The unit cell is periodic in y direction and has open boundary in two
other directions.

Since the left handed part of the dispersion diagram is starting at 3 GHz
in the fast wave region, the frequencies below the 3 GHz are in the slow wave
region. As it was explained is section 5.5, the periodicity is assigned by the
phase shift on the periodic side walls. This condition in free space is employed
by Floquet mode decomposition of the scattered field included in the periodic
Green’s function besides the periodic boundary condition in the finite element
part. Since the incident plane wave is normalized and has the amplitude of
unity, the fundamental scattered Floquet mode is representing the reflection
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Figure 7.13.: Reflection coefficient of the fundamental Floquet mode from the leaky
wave antenna unit cell at 2.96 GHz.

coefficient. By this assumptions, the reflection coefficient from the unit cell of
the leaky wave antenna has been swept on complex wavenumbers in the slow
wave region at 2.96 GHz, shown in Fig. 7.13. The periodicity of the unit cell
is in the y direction and the excited plane wave is considered a TM wave with
the field components of Ez, Ey and Hx. Therefore, the excited wavenumebr
has ky and kz components such that E · k = 0.
As it is observed from Fig. 7.13, the scattered field has two singularities

which make a complex conjugate pair. Since the excited mode is in the slow
wave region, both poles are observable.
To explore the singularities in the fast wave region, the swept reflection

coefficient over complex wavenumbers at 3.4 GHz is shown in the Fig. 7.14.
As it is depicted, only one singularity has been detected. At the location of
the conjugate pair a zero is observed which is compatible to our prediction for
grounded slab waveguides. As it was explained in section 7.4, for left handed
modes, the proper wavenumbers are the one with =(ky) < 0. Consequently,
the improper singular value with =(ky) > 0 is removed from the response and
instead the corresponding zero is observed. This zero can be moved by adding
the loss or chirality over the complex wavenumber plane. This make the zero to
be observable on pure real wavenumber axis. For lossy structures it might result
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Figure 7.14.: Reflection coefficient of the fundamental Floquet mode from the leaky
wave antenna unit cell at 3.4 GHz.

in the complete absorption though making the structure a chiral structure, the
scattered field will have a different polarization than the incident field which
does not mean the scattering reduction or complete absorption.
The dispersion diagram of the CRLH leaky wave antenna is computed for

the fast wave region as shown in Fig. 7.15. The response from computation of
singularities of reflection coefficient is referred to as the reflection pole method
(RPM). As the reference for comparison, the results from scattering matrix
approach are considered. The result of the scattering matrix approach in this
figure is obtained from the computation of the eigenvalues of the fundamental
mode by considering four higher order modes to compute the transmission
matrix. The difficulty in the computation of the dispersion diagram by the
SMA method is the reference for determining the transition frequency. In
RPM method it is automatically determined by the incident wavenumber in
the normal incidence.
The imaginary part of the dispersion diagram shown in Fig. 7.16 has been

computed by the proposed reflection pole method compared by the matrix
pencil method [Hua and Sarkar, 1989] and measurement results.
To compute the dispersion diagram faster, the search for the singularities

is performed by a simplex optimization method known as Nelder-Mead which
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Figure 7.15.: Dispersion diagram of leaky wave antenna unit cell obtained by the
FEBI analysis compared with the SMA method.
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Figure 7.16.: Imaginary part of the dispersion diagram of leaky wave antenna unit
cell obtained by the FEBI analysis compared with the measurement and
matrix pencil approach.

searches for a local minimum of a function of several variables, see appendix
A.1.
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From the results of this section it can be concluded that the approximation of
the periodic metamaterial stratified structures by homogeneous slab waveguide
is possible for frequencies where only fundamental Floquet mode is propagating
and higher order Floquet modes are evanescent. In the following some other
properties of scattering from periodic structures is investigated.

7.6. Artificial ground planes

Electromagnetic band gap structures (EBG) are introducing stop bands to sup-
press the surface wave modes and enhance the performance of printed anten-
nas and circuits. Among the EBG structures, artificial magnetic conductors
(AMCs) are considered as the ground planes which reflect the incident field
with zero reflection phase [Sievenpiper et al., 1999]. Due to the losses, it has
been asserted that it is not possible to achieve the zero degree phase change,
therefore, the frequency band in which the phase change is between −90◦ and
+90◦ is considered as the band that AMC is realized [Maci et al., 2005]. In this
section, the behavior of the phase and amplitude of the reflection coefficient
are explored over the complex wavenumbers. Since AMC structures are among
the grounded structures, only the reflection coefficient from these structures
would suffice to be analyzed.
The mushroom structure Fig. 7.17, is the basic structure to realize the CRLH

line. This structure is an abstraction of the corrugated surface, in which
the corrugation is folded up and distributed in two dimensions. This sur-
face impedance is modeled as parallel resonant circuit, as shown in Fig. 7.18.
In the slow wave region of the open structures, they have very low leakage
rate therefore, the eigenvalues of a one unit cell resonating at the wavenumbers
greater than k0 are nearly real and the singularities of the reflection coefficient
can be detect by purely evanescent plane wave excitations.

The reflection coefficient of the 0th order Floquet mode from the AMC struc-
ture at 11.2 GHz is shown in the slow wave region for wavenumbers larger than
k0 in Fig. 7.19. Since the leakage is very low, two complex conjugate reflec-
tion peaks are very close to each other and the eigenvalue can be accurately
detected by just sweeping the real wavenumber. As it is inferred from the re-
flection coefficient, the corresponding eigenvalue is around ky = 2.464k0. This
AMC structure is symmetric in two dimensions and the excitation is a TM
plane wave, then the periodic boundary condition is considered in y direc-
tion by sweeping ky and the kx = 0 is considered. The electric and magnetic
field distributions of the excited mode, which is a left-handed TM0 mode, are
depicted in Fig. 7.20 in the yz-cut plane. As it is apparent from the field dis-
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Figure 7.17.: The mushroom structure to realize an AMC ground plane, a = 3 mm,
b = 3.5 mm, h = 1 mm, rvia = 0.125 mm and εr = 2.2.

L

C
+ -

Figure 7.18.: The distributed circuit model for mushroom structure in 1D.

tribution, the circuit model introduced in Fig. 7.18 is only valid for the TM0
mode.
Besides the surface waves in AMC structures which might affect the perfor-

mance of the employing structure, the behavior of the AMC’s has not been com-
pletely explored in the fast wave region until now. In [Sievenpiper et al., 1999],
the fast wave region of the dispersion diagram is named as high impedance
region where it is considered as band gap also. However, the reason for this
behavior is not explained. In full wave simulators like as Ansoft HFSS [HFSS,
2014] and CST MWS [CST, 2014], it is possible to approximately compute the
dispersion diagram in these regions by Eigenmode solution of the unit cell, yet
the complete behavior of these structures has not been studied.
To explore the singularities in the fast wave region, first we find a surface

wave mode higher than the TM0 mode. The computation of the dispersion
diagram is started from the slow wave region since only pure evanescent waves
are required to compute for the singularities. By moving towards the fast
wave region, due to leakage, the eigenvalues gradually become complex. By

85



2.43 2.44 2.45 2.46 2.47 2.48
0

50

100

150

200

ky/k0

|R
e
fl
e
c
t
io
n
c
o
e
ffi
c
ie
n
t
|

Figure 7.19.: The reflection coefficient of the fundamental Floquet mode from the
AMC structure excited by evanescent waves.

(a) Ey (b) Hx

Figure 7.20.: Field distribution of the excited TM0 mode of the AMC structure by
illuminating evanescent plane waves in the slow wave region.
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Figure 7.21.: The dispersion diagram of the mushroom structure in Fig. 7.17.

this method it will be easier to compute for the complex dispersion diagram.
The dispersion diagram of the mushroom structure has been computed by the
introduced method as shown in Fig. 7.21. To compute the dispersion diagram
by CST Eigenmode solution, since CST Eigenmode solution does not support
the open boundary, the open boundary at the top is approximated by placing
a PEC boundary condition at a distance away from the top of the unit cell to
not affect the field distribution and eigenvalues. Usually, a distance of quarter
wavelength would suffice.

The mushroom structures, like other grounded periodic structures, have com-
plex eigenvalues in the fast wave region. Therefore, these complex eigenvalues
should be in conjugate pair. The reflection coefficient of inhomogeneous plane
waves from the unit cell of the mushroom has been computed around 16 GHz in
Fig. 7.22. Since the mode is behaving as a right handed mode, (krealkimag) < 0.
Since the kimag is always considered as a negative value, the real part of the
wavenumber for the excited right handed mode is greater than zero. By this
observation, it is clear that the definition of the high impedance region and
band gap is not complete and the complex eigenvalues and scattering behavior
of the AMC or EBG structures have to be studied more carefully. On the other
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Figure 7.22.: Observation of the pole and zero from the scattered field in the fast
wave region for incident wavenumber of ky/k0 = 0.75.
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hand, computing the S-parameters, in frequencies where the mode is in the fast
wave region, in these periodic structures, will result in very low S21 as well as
S11 which is due to the highly radiating nature of the modes in fast wave region.
Therefore, this part of the dispersion diagram is not working as a band gap
and can affect he radiation performance of antennas strongly when they are
utilized as the artificial grounds. Comparing this dispersion diagram with the
one obtained by SMA method, Fig. 4.13, the complex mode resulted from the
coupling of the left handed mode with the background mode is removed which
is due to the open boundary modeling using the boundary integral method.

7.7. Simulation speed of the FEBI method

To estimate the required time for computing the eigenvalues in every iteration
by FEBI method, the number of discretizations for some unit cells and the
simulation time for the FEBI method are demonstrated in Tab. 7.1. The com-
putations have been performed on a computer with the system configuration
of Intel Core i5 CPU with 3:30 GHz and 8:0 GB RAM.

Simulation speed of FEBI method
Unit cell configuration Number of tetrahedra Simulation time
Grounded slab waveg-
uide

8508 8 sec

Interdigital leaky wave
antenna

175517 3.4 min

AMC mushroom 14775 7 sec

Table 7.1.: Simulation time of the FEBI method required for one plane wave
excitation.

The speed of the convergence depends on the initial guess and the parameters
of the Nelder-Mead acceleration method. For the typical values used in this
thesis, usually twenty iterations are enough to have a relative error being less
than 10−5.

7.8. Double sided radiating leaky wave antenna

The slab waveguides in free space are media with the possibility to carry the
surface waves. However, adding inhomogeneity to the slabs will result in the
capability of carrying complex modes. Periodic double sided open structures
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are usually employed as superstrate for resonant antennas or lens structures to
concentrate the field intensity in a desired point. To investigate the radiation
and scattering properties of double sided open periodic structures, we have
employed the same procedure for the homogeneous slab waveguides in section
7.2. The periodic unit cell considered is the same as the one in Fig. 7.12 with
inversed one of the unit cells. Therefore, as is shown in Fig. 7.23, the total unit
cell has slots both at the top and bottom, which make it a transparent in some
frequencies and allow the wave to pass through it.

h

2w

y

x z

Figure 7.23.: Unit cell of a double sided open leaky wave antenna, h =1.524 mm,
l = 20 mm, w = 5.9 mm, rvia = 0.25 mm, slot width = 0.2 mm and
εr = 3.38. The unit cell is periodic in y direction and open in other
directions. Along the cell, two interdigital slots one in the top conductor
and one in the bottom conductor exist. At every side, four vias connect
the top and bottom conductors.

The antenna unit cell has a composite right/left handed behavior between 3
and 6 GHz. The transition frequency is at 3.7 GHz. Since the leaky structure
has complex eigenvalues, the excitations are inhomogeneous plane waves. By
computing the singularities of reflection or transmission coefficient, the disper-
sion diagram is computed as in Fig. 7.24. The result from SMA method is
computed for four mode excitation. The slight difference between the results
is mostly due to the number of tetrahedra for discretizing the unit cell.

In the slow wave region, at 3.05 GHz, the transmission coefficient of the
plane wave has been plotted for complex spectrum in Fig. 7.25. Since the
swept wavenumbers are after the light line, both complex conjugate poles are
observable.
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Figure 7.24.: The dispersion diagram of the leaky double sided open structure in
Fig. 7.23.
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Figure 7.25.: The dispersion diagram of the mushroom structure in Fig. 7.17.
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7.8.1. Absorption in double sided open structures

As it was explained, for grounded structures, there is always the point of com-
plete absorption. For two sided open structures, investigation of the zeros of
both the reflection and transmission coefficients are needed to be known.
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Figure 7.26.: The location of poles and zeros in re ection and transmission coefficients
from leaky antenna unit cell at 3.25 GHz.

Consider the numerator of the reflection and transmission coefficients of a
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slab waveguide in Eq.s (6.17) and (6.18)

r(1− e−2jkz1d) reflection, (7.10)
(1− r2)e−2jkz1d transmission. (7.11)

By a careful attention to the reflection numerator, it is observed that that
the zeros of the reflation are at points where kz1d = nπ which means the zeros
are only existing for real value wavenumbers. The transmission coefficient has,
on the other hand, zeros where r2 = 1 which are not coincident with the zeros
of the reflection. Therefore, it cannot be expected to have complete absorption
for lossless non-chiral stratified structures. For periodic structures, we have
computed the reflection and transmission coefficients of the leaky unit cell of
the Fig. 7.23 at frequency 3.25 GHz. To show the zeros of the reflection and
transmission, the inverse of them is also depicted, see Fig. 7.26.
As it is expected the poles of reflection and transmission are at the same

locations. Since the mode is left handed at 3.25 GHz, the proper modes are
the one with kyrealkyimag > 0 and the improper one has been rejected by the
imposed condition on wavenumbers. Instead, the zeros of the reflection and
transmission are observable as shown in Fig.s 7.26d and 7.26c. The zero of
the reflection as it was predicted, is on real wavenumbers, while the zero of
the transmission is located on complex wavenumbers. To make both zeros
coincident and realize the complete absorption there are two methods, adding
the loss or chirality to the structure.

7.9. Near field subwavelength super resolution imaging
The other interesting phenomenon in scattering problems is the construction
of the image of the non radiating sources. In the first chapter of this thesis, the
material properties of the resonant metamaterial particles is investigated. The
resonant particle have the dispersion diagram of Lorentz type [Oughstun and
Cartwright, 2003, Smith et al., 2005], while a group of other metamaterials are
made up of non-resonant unit cells. The dispersion diagram of the non-resonant
unit cells is of the Drude type [Simovski et al., 2012].
To analyze the wire medium, we start with a surface wave 1D periodic struc-

ture of Fig. 7.27. The structure is made up of an array of metallic plates
periodic in y direction with a limited length in z direction and infinite in x
direction. The unit cell is excited by evanescent plane waves for ky/k0 = 3
in Fig. 7.28. As it is considered in this thesis, the unit cell is excited by a
TM plane wave with Ey, Ez and Hx components. The field distribution of the
excited mode inside the considered unit cell is depicted in Fig. 7.29. For the
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Figure 7.27.: An array of metallic plates in free space, unit cell length p = 3 mm, w
= 0.2 mm, h = 10 mm and infinite in x direction.
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Figure 7.28.: The reflection and transmission coefficients of an incident plane wave
with ky/k0 = 3 onto a unit cell of Fig. 7.27.

field distribution it can be seen that the excited mode inside the unit cell can
be as a non-radiating TEM mode. By the method of excitation the dispersion
diagram of the first mode of the unit cell is computed as shown in Fig. 7.30. As
it is observed, at βd = π, the dispersion curve is becoming flat which is equiv-

94



alent to an standing wave resonating in z direction. With respect to the field
distribution, this structure is ideal for near field imaging applications. How-
ever this structure is still 1D and is not the perfect one for near field imaging
application.

The result from FEBI computations is compared with the result computed by
eigenmode solution in CST MWS. Since the eigenmode solution of CST does
not support open boundary conditions, to model the open boundary at the
top and bottom of the unit cell, a perfect electric conductor (PEC) boundary
condition is considered around λ/4 away from the metal. However, this spacing
strongly affects the eigenvalue and the slight difference between the results from
CST and FEBI is because of this distance.

(a) |Ey| V/m (b) |Ez| V/m (c) |Hx| A/m

Figure 7.29.: Distribution of the field in between two metal plates of Fig. 7.27b in
free space at 12.72 GHz and ky/k0=3.

With respect to the field distribution inside the slits, the best excitation
method for this surface wave mode is to put a voltage source in y direction
between two plates. The S-parameters of the resulting band pass in Fig. 7.31
show the first and second surface wave modes excited by discrete ports in CST
MWS for an array of 11 plates. To truncate the length of the plate in x direction
it is enough to set the boundary condition in x direction as perfect magnetic
conductor (PMC). The port impedance for the CST simulation by discrete port
excitation in Fig. 7.31 is considered as 500 Ohm. As it is observed from the
dispersion diagram of Fig. 7.30, the curve is becoming flat around 14.5 GHz
which is close to the resonant frequency of a transmission line of length of 10
mm.
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Figure 7.30.: The dispersion diagram of the first mode of the unit cell in Fig. 7.27b
with w= 0.4 mm and p = 0.6 mm.
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Figure 7.31.: Scattering parameters of periodic arrangement of 11 unit cells of metal-
lic plates excited by discrete ports in CST MWS, w= 0.4 mm, p = 0.6
mm, h = 10 mm.
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7.9.1. Wire medium
To extend the 1D array of metallic structures into 2D and enabling the isotropic
near field imaging, the wire medium [Belov and Simovski, 2006] is a good
candidate. In this purpose, a unit cell is one wire at the center with radius of
1 mm and 15 cm length with period of 1 cm in transverse direction, Fig. 7.32.
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Figure 7.32.: (a) The unit cell of a wire with corresponding boundary conditions with
rwire = 1 mm, length = 15 cm and period = 1 cm at frequency 761 MHz,
(b) Transmission and reflection coefficients of incident inhomogeneous
plane wave for a wire medium unit cell.

The periodic arrangement of the cell creates a slab in free space. This slab
supports surface wave modes and to excite the eigenmode, an evanescent plane
wave with a tangential wavenumber in x direction is considered with kx > k0.
The reflection and transmission coefficients of the zeroth order Floquet mode
are computed and the eigenvalue is derived from the singularities. Transmission
and reflection coefficients of the plane wave impinging on the unit cell at the
frequency 761 MHz are shown in Fig. 7.32b, which confirm the surface wave
mode excitation.
The electric field intensity in one unit cell has been illustrated in Fig. 7.33.

As it is observed, the field intensity has a high value at both ends of the wire
while the excitation is an evanescent wave. The dispersion diagram of the first
two modes in the Γ−X path in the Brillouin zone of the dispersion diagram in
Fig. 7.34 are compared with the result achieved from a CST Microwave Studio
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Eigenmode solution. The slight difference between the FEBI and the CST
results is due to the approximation of the open boundary in CST by the PEC
boundary with a quarter wavelength distance away from the wire ends what
would be justified by the assumption of a bound mode.

(a) |E| V/m (b) |Ex| (c) |Ey| (d) |Ez|

Figure 7.33.: Distribution of electric field (in V/m) in a unit cell of the wire medium
in free space at 761 MHz and kx/k0=2.4.

Every source placed very close to the surface of a slab of wires will excite
evanescent waves as found in the dispersion diagram. These evanescent waves
will be amplified according to their eigenvalues. The best resolution of the
image reconstruction will be achieved at the end of the Brillouin zone in the
dispersion diagram. At this frequency, the wavenumber reaches kxa = π and
the dispersion diagram is becoming flat, so that the group velocity is zero while
the phase velocity is nonzero. Consequently, there is no surface wave mode but
the mode can be considered as a standing wave and the highest resolution is
achieved [Simovski et al., 2005].

7.9.2. Slots loaded by resonators
The resonant particles when placed in an electromagnetic field in appropriate
configuration can be represented as an effective homogeneous medium described
by a single negative material property which is equivalent to a stop band in
the direction of wave propagation or a pass band below the cutoff frequency of
the host waveguide [Hrabar et al., 2005]. In [Malyuskin and Fusco, 2014], the
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Figure 7.34.: Two first surface modes of the wire medium computed by proposed
method and CST Eigenmode solver.

zero of the reflection coefficient of a loaded slot is considered as the reason for
improved imaging capabilities.
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In this subsection, the zeros of the reflection in the fast wave region for a
general form of slots is investigated to show the exact reason of the near field
imaging in slots loaded by resonators. In this regard, we first explore the zeros
of a homogeneous slab waveguide. As it was discussed in (7.11), the zeros
of the reflection coefficient are occurring at the locations of kz1d = π where
transmission becomes unity and reflection is zero.
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Figure 7.35.: Dispersion diagram of surface modes and the location of zero reflection
coefficient in a dielectric slab waveguide with thickness 7 mm and εr=10.

On the other hand, for tangential incidence, kt = k0, the normal wavenumber
inside the slab is kz1 = k0

√
εr − 1 which results in fc = nc

2d
√
εr−1 , c is the velocity

of light in free space. This condition is the same as the cutoff condition of
surface modes in dielectric slab waveguides.
Therefore, the point at which the reflection coefficient becomes zero for tan-

gential incidence is the same as the cutoff frequency of surface modes. It should
be noted, for zero reflection the slab thickness in vertical direction is resonating
while at the poles the slab is resonating together with the impedance of the
surrounding media producing a guided mode along the slab. Therefore, the
zeros of the reflection might be utilized as a tool to indicate the corresponding
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surface modes.
The locations of the zero reflection coefficients are observed in the fast wave

region in Fig. 7.35. As it is observed the curves of zero reflection meet the
dispersion diagram at the cutoff. The slab is resonating both at the poles and
zeros. This is the reason why the field distribution for every zero curve is
similar to the curve of the corresponding pole inside the slab.
To investigate the slots loaded by resonator, the periodic array of metallic

plates in Fig. 7.27 can be considered. As was shown in Fig. 7.29, the magnetic
field inside the slot, Hx, has the maximum value at the center. This field
distribution can be an appropriate candidate for exciting split ring resonator
(SRR) metamaterial particles.

7.9.3. Loading the unit cell by metamaterial resonators

AS it was explained in section 3.3, to compute the resonant frequency of meta-
material particles in a periodic arrangement, usually the TEM field distribution
is modeled by PEC/PMC (perfect electric and magnetic) boundary conditions
in the transverse directions.

The resonant frequency of a split ring resonator of Fig. 7.36 is computed
by the PEC/PMC boundary at 7.4 GHz. The unit cell size in y direction is
the same as the metallic plates separation, 3 mm, and in x direction is 5 mm.
The reflection coefficient from the unit cell of Fig. 7.27 for both loaded and
unloaded by the resonator of Fig. 7.36 is computed in Fig. 7.37 by using the
frequency domain analysis of CST Micorwave Studio.

l2

l1

t

w

g

y

z

x

PMC

PMC

PEC

PEC

OPEN

OPEN

Figure 7.36.: Split ring resonator, l1 = 2.4 mm, l2 = 2.6 mm, t = 0.2 mm, g = 0.066
mm, w = 0.2 mm, metal thickness = 0.034 mm, unit cell dimensions in
x and y directions are 5 mm and 3 mm, respectively.
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Figure 7.37.: The reflection coefficient of the tangentially incident plane wave with
ky/k0 ≈ 0 onto a unit cell of Fig. 7.27 when loaded and unloaded by
SRR.

As is shown, the introduced cutoff is at 7.66 GHz. The cutoff of higher order
modes is also affected but not strongly. In Fig. 7.38, the dispersion diagram
of the first few modes is computed for the loaded and unloaded unit cell by
using the Eigenmode solution of CST Microwave Studio. As is depicted, the
curves at the end of the Brilluoin zone become flat. In unloaded unit cell,
the end frequency of the curves is equivalent to the resonant length of parallel
plate transmission line, h in Fig. 7.27, for every mode. The first surface mode
in the loaded unit cell has the end frequency of 7.2 GHz and the cutoff of the
next mode is at 7.66 GHz which is computed from the reflection coefficient too.
Consequently, a band gap is introduced from 7.2 to 7.66 GHz due to SRR. The
resulting narrow band surface mode propagating in the x direction has a very
flat dispersion behavior and can be utilized for near field imaging at 7.2 GHz.

In resonator loaded applications which are vastly used for reducing the size of
cavity resonators [Engheta, 2002a], the purpose of using the resonant particles
is to reduce the size of the resonator by introducing a new material parameter.
In current paper, it is shown that resonant particles do not strongly disturb the
modes of the individual cavity, but they introduce a very narrowband surface
mode. However, the field distribution in this new surface mode is very similar to
the first mode of the individual open unit cell loaded by resonator, as is shown
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Figure 7.38.: Dispersion diagram of the loaded and unloaded unit cell in Fig. 7.27.

in Fig. 7.39. In Fig. 7.39, the magnetic field distribution of two first modes of
the loaded unit cell are shown, which are indicated as the resonant mode of the
SRR and the first mode of the waveguide. As it is seen, the magnetic field of
SRR mode is very similar to the first mode of the loaded wavegudie. On the
other hand, the first mode of the wavegudie does not change strongly due to
the loaded resonator. Therefore, it can be concluded that the SRR mode is a
new mode introduced to the structure where in the literature it is mentioned
as reducing the resonance length in z direction. It should be noted that the
transverse spacing between the resonators in y direction affects the dispersion
diagram which in this paper a large enough distance, 3 mm, is considered to
omit this effect. Consequently, this new surface mode can only be controlled
by the resonance frequency of the metamaterial resonator.
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Figure 7.39.: Magnetic field (Hx) distribution of the resonant mode of SRR and first
mode of the periodic plates inside the unit cell loaded by SRR, left: SRR
resonant mode (f = 7.2 GHz), right: first mode of the loaded waveguide
(f = 13.93 GHz).
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A. Appendix

A.1. Nelder-Mead
The simplex Nelder-Mead compares function values at the three vertices of a
triangle and rejects the worst vertex over which the function has the largest
value and replaces it with a new value [Nelder and Mead, 1965]. The new
triangle is formed and the search is continued until the threshold for the error
is met. For a function of N variables, the generalized triangle in N dimension
is formed.
To start, three vertices of a triangle are given. The function f(x, y) is then

evaluated on three points: zk = f(xk, yk) for k = 1, 2, 3. By reordering the
subscripts for the best to worst value one has

B = (x1, y1), G = (x2, y2), W = (x3, y3) (A.1)

such that B is the best point, G is good and W is the worst point.
Th mid point of the good side is defined as

M = B +G
2 =

(
x1 + x2

2 ,
y1 + y2

2

)
. (A.2)

A.1.1. Reflection
Since the function decreases fromW towardsB andG along the triangle edges,
it is desired to move away from theW point. Therefore the reflection point R
is defined as the reflection of W with respect to the midpoint of the line BG
which is the new vertex to be utilized instead ofW . The vector formula for R
is

R = 2M −W . (A.3)

A.1.2. Expansion
If the function inR has a smaller value than the value inW then the algorithm
is moving towards the minimum in the right direction. Therefore, the vertex
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R is moved further away in that direction to the point E by the same length
as MR

E = 2R−M . (A.4)

A.1.3. Contraction

If the function has the same values at R and W then a new point has to be
tested. The point M cannot be considered as a vertex since then BMG is
not making any triangle. Two midpoints c1 and c2 of two line segments WM
and MR. The point with the lowest function value is named as C. Then the
new triangle is BGC.

A.1.4. Shrink

If the unction value at C is not less than the value at W then the points G
and W are shrunk toward B. In this regard, G is replaced with M and W is
replaced with S which is the midpoint of BW .
The schematic representations of these operations are shown in Fig. A.1.
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E
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B

G
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Figure A.1.: Four triangle construction methods for searching by the Nelder-Mead
method.
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The speed of Nelder-Mead method can be modified by four parameters in
four triangle construction methods. coefficients are

1. ρ : reflection coefficient, applied to the reflection of the point as

R = M + ρ(M −W ). (A.5)

2. κ : expansion coefficient, applied to the expansion of the point as

E = M + κ(R−M) = M(1 + κρ)− κρW . (A.6)

3. γ : contraction coefficient, there are two types of contractions depending
on the location of point C.
a) Inside contraction

C = M − γ(M −W ). (A.7)

b) Outside contraction

C = M + γ(R−M). (A.8)

4. σ : Shrink coefficient, applied to the shrinking of the triangle as

S = W + σ(B −W ). (A.9)

The standard values for the Nelder-Mead algorithm are

ρ = 1, κ = 2, γ = 1/2, σ = 1/2. (A.10)

A.2. Newton-Raphson iteration
The Newton-Raphson iteration method is a method for solving a system of
nonlinear equations. This method can be generalized to a multivariate case to
solve n algebraic equations simultaneously as

{
f1(x1, x2, . . . , xn) = f1(x) = 0,
fn(x1, x2, . . . , xn) = fn(x) = 0. (A.11)
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where x = [x1, x2, . . . , xn]T is the vector of n variables. Then the Newton-
Raphson formula for multivariate function is

x⇐ x− J−1
f (x)f(x). (A.12)

where Jf is the Jacobin of function f

Jf (x) =


∂f1
∂x1

. . . ∂f1
∂xn

. . . . . . . . .
∂fn
∂x1

. . . ∂fn
∂xn

 . (A.13)

To derive this equation, the higher order terms of the following Taylor ex-
pansion are ignored

fi(x+ δx) = fi(x) +
∑
j

∂fi
∂xj

δxj +Oδ(x2), (i = 1, 2, . . . , n). (A.14)
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