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Abstract

In this thesis we develop the self-consistent projection operator theory which pro-
vides a highly efficient and accurate approach to the calculation of local properties of
a quantum few- or many-body system by defining a time dependent projection oper-
ator. This projector, which is coined self-consistent Mori projector (c-MoP), allows
for a derivation of an integro-differential equation that generalizes the Nakajima-
Zwanzig equation and exactly describes the dynamics of reduced density matrices of
all subsystems of a large quantum system. The c-MoP theory generalizes the con-
cepts of open systems theory to settings where a dynamically evolving environment
has to be taken into account and provides a systematic extension of mean-field ap-
proaches. We illustrate the power of our theory for a broad range of applications by
testing its performance for the determination of stationary states and transient time
evolutions, both, for the models of nonlinear quantum optics and driven-dissipative
many body lattice systems.

In the case of one dimensional spin lattices c-MoP is very efficient and its accuracy
for local observables compares with t-DMRG methods, yet, offering a formalism
which is directly applicable to any lattice dimension. For the degenerate optical
parametric oscillator, c-MoP gives quasi exact solutions for the reduced quantum
states of the nonlinearly coupled bosonic modes even at the critical point of the
dissipative phase transition. We further develop a Gaussian approach consistent
with our theory, which yields sensibly better results than any previously developed
Gaussian methods and even reaches accuracies comparable to diagrammatic Keldysh
approaches. Finally, we exploit the c-MoP theory to enable the investigation of the
optomechanical interaction between a mechanical mode and a light field of purely
quantum nature in the degenerate optomechanical parametric oscillator setup. Our
work, thus, illustrates the potential of c-MoP theory for the analysis of hybrid dis-
sipative quantum systems in the vicinity of critical points.



Within the framework of this thesis, the following articles were published in refereed
journals, listed in chronological order:

• P. Degenfeld-Schonburg, E. del Valle, and M. J. Hartmann, Signatures of
single-site addressability in resonance fluorescence spectra, Phys. Rev. A 85,
013842 (2012)

• P. Degenfeld-Schonburg and M. J. Hartmann, Self-consistent projection oper-
ator theory for quantum many-body systems, Phys. Rev. B 89, 245108 (2014).

• S. Okubo, M. Eto, P. Degenfeld-Schonburg, and M. J. Hartmann Study of
coupled QED-cavities using the self-consistent Mori projector method, Journal
of Physics, Conf. Ser. 568, 012014 (2014).

• P. Degenfeld-Schonburg, C. Navarrete-Benlloch and M. J. Hartmann, Self-
consistent projection operator theory in nonlinear quantum optical systems: A
case study on degenerate optical parametric oscillators, Phys. Rev. A 91,
053850 (2015).

• P. Degenfeld-Schonburg, M. Abdi, M. J. Hartmann, and C. Navarrete-Benlloch,
Degenerate optomechanical parametric oscillators: cooling in the vicinity of a
critical point, Phys. Rev. A 93, 023819 (2016).
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Introduction

Since the beginning of the 20th century researchers have faced tremendous chal-
lenges with physical systems that inevitably need to be described by the laws of
quantum mechanics. The axiomatic Schrödinger equation, constituting the analog
of Newtons 2nd law for classical systems, defies an analytic solution in almost all
cases of interest. Already for one-particle problems only a few exact analytic so-
lutions are known, with the hydrogen atom and the quantum harmonic oscillator
as the most prominent examples [1]. Even more demanding seems the handling of
quantum mechanical models in which more than one particle needs to be accounted
for. Clearly, finding the solution to Schrödinger’s equation paves the way to the
understanding of the physics represented by the models. The search for methods
which at least approximately solve the many-body quantum problem thus places
a cornerstone in a diversity of research fields including statistical mechanics [2, 3],
open systems theory [4, 5], quantum optics [6, 7] and condensed matter theory [8, 9].

In all of these fields it is possible to encounter different categories of approaches
to the complex quantum problem. In one category we find sophisticated analytical
methods that lead to exact solutions for models exhibiting certain features such as
symmetries, low spatial dimensions, or arbitrarily large time-scale separation. To
name just a few there are spin chain models solved by the Bethe Ansatz [10], P-
function methods [11, 12] for nonlinear quantum optical systems or the solution of
Weisskopf and Wigner [13] for a certain version of the Spin-Boson problem [14].
These exactly solvable examples contribute a significant but still small subpart of
quantum models.

The technological developments in the area of computer and numerical sciences
over the last few decades enabled a second category, that is the exploitation of
powerful numerical techniques in order to solve complex problems. For systems
obeying the laws of classical physics nowadays computers and commercial software
enable the efficient simulation of large-scale systems which is relevant for science and
also for industrial applications [15]. In the case of quantum mechanics, however,
the complexity of the system does not scale linearly, as in the classical case, but
rather exponentially with the number of constituents. This scaling behavior is a
fundamental consequence of the mathematical structure of quantum mechanics [1]
and can not be overcome. Thus, numerical methods indeed enlarge the set of solvable
quantum mechanical models [16] but they are still restricted to rather small system
sizes or need to invoke approximations. The general quantum many-body problem
still remains as one of the great challenges of modern physics.
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INTRODUCTION

Finally, in the third category we find a large diversity of effective or rather approxi-
mative theories. The main goal of these theories is to introduce reasonably accurate
descriptions of the physical model under study which obey effective equations of
motion that can be solved much more efficiently than the full quantum mechanical
model. One particularly important idea is to introduce descriptions which do not
explore the entire Hilbert space but only account for a subpart of the full quantum
system. A prominent representative of this strategy in the context of condensed
matter theory are mean-field approaches [17] as they only predict local properties of
the many-body system [18]. In the same spirit semi-classical treatments often used
in quantum optics [19, 20] solely explore the subclass of states which are described
by gaussian quantum fluctuations centered around the classical coherent state.

In systems where the dynamical degrees of freedom evolve on different time scales,
approximate but yet highly accurate descriptions of reduced complexity may be
found. The concept of time-scale separation forms the underlying assumption of
adiabatic elimination methods or more generally open systems theories [4, 5]. The
”slow” and the ”fast” subparts of the whole system are split into ”system” and
”environment”, respectively. The former contains the information of interest about
the quantum state while the information of the latter can be disregarded leading to
an equation of reduced complexity for the system variables only. This exact equation
for the reduced quantum state of the system is known as the Nakajima-Zwanzig
equation [4] and it can be formally deduced from the Schrödinger or rather Liouville-
von Neumann equation by exploiting the Mori projection operator technique [21].

For many microscopic models within the validity of the so called Born-Markov ap-
proximation, which is indeed a direct consequence of time-scale separation between
the system and its environment, the Nakajima-Zwanzig equation reduces to the
widely celebrated Lindblad master equation [22, 23]. The Lindblad terms of a mas-
ter equation describe fundamental physical effects such as decoherence and dissipa-
tion due to the ”openness” of the system. Consequently, the theory of open systems
has found its applications in almost all fields of science with the field of quantum
optics being a paradigmatic example. Moreover, the idea of introducing dissipation
to the traditional closed system examples of condensed matter theory is currently
receiving enormous interest in the search for strongly correlated steady states and
non-equilibrium analogs of quantum phase transitions [24–26].

The Born-Markov approximation usually goes hand in hand with the underlying
time-scale separation assumption of open systems theory with the latter putting
bounds to its applicability. Therefore, a large body of works have also been devoted
to the treatment of open systems beyond the Markovian limit [27]. While in numer-
ical works on this topic the separation into system and environment is abandoned
and instead the full problem is solved by a very careful selection of the relevant
states [28], in the framework of projection operator techniques time-convolutionless
[4] and correlated projection operator methods [29] were invented.
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The question of how to introduce back-action effects of the system onto the envi-
ronment into a projection operator formalism, enabling the treatment of scenarios
where there is no clear distinction between fast and slow degrees of freedom, re-
mained unresolved until today.

The purpose of this thesis is to introduce the self-consistent Mori projection opera-
tor theory (c-MoP) and prove its applicability to the general quantum many-body
problem including also the (few-)body scenarios encountered for example in quantum
optics.

Conceptually, we introduce a novel approach to the calculation of local properties
of a quantum many-body system by defining a time dependent projection operator
that may be viewed as a generalization of the Mori projector [21]. Based on this
projector, which we coin self-consistent Mori projector, we are able to derive an
integro-differential equation that generalizes the Nakajima-Zwanzig equation [3, 4]
and exactly describes the dynamics of the reduced density matrix of each of the
subsystems of the full many-body setup. By taking dynamical back-action between
the degrees of freedom into account, our method does not rely on a pronounced
time-scale separation between the subparts thus reaching beyond the applicability
of standard open systems theory.

In this thesis we apply the c-MoP theory to a diversity of models including open
and closed spin lattices in one and two dimensions and nonlinear quantum opti-
cal systems such as the degenerate opto(-mechanical) parametric oscillator and the
nonequilibrium Dicke model. The physics of the driven and dissipative phase tran-
sitions in all the scenarios investigated here are very accurately described by the
c-MoP theory even at the critical points. Throughout the applications we test the
accuracy of c-MoP by comparing it to (quasi) exact results, if these are available,
and also to other approximative methods such as linearized descriptions, mean-field
theory or the Keldysh formalism within the self-consistent Hartree-Fock approxima-
tion. In the considered cases we find c-MoP to outperform all of these approximative
methods and for 1D spin lattices to compare with the performance of t-DMRG cal-
culations for local observables. In fact, for unitary evolution in the closed system
version of the XX spin chain we show that c-MoP even reaches larger time ranges as
t-DMRG. Moreover, we highlight how different choices for the self-consistent Mori
projector can lead to significantly different efficiencies and accuracies, with the for-
mer being strongly dependent on the ability to resolve nonlinear and non-Markovian
c-MoP equations for which we provide different possible approaches to solve them.

We also study two direct applications of the c-MoP theory. First, we investigate the
quantum to classical transition, which is a nonequilibrium mean-field phase transi-
tion of first order, in the locally driven and dissipative Heisenberg XX spin model.
By exploiting c-MoP, however, we find a strong signature for the absence of the
phase transition both in one and two dimensions even in the thermodynamic limit
of infinite lattice sites. Second, we use c-MoP to introduce a theoretical approach
that is capable of describing the below threshold regime of the degenerate optome-
chanical parametric oscillators, even at the critical point itself. We find that the
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down-converted field can induce significant mechanical cooling and identify the pro-
cess responsible of this as a ”cooling by heating” mechanism. Moreover, we show
that, contrary to naive expectations and semi-classical predictions, cooling is not
optimal at the critical point, where the photon number is largest.

The thesis is organized in two Parts. Part I includes Chapter 1 and Chapter 2. In
the former we introduce the mathematical foundations, general concepts and ideas of
the c-MoP theory while in the latter we show the applicability of c-MoP to quantum
many-body lattice problems. Part II contains Chapter 3, Chapter 4 and Chapter 5
where we apply the c-MoP theory to the degenerate optical paramteric oscillator,
the degenerate optomechanical parametric oscillator, and the nonequilibrium Dicke
model, respectively. In all the chapters we use the c-MoP approach in one variety
or another, and yet, the physical context or rather physical models differ a lot
throughout all the chapters. Therefore, we provide a more specific introduction for
each chapter complementing the general introduction presented here. Moreover, we
provide a summary of Part I and a summary of Part II. Finally, we conclude the thesis
with an extensive discussion and outlook on future application and optimization of
the c-MoP theory.

12
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Chapter 1

The self-consistent Mori

projector and the c-MoP

equations

1.1 Introduction

In this section we will introduce the concept of the self-consistent projection opera-
tor theory in its most general form. The time-dependent projection operator takes
the central role in the theory and its action on the full state of the quantum model
at hand will map out the part of the full quantum state which will be of inter-
est. For this part, we will be able to derive an effective equation of motion which
can be viewed as a generalization of the Nakajima-Zwanzig equation [3]. In the
same spirit, one can view the time-dependent projection operator as a generaliza-
tion of the Mori projector [21]. During the course of this chapter we will understand
the thoughts behind the nomenclature for the self-consistent Mori projector theory,
or in short c-MoP theory, and deepen our understanding about the motivation
for such an approach by comparing it to its time-independent counterpart, namely
open system theory [4], as well as to meanfield theory [17].

The starting point for all applications of this thesis is the physical model under
consideration. In every situation the state of the entire quantum system R(t) at
every instant of time t is modeled by the Liouville-von Neumann equation of motion

Ṙ(t) = LR(t), (1.1)

where the dot denotes a time derivative. The dynamical evolution of the quantum
state shall be generated by the superoperator L. In the case of closed quantum sys-
tems the Liouvillian can be directly associated with its corresponding Hamiltonian
H and Eq. (1.1) reduces to the Schrödinger equation with LR(t) = −i[H,R(t)]
(� = 1 throughout the thesis). However, we will consider Liouvillians L which may
feature non-unitary terms of Lindblad type [22]. We refer to L as the (full) Liouvil-
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lian. In many cases the complexity of the Liouvillian renders an exact solution of
Eq. (1.1) impossible. Therefore, it is highly desirable to develop approaches which
under certain approximations allow for an effective description of the full Liouville
von-Neumann equation. It is precisely such an approach that we will provide in this
work. The general concept and the main tools of the theory are introduced in this
chapter.

Even though it is desirable to obtain a solution for the entire quantum state R(t),
the information contained in the full state is more than enough to understand the
desired physical aspects. In fact, in many cases a reduced information of a subpart
of the entire system completely suffices. A paradigmatic example is given by the
physical situation in which one or an ensemble of atoms couples to the quantized
electro-magnetic field [6, 7, 30, 31]. Here, the evolution of the reduced state of the
atoms is of interest rather than the evolution of the full set of modes describing the
entire mode ensemble of the electro-magnetic field.

Generally, the reduced information of a subpart, let us denote it by n0, is contained
in its reduced density matrix ρn0(t). The exact reduced state can be obtained by
tracing out all degrees of freedom which do not belong to the subpart n0 of the
full quantum state, thus ρn0(t) = Tr �n0{R(t)}, where Tr �n0 denotes the trace over all
parts but the subpart n0. For any system observable An0 ⊗ �n0 it entirely suffices
to know the reduced density matrix since

Tr{An0 ⊗ �n0R(t)} = Trn0{An0Tr �n0R(t)} = Trn0{An0ρn0(t)}. (1.2)

In the light of this insight, the next question naturally arising is whether one can
find an effective equation of motion for the evolution of the reduced state. For its
usability such an equation should be ”more practical” than the full Liouville von-
Neumann equation in the sense that it should provide efficiently solvable equations
which will still lead to accurate descriptions of the underlying physical model.

Aiming for this goal, we will exploit the idea of projection operator techniques [4, 5]
in order to develop the self-consistent projection operator theory. Our theory is
shown to generalize standard projection operator theories or rather open quantum
systems theory by taking dynamical back-action between the subparts of the full
setup into account and thus not requiring any time-scale separation. In the next
section, we highlight the innovations of our work by comparing the major differences
of our theory to standard projection operator approaches.

The remainder of Chapter 1 is organized as follows. In Sec. 1.2 we highlight the
main innovations of our theory by comparing it to standard open systems theory.
The self-consistent Mori projector is introduced in Sec. 1.3. Based on it we de-
rive the generalized Nakajima-Zwanzig equations or the exact c-MoP equations in
Sec. 1.4 and use it as the starting point for the Born approximation introduced
in Sec. 1.5. We further discuss on the relation of c-MoP to mean-field theories in
Sec. 1.5.1, discuss properties of the c-MoP theory such as positivity and nonlinear-
ity in Sec. 1.5.2, introduce the form of the c-MoP equation for unitary interaction
Liouvillians in Sec. 1.5.3 which constitutes the main equation of this thesis, and
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highlight the scaling behavior of our theory in Sec. 1.5.4.

1.2 Generalization of standard open quantum system

theory

In the course of this section we employ the notation commonly at use in the con-
text of open quantum systems [4]. In the general scenario of an open quantum
system, the full quantum setup described by the state R(t) can be separated into
two parts. We refer to the part of interest as the ”system” and to the remainder
as the ”environment”. Accordingly, we restate the Liouville von-Neumann equation
such that

Ṙ(t) = LR(t) = (LS + LE + LI) R(t), (1.3)

with the superoperators LS (LE) describing the free evolution of the system (envi-
ronment) and LI accounting for any system-environment interaction. We are only
interested in the reduced information set of the system observables. Thus, we are
aiming to derive an effective equation of motion for the reduced state ρS(t) which
can be obtained by tracing out all environmental degrees of freedom from the full
quantum state, i.e. ρS(t) = TrER(t).

For this purpose it proves useful to utilize the idea of projection operator techniques
[4, 5] in which the operation of tracing over environmental degrees of freedom can be
regarded as a formal projection R(t) → PR(t). The Mori projector [21] is defined
by P = ρE ⊗ TrE where ρE is an arbitrary reference state or rather density matrix
with trace one. Usually, see for example Sec. 4.3 within this work, the physically
most meaningful reference state is the state which is stationary with respect to its
interaction-free generator, i.e.

LE ρE = 0 , (1.4)

and additionally coincides with the initial state, that is ρE = TrSR(t0). The Mori
projector maps on the relevant part of the density matrix R(t) in the sense that
PR(t) = ρE⊗ρS(t) = Rrel(t) gives the complete information required to reconstruct
the reduced state ρS(t). By introducing the complementary operator Q = −P one
can derive a (formally) exact equation of motion for the relevant part of the density
matrix Rrel(t). By tracing over the environment one obtains an exact equation of
motion for ρS(t) given by

ρ̇S(t) = LSρS(t) + TrELIPR(t) +

� t

0
dτ TrE

�
LI e

(LE+LS+QLI)τQLIPR(t− τ)
�
,

(1.5)

where we have neglected any initial system-environment correlations. Equation (1.5)
is known as the Nakajima-Zwanzig equation (NZE) [3, 4].

We emphasize, the NZE is an exact equation for all choices of environmental ref-
erence states ρE fulfilling the initial condition ρE = TrSR(t0). However, the NZE
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CHAPTER 1: The self-consistent Mori projector and the c-MoP equations

is not solvable in its full generality. Due to the interaction Liouvillian entering the
exponential e(LE+LS+QLI)τ in the integral kernel of the NZE, the complexity of the
NZE is comparable to the complexity of the full Liouville von-Neumann equation
(1.3) which posseses the formal solution R(t) = eLtR(0). Therefore, one needs to
rely on an expansion in powers of LI which can be directly performed on the level
of the NZE but not on the level of the full Liouville von-Neumann equation. Within
the Born approximation (BA) one expands the NZE up to second order in the in-
teraction by simply dropping the interaction from the exponential in the integral
kernel, i.e.

e(LE+LS+QLI)τ BA−−→ e(LE+LS)τ .

Whereas the NZE is exact for all choices of ρE with ρE = TrSR(t0), the result
of the NZE in born approximation (NZE2) strongly depends on the choice of the
environmental reference state. In fact, for choices of ρE fulfilling Eq. (1.4) the
validity or rather accuracy of the BA relies on a time-scale separation where the
environmental dynamics must be much faster than the dynamics of the system.
In particular, the time-scale separation is present if the time-scale on which the
environmental modes react to any perturbation induced by the system is much
slower than the relaxation time of the environment with respect to its unperturbed
dynamics governed by LE .

Let us denote the relaxation rate on which the environment relaxes to its stationary
state after a perturbation emerging from LI by γE > 0. In the framework of the
standard projection operator theory it is not clear how to accurately define a rate
of perturbation. Therefore, we need to make use of a heuristic argument and simply
introduce a rate of perturbation α > 0 by redefining LI = αL̃I . Based on these
definitions we expect time-scale separation to be present and consequently the BA
to be accurate if α � γE .

Moreover, the time-scale separation allows for the applicability of the Markov ap-
proximation (MA) [4, 5], see Sec. 4.3 for a more detailed explanation. Hence,
the applicability of both the BA and the MA rely on the condition α � γE as
the relaxation rate of the environment leads to a decay of the memory kernel
TrE

�
LI e(LE+LS+QLI)τQLIPR(t− τ)

�
on a time-scale of γ−1

E and further allows
to choose ρE according to the relation in Eq. (1.4).

In the light of these insights, one can interpret α as an expansion parameter. The
NZE2 equation is expected to be accurate if time-scale separation is present which
requires the parameter α to be ”small” in the sense we have just understood above.
Therefore, the standard projection operator approach can be interpreted as a ”per-
turbative” approach in the same sense and the NZE2 is applicable in cases where
the system-environment interaction is small with respect to the dynamics of the
environment.

The self-consistent projection operator theory, in strong contrast, takes the back-
action from the system onto the environment into account. Thus, it generalizes
standard projection operator theories to physical scenarios without any time-scale
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1.2. Generalization of standard open quantum system theory

separation. The rate α does not necessarily need to be small with respect to the
local time scale γE (in fact in some cases it can be arbitrarily large, see Sec. 2.2.1) as
exemplified in depth throughout all application of this thesis. As a consequence of
adapting to the dynamical evolution of the environment, the self-consistent projec-
tion operator theory is applicable to a much larger class of physical scenarios than
standard Nakajima-Zwanzig approaches. We now anticipate some results derived in
detail in the following sections in order to underline the above statements on the
basis of very general arguments.

The first major step of our theory is given by the introduction of the self-consistent
Mori projector PS

t = ρE(t)⊗TrE which generalizes time-independent Mori projectors
to a time-dependent projector. The time dependence is defined self-consistently with
the full quantum state via ρE(t) = TrSR(t). The next major step is reached by
deriving a generalized version of the NZE for the reduced state of the system given
by

ρ̇S(t) = LSρS(t) + TrELIP
S
t R(t) +

� t

0
dτ TrE

�
LI D(t, τ)Ct−τLIP

S
t−τR(t− τ)

�
.

(1.6)

Here, we have neglected any initial correlations, introduced the dynamical map

D(t, τ) = T̂ e
� t
t−τ (LE+LS+Ct�LI)dt� with the time-ordering operator T̂ [23], see also

Sec. 1.4, and defined the projector Ct = −ρE(t)⊗TrE −ρS(t)⊗TrS which projects
onto the time-evolving system-environment correlations. We note, the action of the
generalized Mori projector on the full quantum state gives PS

t R(t) = ρE(t)⊗ ρS(t).

By comparing Eqs. (1.5) and (1.6) we find the two counterparts Q ↔ Ct and
most importantly ρE ↔ ρE(t). Due to the time-dependence of the environmental
state, Eq.(1.6) is not closed yet. Therefore, we additionaly introduce the Mori
projector PE

t = ρS(t)⊗TrS which naturally appears in the definition of Ct as a direct
consequence of the time-dependence in ρE(t), see Sec. 1.4 for a detailed explanation.
And finally, we derive a generalized version of the NZE for the reduced state of the
environment given by

ρ̇E(t) = LEρE(t) + TrSLIP
E
t R(t) +

� t

0
dτ TrS

�
LI D(t, τ)Ct−τLIP

E
t−τR(t− τ)

�
,

(1.7)

where we have again neglected any initial system-environment correlations. Equa-
tions (1.6) and (1.7) form a closed set of coupled equations for the reduced states
ρS(t) and ρE(t) and we refer to them as the generalized Nakajima-Zwanzig equations
(gNZEs).

Just like the NZE we find the gNZEs to be formally exact for the reduced quantum
states. However, they are not solvable in their full generality. Thus, we apply again

the Born approximation which resides in the replacement D(t, τ)
BA−−→ e(LE+LS)τ

within the integral kernels of the gNZEs. Hence, we have truncated the Dyson
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CHAPTER 1: The self-consistent Mori projector and the c-MoP equations

series, see Sec. 1.4, up to second order in the interaction LI . We refer to the resulting
equations as the self-consistent Mori projector (c-MoP) equations.

In strong contrast to the BA on the level of the standard NZE, the c-MoP equations
account for the back-action onto the environment by the last two terms on the right-
hand side of Eq. (1.7). As a consequence the c-MoP equations do not require the
smallness of the perturbation rate α with respect to the relaxation time γE of the
environment.

1.3 The self-consistent Mori projector

We now turn to the presentation of a detailed derivation of the self-consistent Mori
projector and the resulting effective equations of motion. In contrast to Sec. (1.2),
we consider the general scenario of a physical setup described by Eq. (1.1) with an
N -partite structure. The N parties could e.g. represent the different modes in a
multi-mode setup, see Chapters 3 and 4, or a single lattice site (or clusters of lattice
sites) in a lattice problem, see Chapter 2. Let us label the subsystems by using the
index n with n ∈ {1, 2, ..., N} and with reduced density matrices ρn(t). Next, we
shall pick one subsystem, say the subsystem with n = n0, and aim for the derivation
of an exact equation describing the time evolution of its reduced state ρn0(t).

For this purpose we will exploit the idea of projection operator techniques [4, 5] and
introduce a projector P , similar to the Mori projector [21], which projects the full
density matrix onto a relevant fraction Rrel(t) = PR(t) with P (·) = ρ�n0 ⊗ Tr �n0(·).
The term ”relevant” indicates that Rrel(t) = PtR(t) contains all information needed
to determine the exact expectation value of any operator An0 acting solely on the
subpart n0, i.e. �An0�(t) = Tr{An0PtR(t)}. Here, ρ�n0 is a density matrix acting
on the Hilbert space H �n0 of the remaining N − 1 parties. However, ρ�n0 is just a
reference state and within the formal projection operator approach it is not unique.
As a consequence, every result of the theory will indeed depend on the choice of the
reference state as explained in Sec. (1.2).

The innovative step of our theory is to consider a time-dependent case for the
density matrix ρ�n0(t) and therefore a time dependent projector. We define the
self-consistent Mori projection operator [32] for an N -partite system by

Pn0
t (·) = ρ�n0(t)⊗ Tr �n0(·), (1.8)

where the density matrix ρ�n0(t) is given by a factorized state of the reduced density
matrices of all N − 1 remaining constituents, i.e.

ρ�n0(t) = ρ1(t)⊗ ρ2(t)⊗ ...⊗ ρn0−1(t)⊗ ρn0+1(t)⊗ ...⊗ ρN (t) =
�

n �=n0

ρn(t) , (1.9)

with the self-consistency condition for every reduced density matrix

ρn(t) = Tr �nR(t). (1.10)
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1.4. Exact equations of motion for reduced density matrices

Overall the action of the self-consistent Mori projector defined in Eq. (1.8) on the
full quantum state results in a factorized state

�N
n=1 ρn(t) = Pn0

t R(t).

Most importantly, the time-dependence is introduced consistently with the time
evolution of the full quantum state as we choose ρn(t) = Tr �n{R(t)}. To emphasize
the importance of the self-consistency condition we speak of a self-consistent Mori
projector approach (c-MoP) as both the reduced density matrix of the subsystem
of interest ρn0(t) and the state of the remainder ρ�n0(t) are determined consistently
with the dynamics given by the full quantum state R(t). To account for the partition
of the whole system into N parts we have written the matrix ρ�n0(t) into a factorized
form of reduced density matrices. Such an additional factorization into local density
matrices is necessary, as otherwise, we will be confronted with an effective problem
of N − 1 parties for the treatment of ρ�n0(t). Especially for the application of our
theory to quantum many-body problems, see Chapter 2, any other choice for ρ �n0(t)
would lead to equations of motion where local quantities depend on non-local ones
and thus not lead to the same reduction of the complexity of the description as Pn0

t .

The time-dependence of the projector is in strong contrast to standard projection
operator techniques where time-independent states are chosen as explained in Sec.
(1.2). However, our theory also employs the complement of Pn0

t which projects out
the irrelevant part of the density matrix Rirr(t) = Qn0

t R(t) and is given by

Qn0
t (·) = ( − Pn0

t ) (·), (1.11)

where is the identity mapping. We find the complementarity of the two subspaces
Rrel(t) and Rirr(t) indicated by the characteristic features of projection operators

Pn0
t Qn0

t = Qn0
t Pn0

t = 0 (1.12)

Pn0
t +Qn0

t = (1.13)

(Pn0
t )2 = Pn0

t (1.14)

(Qn0
t )2 = Qn0

t . (1.15)

1.4 Exact equations of motion for reduced density ma-

trices

To derive an exact equation of motion for the reduced state of the subsystem n0, we
first derive a set of equations for the two complements Pn0

t R(t) and Qn0
t R(t) of the

full density matrix R(t). Then we state a formal solution for the irrelevant part and
finally deduce a closed equation for the relevant part.
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CHAPTER 1: The self-consistent Mori projector and the c-MoP equations

We start by rewriting Eq. (1.1) into

Ṙ(t) = LR(t) =





Ln0 +
N�

n=1
n �=n0

Ln

� �� �
=L0

+
Z�

n=1

L<n0,n> + LI �n0

� �� �
=LI





R(t) . (1.16)

The superoperator Ln0 only acts on the subsystem of interest, while Ln describes
the local dynamics of the n-th constituent or rather subpart. We group the local
evolution operators into L0. The interaction between the subparts grouped into LI ,
is described by two fractions where

�Z
n=1 L<n0,n> denotes the pairwise interaction

of the subsystem n0 with Z ≤ N − 1 different subsystems n, and LI �n0 accounts for
any interaction between subsystems excluding the subsystem n0. We allow for each
of the Liouvillians to feature unitary or non-unitary terms with the restriction that
all superoperators shall be the generators of completely positive, trace preserving
maps of Lindblad type [22, 23]. By assigning LI �n0 to the interaction part LI , we
treat all N subsystems on an equal footing being consistent with the choices made
for the projection operator in Eq. (1.8) and especially with the factorized Ansatz in
Eq. (1.9).

We proceed with the equation of motion for the relevant fraction of the full density
matrix

Ṙrel =
d

dt
(Pn0

t R(t)) = Ṗn0
t R(t) + Pn0

t Ṙ(t) = Ṗn0
t R(t) + Pn0

t L R(t)

= Ṗn0
t (Pn0

t +Qn0
t )R(t) + Pn0

t L(Pn0
t +Qn0

t )R(t)

=
�
Ṗn0
t + Pn0

t L
�
Pn0
t R(t) + Pn0

t LQn0
t R(t), (1.17)

where we have exploited the identity = Pn0
t + Qn0

t , the full dynamics given by
Eq. (1.1) and the relation Ṗn0

t Qn0
t = 0. Note the term Ṗn0

t Pn0
t R(t) arising from

the explicit time dependence of the environmental state ρ�n0(t). Next, we use the
operator equality Q̇n0

t = −Ṗn0
t to obtain an equation of motion for the irrelevant

part of the full density matrix. In analogy to Eq. (1.17) we find

Ṙirr =
d

dt
(Qn0

t R(t)) =
�
−Ṗn0

t +Qn0
t L

�
Pn0
t R(t) +Qn0

t LQn0
t R(t). (1.18)

Now, we turn to the treatment of the environmental density matrix and its time
derivative. Therefore, we employ the properties of a trace preserving generator given
for all superoperators from Eq. (1.16). In particular, we will use that TrnLn(·) =
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1.4. Exact equations of motion for reduced density matrices

0, ∀n and find

Ṗn0
t Pn0

t R(t) = ρ̇�n0(t)⊗ ρn0(t) =
�

m �=n0

ρ̇m(t)⊗
�

n �=m

ρn(t)

=
�

m �=n0

Tr �m{Ṙ(t)} ⊗
�

n �=m

ρn(t)

=
�

m �=n0

Tr �m

��
N�

n=1

Ln + LI

�
R(t)

�
⊗

�

n �=m

ρn(t)

=
�

m �=n0

[Tr �m{LIR(t)}+ Lmρm(t)]⊗
�

n �=m

ρn(t)

≡
�

m �=n0

LmPn0
t R(t) + P �n0

t LI(P
n0
t +Qn0

t )R(t),

(1.19)

where, in analogy to the projector defined in Eq. (1.8), we have introduced the
projector

P �n0
t (·) ≡

�

m �=n0

Pm
t (·) =

�

m �=n0

�

n �=m

ρn(t)⊗ Tr �m{·}. (1.20)

We observe that for an N -partite physical setup we have an ensemble of N projectors
Pn
t with n ∈ {1, 2, ..., N}. By picking one part with n = n0 as the subsystem

of interest, we have picked Pn=n0
t = Pn0

t as our projector of interest. Now, we
find a connection between all N projectors due to the explicit time dependence
of the self-consistent Mori projector or rather the time-dependence of the state
ρ�n0(t). We stress that the projector P �n0

t , see Eq. (1.20), depends on Pn0
t R(t) via

ρn0(t) = Tr �n0{Pn0
t R(t)}. However, there is no dependence on Qn0

t R(t) which will
allow us to find a closed equation for the relevant part of the density matrix.

In addition to Eq. (1.19), we employ Pn0
t Ln0(·) = Ln0P

n0
t (·) and TrnLn(·) = 0, ∀n

to find the relations

Qn0
t LPn0

t R(t) =
�

m �=n0

LmPn0
t R(t) +Qn0

t LIP
n0
t R(t)

Qn0
t LQn0

t R(t) =
�

m

LmQn0
t R(t) +Qn0

t LIQ
n0
t R(t)

= L0Q
n0
t R(t) +Qn0

t LIQ
n0
t R(t).

(1.21)

Using relations (1.19) and (1.21), we restate the equation of motion (1.18) for the
irrelevant part of the full density matrix

d

dt
(Qn0

t R(t)) =
�
−Ṗn0

t +Qn0
t L

�
Pn0
t R(t) +Qn0

t LQn0
t R(t)

= CtLIP
n0
t R(t) + (CtLI + L0)Q

n0
t R(t),

(1.22)

where we have introduced the correlation operator

Ct = −P �n0
t +Qn0

t = −
N�

n=1

Pn
t . (1.23)

23



CHAPTER 1: The self-consistent Mori projector and the c-MoP equations

Before we state the formal solution of Eq. (1.22), it is convenient to introduce a
shorthand notation for the time-propagator D(t, t�) = T̂ exp{

� t
t� dt

��(Ct��LI + L0)}
including the time-ordering operator T̂ which orders any product of superoperators
such that the time arguments increase from right to left [4, 23]. By iteratively
integrating Eq. (1.22) we are able to cast the formal solution of Qn0

t R(t), for a given
state R(t0) at an initial time t0, into the form

Qn0
t R(t) =

� t

t0

dt� D(t, t�)Ct�LIP
n0
t� R(t�) +D(t, t0)Q

n0
t0 R(t0)� �� �
=0

. (1.24)

In the context of this work, we focus on a physical situation with a factorized initial
state, i.e. Qn0

t0 R(t0) = 0. One can verify that the right hand side of Eq. (1.24) is
indeed a solution of Eq. (1.22) by simply taking the derivative of Eq. (1.24) with
respect to the time t and by considering that d

dtD(t, t�) = (CtLI + L0)D(t, t�).

Finally, we insert the formal solution of Eq. (1.24) for Qn0
t R(t) into Eq. (1.17) and

obtain an exact equation of motion for the relevant part Rrel(t) of the density matrix,
it reads

d

dt
(Pn0

t R(t)) = Ṗn0
t LPn0

t R(t) + Ln0P
n0
t R(t) + Pn0

t LIP
n0
t R(t)

+ Pn0
t LI

� t

t0

dt� D(t, t�)Ct�LIP
n0
t� R(t�) .

(1.25)

We emphasize again, that this equation is an exact and closed equation for the
relevant part of the density matrix. The irrelevant part of the density matrix has
been integrated out of Eq. (1.25) which may be viewed as a generalization of the
prominent Nakajima-Zwanzig equation for open systems as shown in Sec. (1.2).

In order to obtain an exact equation for the reduced state of the subpart n0, we apply
the trace operation Tr �n0 on both sides of Eq. (1.25). Because the time derivative
is a trace preserving operation, we clearly find that Tr �n0{Ṗn0

t (·)} = 0. Similarly,

we find Tr �n0LI(·) =
�Z

n=1Tr �n0L<n0,n> as LI �n0 , see Eq. (1.16), is the generator of
a trace preserving map acting solely on the Hilbert space of the remaining N − 1
subparts excluding the subpart n0, and hence Tr �n0LI �n0 = 0. Finally, we state an
effective equation, given by

ρ̇n0(t) = Ln0ρn0(t) +
Z�

n=1

Tr �n0{L<n0,n>P
n0
t R(t)}

+
Z�

n=1

Tr �n0{L<n0,n>

� t

t0

dt� D(t, t�)Ct�LIP
n0
t� R(t�)} ,

(1.26)

for the reduced density matrix ρn0(t). This equation depends on all the remaining
density matrices ρn(t) with n �= n0. In order to obtain a closed set of N equations of
motion for the reduced density matrices ρ1(t), ρ2(t), ..., ρN (t) we exploit each of the
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1.5. Dyson Series, Born and Mean-field Approximations

generalized Mori projectors Pn
t and derive an exact equation of motion for each of the

reduced states ρn(t) in analogy to Eq. (1.26). We refer to this set of equations as the
generalized Nakajima-Zwanzig equations or alternatively as the exact self-consistent
Mori projector (c-MoP) equations.

The exact c-MoP equations exactly describes the dynamics of reduced density ma-
trices for individual subsystems of an N -partite quantum few- or many-body system
of arbitrary size and geometry. The N -partite system may be closed or it may even
be open so that its dynamics is not necessarily unitary. Equation (1.26) takes the
correlations between subsystems explicitly into account via the action of the projec-
tion operator Ct, see Eq. (1.23). Moreover, whenever the total state R(t) is pure, the
growth of the von Neuman entropy of the states ρn(t), as described by Eq. (1.26),
accounts for the entanglement that is built up between each individual subsystem
and its surrounding. Since the first line of Eq. (1.26) for this case describes a uni-
tary evolution, entanglement between subsystems is only taken into account via the
second line of Eq. (1.26).

1.5 Dyson Series, Born and Mean-field Approximations

The exact c-MoP equations are often exceedingly difficult to solve in full general-
ity. Their great value as compared to the Liouville-von Neumann equation resides
rather in the fact that they provide a starting ground for further approximations.
In particular, due to the exponential structure of the time-propagator D(t, t�), we
can expand equation (1.26) as a Dyson series in powers of the system-environment
interaction LI ,

ρ̇n0(t) = Ln0ρn0(t) +
Z�

n=1

Tr �n0LIP
n0
t R(t)

+ Tr �n0LI

� t

t0

dt�eL0(t−t�) Ct�LIP
n0
t� R(t�) +

∞�

m=3

Ym ,

(1.27)

where the m-th order terms read,

Ym =Tr �n0LI

� t

t0

dt�
� t

t�
dtm−1 e

L0(t−tm−1) Ctm−1LI

×
� tm−1

t�
dtm−2 e

L0(tm−1−tm−2) Ctm−2LI

× · · · ×
� t3

t�
dt2 e

L0(t3−t2) Ct2LIe
L0(t2−t�) Ct�LI Pn0

t� R(t�) ,

(1.28)

with a time ordering as t0 ≤ t� ≤ t2 ≤ ... ≤ tm−1 ≤ t. In order to understand the
physical processes described by the m-th order correction, for m ≥ 2, it is convenient
to read Eq. (1.28) from right to left. There are always m different chronologically
ordered points in time {t0, t1, ..., tm}, with t1 = t� and tm = t. At each point
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CHAPTER 1: The self-consistent Mori projector and the c-MoP equations

in time tj , for 1 ≤ j ≤ m − 1, we find an interaction vertex described by the
superoperator CtjLI . The interaction vertices are linked via interaction-free time

evolution eL0(tj+1−tj).

At the very right end of Eq. (1.28) we find the factorized state Pn0
t� R(t�) or rather

Pn0
t1 R(t1) which, by maintaining the order in LI , can be rewritten into Pn0

t1 R(t1) =

eL0(t1−t0)Pn0
t0 R(t0) = eL0(t1−t0)R(t0). Therefore, the term Ym describes a process

where the initially factorized state R(t0) evolves according to the interaction-free
generator L0 to the first vertex point at t1 = t�. At the vertex the action of the
superoperator LI builds up correlations which are then projected out by the action
of Ct1 . The resulting operator given by A ≡ Ct1LIeL0(t1−t0)R(t0) solely contains the
correlated part between any constituents of the entire N -partite setup which has
been build up by the action of LI .

Similarly, this process continues from one point in time tj to the following one tj+1

successively building up correlations until the last point in time t = tm is reached.
The interaction vertex at the present time t = tm, however, is not described by the
superoperator CtLI but rather by Tr �n0LI ≡ Tr �n0P

n0
t LI . Clearly, the superoperator

Pn0
t projects out the relevant part of the dynamics of the reduced density matrix

ρn0(t).

In summary, we conclude that the m-th order corrections for m ≥ 2 contain the
influence of correlations which arise due to non-Markovian memory effects in the
interaction between the subpart n0 and the remaining N − 1 subparts. In turn, the
terms up to first order in LI do neither contain any correlations nor non-Markovian
memory effects. Hence, we expect a large improvement in the quality of the approx-
imations by going from first order in LI to second order in LI .

Motivated by these insights we apply the so-called Born approximation [4, 5] which
takes all terms up to second order into account. By dropping all terms proportional
to LI from the exponent of the dynamical map D(t, t�), we state an equation to
which we will refer as the c-MoP equation in Born approximation,

ρ̇n0(t) = Ln0ρn0(t) +
Z�

n=1

Trn{L<n0,n>ρn(t)⊗ ρn0(t)}

+
Z�

n=1

TrnL<n0,n>

� t

t0

dt� D<n0,n>(t, t
�)C<n0,n>

t� L<n0,n>ρn(t
�)⊗ ρn0(t

�),

(1.29)

with the shorthand notation D<n0,n>(t, t
�) ≡ e(t−t�)(Ln+Ln0 ) for the dynamical map

describing the free local evolution of the n0-th constituent and its Z different in-
teraction partners, and with the shorthand notation for the pairwise correlation
projector

C<n0,n>
t� ≡ − ρn(t

�)⊗ Trn − ρn0(t
�)⊗ Trn0 .

Interestingly, in the Born approximation we only find ”non-mixing” terms propor-
tional to L<n0,n>L<n0,m>δn,m and all possible terms containing LI �n0 vanish as well.
In fact, this is the direct consequence of a factorized state Ansatz for ρ�n0(t), see
Eq. (1.9).
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We emphasize again that whereas one could derive an exact equation for ρn0 for any
choice of the (reference) state ρ�n0 fulfilling the initial conditions, the quality of the
approximation in Eq. (1.29) depends on the ansatz for ρ�n0 . Here, our time dependent
and self-consistent projector, defined in Eqs. (1.8) and (1.9), appears to be the best
ansatz to account for a highly dynamical quantum few- or many-body environment,
see Chapters 2 and 3. A Born or rather Born-Markov approximation as applied
in open system theory is not accurate for the physical models considered in this
work since reduced density matrices of the system of interest and its surrounding
are treated on an equal footing and correlation functions of the surrounding can
thus not be expected to decay faster than the dynamics generated by the coupling
between subsystems. In fact, for models with time scale separations, which are the
basis of approaches using adiabatic elimination [33] or approximate Schrieffer-Wolff
transformations [34], Eq. (1.26) reduces to a standard master equation [4].

1.5.1 Mean-field approximation

The right hand side of Eq. (1.29) shows three terms, which are zeroth, first and sec-
ond order in L<n0,n>, respectively. The zeroth order term Ln0ρn0(t) denotes the free
local evolution of the subpart n0 which becomes exact for cases without interaction,
i.e. L<n0,n> = 0. The first and zeroth order terms taken together are equivalent to
the well-known mean-field or Gutzwiller approach which has been exploited with re-
markable success in equilibrium physics [9, 18, 35] as well as non-equilibrium physics
[26, 36–39]. In the mean-field approach the full quantum state R(t) is approximated
as a product state on the level of the full Liouville von-Neumann equation [40]

Ṙ(t) = LR(t)
mean-field−−−−−−→ d

dt

�
N�

n=1

ρn(t)

�
= L

�
N�

n=1

ρn(t)

�
. (1.30)

By applying the trace operation Tr �n0 one finds the first two terms on the right hand
side of Eq. (1.29). Mean-field can thus be understood as an approximation to linear
order in LI of the exact self-consistent projection operator equation, see Eq. (1.26).
Our theory therefore forms a systematic generalization of mean-field approaches.

As the non-Markovian properties, the explicit consideration of correlations via the
projector Ct, and entanglement between subsystems are only present in terms of
higher than linear order in LI , Eq. (1.29) yields a different quality of approximation
than mean-field. We will show that this is indeed the case in all examples to follow.

1.5.2 Notes on the superposition principle and the positivity

Since the Liouville von-Neumann equation, see Eq. (1.1), obeys a superposition
principle, one might wonder whether this is still respected by the non-linear equa-
tions of our approach. The non-linearity can for example be understood from the
term Ctρn(t) ∼ ρn(t)2 appearing in the integral kernel of Eq. (1.26) or more directly
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by writing the equation as ρ̇n0(t) = Leff(ρ1(t), ρ2(t), ..., ρN (t))ρn0(t) with an effective
Liouvillian Leff depending on the reduced states of all N subparts.

In this context we first note that Eq. (1.26) does in general no longer allow for
a superposition principle for R(t), in contrast to Eq. (1.1). Nonetheless, for two
reduced density matrices ρn0 and ρ�n0

that are solutions of Eq. (1.26), their convex
sum cρn0 + (1 − c)ρ�n0

(0 ≤ c ≤ 1) is also a solution since Eq. (1.26) is exact and
its solutions are therefore identical to Tr �n0R. Despite its nonlinearity, Eq. (1.26)
thus fulfills a superposition principle for reduced density matrices ρn0 . Due to the
applied approximations, the superposition principle of Eq. (1.26) for ρn0 does not
necessarily hold for Eq. (1.29). We have confirmed that it does hold for systems
where we found Eq. (1.29) to give exact results, see e.g. in Sec. 2.2.1 for the solution
of Eq. (2.8), but in general, the superposition principle is lost whenever Eq. (1.29)
ceases to be a good approximation.

Thus, the breaking of the superposition principle on the level of the relevant quan-
tity, here the reduced states, is only a consequence of an approximation within the
exact theory. In the literature one finds many more approximative theories whose
corresponding dynamical equations are nonlinear and thus break the superposition
principle. Among them the most prominent are mean-field theories [18, 40], nonlin-
ear Boltzmann equations [41] or the semi-classical equations in the field of nonlinear
optics [42].

Next, we remark that the c-MoP equations preserve the trace and the hermiticity but
within the Born approximation they do not guarantee for the positivity of the density
matrix. Such an issue is not unusual for projection operator theories, in fact, the
same conditions can e.g. be found in the well established Redfield equations [43, 44]
or rather the more general case of time-convolutionless projection operator methods
[4]. Obviously whenever the c-MoP equations provide a good approximation, they
will yield a positive density matrix. Hence the positivity of the eigenvalues of the
reduced density matrices can be used as a consistency test for the accuracy of the
approximation.

1.5.3 The c-MoP equations for unitary interactions

In this section we will derive a useful form of the c-MoP equations in Born approx-
imation for all cases in which the interaction Liouvillian is unitary. Moreover, we
will consider two-part interactions between any of the subparts in the full quantum
system and thus we write

LI(·) = −i
�

n,m

�
�An · �Bm, (·)

�
, (1.31)

with vectors �An and �Bm whose elements contain operators that solely act on the
subpart n and m with n,m ∈ {1, 2, ..., N}, respectively. We further demand the
operator

�
n,m

�An · �Bm to be hermitian.
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It proves useful to investigate the action of the correlation projector Ct = −
�

n P
n
t

on the operator LIP
n0
t R(t) with the interaction defined as in Eq. (1.31) and with

Pn0
t R(t) =

�N
n=1 ρn(t). We find

CtLI

N�

n=1

ρn(t) = −i
�

n,m

�

µ,ν

�
δAµ

n δB
ν
mδµ,ν ,

N�

n=1

ρn(t)

�
, (1.32)

with the vector components of the operators �A and �B denoted by the indices µ, ν,
the Kronecker-delta δµ,ν which takes the value 1 for µ = ν and the value 0 in any
other case, and the fluctuation operators

δAµ
n(t) = Aµ

n − Trn{Aµ
nρn(t)} and δBν

m(t) = Bν
m − Trm{Bν

mρm(t)} . (1.33)

As a result, the c-MoP equations in Born approximation for the reduced density
matrix of the subpart n0 are given by

ρ̇n0(t) = Ln0ρn0(t) +
Z�

n=1

�

µ,ν

�
(−i)

�
Tr{Bµ

nρn(t)}Aν
n0
δµ,ν , ρn0(t)

�

−
�
Aν

n0
,

� t

0
dt� eLn0 (t−t�) �δAµ

n0
(t�)ρn0(t

�) dµ,νn (t, t�)− ρn0(t
�)δAµ

n0
(t�) sµ,νn (t, t�)

���
,

(1.34)

with the two-time correlation functions of the n-th subpart

dµ,νn (t, t�) = Trn{Bν
ne

Ln(t−t�)δBµ
n(t

�)ρn(t
�)}

sµ,νn (t, t�) = Trn{Bν
ne

Ln(t−t�)ρn(t
�)δBµ

n(t
�)}.

(1.35)

Throughout the thesis we will use the term c-MoP equation to refer to the simplified
form of the self-consistent Mori projector equations given by Eq. (1.34) and Eq.
(1.35). Note, that our theory is in principle not restricted to unitary interaction
Liouvillians with two-body terms.

1.5.4 Scaling behavior of the c-MoP equations

The most striking advantage of any projection operator theory and in particular
of the c-MoP theory is the reduction of the complexity of the problem. Clearly,
the complexity of the Liouville-von Neumann equation (1.1) scales exponentially
with the number of subparts as the total Hilbert space H can be written as H =
H1 ⊗ H2 ⊗ ... ⊗ HN , with Hn denoting the local Hilbert space of each subpart
n ∈ {1, 2, ..., N}. In general, the huge number of degrees of freedom thus renders an
exact description infeasible, even if one resorts to numerical approaches.

In contrast, the complexity of the c-MoP equations scales linearly, i.e. it scales
as H1 + H2 + ... + HN , with the number of subparts. The self-consistent Mori-
projector theory thus offers a very significant reduction of complexity. However,
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whereas the Liouville-von Neumann equation is local in time the c-MoP equations
exhibit an integro-differential structure which leads, despite the favorable scaling for
the required Hilbert space dimension, to a more complicated form. Throughout the
thesis we will introduce methods to deal with the difficulty of non-Markovian c-MoP
equations which are adapted to the physical models at hand.
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Chapter 2

Self-Consistent Projection

Operator Theory for Quantum

Many-Body Systems

2.1 Introduction

Quantum many-body systems give rise to a number of intriguing phenomena such
as quantum phase transitions [9], topological insulators [45, 46] or high-temperature
superconductivity [47]. Yet, their description is a formidable challenge as the dimen-
sion of the Hilbert space grows exponentially with the number of its constituents.
Thus, the large set of degrees of freedom renders an exact description in general
infeasible, even if one resorts to numerical approaches.

Exceptions to this intractability are quantum systems that do not explore their en-
tire Hilbert space, where numerical optimization approaches such as the Density
Matrix Renormalization Group [48] become efficient descriptions. Alternatively one
may aim for only obtaining a subset of information that is the information of in-
terest about the quantum state of the entire system and try to find accurate and
efficient approximations for the sought quantities. Mean-field approaches [17] can
be understood as representatives of this strategy as they only predict properties of
a single constituent of the many-body system [9, 18].

In the same spirit, equations of motion for the part of the quantum state that is of
interest to the researcher have been derived in the context of open quantum systems
where the density matrix of the entire system is split into a ’relevant’ part describing
the subsystem of interest and a complementary ’irrelevant’ part with the help of the
Mori projector [3, 4, 21]. The guiding idea for a projection operator method in the
context of a many-body lattice problem could consist in restricting the interest on
an individual lattice site or clusters of lattice sites. Thus, the resulting effective
theory will grant us with an equation of motion for the reduced density matrices
and lead to a similar reduction of complexity as Mean-field approaches. We show
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Figure 2.1: Illustration of our approach for a one-dimensional lattice. We consider
a quantum many-body system where each subsystem (QS) has some unitary and
potentially some non-unitary dynamics (indicated by the rate γ). The subsystems
are coupled via the interaction LI . Within our theory we pick one QS of interest
and trace out the remaining constituents.

a sketch of such an idea in Fig. 2.1 where we consider one local lattice site as the
”system of interest” and treat the remainder of the lattice as the ”environment”.
As we have understood from the arguments presented in Sec. 1.2, standard open
system theories rely on a time-scale separation between system and environment
and therefore they will not be able to account for the general case of a dynamically
evolving environment.

With the self-consistent projection operator theory we introduce an approach to the
calculation of local properties of a quantum many-body system. We have presented
a detailed derivation of our theory in Chapter 1 and in particular we have argued
that our approach does not require a clear separation of time scales. Therefore,
we conclude that the time-dependent and self-consistent Mori projector is a very
accurate ansatz to account for a highly dynamical quantum many-body environment.

As we show in what follows in this chapter, our theory is capable of describing sta-
tionary states and dynamical evolutions for a situation in which one is only interested
in the physics of a part of the system under study. Most notably, it efficiently pre-
dicts non-equilibrium dynamics for long times, offers a methodology which applies to
two- and higher-dimensional systems in the same way as to one-dimensional ones,
and can directly and efficiently calculate stationary states of many-body systems
with dissipation.

An increasing number of experimental settings, including arrays of Josephson junc-
tions [49], ultra-cold atoms [50], ion traps [51, 52] and arrays of coupled cavities
[24], offer the possibility to generate effective many-particle systems and hence trig-
ger substantial research activity. One prominent application of these systems are
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investigations of the unitary dynamics of non-equilibrium states in closed systems
[53, 54]. As a first test of the performance of our method we thus apply it to calcu-
late local properties of time-evolving non-equilibrium states in closed systems. We
find that it predicts these quantities with very high accuracy for a time range that
strongly increases with the size of the considered subsystem.

In many experimental situations, the samples will however suffer from decoher-
ence and dissipation. Hence dissipative and driven-dissipative quantum many-body
systems are currently receiving enormous interest in the search for strongly cor-
related steady states and non-equilibrium analogs of quantum phase transitions
[23, 25, 26, 36, 52, 55–57]. As a second test we thus apply our method to driven and
dissipative quantum many-body systems and find that it predicts the values of local
quantities with very good accuracy. Finally, we will exploit our approach in one
and two spatial dimensions to investigate the dissipative mean-field phase transition
of first order appearing in the steady state of the driven-dissipative Heisenberg XX
model. We refer to this transition as the ”quantum to classical transition” since in
one of the phases the spins behave purely classically while in the other the spins
exhibit highly non-classical behavior.

The remainder of Chapter 2 is organized as follows. In section 2.2 we show the
applicability and accuracy of our method for both, the unitary dynamics in closed
quantum systems 2.2.1, and non-unitary dynamics in one-dimensional 2.2.2 and
two-dimensional 2.2.3 open quantum systems. Finally, we apply our method to
the resonantly driven and locally dissipative Heisenberg XX model to investigate
its steady state phases in 1D and 2D in Sec. 2.3 where we also discuss possible
drawbacks of the c-MoP formalism as performed in this chapter that might arise in
spatial dimension two and higher.

2.2 Applications and accuracy tests

We have laid the foundations and derived the main results of our theory in Chapter 1,
and now we will turn to test the accuracy of Eq. (1.29) in applications to one-
dimensional many-body lattice systems where either exact solutions or very accurate
t-DMRG simulations are available for comparison. In doing so we focus on a lattice
of two-level systems or spins and extensions thereof which include coherent drives
and relaxation of individual spins. This model (with periodic boundary conditions)
is described by Eq. (1.1) with (� = 1),

Ṙ(t) = −i

�
N�

n=1

�
∆σ†

nσn +
Ω

2
(σ†

n + σn)

�
− J

N�

n=1

�
σ†
nσn+1 + σnσ

†
n+1

�
, R(t)

�

+
γ

2

N�

n=1

�
2σnR(t)σ†

n − σ†
nσnR(t)−R(t)σ†

nσn
�
≡ LR(t) ,

(2.1)

where σn = |0n��1n| is the de-excitation operator on site n, N the number of lattice
sites, and σN+1 = σ1. We have written the Hamiltonian in a rotating frame such
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that, ∆ = ω − ωL is the detuning between spin transition frequency ω and drive
frequency ωL. J is the tunneling rate between nearest-neighbor sites, and Ω the drive
amplitude. The model of Eq. (2.1) allows us to study both, the unitary dynamics
of a closed system as well as stationary states of driven-dissipative systems.

Within our c-MoP theory we split the entire quantum system of N lattice sites into
identical subgroups or rather clusters containing a total of M adjacent lattice sites.
Consistent with the notation throughout Chapter 1, each subgroup shall be described
by the reduced density matrix ρMn (t) for the n-th subgroup with M sites. The index
n thus labels the clusters. Accordingly, we split the full Liouvillian L consistent
with Eq. (1.16) into parts which describe the local dynamics of each subgroup and
the interaction between any of the parts. The former is given by

Ln(·) = −i




M�

jn=1

�
∆σ†

jn
σjn +

Ω

2
(σ†

jn
+ σjn)

�
− J

M−1�

jn=1

�
σ†
jn
σjn+1 + σjnσ

†
jn+1

�
, (·)





+
γ

2

M�

jn=1

�
2σjn(·)σ†

jn
− σ†

jn
σjn(·)− (·)σ†

jn
σjn

�
,

(2.2)

where we have introduced the index jn ∈ {1, 2, ...,M} which labels the lattice sites
within the n-th cluster. In addition, the interaction Liouvillian reads

LI = iJ




N/M�

n=1

M�

jn=1

M�

jn+1=1

�
σ†
jn
σjn+1 + σjnσ

†
jn+1

�
δjn,Mδjn+1,1, (·)



 , (2.3)

where the Kronecker symbol δ, see Eq. (1.32), guarantees that the tunneling takes
place only on the boundaries of the clusters. For example, site jn = M of the n-th
site shall tunnel to the site jn+1 = 1 of the (n + 1)-th cluster. Without loss of
generality we shall assume N/M to take on integer values. Note, we can rewrite the

term σ†
jn
σjn+1 + σjnσ

†
jn+1

into a vector form �An · �Bn+1 consistent with the notation

used in Eq. (1.31) such that �An = {σ†
jn
, σjn}� and �Bn+1 = {σjn+1 , σ

†
jn
}�.

Instead of solving a set of coupled c-MoP equations for the reduced density matrices
ρM1 (t), ρM2 (t), ..., ρMN/M (t) of the clusters, we will exploit the translation invariance of

the lattice model and write ρMn (t) = ρMm (t) ≡ ρM (t) for all n,m ∈ {1, 2, ..., N/M}.
Thus we will be left with an equation of motion for the reduced state of one cluster
ρM (t) where we have dropped the cluster index for notational convenience. Similarly,
we set Ln → L0 with L0 accounting for all local dynamics within a cluster. The
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resulting c-MoP equation, see Eq. (1.34), for the model of Eq. (2.1) reads

ρ̇M (t) = L0ρ
M (t) + iJ

�
σ1�σ†

M �(t) + σM �σ†
1�(t) + H.c. , ρM (t)

�

− J2

��
σ1,

� t

0
dt�eL0(t−t�)

�
δσ†

1(t
�)ρM (t�)dM (t, t�)− ρM (t�)δσ†

1(t
�)sM (t, t�)

��
+H.c.

�

− J2

��
σM ,

� t

0
dt�eL0(t−t�)

�
δσ†

M (t�)ρM (t�)d1(t, t
�)− ρM (t�)δσ†

M (t�)s1(t, t
�)
��

+H.c.

�

− J2

��
σ1,

� t

0
dt�eL0(t−t�) �δσ1(t�)ρM (t�)pM (t, t�)− ρM (t�)δσ1(t

�)hM (t, t�)
��

+H.c.

�

− J2

��
σM ,

� t

0
dt�eL0(t−t�) �δσM (t�)ρM (t�)p1(t, t

�)− ρM (t�)δσM (t�)h1(t, t
�)
��

+H.c.

�

(2.4)

where, for any operator A, we have introduced the definitions �A�(t) = Tr{AρM (t)}
and δA(t) = A− �A�(t), while the correlation functions read

dM(1)(t, t
�) = Tr

�
σ†
M(1)e

L0(t−t�) �δσM(1)(t
�)ρM (t�)

��

sM(1)(t, t
�) = Tr

�
σ†
M(1)e

L0(t−t�) �ρM (t�)δσM(1)(t
�)
��

pM(1)(t, t
�) = Tr

�
σ†
M(1)e

L0(t−t�)
�
δσ†

M(1)(t
�)ρM (t�)

��

hM(1)(t, t
�) = Tr

�
σ†
M(1)e

L0(t−t�)
�
ρM (t�)δσ†

M(1)(t
�)
��

.

(2.5)

In contrast to Eq. (1.34) we have not used a compact form for the Born terms in
Eq. (2.4) in order to illustrate the possible combinations of spin operators explicitly.

2.2.1 Unitary dynamics of closed systems

In a first example we consider a one-dimensional closed system version of Eq. (2.1)
with ωL = Ω = γ = 0 and periodic boundary conditions that is initially pre-
pared in a pure state with one excitation in every second site and none other-
wise, |ψ0� = | . . . , 0, 1, 0, 1, . . . � [54]. We are interested in the time-evolving state

|ψ(t)� = e−iHt|ψ(0)� with H = −J
�N

jn=1

�
σ†
jn
σjn+1 + σjnσ

†
jn+1

�
.

As this model has an exact solution [58] in one dimension (due to the applicability
of the Jordan-Wigner transfomation) for any number of lattice sites N, including the
thermodynamic limit N → ∞, we use it to test the accuracy of the c-MoP equation,
see Eq. (1.29), for its explicit form for the model of Eq. (2.1). Thus, we will compare
local observables resulting from the exact wave function |ψ(t)� with local observables
obtained from the c-MoP density matrix ρM (t).

For this particular case under study, the only remaining parameter is the tunneling
rate J and the dynamics generated by the Liouvillian L0, see Eq. (2.2), is unitary.
Therefore, it appears practical to rewrite Eq. (2.4) into a rotating frame with respect
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to Hn = −J
�M−1

jn=1

�
σ†
jn
σjn+1 + σjnσ

†
jn+1

�
, which leads to a c-MoP equation given

by

ρ̇MI (t) =− J2

��
σ1(t),

� t

0
dt�σ†

1(t
�)ρMI (t�)d̃M (t, t�)− ρMI (t�)σ†

1(t
�)s̃M (t, t�)

�
+H.c.

�

− J2

��
σM (t),

� t

0
dt�σ†

M (t�)ρMI (t�)d̃1(t, t
�)− ρMI (t�)σ†

M (t�)s̃1(t, t
�)

�
+H.c.

�
,

(2.6)

with the correlation functions

d̃M(1)(t, t
�) = Tr

�
σ†
M(1)(t)σM(1)(t

�)ρMI (t�)
�

s̃M(1)(t, t
�) = Tr

�
σ†
M(1)(t) ρ

M
I (t�)σM(1)(t

�)
�
,

(2.7)

and the interaction picture operators σ(†)
1(M)(t) = e−iHntσ(†)

1(M)e
iHnt and ρMI (t) =

e−iHntρM (t)eiHnt.

We have neglected all terms of first order in the interaction, thus the mean-field
term, and all counter-rotating terms in Eq. (2.6) as �σ1(M)�(t) = pM(1)(t, t

�) =
hM(1)(t, t

�) = 0 for all times t. We have verified this statement numerically. However,
the absence of these terms becomes clear in light of the invariance of the c-MoP
equation (2.6) under the simultaneous transformation σ → eiφσ with φ ∈ [0, 2π)
of all spin operators present in the equation (this holds for the exact equation of
motion (2.1) as well). This global U(1) symmetry is preserved in the initial state
|ψ(0)��ψ(0)| and consequently in the dynamics as well. A mean-field calculation
for clusters of m lattice sites will thus be identical to the result for an m-site open
boundary lattice, and therefore be much less accurate, see Fig. 2.2 (c) and (d).

We have solved the c-MoP Eq. (2.6) by numerically integrating it in time using an
Euler method [59]. Therefore, we have discretized time and solved from t = 0 to
t = T for time steps ∆t. We needed to choose time steps of ∆t = 10−3J−1 in order
to avoid significant discretization errors. The main difficulty in solving the c-MoP
equation arrises due to its integro-differential structure. The correlation functions
in particular, see Eq. (2.7), force us to contract the interaction picture spin-matrix
at time t with the complete history of the system for times 0 ≤ t� ≤ t in order to

calculate e.g. σ†
M (t�)ρM (t�)Tr

�
σ†
1(t)σ1(t

�)ρM (t�)
�
. As a consequence, the number

of matrix operations (including matrix multiplication and contraction for matrices
of size 2M × 2M ) required to step from t → t + ∆t is given by t/∆t. Thus, the
number of matrix operations needed for a simulation of the c-MoP equation up to

t = T scales quadratically in time as
�T/∆t

tn=1 tn ∼ (T/∆t)2/2.

Moreover, the procedure requires to save both the interaction picture spin operators
and more significantly the reduced state ρM (t) for every instant of time in the main
memory storage of the CPU. As a result the memory occupancy scales linearly
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Figure 2.2: Application of the c-MoP approach to unitary dynamics of closed quan-
tum many-body systems. We consider the unitary dynamics of a Heisenberg XX
spin chain in one dimension for staggered initial conditions |ψ0� = | . . . , 0, 1, 0, 1, . . . �
[54]. In part (a) and (c) we show the local occupation number �σ†

nσn�(t) of initially
occupied cites, and in parts (b) and (d) we compare nearest neighbor correlations

�σ†
nσn+1�(t) as a function of time Jt in units of the tunneling rate. The solid lines

show c-MoP results for single-site c-MoP (gray), 2-site cluster c-MoP (brown), 4-
site cluster c-MoP (green), 6-site cluster c-MoP (purple), 8-site cluster c-MoP (blue)
and 10-site cluster c-MoP (red). The dashed lines show exact simulations of the full
Liouville-von Neumann equation for periodic boundary conditions [58] in the ther-
modynamic limit (black), for N = 6 sites (brown), for N = 18 (purple) and for

N = 30 sites (red). The real part of �σ†
nσn+1�(t) vanishes for all t.

in time. Whereas the spin operators are described by highly sparse matrices, the
sparseness of the density matrix ρM (t) decreases as the entanglement between the
subsystems grows.

We show the result of the c-MoP approach for different cluster sizes with M =
2, 4, 6, 8 and 10 [60] in Fig. 2.2. In parts (a) and (c) we compare c-MoP to exact

results for the local observable �σ†
nσn�(t) of initially occupied cites, and in parts (b)

and (d) we compare nearest neighbor correlations �σ†
nσn+1�(t). For both quanti-

ties we observe that the accuracy of our approach is excellent for short times, but
as expected eventually deteriorates for longer times from the exact result in the
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thermodynamic limit (TDL) of N → ∞ as shown in Fig. 2.2 (a) and (b).

Remarkably the time range in which the approximation is highly accurate grows sig-
nificantly as one applies the c-MoP approach to increasingly larger clusters. In Fig.
2.2 (c) and (d) we illustrate that the simulation of the c-MoP equations for an M -site
cluster reaches time ranges which are even slightly larger than the ones obtained by
the exact solution of the full Liouville-von Neumann equation for N = 3M sites.
Thus, the Born terms indeed contain a very significant amount of correlations and
the system-size scaling of the c-MoP equation is much more favorable as compared
to the system-size scaling of the Liouville-von Neumann equation.

With this example we stress the usefulness and efficiency of the c-MoP equations as
the number of variables needed for a full cMoP simulation scales as 22M which is
still feasible despite the computational difficulties arising due to the non-Markovian
structure of the Born terms. The Liouville-von Neumann equation, in contrast, is
an ordinary differential equation which is local in time but for an accuracy of local
observables comparable to those of the c-MoP simulation one needs to solve for a
much larger number of constituents. In the above example one would need to solve
for at least 22(3M) variables. For the example of M = 10 the c-MoP equations
contain 220 ∼ 106 variables whereas the Liouville-von Neumann equation contains
260 variables.

To further appreciate the perspective given by the cluster c-MoP approach one
should also compare the time ranges that we are able to accurately describe here
(although only for local quantities within a cluster) to those reached with t-DMRG
approaches (Jt ≈ 6) on high performance computing clusters [58]. What we present
here are straight forward (brute force) integrations of Eq. (2.6) and the overall
procedure for solving the c-MoP equations are the result of first steps which where
taken to find the solutions rather than reach any optimization goals. In contrast,
current DMRG achievements are the result of more than 20 years effort in optimizing
the technique by a global community. Whereas it is clearly beyond the scope of
this thesis, the purpose of which is to introduce the c-MoP approach, there can
thus be little doubt that optimizations on the numerical integration of Eq. (2.6)
will significantly increase the covered time range and widen the applicability of
the c-MoP theory to quench problems beyond the Heisenberg XX spin chain [61].
Natural candidates are for example Bose Hubbard models [53, 54]. An obvious, very
significant advantage of c-MoP, in particular in comparison with t-DMRG, is that
it can be applied to two or three dimensional lattices using the same formalism and
techniques presented here. We will elaborate on the higher dimensional case in more
detail in Sec. 2.3.

Lastly, we would like to introduce a very simple c-MoP equation which is obtained
by not taking a cluster of M sites as the subsystem of interest but rather a single
lattice site. In this case the translation invariance of the subsystems as assumed
generally in Eq. (2.4) and more specifically in Eq. (2.6) is broken due to the initial
state. However, the translation invariance over the subgroup of two lattice sites still
remains and we introduce the density matrix ρA(t) which describes the reduced state
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of a single initially occupied site and ρB(t) which describes the reduced state of an
initially empty site. Most significantly, the free local evolution in this case turns
out to be L0 = 0, see Eq. (2.2). As a consequence, the t-dependence in the Born
terms of Eq. (2.6) vanishes, which allows us to rewrite the c-MoP equations into
ordinary differential equations of second order. This step is achieved by taking the
derivative of Eq. (2.6) with respect to time t, after which we arrive at the coupled
c-MoP equations in their most simplified form

ρ̈A(t) = ZJ2�σ†σ�B(t)Dσ† [ρA(t)] + ZJ2�σσ†�B(t)Dσ[ρA(t)]

ρ̈B(t) = ZJ2�σ†σ�A(t)Dσ† [ρB(t)] + ZJ2�σσ†�A(t)Dσ[ρB(t)].
(2.8)

Here, we have introduced the number of nearest neighbors or rather the coordination
number Z, the expectation values �G�A(B)(t) = TrA(B){GρA(B)(t)} and the standard

Lindblad superoperators DG[ρ] = 2GρG†−G†Gρ−ρG†G for an arbitrary operator G
[5]. It is straight forward to solve Eq. (2.8) and we find �σ†σ�A(t) = cos2(

√
ZJt) =

1 − �σ†σ�B(t). We illustrate the result by the solid gray line in Fig. 2.2 (a) for
Z = 2.

In addition, for Z = 1 we would like to mention that Eq. (2.8) corresponds to the c-
MoP equations which describes the dynamics of two coherently coupled qubits with
a Liouville-von Neumann equation given by ρ̇ = iJ [σ†

AσB + σAσ
†
B, ρ]. Interestingly,

for the initial condition |1A0B� the exact result becomes identical to the c-MoP
result for all local observables. Thus, we found an example where the self-consistent
projection operator equations in Born approximation become exact even for a highly
non-Markovian system and an arbitrarily large interaction rate J . We conclude from
this simple example that the c-MoP theory clearly extends beyond the perturbative
approaches of standard open system theory [4] as explained in Chapter 1.

2.2.2 Stationary states of driven-dissipative systems

We now focus on the physically very interesting scenario of steady states in driven-
dissipative quantum many-body systems [23, 25, 26, 36, 52, 55–57] to further illus-
trate the power of the c-MoP approach. In fact, a very significant part of this thesis
focuses rather on steady states of dissipative systems, see Section 2.3 and also Part
II, than on unitary time evolution in closed systems. We thus consider the model of
Eq. (2.1) with Ω �= 0, γ �= 0 and ∆ �= 0 which results in the c-MoP equation (2.4).

Instead of numerically integrating Eq. (2.4) in time up to a range where the steady
state of the system is reached, we will now introduce a procedure which allows us to
solve directly for the steady state by solving an algebraic equation rather than an
integro-differential equation. Such a possibility is of crucial importance especially
when considering the difficulties of a full time simulation as explained above in
subsection 2.2.1.

For the validity of our procedure we need to assume that the dynamical map eL0t

fulfills the properties of a relaxing map [23]. A relaxing map satisfies limt→∞ eL0tA =
Tr{A}ρ0 with L0ρ0 = 0 for any matrix A. Most importantly for our purposes, we
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will exploit limt→∞ eL0tÃ = 0 for all traceless matrices Ã. By carefully examining
Eq. (2.4) together with the correlation function in Eq. (2.5) we find for every
dynamical map eL0(t−t�) present in the equations to be acting on traceless matrices.
And thus for τ = t − t� → ∞ the integral kernels vanish which we will explain in
more detail in what follows.

For this purpose it is useful to consider a general superoperator picture [20, 23]. In
this superspace we write the density operator ρM (t) with M denoting the number of
lattice sites in the cluster as a vector of dimension 22M × 1 rather than as a matrix
of dimension 2M × 2M . The action of all remaining operators can then be written
as super matrices of dimension 22M × 22M . For a detailed description of this idea
see for example Ref. [62].

It can be shown [23] that the dynamical map eL0t is relaxing if and only if the
zero eigenvalue of the 22M × 22M dimensional matrix L0 is non-degenerate and the
rest of the eigenvalues have negative real part. We have confirmed this property
numerically for all examples throughout this thesis. The mathematical conditions
which guarantee for a dynamical map to be relaxing can be found in [63]. In short for
our purposes, the mathematical theorem states that all dynamical maps defined on a
finite dimensional Hilbert space which include non-zero local Markovian dissipators
of Lindblad type for all modes or rather sites are relaxing maps.

Thus, in our approach we numerically diagonalize the 22M×22M matrix L0 and write
L0 = UDU−1 where U is the transformation matrix containing all eigenvectors of
L0 and D = diag{λ0, λ1, ..., λ22M } is the diagonal matrix containing all eigenvalues
with λ0 = 0 and Re{λn} < 0 for all n ∈ {1, 2, ..., 22M}. As a consequence, we find an
exponential decay of the memory kernel in Eq. (2.4) as the memory time τ = t− t�

reaches further and further into the past history of the density matrix. Note, under
the variable transformation t� → t − τ the main changes for the Born terms in Eq.
(2.4) are given by

� t
0 dt

� →
� t
0 dτ , ρ

M (t�) → ρM (t− τ) and eL0(t−t�) → eL0τ .

In order to rewrite the integro-differential c-MoP equations (2.4) into algebraic equa-
tions in the limit of t → ∞ we take three steps. First, we write limt→∞

� t
0 dτ =

�∞
0 dτ . Second, we write eL0τ =

�22M

l=0 eλlτMl with the matrices Ml = UΠlU−1 and
Πl which is a projector in the l’th direction, that is, a matrix with zeros everywhere
but in element (l,l) where it is one. Since all eigenvalues λl have negative real parts
with the only exception of λ0 = 0 we immediately find that limτ→∞ eL0τ = M0.
And as a consequence of limτ→∞ eL0τA = M0A = 0 for all traceless matrices A,

we can deduce eL0τA =
�22M

l=1 eλlτMlA. We emphasize that this step allows us to

integrate from τ = 0 to τ = ∞ over the superoperator
�22M

l=1 eλlτMl in contrast to

the full dynamical map eL0τ =
�d2

l=0 e
λlτMl which would yield a divergence linear

in time due to limt→∞
� t
0 dτM0 = M0 limt→∞ t.

In the third step we approximate limt→∞ ρM (t− τ) ≈ limt→∞ ρM (t) ≡ ρMss since the
contributions of ρM (t − τ) to the integral kernel for large τ -values where τ ≈ t are
exponentially suppressed.

Exploiting these three steps we finally state the algebraic c-MoP equations for the
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steady state

ρ̇Mss = 0 = L0ρ
M
ss + iJ
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σ1�σ†

M �ss + σM �σ†
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(2.9)

where, for any operator A, we have introduced the definitions �A�ss = Tr{AρMss }
and δA(ss) = A− �A�ss, while the correlation functions read

dM(1),k = Tr
�
σ†
M(1)Mk

�
δσM(1)(ss)ρ

M
ss

��

sM(1),k = Tr
�
σ†
M(1)Mk

�
ρMss δσM(1)(ss)

��

pM(1),k = Tr
�
σ†
M(1)Mk

�
δσ†

M(1)(ss)ρ
M
ss

��

hM(1),k = Tr
�
σ†
M(1)Mk

�
ρMss δσ

†
M(1)(ss)

��
.

(2.10)

We have been able to solve equations (2.9) and (2.10) for cluster sizes of M =
1, 2, ..., 6. The numerical challenges reside in the full diagonalization of the 22M ×
22M dimensional matrix L0, in the nonlinear character of the Eq. (2.9) and most

significantly in the large number of terms scaling as 24M due to the sum
�22M

l,k=1 in
Eq. (2.9). The issues arising because of the nonlinearity of the steady state c-MoP
equation can be overcome by solving it iteratively. In particular, we guess a test
matrix for ρMss and insert it inside any of the trace operations in Eq. (2.9) and then
solve the resulting linear equation for ρMss . Accordingly, the obtained solution is
used for the guess in the next iteration process until convergences to some desired
accuracy is reached.

We test the accuracy of Eq. (2.9) for different cluster sizes by comparing its pre-
dictions for local observables to t-DMRG integrations of the one-dimensional model
in Eq. (2.1) with N = 21 lattice sites and open boundary conditions [56, 64]. From
this t-DMRG numerics, which integrated Eq. (2.1) for a time range T = 20/γ using
a second order Trotter expansion with steps δt = 10−3/γ, we extract the reduced
density matrix for the central site n0 = 11, denoted by ρDMRG

ss . For comparison
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4

i.e. Ln0, �n0(·) = −iJ [an0(
�Z

n=1 a
†
n) + H.c. , (·)], where Z

denotes the coordination number of the lattice.
The c-MoP equation (5) can be simplified significantly

if one is only interested in the steady state solution,
ρss = limt→∞ ρn0(t). The action of the integral kernel
K<n0,n>(t, t

�) on ρn(t�)⊗ ρn0(t
�) vanishes for |t− t�| suf-

ficiently large. For t → ∞ one can thus approximate
ρn(t�) ≈ ρss in the right hand side of Eq. (5) and extract
an algebraic equation for ρss, see appendix E for details.
Following this procedure we end up with the steady state
c-MoP equation for the driven dissipative Bose-Hubbard
model,

(a) (b) (c) Im {Tr{aρss}} Re {Tr{aρss}} (8)

0 = (L0 + LMF + LBT ) ρss, (9)

where we have dropped the lattice site index as the
entire system described by Eq. (7) displays transla-
tional invariance. Thus ρss = limt→∞ ρn0(t). The
superoperators, which are proportional to different
powers of the tunneling rate J , are given by: The free
evolution of the on-site system, proportional to J0,
L0(·) = −i [∆a†a + Ω

2 (a
† + a) + U

2 a
†a†aa , (·)] + γ

2D(·),
the first order correction which is equivalent
to the meanfield ansatz, proportional to J1,
LMF (·) = −i Z J

�
aTr{a†ρss}+ H.c. , (·)

�
, and

the Born term which is proportional to J2,
LBT (·) = −ZJ2

�
i,j

�∞
0 dτ dij(τ, ρss)

�
ai, eτL0 [aj , (·)]

�
−

ZJ2 {
�

j

�∞
0 dτ sj(τ, ρss)
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aj , eτL0 (·) a

�
+ H.c. } −

iZJ2
�

i,j

�∞
0 dτ hij(τ, ρss)

�
ai, eτL0 (·)

�
. Here the sum�

i,j with i, j ∈ {−,+} runs over all possible combina-

tions of operators a− ≡ a and a+ ≡ a†. Moreover, the
steady-state dependent correlation functions are given by
dij(τ, ρss) = Tr{ajeτL0aiρss}− Tr{aiρss}Tr{ajeτL0ρss},
sj(τ, ρss) = Tr{(aj)†eτL0

�
a†, ρss

�
} and hij(τ, ρss) =

iTr{ajρss}Tr{ajeτL0
�
ai, ρss

�
}.

In the following, we will be interested in numerical re-
sults of Eq. (9) in the weak driving regime, i.e. Ω � U .
An accurate treatment of the strong driving regime, i.e.
Ω � U , can be found in [6]. In particular, we want
to test the performance of Eq. (9) by comparing its so-
lution, which from now on shall be denoted by ρcMss , to
an exact solution of Eq. (7) for a numerically feasible
number of lattice sites N . For a large number of sites,
N = 21, we obtain a very accurate approximation with
the time dependent density matrix renormalization group
method, see [6, 7], whereas for a small number of sites,
we numerically integrate the full equation (7) to find a
numerically exact solution. We also compare the mean-
field result denoted by ρMF

ss to the numerical solutions
and show the quantitative and qualitative improvement
of ρcMss over ρMF

ss . For this purpose we compare the on-
site observables and calculate a measure for the distance
between two quantum states ρ1 and ρ2. Here, we will
use the trace distance defined as D(ρ1, ρ2) =

1
2 |ρ1 − ρ2|

with |A| =
√
AA†, see e.g. [4]. Figure 2 (left) shows

FIG. 2. (Color online) Left: Occupation number Tr{a†aρss}
in the hard-core limit (U → ∞) as a function of ZJ for Z = 2,
∆ = 0.6 and Ω = 1.5 in units of the dissipation rate γ. Inset:
The real part of the correlation function �a� for the same set
of parameters. The dashed green-curve shows the DMRG
result and the solid red curve shows the results optained
from the c-MoP equation. The dotted-dashed curve shows
the Meanfield result with a bistability. One branch reaches
from 0 ≤ ZJ ≤ 3.8γ, while the other branch reaches from
3.0γ ≤ ZJ ≤ ∞. Right: Trace distances D(ρDMRG

ss , ρMF
ss )

(dashed black curve) and D(ρDMRG
ss , ρc-MoP

ss ) (solid red line)
for the same set of parameters.

the occupation number Tr{a†aρss} as a function of ZJ/γ
for Z = 2, ∆ = 0.6γ and Ω = 1.5γ. We find a remark-
able agreement between the c-MoP results (solid red line)
and the results of the DMRG calculation (dashed green
line). The same holds for the real part of Tr{aρss}, inset
of Fig. 2, and for the imaginary part of Tr{aρss}. The
meanfield solution, on the other hand, deviates from the
DMRG result to an extend which makes the approxima-
tion completely unreliable over a large parameter range.
Moreover, we find a bistabilty in the MF solution due to
the non-linear character of the Meanfield equation. The
c-MoP equation (9) which is a non-linear algebraic equa-
tion as well, does not exhibit bistable behaviour for all
the parameter sets of our study. According to a theorem
of Spohn [2, 3] the dynamics of a non-unitary but rather
Lindblad type equation of motion [1], just like Eq. (7),
always relaxes to a unique steady-state in the case of a
finite dimensional Hilbert space. Thus, for a finite lat-
tice, i.e. N < ∞, there exists a unique steady state for
the driven dissipative Bose Hubbard model as we can
resort to a truncated Hilbert space for U �= 0, see [3].
This feature is captured by the c-MoP result but not by
meanfield theory. However, both meanfield and the c-
MoP equation solely depend on the coordination number
Z and not on the number of lattice sites N . Therefore,
it might be that Eq. (7) displays bistability in the ther-
modynamic limit, i.e. N → ∞, as the case of an infinite
dimensional Hilbert space does not fulfill the conditions
for the theorem of Spohn [2]. So far, the bistability on
meanfield level seemed to be a hint for the existence of
bistability in nature [23]. In the parameter regimes of
our study, and that is the only sure statement we can
make at this point, the existence of bistability is negated
by the c-MoP equations. Hence, bistability seems to be
just an artifact of the meanfield approximation.

Figure 2 (right) shows trace distances D(ρDMRG
ss , ρMF

ss )
(dashed black curve) and D(ρDMRG

ss , ρc-MoP
ss ) (solid red
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meanfield solution, on the other hand, deviates from the
DMRG result to an extend which makes the approxima-
tion completely unreliable over a large parameter range.
Moreover, we find a bistabilty in the MF solution due to
the non-linear character of the Meanfield equation. The
c-MoP equation (9) which is a non-linear algebraic equa-
tion as well, does not exhibit bistable behaviour for all
the parameter sets of our study. According to a theorem
of Spohn [2, 3] the dynamics of a non-unitary but rather
Lindblad type equation of motion [1], just like Eq. (7),
always relaxes to a unique steady-state in the case of a
finite dimensional Hilbert space. Thus, for a finite lat-
tice, i.e. N < ∞, there exists a unique steady state for
the driven dissipative Bose Hubbard model as we can
resort to a truncated Hilbert space for U �= 0, see [3].
This feature is captured by the c-MoP result but not by
meanfield theory. However, both meanfield and the c-
MoP equation solely depend on the coordination number
Z and not on the number of lattice sites N . Therefore,
it might be that Eq. (7) displays bistability in the ther-
modynamic limit, i.e. N → ∞, as the case of an infinite
dimensional Hilbert space does not fulfill the conditions
for the theorem of Spohn [2]. So far, the bistability on
meanfield level seemed to be a hint for the existence of
bistability in nature [23]. In the parameter regimes of
our study, and that is the only sure statement we can
make at this point, the existence of bistability is negated
by the c-MoP equations. Hence, bistability seems to be
just an artifact of the meanfield approximation.

Figure 2 (right) shows trace distances D(ρDMRG
ss , ρMF

ss )
(dashed black curve) and D(ρDMRG

ss , ρc-MoP
ss ) (solid red
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where the sum
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i,j with i, j ∈ {−,+} runs over all possi-
ble combinations of operators a− ≡ a and a+ ≡ a†. The
steady-state dependent correlation functions are given by

dij(τ, ρss) =Tr{ajeτL0aiρss}− Tr{aiρss}Tr{ajeτL0ρss}
sj(τ, ρss) =Tr{(aj)†eτL0

�
a†, ρss

�
}

hij(τ, ρss) = iTr{ajρss}Tr{ajeτL0
�
ai, ρss

�
}.

(12)

In the following, we will be interested in numerical re-
sults of Eq. (8) in the weak driving regime, i.e. Ω � U .
An accurate treatment of the strong driving regime, i.e.
Ω � U , can be found in [50]. In particular, we want to
test the performance of Eq. (8) by comparing its solution,
which from now on shall be denoted by ρcMss , to a nu-
merically exact solution of Eq. (7) for a one dimensional
(Z = 2) finite lattice. For a large number of sites N = 21,
we obtain the exact solution with a DMRG method. For
a small number of sites 3 ≤ N ≤ 6 by a brute force
calculation. We also compare the Meanfield result de-
noted by ρMF

ss to the numerically exact solution and show
the quantitative and qualitative improvement of ρcMss over
ρMF
ss . For this purpose we compare the on-site observ-

able Tr{a†aρss} and calculate a measure for the distance
between two quantum states ρ1 and ρ2. Here, we will use
the trace distance defined as D(ρ1, ρ2) =

1
2 |ρ1 − ρ2| with

|A| =
√
AA†, see e.g. [5].

ZJ

γ
(13)

FIG. 3. (Color online) Photon occupation number
Tr{a†aρss} in the hard-core limit (U → ∞) as a function
of J

γ for ∆
γ = 1.0, Z = 2 and Ω

γ = 1.5. The dashed green-
curve shows the DMRG result and the solid red curve shows
the result optained by the c-MoP equation. The dotted-
dashed curve shows the Meanfield result with a bistability.
One branch reaches from 0 ≤ J

γ ≤ 1.9, while the other branch

reaches from 1.5 ≤ J
γ ≤ ∞.
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i.e. Ln0, �n0(·) = −iJ [an0(
�Z

n=1 a
†
n) + H.c. , (·)], where Z

denotes the coordination number of the lattice.
The c-MoP equation (5) can be simplified significantly

if one is only interested in the steady state solution,
ρss = limt→∞ ρn0(t). The action of the integral kernel
K<n0,n>(t, t

�) on ρn(t�)⊗ ρn0(t
�) vanishes for |t− t�| suf-

ficiently large. For t → ∞ one can thus approximate
ρn(t�) ≈ ρss in the right hand side of Eq. (5) and extract
an algebraic equation for ρss, see appendix E for details.
Following this procedure we end up with the steady state
c-MoP equation for the driven dissipative Bose-Hubbard
model,

(a) (b) (c) Im {Tr{aρss}} Re {Tr{aρss}} (8)

0 = (L0 + LMF + LBT ) ρss, (9)

where we have dropped the lattice site index as the
entire system described by Eq. (7) displays transla-
tional invariance. Thus ρss = limt→∞ ρn0(t). The
superoperators, which are proportional to different
powers of the tunneling rate J , are given by: The free
evolution of the on-site system, proportional to J0,
L0(·) = −i [∆a†a + Ω

2 (a
† + a) + U

2 a
†a†aa , (·)] + γ

2D(·),
the first order correction which is equivalent
to the meanfield ansatz, proportional to J1,
LMF (·) = −i Z J

�
aTr{a†ρss}+ H.c. , (·)

�
, and

the Born term which is proportional to J2,
LBT (·) = −ZJ2

�
i,j

�∞
0 dτ dij(τ, ρss)

�
ai, eτL0 [aj , (·)]

�
−
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�
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�∞
0 dτ sj(τ, ρss)
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aj , eτL0 (·) a

�
+ H.c. } −

iZJ2
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i,j

�∞
0 dτ hij(τ, ρss)

�
ai, eτL0 (·)

�
. Here the sum�

i,j with i, j ∈ {−,+} runs over all possible combina-

tions of operators a− ≡ a and a+ ≡ a†. Moreover, the
steady-state dependent correlation functions are given by
dij(τ, ρss) = Tr{ajeτL0aiρss}− Tr{aiρss}Tr{ajeτL0ρss},
sj(τ, ρss) = Tr{(aj)†eτL0

�
a†, ρss

�
} and hij(τ, ρss) =

iTr{ajρss}Tr{ajeτL0
�
ai, ρss

�
}.

In the following, we will be interested in numerical re-
sults of Eq. (9) in the weak driving regime, i.e. Ω � U .
An accurate treatment of the strong driving regime, i.e.
Ω � U , can be found in [6]. In particular, we want
to test the performance of Eq. (9) by comparing its so-
lution, which from now on shall be denoted by ρcMss , to
an exact solution of Eq. (7) for a numerically feasible
number of lattice sites N . For a large number of sites,
N = 21, we obtain a very accurate approximation with
the time dependent density matrix renormalization group
method, see [6, 7], whereas for a small number of sites,
we numerically integrate the full equation (7) to find a
numerically exact solution. We also compare the mean-
field result denoted by ρMF

ss to the numerical solutions
and show the quantitative and qualitative improvement
of ρcMss over ρMF

ss . For this purpose we compare the on-
site observables and calculate a measure for the distance
between two quantum states ρ1 and ρ2. Here, we will
use the trace distance defined as D(ρ1, ρ2) =

1
2 |ρ1 − ρ2|

with |A| =
√
AA†, see e.g. [4]. Figure 2 (left) shows

FIG. 2. (Color online) Left: Occupation number Tr{a†aρss}
in the hard-core limit (U → ∞) as a function of ZJ for Z = 2,
∆ = 0.6 and Ω = 1.5 in units of the dissipation rate γ. Inset:
The real part of the correlation function �a� for the same set
of parameters. The dashed green-curve shows the DMRG
result and the solid red curve shows the results optained
from the c-MoP equation. The dotted-dashed curve shows
the Meanfield result with a bistability. One branch reaches
from 0 ≤ ZJ ≤ 3.8γ, while the other branch reaches from
3.0γ ≤ ZJ ≤ ∞. Right: Trace distances D(ρDMRG

ss , ρMF
ss )

(dashed black curve) and D(ρDMRG
ss , ρc-MoP

ss ) (solid red line)
for the same set of parameters.

the occupation number Tr{a†aρss} as a function of ZJ/γ
for Z = 2, ∆ = 0.6γ and Ω = 1.5γ. We find a remark-
able agreement between the c-MoP results (solid red line)
and the results of the DMRG calculation (dashed green
line). The same holds for the real part of Tr{aρss}, inset
of Fig. 2, and for the imaginary part of Tr{aρss}. The
meanfield solution, on the other hand, deviates from the
DMRG result to an extend which makes the approxima-
tion completely unreliable over a large parameter range.
Moreover, we find a bistabilty in the MF solution due to
the non-linear character of the Meanfield equation. The
c-MoP equation (9) which is a non-linear algebraic equa-
tion as well, does not exhibit bistable behaviour for all
the parameter sets of our study. According to a theorem
of Spohn [2, 3] the dynamics of a non-unitary but rather
Lindblad type equation of motion [1], just like Eq. (7),
always relaxes to a unique steady-state in the case of a
finite dimensional Hilbert space. Thus, for a finite lat-
tice, i.e. N < ∞, there exists a unique steady state for
the driven dissipative Bose Hubbard model as we can
resort to a truncated Hilbert space for U �= 0, see [3].
This feature is captured by the c-MoP result but not by
meanfield theory. However, both meanfield and the c-
MoP equation solely depend on the coordination number
Z and not on the number of lattice sites N . Therefore,
it might be that Eq. (7) displays bistability in the ther-
modynamic limit, i.e. N → ∞, as the case of an infinite
dimensional Hilbert space does not fulfill the conditions
for the theorem of Spohn [2]. So far, the bistability on
meanfield level seemed to be a hint for the existence of
bistability in nature [23]. In the parameter regimes of
our study, and that is the only sure statement we can
make at this point, the existence of bistability is negated
by the c-MoP equations. Hence, bistability seems to be
just an artifact of the meanfield approximation.

Figure 2 (right) shows trace distances D(ρDMRG
ss , ρMF

ss )
(dashed black curve) and D(ρDMRG

ss , ρc-MoP
ss ) (solid red
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where the sum
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i,j with i, j ∈ {−,+} runs over all possi-
ble combinations of operators a− ≡ a and a+ ≡ a†. The
steady-state dependent correlation functions are given by
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In the following, we will be interested in numerical re-
sults of Eq. (8) in the weak driving regime, i.e. Ω � U .
An accurate treatment of the strong driving regime, i.e.
Ω � U , can be found in [50]. In particular, we want to
test the performance of Eq. (8) by comparing its solution,
which from now on shall be denoted by ρcMss , to a nu-
merically exact solution of Eq. (7) for a one dimensional
(Z = 2) finite lattice. For a large number of sites N = 21,
we obtain the exact solution with a DMRG method. For
a small number of sites 3 ≤ N ≤ 6 by a brute force
calculation. We also compare the Meanfield result de-
noted by ρMF

ss to the numerically exact solution and show
the quantitative and qualitative improvement of ρcMss over
ρMF
ss . For this purpose we compare the on-site observ-

able Tr{a†aρss} and calculate a measure for the distance
between two quantum states ρ1 and ρ2. Here, we will use
the trace distance defined as D(ρ1, ρ2) =

1
2 |ρ1 − ρ2| with

|A| =
√
AA†, see e.g. [5].

ZJ

γ
(13)

FIG. 3. (Color online) Photon occupation number
Tr{a†aρss} in the hard-core limit (U → ∞) as a function
of J

γ for ∆
γ = 1.0, Z = 2 and Ω

γ = 1.5. The dashed green-
curve shows the DMRG result and the solid red curve shows
the result optained by the c-MoP equation. The dotted-
dashed curve shows the Meanfield result with a bistability.
One branch reaches from 0 ≤ J

γ ≤ 1.9, while the other branch

reaches from 1.5 ≤ J
γ ≤ ∞.
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γ = 1.0, Z = 2 and Ω
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Figure 2.3: Accuracy test for stationary states of driven-dissipative quantum many-
body systems. (a) On-site steady state occupation number Tr{σ†σρss}, (b) real
part, and (c) imaginary part of Tr{σρss} as a function of ZJ/γ. Here, Z = 2 de-
notes the coordination number of a one-dimensional lattice. Other parameters are
∆ = 0.6γ and Ω = 1.5γ. We plot results for t-DMRG (dashed green), single-site
mean-field (dotted black), two-site cluster mean-field (dash-dotted black), single-
site c-MoP (dashed red), and two-site cluster c-MoP (solid red). (d) Trace dis-
tances D(ρDMRG

ss , ρMF
ss (1)) (dotted black), D(ρDMRG

ss , ρMF
ss (2)) (dash-dotted black),

D(ρDMRG
ss , ρcMss (1)) (dashed red), D(ρDMRG

ss , ρcMss (2)) (solid red), and D(ρDMRG
ss , ρPTss )

(blue) for the same parameters as (a).

we also consider mean-field results, thus only terms up to first oder in Eq. (2.9),
for different cluster sizes, and results of standard perturbation theory to second or-
der in the interactions [65, 66] to show the significant quantitative and qualitative
improvement of c-MoP over these approaches.

Therefore, we compare expectation values of on-site observables and calculate the
trace distance D(ρ1, ρ2) =

1
2 |ρ1 − ρ2| with |A| =

√
AA† [67] between the t-DMRG

result, ρ1 = ρDMRG
ss , and the approximations, ρ2 = ρcMss (j), ρMF

ss (j) or ρPTss with the
index (j) = (1), (2), ..., (6) labeling the cluster size. Here, ρPTss denotes the result
from standard perturbation theory to second order in the interactions [65, 66]

Figure 2.3(a) shows the occupation number Tr{σ†σρss}, whereas Figs. 2.3(b) and
(c) show the real and imaginary parts of Tr{σρss} for t-DMRG, c-MoP and mean-
field calculations. We find a very good agreement between the c-MoP results (red)
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2.2. Applications and accuracy tests

and t-DMRG results (green), which again improves significantly for two-site clusters
(solid red lines) compared to individual lattice sites (dashed red lines). The mean-
field results however deviate from the t-DMRG results to an extend which makes
them unreliable over a large parameter range for both, single-site (black dotted)
as well as two-site cluster (black dash-dotted) versions. These findings are fur-
ther illustrated by Fig. 2.3 (d) which shows the trace distances D(ρDMRG

ss , ρMF
ss (1))

(dotted black), D(ρDMRG
ss , ρMF

ss (2)) (dash-dotted black), D(ρDMRG
ss , ρcMss (1)) (dashed

red), D(ρDMRG
ss , ρcMss (2)) (solid red), and D(ρDMRG

ss , ρPTss ). We see that whereas even
D(ρDMRG

ss , ρcMss ) is appreciably smaller than D(ρDMRG
ss , ρMF-cl

ss ), significantly smaller
trace distances are achieved by two-site cluster c-MoP.

In the context of this section, all the density matrices describe reduced states of a
single site, in case of a cluster calculation for M ≥ 2 we trace out all sites from the
cluster result but the site in the center of the cluster. The parameters in Fig. 2.3
are chosen in order to exemplify the bistability in the single-site meanfield solution
[68]. The bistability vanishes for our example in the results of all approaches which
are expected to be more precise than single-site mean-field. We will discuss the
bistability and its physical meaning in more detail in Section 2.3.

As the c-MoP theory uses an expansion of the generalized Nakajima-Zwanzig equa-
tion, see Eq. (1.26), up to second order in the interactions between subsystems, one
might wonder whether the same degree of approximation could be achieved with
perturbation theory [65, 66]. To show that this is clearly not the case, we plotted
for comparison D(ρDMRG

ss , ρPTss ) for ρPTss as obtained from a perturbation theory ap-
proach up to order J2 to the steady state, c.f. [65, 66], which is only accurate for
ZJ/γ � 1.

In Fig. 2.4(a) we also show the result of the c-MoP cluster approach for larger
cluster sizes with M = 2, ..., 6 by calculating again the trace distances with respect
to the result obtained by t-DMRG. We find a fast convergences towards the t-DMRG
result as the cluster size is increased, see also Fig 2.4(b), which is a precise control
handle for verifying the reliability of the c-MoP result. To further appreciate the
accuracy of the c-MoP approach we also show the trace distance of a 6-site cluster
mean-field calculation to the t-DMRG result in Fig 2.4(a). Clearly, we find a much
higher quantitative accuracy for the c-MoP approach than for the mean-field result.
Moreover, given the finite integration range [0, T ], our t-DMRG results may still
deviate slightly from the exact steady state and our c-MoP results could thus be
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ficiently large. For t → ∞ one can thus approximate
ρn(t�) ≈ ρss in the right hand side of Eq. (5) and extract
an algebraic equation for ρss, see appendix E for details.
Following this procedure we end up with the steady state
c-MoP equation for the driven dissipative Bose-Hubbard
model,
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tional invariance. Thus ρss = limt→∞ ρn0(t). The
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tions of operators a− ≡ a and a+ ≡ a†. Moreover, the
steady-state dependent correlation functions are given by
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In the following, we will be interested in numerical re-
sults of Eq. (9) in the weak driving regime, i.e. Ω � U .
An accurate treatment of the strong driving regime, i.e.
Ω � U , can be found in [6]. In particular, we want
to test the performance of Eq. (9) by comparing its so-
lution, which from now on shall be denoted by ρcMss , to
an exact solution of Eq. (7) for a numerically feasible
number of lattice sites N . For a large number of sites,
N = 21, we obtain a very accurate approximation with
the time dependent density matrix renormalization group
method, see [6, 7], whereas for a small number of sites,
we numerically integrate the full equation (7) to find a
numerically exact solution. We also compare the mean-
field result denoted by ρMF

ss to the numerical solutions
and show the quantitative and qualitative improvement
of ρcMss over ρMF

ss . For this purpose we compare the on-
site observables and calculate a measure for the distance
between two quantum states ρ1 and ρ2. Here, we will
use the trace distance defined as D(ρ1, ρ2) =

1
2 |ρ1 − ρ2|

with |A| =
√
AA†, see e.g. [4]. Figure 2 (left) shows

FIG. 2. (Color online) Left: Occupation number Tr{a†aρss}
in the hard-core limit (U → ∞) as a function of ZJ for Z = 2,
∆ = 0.6 and Ω = 1.5 in units of the dissipation rate γ. Inset:
The real part of the correlation function �a� for the same set
of parameters. The dashed green-curve shows the DMRG
result and the solid red curve shows the results optained
from the c-MoP equation. The dotted-dashed curve shows
the Meanfield result with a bistability. One branch reaches
from 0 ≤ ZJ ≤ 3.8γ, while the other branch reaches from
3.0γ ≤ ZJ ≤ ∞. Right: Trace distances D(ρDMRG

ss , ρMF
ss )

(dashed black curve) and D(ρDMRG
ss , ρc-MoP

ss ) (solid red line)
for the same set of parameters.

the occupation number Tr{a†aρss} as a function of ZJ/γ
for Z = 2, ∆ = 0.6γ and Ω = 1.5γ. We find a remark-
able agreement between the c-MoP results (solid red line)
and the results of the DMRG calculation (dashed green
line). The same holds for the real part of Tr{aρss}, inset
of Fig. 2, and for the imaginary part of Tr{aρss}. The
meanfield solution, on the other hand, deviates from the
DMRG result to an extend which makes the approxima-
tion completely unreliable over a large parameter range.
Moreover, we find a bistabilty in the MF solution due to
the non-linear character of the Meanfield equation. The
c-MoP equation (9) which is a non-linear algebraic equa-
tion as well, does not exhibit bistable behaviour for all
the parameter sets of our study. According to a theorem
of Spohn [2, 3] the dynamics of a non-unitary but rather
Lindblad type equation of motion [1], just like Eq. (7),
always relaxes to a unique steady-state in the case of a
finite dimensional Hilbert space. Thus, for a finite lat-
tice, i.e. N < ∞, there exists a unique steady state for
the driven dissipative Bose Hubbard model as we can
resort to a truncated Hilbert space for U �= 0, see [3].
This feature is captured by the c-MoP result but not by
meanfield theory. However, both meanfield and the c-
MoP equation solely depend on the coordination number
Z and not on the number of lattice sites N . Therefore,
it might be that Eq. (7) displays bistability in the ther-
modynamic limit, i.e. N → ∞, as the case of an infinite
dimensional Hilbert space does not fulfill the conditions
for the theorem of Spohn [2]. So far, the bistability on
meanfield level seemed to be a hint for the existence of
bistability in nature [23]. In the parameter regimes of
our study, and that is the only sure statement we can
make at this point, the existence of bistability is negated
by the c-MoP equations. Hence, bistability seems to be
just an artifact of the meanfield approximation.

Figure 2 (right) shows trace distances D(ρDMRG
ss , ρMF

ss )
(dashed black curve) and D(ρDMRG

ss , ρc-MoP
ss ) (solid red

4

i.e. Ln0, �n0(·) = −iJ [an0(
�Z

n=1 a
†
n) + H.c. , (·)], where Z

denotes the coordination number of the lattice.
The c-MoP equation (5) can be simplified significantly

if one is only interested in the steady state solution,
ρss = limt→∞ ρn0(t). The action of the integral kernel
K<n0,n>(t, t

�) on ρn(t�)⊗ ρn0(t
�) vanishes for |t− t�| suf-

ficiently large. For t → ∞ one can thus approximate
ρn(t�) ≈ ρss in the right hand side of Eq. (5) and extract
an algebraic equation for ρss, see appendix E for details.
Following this procedure we end up with the steady state
c-MoP equation for the driven dissipative Bose-Hubbard
model,

(a) (b) (c) Im {Tr{aρss}} Re {Tr{aρss}} (8)

0 = (L0 + LMF + LBT ) ρss, (9)

where we have dropped the lattice site index as the
entire system described by Eq. (7) displays transla-
tional invariance. Thus ρss = limt→∞ ρn0(t). The
superoperators, which are proportional to different
powers of the tunneling rate J , are given by: The free
evolution of the on-site system, proportional to J0,
L0(·) = −i [∆a†a + Ω

2 (a
† + a) + U

2 a
†a†aa , (·)] + γ

2D(·),
the first order correction which is equivalent
to the meanfield ansatz, proportional to J1,
LMF (·) = −i Z J

�
aTr{a†ρss}+ H.c. , (·)

�
, and

the Born term which is proportional to J2,
LBT (·) = −ZJ2

�
i,j

�∞
0 dτ dij(τ, ρss)

�
ai, eτL0 [aj , (·)]

�
−

ZJ2 {
�

j

�∞
0 dτ sj(τ, ρss)

�
aj , eτL0 (·) a

�
+ H.c. } −

iZJ2
�

i,j

�∞
0 dτ hij(τ, ρss)

�
ai, eτL0 (·)

�
. Here the sum�

i,j with i, j ∈ {−,+} runs over all possible combina-

tions of operators a− ≡ a and a+ ≡ a†. Moreover, the
steady-state dependent correlation functions are given by
dij(τ, ρss) = Tr{ajeτL0aiρss}− Tr{aiρss}Tr{ajeτL0ρss},
sj(τ, ρss) = Tr{(aj)†eτL0

�
a†, ρss

�
} and hij(τ, ρss) =

iTr{ajρss}Tr{ajeτL0
�
ai, ρss

�
}.

In the following, we will be interested in numerical re-
sults of Eq. (9) in the weak driving regime, i.e. Ω � U .
An accurate treatment of the strong driving regime, i.e.
Ω � U , can be found in [6]. In particular, we want
to test the performance of Eq. (9) by comparing its so-
lution, which from now on shall be denoted by ρcMss , to
an exact solution of Eq. (7) for a numerically feasible
number of lattice sites N . For a large number of sites,
N = 21, we obtain a very accurate approximation with
the time dependent density matrix renormalization group
method, see [6, 7], whereas for a small number of sites,
we numerically integrate the full equation (7) to find a
numerically exact solution. We also compare the mean-
field result denoted by ρMF

ss to the numerical solutions
and show the quantitative and qualitative improvement
of ρcMss over ρMF

ss . For this purpose we compare the on-
site observables and calculate a measure for the distance
between two quantum states ρ1 and ρ2. Here, we will
use the trace distance defined as D(ρ1, ρ2) =

1
2 |ρ1 − ρ2|

with |A| =
√
AA†, see e.g. [4]. Figure 2 (left) shows

FIG. 2. (Color online) Left: Occupation number Tr{a†aρss}
in the hard-core limit (U → ∞) as a function of ZJ for Z = 2,
∆ = 0.6 and Ω = 1.5 in units of the dissipation rate γ. Inset:
The real part of the correlation function �a� for the same set
of parameters. The dashed green-curve shows the DMRG
result and the solid red curve shows the results optained
from the c-MoP equation. The dotted-dashed curve shows
the Meanfield result with a bistability. One branch reaches
from 0 ≤ ZJ ≤ 3.8γ, while the other branch reaches from
3.0γ ≤ ZJ ≤ ∞. Right: Trace distances D(ρDMRG

ss , ρMF
ss )

(dashed black curve) and D(ρDMRG
ss , ρc-MoP

ss ) (solid red line)
for the same set of parameters.

the occupation number Tr{a†aρss} as a function of ZJ/γ
for Z = 2, ∆ = 0.6γ and Ω = 1.5γ. We find a remark-
able agreement between the c-MoP results (solid red line)
and the results of the DMRG calculation (dashed green
line). The same holds for the real part of Tr{aρss}, inset
of Fig. 2, and for the imaginary part of Tr{aρss}. The
meanfield solution, on the other hand, deviates from the
DMRG result to an extend which makes the approxima-
tion completely unreliable over a large parameter range.
Moreover, we find a bistabilty in the MF solution due to
the non-linear character of the Meanfield equation. The
c-MoP equation (9) which is a non-linear algebraic equa-
tion as well, does not exhibit bistable behaviour for all
the parameter sets of our study. According to a theorem
of Spohn [2, 3] the dynamics of a non-unitary but rather
Lindblad type equation of motion [1], just like Eq. (7),
always relaxes to a unique steady-state in the case of a
finite dimensional Hilbert space. Thus, for a finite lat-
tice, i.e. N < ∞, there exists a unique steady state for
the driven dissipative Bose Hubbard model as we can
resort to a truncated Hilbert space for U �= 0, see [3].
This feature is captured by the c-MoP result but not by
meanfield theory. However, both meanfield and the c-
MoP equation solely depend on the coordination number
Z and not on the number of lattice sites N . Therefore,
it might be that Eq. (7) displays bistability in the ther-
modynamic limit, i.e. N → ∞, as the case of an infinite
dimensional Hilbert space does not fulfill the conditions
for the theorem of Spohn [2]. So far, the bistability on
meanfield level seemed to be a hint for the existence of
bistability in nature [23]. In the parameter regimes of
our study, and that is the only sure statement we can
make at this point, the existence of bistability is negated
by the c-MoP equations. Hence, bistability seems to be
just an artifact of the meanfield approximation.

Figure 2 (right) shows trace distances D(ρDMRG
ss , ρMF

ss )
(dashed black curve) and D(ρDMRG

ss , ρc-MoP
ss ) (solid red

4

The first order correction which is equivalent to the
Meanfield Ansatz, proportional to J1,

LMF (·) = −i Z J
�
aTr{a†ρss}+ h.c. , (·)

�
, (10)

with the coordination number or rather number of near-
est neighbors Z. And finally, the Born term which is
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where the sum
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i,j with i, j ∈ {−,+} runs over all possi-
ble combinations of operators a− ≡ a and a+ ≡ a†. The
steady-state dependent correlation functions are given by
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In the following, we will be interested in numerical re-
sults of Eq. (8) in the weak driving regime, i.e. Ω � U .
An accurate treatment of the strong driving regime, i.e.
Ω � U , can be found in [50]. In particular, we want to
test the performance of Eq. (8) by comparing its solution,
which from now on shall be denoted by ρcMss , to a nu-
merically exact solution of Eq. (7) for a one dimensional
(Z = 2) finite lattice. For a large number of sites N = 21,
we obtain the exact solution with a DMRG method. For
a small number of sites 3 ≤ N ≤ 6 by a brute force
calculation. We also compare the Meanfield result de-
noted by ρMF

ss to the numerically exact solution and show
the quantitative and qualitative improvement of ρcMss over
ρMF
ss . For this purpose we compare the on-site observ-

able Tr{a†aρss} and calculate a measure for the distance
between two quantum states ρ1 and ρ2. Here, we will use
the trace distance defined as D(ρ1, ρ2) =

1
2 |ρ1 − ρ2| with

|A| =
√
AA†, see e.g. [5].
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Tr{a†aρss} in the hard-core limit (U → ∞) as a function
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γ = 1.0, Z = 2 and Ω

γ = 1.5. The dashed green-
curve shows the DMRG result and the solid red curve shows
the result optained by the c-MoP equation. The dotted-
dashed curve shows the Meanfield result with a bistability.
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reaches from 1.5 ≤ J
γ ≤ ∞.

bla

Tr{σ†σρss}

1 2 3 4
0.10

0.20

0.25

0.30

0.35
DMRG

c-MoP cluster
(3)
(4)
(5)
(6)

MF cluster
(3)
(4)
(5)
(6)

4

The first order correction which is equivalent to the
Meanfield Ansatz, proportional to J1,

LMF (·) = −i Z J
�
aTr{a†ρss}+ h.c. , (·)

�
, (10)

with the coordination number or rather number of near-
est neighbors Z. And finally, the Born term which is
proportional to J2,

LBT (·) = −ZJ2
�

i,j

� ∞

0
dτ dij(τ, ρss)

�
ai, eτL0 [aj , (·)]

�

− ZJ2 {
�

j

� ∞

0
dτ sj(τ, ρss)

�
aj , eτL0 (·) a

�
+ h.c. }

− iZJ2
�

i,j

� ∞

0
dτ hij(τ, ρ

ss)
�
ai, eτL0 (·)

�
,

(11)

where the sum
�

i,j with i, j ∈ {−,+} runs over all possi-
ble combinations of operators a− ≡ a and a+ ≡ a†. The
steady-state dependent correlation functions are given by

dij(τ, ρss) =Tr{ajeτL0aiρss}− Tr{aiρss}Tr{ajeτL0ρss}
sj(τ, ρss) =Tr{(aj)†eτL0

�
a†, ρss

�
}

hij(τ, ρss) = iTr{ajρss}Tr{ajeτL0
�
ai, ρss

�
}.

(12)

In the following, we will be interested in numerical re-
sults of Eq. (8) in the weak driving regime, i.e. Ω � U .
An accurate treatment of the strong driving regime, i.e.
Ω � U , can be found in [50]. In particular, we want to
test the performance of Eq. (8) by comparing its solution,
which from now on shall be denoted by ρcMss , to a nu-
merically exact solution of Eq. (7) for a one dimensional
(Z = 2) finite lattice. For a large number of sites N = 21,
we obtain the exact solution with a DMRG method. For
a small number of sites 3 ≤ N ≤ 6 by a brute force
calculation. We also compare the Meanfield result de-
noted by ρMF

ss to the numerically exact solution and show
the quantitative and qualitative improvement of ρcMss over
ρMF
ss . For this purpose we compare the on-site observ-

able Tr{a†aρss} and calculate a measure for the distance
between two quantum states ρ1 and ρ2. Here, we will use
the trace distance defined as D(ρ1, ρ2) =

1
2 |ρ1 − ρ2| with

|A| =
√
AA†, see e.g. [5].

ZJ

γ
(13)

FIG. 3. (Color online) Photon occupation number
Tr{a†aρss} in the hard-core limit (U → ∞) as a function
of J

γ for ∆
γ = 1.0, Z = 2 and Ω

γ = 1.5. The dashed green-
curve shows the DMRG result and the solid red curve shows
the result optained by the c-MoP equation. The dotted-
dashed curve shows the Meanfield result with a bistability.
One branch reaches from 0 ≤ J

γ ≤ 1.9, while the other branch

reaches from 1.5 ≤ J
γ ≤ ∞.

bla

D(ρDMRG
ss , (·))

0 1 2 3 4

0.005
0.010
0.015
0.020
0.025
0.030
0.035

ρMF
ss (6)

ρcMss (2)

ρcMss (3)
ρcMss (4)

ρcMss (5)

ρcMss (6)

Figure 2.4: Accuracy test for stationary states of driven-dissipative quan-
tum many-body systems. (a) Trace distances D(ρDMRG

ss , ρMF
ss (6)) (dashed red),

D(ρDMRG
ss , ρcMss (j)) for j = 2 (solid black), j = 3 (solid brown), j = 4 (solid or-

ange), j = 5 (solid blue), j = 6 (solid red) for the same parameters as in Fig.
2.3. (b) On-site steady state occupation number Tr{σ†σρss} as a function of ZJ/γ
for the same set of parameters as in Fig. 2.3. We plot results for t-DMRG (green
points), cluster mean-field for cluster sizes of M = 3 (brown dashed), M = 4 (orange
dashed), M = 5 (blue dashed), M = 6 (red dashed), and cluster c-MoP for cluster
sizes of M = 3 (solid brown), M = 4 (solid orange), M = 5 (solid blue), M = 6
(solid red). The differences in the c-MoP curves are not easily visible as convergence
has been reached for the whole parameter range.

method gives access to long-range correlation, whereas the c-MoP cluster method
gives access to correlations of lengths below or equal to the cluster size.

In contrast to the closed system example of Sec. 2.2.1 we do not know of any exact
analytic results that might give us an insight about the system in the TD limit
N → ∞. Nevertheless, we have performed a finite system size analysis using the
t-DMRG method and thus calculated the results for N = 18, 19, 20, 21 lattice sites.
The results for the local observables, which we are testing here, have converged and
thus we expect the t-DMRG result to represent the behavior of the systems local
observables in the TD limit. In the same spirit, one can also perform a finite system
size analysis with both a mean-field approach and a c-MoP approach. In Fig. 2.4(b)
we show the system-size scaling for the local on-site occupation number for a mean-
field cluster approach (dashed lines) and a c-MoP cluster approach (solid lines) with
the t-DMRG result (green points) for comparison. Clearly, the mean-field approach
does not show any convergence as the cluster size is increased and thus using a
mean-field approach can not give any insights about the system in the TD limit. In
contrast, the c-MoP result shows a clear convergence, already for 3-site and 4-site
clusters. Thus, the c-MoP approach is able to give a quasi exact picture for the
steady state of this driven and dissipative many-body spin system in the TD limit.
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2.2. Applications and accuracy tests

2.2.3 Comparison of accuracy for stationary states of one- and two-

dimensional lattices

To further elucidate the versatility of our approach, we here examine its accuracy
for stationary states of two-dimensional lattices in comparison to one-dimensional
chains. Figure 2.5 compares the solutions of a single-site c-MoP approach, a single-
cite mean-field approach and a numerically exact approach for small lattices of one
(Z = 2) and two (Z = 4) dimensions. Due to translational invariance the single-site
c-MoP equations in the stationary state reduce from Eq. (2.4) and Eq. (2.5) to

ρ̇ss = 0 = L1ρss + i(ZJ)
�
σ�σ†�ss + σ†�σ�ss , ρss

�

− (ZJ)2

Z

��
σ,

� ∞

0
dτeL1τ

�
δσ†(ss)ρssd(τ)− ρssδσ

†(ss)s(τ)
��

+H.c.

�

− (ZJ)2

Z

��
σ,

� ∞

0
dτeL1τ (δσ(ss)ρssp(τ)− ρssδσ(ss)h(τ))

�
+H.c.

�
(2.11)

where we have dropped the lattice site index for the density matrix and the spin
operators. Further, for any operator A, we have introduced the definitions �A�ss =
Tr{Aρss} and δA(ss) = A− �A�ss, the single-site Liouvillian

L1(·) = −i

�
∆σ†σ +

Ω

2
(σ + σ†), (·)

�
+

γ

2

�
2σ(·)σ† − σ†σ(·)− (·)σ†σ

�
, (2.12)

and the on-site correlation functions

d(τ) = Tr
�
σ†eL1τ (δσ(ss)ρss)

�
s(τ) = Tr

�
σ†eL1τ (ρssδσ(ss))

�

p(τ) = Tr
�
σ†eL1τ

�
δσ†(ss)ρss

��
h(τ) = Tr

�
σ†eL1τ

�
ρssδσ

†(ss)
��

.
(2.13)

Trace distances between mean-field approximations and exact solutions are plotted
in the upper row of Fig. 2.5 whereas the lower row shows trace distances between
c-MoP approximations and exact solutions.

Figures 2.5(a) and (c) show D(ρ1Dss , ρ
MF
ss ) and D(ρ1Dss , ρ

cM
ss ) respectively for Z = 2,

∆ = 0.5γ, and N = 3 with periodic boundary conditions as functions of ZJ/γ and
Ω/γ. Figs. 2.5(b) and (d) in turn show D(ρ2Dss , ρ

MF
ss ) and D(ρ2Dss , ρ

cM
ss ) respectively

for Z = 4, ∆ = 0.5γ, and N = 5 with periodic boundary conditions as functions
of ZJ/γ and Ω/γ. The lattice sizes N = 3 in one dimension and N = 5 in two
dimensions are chosen because these are the minimal lattice sizes where each lattice
site has distinct left and right neighbors which close the lattice in periodic boundary
conditions in each dimension. Nonetheless both lattices are small enough to allow for
full numerical solutions for their stationary states. We are aware that a comparison
with finite size lattices is not as convincing as the comparison with a full t-DMRG
calculation but it suffices to give a picture of the tendency for two dimensional
lattices. A more detailed presentation for a cluster c-MoP approach in two spatial
dimensions is presented in Sec. 2.3.
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Figure 2.5: Performance of the method in terms of trace distances from exact so-
lutions for small systems. (a) and (c): D(ρ1Dss , ρ

MF
ss ) and D(ρ1Dss , ρ

cM
ss ) respectively

for Z = 2, ∆ = 0.5γ, and N = 3 with periodic boundary conditions as functions of
ZJ/γ and Ω/γ. (b) and (d): D(ρ2Dss , ρ

MF
ss ) and D(ρ2Dss , ρ

cM
ss ) respectively for Z = 4,

∆ = 0.5γ, and N = 5 with periodic boundary conditions as functions of ZJ/γ and
Ω/γ. In the bistable regions of the mean-field approximation we have chosen the
branch which is closer to the exact solution.

We notice that there is no bistability for ρcMss in the whole parameter range. In the
bistable regions of the mean-field approximation we have here chosen the branch
which is closer to the exact solution. Further, we find a remarkable quantitative
improvement of c-MoP over mean-field especially for regions where the on-site pa-
rameter Ω is comparable to the tunneling, i.e. Ω ≈ ZJ . For Ω � ZJ both approxi-
mations become very good as the dynamics is dominated by the on-site Liouvillian
LLT. In the opposite case of ZJ � Ω the steady state of the lattice system is close
to the vacuum state which is here a product state leading to high accuracy for both
approximations. Finally, we find that both approaches become more accurate for
a two dimensional lattice, see Fig. 2.5(b) and (d), where mean-field however still
remains unsatisfactory.
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2.3 The Quantum to classical transition in the driven

and dissipative XX Spin model

So far we have mainly focused on the introduction of c-MoP theory into the field of
quantum many-body physics. As a first step it was important to test the accuracy of
the c-MoP predictions for cases where exact or quasi exact solutions can be found to
allow for a quantitative comparison. In this section, however, we will aim for insights
into the physics of non-equilibrium or rather driven-dissipative phase transition in
many-body lattice problems.

Dissipative phase transition have been of interest for a long time, the most prominent
examples include lasing [4], optomechanics [69], optical bistability [6, 11], optical
parametric oscillators [20], see also Chapters 3 and 4, and the dissipative Dicke
model [38], see also Chapter 5. The interest in dissipative phase transitions in the
many-body context, in contrast, has emerged rather recently [24, 26, 37, 55, 56, 68].
In all of these approaches the steady state phase diagram has been obtained by a
classical or a semi-classical mean-field Ansatz.

We will follow this guiding idea and present the mean-field phase diagram of the
driven and dissipative XX spin model. Thus, we consider the model of Eq. (2.1) but
allow for its generalization to hypercubic lattices of arbitrary dimension d = 2Z with
Z being the coordination number of the lattice. For simplicity we further choose
∆ = 0 throughout this section. Due to translational invariance, the master equation
in mean-field approximation is given by Eq. (2.11) with the Born term neglected.
Using the master equation, we find the mean-field equations to read

∂t�v(t) = A(�v(t))�v(t) + �γ (2.14)

where

�v(t) =




�σz�(t)
�σ†�(t)
�σ�(t)



 , �γ =




−γ
0
0



 and A(�v(t)) =




−γ −iΩ iΩ

−f∗(t) −γ
2 0

−f(t) 0 −γ
2



 (2.15)

with the Pauli operator σz = σ†σ − σσ† and f(t) = i(ZJ �σ�(t)−Ω/2). The steady
state solution of Eq. (2.14) is then given by �vss = −A(�vss)−1�γ which is a nonlinear
algebraic equation typically appearing in nonlinear optics [6, 11, 42]. We proceed
in the standard fashion [70]. First, we identify the physical steady state solutions
by solving for �vss in �vss = −A(�vss)−1�γ. Second, we perform a stability analysis in
order to identify the stable solutions out of the possible set of physical solutions.

For the stability analysis we consider the vector �w(t) = �vss + δ�v(t) which describes
small fluctuations around the stationary solution. We insert the Ansatz �w(t) into
Eq. (2.14) and linearize in the fluctuations which grants us with the linear stability
matrix L(�vss) defined by
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∂tδ�v(t) = L(�vss)δ�v(t) with

L(�vss) =




−γ −iΩ iΩ
−f∗

ss iZJ�σz�ss − γ
2 0

−fss 0 −iZJ�σz�ss − γ
2



 .

(2.16)

It can be easily shown that there exist always three solutions for �vss where for some
regions of parameter space all three solutions are physical with one of which being
unstable. The turning points or rather bifurcation points (BP) can then be found
by solving for detL(�vss) = 0 [11, 70]. In regions of the parameter space where the
physical solution is unique, it is also always stable. We do not find any dynamical
instabilities or rather Hopf bifurcation points since Tr{L(�vss)} = −2γ < 0 [11].

Note, that for ∆ = 0 there are only two free parameters in the mean-field equations,
these are (ZJ)/γ and Ω/γ. The number of total lattice sites N drops out. Moreover,
the mean-field equations (2.14) lead to symmetric results for positive and negative
tunneling rates J . This allows us to show the complete phase diagram of the reso-
nantly driven and locally dissipative XX model in Fig. 2.6(a). We characterize three
phases and a dissipative phase transition of first order exhibiting the typical bistable
feature [71].

We refer to one of the phases as the classical phase since we find a unique stable
solution where the spins behave classically in the sense that the g(1) function defined
by g(1) = �σ†σ�/|�σ�|2 tends towards unity which is indicated in Fig. 2.6(b) by the
red (�σ†σ� for Ω = 2γ) and orange curve (|�σ�|2 for Ω = 2γ), and by the black (�σ†σ�
for Ω = 5γ) and blue curve (|�σ�|2 for Ω = 5γ). Thus, in the classical phase the
spins behave as a bosonic field in a coherent state. In contrast to the classical phase,
we find a phase with a unique stable solution but with g(1) �= 1 to which we refer
as the quantum phase. In the shaded area we find three solutions with two of them
being stable. We call this bistable phase the quantum+classical mixture, referring
to the fact that we expect the full quantum solution to be a mixture of the upper
(quantum) and lower (classical) stable branch. The three phases coexist in the triple
point (TP) at Ω ≈ 2γ and ZJ ≈ 2.75γ. In order to further illustrate the behavior
we show a cut through the phase diagram along the two white horizontal lines for
Ω = 2γ and Ω = 5γ in Fig. 2.6(b). The solid lines in Fig. 2.6(b) indicate the stable
branches while the dashed lines indicate the unstable branch for the observables of
the corresponding color. The branches cross each other at the bifurcation points
(PB) shown in Fig. 2.6(b) by the red rectangles.

2.3.1 Limit of infinite coordination

The mean-field ansatz finds a phase transition of 1st order as the local observables
exhibit a discontinuous jump. The presented bistability is a common phenomenon
in nonlinear optics. In all known cases which allow for an exact quantum mechanical
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Figure 2.6: (a) Phase diagram of the resonantly driven and locally dissipative Heisen-
berg XX spin model. For a detailed discussion see the text. (b) Cut through the
phase diagram for Ω = 2γ and Ω = 5γ. We show �σ†σ� (|�σ�|2) as a function of
ZJ/γ for Ω = 2γ in red (orange) color and for Ω = 5γ black (blue) color. The
solid lines indicate stable branches while the dashed lines indicate unstable solution
branches. The green solid lines show �σ†σ� as a function of ZJ/γ with Ω = 5γ for a
finite system of N = Z + 1 = 3, 4, ...7 sites for the infinite range model, see text for
details.

treatment of the problem, however, the steady state is found to be unique [11, 72] in
agreement with mathematical theorems [63, 73] which demand the uniqueness of the
steady state for all finite dimensional Hilbert spaces. Thus, regarding the questions
about the strict stationary state, the bistability found from a mean-field analysis
has to be judged wrong. Nonetheless, a meaningful physical interpretation of the
bistability relies on the concept of hysteresis. In the bistable phase both branches
are meta-stable, quasi stationary or rather long lived. For adiabatic process steps
moving from right to left (left to right) on the ZJ/γ axis in Fig. (2.6)(b) the system
will follow the upper (lower) branch as indicated by the black arrows in Fig. 2.6(b).
Moreover, the lifetime of the metastable branches scales with the system size. In this
case, the system size parameter seems to be given by the coordination number Z and
not by the number of sites N . It is in this sense in which the well-known statement
about mean-field to become exact in infinite dimensions or infinite coordination has
to be understood in the context investigated here.

At this point we believe, that the exact quantum steady state solution will never
show a bistability and in the limit of infinite system size we will find a discontinuous
jump between the stable branches occurring at some critical point. However, we have
no strong tool at hand to proof our conclusion for the driven and dissipative XX
model. Nonetheless, we will now present an argument which strongly substantiates
our believe. Instead of considering the model of Eq. (2.1) with the nearest neighbor

49



CHAPTER 2: Self-Consistent Projection Operator Theory for Quantum
Many-Body Systems

tunneling or rather coupling term, we will consider an infinite range coupling

N�

n=1

N�

m=1
m �=n

�
σ†
nσm + σnσ

†
m

�
(infinite range model)

such that tunneling processes can occur from each lattice site to any other site in
the system. As a consequence, the coordination number Z and the total number of
sites N relate according to N = Z + 1. The key point of our argument is that the
mean-field equations for the nearest neighbor XX model and the infinite range model
are equivalent. Thus, the phase diagram is identical for both models and we expect
the mean-field predictions to become exact in the limit of infinite coordination in
the sense we have understood above for both models. However, for the infinite range
model it becomes evident that for any arbitrarily large but finite system size N or
equivalently Z the total Hilbert space will be finite and therefore the steady state will
be unique [63] according to the mathematical theorem. We show the local excitation
number �σ†σ� for the infinite range model by the green solid lines in Fig. (2.6)(b) for
increasing system size N = 3, 4, 5, 6 and N = 7. Indeed, we can see a clear tendency
towards the mean-field solution.

In the infinite coordination number limit we find the c-MoP theory to converge
towards mean-field theory. This can be immediately understood by a close inspection
of Eq. (2.11). As the Born term scales as (ZJ)2/Z it will vanish for Z → ∞ with
ZJ fixed. The mean-field theory predicts the correct semi-classical behavior of the
system but the full quantum behavior in the vicinity of the phase transition is illusive
even to the c-MoP theory (in Born approximation). We consider this feature, also
present in the variational approach of Ref. [74], a major drawback of the c-MoP
theory as it is conducted here. The issue arrises as a direct consequence of the
self-consistent Mori projector defined in Eq. (1.8) and in particular of the factorized
state for ρ �n0(t), see Eq. (1.9). We will elaborate on this point in more detail in
Chapter 5.

Phase transitions similar to the one presented here have also been reported in other
works using mean-field theory. In Ref. [68] the transition occurs from a ”high” to
a ”low” density phase whereas in Ref [74] the phases are called ”liquid” or ”gas”
phases. Thus, our findings are not new with respect to known results but in con-
trast to these works the analogy to nonlinear optics has been made much clearer.
Especially, the appearance of an unstable solution connecting the stable branches,
the interpretation in terms of hysteresis and most importantly the identification of
the system size parameter which is given by the coordination number Z allowed us
to obtain a much better understanding of the physical picture. The apparent con-
tradiction between the mathematical theorem demanding for a unique steady state
and the bistability found by mean-field theory are now resolved.
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Figure 2.7: Cut through the phase diagram of the resonantly driven locally dissipa-
tive Heisenberg XX model for Ω = 2γ in (a) and Ω = 4γ in (b). We show �σ†σ�
as a function of ZJ/γ.The black solid (dashed) lines indicate the result of the semi-
classical mean-field analysis for the stable (unstable) branches with the triple point
(TP) (bifurcation points (BP)) marked by the black (red) squares. The colored
dashed lines show the result of clustered c-MoP approaches in 1D for a 2-site cluster
(purple), 3-site cluster (orange), and a 4-site cluster (green). Finally, the colored
solid lines show the result of clustered c-MoP approaches in 2D for a 2x1-cluster
(blue) and a 2x2-cluster (red). Sketch the cluster c-MoP approach for a 1D (Z = 2)
and a 2D (Z = 4) square lattice in (c) and (d), respectively. The tunneling processes
indicated by the purple color are taken into account by the cluster c-MoP approach
but the processes indicated by the orange color are neglected.

2.3.2 Absence of the phase transition in 1D and 2D

Mean-field theory has taught us about the role of the coordination number Z, yet,
at the same time the total number of sites has been completely lost in the formalism.
It is therefore a very interesting question whether a phase transition occurs as the
number of sites tends towards the thermodynamic limit N → ∞ with a fixed spatial
dimension of the lattice. We will use the cluster c-MoP approach presented in
Sec. 2.2.2 to answer this question in 1D and indicate how the question could be
answered in 2D and possible even 3D using c-MoP theory.

We sketch the cluster c-MoP approach for a 1D (Z = 2) and a 2D (Z = 4) square
lattice in Fig. 2.7(c) and (d), respectively. The tunneling processes indicated by the
purple color in Fig. 2.7 are taken into account by the cluster c-MoP approach but
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the processes indicated by the orange color are neglected. In 1D these processes
are of order M + 1 in the tunneling J for an M -site cluster but in 2D these corner
processes are always second order in J . The absence of these processes occurs
as a direct consequence of the self-consistent Mori projector defined in Eq. (1.8)
and in particular of the factorized state for ρ �n0(t), see Eq. (1.9). For a local c-
MoP approach without clustering these corner processes scale with the coordination
number as Z(Z − 1) ∼ Z2 and the direct processes, indicated by the purple arrows
in Fig. 2.7(c) and (d), scale as ∼ Z. Hence, from such a combinatorial point of
view the corner processes dominate for a non-clustered c-MoP Ansatz. However, as
the cluster size increases the corner processes will become less in number relative
to the direct processes, and thus less significant for large clusters in 2D or 3D.
Nonetheless, since it is numerically very expensive to reach large cluster sizes in 2D
and especially in 3D it is highly desirable to find a c-MoP theory which includes the
corner processes. We will leave this task for future reasearch.

For now, we show a cut trough the mean-field phase diagram for Ω = 2 in Fig. 2.7(a)
and for Ω = 4 in Fig 2.7(b). The black lines show the mean-field result for the on-site
occupation �σ†σ� as a function of ZJ/γ. The dashed colored line show the c-MoP
cluster results for different cluster sizes in 1D and the solid colored lines the cluster
c-MoP results for a 2D lattice.

We expect from our results of Sec. 2.2.2 for the c-MoP results in 1D to reveal the
behavior of the system in the thermodynamic limit N → ∞ and we clearly find the
absence of the phase transition. Thus, in 1D the number of sites does not trigger
the phase transition. Even for Ω = 4 in Fig. 2.7(b) where the tunneling rate reaches
up to J = 6γ the c-MoP results for an M = 3 site (orange dashed curve) and an
M = 4 site (green dashed curve) cluster have converged such that there is almost no
notable difference between the solutions. We emphasize, a mean-field analysis does
not lead to a fast enough convergence with increased cluster size, similarly to what
we show in Fig. 2.4(a), and a DMRG calculation would be much less efficient than
the c-MoP approach.

Similarly, we find the absence of the phase transition in two spatial dimensions.
Despite that the c-MoP results for a 2× 1 (blue solid curve) and a 2× 2 (red solid
curve) cluster have not fully converged over the whole parameter range of Fig. 2.7(a)
and (b), close to the phase transition points, however, the convergences seems to
become apparent for Ω = 2 in Fig. 2.7(a). We therefore conclude again for the
absence of the phase transition in two spatial dimensions. A more solid statement
can be obtained by performing a c-MoP calculation for a 3×2 or even a 3×3 cluster.
These calculation are demanding but certainly within reach and shall be presented
in future work, possibly together with a cluster c-MoP calculation for a 3D cubic
lattice.
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Summary of Part I

In the first half of Part I we have derived exact equations of motion for the reduced
density matrices of subsystems embedded in quantum few or many-body system.
The subparts of the system can have similar sizes and characteristic dynamical time
scales, so that there is no clear distinction between system and environment. Thus,
our theory generalizes the concept of open system theory by not relying on any
time-scale separation between the constituents of interest.

At the heart of our theory lies the self-consistent Mori projector which accounts
for the dynamical evolution of each subpart. The resulting exact equations can be
expanded in powers of the interaction between the subparts resulting in coupled
equations for each reduced density matrix of the subparts. The expansion up to
first order is shown to be equivalent to mean-field theory. We further introduced
all terms up to second order, which in contrast to mean-field theory, account for
quantum correlations between the subparts.

In the second half of Part I we applied our method to spin lattices, both open and
closed, to exemplify its applicability to quantum many-body systems. We show
for various models that our equations provide a highly efficient and very accurate
description of the dynamics of local quantities. Although only of the same com-
putational complexity, our method yields a significant improvement of mean-field
approaches and can also be straightforwardly extended to describe clusters of sub-
systems, as has been shown in 1D and to some extend in two dimensions. The
accuracy of the approach improves very fast as the size of the clusters is increased
and the convergence of the results with increasing cluster size is a control handle for
verifying their reliability.

For unitary dynamics the c-MoP method is capable of covering time ranges compara-
ble to those accessible with cutting edge t-DMRG calculations for small cluster sizes
already. Whereas, for steady states in dissipative systems, where the c-MoP equa-
tions can be reduced to simple algebraic equations, we put up an efficient and yet
very accurate technique for exploring phase diagrams of driven-dissipative systems.

As a direct application, we have shown on the example of the locally driven and
dissipative Heisenberg XX spin model that a cluster c-MoP approach is able to reach
the thermodynamic limit via a simple system-size scaling with increasing cluster
size. The convergence is reached very fast as shown for a 1D lattice (to some extend
also for a 2D lattice) and it therefore allows based on the findings from the c-MoP
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method to draw a conclusion on the behavior of the system in the N → ∞ limit for
a fixed spatial dimension. In both cases we find a strong signature for the absence of
the nonequilibrium first order phase transition predicted by a single-site mean-field
ansatz. Our investigations let us suggest that the phase transition is driven by the
coordination number Z rather than by the number of lattice sites N .
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Chapter 3

A case study on Degenerate

Optical Parametric Oscillators

3.1 Introduction

Nonlinear optical systems play an important role in the field of optics both in classical
[42, 75] and in quantum [6, 7, 76–78] regimes. Quantum mechanical effects, in
particular, which are not explainable by classical optics, have triggered substantial
research, especially in connection to modern applications such as high-precission
measurements [79–82] and quantum information communication and processing [83,
84]. Importantly, the nonlinear nature of these systems leads to non-Gaussian states,
which typically precludes an analytic treatment and therefore requires elaborate
theoretical approaches [19, 20].

In a system where the dynamical degrees of freedom evolve on different time scales,
approximate descriptions of reduced complexity may be found. For example, adia-
batic elimination techniques can be exploited to derive effective equations of motion
[5, 21]. In this chapter, we apply the self-consistent projection operator theory to
the degenerate optical parametric oscillator. We exemplify in the present context
how it generalizes adiabatic elimination approaches by taking dynamical back-action
between the degrees of freedom into account, therefore reaching beyond the scope
of time-scale separation. We expect the c-MoP method to be directly applicable to
other nonlinear quantum optical models such as those for nondegenerate or multi-
mode parametric oscillation [85–88], lasing [4, 6, 7, 89], optomechanical parametric
oscillation [70, 90], or the dissipative Dicke model [38, 91, 92]. For the latter we will
present results within the framework of this thesis in Chapter 5.

Degenerate optical parametric oscillators (DOPOs) have been extensively studied
in the past [20, 76] and are one of the paradigm examples of a system subject to a
driven and dissipative phase transition. It is formulated as a bosonic problem with
two modes, signal and pump, subject to dissipation and interacting nonlinearly. In
the adiabatic limit of a fast decaying pump mode, an effective master equation can
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be derived by means of standard projection operator approaches [20] and due to
its reduced complexity, the steady state can be found by solving the corresponding
Fokker-Planck equations for the positive P distribution [12, 93]. Yet away from the
adiabatic limit one has to resort to numerical simulations or perturbative treatments
[94–98]. Non-equilibrium many-body techniques such as the Keldysh formalism have
also been employed to study steady-state properties [99–101]. While the application
of all these techniques has allowed to deepen our understanding of DOPOs and phase
transitions in driven dissipative quantum systems enormously, it is important to note
that they are naturally built to determine the evolution of observables, making the
determination of the quantum state of the optical fields very challenging, if not
impossible.

The c-MoP approach, in contrast, derives a set of coupled equations for the reduced
states of the two optical modes of the DOPO. By numerically solving these equations,
we find the reduced density matrices of both the pump and the signal modes. We
test the accuracy of our method by comparing its results with those of the full
DOPO problem in regions of the parameter space where this is numerically tractable.
Our findings show that our method is remarkably close to the exact results, both
for steady states and dynamics, while being less numerically demanding than the
full simulation of the DOPO problem. Not only that the accuracy of the c-MoP
equations outperform linearization, mean-field and even Keldysh field theoretical
approaches, they also give access to the entire reduced density matrix of the cavity
modes in regions of the parameters that are inaccessible to full simulations of the
DOPO master equation.

The possibly largest reduction of complexity in nonlinear quantum optical systems,
however, comes from the application of Gaussian approximations on the state of
the system. Within a Gaussian theory one can basically cover the whole parameter
space efficiently to determine both steady-state and dynamical quantities such as
two-time correlation functions. The simplest and most widely used Gaussian ap-
proach is known as the linearization technique [93, 102], which consists of assuming
that the system configuration is, on average, in its classical state, but is constantly
driven out of it by some “small” quantum fluctuations. While this technique pro-
vides a good qualitative picture of the physics in many, albeit not all, systems, it
leads to unphysical predictions close to the critical points of the classical theory, e.g.,
to infinite photon numbers in the case of the DOPO [103]. These unphysical predic-
tions can be regularized by applying a more elaborate Gaussian state approximation
where the system is not forced to stay in its classical state, but chooses instead an
average configuration more consistent with the quantum fluctuations that perturb
it [104]. Motivated by such an idea, we apply a Gaussian approximation within
the self-consistent projection operator theory, and show that it gives more accurate
quantitative results than any of the usual Gaussian techniques, as it does not assume
a Gaussian state for the entire system, but only for the reduced state of one of the
modes.

The remainder of this Chapter is organized as follows. In Sec. 3.2 we introduce
the DOPO model. We also discuss its symmetries and briefly elaborate on the
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standard linearization approach in Sec. 3.2.1. We briefly review the main con-
cepts of the self-consistent projection operator theory in Sec. 3.3 and state the
self-consistent Mori projector (c-MoP) equations, which lie at the center of our
study. We exemplify on the DOPO problem that the c-MoP theory provides a
systematic extension of mean-field approaches in Sec. 3.3.1 and reproduces known
results in the adiabatic and the diabatic limits introduced in Sec. 3.3.3. An efficient
procedure, different from the procedure exploited in Chapter 2, designed to deal with
the non-Markovian structure of the c-MoP equations is provided in Sec. 3.3.2, which
we use in Sec. 3.4 to test the accuracy of our method for steady-state quantities and
to present quantum states of the signal mode. We also compare the performance
of the c-MoP theory to the Keldysh formalism [99] in Sec. 3.5. A Gaussian state
approximation on the c-MoP equations is performed in Sec. 3.6, which is shown to
lead to highly accurate quantitative results as compared to previous linearization
techniques. As a further test, we check in Sec. 3.7 that our method provides the
same level of accuracy for the dynamics, as it does for steady states.

3.2 The degenerate optical parametric oscillator

A DOPO consists of a driven optical cavity containing a crystal with second-order
optical nonlinearity, see Fig. 3.1. Two relevant resonances at frequencies ωs (signal
mode) and ωp = 2ωs (pump mode) exist in the cavity, which are nonlinearly coupled
via parametric down-conversion inside the crystal, capable of transforming a pump
photon into a pair of signal photons, and vice versa. We assume that the external
driving laser is resonant with the pump mode. Including damping through the
partially transmitting mirrors at rates γp and γs for the pump and signal modes,
respectively, the equation governing the evolution of the state ρ of the system in a
picture rotating at the laser frequency is given by [20, 76]

ρ̇(t) =
�
�p(a

†
p − ap) +

χ

2
(apa

† 2
s − a†pa

2
s) , ρ(t)

�
+ γpDapρ(t) + γsDasρ(t), (3.1)

where χ/2 is the down-conversion rate and �p is proportional to square root of
the injected laser’s power. We have defined bosonic operators ap and as for the
pump and signal modes, respectively, which satisfy canonical commutation relations
[aj , a

†
l ] = δjl and [aj , al] = 0. Further, we have defined the standard Lindblad

superoperator DJ(·) = 2J(·)J†−J†J(·)−(·)J†J , with J being an arbitrary operator.

Note that the nonlinear interaction is third order in the field operators, precluding a
general analytic solution of Eq. (3.1) to which we refer as the Liouville-von Neumann
equation or simply the full master equation of the DOPO. The right hand side of
Eq. (3.1) can also be written in a shorthand notation by introducing a superoperator
L (Liouvillian), such that ρ̇(t) = Lρ(t) which is the starting point of our theory as
explained in Sec. 1.1.
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3.2.1 Linearization approach and symmetry breaking

We will often be interested in the steady or rather stationary state ρss = limt→∞ ρ(t),
which fulfills the equation Lρss = 0. Due to the dissipation acting on both modes
and because an arbitrarily large but finite truncation will always provide an arbi-
trarily good approximation, we expect the steady state to be unique [23, 63] and the
dynamical map eLt to be relaxing, see also the explanations throughout Sec. 2.2.2.

We further note the invariance of the Liouvillian under a unitary transformation U2

of Ising-type Z2 which transforms as as U2asU
†
2 = −as. Since the steady state is

unique, this implies that it has to be invariant under the Z2 transformation too, i.e.
U2ρssU

†
2 = ρss. This in turn leads to vanishing steady-state expectation values which

include odd powers of the signal field operator as. In particular �as� = 0 = �apa†s�,
as for example �as� = Tr{asρss} = Tr{U2asU

†
2U2ρssU

†
2} = −�as�. Overall, we

emphasize that the full quantum solution for the steady state should not break the
symmetry.

However, the most common technique used to analyze Eq. (3.1), known as the
linearization approach, breaks this Z2 symmetry [93, 102], which has to be restored
“by hand” at the end of the calculation, following the procedure that we explain
at the end of Sec. 3.4. In the linearization approach one first performs a unitary
transformation with U = Us ⊗ Up, where the displacement operator is given by

Uj ≡ eαja
†
j−α∗

jaj , on the Liouvillian L of Eq. (3.1). As a result of the transformation,
the bosonic operators will be shifted according to aj → αj + aj .

So far, however, it is not clear how to determine the mean amplitudes αj . In fact,
it is exactly at this point where different choices can be made leading to either the
standard linearization approach, the self-consistent linearization approach presented
in detail in Ref. [104], or a linearization approach within the c-MoP theory presented
in Sec. 3.6.

In the standard linearization approach one calculates the field amplitudes by finding
the Bloch equations for the expectation values �aj� from the full DOPO master equa-
tion (3.1) and by additionally assuming a coherent state |αp(t)��αp(t)|⊗|αs(t)��αs(t)|
for the full quantum state ρ(t). Following these steps one obtains the nonlinear equa-
tions

α̇p = �p − γpαp −
χ

2
α2
s

α̇s =− γsαs + χαpα
∗
s,

(3.2)

which correspond to the classical equations of the system, as they can be obtained di-
rectly from Eq. (3.1) by assuming a coherent state for ρ(t), or simply from Maxwell’s
equations. Depending on the injection parameter σ = χ�p/γsγp one finds two types
of steady-state solutions of Eq. (3.2) that is solutions with α̇s = α̇p = 0. One of
them has αs = 0 and αp = �p/γp, and hence it does not break the symmetry; it
is known as the below-threshold solution, and is only stable for σ < 1. The other
solution is bistable and has χαs = ±

�
2(χ�p − γsγp) and χαp = γs, hence breaking
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the Z2 symmetry; it is known as the above-threshold solution, and exists only for
σ > 1. The threshold point σ = 1 marks a critical point where the classical theory
predicts a phase transition from a signal-off phase with αs = 0 to a signal-on phase
with αs �= 0. In the signal-off phase all injected power �p goes into the pump mode,
while after crossing the critical point all the extra injection is transferred to the
signal mode, see the gray thin solid line in Fig. 3.2.

Once the classical solutions have been identified, the second approximation consists
in coming back to the original master equation with the bosonic operators written
in the shifted basis as aj → αj + aj , and neglecting any term which goes beyond

quadratic order in the fluctuation operators aj , in particular the term χ
2 (a

†
pa2s −

apa
† 2
s ). This leads to the so-called linearized master equation

ρ̇(t) =
�χ
2
(αpa

† 2
s − α∗

pa
2
s) + χ(α∗

sa
†
sap − αsasa

†
p) , ρ(t)

�
+ γpDapρ(t) + γsDasρ(t)

(3.3)
which can be easily solved. The state ρ(t) resulting from Eq. (3.3) describes the
Gaussian fluctuations around the classical state. Note that all linear terms in the
field operators have been cancelled in Eq. (3.3) due to the choices made for the
mean amplitudes αj . Thus, it is also possible to obtain Eqs. (3.2) and (3.3) by
transforming aj → αj + aj in the full master equation (3.1) and by further choosing
αj such that all linear terms in the transformed master equation vanish.

One has to keep in mind that this linearized theory can only be trustworthy when the
classical solution is a strong attractor, because only then the quantum fluctuations
driving the system out of equilibrium are strongly damped, and quantum noise can
be treated as a small perturbation. This means that, in particular, any predictions
obtained through this method cannot be trusted in the vicinities of critical points
of the classical theory: points of the parameter space where one solution becomes
unstable, making way for a new solution to kick in, hence creating non-analytic
behaviour in some observable, that is, a classical phase transition. Indeed, this is
exactly the case for the DOPO, in which this linearized description breaks down
at threshold, offering unphysical predictions such as infinite photon numbers in the
signal field (as illustrated by the gray thin line in Fig. 3.5).

3.3 Self-consistent Mori Projector Approach to the

DOPO problem

We will now apply the self-consistent Mori projector approach to the DOPO based
on the main steps and results shown in Chapter 1 of this work. In the course of
this section, we will recall the general concept of our theory and also introduce the
model specific steps for the DOPO. In the first step, we divide the entire system
into subsystems. In the DOPO this naturally amounts to consider the pump mode
described by its reduced state ρp(t) ≡ Trs{ρ(t)} and the signal mode described by
ρs(t) ≡ Trp{ρ(t)} as the subsystems of interest. In order to obtain a closed set we
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pump cavity 

signal cavity 

ρ̇(t) = Lρ(t)

χ(2)
ωp = 2ωs ωs

env sys 

ρ̇p(t) = Lp(ρs)ρp(t)

χ(2) env sys 

ρ̇s(t) = Ls(ρp)ρs(t)

χ(2)

Figure 3.1: Sketch of the self-consistent projection operator theory for the DOPO
[105, 130]. In the c-MoP approach, the full problem described by the state ρ(t)
and the Liouvillian L is mapped onto two coupled equations for the signal and
pump modes. In one of the equations, the signal mode considered as the system is
described by an effective master equation for its reduced state ρ̇s(t) = Ls(ρp)ρs(t)
with an effective Liouvillian depending on the state of the pump, which plays here
the role of an environment. The other equation considers the reversed scenario
with the pump taking the role of the system while the signal is interpreted as the
environment, leading to the effective equation ρ̇p(t) = Lp(ρs)ρp(t). In this way the
two equations form a closed set.

also revers the scenario where we treat the pump mode as the system of interest,
see Fig. 3.1 for an illustration.

In the next main step of the c-MoP theory, we split the full Liouvillian L from
Eq. (3.1) into three parts. After performing a displacement ap → ap + α̃p, where α̃p

will be chosen later, see Sec. 3.3.1, we write L = Lp + Ls + LI , with

Lp(·) =
�
a†p(�p − γpα̃p)− ap(�p − γpα̃

∗
p) , (·)

�
+ γpDap(·),

Ls(·) =
χ

2

�
α̃pa

† 2
s − α̃∗

pa
2
s , (·)

�
+ γsDas(·),

LI(·) =
χ

2

�
apa

† 2
s − a†pa

2
s , (·)

�
.

(3.4)

The displacement ap → ap + α̃p moves the large coherent background of the pump
field into the free evolution of the signal Ls, keeping only the pump mode’s fluctu-
ations within the nonlinear signal-pump interaction LI . Such a step is important
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as our theory expands in powers of the interaction Liouvillian LI in order to solve
the Nakajima-Zwanzig equation as shown Sec. 1.5. Throughout the thesis we will
expand to second order in the system-environment interaction. This approximation
is known as the Born approximation [4]. Note that in the context of continuous
variable systems a transformation of type a → α + a is well-defined by the unitary
displacement operator in contrast to the spin physics in Chapter 2.

The effective equations of the signal and the pump mode can be directly deduced
from Eq. (1.34) if one sets �A = (χ/2){a2s, a

† 2
s } and �B = {a†p, ap} in Eq. (1.31). The

c-MoP equation of the DOPO read,

ρ̇s(t) = Lsρs(t) +
χ

2

�
a†2s �ap�(t)− a2s�ap�∗(t), ρs(t)

�
(3.5)

+
�χ
2

�2
��

a2s ,

� t

0
dt�eLs(t−t�)Ks(t, t

�)ρs(t
�)

�
+H.c.

�
,

ρ̇p(t) = Lpρp(t) +
χ

2

�
ap�a2s�∗(t)− a†p�a2s�(t) , ρp(t)

�
(3.6)

+
�χ
2

�2
��

ap ,

� t

0
dt�eLp(t−t�)Kp(t, t

�)ρp(t
�)

�
+H.c.

�
,

where we have defined the Kernel superoperators

Ks(t, t
�)(·) = δa2s(t

�)(·) d+p (t, t�)− (·)δa2s(t�) d̃+p (t, t�) (3.7)

− δa†2s (t�)(·) d−p (t, t�) + (·)δa†2s (t�) d̃−p (t, t
�),

Kp(t, t
�)(·) = δap(t

�)(·) d+s (t, t�)− (·)δap(t�) d̃+s (t, t�) (3.8)

− δa†p(t
�)(·) d−s (t, t�) + (·)δa†p(t�) d̃−s (t, t�),

and for any operator Aj acting on the signal (j = s) or pump (j = p) subspace, we
have defined the corresponding fluctuation operator δAj(t) ≡ Aj − Trj{Aj ρj(t)}.
The state of the pump mode ρp(t) enters the signal mode’s dynamics, eq. (3.5), via
�ap�(t) ≡ Trp{apρp(t)} and the correlation functions

d+p (t, t
�) = Trp{a†peLp(t−t�)δa†p(t

�)ρp(t
�)}, (3.9)

d̃+p (t, t
�) = Trp{a†peLp(t−t�)ρp(t

�)δa†p(t
�)},

d−p (t, t
�) = Trp{a†peLp(t−t�)δap(t

�)ρp(t
�)},

d̃−p (t, t
�) = Trp{a†peLp(t−t�)ρp(t

�)δap(t
�)}.

In turn, the state of the signal mode ρs(t) enters the pump mode’s dynamics,
eq. (3.6), via the expectation value �a2s�(t) ≡ Trs{a2sρs(t)} and the correlation func-
tions

d+s (t, t
�) = Trs{a† 2s eLs(t−t�)δa† 2s (t�)ρs(t

�)}, (3.10)

d̃+s (t, t
�) = Trs{a† 2s eLs(t−t�)ρs(t

�)δa† 2s (t�)},
d−s (t, t

�) = Trs{a† 2s eLs(t−t�)δa2s(t
�)ρs(t

�)},
d̃−s (t, t

�) = Trs{a† 2s eLs(t−t�)ρs(t
�)δa2s(t

�)}.
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Equations (3.5) and (3.6) should be understood as two coupled equations which
represent effective equations for the reduced states of the signal and the pump mode.
They can be thought of as non-Markovian and nonlinear master equations which do
not rely on any time-scale separation between the modes. We will elaborate in detail
on the limits where time-scale separation is present in Sec. 3.3.3.

The only assumptions made so far are the Born approximation and the assumption
of an initially factorized state ρ(0) = ρp(0)⊗ρs(0). The latter seems very reasonable
by considering the vacuum as the state of the two modes before the driving laser is
switched on. We also emphasize, our approach does not ignore system-environment
or rather signal-pump correlations as shown in Chapter 1. Indeed, we will show
the crucial importance of the Born term in several examples below. Of course, c-
MoP theory or any theory based on the concept of projection operators does not
give access to explicit expressions for system-environment correlation functions. An
example in this context could be the cross-correlation function �a†pas� − �a†p��as�.
The most striking advantage of projection operator theories and in particular of the
c-MoP theory is the reduction of the complexity of the problem. In the example of
the DOPO the complexity of the Liouville-von Neumann eq. (3.1) scales as dimHs×
dimHp, where Hs/p denotes the Hilbert space of the signal/pump modes, while the
complexity of the c-MoP equations scale as dimHs + dimHp. The self-consistent
Mori-projector theory thus offers a very significant reduction of complexity.

3.3.1 Mean-field Approximation for the DOPO

A merely approximate but very simple way of solving the c-MoP equations is to
consider all terms up to first order in the interaction LI only. Hence we drop all
terms proportional to χ2 from eqs. (3.5) and (3.6). It can be easily understood that
within this approximation it does not make a difference whether the pump field is
displaced or not. For simplicity we put the displacement α̃p from eq. (3.4) to zero
and obtain two coupled equations

ρ̇p(t) =
�
(�p −

χ

2
�a2s�∗) a†p −H.c. , ρp(t)

�
+ γpDapρp(t),

ρ̇s(t) =
χ

2

�
�ap�a† 2s −H.c. , ρs(t)

�
+ γsDasρs(t),

(3.11)

known as mean-field equations [39]. These equations are quadratic in the field
operators and therefore it is straightforward to solve them either numerically for
the dynamics or analytically for the fixed points [39, 104]. The stationary state of
the signal mode will be a Gaussian state [83, 84, 106] centered around a vanishing
field amplitude �as� = 0 as the mean-field equations do not break the Ising-type Z2

symmetry. The steady state of the pump mode will be a coherent state with an
amplitude given by �ap�MF

ss = (�p − χ
2 �a2s�MF

ss )/γp.

Just like the c-MoP equations (3.5) and (3.6), the mean-field equations are coupled
nonlinear equations which have to be solved self-consistently. Within mean-field
theory fluctuations of the pump mode are disregarded. Fluctuations of the signal
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mode, however, are (at least to some extend) taken into account [39, 104]. This
leads to the regularization of the divergences appearing in the classical theory or
rather the standard linearization approach. For our purposes it is important to
note that the pump field amplitude always stays below the classical above-threshold
solution, i.e. �ap�MF

ss < γs/χ. Thus, we use it as the displacement in eq. (3.4), i.e.
α̃p = �ap�MF

ss . This will guarantee a well-behaved Liouvillian for the free system Ls

as we will explain in more detail in Sec. 3.3.2.

The mean-field equations can also be found by putting the factorized state Ansatz
ρ(t) = ρp(t)⊗ρs(t) into the Liouville-von Neumann equation, here given by eq. (3.1),
before tracing out each of the modes separately. This well-known procedure, indeed,
neglects all signal-pump correlations. Within the self-consistent projection operator
theory, mean-field can be understood as an approximation to linear order in the
interaction LI for the dynamics of reduced density matrices. Our theory therefore
provides a systematic generalization of mean-field approaches. It is due to the Born
terms, which are second order in LI , that signal-pump correlations are taken into
account. Therefore, we expect a higher quality of approximation by going from first
order to second order in the interaction.

3.3.2 From integro-differential to ordinary differential equations

In order to solve the full c-MoP equations including the Born terms we will need to
overcome two main difficulties. While the c-MoP equation (3.6) of the pump mode is
quadratic in the field operators, granting us with a closed set of equations including
only first and second moments of the pump field, the c-MoP equation (3.5) of the
signal mode is quartic in the field operators. We will therefore either solve the latter
fully numerically, see Sec. 3.4, or apply a Gaussian state approximation as presented
in Sec. 3.6. In any of these two approaches, we need to overcome the second difficulty
which arrises due to the non-Markovian structure of our theory. In the remainder
of this section we will thus show how to rewrite the integro-differential c-MoP equa-
tions (3.5) and (3.6) into a set of coupled ordinary differential equations. For the
present problem this step is crucial, as solving the integro-differential equations is
significantly more demanding for both numerical and analytical approaches.

We start by evaluating the correlation functions of the pump. By taking derivatives
of the pump correlators d±p (t, t

�) and d̃±p (t, t
�) with respect to t, see eqs. (3.9), consid-

ering initial conditions at t = t� (note that we understand from the c-MoP equations

that t� ≤ t), and exploiting the fact that the operator δa†p(t�)ρp(t�) is traceless, we
find

d+p (t, t
�) = d̃+p (t, t

�) = [�a† 2p �(t�)− �ap�∗2(t�)]e−γp(t−t�),

d̃−p (t, t
�) = [1 + �a†pap�(t�)− |�ap�(t�)|2]e−γp(t−t�),

d−p (t, t
�) = [�a†pap�(t�)− |�ap�(t�)|2]e−γp(t−t�).

(3.12)

Hence, all correlation functions of the pump can be written in a form where the t
dependence only enters in a simple exponential factor.
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A bit more effort is needed in order to simplify the correlation functions of the
signal, but the main steps are mainly identical. All the functions in eq. (3.10) are of

the form f(t, t�) = Trs{a† 2s eLs(t−t�)A(t�)} with a traceless operator A(t�) depending
solely on t�. Again, we take the derivative of f(t, t�) with respect to t and find an
equation of motion of the form ∂t�vt�(t) = M�vt�(t) with a column vector

�vt�(t) = col

�
��a†sas�, ��a2s�,

��a† 2s �
�
, (3.13)

where the expectation values with the tilde are defined in the usual way as the trace
over the signal mode but with a density matrix given by ρ̃t�(t) = eLs(t−t�)A(t�). The
matrix M reads

M =




−2γs χα̃p χα̃∗

p

2χα̃∗
p −2γs 0

2χα̃p 0 −2γs



 .

It is straight forward to diagonalize M . We write M = UΛU−1, with a similarity
matrix U and Λ the diagonal form of M containing its eigenvalues λ1 = −2γs, and
λ2,3 = −2γs ∓ 2χ|α̃p|. We now solve for the vector �vt�(t), to find

�vt�(t) = UeΛ(t−t�)U−1�vt�(t
�) ≡

3�

n=1

eλn(t−t�)Mn�uA(t�), (3.14)

where we have defined the initial condition vector

�uA(t�) = �vt�(t
�) =




Trs{a†sasA(t�)}
Trs{a2sA(t�)}
Trs{a† 2s A(t�)}



 , (3.15)

and the matrices Mn = UΠnU−1, where Πn is a projector in the n’th “direction”,
that is, a matrix with zeros everywhere but in element (n, n) which is one.

Note that for the limit limt→∞ �vt�(t) to be uniquely defined, and therefore for Ls

to be well-behaved, all the eigenvalues of M must satisfy Re{λn} < 0, which in
turn leads to a requirement for the displacement χα̃p < γs. This requirement is
indeed fulfilled by choosing the mean-field displacement as mentioned above, see
Sec. 3.3.1. In contrast, taking the classical solution as the displacement would lead
to an ill-behaved Ls above and at the classical threshold point, that is, for σ ≥ 1.

Coming back to the correlation functions in eq. (3.10), the general solution (3.14)
allows us to write them all as

ds(t, t
�) =

3�

n=1

eλn(t−t�)ds,n(t
�), (3.16)

with ds,n(t) =
�
Mn�uA(t)

�
3
(the subscript denoting the third vector component),

where ds denotes any of the correlation functions {d+s , d̃+s , d−s , d̃−s }, for which A is
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taken, respectively, as {δa†2s ρs, ρsδa
†2
s , δa2sρs, ρsδa

2
s}. Let us emphasize that, just as

with the pump mode, we have been able to write all the correlation functions of the
signal mode into a form where the t dependence only enters in simple exponential
factors.

Finally, let us show how this form for the correlation functions allows us to turn
the c-MoP equations, which are coupled integro-differential equations, into coupled
ordinary differential equations. For this aim, let us rewrite eqs. (3.5) and (3.6) as

ρ̇s(t) = Lsρs(t) +
χ

2

�
a†2s �ap�(t)− a2s�ap�∗(t), ρs(t)

�
(3.17)

+
�χ
2

�2 ��
a2s , hs(t)

�
+H.c.

�
,

ρ̇p(t) = Lpρp(t) +
χ

2

�
ap�a2s�∗(t)− a†p�a2s�(t) , ρp(t)

�
(3.18)

+
�χ
2

�2
��

ap ,
3�

n=1

hp,n(t)

�
+H.c.

�
,

where we have defined the operators

hs(t) =

� t

0
dt�eLs(t−t�)Ks(t, t

�)ρs(t
�),

hp,n(t) =

� t

0
dt�eLp(t−t�)Kp,n(t, t

�)ρp(t
�),

(3.19)

with the superoperator Kp,n defined as Kp in eq. (3.8), but with the correlation
functions ds,n(t) instead of ds(t). Using their definition, and the solutions found for
the correlation functions, eqs. (3.12) and (3.16), their evolution equations are found
to be

∂ths(t) = (−γp + Ls)hs(t) +Ks(t, t)ρs(t), (3.20)

∂thp,n(t) = (λn + Lp)hp,n(t) +Kp,n(t, t)ρp(t). (3.21)

Together with eqs. (3.17) and (3.18), these form a closed set of coupled nonlinear
ordinary differential equations for the reduced states ρs and ρp, and the traceless
operators hs and {hp,n}n=1,2,3. These are the equations that we analyze further in
the remainder of this chapter.

Overall we have shown for the example of the DOPO that it is indeed possible
to rewrite the integro-differential c-MoP equations into a set of ordinary differen-
tial equations. Whereas in the integro-differential form of the c-MoP equations we
would need to solve for D2

s +D2
p variables, the ordinary differential form requires to

solve for a number of 2D2
s + 4D2

p variables. Here, Ds(p) denotes the Hilbert space
dimension of the signal (pump) state for an adequate numerical truncation. Given
the complications of solving an integro-differential c-MoP equation numerically, see
the details in Sec. 2.2.1, especially when aiming for the steady state, the ordinary
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differential form of the c-MoP equations is much more favorable despite the larger
number of variables.

The steps presented here are quite general and can be pursued for all c-MoP equa-
tions describing any physical system. The complexity of the resulting set of coupled
equations will depend on the complexity of the subparts of the full quantum sys-
tem, here given by the complexity of the local Liouvillians Lp and Ls. Both local
Liouvillians of the DOPO are quadratic in the field operators allowing to find sim-
ple expressions for the correlation functions appearing in the integral kernels of the
Born terms as explained above in this Section. In particular, we only need up to
three eigenvalues of Lp and Ls for an exact calculation of the two-time correla-
tion functions. As a consequence the number of coupled differential equations for
matrix-valued variables increases from 2 integro-differential equations to 6 ordinary
differential equations.

To further illustrate the scaling behavior of this idea, let us consider a bipartite
system with coupled subparts A and B with Hilbert space dimensions DA and DB,
respectively. Within the integro-differential form of the c-MoP approach we find
two coupled equations for the reduced states ρA(t) and ρB(t) which requires to solve
for (DA)2 + (DB)2 variables. In the general case in which the local Liouvillians LA

and LB do not allow for an analytic solution of the two-time correlation functions
in the Born terms, we would need to numerically diagonalize LA and LB as it has
been explained in the driven and dissipative many-body example of Sec. 2.2.2. In
this case, every eigenvalue of the local Liouvillians generates a new matrix-valued
variable. As a result, the coupled ordinary differential equation form of the c-
MoP approach requires to solve for a total of (DB)2 × (DA)2 + (DA)2 × (DB)2

variables which scales even worse than the number of variables needed to solve the
full Liouville-von Neumann equation. Thus, the advantage of the approach presented
here over a direct numerical integration of the integro-differential c-MoP equations
is only present for cases where the local Liouvillians do not have a nonquadratic
internal structure which includes a vast number of nonlinear quantum optical models
such as those for nondegenerate or multi-mode parametric oscillation [85–88], lasing
[4, 6, 7, 89], optomechanics [69], or the dissipative Dicke model [38, 91, 92]. For the
latter we will present results within the framework of this thesis in Chapter 5

Finally, we remark that the c-MoP equations preserve the trace and the hermiticity
but they do not guarantee for the positivity of the density matrix. Such an issue
is not unusual for projection operator theories, in fact, the same conditions can be
found in the well established Redfield equations [43, 44]. Obviously whenever the
c-MoP equations provide a good approximation, they will yield a positive density
matrix. Hence the positivity of the eigenvalues can be used as a consistency test for
the approximation. Sometimes, the numerical results give negative entries on the
diagonal elements of the density matrix, but with a magnitude which is too small
to contribute.
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3.3.3 Exact limits: The adiabatic and the diabiatic limit

In standard open system theory one relies on a separation of time scales between
the system dynamics and the environmental relaxation rates as explained in Sec.
1.2. An equivalent reasoning is applied in adiabatic elimination approaches, where
in the case of the DOPO one relies on a separation between the rates γp and γs
at which the pump and the signal, respectively, relax to the steady state of their
unperturbed Liouvillians Lp and Ls. The c-MoP theory can, in fact, be understood
as a generalization of adiabatic elimination procedures where one considers the back-
action of the “system” onto the “environment”. We will now show that the effective
equations for the reduced state of the signal known in the adiabatic [20] and the
diabatic [39] limits can, indeed, be obtained as limiting cases of the c-MoP equations.

The adiabatic limit in which the time scale of the pump mode is much faster than
the time scale of the signal mode is defined such that γp/γs → ∞ while γsγp is kept
finite. The diabatic limit describes the opposite scenario where γp/γs → 0. We
proceed by comparing the Born terms with the free evolution operators Lp and Ls,
for which we consider the scaling of hs/γs and hp,n/γp, which can be obtained by
simple inspection of eqs. (3.20) and (3.21) divided by γs and γp, respectively.

In the adiabatic limit, we infer from eq. (3.21)/γp that hp,n(t)/γp = 0 for all n and
t ≥ 0. Introducing this result into eq. (3.18), we see that the state of the pump will
be coherent with a field amplitude obeying the equation of motion

∂t�ap� = �p − γp(�ap�+ α̃p)−
χ

2
�a2s�. (3.22)

Additionally, eq. (3.20)/γs leads to hs(t)/γs = Ks(t, t)ρs(t)/γsγp = ρs(t)δa
†2
s (t)/γsγp,

where we have used eqs. (3.7) and (3.12) and the fact that when the pump is in a
coherent state all the expectation values in eq. (3.12) cancel. Introducing this result
into eq. (3.17), together with the steady-state solution of eq. (3.22) for �ap�, we end
up with the effective master equation of the signal mode in the adiabatic limit

γ−1
s ∂tρs =

σ

2

�
a† 2s − a2s , ρs

�
+

g2

4
Da2s

ρs +Dasρs, (3.23)

where σ = �pχ/γpγs is an injection parameter corresponding to a coherent exchange
of excitations between the signal and pump modes, while g2 = χ2/γpγs accounts for
signal photon pairs that are lost to the strongly damped pump mode. Eq. (3.23) has
been extensively studied in the literature [12, 93, 107]. It can be derived via standard
adiabatic elimination which in the language of projection operator theory uses a
time-independent projection superoperator Pad projecting out the coherent laser
field [20]. Its action on the full density matrix is given by Pad ρ(t) ≡ |α��α| ⊗ ρs(t),
where |α� is a coherent state with α = �p/γp. The fast exponential decay e−γp(t−t�)

of the pump correlation functions allows in this case for a Markovian approximation
in the Born terms, that is

� t
0 dt

�eLs(t−t�)Ks(t, t�)ρs(t�) ≈ Ks(t, t)ρs(t)/γp.

Let us now analyze the c-MoP equations in the diabatic limit. There, eq. (3.20)/γs
provides us with hs(t)/γs = 0, which introduced in eq. (3.17) leads to an effective
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master equation

ρ̇s(t) =
χ

2

�
�ap�a† 2s − �ap�∗a2s , ρs(t)

�
+Dasρs(t) . (3.24)

for the signal state. The pump state only enters this equation trough the amplitude
�ap� which obeys eq. (3.22) since hp,n is traceless. Noting that this equation is
equivalent to eq. (3.11), we conclude that the diabatic limit reduces the full c-MoP
equations to the mean-field equations. In contrast to the adiabatic limit, we are not
aware of any projection operator based approach, apart from the one presented here
with a self-consistent projector, which describes the diabatic limit.

We emphasize that within these limits both eqs. (3.11) and (3.23) become exact
which can be understood from the full generalized Nakajima-Zwanzig Kernel of
the c-MoP theory, see Sec 1.4. The exact kernel includes a time-ordered dynamical

map given by T̂ e
� t
t� dt

�(L0+Ct�LI) with the time-ordering operator T̂ . In the case of the
DOPO we have L0 = Lp+Ls and the projector Ct = −ρp(t)⊗Trp{·}−ρs(t)⊗Trs{·}
which projects onto signal-pump correlations. In the Born approximation we drop
the interaction part from this exponential. Such a step becomes exact in cases where
(t− t�)L0 dominates completely over (t− t�)Ct��LI for a fixed t�� ∈ [t�, t].

We have thus shown that the c-MoP theory provides us with exact equations of
motion in the limits γp/γs → ∞ (adiabatic) and γp/γs → 0 (diabatic) where it
therefore becomes equivalent with well established theories [20, 39]. We will now
step beyond the cases in which time-scale separation is present and use the c-MoP
theory to access the signal state in the γp ≈ γs scenario.

3.4 Accuracy tests and full quantum states of the signal

mode

In the previous sections we have shown how to deal with the non-Markovian struc-
ture of the c-MoP equations. The only remaining difficulty is given by the quartic
structure of the effective equations of motion derived for the signal mode, eqs. (3.17)
and (3.20). In this section we will treat the problem numerically in the Fock state
basis by introducing a truncation Ds for the Hilbertspace Hs of the signal, where Ds

is chosen such that the results for the observables we are interested in converge up
to some desired accuracy. Thus, the reduced state ρs and the operator hs(t) will be
Ds×Ds dimensional matrices. We will not change into the superspace representation
here in contrast to the approach presented in Sec. 2.2.2.

Instead of treating the pump mode in an analogous manner, we exploit the fact
that the c-MoP equations of the pump mode (3.18) and (3.21) are quadratic in the
bosonic operators. As a consequence we are able to describe the pump state by a
set of five variables only, the mode amplitude �ap� plus the fluctuations �apδap� and
�a†pδap� (note that the first two are complex variables). These five variables can be
determined by solving Eqs. (3.18) and (3.21) as a function of the signal state ρs(t) for
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14 variables which includes the pump field amplitudes �ap�(t), �a†p�(t) = �ap�∗(t) and
the fluctuation variables Trp{a†pδapA(t)}, Trp{apδapA(t)} and Trp{a†pδa†pA(t)} with
A(t) being either hp,1(t), hp,2(t), hp,3(t) or ρp(t). At the end, we are thus effectively
left with two coupled nonlinear differential equations for the matrices ρs(t) and hs(t).
The number of variables in our c-MoP simulation amounts to 2D2

s + 14.

In the following we compare the steady states of the classical theory from eq. (3.2),
the steady states of the mean-field equations (3.11), and the steady states of the
c-MoP equations. In order to show the accuracy of the latter we also determine the
steady state of the full Liouville-von Neumann equation (3.1) in parameter regimes
where it is numerically tractable. This numerical simulation is done as follows: first,
we eliminate the large coherent background of the laser drive from the Liouvillian L
by writing ap = αp + δap, where αp is taken to be the classical steady-state solution
of eqs. (3.2); then, we use the superspace formalism, where the steady-state operator
ρss and the Liouville superoperator L are represented, respectively, by a vector �ρss
and a matrix L, and �ρss can be found as the eigenvector with zero eigenvalue of
L [62, 107]. As the dimension of the matrix L is (Dp × Ds)2, with Dp denoting
the pump mode’s Hilbert space dimension, this exact simulation is limited to small
photon numbers.

In all the simulations we consider cases without time-scale separation between the
two modes and rescale all units to the dissipation rates, i.e. we put γp = γs = 1. The
only remaining parameters are the nonlinear coupling χ and the injection parameter
σ = �pχ.

In Fig. 3.2 we present results in parameter regimes where the full DOPO equa-
tion (3.1) can be solved numerically. In Figs. 3.2(a)− (c) and 3.2(d)− (f) we show
different steady-state observables for χ = 1 and χ = 0.1, respectively. It can be
appreciated how the c-MoP results (blue solid line) coincide almost perfectly with
the numerical results from the full master equation (red stars). The observables
that we show are the pump mode’s amplitude �ap� in Figs. 3.2(a) and 3.2(d),

the signal photon number �a†sas� in Figs. 3.2(b) and 3.2(e), and the g(2) function

g(2)s (0) ≡ �a† 2s a2s�/�a
†
sas�2 of the signal in Figs. 3.2(c) and 3.2(f). We also com-

pare with the mean-field predictions of eqs. (3.11) (black dashed line), which in this
context should be understood as the c-MoP theory up to first order, and with the
classical steady-state solutions (gray thin solid line) given after eq. (3.2). Let us re-
mark that despite the nonlinear nature of the mean-field and the c-MoP equations,
we only find one physical solution for each of them.

All four theories agree quite well far below the critical point σ = 1 as the states
of the signal and pump modes are close to vacuum and a coherent state induced
by the external laser drive, respectively. Far above the threshold point, where the
classical theory is expected to be approximately valid, we find that both the c-
MoP predictions and the full numerics agree well with the classical solutions for all
observables, but with the fundamental difference that the classical theory breaks the
Z2 symmetry, while c-MoP and the full solution preserve it. The mean-field solution,
on the other hand, fails to describe the state of the signal above threshold as can be
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Figure 3.2: Accuracy tests of the c-MoP theory for steady-state expectation values
as a function of the injection parameter σ. In all plots we set γp = γs = 1. The
cases χ = 1 and χ = 0.1 are considered in (a)-(c) and (d)-(f), respectively. The
rescaled pump amplitude χ�ap� is shown in (a) and (d); (b) and (e) show the signal

photon number �a†sas�; finally, (c) and (f) show the g(2) function of the signal, which
is equal to 1 for a coherent state (or a balanced mixture of coherent states differing
only in phase). The gray thin solid lines show the classical prediction from eqs. (3.2),
showing that the classical threshold where the signal field is switched on lies at σ = 1.
The blue solid curves represent the results obtained from the numerical solution of
the c-MoP equations (3.17), (3.18), (3.20), and (3.21). The red stars show the result
obtained from the full master equation (3.1) up to injection parameters σ where the
numerics are tractable for us. Finally, the black dashed curves represent the mean-
field theory, see eq. (3.11). Apart from the classical solution, all theories conserve
the Z2 symmetry, i.e. �as� = 0.

appreciated from the g(2) function in Figs. 3.2(c) and 3.2(f). As expected, mean-
field theory and the classical theory break down in the vicinity of the threshold
point. Remarkably, this is not true for c-MoP which appears to give quasi exact
results for all values of σ, even in cases where the interaction rate χ is comparable
to all other system parameters.

For the experimentally relevant scenario with χ � 1, the Hilbert space dimension
needs to be so large that we are not able to find the numerical solution of the
full master equation (3.1) for injection parameters close to (or above) threshold.
However, we can compare the c-MoP predictions (red stars), see Fig. (3.5), with
the perturbative approach which Drummond et al. (dark yellow dot-dashed line)
developed in the vicinities of the critical point, by making a consistent multiple-scale
expansion of the system’s stochastic variables within the positive P representation
[96, 97]. This procedure has the virtue of being valid for any values of γp and γs,
and close to threshold, concretely for |σ− 1| < χ/

�
2γpγs it is expected to be quasi-

exact. As shown in Figs. 3.5(a) and 3.5(b), we find perfect agreement between this
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approach and the c-MoP theory for χ = 0.01.

Overall, we have indeed shown the drastic impact of the Born terms, which do not
only lead to a quantitative improvement as compared to the classical theory or to
mean-field, but to a qualitatively different state of the signal mode. The classical
theory predicts a coherent state, while the mean-field theory, i.e. the c-MoP theory
up to first order, predicts a Gaussian state of the signal centered around �as� = 0
[104]. The c-MoP theory including the born terms, hence including signal-pump
correlations within a projection operator based theory, is capable of finding the full
quantum state of the signal which is neither coherent nor Gaussian as shown through
the g(2) function in Figs. 3.2(c) and 3.2(f).

In order to illustrate the full quantum state, we plot the Wigner function W (xs, ps)
of the signal density matrix obtained from the c-MoP equations in Fig. 3.3(a) for
χ = 0.1 and different values of σ. Let us remark that in our case in which the
Wigner function is positive everywhere in the phase-space formed by the quadra-
tures xs = a†s + as and ps = i(a†s − as), it can be simply interpreted as the joint
probability distribution describing the statistics of measurements of these observ-
ables [83, 84, 106]. From a computational point of view, we evaluate it from the
steady-state density matrix following the method detailed in [108]. Far below thresh-
old, the Wigner function shows a perfect vacuum for the signal state, see top panel
of Fig. 3.3(a) for σ = 0 as a reference. As we cross through the critical point, two sig-
nificant effects take place. First, approaching the threshold we find the well-known
quadrature-noise reduction or squeezing [20, 109, 110], which is highest around the
critical point σ = 1 [97], and reaches its asymptotic value �δp2s� = (γs+γp)/(2γs+γp)
for σ → ∞, with corresponding antisqueezing �δx2s� = 1+γs/γp [104]. Second, as we
cross the threshold we appreciate how the state develops two peaks centered (asymp-
totically) at the quadrature values predicted by the classical solution. Hence, even
though the true quantum state always preserves the Z2 symmetry, it does so in two
qualitatively different ways depending on whether we are below or above threshold.
This behavior is reminiscent of the one appearing in the adiabatic limit [12], and
it has been recently observed for the first time by making use of a circuit QED
architecture [111].

In retrospect, we see that the symmetry-breaking states predicted above threshold by
the standard linearization approach correspond each to one of the two distinct peaks
appearing in the exact state. Far above threshold σ � 1 the two peaks have zero
overlap and such states provide reasonable predictions for all observables which are
not sensitive to symmetry breaking, that is, all observables containing even numbers
of signal field operators. Of course, such a deficit can be corrected by simply using a
balanced mixture of the symmetry-breaking states [104]; this construction will guide
us in the next section, where we will perform a Gaussian state approximation which
necessarily breaks the Z2 symmetry. It is then close to the critical point where both
linearization and mean-field approaches fail, whereas c-MoP provides an accurate
description of the quantum state.

Let us remark that we have compared the Wigner function obtained from the c-
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Figure 3.3: Wigner functions of the c-MoP density matrix for the signal mode
without (a) and with (b) the Gaussian state approximation for γp = γs = 1, χ =
0.1, and for different values of σ. In the absence of injection, σ = 0, the signal
state is in vacuum. Upon approaching the threshold, it becomes squeezed, with the
highest squeezing levels obtained around σ = 1. Above threshold two symmetric
peaks appear and the squeezing reaches some asymptotic value as we move away
from threshold. Note how above threshold the state can be approximated by a
balanced mixture of two symmetry breaking states. Indeed, let us remark that
while for σ < 1 we are plotting the unique solution that appears when applying
the Gaussian state approximation onto the c-MoP equations (which we have called
below threshold solution in the text), for σ > 1 we have chosen to plot the Wigner
function corresponding to a balanced mixture of the two above threshold symmetry
breaking solutions with opposite phase which coexist with the symmetry-preserving
Gaussian solution.

MoP theory with the reduced signal states obtained from the full master equation,
which was only possible for σ ≤ 1.2, and found very good agreement, the differences
being completely unnoticeable to the naked eye. We emphasize again that, with
the numerical solution of the c-MoP equations we are able to find the full reduced
density matrices of the modes away from the adiabatic limit. This is in contrast to
other approaches such as stochastic simulations [96–98] or the Keldysh formalism
[99–101] which are naturally designed to provide expectation values of the system
operators.

3.5 Comparison to the Keldysh formalism

So far, we have been mainly comparing the quantitative predictions of the c-MoP
theory to the predictions of the semi-classical approach and to a mean-field ansatz
[39]. We now also compare the c-MoP performance with nonequilibrium many-body
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Figure 3.4: Performance test of the c-MoP theory with and without the Gaussian
state approximation in comparison with the Keldysh approach [99] for steady-state
observables as a function of the injection σ. The remaining parameters are γp = γs =
1 and χ =

�
2/5. We show the rescaled pump field amplitude χ�ap� and the signal

photon number �a†sas� in (a) and (b), respectively. The red stars show the results
obtained from an exact solution of the Liouville-von Neumann equation. The blue
solid line shows the results obtained from the full c-MoP eqs. (3.17), (3.18), (3.20),
and (3.21). For comparison, the results of the Keldysh approach obtained from an
extraction of the data of Ref. [99] are shown by the black + signs. The orange
dashed curve represent the below threshold solution obtained from a Gaussian state
approximation on the c-MoP equations. The black dashed curve displays the results
of mean-field theory, and finally the gray thin solid lines represent the prediction of
the classical theory.

techniques beyond mean-field which have been successfully applied to the DOPO
[99–101]. For this purpose we extract the signal photon number and the pump
field amplitude from Reference [99] where a Keldysh treatment has been conducted
in order to find the nonequilibrium steady state of the DOPO. The parameters
investigated in Ref. [99] are γp = γs = 1 and χ =

�
2/5. In Fig. 3.4 we compare the

c-MoP results with (orange dashed line) and without Gaussian state approximation
(blue solid curve), for the former see Sec. 3.6, the Keldysh formalism results (black
+ signs), mean-field (black dashed line) and finally the classical predictions (gray
thin line) to exact results (red stars).

As expected from the results of Sec. 3.4 we find the c-MoP theory to give quasi exact
solutions while the Keldysh results deviate from the exact numerical solution. The
quantitative accuracy of the Keldysh approach can be compared to the accuracy of
the Gaussian c-MoP theory which we present in the next section. However, similar
to the Gaussian c-MoP theory the Keldysh approach features a symmetry broken
solution above threshold. This solution has not been shown for the investigated
parameters in Ref. [99]. We emphasize, that the approach presented in Ref. [99]
is a self-consistent Hartree-Fock calculation which means that it is exact up to χ2

within the diagrammatic Keldysh framework. In that sense the comparison between
c-MoP theory in Born approximation and the self-consistent Hartree-Fock Keldysh
approach is based on equal grounds.
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Most importantly, however, we exemplify with the results for the DOPO model that
the c-MoP theory differs from the Keldysh approach. Within the framework of this
thesis it has not been possible to investigate the details of many-body field theoretical
approaches and to draw an elaborate comparison to the c-MoP theory. Nonetheless,
we would like to comment on the possibly most important difference between the c-
MoP theory and nonequilibrium Green’s function methods, in particular the Keldysh
formalism.

In Ref. [99] the quantity of interest is for example given by the exact two-point

Green’s function �TCSCa
†
sas�, with the time-ordering operator TC on the Keldysh

contour and SC = TCe−i
�
C dτHI(τ) the time evolution operator in the interaction

picture. Most importantly, the trace is taken over a density matrix which allows for
the application of Wick’ theorem meaning that the state is Gaussian. In Ref. [99]
the steady state of the mean-field equations are used as the reference state. Up to
this point the Keldysh formalism is exact. The approximation enters via expanding
SC as a Dyson series in powers of the interaction which can be done in two ways.
One way leads to a perturbative approximation by cutting the Dyson series at some
order. In this case the exact two-point Greens’ function will depend on ”free”
two-point Greens’ functions only due to contractions according to Wick’s theorem.
Alternatively, in the self-consistent treatment as performed in Ref. [99] the bare
Greens’ functions are replaced by the interacting Greens’ functions in the resummed
Dyson equation. This leads to a formally exact and closed nonlinear equation for the
exact two-point Green’s functions. We emphasize, however, that within the second
order of the self energy n-point Green’s function with n > 2 are not accounted for
in the Keldysh framework. Overall, one can say that higher correlations are formed
from Green’s functions and vertices, reducing the degrees of freedom to some finite
n in the extent to which n-point functions are being considered.

In contrast the c-MoP theory, relies on density matrices which at every vertex point
account for all possible correlation functions up to arbitrary order, at least for cor-
relation functions which are local on the Hilbert spaces of either the pump or the
signal. Thus c-MoP accounts for everything but the weakest connections remaining
in the (fluctuations of the) signal-pump interaction. Thus, we can suppose that the
c-MoP approach of a certain power in the interaction is indeed more powerful than
a self-consistent diagrammatic Keldysh approach [99] of that same power. And,
indeed, we have exemplified such an observation in this section. However, the com-
putational effort of c-MoP scales with system-size of the local Hilbert spaces whereas
the Keldysh method does not.

Moreover, we like to mention that many other theoretical techniques, including dy-
namical mean-field theory [112], have been developed based on the Keldysh formal-
ism. Thus, we expect the c-MoP theory to differ from dynamical mean-field theory
as well. Certainly, it is an intriguing task for future research to further investigate
the differences between field theoretical approaches and the c-MoP approach, and
even aim for a strong combination of the two theories.
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3.6 Gaussian state Approximation within the c-MoP

theory

Despite the fact that the complexity of solving the c-MoP equations fully numeri-
cally scales in a more favorable way than the numerical complexity of the full master
equation, it still requires to integrate a number of differential equations that scales
quadratically with the dimension of the truncated Hilbert space for the signal field.
Therefore, it is very desirable to find an effective description of the underlying the-
ory which is numerically more efficient and can thus cover the whole parameter
space. In the remainder of this section, we implement such an idea by applying
a Gaussian state approximation (GSA) consistent with the c-MoP equations (3.5)
and (3.6).

Another great advantage of a Gaussian theory, apart from reaching the whole pa-
rameter space, is the efficiency in the evaluation of both steady states and dynamical
quantities such as two-time correlation functions. The disadvantage of a Gaussian
theory, however, is the lack of quantitative accuracy especially in the vicinity of the
critical point. Nonetheless, as we show in the following, a Gaussian theory consistent
with the c-MoP equations offers better quantitative accuracy than any of the pre-
viously developed Gaussian methods, particularly linearization around the classical
solution or the recently-developed self-consistent linearization [104].

The general procedure for finding a GSA for the state of a certain bosonic master
equation is very simple. In a first step, we write the bosonic operators as aj =
αj + δaj , with αj = �aj�, such that �δaj� = 0. In the next step we find the
evolution equation for the first and second moments, which will depend on higher-
order moments in general. Thus, in the final step we assume the state to be Gaussian
at all times, so that all higher order moments factorize into products of first and
second order moments [20, 104]; in particular, we will encounter third order moments

such as, e.g. �δa†2s δas�, which vanish identically within the GSA, and forth order
moments which factorize according to, e.g.

�δa†4s � ≈ 3�δa†2s �2,
�δa†3s δas� ≈ 3�δa†2s ��δa†sδas�,
�δa†2s δa2s� ≈ �δa†2s ��δa2s�+ 2�δa†sδas�2.

(3.25)

After this final step, we are then left with a closed set of nonlinear equations for the
amplitudes αj and the second order moments of the fluctuations δaj that have to
be solved self-consistently.

The standard linearization theory can be understood as a GSA on the full master
equation, but with the exception that the amplitudes αj are not determined self-
consistently, but are obtained from the classical theory. As shown by the gray
thin solid line in Fig. 3.5(b) the complete suppression of quantum fluctuations when
determining these amplitudes leads to unphysical results at the threshold point in
the DOPO.
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Figure 3.5: Accuracy tests of the c-MoP theory with and without the Gaussian state
approximation for steady-state observables as a function of the injection σ. In all the
plots we set γp = γs = 1 and χ = 0.01. As in Fig. 3.2, we show the rescaled pump

field amplitude χ�ap�, the signal photon number �a†sas�, and the g(2) function of the
signal, in (a), (b), and (c), respectively. The red stars show the results obtained
from the c-MoP eqs. (3.17), (3.18), (3.20), and (3.21), up to injection parameters
σ where the numerics are tractable. For comparison, the quasi exact method of
Drummond and collaborators [96, 97] is shown as a dark yellow dot-dashed line.
The blue solid and the green dashed curves represent the below and above threshold
solutions, respectively, obtained from a Gaussian state approximation on the c-MoP
equations. The black thin dotted curve displays the results of mean-field theory, see
eq. (3.11), which in this context can be understood as the below threshold solution
of a Gaussian state approximation on the full master equation (3.1). Finally, the
gray thin solid lines represent the prediction of the standard linearization theory in
(a) and (b), and the coherent-state prediction g(2) = 1 of the classical equations (3.2)
in (c).

The self-consistent linearization method, as it is coined in Ref. [104], goes one
step beyond standard linearization by consistently finding the amplitudes αj from
the GSA still applied to the full master equation. Due to the nonlinear nature of
the resulting equations of motion, one can find several solutions in a given point
of parameter space. However, it was shown that at the end only two types of so-
lutions were physical, qualitatively similar to the solutions found from standard
linearization, but quantitatively regularized in such a way that the unphysical re-
sults of the latter disappear. In particular, a below threshold (BT) solution was
found, which does not break the Z2 symmetry, i.e. αs = 0, but in contrast to the
classical theory exists for all values of the injection parameter, not only for σ < 1.
Two above threshold (AT) solutions were also found. These solutions have opposite
phase and break the symmetry, that is, �as� = ±|αs| �= 0, but appear only above a
certain injection parameter σ > 1 which is larger than the classical threshold value.
Interestingly, we point out that the BT solution found through this self-consistent
linearization is exactly equivalent to the mean-field theory introduced in Sec. 3.3.1.

Motivated by these findings, we apply a GSA to the c-MoP equations. Concretely,
we calculate all first and second order moments of the pump and signal fluctuations
from the c-MoP eqs. (3.17), (3.18), (3.20), and (3.21), and apply the factorization
of higher order moments as explained above. In strong contrast to the GSA on the
full master equation, we do not need to assume a Gaussian form for the full state ρ
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but only for the reduced state of the signal ρs. Hence, we expect similar qualitative
results but with a higher quantitative accuracy.

Indeed, this is what we find and illustrate in Fig. 3.5 for γp = γs = 1 and χ = 0.01.
We plot steady-state expectation values for the pump amplitude χ�ap� in Fig. 3.5(a),

the signal photon number �a†sas� = �δa†sδas� + |αs|2 in Fig. 3.5(b), and the g(2)

function of the signal in Fig. 3.5(c), all as a function of the injection parameter σ.
The blue solid line shows the below threshold solution of the GSA on the c-MoP
equation, while the green dashed line illustrates the above threshold solution. The
latter fulfills �δa†sδas� � |αs|2 and is therefore more likely to provide physically
consistent results than the BT solution whenever they coexist. In Fig. 3.5(c) we
show how the AT solution indeed gives the correct value for the g(2) function, what
indicates that each of the AT solutions corresponds to one of the lobes of the Wigner
function, see Fig. 3.3(a). In order to illustrate this point even further, we show in
Fig. 3.3(b) the Wigner function [83, 84, 106] corresponding to the GSA on the c-
MoP equations (as explained in the previous section, above threshold we take the
balanced mixture of the two symmetry breaking solutions, such that the resulting
state preserves the Z2 symmetry).

Importantly, there is an increased quantitative accuracy of the BT solution obtained
from the c-MoP theory as compared with the mean-field theory (or the self-consistent
linearization), see Figs. 3.5(a) and 3.5(b), for parameters below and especially at the
classical threshold point. As mentioned in Sec. (3.4) we test the accuracy of our
method by comparing with the quasi exact method of Drummond and collaborators
[96, 97], illustrated by the dark yellow dot-dashed line in Figs. 3.5(a) and 3.5(b).
This increase in accuracy can be attributed to the born terms, since the mean-field
equations can be understood on the one hand as the first order approximation of the
c-MoP theory, and on the other hand as the below threshold solution of the GSA
on the full master equation of the DOPO.

To summarize this section, we have shown that the c-MoP equations also provide a
highly accurate Gaussian theory which is still as effective as every other linearized
theory but, in contrast, it takes significant signal-pump correlations into account.
This is relevant because, as stated above, a Gaussian theory has the virtue that both
steady-state as well as dynamical quantities such as two-time correlation functions
can be found efficiently for any time and set of parameters. To emphasize this
practical aspect of the GSA, we will show in Sec. 3.7 that the level of accuracy
that we have found here in the evaluation of the steady states is also present in the
transient time evolution.

3.7 Dynamics

So far we have only presented steady-state quantities for the various methods of
our interest. In this section we will briefly elaborate on the possibility to simulate
dynamical evolution as well. The steady state of the full master equation (3.1)
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Figure 3.6: Accuracy tests of the c-MoP theory for transient time evolution. The
initial state is chosen to be the vacuum. We set γp = γs = 1, investigate the classical
threshold point σ = 1, and choose χ = 0.1 in (a) and χ = 0.05 in (b). The plots
display the signal photon number as a function of time in units of the dissipation
rates, while the insets show the g(2) function of the signal mode. The red stars
in (a) show the result obtained from the numerical simulation of the full master
equation (3.1), while the red line in (b) indicates its steady-state values only. The
blue solid curves represent the results obtained from the numerical integration of the
c-MoP eqs. (3.17), (3.18), (3.20), and (3.21). Finally, the green dashed and black
dotted lines represent the time evolution obtained from a Gaussian state approxima-
tion on the c-MoP equations and the full master equation (mean-field), respectively.

can be understood as an eigenvector corresponding to the zero eigenvalue of the
Liouvillian L such that Lρss = 0. The formal solution for the time evolving state
which can be written as ρ(t) = eLtρ(0), on the other hand, involves all eigenvalues of
the Liouvillian. Hence, it is a priori not clear whether a given approximate method
used for the evaluation of the steady state of L will provide the same degree of
accuracy when used for transient time evolution.

In order to investigate this open issue we simulate the time dynamics of the various
approximate methods that we have introduced, and compare their results with an
exact simulation of the full master equation (3.1) in regions of the parameter space
where it is numerically tractable. We analyze a situation in which the input laser
drives the system from the initial vacuum to its steady state. Fig. 3.6 shows the
signal photon number as a function of time at the classical threshold point σ = 1, for
γp = γs = 1, and for χ = 0.1 in Fig. 3.6(a) and χ = 0.05 in Fig. 3.6(b). The red stars
in Fig. 3.6(a) illustrate the result obtained from the numerical simulation of the full
master equation (3.1), while the red line in Fig. 3.6(b) illustrates the steady-state
value of its observables only, since the small value of χ prevented us from being
able to simulate the whole dynamics in this case. On the other hand, the blue solid
curves represent the results obtained from the numerical integration of the c-MoP
equations as explained in Sec. 3.4. Finally, the green dashed and black dotted lines
represent the time evolution obtained from a GSA on the c-MoP equations and the
full master equation, respectively.

Remarkably, Fig. 3.6(a) shows that the level of accuracy found dynamically for the
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various approximations is similar to the ones that we already encountered when
evaluating steady-state quantities. In particular, it is apparent that, at any point
in time, the GSA on the full master equation (mean-field) is less accurate than the
GSA on the c-MoP equations, which in turn does not have the remarkable level
of accuracy shown by the full c-MoP numerical simulation, almost coinciding with
the numerics of the full master equation at all times. It is important to note that
the evolution of the g(2) function shown in the inset of Fig. 3.6(a) suggests that,
indeed, the c-MoP equations are able to map the full quantum state of the signal in
the course of time. Thus, the c-MoP theory provides an efficient approach for the
investigation of the transient time evolution in a driven-dissipative scenario, where
quantum states in the intermediate time are expected to find practical applications
for quantum engineering and computing [111].

A numerical simulation for the parameter set chosen in Fig. 3.6(b) demands mini-
mal Hilbert space dimensions of dimHp = 6 and dimHs = 120 in order to reach
convergence up to an accuracy of 10−2 for the relevant observables. Thus, while the
c-MoP approach requires a simulation of a set of 28 814 coupled nonlinear differen-
tial equations, in the case of the full master equation one has to integrate 518 400
coupled linear differential equations, which has precluded us from being able to sim-
ulate the dynamics from it. Therefore we only show steady-state observables of the
full master equation for this case.

Figs. 3.6(a) and 3.6(b) further illustrate the scaling of various quantities with the
nonlinear coupling χ at the critical point. In particular, note how both the signal
photon number and the time that the system needs to reach the steady state double
when χ is reduced by half. The latter is known in the literature as critical slowing
down [96], and just as the signal photon number, it was predicted to scale with χ−1

[12, 96, 99], in agreement with our c-MoP simulation. Hence, we can appreciate the
practical use of a Gaussian theory by considering that to simulate an experimentally
relevant scenario where χ � 1, dynamical quantities would require extremely long
simulation times. This can be efficiently handled with a GSA on the c-MoP theory,
but not by a full numerical simulation. As an example, we have checked that for
χ = 0.01 a GSA on the c-MoP equations requires a normalized time of approximately
300 to reach the steady state, again in agreement with the χ−1 scaling. It can be
appreciated in Fig. 3.6(a) that such time is about 10 times smaller for χ = 0.1. We
will exploit the ability of the Gaussian c-MoP theory to predict the scaling behaviour
at threshold to a large extend in the following Chapter.
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Chapter 4

Degenerate optomechanical

parametric oscillators:

cooling in the vicinity of a

critical point

4.1 Introduction

Degenerate optical parametric oscillators (DOPOs) consist of a driven optical cavity
containing a crystal with second-order optical nonlinearity [20, 42, 76, 113]. Down-
conversion in the crystal can generate a field at half the frequency of the driving
laser and classical electrodynamics predicts that such field will start oscillating inside
the cavity only if the external laser power exceeds some threshold value, where the
nonlinear gain can compensate for the cavity losses. A fully quantum-mechanical
theory, on the other hand, reveals that even below threshold the down-converted
field is not vacuum, but a squeezed field whose quantum correlations increase as the
threshold is approached.

Recent developments in the fabrication of crystalline whispering gallery mode res-
onators [114–126] have opened the way to study the intracavity interplay between
down-conversion and optomechanics [69], a setup that we will refer to as degener-
ate optomechanical parametric oscillator (DOMPO). So far, it has been shown that
the presence of down-conversion in an optomechanical cavity can help enhancing
mechanical cooling [127], normal mode splitting [128], sensitivity in position mea-
surements [129], or even bringing optomechanics close to the strong coupling regime
with additional bath engineering [90]. In all these works, however, the nonlinear
crystal is operated as a parametric amplifier, providing a nonlinear gain to some
external field that is injected in the cavity at the down-converted frequency (stimu-
lated down-conversion). In contrast, the description of the interaction between the
field generated via spontaneous down-conversion and the mechanical mode is much
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more challenging, since (below threshold) the former is purely quantum mechanical
[70], so that the optomechanical coupling cannot be linearized and does not admit
a simple Gaussian description.

In this thesis we provide a theory for the DOMPO which can be trusted all the way
to threshold, and is obtained by combining traditional adiabatic elimination tech-
niques with the c-MoP theory [32, 130]. We show that, for parameters compatible
with current crystalline whispering gallery mode resonators, the mechanical state
stays approximately thermal in all parameter space, and identify the region below
threshold where the down-converted field is able to cool down the mechanical state
significantly. Moreover, we provide a physical explanation for the latter, showing
that it constitutes a realistic example of the “cooling by heating” mechanism [131].
Interestingly, our c-MoP approach allows us to show that cooling is not optimal at
threshold, which features the largest photon number, even though the cooling rate
is in fact maximal at that point. This is because the strong quantum fluctuations
in the down-converted field enhance a heating mechanism associated to it, which in
turn limits the mechanical cooling achievable.

The remainder of the Chapter is organized as follows. In Sec. 4.2 we introduce the
DOMPO model and briefly discuss its classical properties. Next, we explain how to
perform the adiabatic elimination of the optical modes in Sec. 4.3 and show that all
the information about the optical modes enters the effective mechanical dynamics
through the signal photon number and an optical correlation function. We then
treat the optics, that is the DOPO, in different ways: via standard linearization
(semi-classical approach) and also in a squeezed picture that highlights the ”cooling
by heating” effect in Sec. 4.4, and through the c-MoP theory in Sec. 4.5. The latter
will allow us to find the scaling of the relevant quantities at threshold discussed in
Sec. 4.5.1, and we will extensively use it in Sec. 4.5.2 to justify the absence of me-
chanical backaction on the optics by bounding the backaction terms proportioned by
c-MoP theory applied to the full optomechanical problem. Finally, we will comment
on the implications of alternative choices for the self-consistent Mori projector in
Sec. 4.5.3.

4.2 Degenerate optomechanical parametric oscillators

Degenerate optomechanical parametric oscillators (DOMPOs) are optical resonators
in which a mechanical degree of freedom is coupled to a cavity mode that is nonlin-
early amplified via parametric down-conversion of an external pumping laser. We
illustrate the scheme of the DOMPO system in Fig. 4.1. A crystal with second-order
optical nonlinearity is shared by two cavities with relevant resonances at frequen-
cies ωp (pump mode) and ωs ≈ ωp/2 (signal mode). The pump cavity is driven by
a resonant laser, so that photons in the signal cavity can be generated via spon-
taneous down-conversion [42, 113]. In addition, one of the mirrors of the signal
cavity can oscillate at frequency Ωm, and is therefore optomechanically coupled to
the down-converted field via radiation pressure [69]. In essence, the DOMPO model
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Figure 4.1: Sketch of the degenerate optomechanical parametric oscillator considered
in this chapter.

is described by the DOPO model, investigated in Chapter 3 of this thesis, optome-
chanically coupled to a mechanical degree of freedom.

Let us define annihilation operators aj with j = {p, s,m} for the pump (p), signal
(s), and mechanical (m) modes. Including losses of the optical modes at rate γ0 =
γs = γp ( we choose pump and signal loss rates to be equal in all that follows), as
well as the irreversible energy exchange of the mechanical mode with its thermal
environment at rate γm, the master equation governing the evolution of the full
DOMPO state ρ(t) can be written as (� = 1)

ρ̇(t) = (Lopt + Lm + LOM) ρ(t). (4.1)

The optical Liouvillian is given by the DOPO model. In a frame rotating at the
laser frequency it thus reads

Lopt(·) =
�
−i∆sa

†
sas + �p(a

†
p − ap) +

χ

2
(apa

† 2
s − a†pa

2
s) , (·)

�
+ γ0

�
Dap +Das

�
(·),
(4.2)

where χ/2 is the down-conversion rate, and �p is proportional to the square root
of the injected laser power. We also remind the definition of our notation for the
standard Lindblad dissipator DJ(·) = 2J(·)J† − J†J(·) − (·)J†J with J being an
arbitrary operator. In contrast to the DOPO model on resonance, see Eq. (3.1),
we have here introduced the detuning ∆s = ωs − ωL/2 of the signal mode to half of
the laser frequency, whereas we consider the pump mode to be on resonance with
the laser, i.e. ∆p = ωp − ωL = 0. For the purpose of investigating optomechanical
cooling effects we focus on the red detuned regime where ∆s ≥ 0.

The mechanical degree of freedom is described by the local Liouvillian

Lm(·) = −i[Ωma†mam, (·)] + γm(n̄th + 1)Dam(·) + γmn̄thDa†m
(·). (4.3)

In the absence of light, the mechanical state is at thermal equilibrium with n̄th

phonons. Finally, we write the optomechanical interaction Liouvillian as

LOM(·) = i[ΩmηOMa†sas(am + a†m), (·)], (4.4)
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where we normalize the optomechanical coupling ηOM to the frequency of the me-
chanical oscillation Ωm.

The Liouville-von Neumann equation of the DOMPO given by Eq. (4.1), which can
be written in a short-hand notation ρ̇(t) = Lρ(t) as in Eq. (1.1), provides the starting

point for approximative theories as the nonlinear coupling terms apa
† 2
s − a†pa2s and

a†sas(a
†
m + am) render an exact solution of Eq. (4.1) in general impossible. Exact

numerical calculations are only feasible in the small excitation limit and therefore
can not address a large range of physically interesting cases.

In the classical approximation, where any correlations between the modes are ne-
glected and the state of all modes is assumed to be in a coherent state (as discussed
in Sec. 3.2.1), one finds the classical steady-state phase diagram of the DOMPO
to feature a variety of phases. All classical phases have been identified within the
framework of the author’s PhD thesis. We will not present a detailed discussion
here and refer to Ref. [70] since we want to keep the main focus on the quantum
nature of the light and the application of the c-MoP theory to the DOMPO problem.
Therefore, we focus on the regime where the state of the signal field is fully quantum,
i.e. where the trivial classical solution �as� = 0 is the only stable one, henceforth re-
ferred to as the monostable phase, which requires two conditions. First, defining the
injection parameter σ = �pχ/γ20 and the normalized detuning ∆ = ∆s/γ0, the trivial
solution becomes unstable in favor of a nontrivial one �as� �= 0 for σ >

√
1 + ∆2

[70]. Hence, we write σ =
√
1 + ∆2 x and focus on the x ∈ [0, 1] region. The second

condition, 4Ω∆η2OM/η2DC < 1, guarantees that the nontrivial solution does not enter
the x ∈ [0, 1] region [70]. In this expression we have introduced the dimensionless
down-conversion coupling ηDC = χ/γ0 as well as the sideband-resolution parameter
Ω = Ωm/γ0.

We emphasize that the vanishing signal field amplitude excludes the possibility of
using a linearization approach similar to those applied in [70, 127–129] in order to
capture any optomechanical effects. The linearized equations, in fact, predict abso-
lutely no effect from the optical modes onto the mechanical mode. By considering
the vastly increasing number of signal photons in the DOPO as threshold is ap-
proached, see Sec. 3.4, one has to conclude that the linearization approach simply
fails to capture any phenomena occuring below threshold. In fact, in the monostable
below threshold regime, the signal photons scattered by the mechanical mode are
purely quantum mechanical, with no coherent or classical background, and this is
precisely what makes the optomechanical interaction a†sas(a

†
m + am) purely nonlin-

ear or nongaussian, and consequently any effect related to it is completely lost upon
linearization. In the following, we provide a full quantum theory that works in all
the x ∈ [0, 1] region, and use it to predict the action of the down-converted field on
the mechanical state.
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4.3 Adiabatic elimination of the optical modes

Despite the complexity of the DOMPO problem, we will show below that for typ-
ical system parameters the optical modes do not receive considerable backaction
from the mechanics. This result is surprising since close to the critical point the
DOPO experiences critical slowing down and thus one might expect the breakdown
of time scale separation between the optical and mechanical modes. For now, we
will simply presume the absence of backaction and leave its validation to Sec. 4.5.2
complemented by Sec. 4.5 where we exploit the c-MoP theory to gain insight in the
critical behavior of the DOPO. The adiabatic elimination of the optical modes in the
Born-Markov limit [4, 5, 19, 33, 132], which is a key step in our approach that can
be verified using c-MoP theory, see Sec. 4.5.2, leads to an effective master equation
for the reduced mechanical state ρm(t) simplifying the problem significantly.

In order to eliminate the optical modes and find an effective master equation for the
mechanical state ρm(t) we proceed as follows. We first define the standard time-
independent Mori projector P (·) = ρ̄opt ⊗ Tropt{·} whose action on the full state
ρ(t) of the DOMPO gives Pρ(t) = ρ̄opt ⊗ ρm(t). Here, ρ̄opt is the steady state of
the optical Liouvillian, that is, Lopt[ρ̄opt] = 0. Applying this superoperator and its
complement Q = −P onto the master equation, and formally integrating the latter,
we obtain an exact equation of motion for ρm(t), the so-called Nakajima-Zwanzig
equation [4, 5], see also Sec. 1.2. Such an equation is in general and especially in
our case not solvable, and therefore we apply a Born approximation which takes
all terms up to second order in the optomechanical interaction into account. The
resulting equation reads

ρ̇m(t) = Lmρm(t) + iΩmηOMN̄s [xm, ρm(t)]

− Ω2
mη2OM

�
xm,

� t

0
dτ eLmτ [xmρm(t− τ)s(τ)−H.c.]

�
,

(4.5)

where we have defined the mechanical position quadrature xm = am+a†m, the photon
number in the signal mode N̄s = Tr{a†sasρ̄opt}, and the optical correlation function

s(τ) = Tr{a†saseLoptτ [a†sasρ̄opt]} − N̄2
s . (4.6)

As we argued in Sec. 3.2.1 and in Sec. 2.2.2, the steady state ρ̄opt of the DOPO
is unique and the dynamical map eLoptτ is a relaxing map [23, 63], mapping all optical
operatorsO into the steady state while preserving the trace, that is, limτ→∞ eLoptτO =
Tropt{O}ρ̄opt. Thus, the optical correlation function s(τ) will always decay to zero
within some finite memory time which we denote by τopt. Hence, in the asymptotic
limit we can write limt→∞ ρm(t− τ) = limt→∞ ρm(t) ≡ ρ̄m in the integral Kernel of
Eq. (4.5), obtaining an equation for ρ̄m which is quadratic in the operators am and
therefore allows for a Gaussian-state solution. In other words, the equations for the
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first and second steady-state mechanical moments form a closed linear algebraic set

0 = (−iΩm − γm)�am�+ iΩmηOMN̄s − Ω2
mη2OMRe{d0}�xm�

0 = −γm�δa†mδam�+ γmn̄th

− Ω2
mηOMRe{(d+ − d−)�δa†mδam�+ (d∗− − d+)�δa2m� − d−}

0 = (−iΩm − γm)�δa2m� − Ω2
mη2OM[(d− − d∗+)�δa†mδam�+ (d+ − d∗−)�δa2m�+ d−]

(4.7)

where we used the abbreviations �A� = Tr{Aρ̄m}, δA = A− �A�, and

d0 =

� ∞

0
dτs(τ) and d± =

� ∞

0
dτ e(±iΩm−γm)τ s(τ). (4.8)

These equations can be solved for the steady-state moments as functions of the opti-
cal photon number N̄s and correlation function s(τ) without the need of further ap-
proximations. However, in order to obtain more physical insight into the mechanical
steady state ρ̄m we apply both Markov approximation and a rotating-wave approx-
imation to Eq. (4.5). The Markov approximation is based on the assumption that
within the optical memory time τopt all the mechanical dynamics can be neglected

except for the evolution provided by the free Hamiltonian Ωma†mam. As a result we
can write eLmτ [xmρm(t− τ)] ≈ xm(τ)ρm(t) with xm(τ) = eiΩmτam + e−iΩmτa†m. On
the other hand, the rotating-wave approximation consists of neglecting all the terms
proportional to a2m and a†2m in the effective mechanical master equation, under the
assumption that their rotation at frequency 2Ωm is much larger than the rates they
are weighted by. After applying these approximations in Eq. (4.5) we are left with
an effective mechanical master equation given by

ρ̇m = Lmρm + iΩmηOMN̄s[xm, ρm] + γmΓ−Dam [ρm] + γmΓ+Da†m
[ρm], (4.9)

where we have defined the heating and cooling rates γmΓ± = Ω2
mη2OMRe{d∓|γm=0}.

This master equation has a very simple Gaussian steady state ρ̄m corresponding to
a displaced thermal state with mean

�am� = iΩmηOMN̄s

iΩm + γm
≈ ηOMN̄s, (4.10)

�δa2m� = 0, and phonon number �δa†mδam� = n̄m, where n̄m is given by

n̄m =
n̄th + Γ+

1 + (Γ− − Γ+)

Γ�1≈ n̄th

Γ
+ n̄FL . (4.11)

Here, Γ = Γ− − Γ+ is the cooling efficiency and n̄FL = Γ+/Γ the fundamental limit
for the phonon number. All the information about the optical modes is contained
in the heating and cooling rates Γ± = C Re {γ0d∓} through the optical correlation
function s(τ) and the bare cooperativity C = ΩQη2OM with the mechanical quality
factor Q = Ωm/γm which we here assume to fulfill Q � 1.
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4.4. Semi-classical approach to the DOMPO problem

We note that, starting from a thermal state, the mechanical mode relaxes to its
steady state with a rate γeff = γm(1 + Γ), since the equations of motion for the
phonon number fluctuations and the mechanical field amplitude are given by

∂t�δa†mδam� = −2γm(1 + Γ) �δa†mδam�+ 2γm(n̄th + Γ−), (4.12a)

∂t�am� = [−iΩm − γm(1 + Γ)] �am�+ iηOMΩm�a†sas� . (4.12b)

We have checked throughout all the following calculations that this rate γeff is smaller
than the decay rate of the optical correlator s(τ) for the parameters of interest, hence
validating the Markov approximation.

Let us remark that we have been using both Eq. (4.5) and Eq. (4.9) to obtain
the steady-state moments of the mechanical oscillator. We have never observed any
notable differences between them, except when working extremely close to threshold
within the semi-classical approach, see the inset of Fig. 4.3. In these cases, however,
the failure of Eq. (4.9) can be directly attributed to the failure of the semi-classical
approach, and not to a failure of the rotating-wave approximation itself, which
indeed is very well satisfied as shown by the c-MoP approach. Thus, we conclude
that for the parameter regime studied in this chapter the state of the mechanical
oscillator is indeed a displaced thermal state, with a phonon number that can only
be evaluated once the optical photon number N̄s and correlation function s(τ) are
known.

In the following we study the behaviour of the steady-state phonon number as we
approach the DOMPO’s threshold. From Eq. (4.11) it is clear that significant cool-
ing requires Γ to be as large as possible, but even in that case, cooling is lower
bounded by n̄FL. Optimal cooling is then found by simultaneously maximizing Γ
and minimizing n̄FL.

The nonlinear nature of the parametric down-conversion process in Eq. (4.2) and
a potential backaction of the mechanical mode preclude an exact treatment of the
optical correlation function in Eq. (4.6). To get simple analytic expressions that
enable physical insight, we first apply standard linearization to the optical problem
which we will denote by semi-classical approach. We then justify the applicability
of the adiabatic elimination, resolve the unphysical predictions of the semi-classical
approach close to the critical point, and find more accurate expressions at criticality
by using c-MoP theory.

4.4 Semi-classical approach to the DOMPO problem

The simplest way of obtaining the optical correlator s(τ) is by using standard lin-
earization on Lopt. In this approach, we move to a displaced picture in which the
large coherent background of the pump mode is removed, and then keep terms of the
transformed optical Liouvillian only up to second order in the the bosonic operators,
see also Sec. 3.2.1. The displacement operator D = exp[�p(ap − a†p)/γ0] allows us
to move to the new picture, in which the transformed optical state ρ̃opt = D†ρoptD
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evolves according to a transformed Liouvillian L̃opt = D†LoptD. Removing terms
beyond quadratic order, this transformed Liouvillian can be written as a sum of
independent Liouvillians for the pump and signal modes, L̃opt = Lp + Ls, with
Lp = γ0Dap and

γ−1
0 Ls(·) =

�
−i∆a†sas +

σ

2
(a†2s − a2s), (·)

�
+Das(·), (4.13)

with the injection parameter σ = �pχ/γ20 and normalized detuning ∆ = ∆s/γ0.
Consequently, the optical steady state in the original picture becomes the separable
state ρ̄opt = |�p/γ0���p/γ0| ⊗ ρ̄s where |�p/γ0� is a coherent state of amplitude �p/γ0
and ρ̄s is the Gaussian state satisfying Lsρ̄s = 0. The latter is completely charac-
terized by its first and second moments, which are trivially found to be �as� = 0,

�a†sas� = σ2/2(1 + ∆2 − σ2) ≡ N̄s, and �a2s� = σ(1 − i∆)/2(1 + ∆2 − σ2), where
we use the usual notation �A� = Trs{Aρs} for any operator A acting on the signal
subspace.

The optical correlation function simplifies to s(τ) = Trs{a†saseLs τµs} where we

have defined a traceless operator µs = (a†sas − N̄s)ρ̄s. Using again the fact that the
Liouvillian Ls is Gaussian, it is simple to evaluate the correlation function s(τ). To
this aim, we follow the steps presented in Sec. 3.3.2 and define the column vector

�v(τ) = col

�
��a†sas�, ��a2s�,

��a† 2s �
�
, (4.14)

where the expectation value of an operator A with the tilde is defined as ��A� =
Tr{AeLsτµs}. Taking the derivative of this vector with respect to τ , we find the
linear system ∂τ�v(τ) = L�v(τ), where the matrix L reads

L = γ0




−2 σ σ
2σ −2(1 + i∆) 0
2σ 0 −2(1− i∆)



 . (4.15)

It is straightforward to solve this linear system, for example by diagonalizing L. We
write L = UΛU−1, with a similarity matrix U that can be found analytically (but its
expression is too lengthy to be reported here), and a diagonal matrix Λ containing
the eigenvalues of L, λ1 = −2γ0, and λ2,3 = −2γ0(1 ± i

√
∆2 − σ2). Notice that for

σ > ∆ the square root becomes imaginary, making λ2 < γ0, and in fact λ2 = 0 at
threshold, σ =

√
1 + ∆2. Consequently, we call the region with σ > ∆ the critical

slowing down regime. The solution of the linear system is then found as

�v(τ) = UeΛτU−1�v(0) ≡
3�

n=1

Lne
λnτ �u, (4.16)

where we have defined the initial condition vector

�u = �v(0) = col
�
�a†sasa†sas� − N̄2

s , �a2sa†sas� − �a2s�N̄s, �a†3s as� − �a2s�∗N̄s

�
, (4.17)
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and the matrices Ln = UΠnU−1, where (Πn)jl = δjnδln. Note that the vector
�u is formed by fourth order moments. In order to find them, we simply exploit
the Gaussian structure of Ls, which allows us to express moments of any order as
products of moments of first and second order. Specifically, concerning third and
fourth order moments we simply use

�a†sa2s� = �a3s� = 0 (4.18a)

�a†2s a2s� = �a†2s ��a2s�+ 2�a†sas�2, (4.18b)

�a†sa3s� = 3�a†sas��a2s�. (4.18c)

Note that the optical correlation function we are looking for is given by the first
component of the vector, s(τ) = [�v(τ)]1, and the integrals appearing in d0 and d±
in Eq. (4.8) can be easily evaluated due to the exponential τ -dependence of �v(τ) in
Eq. (4.16).

Overall, below threshold, the linearization of the DOPO is accomplished by treating
the pump mode as a classical stationary source and as a result the optical problem is
governed by a Gaussian single-mode Liouvillian from which any correlation function
can be easily found, allowing us to obtain analytical expressions for the relevant
quantities in Eq. (4.11). For the fundamental limit, we find

n̄FL =
4 + (Ω− 2∆)2

8Ω∆
, (4.19)

while the cooling efficiency can be written as

Γ = Qη2OMN̄s(x)∆ f(Ω, δeff), (4.20)

where we have defined the function

f(Ω, δeff) =
8Ω2[Ω2 + 4(5 + δ2eff)]

(4 + Ω2)[Ω4 + 16(1 + δ2eff)
2 + 8Ω2(1− δ2eff)]

, (4.21)

and a parameter δeff =
√
∆2 − σ2 that will be shown to play the important role of

an effective optical detuning. The photon number N̄s(x) = x2/(2− 2x2) is fully due
to quantum fluctuations and increases hyperbolically until threshold x = 1 where it
diverges in this semi-classical approach.

As explained above, optimal cooling requires the simultaneous maximization of Γ
and minimization of n̄FL. The fundamental limit takes its minimum value n̄FL =
(
�
4/Ω2 + 1 − 1)/2 for ∆ =

√
4 + Ω2/2, and can thus be pushed towards zero by

getting deeper and deeper into the resolved side-band regime Ω2 � 4 keeping ∆ =
Ω/2. On the other hand, it is easy to check by inspection that for Ω � 3, the
function f(Ω, δeff) requires δeff ≈ Ω/2 in order to take its maximum value f ≈ 1.
The optimal conditions for n̄FL and Γ are therefore incompatible and the minimum
phonon number is achieved by finding a proper trade off between them.

In Fig. 4.2 we show the steady-state phonon number as a function of the two control
parameters, detuning ∆ and distance to threshold x, fixing the rest of parameters
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Figure 4.2: Steady state phonon number as a function of the normalized detuning
∆ and the distance to threshold x, as obtained from a semi-classical description of
the DOPO and a thermal phonon number n̄th = 100. We choose typical parameters
for cWGM resonators [118, 119]: resolved sideband regime Ω = 10, optomechanical
coupling ηOM = 10−4, mechanical quality factor Q = 106, and down-conversion
coupling ηDC = 10−2. The signal steady-state photon numbers N̄s(x) corresponding
to the ticked x-values are shown in the upper axis, showing that cooling is effective
even with just ∼ 100 photons.

to typical values of cWGM resonators [118, 119]. One can appreciate that there are
two regions where significant cooling effects appear. One is in the vicinity of the
threshold point and can be traced back to the vast increase of the photon number N̄s

which makes Γ � 1 for virtually any value of the rest of the parameters. However, as
we will show below with the c-MoP approach, so close to threshold this semi-classical
approach breaks down and hence its predictions are not reliable. Moreover, without
the rotating-wave approximation, the semi-classical approach provides a divergence
of the phonon number exactly at threshold (see the inset of Fig. 4.3), which can
be taken as further evidence that the theory breaks down as the critical point is
approached.

The other region, which turns out to be of major significance when aiming for
optimal cooling, corresponds to δeff ≈ Ω/2, see the black solid line in Fig. 4.2. In
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4.4. Semi-classical approach to the DOMPO problem

the next section we will use the c-MoP approach to confirm this prediction of the
semi-classical theory. Moreover, this region can be understood in physical terms by
moving to a new picture defined by the squeezing operator S(r) = exp[−ir(a†2s +
a2s)/2] with tanh 2r = σ/∆. Note that such transformation, and hence the following
physical picture, requires ∆ > σ, which corresponds in Fig. 4.2 to the region above
the black dashed line. This transformation diagonalizes the Hamiltonian in the
optical Liouvillian Ls, turning it into

γ−1
0 S†(r)LsS(r)(·) = −i[δeffa

†
sas, (·)] + (1 + N̄eff)Das(·) + N̄effDa†s

(·)
+ iMKas(·)− iMK

a†s
(·),

(4.22)

where we have defined the superoperator KJ(·) = 2J(·)J − J2(·)− (·)J2, as well as
the parameters N̄eff = (∆/δeff − 1)/2 and M = σ/2δeff.

Note that the KJ(·) terms rotate at frequency 2δeff , and hence are highly suppressed
under a rotating wave approximation when we work within the cooling conditions
δeff ≈ Ω/2 away from δeff = 0. Therefore, in this picture the signal field is turned
into a bosonic mode oscillating at frequency δeff , coupled to a finite-temperature
environment and characterized by a thermal occupation N̄eff . On the other hand,
the photon number operator is transformed into

S†(r)a†sasS(r) = N̄eff + (2N̄eff + 1)a†sas + iM(a2s − a† 2s ),

and hence the optomechanical interaction can be approximated by

S†(r)a†sasS(r)(am + a†m) ≈ iM(a2sa
†
m − a†2s am). (4.23)

within the rotating-wave approximation. Note that the optomechanical coupling is
dressed by the squeezing parameter M , in a similar way to how the optomechanical
interaction is dressed by the intracavity field amplitude in standard sideband cooling
[33, 132]. However, at difference with that case the interaction exchanges phonons
with pairs of photons (rather than single photons), thus explaining why γ0δeff =
Ωm/2 is the resonance condition for cooling.

Altogether, in this semi-classical ”squeezed” picture and within the rotating wave
approximation we can approximate the master equation of the DOMPO by

∂tρ̃(t) =
�
L̃s + Lm + L̃OM

�
ρ̃(t) (4.24)

with

L̃s(·) =
�
−iγ0δeffa

†
sas, (·)

�
+ γ0(N̄eff + 1)Das(·) + γ0N̄effDa†s

(·) (4.25a)

Lm(·) = [−iΩma†mam, (·)] + γm(n̄th + 1)Dam(·) + γmn̄thDa†m
(·) (4.25b)

L̃OM(·) = [ΩmηOMM(a2sa
†
m − a†2s am), (·)], (4.25c)

The structure of this master equation is similar to the full master equation of the
DOMPO (4.1), with the differences that the optical Liouvillian is replaced by L̃s,

93



CHAPTER 4: Degenerate optomechanical parametric oscillators:
cooling in the vicinity of a critical point

corresponding to a single-mode at finite temperature, and the optomechanical inter-
action a†sas(am + a†m) is replaced by iM(a2sa

†
m − a†2s am). The adiabatic elimination

of the optical mode can be carried out exactly in the same way as we did in Sec. 4.3,
and under the cooling condition δeff = Ω/2 it would lead to the heating and cooling
rates

Γ− ≈ 1

2
CM2Tr{a2sa†2s ρ̃s}, (4.26a)

Γ+ ≈ 1

2
CM2Tr{a†2s a2sρ̃s}, (4.26b)

where C = Ω2
mη2OM/γmγ0 is the bare optomechanical cooperativity, and ρ̃s is a

thermal state with mean photon number N̄eff . The cooling efficiency is then given
by

Γ = Γ− − Γ+ =
1

2
CM2Tr{[a2s, a†2s ]ρ̃s} = 2CM2(N̄eff + 1/2). (4.27)

The cooling efficiency Γ thus receives an additional contribution 2N̄eff from the effec-
tive thermal photon number, which is a direct consequence of the nonlinear nature
of the effective optomechanical coupling (4.23) that cannot be found in standard
sideband cooling.

This represents a natural example of the so-called cooling by heating effect [131],
where heating up the optical field can contribute to making optomechanical cooling
more efficient. It is important to note that this enhancement of the cooling efficiency
is a direct consequence of the commutator appearing in the trace, contributing as
[a2s, a

†2
s ] = 4a†sas + 2, which in turn comes from the fact that the effective optome-

chanical interaction i(a2sa
†
m − a†2s am) corresponds to the exchange of phonons with

pairs of photons. In the usual sideband laser cooling scenario, the effective optome-
chanical interaction is bilinear, e.g. i(asa

†
m − a†sam), meaning that the commutator

in the expression above is replaced by [as, a
†
s] = 1, and hence the thermal photonic

background does not enter the cooling efficiency.

Let us finally note that the fundamental limit can be written as

n̄FL =
Γ+

Γ
=

Tr{a†2s a2sρ̃s}
Tr{[a2s, a

†2
s ]ρ̃s}

=
N̄2

eff

2N̄eff + 1
N̄eff�1−−−−→ N̄eff

2
, (4.28)

which increases linearly with the effective thermal photon number. When the term
n̄th/Γ dominates over n̄FL in Eq. (4.11) the thermal optical background N̄eff can
then be interpreted as “good noise”, while as soon as the phonon limit is reached
it becomes “bad noise” which just heats up the mechanical motion. This can be
appreciated by following the δeff = Ω/2 curve in Fig. 4.2. Hence, the “cool-
ing by heating” mechanism is optimized by finding a proper trade off between
the increase in the cooling efficiency (“good noise”) and the increase in the fun-
damental limit (“bad noise”). It is to be noted that within the usual sideband
laser cooling, any thermal background will still contribute to this fundamental limit,

n̄FL = Tr{a†sasρs}/Tr{[as, a†s]ρs}
N̄eff�1−−−−→ N̄eff , but, as explained above, it provides
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no enhancement of the cooling efficiency Γ. In other words, in standard sideband
cooling the thermal background acts only as “bad” noise.

We emphasize that the expressions for Γ in Eq. (4.27) and n̄FL in Eq. (4.28) agree
with the ones provided in Eqs. (4.20) and (4.19), respectively, which have been first
calculated exactly within the semi-classical approach, and then approximated to
leading order in 1/Ω2 for δeff = Ω/2.

4.5 Quantum approach to the DOMPO problem

The semi-classical approach has allowed us to get analytical and physical insight into
the DOMPO problem. It is however well known that this approximation fails close
to the critical point. To determine where it exactly breaks down and to find more
accurate results for those parameters, we make use of the c-MoP technique which
we developed for the DOPO in Chapter 3 and in particular of the Gaussian c-MoP
theory presented in Sec. 3.6. For parameters of our interest within this thesis, which
are compatible with cWGM resonators, the theory is already regularized by using
c-MoP only in the optical problem of the DOPO which provides a more accurate
description for the optical correlation function (4.6) and photon number that enter
the effective mechanical dynamics and steady state through Eq. (4.9).

We will discuss the technical steps of the c-MoP theory and some important predic-
tions about the critical behavior of the DOMPO in more detail below, but for now
we show a very representative case for the phonon number n̄m as a function of the
distance to threshold x in Fig. 4.3. The c-MoP results find perfect agreement with
the semi-classical predictions for almost all values of x, thus verifying the “cooling by
heating” effect presented above. Most importantly, we find that the absolute mini-
mum phonon number is indeed reached when the resonance condition δeff = Ω/2 is
met. On the other hand, close to threshold we find a significant correction to the
semi-classical predictions for the fundamental limit n̄FL. In particular, while this
is independent of the distance to threshold x in the semi-classical picture, c-MoP
shows that it actually increases very rapidly as the critical point is approached, and
hence no cooling is found no matter how much the efficiency Γ is increased. This is
consistent with the fact that when ∆ < σ (as happens at threshold upon entering
the critical slowing-down regime), δeff becomes imaginary and cannot be used to
bring the optomechanical interaction to resonance.

Let us now turn to a few technical details which are different from the detailed
description of the c-MoP approach to the DOPO problem presented in Chapter 3.
Our main goal consists in finding the optical correlation function s(τ) defined in
Eq (4.6). We start by noting that we can rewrite it as

s(τ) = N̄s (Tr{a†sasν(τ)} − N̄s) (4.29)

where ν(τ) = eLoptτν(0) can be interpreted as an operator with evolution equation

ν̇ = Loptν and initial condition ν(0) = a†sasρ̄opt/N̄s. We find Tr{ν(τ)} = 1 for all
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Figure 4.3: Terms n̄th/Γ and n̄FL contributing to the steady-state phonon number
(4.11) as a function of the distance to threshold parameter x. We fix the detuning
to ∆ = 75 choosing the rest of parameters as in Fig. 4.2. The inset displays a close
up of the steady-state phonon number n̄m for x ∈ [0.999, 1], but without applying
the rotating-wave and Markov approximations on the level of the mechanical mas-
ter equation (4.5). Note that c-MoP gives finite results equivalent to those found
within the rotating-wave approximation, while the semi-classical predictions diverge
at threshold, which can be taken as further evidence that the theory breaks down
there. The upper axis shows the signal photon numbers N̄s corresponding to the
ticked x-values as obtained from c-MoP up to threshold for x = 1.

times since the dynamical map eLoptt is trace preserving. This evolution equation is
formally equivalent to the optical master equation (3.1) of the DOPO with an addi-
tional signal detuning term. Thus, we can apply c-MoP theory directly on ν(t), with
the reduced matrices νp(t) = Trs{ν(t)} and νs(t) = Trp{ν(t)} evolving according to
equations (3.17), (3.18), (3.20) and (3.21) with ρj replaced by νj and the additional
signal detuning term in Ls. Under a Gaussian approximation for νs(t) similar to
(4.18) but with expectation values defined with respect to νs(t), the evolution equa-
tions for the first and second moments of νs(t), νp(t), hs(t), {hp,n(t)}n=1,2,3, and
their Hermitian conjugates (note that ν is not Hermitian) form a closed nonlinear
system which we can solve again efficiently. Note that the initial conditions for these
moments, e.g., Tr{a†sasν(0)} = Tr{a†sasa†sasρ̄opt}/N̄s, are found from the Gaussian
c-MoP steady-state solutions as explained above.

We emphasize that the results presented here are expected to be highly accurate
based on our findings with respect to the quantitative accuracy of the Gaussian
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c-MoP approach. Given the assumption of the time-scale separation between op-
tics and mechanics to hold (for which we present strong arguments in Sec. 4.5.1
and 4.5.2), the effective master equation of the mechanics can be expected to be
very precise or even quasi exact for local mechanical quantities. Thus the only re-
maining quantity which does not allow for a direct analytic description is the optical
correlation function s(τ) defined in Eq. (4.6) as the DOPO problem is a nonlinear
two-mode problem with no analytic solution. Furthermore, a direct numerical simu-
lation becomes unfeasible for moderate photon numbers ∼ 100 already. In contrast
the Gaussian c-MoP theory is highly efficient and still very accurate especially below
and at threshold for all local first or second order moments of the optical fields for
both dynamics and the steady state as shown in Figs. 3.5, 3.5 and 3.6. And indeed,
the optical correlation function can be written as a second order moment of the
signal field with respect to the regression matrix ν(τ).

4.5.1 Critical scaling behavior

The knowledge of the scaling behavior of certain observables plays an important role
for the determination of the conditions under which mechanical backaction on the
optics can be neglected. In particular, we will be interested in the scaling of the
signal photon number and the decay rate of the optical correlation function s(τ) at
the critical point. In Sec. 3.7 we have indicated that the Gaussian c-MoP theory
finds a scaling for the signal photon number for zero signal detuning which agrees
with the well-known η−1

DC scaling with the down-conversion coupling [12, 39, 96, 99].
Thus, we expect the scaling predictions presented here to be very reliable.

In Fig. 4.4(a) we show the steady-state signal photon number N̄s at the critical
point (x = 1) as a function of the normalized detuning ∆. It shows a clear linear
dependence for ∆ > 1 which, together with the well-known η−1

DC scaling with the
down-conversion coupling, provides an overall N̄s ∝ (1 + ∆)/ηDC scaling of the
signal photon number at threshold.

In Fig.4.4(b) we show the evolution of the absolute value of the correlation function
s(τ) at the critical point and for different values of the normalized detuning ∆. Time
is normalized to [γ0ηDC(1+∆)]−1, and hence the fact that all the curves decay on the
same-time scale proves that the optical relaxation time scales as γopt = γ0ηDC(1+∆)
at threshold. This again plays a fundamental role when proving that mechanical
backaction is negligible, as we pass to explain now in detail.

4.5.2 The Absence of mechanical backaction

The adiabatic elimination of the optical fields relies on the time-scale separation
between the optical and mechanical degrees of freedom. In particular, such an
approach neglects mechanical backaction onto the optics, which is a good approxi-
mation as long as the rate of any mechanical perturbation is much smaller than the
intrinsic relaxation rate of the optics γopt, see also the general arguments presented
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Figure 4.4: (a) Steady state photon number N̄s = Tr{a†sasρ̄opt} at the critical point
as a function of the normalized detuning ∆. (b) Absolute value of the normalized
optical correlation function s(τ) at the critical point for different values of detuning
as of function of the normalized time γoptτ , with γopt = γ0ηDC(1 + ∆). In both
figures the parameters are γ0 = 1 and ηDC = 0.01, and we have obtained them by
applying Gaussian c-MoP theory to the optical problem.

in Sec. 1.2. Far from the critical point the optical relaxation rate is γ0, which usu-
ally dominates over any other rate in the system. However, as the critical point is
approached the DOPO dynamics exhibits a critical slowing down, and its relaxation
rate decreases with the distance to threshold. Hence, in our work that considers
parameters close to threshold, it is important to verify that the desired time-scale
separation is present.

As explained in the general case in Sec. 1.2 we can provide an intuitive argu-
ment which follows from relating the mechanical backaction rate with the optical
frequency-shift induced by the optomechanical interaction, γback = ηOMΩm�xm� =
2η2OMΩmN̄s, where we have used (4.10). Hence, using the scaling of N̄s and γopt
obtained in the previous section at threshold, the condition γback � γopt becomes
2Ω(ηOM/ηDC)2 � 1, which is very well satisfied for the parameters of our study.
Moreover, note that this condition is automatically satisfied when working within
the monostability condition 4∆Ω(ηOM/ηDC)2 < 1 and ∆ � 1/2.

We can set more rigorous bounds to the region where mechanical backaction is
negligible by using c-MoP theory. In contrast to adiabatic elimination methods, c-
MoP does not rely on the concept of time-scale separation or absence of backaction
effects. Hence, we apply it to the DOMPO system by using the time-dependent
self-consistent Mori projectors Popt

t = ρopt(t)⊗ Tropt{·} and Pm
t = Trm{·} ⊗ ρm(t),

that is, using a bipartition “optics ⊗ mechanics” for the system. This approach
will allow us to identify the terms contributing to the mechanical backaction and
find upper bounds to their scaling. Using the general form given by Eq. (1.34) for
the DOMPO setup in Eq. (4.1), the c-MoP equations for the reduced optical and
mechanical states in the asymptotic t → ∞ or steady-state limit are easily found to
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read for the mechanics

dρ̄m
dt

= 0 = Lmρ̄m+iΩmηOM�a†sas�[xm, ρ̄m]

− Ω2
mη2OM

�
xm,

� ∞

0
dτ eLmτ (δxmρ̄ms(τ)−H.c.)

�
,

(4.30)

and for the optics

dρ̄opt
dt

= 0 = Loptρ̄opt+iΩmηOM�xm�[a†sas, ρ̄opt]

− Ω2
mη2OM

�
a†sas,

� ∞

0
dτ eLoptτ (δnsρ̄opt sm(τ)−H.c.)

�
,

(4.31)

where, for any operator A, we have introduced the usual definition δA = A − �A�,
while δns = a†sas − �a†sas�. s(τ) is the usual optical correlation function (4.6), and
we have defined the mechanical correlation function

sm(τ) = Trm{xmeLmτδxmρ̄m}

= e(−iΩm−γm)τ +
�
e(−iΩm−γm)τ (�δa†mδam�+ �δa2m�) + c.c.

�
,

(4.32)

where the final expression is easily found since Lm is quadratic. Note that the only
difference between the c-MoP Eq. (4.30) for the mechanical state and (4.5) in the
stationary limit is the appearance of the fluctuation operator δxm in the integral
kernels, which is a direct consequence of the time-dependence in the self-consistent
Mori projector. Nevertheless, this difference is not of major importance since the
equations of motion for the fluctuations of the mechanical state �δa†mδam� and �δa2m�
obtained from these equations are equivalent.

The last two terms on the right-hand side of Eq. (4.31) account for the mechanical
backaction on the optics, and we proceed now to bound their effect. The second
to last term describes precisely the optical detuning ΩmηOM�xm� induced by the
optomechanical interaction that we already discussed at the beginning of the section,
concluding that it is negligible within the parameter regime we work with. Then
we focus on the last term in Eq. (4.31), the Born term. For this purpose we derive

the steady-state equation for the moment �a†2s � which completely suffices within the

Gaussian c-MoP theory as �a2s� = �a†2s �∗ and since the Born term does not effect the
signal photon number. It reads

0 = Tropt{a†2s Loptρ̄opt} − 2iΩmηOM�xm��a†2s �

+ 2Ω2
mη2OM

� ∞

0
dτ Re{sm(τ)}Tropt

�
a†2s eLoptτ [a†sas, ρ̄opt]

�

+ 2iΩ2
mη2OM

� ∞

0
dτ Im{sm(τ)}Tropt

�
a†2s eLoptτ{δns, ρ̄opt}

�
,

(4.33)
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where {·, ·} denotes the anticommutator. Note first that the correlation functions

Tropt
�
a†2s eLoptτ [a†sas, ρ̄opt]

�
and Tropt

�
a†2s eLoptτ{δns, ρ̄opt}

�
, which are of similar

structure as the optical correlation function s(τ), decay to zero at a rate γopt. Next,
we derive upper bounds for the last two terms in Eq. (4.33). For the second to last
term we find

����2Ω
2
mη2OM

� ∞

0
dτ Re{sm(τ)}Tropt

�
a†2s eLoptτ [a†sas, ρ̄opt]

����

≤

������
2Ω2

mη2OM

Re{sm(0)}Tropt
�
a†2s eLopt0[a†sas, ρ̄opt]

�

γm + γopt

������

≤ 4Ω2
mη2OMn̄m

γm + γopt� �� �
γ�
back

|�a†2s �|,

(4.34)

where in the last step we have used sm(0) = 1+�δa†mδam�+�δa2m� ≈ �δa†mδam� ≡ n̄m

(note that we expect the mechanical state to stay approximately thermal, and hence

�δa2m� ≈ 0) and Tropt
�
a†2s [a†sas, ρ̄opt]

�
= �[a†2s , a†sas]� = 2�a†2s �. Similarly, for the last

term in Eq. (4.33) we find
����2iΩ

2
mη2OM

� ∞

0
dτ Im{sm(τ)}Tropt

�
a†2s eLoptτ{δns, ρ̄opt}

����

≤

������
2Ω2

mη2OM

Tropt
�
a†2s eLopt0{δns, ρ̄opt}

�

γm + γopt

������

≤ 2Ω2
mη2OM

γm + γopt

���Tropt
�
a†2s {δns, ρ̄opt}

����

≈ 4Ω2
mη2OM(2N̄s + 1)

γm + γopt� �� �
γ��
back

|�a†2s �|.

(4.35)

where for the last expression we have used Tropt
�
a†2s {δns, ρ̄opt}

�
= 2(�a†3s as� −

�a†2s ��a†sas� + �a†2s �) ≈ 2(2N̄s + 1)�a†2s �, within the Gaussian state approximation

(4.18), that is, �a†3s as� ≈ 3�a†2s ��a†sas�, noting that �as� = 0 below threshold.

A sufficient condition for mechanical backaction to be negligible is then γ�back, γ
��
back �

γopt. We pass to check whether this is the case in our work. Note first that γm � γopt
even at threshold, since γopt/γm ∼ γsηDC(1+∆)/γm � 1 for the parameters we are
interested in. Using the scalings γopt ∝ γ0ηDC(1 + ∆) and N̄s ∝ (1 + ∆)/ηOM at
threshold (where these bounds are the tightest), we can then write the conditions
under which backaction is negligible as γ�back/γopt ∼ Ω2n̄mη2OM/η2DC(1 + ∆)2 � 1
and γ��back/γopt ∼ Ω2η2OM/η3DC(1 + ∆) � 1. For the parameter set of Fig. 2 these
lead to the conditions n̄m � 100(1 + ∆)2 and 1 + ∆ � 1, respectively. For the

100



4.5. Quantum approach to the DOMPO problem

large values of ∆ that we use during most of our study, these conditions are very
well satisfied. For small ∆ they seem to be too tight, but we need to stress here
that we have been extremely conservative when estimating the Born terms (4.34)
and (4.35), meaning that in practice backaction should be negligible even in a much
broader region of the parameter space.

4.5.3 Signal-pump correlations and tripartite c-MoP theory

Finally, we would like to discuss the ”tripartite” c-MoP theory which we have also
employed to the DOMPO problem. In the tripartite c-MoP theory we use a projec-
tor which projects onto the factorized state ρp(t)⊗ρs(t)⊗ρm(t) of pump, signal and
mechanical mode. Due to the absence of a pump-mechanics interaction, the result-
ing c-MoP equations are given by the DOPO equations presented in Sec. 3.3 and
Sec. 3.3.2 for the dynamics of ρp(t) and ρs(t) together with Eq. (4.31) accounting for
the backaction of the mechanics onto the signal, while the equation for the dynam-
ics of ρm(t) is given by Eq. (4.30). The significant difference within the tripartite
theory, however, is revealed in the optical Liouvillian Lopt which in Eq. (4.31) and
most importantly in the optical correlation function s(τ), see Eq. (4.6), is replaced
by Ls as given in Eq. (3.4).

The results obtained from a tripartite c-MoP theory coincide well with the c-MoP
results presented in Sec. 4.5 up to a point, which is usually very close to threshold,
where they lead to unphysical predictions such as negative phonon numbers. We
conclude from this observation that the signal-pump correlations, included in the
bipartite c-MoP theory of Sec. 4.5 but neglected in the tripartite theory, during the
memory or rather correlation time of optics and mechanics indeed play an important
role for the behavior of the mechanical mode.
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Chapter 5

The nonequilibrium Dicke

model

In the last chapter of the work we will present valuable insights for the c-MoP theory
obtained from an investigation of the nonequilibrium Dicke model [38, 91, 133]. The
Dicke model is of interest for us since on the one hand it offers an ”impurity many-
body” problem which allows for the investigation of different Ansatzes for c-MoP
projectors. On the other hand, we find the physics of the Dicke model to be very
much related to the one of the DOPO and thus it allows us to exploit the methods
and concepts investigated in detail in Chapter 3. The results presented here are not
fully elaborated and therefore should be understood as an outlook on what can be
done in future work.

The nonequilibrium Dicke model (NEDM) describes the interaction of a photonic
mode subject to Markovian dissipation with an ensemble of N two-level atoms.
We shall denote the creation and annihilation operators of the photonic mode by
a and a†, respectively. These operators fulfill the bosonic commutation relations
[a, a†] = . The atoms shall be described by the Pauli operators σz

i , σ
x
i and the

(de)excitation operators (σi) σ†
i for i ∈ {1, 2, ..., N}. Finally, by introducing the

collective spin operators Jz =
1
2

�N
i=1 σ

z
i , J =

�N
i=1 σi and Jx = J +J† we state the

NEDM (� = 1)

∂tρ(t) = −i

�
ω0a

†a+ ωzJz +
g√
N

xaJx, ρ(t)

�
+ κDaρ(t), (5.1)

where we have introduced the quadrature xa = a + a†, the standard Lindblad dis-
sipator DJ(·) = 2a(·)a† − a†a(·) − (·)a†a, the local mode energies ω0 and ωz for
the photons and atoms, respectively, and the coupling rate g. The total angular
momentum J2

tot = J2
z + (JJ† + J†J)/2 is conserved by Eq. (5.1) [38] and thus we

introduce a boundary condition complementing Eq. (5.1) by

�J2
z �+

1

2

�
�J†J�+ �JJ†�

�
= �( �Jtot)2� =

N2

4
, (5.2)
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where the last equality is true for any initial state in which all atoms are in their
ground state.

5.1 Mean-field approximation for the nonequilibrium

Dicke model

In all what follows we will be interested in the stationary state ∂tρ(t) = 0 of Eq. (5.1).
The nonlinear nature of the atom operators precludes an exact solution in general.
We focus on the ultra-strong coupling regime g ≈ ω0(ωz) such that the counter-
rotating terms aJ and a†J† can not be neglected under a rotating-wave approxima-
tion. In fact, the counter-rotating terms will drive the system through a dissipative
second order phase transition from a normal phase with �a� = 0 to a superradiant
phase with �a� �= 0 [20, 38]. The phases need to be understood as steady-state
phases and they are characterized by exploiting a semi-classical or rather mean-field
analysis.

As shown throughout the thesis the mean-field equations can be obtained by the
c-MoP equations up to first order in g/

√
N . Thus, we refer to reference [38] for a

detailed analysis of the mean-field approach for the treatment of the NEDM. We,
however, state the mean-field equation here for completeness. By inserting the prod-
uct state Ansatz ρ(t) = ρph(t) ⊗ ρat(t), with ρph(t) (ρat(t)) describing the reduced
state of the photons (atoms), into Eq. (5.1) one obtains the coupled nonlinear mean-
field equations by tracing out the atoms in one case and the photons in the other
case. The mean-field equations read

∂tρat(t) = −i

�
ωzJz +

g√
N

Trph{xaρph(t)} Jx, ρat(t)
�

∂tρph(t) = −i

�
ω0a

†a+
g√
N

Trat{Jxρat(t)}xa, ρph(t)
�
+ κDaρph(t) .

(5.3)

The superradient phase corresponds to the symmetry-broken solution branch of the
mean-field equations since the NEDM is invariant under the Z2 transformation which
transforms a → −a and J → −J . We illustrate the scaled stationary state photon
number �a†a�ss/N and the occupation number of a single atom �σ†σ�ss (where we
dropped the index i due to symmetry reasons) obtained by mean-field theory in
Fig. 5.1 (a) and (b) by the dashed-gray line, respectively, as a function of g. The
plots illustrate the non-analytic behavior of the stable mean-field branches at the
critical point or rather threshold g = gc marked by the red stars in the figure.

The overall physical interpretation of the phase transition, especially with regard
to the symmetry breaking, can surely be understood in analogy to the second or-
der phase transition of the DOPO as explained in Sec. 3.2.1 and Sec. 3.4. The
system-size parameter is here given by the number of atoms N which can equally be
interpreted as the number of ”nearest neighbors” of the photonic mode. The atoms
do not interact with each other and thus the photonic mode can be considered as an
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impurity interacting with a structure free bath of atoms or rather qubits. From this
point of view, the Dicke model is much simpler than the many-body lattice model of
mutually interacting qubits introduced in Sec. (2.2). Consequently, the c-MoP equa-
tions will be drastically simplified which allows us to investigate different Ansatzes
for the self-consistent Mori projectors in what follows.

5.2 C-MoP approach to the nonequilibrium Dicke model

We will now turn to the c-MoP equations and only focus on the symmetry preserving
solutions within the theory. We start by identifying the bipartition of the full model
by considering the photons as one part and the atoms as the other. Thus, we intro-
duce the c-MoP projectors Pat

t (·) = ρat(t) ⊗ Trat{·} and Pph
t (·) = Trph{·} ⊗ ρph(t).

The reduced density matrix ρat(t) includes all correlations between the atoms. For
later use we will refer to Pat

t (·) as the correlated projector for this reason. Moreover,
we introduce the partition of the full Liouvillian L describing the NEDM in Eq. (5.1)
such that ρ̇(t) = Lρ(t) with L = Lph + Lat + LI and

Lat(·) = −i [ωzJz, (·)]

Lph(·) = −i
�
ω0a

†a, (·)
�
+ κDa(·)

LI(·) = −i
g√
N

[Jxxa, (·)] .
(5.4)

By exploiting the techniques exemplified in detail in Chapter 3, especially in Sec. 3.3
and Sec. 3.3.2, and neglecting any symmetry breaking terms (including the mean-
field terms), we can immediately state the c-MoP equations in the steady state for
the NEDM by

∂tρ
ss
at = 0 = Latρ

ss
at −

g2

N

�
Jx ,

� ∞

0
dτ eLatτ

�
Jx ρ

ss
at dph(τ)− ρssat Jx d

∗
ph(τ)

��

∂tρ
ss
ph = 0 = Lphρ

ss
ph −

g2

N

�
xa ,

� ∞

0
dτ eLphτ

�
xa ρ

ss
ph dat(τ)− ρssph xa d

∗
at(τ)

��
,

(5.5)

where ρssph(at) denotes the steady state reduced density matrix of the photons (atoms).
In addition, the correlation functions read

dph(τ) = Trph{xaeLphτ
�
xaρ

ss
ph

�
} = �axa�ss e(−iω0−κ)τ + �a†xa�ss e(iω0−κ)τ

dat(τ) = Trat{JxeLatτ (Jxρ
ss
at)} = �JJx�ss e−iωzτ + �J†Jx�ss eiωzτ .

(5.6)

Just as in the example of the DOPO for the pump mode, we find the photonic state
ρssph to be determined by a c-MoP equation which is quadratic in the operators a and

a†. Thus, we find a closed set of equations for the photonic steady state variables
�a†a�ss, �a2�ss and �a† 2�ss which then depend on the state of the atoms.
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The c-MoP equation for the atomic sector on the other hand is not quadratic and
renders the main difficulty on our way to solve the c-MoP equations of the NEDM.
We will present three possibilities to tackle such a difficulty.

A straightforward way to solve the c-MoP equations is to integrate Eq. (5.5) nu-
merically. Here, the Hilbert space dimension scales as 2N × 2N . We show the result
of the steady state photon number �a†a�ss obtained from the full numerical solu-
tion of the c-MoP equation as a function of g in Fig. 5.1 (d) by the solid line for
N = 1, 2, ..., 6. For comparison we also integrated the full master equation, eq. (5.1),
for N = 1, 2, ..., 5 and illustrate the result by the dashed line in Fig. 5.1 (d). The
dashed and solid lines match perfectly on the scale present in Fig. 5.1 (d) and there-
fore they are hardly distinguishable by eye in the plot. Thus, we find that the
c-MoP equations give quasi-exact results, just as found in the previous example of
the DOPO in Chapter 3. However, due to the exponential scaling of the Hilbert
space dimension with increasing atom number, a full numerical integration of the
c-MoP equation is not feasible for N ≥ 10, despite its more favorable scaling as
compared to the numerical integration of the full master equation which scales as
(2N × da) × (2N × da), with da accounting for the Hilbert space dimension of the
photon mode.

5.3 Correlated and uncorrelated projectors

The most efficient way to solve the c-MoP equation is to follow the ideas of Chapter
2 and introduce a self-consistent Mori projector which projects onto the factorized
state of all constituents, that is each atom and the photons separately. We refer
to this projector as the uncorrelated projector. In practice this amounts to writing
ρat(t) = ρ1(t)⊗ρ2(t)⊗ ...⊗ρN (t) for the projector introduced above in Sec 5.2. This
step simplifies the c-MoP eqs. (5.5) considerably. They then read

∂tρ
ss
1 = 0 = L1ρ

ss
1 − g2

N

�
σx ,

� ∞

0
dτ eL1τ

�
σx ρss1 dph(τ)− ρss1 σx d

∗
ph(τ)

��

∂tρ
ss
ph = 0 = Lphρ

ss
ph − g2

�
xa ,

� ∞

0
dτ eLphτ

�
xa ρ

ss
ph d1(τ)− ρssph xa d

∗
1(τ)

��
,

(5.7)

where L1(·) = −i [ωzσz, (·)] denotes the free evolution of a single atom and ρss1 de-
notes the steady state reduced density matrix of a single atom. Due to the symmetry
of the Dicke model we have dropped the atom labeling for the spin operators. The
first equation in eq. (5.7) can be directly obtained from the first equation in eq. (5.5)
by taking ρat(t) = ρ1(t) ⊗ ρ2(t) ⊗ ... ⊗ ρN (t) and tracing over all but one atom. In
addition, the single-atom correlation function reads

d1(τ) = Tr1{σxeL1τ (σxρss1 )} = �σσx�ss e−iωzτ + �σ†σx�ss eiωzτ , (5.8)

which can be directly deduced from dat(τ) given in eq. (5.6). Note that the 1/N
dependence of the Born term in the c-MoP equation for the photons is canceled in
eq. (5.7).
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4

i.e. Ln0, �n0(·) = −iJ [an0(
�Z

n=1 a
†
n) + H.c. , (·)], where Z

denotes the coordination number of the lattice.
The c-MoP equation (5) can be simplified significantly

if one is only interested in the steady state solution,
ρss = limt→∞ ρn0(t). The action of the integral kernel
K<n0,n>(t, t

�) on ρn(t�)⊗ ρn0(t
�) vanishes for |t− t�| suf-

ficiently large. For t → ∞ one can thus approximate
ρn(t�) ≈ ρss in the right hand side of Eq. (5) and extract
an algebraic equation for ρss, see appendix E for details.
Following this procedure we end up with the steady state
c-MoP equation for the driven dissipative Bose-Hubbard
model,

(a) (b) (c) Im {Tr{aρss}} Re {Tr{aρss}} (8)

0 = (L0 + LMF + LBT ) ρss, (9)

where we have dropped the lattice site index as the
entire system described by Eq. (7) displays transla-
tional invariance. Thus ρss = limt→∞ ρn0(t). The
superoperators, which are proportional to different
powers of the tunneling rate J , are given by: The free
evolution of the on-site system, proportional to J0,
L0(·) = −i [∆a†a + Ω

2 (a
† + a) + U

2 a
†a†aa , (·)] + γ

2D(·),
the first order correction which is equivalent
to the meanfield ansatz, proportional to J1,
LMF (·) = −i Z J

�
aTr{a†ρss}+ H.c. , (·)

�
, and

the Born term which is proportional to J2,
LBT (·) = −ZJ2

�
i,j

�∞
0 dτ dij(τ, ρss)

�
ai, eτL0 [aj , (·)]

�
−

ZJ2 {
�

j

�∞
0 dτ sj(τ, ρss)

�
aj , eτL0 (·) a

�
+ H.c. } −

iZJ2
�

i,j

�∞
0 dτ hij(τ, ρss)

�
ai, eτL0 (·)

�
. Here the sum�

i,j with i, j ∈ {−,+} runs over all possible combina-

tions of operators a− ≡ a and a+ ≡ a†. Moreover, the
steady-state dependent correlation functions are given by
dij(τ, ρss) = Tr{ajeτL0aiρss}− Tr{aiρss}Tr{ajeτL0ρss},
sj(τ, ρss) = Tr{(aj)†eτL0

�
a†, ρss

�
} and hij(τ, ρss) =

iTr{ajρss}Tr{ajeτL0
�
ai, ρss

�
}.

In the following, we will be interested in numerical re-
sults of Eq. (9) in the weak driving regime, i.e. Ω � U .
An accurate treatment of the strong driving regime, i.e.
Ω � U , can be found in [6]. In particular, we want
to test the performance of Eq. (9) by comparing its so-
lution, which from now on shall be denoted by ρcMss , to
an exact solution of Eq. (7) for a numerically feasible
number of lattice sites N . For a large number of sites,
N = 21, we obtain a very accurate approximation with
the time dependent density matrix renormalization group
method, see [6, 7], whereas for a small number of sites,
we numerically integrate the full equation (7) to find a
numerically exact solution. We also compare the mean-
field result denoted by ρMF

ss to the numerical solutions
and show the quantitative and qualitative improvement
of ρcMss over ρMF

ss . For this purpose we compare the on-
site observables and calculate a measure for the distance
between two quantum states ρ1 and ρ2. Here, we will
use the trace distance defined as D(ρ1, ρ2) =

1
2 |ρ1 − ρ2|

with |A| =
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in the hard-core limit (U → ∞) as a function of ZJ for Z = 2,
∆ = 0.6 and Ω = 1.5 in units of the dissipation rate γ. Inset:
The real part of the correlation function �a� for the same set
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result and the solid red curve shows the results optained
from the c-MoP equation. The dotted-dashed curve shows
the Meanfield result with a bistability. One branch reaches
from 0 ≤ ZJ ≤ 3.8γ, while the other branch reaches from
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for Z = 2, ∆ = 0.6γ and Ω = 1.5γ. We find a remark-
able agreement between the c-MoP results (solid red line)
and the results of the DMRG calculation (dashed green
line). The same holds for the real part of Tr{aρss}, inset
of Fig. 2, and for the imaginary part of Tr{aρss}. The
meanfield solution, on the other hand, deviates from the
DMRG result to an extend which makes the approxima-
tion completely unreliable over a large parameter range.
Moreover, we find a bistabilty in the MF solution due to
the non-linear character of the Meanfield equation. The
c-MoP equation (9) which is a non-linear algebraic equa-
tion as well, does not exhibit bistable behaviour for all
the parameter sets of our study. According to a theorem
of Spohn [2, 3] the dynamics of a non-unitary but rather
Lindblad type equation of motion [1], just like Eq. (7),
always relaxes to a unique steady-state in the case of a
finite dimensional Hilbert space. Thus, for a finite lat-
tice, i.e. N < ∞, there exists a unique steady state for
the driven dissipative Bose Hubbard model as we can
resort to a truncated Hilbert space for U �= 0, see [3].
This feature is captured by the c-MoP result but not by
meanfield theory. However, both meanfield and the c-
MoP equation solely depend on the coordination number
Z and not on the number of lattice sites N . Therefore,
it might be that Eq. (7) displays bistability in the ther-
modynamic limit, i.e. N → ∞, as the case of an infinite
dimensional Hilbert space does not fulfill the conditions
for the theorem of Spohn [2]. So far, the bistability on
meanfield level seemed to be a hint for the existence of
bistability in nature [23]. In the parameter regimes of
our study, and that is the only sure statement we can
make at this point, the existence of bistability is negated
by the c-MoP equations. Hence, bistability seems to be
just an artifact of the meanfield approximation.
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Figure 5.1: Steady state scaled photon number �a†a�ss/N in part (a) and atomic
occupation number in part (b) as a function of g obtained from mean-field theory
(dashed gray line) and the cumulant c-MoP approach for N = 10 (green solid line),
N = 50 (orange solid line), N = 100 (blue solid line) and N = 500 (red solid line).
The second order dissipative phase transition occurs at g = gc marked by the red
star. In part (c) we show the steady state photon number �a†a�ss as a function of N
at threshold g = gc obtained from the c-MoP cumulant approach (red dots) and a
fit function (red solid thin line), indicating the critical scaling �a†a�ss ∼

√
N of the

photon number. In part (d) we show the steady state photon number �a†a�ss as a
function of g up to threshold obtained from a full simulation of the c-MoP equations
(solid lines for N = 1, 2, ..., 6), from a full simulation of the exact Dicke model
(dashed lines for N = 1, 2, ..., 5), and from the c-MoP cumulant approach (dotted
lines for N = 3, 4, 5, 6). The difference between the dashed and solid lines is not
visible indicating that the c-MoP equations lead to quasi exact results. The c-MoP
cumulant approach deviates from the exact result at threshold for increasing atom
numbers N . Parameters are ω0 = 2, ωz = 1 and κ = 5 which leads to gc ≈ 1.904.

Overall, the c-MoP equations obtained from an uncorrelated projector grant us
with a closed set of equations for the variables �a†a�ss, �a2�ss, �a† 2�ss and �σ†σ�ss =
Tr1{σ†σρss1 } which can be solved very efficiently. Surprisingly, one finds that the
result for all these four variables will not depend on the number of atoms N . One
can immediately understand this result by considering that Tr1{σ†σL1ρss1 } = 0,
and consequently the 1/N dependence in the Born term for the single atom in
eq. (5.7) drops out. The photon number turns out to be given by an analytic
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function depending on the parameters ωz, ωz, κ and g but not on N . Thus we find
a scaling for the rescaled photon number �a†a�ss/N ∼ 1/N and conclude that the
c-MoP equations obtained from the uncorrelated projector lead to a correction of
the mean-field result which is suppressed as 1/N . We emphasize however, that we
are considering the solution branch which conserves the symmetry and therefore we
should trust our findings only up to the critical point gc. For the symmetry breaking
solution, however, we expect a similar behavior.

At this point it is very insightful to consider the correlation function dat(τ) from
eq. (5.6) again. In particular we consider �JJx�ss which we rewrite to

�JJx�ss =
N�

i=1

N�

j=1

�σiσx
j �ss = N�σiσx

i �ss +N(N − 1)�σiσx
j �ss, (5.9)

since �σiσx
i �ss and �σiσx

j �ss are identical for all i, j. Clearly the on-site correla-
tion function �σiσx

i �ss contribute N -times to the total correlation function �JJx�ss
whereas the two-atom correlation function �σiσx

j �ss dominates with a contribution

scaling as N(N − 1) ∼ N2. Within the uncorrelated projection operator approach
the dominant contributions are completely neglected for the symmetry preserving
solution branch since then �σiσx

j �ss = �σi�ss�σx
j �ss = 0. From this consideration it

obviously seems highly desirable to account for two-atom correlations.

5.3.1 Cumulant expansion

Let us recall once more our findings so far. On the one hand we have the c-MoP
equations (5.5) which are derived from a correlated projector and need to be solved
fully numerically. This procedure gives quasi exact results below and at threshold
but it is unfeasible for large atom numbers N ≥ 10. On the other hand we have the
uncorrelated c-MoP approach which is highly efficient but gives unreliable results
for large atom numbers. Inspired by the success of the Gaussian c-MoP theory for
the DOPO, see Sec. 3.6, we will now introduce a method that is both numerically
feasible and accounts for the relevant two-atom correlations. We refer to this method
as the cumulant c-MoP approach.

For the operators A,B,C,D, ... we introduce the cumulants �...�C defined as

�A�C = �A�
�AB�C = �AB� − �A�C�B�C

�ABC�C = �ABC� − �AB�C�C�C − �AC�C�B�C − �BC�C�A�C − �A�C�B�C�C�C
�ABCD�C = ...

(5.10)

The cumulant expansion of n-th order neglects all cumulants of order higher than n.
We will consider an expansion up to second order and thus we set �ABC�C = 0 and
consequently �ABC� = �AB�C�C�C + �AC�C�B�C + �BC�C�A�C + �A�C�B�C�C�C .
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5.3. Correlated and uncorrelated projectors

In our particular case we assign the Pauli operators with different atom label indices
to the operators A,B and C. For example we write

�σz
i σjσ

†
m�ss = �σz

i �ss�σjσ†
m�ss ,

where due to symmetry all but one term vanishes for i �= j �= m. Note that the
Gaussian state approximation introduced in Sec. 3.6 is nothing but a cumulant
expansion up to second order where the photonic field operators correspond to A,B
and C.

Exploiting the cumulant expansion we are able to achieve both, we account for the
very important two-atom correlation function �σiσx

j �ss discussed in eq. (5.9), and find
a closed set of equation from the c-MoP eq. (5.5) together with the conservation of
total angular momentum in eq. (5.2). The resulting equations contain 8 variables
and can be solved very efficiently for arbitrary values of N . The variables include the
three photonic moments �a†a�ss, �a2�ss, �a† 2�ss and five atomic moments �σ†

iσi�ss,
�σ†

iσiσ
†
jσj�ss, �σ

†
iσj�ss, �σ

†
iσ

†
j�ss and �σiσj�ss for i �= j.

We show the steady state scaled photon number �a†a�ss/N in Fig. 5.1(a) and atomic
occupation number in Fig. 5.1(b) as a function of g obtained from the cumulant c-
MoP approach for N = 10 (green solid line), N = 50 (orange solid line), N = 100
(blue solid line) and N = 500 (red solid line). The second order dissipative phase
transition occurs at g = gc marked by the red star. Here we see that the quantum
fluctuations which are taken into account by the c-MoP cumulant approach deviate
significantly from the mean-field result. Further, the mean-field result seems to
become exact as N tends to infinity but strictly speaking only on the scale of 1/N .
In fact, the bare photon number diverges as N → ∞ which is shown at threshold in
Fig. 5.1(c) where we display the steady state photon number �a†a�ss as a function
of N obtained from the c-MoP cumulant approach (red dots) and a fit function (red
solid thin line), indicating the critical scaling �a†a�ss ∼

√
N of the photon number.

The
√
N scaling of the photon number was also found by the Keldysh formalism

in Ref. [91] in the Holstein-Primakoff picture. Finally, in Fig. 5.1(d) we show the
steady state photon number �a†a�ss obtained from the c-MoP cumulant approach
as a function of g up to threshold. Here, we see that the c-MoP cumulant approach
offers a high quantitative accuracy which, however, decreases as the atom number
increases, what can be understood considering the approximations performed within
the cumulant expansion up to second order.
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Summary of Part II

In Chapter 3 we exemplified the applicability of the self-consistent projection op-
erator theory to nonlinear quantum optical systems on the case study of the de-
generate optical parametric oscillator. We illustrated how our theory generalizes
mean-field approaches and in particular adiabatic elimination methods to settings
without time-scale separation. The effective master equations can be solved effi-
ciently despite their non-Markovian structure. We demonstrated the high degree of
accuracy of our method and revealed its capability to determine the exact quan-
tum states below, at, and above the classical threshold for both the stationary limit
and dynamical evolution. In addition, we developed a linearized theory consistent
with the self-consistent Mori projector equations and showed its accuracy far beyond
other known linearized approaches.

In Chapter 4 we combined adiabatic elimination techniques, semi-classical methods,
and the Gaussian c-MoP theory to provide a theoretical analysis of the degenerate
optomechanical parametric oscillator which works even at the critical point. We
focused on the region where the optical field coupled to the mechanics is fully quan-
tum, showing that such a quantum-correlated field with no coherent background can
be used to induce significant optomechanical cooling through a ”cooling by heating”
mechanism. Our c-MoP techniques have allowed us to check the validity of the
optical adiabatic elimination as well as the semi-classical approximation, whose pre-
dictions have indeed been shown to break down at threshold, showing the potential
of c-MoP to treat dissipative quantum-optical problems in the vicinity of critical
points.

Finally, in Chapter 5 we studied the second order dissipative phase transition of
the nonequilibrium Dicke model for different c-MoP projector Ansatzes. The c-
MoP theory accounting for interatomic correlations has been shown to lead to very
accurate results for steady state observables. Further, a very efficient technique
feasible for arbitrary atom numbers based on a cumulant expansion was introduced
and shown to describe the finite-size corrections of the phase transition and its
critical scaling behavior while still preserving the symmetry of the nonequilibrium
Dicke model.
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Conclusion and Outlook

Conclusion: In the present thesis we have introduced a novel theoretical
approach to the treatment of quantum few- and many-body systems which we
call self-consistent projection operator theory or in short c-MoP. Our theory
exploits the key idea of projection operator methods as they are prominently
used in open systems theory [4] or adiabatic elimination techniques [20, 33].
The first formal step in a projection operator approach consists in partitioning
the whole quantum system into subparts, with a prominent example given by
the bipartition of system and environment, followed by an elimination of all
degrees of freedom not belonging to the subpart of interest. Formally, such
elimination can be achieved by introducing the Mori projection operator which
ultimately enables the derivation of exact equations of motion for the reduced
quantum states. These exact Nakajima-Zwanzig equations, however, are not
solvable in their full generality and thus approximations need to be performed.
So far, in the applications of projection operator approaches the environmental
reference states, that is all degrees of freedom but the ones of interest, are
taken to be time-independent. This constitutes a strong approximation being
well justified for quantum systems consisting of subparts with different size or
rather subparts evolving on different time-scales.

The main achievement of the c-MoP theory is to generalize the concept of
projection operator methods by introducing a time-dependent Mori projector
to account for a dynamically evolving environment. As shown in this thesis, the
framework of the c-MoP theory allows for the derivation of an exact equation
of motion for reduced states of all the subparts. In strong contrast to standard
projection operator approaches, the applied approximation on the exact c-
MoP equations, namely the Born approximation, does not rely on a clear
time-scale separation between the dynamics of the subparts. Thus, the c-
MoP theory suggest to be applicable to physical systems in which all the
subparts have similar sizes and characteristic dynamical times. In this way
c-MoP complements standard projection operator methods holding the long-
term promise to become a well-established tool enlarging the scope of the
theory of open systems.

In addition, we have shown that in the lowest order approximation c-MoP
becomes equivalent to mean-field approaches and therefore forms a system-
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atic generalization of mean-field theories taking non-Markovian back-action
between the subparts of the system into account. This fact motivates the
application of c-MoP to quantum many-body problems.

In order to substantiate the presumptions made from the general framework
of the c-MoP theory we applied it to few-body bosonic quantum-optical prob-
lems as well as to unitary and driven-dissipative many-body lattice scenarios.
In particular, within the scope of this thesis, we studied open and closed spin
lattices in one and two dimensions, the degenerate opto(-mechanical) paramet-
ric oscillator (DO(M)PO) and the nonequilibrium Dicke model. Throughout
the applications we tested the accuracy of c-MoP by comparing it to (quasi)
exact results, if these were available, and also to other approximative methods
such as linearized descriptions, mean-field theory or in the case of the DOPO
even to the Keldysh formalism within the self-consistent Hartree-Fock approx-
imation. In the considered cases we found c-MoP to outperform all of these
approximative methods and for 1D spin lattices to compare with the perfor-
mance of t-DMRG calculations for local observables. Essentially, in all the
scenarios investigated here, we showed that c-MoP theory accurately describes
the physics of the driven and dissipative phase transitions, even at the critical
points, and includes mean-field theory and adiabatic elimination methods as
its limiting cases.

With all these applications, we clearly demonstrated the usefulness of c-MoP
theory in this thesis. However, we also highlighted how different choices for
the self-consistent Mori projector as well as partitions of the full system into
the subparts can lead to significantly different efficiencies and accuracies. The
possible choices for the partitions and the according Mori projectors are limited
by the ability to solve the nonlinear and non-Markovian c-MoP equations.

For the many-body lattice problems we suggested here to implement a partition
of the lattice into small subgroups or rather clusters of lattice sites. The
corresponding self-consistent Mori projectors then projected the full lattice
state onto a factorized state of all the clusters. This choice allowed us to
derive efficient c-MoP equations for the local observables reaching a reduction
of complexity similar to mean-field approaches. As a consequence we could
straightforwardly increase the considered cluster sizes and in this way provide
a control handle for the convergence of our results.

We found that the accuracy of the clustered c-MoP approach improves fast as
the size of the clusters is increased. In fact, for the one dimensional quench
problem in the Heisenberg XX spin chain, where exact results are available
for comparison, the time ranges accurately described by the cluster c-MoP
approach increase linearly with the cluster size. We could numerically solve
the c-MoP equations up to a cluster size of 10 sites and show that the result
compares to time ranges reached with t-DMRGmethods [58]. In the case of the
driven and dissipative Heisenberg XX spin model, we showed that the c-MoP
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equations can be reduced to simple algebraic equations in order to directly solve
for the stationary state. We found that increasing the cluster size reaches a
convergence in the steady state observables which allowed us to conclude that
c-MoP gives an efficient method to accurately determine local observables in
the thermodynamic limit. We have verified the c-MoP predictions with a
finite-size scaling using t-DMRG methods for the dissipative scenario as well.

As a direct application, we investigated a nonequilibrium mean-field phase
transition of first order, to which we referred as the quantum to classical tran-
sition, appearing in the locally driven and dissipative Heisenberg XX spin
model. We argued for the system-size parameter driving the phase transition
to be given by the coordination number of the lattice. Thus, the phase tran-
sition appearing somewhere in the bistable region predicted by the mean-field
analysis becomes sharp in the limit of infinite dimensions only, while for a
fixed spatial dimension the transition is expected to be smooth even in the
case where the number of lattice sites tends to infinity. Indeed, by exploiting
the clustered c-MoP approach we found a strong signature for the absence of
the phase transition both in one and two spatial dimensions even in the ther-
modynamic limit of infinite lattice sites. Our results provide an understanding
of the dissipative nature of the phase transition and provide a physical expla-
nation of the bistability from the mean-field analysis which at first sight seems
to be somewhat obscure. The absence of the phase transition for one dimen-
sional lattices has been observed for different dissipative models [134, 135] as
well.

The results for the two dimensional lattice were obtained by simply applying
the same techniques that were introduced in this thesis. In fact, the general
framework for the application of c-MoP to many-body systems as presented
here, allows to apply the theory to any lattice geometry and any spatial di-
mension by simply adding additional terms which depend on the exact shape
of the lattice. However, we have also argued that some relevant processes are
not taken into account by the c-MoP method based on the partition of the
lattice into clusters. These ’corner’ processes become less important as the
cluster size increases. Nonetheless, increasing the cluster size in two or more
spatial dimensions is numerically much more expensive than in one spatial di-
mension. We showed in this thesis that these ’corner’ processes could be taken
into account by considering a more general choice employing a bipartition of
the entire lattice into one small cluster of lattice sites and the remainder of
the lattice. The resulting c-MoP equation would than lead to local quantities
that will depend on non-local ones and thus be very inefficient or in general
unsolvable without any further approximations.

This issue arrises in any projection operator based theory where the prereq-
uisites needed for a solvable model consist in the ability to solve both the
isolated system and environment. In our case the isolated environment would
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still be given by a large many-body lattice model. Therefore, solving an im-
purity model is much simpler than solving the full lattice model. In the light
of this insight, we suggest to explore in future work whether c-MoP theory
can be combined with ideas from dynamical mean-field theory (DMFT) where
the mapping from the full lattice model onto a quantum impurity model is
performed at the initial stages of the approach [112].

In order to put emphasis onto this topic, we have further performed c-MoP
calculations for the nonequilibrium Dicke model [38] and explicitly tested dif-
ferent projection operator Ansatzes. The Dicke model consists of a dissipative
photonic mode coupled to N non-interacting two-level atoms. In this sense
it can be understood as an impurity model. We have verified that the bipar-
tition into the photonic mode as one subsystem and all the remaining atoms
leads to a c-MoP theory which describes the phase transition very efficiently
and accurately, even capturing the correct critical scaling behavior [91] of the
model. In contrast, the partition of the Dicke model into the photonic mode
and all the atoms one by one separately leads to a c-MoP equation which only
leads to small corrections to the mean-field predictions that tend to zero with
1/N .

In the case of the DOPO, which is a nonlinear photonic two-mode problem,
the bipartition was naturally taken by the two modes of the system. More
importantly, we were able to state c-MoP equations and solve them such that
all linear parts of the interaction were accounted for exactly, that is up to all
orders in the interaction, while only the nonlinear part of the interaction was
expanded up to second order. In this case, we obtained quasi exact results
for the full reduced density matrices below, at and above the critical point
of the second order dissipative phase transition. The favorable scaling of the
c-MoP equations, in contrast to the full master equation, allowed us to en-
ter a larger regime of the parameter space and even extract the full Wigner
function of the reduced state. Away from the adiabatic limit, such a result
has not been obtained before. Most importantly, however, in the context of
this thesis, the case study on the DOPO illustrated the solution procedure
for the non-Markovian c-MoP equations and the need to restrict the Born ap-
proximation only to the nonlinear part of the inter-mode interaction. If these
prerequisites are maintained for a c-MoP calculation, we expect similar results
for any other nonlinear problem of quantum optics such as the (one-atom)
laser [4, 20], optomechanics [69], and the dissipative Dicke model [38] in the
Holstein-Primakof limit [91, 136, 137].

As a direct application of the c-MoP method developed for the DOPO we intro-
duced a theoretical approach that is capable of describing the below threshold
regime of degenerate optomechanical parametric oscillators, even at the crit-
ical point itself. We found that the down-converted field, which is of purely
quantum mechanical nature, can induce significant mechanical cooling and
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identified the process responsible of this as a ”cooling by heating” mechanism.
Moreover, we showed that, contrary to naive expectations and semi-classical
predictions, cooling is not optimal at the critical point, where the photon num-
ber is largest. All the works so far on the OMPO [90, 127–129] have focused
on regions of the parameter space far from the critical point solving the prob-
lem through a semi-classical approach or rather a standard linearization. In
these works, however, the parameter range was either far below threshold or
an additional coherent injection at the down-converted mode was considered.

Thus, we believe that we have solved a hard problem for the quantum optics
community using c-MoP theory which gave three significant contributions. For
one, it justified the semi-classical theory in the ”cooling by heating” parame-
ter regime, second, it allowed to extend the theory beyond that regime up to
the critical point and showed the breakdown of the semi-classical predictions
together with the cooling, and third, it allowed to justify the time-scale sep-
aration between the optical and the mechanical modes for the experimentally
relevant situation. Especially, the latter did not seem obvious as the optical
modes experience a significant change of their relaxation rates in the critical
slowing-down regime. At this point it is foreseeable that experiments will be
able to study parameter regions where back-action effects of the mechanics
on the optics will become significant, in which case we suppose the c-MoP
approach to be very useful.

Outlook: In summary, we have illustrated the relevance of the c-MoP theory
and that the methods developed in this thesis can be directly applied to non-
linear quantum optical as well as to closed or open many-body lattice models.
Thus, one objective for future research simply consists in further applications
of the c-MoP theory. In addition, future advancements of the methodology
could include more efficient numerical strategies to solve the c-MoP equations
together with a possible combination of c-MoP theory and field theoretical
methods such as dynamical mean-field theory. Also, the investigation of higher
order terms in the expansion of the generalized Nakajima-Zwanzig equation
provides an intriguing task for future research.

As one natural example in the context of quantum optical problems we suggest
to apply c-MoP to the dissipative Dicke model in the Holstein-Primakof picture
[38, 91]. This model constitutes an example where the methods developed here
can be directly applied. We expect c-MoP to deliver the (reduced) quantum
states below, at and above the critical point and thus give access to higher
order correlation functions reaching beyond the studies presented for example
in Ref. [91, 136]. Moreover, it will be possible to study dissipative quenches
where interesting phenomena are expected to appear [137].

In the context of many-body applications it seems natural to apply the c-
MoP method to study higher dimensional lattices or lattices with frustration,

117



CONCLUSION AND OUTLOOK

especially in the context of open systems. Moreover, one can reach beyond the
spin models presented in this thesis. In particular, one can use c-MoP to study
Bose-Hubbard models in the driven and dissipative scenario [24]. There, the
mean-field phase diagram is known [68] but especially in lattice dimensions
larger than one the physics is still elusive, and it is not yet clear whether there
is a finite critical dimension for the phase transition appearing in the mean-field
result. In order to shed light onto this topic we suggest to apply the c-MoP
methods developed here to the driven and dissipative Bose-Hubbard model in
momentum space [56] rather than in position space. From a technical point of
view, one can either partition the full state into all the momentum modes, or
more promisingly into the driven mode (in the case of homogeneous driving
in position space there is only one driven mode in momentum space) and the
rest of the modes. The on-site nonlinear Hubbard interaction in position space
translates into nonlinear modal interactions which are known as 4-wave mixing
terms. All the modes which fulfill momentum conservation can in principle
scatter with each other. We suggest to neglect all scattering processes which
do not include the driven mode and thus obtain an impurity model which can
be solved within the c-MoP framework presented here. In this model it will
be evident that the system-size parameter is given by the number of lattice
sites and thus it will allow us to study the dissipative phase transition in the
Bose-Hubbard model at fixed spatial dimensions but with varying number of
lattices sites.
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[108] C. Navarrete-Benlloch, J. J. Garćıa-Ripoll, and Diego Porras, Inducing
Nonclassical Lasing via Periodic Drivings in Circuit Quantum Electrody-
namics, Phys. Rev. Lett. 113, 193601 (2014).

[109] T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch,
M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, Quantum Enhancement
of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave
Detection, Phys. Rev. Lett., 104, 251102 (2010).

[110] H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N.
Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, Observation of

126



BIBLIOGRAPHY

Squeezed Light with 10-dB Quantum-Noise Reduction, Phys. Rev. Lett.,
100, 033602 (2008).

[111] Z. Leghtas, S. Touzard, I. M. Pop, A. Kou, B. Vlastakis, A. Petrenko, K.
M. Sliwa, A. Narla, S. Shankar, M. J. Hatridge, M. Reagor, L. Frunzio, R.
J. Schoelkopf, M. Mirrahimi, and M. H. Devoret, Confining the state of
light to a quantum manifold by engineered two-photon loss, Science, 347,
853, (2015)

[112] H. Aoki, N. Tsuji, M. Eckstein, M. Kollar, T. Oka, and P. Werner,
Nonequilibrium dynamical mean-field theory and its applications, Rev.
Mod. Phys. 86, 779 (2014).

[113] C. Navarrete-Benlloch, Contributions to the Quantum Optics of Multi-
mode Optical Parametric Oscillators, arXiv:1504.05917.

[114] V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki,
Whispering-gallery-mode electro-optic modulator and photonic microwave
receiver, J. Opt. Soc. Am. B 20, 333 (2003).

[115] V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, Nonlin-
ear Optics and Crystalline Whispering Gallery Mode Cavities, Phys. Rev.
Lett. 92, 043903 (2004).

[116] A. A. Savchenkov, A. B. Matsko, M. Mohageg, D. V. Strekalov, and L.
Maleki, Parametric oscillations in a whispering gallery resonator, Opt.
Lett. 32, 157 (2007).

[117] J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, Ch.
Marquardt, and G. Leuchs, Naturally Phase-Matched Second-Harmonic
Generation in a Whispering-Gallery-Mode Resonator, Phys. Rev. Lett.
104, 153901 (2010).

[118] J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch.
Marquardt, and G. Leuchs, Low-Threshold Optical Parametric Oscilla-
tions in a Whispering Gallery Mode Resonator, Phys. Rev. Lett. 105,
263904 (2010).

[119] J. Hofer, A. Schliesser, and T. J. Kippenberg, Cavity optomechanics
with ultrahigh-Q crystalline microresonators, Phys. Rev, A 82, 031804(R)
(2010).

[120] J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch.
Marquardt, and G. Leuchs, Quantum Light from a Whispering-Gallery-
Mode Disk Resonator, Phys. Rev. Lett. 106, 113901 (2011).

127



BIBLIOGRAPHY

[121] T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle,
K. Buse, and I. Breunig, Highly Tunable Low-Threshold Optical Paramet-
ric Oscillation in Radially Poled Whispering Gallery Resonators, Phys.
Rev. Lett. 106, 143903 (2011).

[122] C. S. Werner, T. Beckmann, K. Buse, and I. Breunig, Blue-pumped whis-
pering gallery optical parametric oscillator, Opt. Lett. 37, 4224 (2012).
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