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Abstract. Communication over channels that may vary in an arbitrary and

unknown manner from channel use to channel use is studied. Such channels fall
in the framework of arbitrarily varying channels (AVCs), for which it has been

shown that the classical deterministic approaches with pre-specified encoder
and decoder fail if the AVC is symmetrizable. However, more sophisticated

strategies such as common randomness (CR) assisted codes or list decoding

are capable to resolve the ambiguity induced by symmetrizable AVCs. AVCs
further serve as the indispensable basis for modeling adversarial attacks such as

jamming in information theoretic security related communication problems. In

this paper, we study the arbitrarily varying multiple access channel (AVMAC)
with conferencing encoders, which models the communication scenario with two

cooperating transmitters and one receiver. This can be motivated for example

by cooperating base stations or access points in future systems. The capacity
region of the AVMAC with conferencing encoders is established and it is shown

that list decoding allows for reliable communication also for symmetrizable
AVMACs. The list capacity region equals the CR-assisted capacity region
for large enough list size. Finally, for fixed probability of decoding error the

amount of resources, i.e., CR or list size, is quantified and shown to be finite.

1. Introduction

Communication in practical systems always takes place over noisy channels. To
model the influence of the noise, there are different approaches. The most common
approach is the concept of discrete memoryless channels (DMCs), where the noisy
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channel is modeled by a known and fixed stochastic matrix describing the transition
probabilities of the transmitted and received symbols.

If the channel, i.e., the stochastic matrix, is unknown and further may vary in
an arbitrary and unknown manner from channel use to channel use, the concept
of arbitrarily varying channels (AVCs) [1, 9, 15] provides a suitable and robust
framework for such communication scenarios. AVCs not only capture such effects
as unknown varying channel conditions, but also serve as an indispensable model
of adversarial attacks such as jamming in information theoretic security related
communication scenarios.

It has been shown that DMCs and AVCs have completely different behaviors.
Considering the criterion of average decoding error, in terms of capacity it does not
matter for DMCs if traditional deterministic codes with pre-specified encoder and
decoder are used or more sophisticated strategies such as list codes or random codes.
On the other hand, for AVCs this actually has a huge impact on the capacity. In
particular, the deterministic approach with pre-specified encoder and decoder fails
if the AVC is symmetrizable resulting in zero capacity [1, 15]. Roughly speaking,
such a channel can simulate a valid input so that it is impossible for the decoder
to decide on the correct one. This necessitates more sophisticated strategies which
overcome such channel conditions making reliable communication possible also for
symmetrizable AVCs.

If common randomness (CR) is available at all users as a coordination resource,
then they can use CR-assisted codes allowing for reliable communication over sym-
metrizable channels [1, 9]. Here, encoder and decoder depend on the particular
realization of the common randomness which has to be known at all users prior to
the transmission. If such a coordination resource is not available, one is interested
in alternatives that do not rely on such assumptions. It has been shown that list
decoding might help to resolve the ambiguity of codewords caused by symmetrizable
channels without the help of coordination resources. The capacity of the single-user
AVC under list decoding is studied in [10, 19, 24]. Bounds on the list sizes for
the arbitrarily varying multiple access channel (AVMAC) are given in [22]. The
broadcast channel with certain receiver side information under list decoding is s-
tudied in [25]. Recently, the concept of list decoding attracted attention also for
error-correction codes [6, 17, 18].

In this paper, we study the AVMAC with conferencing encoders under list de-
coding. We completely characterize the list capacity region for given list size. It
either equals its CR-assisted capacity region or else is zero. This is completely
characterized by the concept of symmetrizability and the list size at the decoder.
In particular, if the list size is large enough, i.e., larger than the symmetrizability
of the channel, then a deterministic list code achieves the same performance as a
CR-assisted code which requires coordination resources available at all users prior
to transmission. In these cases the average probability of error is required to van-
ish asymptotically and, usually, this results in an amount of common randomness
which grows unbounded with increasing block length. Finally, it is shown that for
fixed but non-vanishing average probability of error, the amount of such resources
needed to achieve the capacity is finite, i.e., in particular independent of the block
length.

Notation. Discrete random variables are denoted by capital letters and their
realizations and ranges by lower case and script letters; N and R+ de-
note the sets of positive integers and non-negative real numbers; I(A;B) =
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a∈A,b∈B

PAB(a, b) log PAB(a,b)
PA(a)PB(b) and I(A;B|C) =

∑
c∈C

PC(c)I(A;B|C = c) are the

(conditional) mutual information between the random variables A and B (condi-
tioned on C); Ac, |A|, and A × B are the complement, cardinality, and Cartesian
product of the sets A and B; P{·} is the probability and P(·) is the set of all prob-
ability distributions; O(·) is the big-O notation; lhs := rhs means the value of the
right hand side (rhs) is assigned to the left hand side (lhs), lhs =: rhs is defined
accordingly.

2. System model

We consider a multiple access channel with two transmitters X, Y and one
receiver Z and denote the finite input and output sets by X , Y, and Z. Further, we
introduce a finite state set S. For every s ∈ S we define the multiple access channel
by the stochastic matrix

W (z|x, y, s) for (x, y, z) ∈ X × Y × Z.
Further, for any probability distribution q ∈ P(S), we denote the averaged multiple
access channel by

(1) W q(z|x, y) :=
∑
s∈S

W (z|x, y, s)q(s).

The communication is affected by a channel which may vary in an unknown and
arbitrary manner from channel use to channel use. To capture such a behavior, we
consider state sequences of length n.

Definition 2.1. For a fixed state sequence sn ∈ Sn of length n and input and
output sequences xn ∈ Xn, yn ∈ Yn, and zn ∈ Zn, the discrete memoryless multiple
access channel (MAC) is given by

Wn(zn|xn, yn, sn) :=

n∏
i=1

W (zi|xi, yi, si).

Collecting all stochastic matrices for all possible state sequences yield the arbi-
trarily varying multiple access channel.

Definition 2.2. The discrete memoryless arbitrarily varying multiple access chan-
nel (AVMAC) is the family

W :=
{
Wn(·|·, ·, sn) : sn ∈ Sn

}
.

In the classical AVMAC setup, none of the transmitters has any knowledge about
the message the other one will transmit and the corresponding capacity region is
studied in [5, 20]. Here, we study the case where both transmitters can cooperate
in the sense that they can exchange limited information using Willems conferencing
[30]. Such information can regard the messages to transmit but is not necessarily
restricted to them.

Let M1 := {1, ...,M1,n} and M2 := {1, ...,M2,n} be the sets of messages of
transmitters 1 and 2, respectively, and further M := M1 ×M2. Then Willems
conferencing can be described as follows.

Definition 2.3. Willems conferencing is an iterative protocol. In the first time
slot, each transmitter sends some information to the other one. In the subsequent
time slots, they send more information taking the information they received in the
previous iterations into account. Such a Willems conference terminates after a fixed
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number of iterations I. Then, a pair (c1, c2) of functions is determined by functions
ci,1, ci,2, ..., ci,I , i = 1, 2 with

(2) ci,1 :Mi → Ki,1
and

ci,k :Mi ×Kī,1 × ...×Kī,k−1 → Ki,k
for k = 2, 3, ..., I and ī = 2 if i = 1 and ī = 1 if i = 2. The number of iterations I
may be arbitrary but fixed and also Ki,k can be an arbitrary finite set. Thus, the
pair (c1, c2) is defined by the concatenation of the individual ci,k as

(3) (c1, c2) :M1 ×M2 → K1 ×K2

with K1 := K1,1 × ...×K1,I and K2 := K2,1 × ...×K2,I .

If the Willems conferencing is unrestricted, an arbitrary amount of information
can be exchanged such that both messages are available at both transmitters turning
the AVMAC into a single-user AVC. Due to practical reasons we consider only
limited exchange capabilities.

Definition 2.4. Assuming a Willems conference pair (c1, c2) :M1×M2 → K1×K2

as given in (3) is used for a code of block length n. Then, the conference (c1, c2)
has conferencing capacities C1, C2 > 0 if

1

n
log |Ki| ≤ Ci, i = 1, 2.

We call this an (n,C1, C2)-Willems conference, whose definition is independent of
the number of iterations I.

3. Code concepts and coordination resources

In general, for AVCs it matters whether deterministic codes or random codes are
used. In particular, for symmetrizable channels deterministic codes do not suffice
to establish reliable communication. Hence, more sophisticated approaches such as
random codes must be used [1, 9, 15].

3.1. Deterministic codes. The deterministic approach relies on pre-specified en-
coders and decoder as specified in the following.

Definition 3.1. A deterministic (n,M1,n,M2,n, C1, C2)-code C for the AVMAC W
is a 5-tuple (c1, c2, f1, f2, φ) consisting of an (n,C1, C2)-Willems conference

(4) (c1, c2) :M1 ×M2 → K1 ×K2,

encoders at transmitters 1 and 2

f1 :M1 ×K2 → Xn(5a)

f2 :M2 ×K1 → Yn,(5b)

and a decoder at the receiver

(6) φ : Zn →M1 ×M2.

Such a code implies the following system

(7)
{

(xnjk, y
n
jk,Djk) : j ∈M1, k ∈M2

}
with xnjk = f1(j, c2(j, k)), ynjk = f2(k, c1(j, k)), and disjoint decoding sets Djk =

{zn ∈ Zn : φ(zn) = (j, k)}.
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Then for the deterministic code C, the average probability of decoding error for
state sequence sn ∈ Sn is given by

ēn(sn|C) :=
1

|M|
∑

(j,k)∈M

Wn(Dcjk|xnjk, ynjk, sn).

Definition 3.2. A rate pair (R1, R2) ∈ R2
+ is said to be deterministically achievable

for the AVMAC W with conferencing capacities C1, C2 > 0 if for any δ > 0 there
exists an n(δ) ∈ N and a sequence of (n,M1,n,M2,n, C1, C2)-codes C such that for
all n ≥ n(δ) we have

1

n
logMi,n ≥ Ri − δ, i = 1, 2,

while
max
sn∈Sn

ēn(sn|C) =: λn

with λn → 0 as n → ∞. The deterministic capacity region Rdet(C1, C2) of the
AVMAC W with conferencing encoders is the set of all achievable rate pairs.

We further need the concept of symmetrizability which is given in the following
definition.

Definition 3.3. An AVMAC W is called (X ,Y)-symmetrizable if there exists a
stochastic matrix σ : X × Y → P(S) such that∑

s∈S
W (z|x, y, s)σ(s|x′, y′) =

∑
s∈S

W (z|x′, y′, s)σ(s|x, y)

holds for all x, x′ ∈ X , y, y′ ∈ Y, and z ∈ Z. This means, the channel

W̃ (z|x, y, x′, y′) =
∑
s∈SW (z|x, y, s)σ(s|x′, y′) is symmetric in (x, y) and (x′, y′)

for all x, x′ ∈ X , y, y′ ∈ Y, and z ∈ Z.

Remark 1. The capacity region of the classical AVMAC without conferencing
encoders depend also on so-called X -symmetrizability and Y-symmetrizability con-
ditions that operate only on one input. While these “marginal” conditions are im-
portant for the analysis of the AVMAC without conferencing encoders [16], it has
been shown that only (X ,Y)-symmetrizability is needed to completely characterize
the capacity region of the AVMAC with conferencing encoders.

Let Π be the set of all probability distributions p ∈ P(U × X × Y),
where U is a finite (auxiliary) set and p further has the form p(u, x, y) =
PU (u)PX|U (x|u)PY |U (y|u). We defineR(p, q, C1, C2) consisting of all (R1, R2) ∈ R2

+

that satisfy

R1 ≤ I(X;Zq|Y,U) + C1

R2 ≤ I(Y ;Zq|X,U) + C2

R1 +R2 ≤ min{I(X,Y ;Zq), I(X,Y ;Zq|U) + C1 + C2}

where Zq is the random variable associated with the output of the averaged channel

W q, q ∈ P(S), cf. (1). Then, we set

(8) R(C1, C2) :=
⋃
p∈Π

⋂
q∈P(S)

R(p, q, C1, C2).

With this and the concept of symmetrizability, we are able to characterize the
deterministic capacity region.
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Theorem 3.4 ([26]). For the deterministic capacity region Rdet(C1, C2) of the
AVMAC W with conferencing capacities C1, C2 > 0 we have

Rdet(C1, C2) = R(C1, C2)

if and only if the AVMAC W is non-(X ,Y)-symmetrizable. If the AVMAC W is
(X ,Y)-symmetrizable, then

Rdet(C1, C2) = {(0, 0)}.

Remark 2. In addition, it turns out that a one-shot non-iterative Willems-
conference is sufficient to achieve capacity, i.e., (3) consists only of the first confer-
ence round (2), cf. Definitions 2.3 and 2.4.

Remark 3. Note that the set W := {W q(·|·, ·) : q ∈ P(S)} of all averaged chan-
nels (1) can also be interpreted as a compound channel [8, 31]. Then the region
R(C1, C2) in (8) is actually the capacity region of the corresponding compound
MAC with conferencing encoders [28]. Thus, the deterministic capacity region of the
AVMAC with conferencing encoders equals the one of a suitable chosen compound
MAC if the the channel is non-(X ,Y)-symmetrizable. Moreover, this connection is
further deepened by the following technique: the classical approach to prove the
CR-assisted capacity of the AVMAC is to take a “good” code for the correspond-
ing compound MAC and to convert this code into a CR-assisted code which is
also “good” for the AVMAC. This technique is known as Ahlswede’s robustification
technqiue [2, 3].

3.2. Common-randomness-assisted codes. Since such a deterministic code as
discussed in Section 3.1 with predetermined encoders and decoder fails if the channel
is symmetrizable, one is interested in more sophisticated strategies that work well
also in this case. This is where the common-randomness-assisted coding strategies
come into play.

If the transmitters and receiver have access to a common randomness (CR), then
they can use this resource to coordinate their choice of encoders and decoder. This
is modeled by a random variable Γ on Gn. Then, the conference (3), encoders (5),
and decoder (6) depend all on the particular realization γ ∈ Gn.

Definition 3.5. A CR-assisted (n,M1,n,M2,n, C1, C2, Γ )-code CCR for the AVMAC
W is a family {(

c1(γ), c2(γ), f1(γ), f2(γ), φ(γ)
)

: γ ∈ Gn
}

together with a random variable Γ uniformly distributed on Gn.

This means Gn defines a finite set of deterministic (n,M1,n,M2,n, C1, C2)-codes
as given in Definition 3.1. The number of such codes contained in the CR-assisted
code CCR is then determined by |Gn|. Thus, each realization γ ∈ Gn indicates which
particular code is selected out of the whole ensemble.

Then for the CR-assisted code CCR, the average probability of decoding error for
state sequence sn ∈ Sn becomes

ēCR,n(sn|CCR) :=
1

|Gn|
∑
γ∈Gn

ēn(sn|C(γ))

=
1

|Gn|
∑
γ∈Gn

1

|M|
∑

(j,k)∈M

Wn
(
(Djk(γ))c|xnjk(γ), ynjk(γ), sn

)
.
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Definition 3.6. A rate pair (R1, R2) ∈ R2
+ is said to be CR-assisted achievable for

the AVMAC W with conferencing capacities C1, C2 > 0 if for any δ > 0 there exists
an n(δ) ∈ N and a sequence of (n,M1,n,M2,n, C1, C2, Γ )-codes CCR such that for
all n ≥ n(δ) we have

1

n
logMi,n ≥ Ri − δ, i = 1, 2,

while

max
sn∈Sn

ēCR,n(sn|CCR) =: λCR,n

with λCR,n → 0 as n → ∞. The CR-assisted capacity region RCR(C1, C2) of the
AVMAC W with conferencing encoders is the set of all CR-assisted achievable rate
pairs.

Theorem 3.7 ([26]). The CR-assisted capacity region RCR(C1, C2) of the AVMAC
W with conferencing capacities C1, C2 > 0 is

RCR(C1, C2) = R(C1, C2).

Thus, if the channel is non-(X ,Y)-symmetrizable, then the CR-assisted capacity
equals the deterministic capacity, i.e., Rdet(C1, C2) = RCR(C1, C2) = R(C1, C2).
This gives the quantity RCR(C1, C2) an operational meaning in the sense that the
capacity region can be described by entropic quantities, cf. (8). If the channel is
(X ,Y)-symmetrizable, the operational meaning of R(C1, C2) is still valid for CR-
assisted strategies. However, this is no longer true for deterministic strategies as in
this case Rdet(C1, C2) = {(0, 0)} while R(C1, C2) 6= {(0, 0)}.

One question that arises is how much common randomness Gn is needed to achieve
the capacity as given in Theorem 3.7. In particular, it is important to understand
whether the amount of common randomness depends on the block length n and how
it scales accordingly. Along with this, an important observation for the analysis of
list codes is the following.

Remark 4. We know from [26, Lemma 15] that the amount of common randomness
that is needed for achieving the CR-assisted capacity region RCR(C1, C2) of the
AVMAC W is quadratic in block length. This means for a transmission of block
length n, it is sufficient to use a CR-assisted code which consists of n2 deterministic
codes, i.e., Gn := {1, 2, ..., n2} and |Gn| = n2, cf. also Definition 3.5.

4. Capacity region under list decoding

The previous discussion reveals the following dilemma: The traditional deter-
ministic approach with pre-specified encoders and decoder only works for non-
symmetrizable channels. And unfortunately, many channels of practical relevance
fall in the category of symmetrizable channels resulting in zero capacity [15]. On the
other hand, CR-assisted codes allow reliable communication also for such channel
conditions. But the drawback of such more sophisticated approaches is the fact that
they require a strong coordination between encoders and decoder based on common
randomness. In particular, the actual realization has to be perfectly known at all
users prior to transmission which might be hard to realize in practice especially for
multi-user scenarios.

Thus, one is interested in strategies which work well in the case of symmetrizable
channels but which do not rely on such coordination resources as common random-
ness. It has been shown for the single-user AVC that the concept of list decoding
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helps to resolve the ambiguity induced by symmetrizable channels [10, 19] without
relying on additional coordination resources. In the following we want to analyze
list decoding also for the AVMAC with conferencing encoders.

4.1. List codes. While a deterministic decoder φ of Definition 3.1 decides on
exactly one message pair (j, k) ∈M1 ×M2 based on its received signal zn ∈ Zn, a
list decoder with list size L maps the received signal into up to L possible message
pairs. The list code is specified as follows.

Definition 4.1. A (n,M1,n,M2,n, C1, C2, L)-list code Clist with list size L is a de-
terministic (n,M1,n,M2,n, C1, C2)-code of Definition 3.1 where the deterministic
decoder (6) is replaced by a list decoder

φ : Zn → PL(M1 ×M2)

where PL(M1 × M2) is the set of all subsets of M1 × M2 with cardinality at
most L.

Similar to (7), such a code implies the system {(xnj , ynk ,Djk) : j ∈M1, k ∈M2}
where the decoding sets are given by

Djk =
{
zn ∈ Zn : (j, k) ∈ φ(zn)

}
.

In particular, due to the list decoding, the decoding sets need not be disjoint and
we have |{(j, k) : zn ∈ Djk}| ≤ L so that φ(zn) = {(j, k) : zn ∈ Djk}.

Then for the list code Clist, the probability of decoding error for message pair
(j, k) ∈M1 ×M2 and sn ∈ Sn is given by

ēL,n
(
(j, k), sn|Clist

)
:=Wn(Dcjk|xnjk, ynjk, sn)

=
∑

zn:(j,k)/∈φ(zn)

Wn(zn|xnjk, ynjk, sn)

and the average probability of decoding error for sn ∈ Sn is

ēL,n(sn|Clist) =
1

|M|
∑

(j,k)∈M

ēL,n
(
(j, k), sn|Clist

)
.

Definition 4.2. A rate pair (R1, R2) ∈ R2
+ is said to be list achievable for the

AVMAC W with conferencing capacities C1, C2 > 0 and list size L if for any δ > 0
there exists an n(δ) ∈ N and a sequence of (n,M1,n,M2,n, C1, C2, L)-list codes Clist
such that for all n ≥ n(δ) we have

1

n
log
(Mi,n

L

)
≥ Ri − δ, i = 1, 2,

while

max
sn∈Sn

ēL,n(sn|Clist) =: λL,n

with λL,n → 0 as n → ∞. The list capacity region Rlist(C1, C2, L) of the AVMAC
W with conferencing encoders is the set of all list achievable rate pairs.
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4.2. Symmetrizability. For the analysis of the list capacity region, we need a
corresponding extension of the concept of symmetrizability given in Definition 3.3.
We follow [10, 19] and introduce a refinement which distinguishes different degrees
of symmetry.

We say a channel W̃ (z|(x1, y1), (x2, y2), ..., (xt, yt)) with input alphabet (X ×Y)t

and output alphabet Z is symmetric if for every permutation π on {1, 2, ..., n} we

have W̃ (z|(x1, y1), (x2, y2), ..., (xt, yt)) = W̃ (z|(xπ(1), yπ(1)), ..., (xπ(t), yπ(t))) for all
(x1, y1), ..., (xt, yt) ∈ (X × Y) and z ∈ Z. This leads to the following definition.

Definition 4.3. For any t ≥ 1, an AVMAC W is t-(X ,Y)-symmetrizable if there
exists a stochastic matrix σ : (X × Y)t → P(S) such that

W̃
(
z|(x0, y0), (x1, y1), ..., (xt, yt)

)
:=
∑
s∈S

W (z|x0, y0, s)σ(s|(x1, y1), ..., (xt, yt))
(9)

is symmetric in (x0, y0), (x1, y1), ..., (xt, yt) for all (x0, y0), (x1, y1), ..., (xt, yt) ∈ X ×
Y and z ∈ Z. For convenience, we take all AVMACs to be 0-(X ,Y)-symmetrizable.

Intuitively, a t-(X ,Y)-symmetrizable channel can be interpreted as a channel
where the state sequence can simulate t replicas of the channel input. In addition,
from the definition it follows that if an AVMAC is t-(X ,Y)-symmetrizable, then it
is also t′-(X ,Y)-symmetrizable for all 0 ≤ t′ ≤ t.

Similarly as for the deterministic approach, the X -symmetrizability and Y-
symmetrizability conditions can also be extended to the list case as in (9). But
again, the “joint” t-(X ,Y)-symmetrizability condition suffices to completely char-
acterize the capacity region, cf. also Remark 1.

4.3. List capacity region. Now we are in the position to characterize the list
capacity region of the AVMAC with conferencing encoders.

Theorem 4.4. For the list capacity region Rlist(C1, C2, L) for the AVMAC W with
conferencing capacities C1, C2 > 0 and list size L we have

(10) Rlist(C1, C2, L) = RCR(C1, C2) = R(C1, C2)

if and only if the AVMAC W is non-L-(X ,Y)-symmetrizable. If the AVMAC W is
L-(X ,Y)-symmetrizable, then

(11) Rlist(C1, C2, L) = {(0, 0)}.

Proof. We first prove the second part (11) by contradiction. Therefore, we assume
that Rlist(C1, C2, L) 6= {(0, 0)} so that there must be a rate pair (R, 0) or (0, R)
that is achievable. If the rate is small in the sense it satisfies R < min{C1, C2},
then the rate pair (R2 ,

R
2 ) is achievable as well. Indeed, if the rate is small enough

(i.e. smaller than the conferencing capacities), each transmitter can completely
inform the other transmitter about the own message making both messages at both
transmitters available.

This allows interpreting both inputs x and y of the AVMAC as a joint input
(x, y) so that we obtain a corresponding single-user AVC. Then, the L-(X ,Y)-
symmetrizability becomes the classical L-symmetrizability of the single-user AVC
[10, 19]. Moreover, as a result, the communication problem becomes an equivalent
single-user AVC list coding problem whose single-user capacity is greater than zero.
But we know that if a single-user AVC is L-symmetrizable, then the corresponding
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single-user list capacity is zero which contradicts the assumption of non-zero single-
user capacity proving (11).

Next we prove the remaining first part (10). We assume RCR(C1, C2) 6= {(0, 0)},
since otherwise there is nothing to prove. We have to show that if the AVMAC W is
non-L-(X ,Y)-symmetrizable, then using list codes Clist we achieve the same rates as
if we use CR-assisted codes CCR, cf. (10). This observation already suggests itself
to incorporate CR-assisted codes within the list coding as done by the following
protocol.

To make use of CR-assisted codes, there is the need of common randomness at
transmitters and receiver, cf. Section 3.2. As this coordination resource is not
available a priori, we have to create it prior to the transmission of the messages.
This has to be done carefully in such a way that we do not “waste” too much
communication resources which would result in a loss of rates for the subsequent
transmission of the actual messages.

Fortunately, from [26, Lemma 15], cf. also Remark 4, we know that the amount
of CR needed for a capacity-achieving CR-assisted code is quadratic in block length.
Thus, first transmitter 1 or 2 creates a γ ∈ Gn := {1, 2, ..., n2} uniformly and informs
the other transmitter about the particular realization γ ∈ Gn during the Willems-
conference. As for transmission of block length n we need |Gn| = n2 common
randomness, the conference resources spent for informing the other transmitter is
of order O(log n) so that n/O(log n)→ 0 as n→∞. Thus, the resources spent for
informing are negligible and do not reduce the available conferencing resources.

After the conference, γ ∈ Gn is available at both transmitters and it remains
to provide the receiver enough information about γ ∈ Gn to properly select the
decoding sets. This is done in a similar fashion by spending a negligible amount of
resources. Therefore, prior to the transmission of the actual messages, the trans-
mitters uses a list code Clist with list size L. Again, as |Gn| = n2, the channel
uses needed for transmission of γ ∈ Gn is of order ln = O(log n) and therewith
negligible. That such a single-user code exists achieving positive rate is guaranteed
by the fact that the AVMAC W is non-L-(X ,Y)-symmetrizable. Concatenated on
that list code, we use a CR-assisted code of block length n. This is possible as
the particular realization γ ∈ Gn is available at both transmitters and, further, the
receiver has a list of size up to L of possible realizations including the one used by
the transmitters.

Having this heuristic outline of the protocol in mind, we present formal definitions
and carry out the precise analysis of the decoding error. To transmit the message
pair (j, k) ∈ M1 ×M2 having γ ∈ Gn available, transmitters 1 and 2 transmit the
concatenated codewords

xln+n
jk (γ) =

(
xlnγ , x

n
jk(γ)

)
and yln+n

jk (γ) =
(
ylnγ , y

n
jk(γ)

)
(12)

where xlnγ and ylnγ are codewords of a single-user list code to inform the receiver

about γ ∈ Gn. As |Gn| = n2, we have ln = O(log n) so that ln/n → 0 as n → ∞
which means that there will be no loss in overall rate for transmission of messages
(j, k) ∈M1 ×M2.

The signal zln+n = (zln , zn) ∈ Z ln+n is received and the receiver uses a list de-
coder with list size L to obtain a list {γ1, ..., γL′} with L′ ≤ L, of possible realizations
from the first part zln ∈ Z ln , i.e.,

φ1(zln) =
{
γ : zln ∈ Dγ

}
.
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Based on this list, the receiver creates a list decoder for the messages (j, k) ∈
M1 ×M2 transmitted in the second part zn ∈ Zn, i.e.,

φ2(zn) =
{

(j, k) : ∃ γ ∈ φ1(zln) and zn ∈ Djk(γ)
}
.

Thus, for any zln+n ∈ Z ln+n let γ1, ..., γL′ ∈ Gn with L′ ≤ L the list φ1(zln) =
{γ1, ..., γL′}, the constructed list decoder

φ(zln+n) =
(
φ1(zln), φ2(zn)

)
=
{

(γ, j, k) : γ ∈ {γ1, ..., γL′} and zn ∈ Djk(γ)
}

defines a valid list decoder with list size not greater than L as required in Defini-
tion 4.1.

Next we analyze the decoding error performance. The channel W (z|x, y, s) is
non-L-(X ,Y)-symmetrizable by assumption. Then there exists a (small) rate R <
min{C1, C2} so that this rate is achievable for the single-user interpretation of this
channel with joint input (x, y) ∈ X × Y, cf. also corresponding discussion of the
proof of (11) in the beginning. In more detail, let λ1 ∈ (0, 1) arbitrary and set

ln :=
2

R
log
(n
L

)
(since R = 1

ln
log(n

2

L )). Then we know from the single-user AVC under list decoding

[10, 19] that there exists a n1 = n1(λ1) such that for all n ≥ n1 there exists a list
code {(

(xlnγ , y
ln
γ ),Dγ

)
: γ ∈ {1, ..., n2}

}
of length ln such that the average probability of error satisfies

(13)
1

n2

∑
γ∈{1,...,n2}

W ln
(
Dcγ |(xlnγ , ylnγ ), sln

)
≤ λ1

for all sln ∈ Sln .
Next, we want to show that the error probability

ēL,n(sln+n|Clist) =
1

n2

1

|M|
∑

γ∈{1,...,n2}

∑
(j,k)∈M

×
∑
zln+n:

(γ,j,k)/∈φ(zln+n)

W ln+n
(
zln+n|xln+n

jk (γ), yln+n
jk (γ), sln+n

)(14)

of the final concatenated list code is small as well for all sln+n ∈ Sln+n, i.e.,

(15) max
sln+n∈Sln+n

ēL,n(sln+n|Clist) ≤ λ.

Now, if (γ, j, k) /∈ φ(zln+n), then either a) γ /∈ φ1(zln) or b) γ ∈ φ1(zln) and we
have zn /∈ Djk(γi) for all γi ∈ φ1(zln). Accordingly, we define the error events

E1(γ) :=
{
zln+n : γ /∈ φ1(zln)

}
E2(γ, j, k) :=

{
zln+n : γ ∈ φ1(zln) and ∀ γi ∈ φ1(zln) we have zn /∈ Djk(γi)

}
so that {

zln+n : (γ, j, k) /∈ φ(zln+n)
}
⊂ E1(γ) ∪ E2(γ, j, k).
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With this, the average probability of error in (14) can be bounded from above by

ēL,n(sln+n|Clist) ≤
1

n2

1

|M|
∑

γ∈{1,...,n2}

∑
(j,k)∈M

×
( ∑
zln+n∈E1(γ)

W ln+n
(
zln+n|xln+n

jk (γ), yln+n
jk (γ), sln+n

)
+

∑
zln+n∈E2(γ,j,k)

W ln+n
(
zln+n|xln+n

jk (γ), yln+n
jk (γ), sln+n

))
where we bound both terms individually. For the first term we observe that∑

zln+n∈E1(γ)

W ln+n
(
zln+n|xln+n

jk (γ), yln+n
jk (γ), sln+n

)
=

∑
zln :γ /∈φ1(zln )

W ln
(
zln |xlnγ , ylnγ , sln

)
where the equality follows from the concatenated structure of the codewords (12)
and the fact that the error event E1(γ) only depends on the first part. Thus, by
(13) we end up with

1

n2

1

|M|
∑

γ∈{1,...,n2}

∑
(j,k)∈M

∑
zln :γ /∈φ1(zln )

W ln
(
zln |xlnγ , ylnγ , sln

)
=

1

n2

∑
γ∈{1,...,n2}

W ln
(
Dcγ |xlnγ , ylnγ , sln

)
≤ λ1.

For the second event we observe that if zln+n ∈ E2(γ, j, k), then we have γ ∈ φ1(zln)
and zn /∈ Djk(γ) so that

E2(γ, j, k) ⊂
{
zln+n : γ ∈ φ1(zln) and zn /∈ Djk(γ)

}
.

With this we obtain for the second term∑
zln+n∈E2(γ,j,k)

W ln+n
(
zln+n|xln+n

jk (γ), yln+n
jk (γ), sln+n

)
≤

∑
zln+n:γ∈φ1(zln )
and zn /∈Djk(γ)

W ln+n
(
zln+n|xln+n

jk (γ), yln+n
jk (γ), sln+n

)

≤
∑

zn:zn /∈Djk(γ)

Wn
(
zn|xnjk(γ), ynjk(γ), sn

)
= Wn

(
Dcjk(γ)|xnjk(γ), ynjk(γ), sn

)
where the last inequality follows from the concatenated structure of the codewords
(12) and the last equality from the definition of the decoding sets of a CR-assisted
code. Thus,

1

n2

1

|M|
∑

γ∈{1,...,n2}

∑
(j,k)∈M

Wn
(
Dcjk(γ)|xnjk(γ), ynjk(γ), sn

)
≤ λ1

since it is a “good” CR-assisted code according to Definition 3.5. Since λ1 ∈ (0, 1) is
arbitrary, we can choose λ1 such that it satisfies 2λ1 < λ which proves (15). Since
the rate pair (R1, R2) in the CR-assisted code was arbitrary, the achievability is
shown so that Rlist(C1, C2, L) ⊇ RCR(C1, C2).
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The converse, i.e., Rlist(C1, C2, L) ⊆ RCR(C1, C2), follows immediately by ob-
serving that RCR(C1, C2) remains the same for list decoding similarly as for the
single-user AVC [10, 19] or the AVMAC (without conferencing encoders) [22].

5. Finite resources

The previous considerations and in particular from [26] we know that for any rate
pair (R1, R2) ∈ RCR(C1, C2) there exists a CR-assisted (n,M1,n,M2,n, C1, C2, Γ )-
code CCR whose average probability goes exponentially fast to zero [26], i.e.,

(16) max
sn∈Sn

1

|Gn|
∑
γ∈Gn

ēn(sn|C(γ)) ≤ e−nε.

Unfortunately, we know that for this we need common randomness whose amount
tends to infinity for increasing block length n, cf. Theorem 3.7, Remark 4, and [26].
Therefore we ask if it is possible to control the amount of needed resources and to
achieve the same rates with a fixed amount of CR (i.e. independent of the block
length n) when we allow for a fixed but non-vanishing probability of error. This
is an interesting and important question insofar as one is interested to know if it
is possible to de-randomize such random coding strategies to obtain deterministic
codes.

The following result provides an answer to this question. For this purpose, let
RCR(λ,C1, C2) denote the CR-assisted region RCR(C1, C2) where we additionally
allow for a non-vanishing probability of error λ.

Theorem 5.1. Let λ ∈ (0, 1) be arbitrary. Then for every (R1, R2) ∈ RCR(C1, C2),
there exists a fixed L such that

(R1, R2) ∈ RCR(λ,C1, C2)

with Γ is defined on Gn with |Gn| = L.

Proof. Let λ ∈ (0, 1) and α > 0 be arbitrary but fixed. Then for any (R1, R2) ∈
RCR(C1, C2) we know from Theorem 3.7 that there is a CR-assisted code CCR such
that the error probability satisfies (16). Thus, the probability that for finite |Gn| = L
and fixed sn ∈ Sn this is greater than λ is

P
{ 1

L

L∑
i=1

ēn(sn|C(i)) ≥ λ
}
≤ P

{
exp

(
α

L∑
i=1

ēn(sn|C(i))
)
≥ exp(αλL)

}
≤ exp(−αλL)

L∏
i=1

E
[

exp
(
αēn(sn|C(i))

)]
.

By the fact that ēn(sn|C(i)) ≤ 1 always holds and by standard arguments, cf. also
[4], we obtain for the expectation

E
[

exp
(
αēn(sn|C(i))

)]
= E

[ ∞∑
k=0

(
αēn(sn|C(i))

)k
k!

]

≤ E
[ ∞∑
k=1

αk

k!
ēn(sn|C(i)) + 1

]

≤ 1 +

( ∞∑
k=1

αk

k!

)
e−nε
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= 1 + e−nε(eα − 1)

< 1 + exp(−nε+ α)

so that

P
{

exp
(
α

L∑
i=1

ēn(sn|C(i))
)
≥ exp(αλL)

}
≤ exp(−αλL)

(
1 + exp(−nε+ α)

)L
.

Now, taking all state sequences sn ∈ Sn into account yields

P
{

exp
(
α

L∑
i=1

ēn(sn|C(i))
)
≥ exp(αλL) for some sn ∈ Sn

}
≤ exp(−αλL)

(
1 + exp(−nε+ α)

)L
exp(n ln |S|)

≤ exp(−nελL+ ln 2L+ n ln |S|)

= exp
(
− nελ

(
L−

(
ln 2
nελ + ln |S|

ελ

)))
(17)

where the second step follows with the choice α = nε.
Now, if we choose

L > L :=
1

ελ
ln |S|,

then the probability that the average probability of error of the constructed code is
smaller than the required λ is

P
{ 1

L

L∑
i=1

ēn(sn|C(i)) < λ for all sn ∈ Sn
}
−→
n→∞

1

exponentially fast as given by (17).

This establishes a sufficient condition on how large the finite amount of resources
must be to achieve the whole region RCR(λ,C1, C2) (with non-vanishing probability
of error λ).

Corollary 1. For any λ ∈ (0, 1), there exists a CR-assisted
(n,M1,n,M2,n, C1, C2, Γ )-code CCR with |Gn| = L that achieves all rate pairs
(R1, R2) ∈ RCR(λ,C1, C2) if

L > L =
1

ελ
ln |S|.

Next we want to establish also a necessary condition on the minimal amount of
common randomness.

Theorem 5.2. Let the AVMAC W be (X ,Y)-symmetrizable and let λ ∈ (0, 1) arbi-
trary but fixed. Then for every rate pair (R1, R2) ∈ RCR(λ,C1, C2) with R1, R2 > 0,
the amount of resources L has to satisfy

L >
1

2λ
.

Proof. Let λ ∈ (0, 1) be arbitrary but fixed and (R1, R2) ∈ RCR(λ,C1, C2). Let
τ ∈ (0, 1/2) be arbitrary. Then, for an (X ,Y)-symmetrizable AVMAC W, it holds
for all deterministic codes C that

max
sn∈Sn

ēn(sn|C) ≥ 1

2
− 1

|M|
Advances in Mathematics of Communications Volume 10, No. 2 (2016), 333–354



Arbitrarily varying multiple access channels 347

for rates (R1, R2) ∈ RCR(λ,C1, C2) with R1, R2 > 0. This can be easily shown by
extending the results from [15] and [26].

Now, for n ≥ n0 = n0(R1, R2) sufficiently large, let C(i), i ∈ {1, ..., L}, be L
deterministic codes with probability of error not greater than λ. Then there exists
an n1 = n1(τ,R1, R2) with |M| > 1/τ so that for all n ≥ n1 we have

λ ≥ max
sn∈Sn

1

L

L∑
i=1

ēn(sn|C(i))

≥ max
sn∈Sn

1

L
ēn(snC(1)) ≥ 1

L

(1

2
− τ
)
.

Thus, we have for all n ≥ max{n0, n1}

(18) L ≥
(1

2
− τ
) 1

λ
.

Since (18) holds for all τ ∈ (0, 1/2), we get L > 1
2λ for τ → 0 which proves the

theorem.

Remark 5. From Theorem 5.1 we know that if L > 1
ελ ln |S| then there exists

CR-assisted codes CCR with finite L = |Gn| that achieves the desired performance
for symmetrizable channels. From Theorem 5.2 we further know that L > 1

2λ is

necessary meaning that for L ≤ 1
2λ no CCR with finite L is possible. Unfortunately,

there is a gap between these two bounds so that it is open to characterize the
minimal CR in general. Closing this gap is an interesting open problem as it is
closely related to question of de-randomization of randomized strategies.

Remark 6. We want to note that such a CR-assisted code {(xnjk(i), ynjk(i),Djk(i)) :

i ∈ {1, ..., L}, (j, k) ∈ M}, cf. (7) and Definition 3.5, can be converted into a
deterministic list code{(

xnjk(i), ynjk(i),Djk(i)
)

: (i, j, k) ∈ {1, ..., L} ×M
}

with list size L as constructed in Section 4, cf. also [4] for a corresponding discussion
on the single-user case.

The previous discussion presents a way how CR-assisted codes can be used to
construct suitable list codes. Due to this construction, the needed list size at the
receiver depends on the targeted probability of error. This reveals the following
interesting observation. Thereby, the list sizes determined by Theorems 5.1 and
5.2 might be greater than the actually symmetrizability of the channel. Already
Ahlswede conjectured in [4] that this might not be optimal. In fact, this list size
might also be greater than the resulting list size due the strategy of Theorem 4.4.
Thus, a list code solely created by a CR-assisted code as in Remark 6 might not
suffice to achieve the optimal performance. Interestingly, on the other hand, the
strategy of Theorem 4.4 given by a “bad” list code with arbitrary small rate in
combination with a “good” CR-assisted code is optimal in the sense that it achieves
the minimal needed list size.

In the following section, we will further analyze this with the help of examples
of AVMACs with binary inputs and output.

6. Sub-optimality of list codes created by CR-assisted codes

Here we want to address the question if list codes solely created by CR-assisted
codes are “good” codes in terms of list size. It will be shown that even for binary
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AVMACs such codes are suboptimal. In fact, for binary AVMACs with confer-
encing encoders we will show that for every L there is a channel that is L-(X ,Y)-
symmetrizable. On the other hand, for every AVMAC (with finite S) there exists
an L such that this channel is non-L-(X ,Y)-symmetrizable. This implies that list
decoders with list size L are sufficient to achieve arbitrary small decoding errors.
On the hand, CR-assisted strategies result in list codes where the list size depends
on the chosen decoding error λ. Thus, list codes solely created by CR-assisted codes
are suboptimal which confirms the conjecture given by Ahlswede and Cai in [4] for
AVMACs with conferencing encoders.

6.1. General AVMACs. Next we show that list codes which are solely created
by CR-assisted codes are always suboptimal in terms of list size (if the channel is
(X ,Y)-symmetrizable). For this purpose, we define

R := min
q∈P(S)

max
p∈P(X×Y)

I(X,Y ;Zq)

withX and Y the input random variables according to the distribution p ∈ P(X×Y)
and Zq the output random variable of the averaged channel W q, q ∈ P(S), cf. (1).

Since the mutual information term I(X,Y ;Zq) is concave in p ∈ P(X × Y) and

convex in W q, q ∈ P(S), we have R = maxp∈P(X×Y) minq∈P(S) I(X,Y ;Zq). If

R = 0, then the capacity region of the AVMAC with conferencing encoders consists
only of the rate point (0, 0). We obtain the following result.

Theorem 6.1. Let C1, C2 > 0. If R > 0 and

(19) L >
ln |S|
R

with S finite state set, then Rlist(C1, C2, L) = RCR(C1, C2), i.e., all CR-assisted
rate pairs are list achievable with list size L.

Proof. To prove the desired result we make use of [10]. If (19) is satisfied, then the
corresponding single-user AVC with joint input (x, y) is list decodable with list size
L. Following the result given in Section 4, based on this we can construct a list
code with list size L for the AVMAC with conferencing encoders, which achieves a
positive rate for both transmitters. Consequently, the whole region RCR(C1, C2) is
list achievable with list size L.

Remark 7. The result shows that every AVMAC with finite state set S is list
decodable, for which (19) provides a sufficient condition on the needed list size
(which of course depends on the particular AVMAC, i.e., |S| and R). Unfortunately,
a upper bound on the list size is not known.

Remark 8. Moreover, the result shows that list codes, which are constructed from
CR-assisted codes, are never optimal in the sense of list size.

6.2. Classes of binary AVMACs. Let X , Y, X̂ , Z, and S be finite input, output,
and state sets with |X | = |Y| = |X̂ | = |Z| = |S| = 2. Now let

g : X × Y → X̂
be a non-trivial (deterministic) function so that range(g) = X̂ = {0, 1}, i.e., the
function g is not constant. Then

(20)
{
W (z|x̂, s)

}
z∈Z,x̂∈X̂ ,s∈S

defines an AVC (with binary input, output, and state set S = {0, 1}).
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Definition 6.2. For the AVC defined in (20) let the associated AVMAC be given
by

Wg(z|x, y, s) := W (z|g(x, y), s)

for z ∈ Z, x ∈ X , y ∈ Y, and s ∈ S.

According to Definition 4.3 we say that the AVMAC Wg is L-(X ,Y)-
symmetrizable if there exists a channel σ : (X ,Y)L → P(S) such that

W̃g

(
z|(x0, y0), (x1, y1), ..., (xL, yL)

)
:=
∑
s∈S

Wg(z|x0, y0, s)σ(s|(x1, y1), ..., (xL, yL))

is a symmetric function. This means for all permutations π : {1, ..., L + 1} →
{1, ..., L+ 1} we have

W̃g

(
z|(x0, y0), ..., (xL, yL)

)
= W̃g

(
z|(xπ(0), yπ(0), ..., (xπ(L), yπ(L))

)
for all z ∈ Z, xl ∈ X , and yl ∈ Yl, l = 0, 1, ..., L.

Accordingly, we define L-symmetrizability for the (single-user) AVC W (z|x̂, s),
cf. (20). With these definitions, we can state the following result.

Theorem 6.3. Let g : X × Y → X̂ be an arbitrary but non-trivial function. An
associated AVMAC {Wg(·|·, ·, s)}s∈S is L-(X ,Y)-symmetrizable if and only if the
(single-user) AVC {W (·|·, s)}s∈S is L-symmetrizable.

We postpone the proof of the theorem to state some immediate consequences
first.

Corollary 2. Let C1, C2 > 0 and g : X × Y → X̂ be an arbitrary but non-trivial
function. Then for every associated AVMAC {Wg(·|·, ·, s)}s∈S with conferencing
encoders, there exists an L such that the AVMAC is list decodable with list size L
according to Definition 4.1.

Proof. The proof follows immediately from Theorem 6.3 and [10, Theorem 3].

Corollary 3. Let C1, C2 > 0 and g : X × Y → X̂ be an arbitrary but non-trivial
function. Then for every L̂ > 0 there exists an associated AVMAC {Wg(·|·, ·, s)}s∈S
with conferencing encoders so that this AVMAC is L̂-(X ,Y)-symmetrizable, i.e., this

AVMAC with conferencing encoders is not list decodable with list size L̂.

Proof. The proof follows immediately from Theorem 6.3 and [10, Theorem 3].

Remark 9. It follows that every associated AVMAC with conferencing encoders is
list decodable, but there is no universal bound on the needed list size even for this
class of binary AVMACs.

Remark 10. List codes which are constructed based on CR-assisted codes, cf.
Section 5 and especially Remark 6, are never optimal for the class of associated
AVMACs with conferencing encoders discussed above. In particular, for every as-
sociated AVMAC there exists a list size L such that this channel is list decodable
with list size L.
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Corollary 4. Let the function g1 be given by

g1(x, y) = x⊕ y := x+ y mod 2.

Then the AVMAC {Wg1(·|·, ·, s)}s∈S is non-(X ,Y)-symmetrizable, but X -
symmetrizable and Y-symmetrizable.

This presents an example, where conferencing encoders yield an explicit gain, cf.
also [5, 26].

6.2.1. Proof of Theorem 6.3. In the following we present the proof of Theorem 6.3.
We start with the “⇐”-direction, i.e., we have to show that if the (single-user) AVC
{W (·|·, s)}s∈S is L-symmetrizable, then an associated AVMAC {Wg(·|·, ·, s)}s∈S is
L-(X ,Y)-symmetrizable.

Let the AVC {W (·|·, s)}s∈S be L-symmetrizable. Then there exists a channel

σ : X̂L → P(S) such that

W̃ (z|x̂0, x̂1, ..., x̂L) =
∑
s∈S

W (z|x̂0, s)σ(s|x̂1, ..., x̂L)

is a symmetric function in x̂0, ..., x̂L according to Definition 3.3. Now, let

σg
(
s|(x1, y1), ..., (xL, yL)

)
:= σ

(
s|g(x1, y1), ..., g(xL, yL)

)
.

With this, we see that for the associated AVMAC that the channel

W̃g

(
z|(x0, y0), (x1, y1), ..., (xL, yL)

)
:=
∑
s∈S

Wg

(
z|g(x0, y0), s

)
σg
(
s|(x1, y1), ..., (xL, yL)

)
is L-(X ,Y)-symmetrizable which proves the “⇐”-direction.

Now let us turn to the “⇒”-direction, i.e., we have to show that if an associated
AVMAC {Wg(·|·, ·, s)}s∈S is L-(X ,Y)-symmetrizable, then the (single-user) AVC
{W (·|·, s)}s∈S is L-symmetrizable.

Let the associated AVMAC {Wg(·|·, ·, s)}s∈S be L-(X ,Y)-symmetrizable. Then
there exists a channel σg : (X × Y)L → P(S) such that

W̃g

(
z|(x0, y0), (x1, y1), ..., (xL, yL)

)
:=
∑
s∈S

Wg(z|x0, y0, s)σg
(
s|(x1, y1), ..., (xL, yL)

)(21)

is a symmetric function in the pairs (x0, y0), .., (xL, yL). Now, if the channel σg is
of the form

(22) σg
(
s|(x1, y1), ..., (xL, yL)

)
= σ̃

(
s|g(x1, y1), ..., g(xL, yL)

)
,

then the AVC {W (·|·, s)}s∈S would be immediately L-symmetrizable. Then, it

would be sufficient to apply the channel σ̃(s|x̂1, ..., x̂L), s ∈ S, x̂l ∈ X̂ , l = 1, 2, ..., L.
Unfortunately, in general, we cannot assume that σ is of the form given in (22).

Therefore, we will prove the desired result by contradiction. This means we
assume that the AVC {W (·|·, s)}s∈S is non-L-symmetrizable so that AVC must be
list decodable with list size L.

There exists a non-negative real number C∗ > 0 such that for every 0 < R < C∗
and λ ∈ (0, 1) there is an n0 = n0(λ) such that for all n ≥ n0 there is a list code{(

x̂nm,Dm
)

: m ∈ {1, ..., 2nR}
}

Advances in Mathematics of Communications Volume 10, No. 2 (2016), 333–354



Arbitrarily varying multiple access channels 351

with average probability of decoding error smaller than λ. Next we exploit the
properties of the function g : X × Y → X̂ . Let m ∈ {1, ..., 2nR} be fixed. Then for
every k ∈ {1, ..., n} there exists an xm,k with

g(xm,k, ym,k) = x̂m,k.

In the following we consider

(23)
{

(xnm, y
n
m) : m ∈ {1, ..., 2nR}

}
where {xnm : m ∈ {1, ..., 2nR}} is the codebook for encoder 1 and {ynm : m ∈
{1, ..., 2nR}} is the codebook for encoder 2. Now we can use (23) as a prefix code
for a CR-assisted code (with non-vanishing probability of error λ) similarly as in
Section 4.3.

Accordingly, we proceed as follows: Transmitter 1 chooses an index m ∈
{1, ..., 2nR} for the CR-assisted code and informs the other transmitter about the
index during the Willems-conference. Transmitter 1 then chooses xn1

m ∈ Xn1 as
input and transmitter 2 chooses yn1

m ∈ Yn1 as input. Thereby, n1 is sufficiently
large such that 2n1R is large enough for the CR-assisted code to satisfy the error
criterion λ. Then, the channel can be expressed as

Wn1
g

(
zn1 |xn1

m , y
n1
m , sn1

)
= Wn1

(
zn1 |g(xn1

m , y
n1
m ), sn1

)
= Wn1

(
zn1 |x̂n1

m , s
n1
)

where the function g is applied component-wise. Now, the decoder creates a list of
size L of indices m ∈ {1, ..., 2n1R} with an average probability of error smaller than
λ. Subsequently, we use a CR-assisted code according to Section 4.3 and obtain a
concatenated code with list size L and average probability of error smaller than 2λ.

The argumentation above is true for all λ ∈ (0, 1) so that the AVMAC
{Wg(·|·, ·, s)}s∈S with conferencing encoders is list decodable with list size L. But
the channel has to be L-(X ,Y)-symmetrizable so that this contradicts the assump-
tion, which means that the AVC {W (·|·, s)}s∈S must be L-symmetrizable. This
completes the proof of the theorem.

6.2.2. Discussion. In the following we want discuss the relation (22) in more detail.
We have seen in the proof of Theorem 6.3 that if the associated channel is L-
(X ,Y)-symmetrizable, then the “original” AVC must be L-symmetrizable. This
means there exists a σg : (X × Y)L → P(S) such that (21) is satisfied. Then,
in the set of all possible channels {σg} there must be at least one channel σ∗g of
the form (22). But this σ∗g can easily be constructed from the corresponding L-
symmetrizability condition of the AVC {W (·|·, s)}s∈S according to the first part of
the proof of Theorem 6.3.

7. Conclusion and open problems

We studied the AVMAC with conferencing encoders for which we derived the
list capacity region. It can be completely characterized using the L-(X ,Y)-
symmetrizability condition and it is shown that for large enough list size, i.e., larger
than the symmetrizability of the channel, the capacity region under list decoding
equals the one for highly involved CR-assisted strategies based on coordination
resources which have to be available at all users. Thus, a large enough list size
allows to overcome the need of coordination resources. Allowing for a small but
non-vanishing probability of error, the amount of resources (i.e. common random-
ness or list size) can be shown to be finite and independent of the block length.
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This is in contrast to the approach with vanishing error requiring an increasing and
unbounded amount of such resources.

Based on Ahlswede’s robustification technique [2, 3] it was shown in [26] that
codes for the compound MAC with conferencing encoders can be used to construct
CR-assisted codes for the AVMAC. Subsequently, it was shown in [27] that a weaker
form of coordination based on correlated sources is sufficient to achieve the same
performance as for CR-assisted codes. We followed that line of construction and
extended it insofar as we showed that these CR-assisted codes can then be used
to obtain list codes. Although this provides a suitable technique to construct list
codes for the AVMAC, such list codes will never be optimal in terms list size. To
overcome this problem, we presented a two-phase protocol where we connected a
“bad” list code of negligible rate with a “good” CR-assisted code to obtain a final
concatenated list code that is optimal in terms of list size.

The fact that both transmitters are able to cooperate using their conferencing
links further reveals the following note-worthing observations. Investments in infras-
tructure immediately yield gains in spectral efficiency as an increase in conferencing
capacities results in higher transmission rates. Moreover, the ability of conferencing
makes the communication more robust as the capacity region is solely character-
ized by the L-(X ,Y)-symmetrizability condition while the capacity of the classical
AVMAC (without conferencing encoders) depends on its marginal symmetrizability
conditions as well.

The problem at hand can be further motivated by cooperating base stations in
cellular systems. In fact, a promising approach to increase the spectral efficiency of
such cellular systems, especially at the cell edges, is cooperation among neighboring
base stations. High-speed backbones such as glass fiber will allow the base sta-
tions to exchange information about the channel state or the messages to transmit.
First rigorous studies go back to Willems who studied the corresponding multiple
access channel with conferencing encoders [30]. Not surprisingly, this is intensively
discussed at the moment by the 3GPP LTE-Advanced group.

Another current research development reveals a paradigm shift from an exclusive
to a shared use of certain frequency bands. While current systems such as cellular
systems operate on exclusive frequency bands, there will be future systems such as
sensor or ad-hoc networks which will operate on shared resources in a self-organizing
and uncoordinated way. The major issue of this development is that interference
will be ubiquitous making it to the limiting factor of future wireless networks. Since
there is no way to coordinate such induced interference, there is the need of new
concepts.

In particular, in such environments each receiver receives the signal he is inter-
ested in but also interfering signals from the other transmitters. As there is no
coordination between the different transmitter-receiver pairs, there is no knowledge
about the induced interference. Thus, all users have to be prepared for the worst,
which is a channel that may vary in an arbitrary and unknown manner from channel
use to channel use, which is the concept of arbitrarily varying channels (AVCs).

AVCs are particularly of interest in the context of secure communication. Such
channel models allow model not only passive eavesdroppers but also active adver-
saries and certain classes of attacks such as jamming. Recently, the corresponding
arbitrarily varying wiretap channel (AVWC) has attracted considerable interest, cf.
for example [7, 12, 14, 21, 29, 23]. These studies have revealed interesting phenom-
ena and results. In particular, in [12, 23] it has been shown that super-activation
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is possible, i.e., two orthogonal AVWCs each having zero secrecy capacity can be
used jointly to allow for secure communication at a positive rate. In [14] it has been
shown that the deterministic secrecy capacity is discontinuous, i.e., small changes
in the uncertainty set can lead to dramatic losses in performance. On the other
hand, the CR-assisted secrecy capacity is continuous [29]. These works reveal the
importance of the legitimate link from the transmitter to the designated receiver.
For practical applications of these information theoretic security concepts it is im-
portant to study the questions of robustness, continuity, and resource allocation
also for the multi-user case. Accordingly as a next step, the AVMAC and AVMAC
with conferencing encoders must be studied to understand whether its capacity
regions are continuous or not. Along this line of research, it is unknown if super-
activation is possible for these scenarios or if the corresponding capacity regions are
super-additive.
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