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Abstract

Multispectral Optoacoustic Tomography (MSOT) o�ers the potential to perform potent molecular
and physiological imaging in small animals and humans. Molecular imaging aims at resolving light-
absorbing reporter molecules, such as �uorescent dyes, at depths and resolutions that were not
previously available to optical methods; an ability with the potential to facilitate a wide spectrum
of needs in biological research. MSOT physiological imaging aims at the accurate quanti�cation of
blood oxygen saturation (sO2) in high resolution within the tissue by spectrally resolving oxygenated
and deoxygenated hemoglobin. Due to the lack of established methods that can resolve tissue
oxygenation non-invasively and in high resolution, MSOT blood sO2 imaging has the potential to
o�er new insights in a number of pathophysiological interrogations.

The sensitivity and quanti�cation accuracy of MSOT imaging rely highly on the spectral analysis
method employed. MSOT presents a unique spectral analysis problem, whereby the light �uence
attenuation with tissue depth introduces changes in the detected spectral responses of absorbing
molecules, as compared to their spectral signatures; a phenomenon termed `spectral coloring'. Due
to spectral coloring and a multitude of noise sources, spectral analysis of MSOT images consists a
particularly challenging problem. This work develops spectral analysis methods for enhancing the
sensitivity and quanti�cation accuracy of molecular and physiological MSOT imaging.

The problem of MSOT molecular imaging is formulated as a detection problem where the goal is
to detect the distribution of a molecular target within the tissue with high sensitivity and speci�city.
This goal is realized through the development of a statistical sub-pixel detection framework which
models the background tissue spectra in a statistical manner and suppresses them for spectrally
resolving the target molecule. The novel detection framework is validated through simulations and
experimental data, and it is found to increase the MSOT molecular imaging capacity, substantially.
The MSOT sensitivity is further studied with respect to the number of the excitation wavelengths
utilized, while �rst insights on the feasibility and sensitivity of �uorescent labeled immune cell
imaging with MSOT are also provided.

Quantitative blood sO2 MSOT imaging has been so far impeded by spectral coloring, due to
the e�ects of space and wavelength dependent light �uence. A novel concept for modeling the
spectrum of light �uence as an a�ne function of basis spectra, termed �uence eigenspectra, is
introduced. This �uence model is used for formulating the blood sO2 estimation problem as a
non-linear spectral unmixing problem, which is in the following solved by introducing a constrained
non-linear inversion scheme. The novel method developed, termed eigenspectra MSOT (eMSOT),
is validated in a number of simulations, imaging phantoms and controlled in vivo experiments and
is found to o�er substantially increased sO2 quanti�cation accuracy as compared to previously
used spectral optoacoustic methods. eMSOT is further applied in small animal imaging studies for
the quanti�cation of blood oxygenation gradients in the skeletal muscle and hypoxic tumors. The
measurements are validated through post mortem histological analysis, indicating that eMSOT is
capable of quantitatively resolving tumor hypoxia.

To achieve the high image quality needed for molecular and physiological imaging, this work
further considers the problem of reducing electronic noise typically present in MSOT data. A
spatiospectral transformation is identi�ed for sparsely representing MSOT data and this transfor-
mation is used for denoising MSOT signals and images, thus overcoming the need for repetitive
signal acquisitions and averaging which may compromise imaging speed.
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Zusammenfassung

Die Multispektrale Optoakustische Tomographie (Multispectral Optoacoustic Tomography, MSOT)
ist ein bildgebendes Verfahren zur molekularen und physiologischen Bildgebung bei Kleintieren und
dem Menschen. Molekulare Bildgebung ermöglicht die Darstellung von Kontrastmitteln (absorbie-
render Reportermoleküle, wie z.B. Fluoreszenzfarbsto�e) in Tiefen und Au�ösungen, wie es anderen
optischen Methoden bisher nicht möglich war. Aufgrund der hohen Au�ösung hat die Methode das
Potenzial bei diversen biologischen Fragestellungen angewendet zu werden. Durch die MSOT phy-
siologische Bildgebung können oxygeniertes und desoxygeniertes Hämoglobin quanti�ziert werden.
Dadurch ist es möglich, mittels MSOT quantitative Aussagen über die Sauersto�sättigung des Blu-
tes (sO2) innerhalb eines Gewebes zu machen. Aufgrund des Mangels an alternativen Methoden, die
Gewebe-Oxygenierung in hoher Au�ösung und nicht-invasiv darzustellen, birgt die MSOT Bildge-
bung das Potential neue Erkenntnisse bezüglich einer Vielzahl pathophysiologischer Fragestellungen
zu liefern.

Die Sensitivität und Quanti�zierungsgenauigkeit der MSOT Bildgebung ist dabei in hohem
Maÿe von den angewandten Spektralanalysenmethode abhängig. Die Spektralanalyse der MSOT
Bildgebung bringt ein spezi�sches Problem hervor, da die Licht�uenzdämpfung innerhalb tiefem
Gewebe die spektralen Messungen der absorbierenden Moleküle verändert. Dieses Phänomen wird
als spektrale Verfärbung bezeichnet. Aufgrund der spektralen Verfärbung und einer Vielzahl an
Geräuschquellen, birgt die Spektralanalyse der MSOT Bildgebung ein besonders schwieriges Pro-
blem. In vorliegender Arbeit werden Spektralanalysemethoden entwickelt, welche die Sensitivität
und Quanti�zierungsgenauigkeit der molekularen und physiologischen MSOT Bildgebung verbessern
sollen.

Das Problem der molekularen Bildgebung mittels MSOT ist vor allem ein Detektionsproblem.
Die Verteilung der molekularen Absorber mit hoher Sensitivität und Spezi�tät zu ermitteln stellt
eine groÿe Herausforderung dar. Dieses Ziel wurde im Rahmen dieser Arbeit durch die Entwicklung
von statistischen Sub-Pixel Detektionsverfahren realisiert. Die Leistung dieser hier vorgestellten
neuartigen Erkennungsverfahren wurde mittels Simulationen und experimentellen Daten evaluiert.
Die hier vorgestellten Ergebnisse zeigen, dass die molekulare Bildgebungssensitivität von MSOT
erheblich verbessert wurde. Weiterhin wurde die Sensitivität von MSOT hinsichtlich der Anzahl der
verwendeten Anregungswellenlängen untersucht, wobei auch erste Erkenntnisse zur Durchführbar-
keit und Sensitivität der MSOT Immunzellen-Bildgebung vorgestellt werden.

Die Quantitative Blut (sO2) MSOT Bildgebung war bisher aufgrund der spektralen Verfärbung
nur sehr eingeschränkt möglich. Diese entsteht aufgrund der raum- und wellenlängenabhängigen
Licht�uenz. In der vorliegenden Arbeit wird ein neues Konzept zur Modellierung des Spektrums der
Licht�uenz als a�ne Funktion von Basisspektren, genannt �Eigenspektren�, vorgestellt. Dieses neue
Fluenzmodell wird bei der Umwandlung des Blut sO2- Schätzproblems in ein nicht lineares spektra-
les Entmischungs-Problem genützt, welches im Folgenden durch die Einführung eines beschränkten
nicht linearen Inversions-Algorithmus gelöst wird. Die neu entwickelte Methode namens �Eigenspek-
tra MSOT� (eMSOT) wird anhand einer Vielzahl von Simulationen, Blutphantomen und kontrollier-
ten in vivo Experimenten validiert und es zeigte sich, dass die sO2-Quanti�zierungsgenauigkeit im
Vergleich zu früher verwendeten spektralen optoakustischen Methoden erheblich verbessert wurde.
Im Weiteren wird eMSOT bei Bildgebungsstudien an Kleintieren angewandt, um die Quanti�zie-
rung des Blut-Oxygenierungsgradienten im Skelettmuskel und hypoxischen Tumoren durchzuführen.
Die Messungen wurden durch post mortem histologische Untersuchungen validiert. Die Ergebnisse
zeigen, dass eMSOT in der Lage ist, Sauersto�mangel in Tumoren quantitativ aufzulösen.

Schlieÿlich befasst sich diese Arbeit mit der Verminderung des elektronischen Hintergrundge-
räusches, welches typischerweise in MSOT Daten auftritt. Um unspezi�sches Hintergrundrauschen
von spezi�schem Signal zu trennen, wurde eine räumlich-spektrale Transformation verwendet. Hier-
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durch konnte auf multiple Signalerfassung und -mittelung verzichtet werden, was zu einer Beein-
trächtigung der Bildgebungsgeschwindigkeit hätte führen können.
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Chapter 1

Methods for spectral analysis in

optoacoustic physiological and

molecular imaging � An overview

1.1 Introduction

1.1.1 Motivation: Physiological and molecular imaging

Biomedical imaging is playing today a fundamental role in healthcare and life sciences. Radiological
imaging modalities such as X-ray imaging and computed tomography (CT), ultrasound, Magnetic
Resonance Imaging (MRI), Single Photon Emission Tomography (SPECT) and Positron Emission
Tomography (PET) have been established as indispensable tools in the clinical routine for the
successful diagnosis and treatment of disease. Additionally, the growing number of genetically
modi�ed animal models has further spurred the use of imaging in small animals for basic science,
drug discovery and translational research. Most of the existing radiological imaging methods have
been down-scaled for small animal imaging while new technologies have been developed speci�cally
for this purpose [1]. In vivo imaging is emerging today as a basic tool for biomedical research,
complementing or replacing ex vivo observations based on microscopy [2].

Aside to mapping tissue anatomy, recent e�orts have been largely focused on physiological
and molecular imaging. Physiological imaging provides spatially resolved information on tissue
physiology parameters, such as blood �ow, perfusion or blood and tissue oxygenation, which are
important for diagnosing and monitoring a number of pathologies including cardiovascular diseases
and cancer. Molecular imaging [3] typically seeks to map spatially the distribution of speci�c
molecular probes for visualizing among others, receptors, gene expression or for cell imaging and
tracking [4]. Physiological and molecular imaging aim at recognizing disease before this is expressed
through anatomical alterations, identify and characterize non-anatomical phenotypes related to
speci�c pathologies and unravel the underlying molecular mechanisms of the disease or the speci�c
mechanisms of therapeutic approaches [4]. Therefore, the development of potent physiological and
molecular imaging methods is of substantial importance for providing both novel diagnostic abilities
in the clinical setting and valuable tools for therapy research in the preclinical arena.

Established radiological imaging modalities have been continuously improved for performing
anatomical (CT, MRI, ultrasound), physiological (primarily MRI and ultrasound) and molecular
imaging (primarily PET/SPECT) in humans and small animals. The fundamental physical principle
that each method exploits largely de�nes its characteristic abilities and limitations. For instance,
MRI can image physiology through the contrast of the paramagnetic deoxygenated hemoglobin (Hb),
but the lack of magnetic contrast of oxygenated hemoglobin (HbO2) limits its ability to directly
quantify blood oxygenation [5]. PET o�ers potent molecular imaging capabilities [6], but its lack
of anatomical contrast, low resolution, high cost and the use of ionizing radiation make it non-ideal
for routine use in small animal imaging studies. In general, each imaging method is typically ideal
for speci�c applications and novel applications often spur the development of innovative methods.

Limitations of established radiological imaging modalities in certain domains have motivated
the exploration of novel methods primarily based on light for achieving molecular and physiological
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imaging in small animals and humans. Optical imaging o�ers direct access to physiological infor-
mation due to the optical contrast of the molecules of HbO2 and Hb. Furthermore, it also allows
for potent and versatile molecular imaging by using a large toolbox of functionalized �uorescence
probes and reporter genes [7]. Although light poses limitations in terms of penetration depth, opti-
cal imaging is non-ionizing and it is typically associated with low cost which makes it particularly
attractive for preclinical small animal imaging applications.

Optical microscopy has been for centuries one of the most valuable tools for biological discovery.
However, even advanced microscopy techniques cannot deliver images beyond the �rst millimeter of
scattering tissue [8]. Probing light deeper into opaque tissue for in vivo imaging is confronted with
photon di�usion, i.e. the complex propagation of photons after multiple elastic scattering events
due to their interaction with tissue molecules. The establishment of di�usion theory for photon
propagation in tissues [9] and the development of light propagation models [10] enabled the design
of rigorous tomographic inversion methods that allowed for mapping di�used photon distribution
in deep tissue. This e�ort o�ered new abilities in deep-tissue molecular and physiological imaging
in small animals and humans [11]. Di�use optical tomography (DOT) enabled for the �rst time
the visualization of �uorescence distribution through opaque living organisms [12] as well as hemo-
dynamics imaging in humans through the intrinsic optical contrast of hemoglobin [13]. However,
due to the high scattering of photons in tissue, di�use optical imaging remains a low resolution
method, often failing to visualize in detail the speci�c biodistribution of molecules. Moreover, due
to the nature of di�use light propagation, the imaging inverse problem (i.e. the image reconstruction
problem) is particularly ill-posed, typically requiring a number of approximations and regularization
methods, and may result in reduced spatial accuracy and speci�city. Such complications may often
restrict the successful application of pure optical imaging modalities.

The development of optoacoustic (also termed photoacoustic) imaging in the early 21st century
brought a paradigm shift to the �eld of biomedical optics. By replacing the detection of scattered
photons with the detection of ultrasound, produced as a result of the light-tissue interaction, op-
toacoustic imaging demonstrated the �rst deep-tissue (> 1cm), high resolution images of optical
contrast [14, 15]. Optoacoustic imaging is based on the generation of pressure waves as a result
of the thermoelastic expansion due to transient light absorbed by molecules. Since the generated
pressure waves (ultrasound) scatter 2-3 orders of magnitude less than photons in tissue, the optoa-
coustic method can deliver high resolution images of optical absorption contrast [16]. Importantly,
the image formation problem is largely simpli�ed, since it is not confronted anymore with light
propagation in tissue, and it is typically solved through an analytical solution or a rather well-posed
linear inverse problem. A numerical comparison between the image reconstruction inverse prob-
lems of di�use optical versus optoacoustic tomography, clearly demonstrate the merits of the latter
imaging method [17].

An essential aspect of biomedical optoacoustic imaging is the spectrum, i.e. the spectroscopic
information obtained through the excitation of tissue with di�erent wavelengths of visible and near-
infrared light. While conventional optoacoustic imaging delivers high resolution anatomical images
of optical absorption contrast, it is mainly the spectral information that allows extracting valu-
able physiological and molecular information. Multispectral Optoacoustic Tomography (MSOT)
can detect the spectra of HbO2 and Hb in tissue and, therefore, it o�ers the potential to estimate
blood oxygen saturation in high resolution across entire organs and tissues [18�20]. This ability,
not available through previously existing imaging methods, has the potential to o�er new insights
into tissue physiology as well as a number of pathologies such as cancer hypoxia. Moreover, MSOT
o�ers the potential for high resolution molecular imaging by using the existing �uorescence toolbox
or alternative contrast mechanisms such as absorbing nanoparticles [21]. MSOT allows for visu-
alizing such molecules at depths and resolutions not available previously to optical methods, an
ability that o�ers the potential to faciliate a wide spectrum of needs in biological research such as
tumour targeting, clearance of injected pharmaceuticals [22], localization of protein expression in
advanced biological models [23] and cell imaging. Developing methods for advancing the physiolog-
ical and molecular imaging abilities of MSOT is of substantial importance for disseminating MSOT
in biomedical research and for its clinical translation.

1.1.2 Objectives

Before the initiation of the herein described e�orts, robust small animal MSOT imaging scanners had
already been developed [24] along with dedicated image reconstruction algorithms for delivering high

2



image quality [25]. Moreover, early MSOT imaging studies had already showcased the potential for
molecular imaging through the visualization of �uorescent dyes, �uorescent proteins and absorbing
nanoparticles within small animals [21], as well as the potential of imaging tissue physiology through
the spectral di�erentiation between HbO2 and Hb in healthy tissue and tumors [18, 19]. However,
the spectral optoacoustic imaging problem had not been thoroughly studied or conclusively solved.

MSOT presents a rather unique spectral analysis problem, whereby the light �uence attenuation
with tissue depth introduces changes in the detected spectral responses of the absorbing molecules,
as compared to their spectral signatures measured in the photospectrometer; a phenomenon com-
monly termed `spectral coloring' or `spectral corruption' [26]. Early in vivo studies using spectral
optoacoustic methods did not consider the e�ects of light propagation and spectral coloring and
used simple approximate spectral analysis algorithms. As a result, early multi-spectral optoacoustic
methods o�ered reduced sensitivity in imaging molecular targets and reduced quanti�cation accu-
racy in the estimation of blood oxygen saturation. Although it was early recognized that spectral
coloring posed a signi�cant limitation for accurate molecular and physiological imaging [27], there
was a lack of dedicated spectral unmixing algorithms that could consider and overcome such e�ects
for improving the molecular and physiological imaging capacity of MSOT.

From a biomedical application point of view, there is a strong need for methods that can operate
robustly in experimental tissue data and o�er (1) potent molecular imaging capacity through the
visualization of molecular probes with high sensitivity and speci�city, and (2) accurate physiological
imaging through the quanti�cation of blood oxygen saturation within tissue. Such methods need
to be thoroughly validated through simulations and controlled animal experiments before applied
for novel biological observations.

The objective of this work is to develop robust multispectral analysis methods for increasing
the sensitivity and quanti�cation accuracy of MSOT in molecular and physiological imaging appli-
cations, evaluate the performance of these methods through simulations and appropriately designed
animal experiments and establish their abilities in key biomedical imaging applications. The three
main objectives addressed by this work are the following:

The �rst objective relates to molecular imaging, i.e. the mapping of optical absorbing agents
administered or expressed in tissue. The goal herein is the identi�cation and development of spectral
analysis algorithms that can be applied on MSOT images to resolve the distribution of molecular
probes of interest from the absorbing tissue background. The methods should o�er high sensitivity,
i.e. resolve targets present in low concentrations within tissue, and high speci�city, i.e. minimize the
possibility of false positives. It is also an objective of this work to assess the in�uence of experimental
parameters on the MSOT molecular imaging capacity for indicating optimal directions in conducting
in vivo experiments. Finally, a further goal of this work is to apply MSOT combined with advanced
spectral analysis algorithms for imaging labeled immune cells and establishing the sensitivity limits
in this application.

The second objective relates to physiological imaging and speci�cally to the accurate quanti�-
cation of blood oxygenation with MSOT. As previously established, spectral coloring leads to the
alteration of the optoacoustically recorded spectra with depth and hinders the accurate computa-
tion of blood oxygenation within deep tissue. The goal herein is to develop a novel method that
models the light �uence within tissue and account for spectral coloring; thus enabling the accu-
rate estimation of blood oxygenation within deep tissue. The method should o�er high estimation
accuracy for tissue depths relevant to small animal imaging and be thoroughly validated through
simulations and in vivo controlled experiments. Finally, a further goal of this work is to investigate
the ability of MSOT coupled with appropriate spectral analysis algorithms to image and quantify
cancer hypoxia.

The need for multiple excitation wavelengths for accurate molecular and physiological imaging
in combination with the need for repetitive signal acquisition and averaging for ensuring low noise
levels imposes a substantial overhead on the temporal resolution of MSOT. A third objective of this
work is to introduce a signal denoising framework for removing electronic noise from MSOT signals
and images. The denoising framework should overcome the need for repetitive signal acquisition
and averaging, thus enhancing the MSOT temporal resolution.

1.1.3 Outline

This work is organized as a publication based dissertation with one introductory Chapter and six
additional Chapters corresponding to six individual publications.
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This �rst Chapter outlines the motivation of this work, provides background theory on important
concepts and methodologies 1 and serves as an introduction to the developments presented in
Chapters 2-7. Section 1.2 reviews the potential of MSOT in performing molecular and physiological
imaging and compares the characteristics of this technology to the ones of established imaging
modalities. Section 1.3 o�ers background theory on light propagation, optoacoustic imaging and
image formation and describes the MSOT imaging systems used in the context of this work. Sec.
1.4 formulates the MSOT spectral unmixing problem and describes its main challenges. Subsections
1.4.1 and 1.4.2 introduce the more speci�c problems of spectral analysis for molecular imaging and
physiological imaging, respectively, review relevant prior work and o�er theoretical reasoning for the
novel methods developed herein. Finally, Sec. 1.5 summarizes this work and provides an outlook
for important future goals.

Chapters 2-5 relate to the problem of MSOTmolecular imaging. Chapter 2 formulates the MSOT
molecular imaging problem as a detection problem where the goal is to detect the distribution of an
extrinsic molecular target with a distinct spectrum, with high sensitivity and speci�city. By creating
a simulation framework and compiling an experimental MSOT dataset with available ground truth,
the performance of di�erent spectral unmixing and sub-pixel detection methods, typically used in
remote sensing hyperspectral imaging, is investigated within the context of MSOT. Statistical sub-
pixel detection algorithms are found to outperform alternative approaches under the condition that
the optical agent of interest is sparsely present within the tissue. Based on this �nding, in Chapter
3 a novel statistical sub-pixel detection framework is introduced that is particularly suited to the
characteristics of MSOT molecular imaging.

Aside to algorithmic aspects, experimental aspects of MSOT molecular imaging are further
investigated in Chapters 4-5. In Chapter 4, the sensitivity of MSOT molecular imaging is studied
with respect to the number of the excitation wavelengths used using simulations and in vivo animal
experiments. In Chapter 5, MSOT coupled with a statistical detection algorithm is investigated
for the application of immune cell imaging. The optoacoustic signal of �uorescent labeled T-cells
and macrophages is quanti�ed using imaging phantoms, and animal experiments are performed for
providing �rst insights on the feasibility and sensitivity of MSOT immune cell imaging.

Chapter 6 relates to the problem of MSOT physiological imaging and introduces a spectral anal-
ysis algorithm for quantifying tissue blood oxygenation with MSOT. By introducing a novel model
for describing the light �uence spectrum within the tissue (termed �uence eigenspectra), this prob-
lem is formulated as a non-linear spectral unmixing problem and solved through the introduction of
a constrained non-linear inversion scheme. The method presented, termed eigenspectra MSOT, is
applied for the quanti�cation of blood oxygenation gradients in skeletal muscle and hypoxic tumors,
and the results obtained are validated through histological analysis.

Finally, Chapter 7 presents a sparse representation of MSOT signals and images and an associ-
ated denoising algorithm and validates its performance in simulated and experimental data.

1.2 Molecular and physiological imaging with MSOT

Small animal MSOT imaging o�ers the potential to perform molecular and physiological imaging
with complementary abilities to currently existing biomedical imaging modalities. This section
describes the biomedical motivation behind this work, placing MSOT imaging in the general map
of small animal imaging modalities.

1.2.1 Molecular imaging with MSOT

Molecular imaging refers to the observation of speci�c processes in the cellular and molecular level,
typically achieved by administering reporter molecules that selectively bind to a receptor or by
utilizing reporter genes in genetically engineered animal models [3]. Molecular imaging is playing an
increasingly important role in basic biological and oncology research [34], with applications ranging
from receptor imaging [4], cancer research (i.e. study of angiogenesis, hypoxia and apoptosis) [34],
and early cancer detection [6] to immune cell and stem cell imaging and tracking [35].

1Basic theory on optoacoustic imaging and light propagation is provided in Sec. 1.3 of Chapter 1. Throughout
Chapters 1-7 a number of signal processing methods and tools are used or discussed such as wavelets [28], Principal
Component Analysis and Independent Component Analysis [29], detection theory and statistical signal processing
[30, 31] and some concepts from linear and constrained non-linear optimization [32, 33]. Such concepts are not hereby
introduced or explained and the interested reader is referred to published textbooks [28�33].
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The majority of established biomedical imaging modalities have been investigated in molecular
imaging applications: PET/SPECT provide a potent tool for molecular imaging with paramount
sensitivity (picomolar concentration)[36], but the low spatial resolution ( 1mm) and mainly the com-
plexity and high cost associated with the use of radio-tracers may restrict its widespread application
in biology research labs. Although MRI is typically considered a low sensitivity imaging modality
[36], it has achieved molecular and cell imaging in particular though iron-oxide nanoparticles [37].
Nevertheless, it is a costly imaging method and iron nanoparticles may be associated with high tox-
icity for certain applications. Ultrasound has recently demonstrated promising molecular imaging
abilities through targeted [38] or genetically encoded microbubbles [39], but it has not become a
widespread molecular imaging method yet. Conversely, optical imaging through bioluminescence
and �uorescence imaging and tomography have emerged as popular molecular imaging methods in
biological labs due to their high sensitivity (sub-nanomolar scale [36]), easiness of use and low cost
[7]. Nevertheless, di�use optical methods are associated with a low spatial resolution or surface-
weighted imaging ability, a performance which often fails to provide accurate information on the
exact molecule biodistribution.

MSOT imaging achieves a resolution that is higher than that of PET/SPECT and optical imag-
ing and comparable to the one of high-�eld MRI in small animal imaging applications. It o�ers
higher temporal resolution than other molecular imaging methods (with the exception of ultra-
sound), high throughput abilities, and it is associated with relatively low cost and easiness of use;
therefore o�ering very favourable characteristics for its dissemination in the biology laboratory [21].

The optical absorption contrast of optoacoustic tomography renders all absorbing molecules as
potential optoacoustic contrast agents. For instance, �uorescent dyes that absorb light in the near
infrared, such as Indocyanine green (ICG), Alexa Fluor dyes or IRDye800CW and near-infrared
�uorescent proteins (iRFP) have all been considered for optoacoustic contrast generation [40]. Flu-
orescent dyes present a particularly interesting contrast mechanism due to the availability of �u-
orescent probes with speci�c molecular function, which have been also used for molecular MSOT
imaging [41, 42]. Since the optoacoustic contrast is proportional to the absorbed energy that is
converted into thermal energy, �uorescent dyes with low quantum yield typically result in a higher
optoacoustic signal.

Contrary to optical �uorescence imaging methods � where auto�uorescence is rather negligible in
the near-infrared - optoacoustic imaging is associated with a high background-tissue contrast (mainly
stemming from tissue intrinsic hemoglobin in the visible/near-infrared) which limits its sensitivity in
detecting such extrinsically administered molecules. Typically �uorescent dyes need to accumulate
in very high amounts to achieve absorption contrast comparable to that of blood in tissue. For
instance, the �uorochrome AlexaFluor750 which is associated with a molar extinction coe�cient of
290,000 cm-1M-1 and a quantum yield of 0.12 would need to be present at a concentration of > 10
µM to achieve comparable absorption contrast to the one of blood in an artery (approx. 2.8 cm -1

at 750 nm [43]). This high concentration required for obtaining su�cient contrast results in an
unfavourable sensitivity of optoacoustic imaging as compared to pure optical imaging modalities.

There are two primary directions, considered for enhancing the sensitivity of optoacoustic imag-
ing in molecular imaging applications: (1) The development of novel contrast mechanism for op-
toacoustic imaging, i.e. highly absorbing small molecules and nanoparticles. (2) The development
of multispectral imaging approaches and spectral analysis algorithms that resolve weak signal con-
tributions of reporter molecules from the absorbing tissue background. The two approaches are
complementary since multispectral methods can be combined with speci�cally designed absorbing
molecules or nanoparticles for enhancing the sensitivity. As far as the �rst goal is concerned, recent
studies have revealed a multitude of absorbing molecules that can serve as potential optoacoustic
contrast agents. Aside to �uorescent dyes, absorbing molecules such as melanin produced due to
Tyrosinase gene expression has been used as a genetically encoded molecular agent [44, 45]. More-
over absorbing nanoparticles such as carbon nanotubes [46] and gold nanoparticles [40] have been
shown to o�er two to four orders of magnitude higher absorption (per particle) as compared to
�uorescent dyes [21].

Each molecule absorbs light with a distinct spectral pattern according to its molecular composi-
tion. Multispectral imaging and spectral unmixing capitalizes on this principle to resolve molecular
targets of interest from the absorbing tissue background with high sensitivity and speci�city. The
molecular target detection problem for MSOT imaging is formulated in Sec. 1.4.1.
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1.2.2 Imaging physiology with MSOT

Tissue oxygenation is, among others (e.g. perfusion, blood �ow), a crucial physiological parameter
which is also associated with a multitude of pathological conditions including cardiovascular diseases
and cancer. For instance, the oxygenation level in cancer is a key measure to understand the
outcome of certain therapies and the probability of metastasis [47] while low tissue oxygenation
can potentially also serve as a marker for ischemia or stroke. Due to the importance of tissue
oxygenation in physiological and pathological processes, a number of imaging and sensing methods
have been developed towards this goal (Fig. 1.1). The metric of interest is typically the partial
pressure of oxygen (pO2) in blood and tissue (unit mmHg). An alternative metric is the oxygen
saturation of hemoglobin in blood (sO2), de�ned as the ratio of the amount of oxygen bound to
hemoglobin to the total oxygen-carrying capacity of hemoglobin. sO2 can be used to infer pO2 in
blood through the oxygen dissociation curve of hemoglobin [48]. Since oxygen is primarily delivered
into cells through hemoglobin, sO2 measurements can o�er a good estimate of tissue oxygenation
levels.

The gold standard for studying tissue oxygenation (pO2) and hypoxia largely relies on invasive
methods such as the local insertion of a polarography needle electrode or immunohistochemistry
after the injection of exogenous hypoxia markers, such as pimonidazole [49]. One of the �rst imaging
methods able to quantify tissue oxygenation is 15O PET [50], although this method is not widely
applicable mainly due to the short half-life of 15O (2 min). Hypoxia imaging methods using PET
have also been considered, for example through the administration of 2-nitroimidazole based tracers
(e.g. [18F]FMISO) [49]. Nevertheless, these radiolabel-based approaches only provide information
on cell hypoxia and they do not allow for quanti�cation of tissue oxygenation. PET imaging also
su�ers from low spatial resolution, high cost and short-time imaging windows.

MRI o�ers label-free oxygenation-related contrast through BOLD imaging [5], which provides
contrast on paramagnetic deoxygenated hemoglobin. However, BOLD-MRI cannot sense oxyhe-
moglobin and the BOLD signal intensity also relates to the relative orientation of the vessels with
respect to the magnetic �eld [5]. Substantial research has been conducted for quantifying blood
oxygen saturation using BOLD-MRI methods, by developing biophysical models that exploit prior
knowledge on tissue composition [51, 52]. Nevertheless, accurate blood sO2 quanti�cation using
quantitative BOLD-MRI is considered still a very challenging problem. Electron paramagnetic res-
onance imaging has recently demonstrated the ability to measure quantitatively tissue oxygenation
(pO2) through the administration of exogenous spin probes [53]. Although the technology appears
very promising in this direction, it o�ers reduced spatial and temporal resolution (1 mm and 1 min,
respectively) while it is also associated with high cost. Furthermore, the results depend on the
probe's biodistribution which may be insu�cient in non-perfused parts of tissue such as hypoxia
volumes in tumors.

Optical methods have been traditionally considered for sensing blood oxygenation due to the
di�erences between the oxyhemoglobin and deoxyhemoglobin absorption spectra. Arterial sO 2 is
clinically assessed by the pulse oximeter, an optical technology that can only be applied for mea-
suring the oxygenation of the pulsating arterial blood. Optical microscopy methods like phospho-
rescence quenching microscopy [55], hemoglobin photospectroscopy methods [56] or optoacoustic
(photoacoustic) microscopy [57] can visualize oxygenation in blood vessels and capillaries [58]. Such
methods have provided rich novel insight into tissue physiology, blood oxygenation and oxygen
exchange in the microcirculation [59]. Nevertheless, microscopy methods are either restricted to
super�cial (<1mm depth) measurements or require complicated, invasive procedures for reaching
deep tissue areas. Di�use optical methods received signi�cant attention in the last two decades for
sensing and imaging HbO2 and Hb deeper in tissue [11, 60]. Di�use optical spectroscopy (DOS) can
deliver average values of tissue blood sO2 that are not spatially resolved [61], while spectral di�use
optical tomography (DOT) resolves a low resolution map of tissue blood sO2 using rigorous image
reconstruction methods [62]. Due to the high heterogeneity of tissue and the large di�erences of
blood sO2 between arteries, veins and capillaries, such low resolution measures are often hard to
interpret or validate, especially in the application of small animal imaging.

The multitude of imaging methods developed for imaging tissue and blood oxygenation under-
scores the importance of this metric in assessing physiology and pathological conditions. MSOT
appears optimally suited for this task as it is able to detect the spectra of HbO2 and Hb in high res-
olution deep within tissues. Its attributes that are not available in previously considered methods,
namely high spatial (<0.2 mm) and temporal resolution ( appr. 1 sec per multispectral image), non-
invasive imaging capacity and easiness of use, suggest that this technology could provide a valuable
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Figure 1.1: Schematic representation of di�erent strategies for imaging tissue oxygenation: (1) Agent-free
through blood oxygenation imaging (BOLD-MRI, DOT, DOS, MSOT). (2) Through pO2 measurements
at probe location (electron paramagnetic res. imaging and phosphorescence quenching microscopy). (3)
Through invasive measurements of interstitial pO2 (Polarography needle electrode). (4) Through the de-
tection of tracers binding to hypoxic cells (PET, Pimonidazole staining). The schematic is re-drawn and
adapted from [54]

tool for assessing tissue physiology in biological studies. Despite the principal MSOT suitability for
non-invasive imaging of blood oxygenation, its accuracy has remained limited by the dependence of
the light �uence on depth and light color. Unless explicitly accounted for, the wavelength dependent
light �uence pro�le alters the detected spectral features and results in inaccurate estimates of blood
sO2 [27]. Despite a decade of research in quantitative optoacoustic imaging [26], the problem of
light �uence correction has not been conclusively solved. The blood sO2 quanti�cation problem
using MSOT measurements is described in Sec. 1.4.2 where prior work towards this goal is further
reviewed.

1.3 Background methodology: Optoacoustic instrumentation,

image formation and light propagation models

This Section brie�y reviews basic background principles of photoacoustic imaging and image forma-
tion, fundamental aspects of light propagation models, as well as the optoacoustic imaging system
that was used for all experiments described in Chapters 2-7. It is not the purpose of this Section to
thoroughly describe the physics of optoacoustic imaging and light propagation which are analyti-
cally described in published textbooks [63�65], but rather to o�er an introduction to principles and
methods that served as a basis for the work described in following Chapters.

1.3.1 MSOT imaging system

In recent years, a number of di�erent optoacoustic imaging systems have been developed. The
imaging characteristics of such systems depend in major on the geometry of the ultrasound sensors
surrounding the sample, the frequency bandwidth and focal characteristics of the ultrasound sensors
and the illumination deployed. 3D imaging geometries utilizing planar [66], spherical/hemispherical
[67�69] or more complex detection geometries [70] can o�er visualization of larger volumes with
nearly isotropic resolution, typically at the expense of limited view, temporal resolution or easiness
of use. Conversely, 2D imaging systems use focused ultrasound arrays [14, 24, 71, 72] to produce
an image at a transverse slice at the focal plane of the ultrasound elements. These geometries
do not o�er an isotropic resolution, but they typically require fewer detectors for ensuring high
image quality, allow high temporal resolution and can achieve larger angle of coverage within the
2D plane, which enhances image quality. The bandwidth of the ultrasound sensors employed is
selected according to the resolution and imaging depth aimed. Systems utilizing high-frequency
ultrasound sensors achieve high resolution [73�75] at the expense of reduced imaging depth, due to
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high-frequency ultrasound attenuation; thus, they are typically selected for imaging smaller samples.
A recent review of the di�erent small animal optoacoustic imaging systems is presented in [76]. All
experimental data used in the context of this work were acquired using either one prototype or one
commercially available 2D small animal imaging MSOT system. Both systems utilize a curved 2D
ultrasound array focused on an x-y plane for obtaining images at a transverse slice of the animal
body. The geometry and characteristics of these systems are brie�y described in the following:

Prototype MSOT cart system

A prototype MSOT cart system designed for achieving 2D video-rate multispectral optoacoustic
imaging of small animals is described analytically in [24, 71]. Imaging is performed in a water-�lled
chamber with the water temperature maintained at 34oC. The animals are placed in a custom-built
animal holder, surrounded by a transparent foil and submerged into water, ventilated through a
breathing mask (see Fig. 1.2(a)). Imaging is performed in the x-y plane corresponding to the focal
area of the ultrasound array (white rectangle in Fig. 1.2(a)), and the acquired images correspond to
2D transverse slices of the animal's body (Fig. 1.2(b)). A linear stage (NRT150, Thorlabs GmbH,
Karlsfeld, Germany) is used for translating the animal holder in the z-axis for imaging di�erent
parts of the body. The system employs a concave 64 element ultrasound array of radius 40 mm,
covering an angle of 172o (Imasonic SaS, Voray, France). Each transducer element of the ultrasound
array is shaped to create a cylindrical focus with a focal distance of 40 mm (confocal arrangement).
The piezoelectric transducer elements have a central frequency of 5 MHz, a bandwidth (6 dB) of
> 50 % and a sensitivity of 18 µV/Pa. The array is associated with a pitch of 1.88 mm. Sample
illumination is performed using a wavelength tunable optical parameter oscillator (OPO) pulsed
laser (PhocusTM, Opotek Inc., USA) with a pulse duration of <10 ns. The laser repetition rate is
10 Hz, and the peak pulse energy is 90 mJ at 750 nm. The laser beam is coupled into 630 �bers
which split into ten arms appropriately deployed over an arc of 270 around the sample. The arms
are positioned 3 cm from the animal and create a ring-shaped illumination pattern of approx. 7
mm width at the surface of the animal. The laser pulse �uence on the surface of the objects is
< 20 mJ/cm2. A custom made data acquisition (DAQ) system is used for acquiring the pressure
signals recorded by the ultrasound transducers, which are digitized at 40 MSamples/s. The system
is associated with a theoretical resolution of 150 µm in the x-y plane and 800 µm in the z plane.

MSOT in Vision system

An evolution of the original MSOT cart system, named MSOT in Vision 256-TF, was developed
and commercialized by iThera-Medical GmbH, Munich, Germany. The system shares most of the
design characteristics of the original MSOT cart system but utilizes a di�erent ultrasound array
and illumination (Fig. 1.2(c)). MSOT in Vision employs a curved ultrasound array of a radius of
40 mm that spans an angle of 270°. It employs 256 elements, with a pitch of 0.735 mm focused
at 37 mm radius, thus achieving toroidal focusing. The area of the individual ultrasound elements
is 36% of the original cart system. Illumination is performed through a tunable laser based on an
optical parametric oscillator with a tuning range in the near-infrared (680�980 nm) (InnoLas Laser
GmbH, Krailing) and repetition rate 10 Hz. Illumination is deployed again at an angle of 270 °
around the sample but using �ve �ber bundle arms instead of ten. The system achieves higher and
more uniform resolution in the x-y plane and reduces limited-view reconstruction artifacts due to
the larger angle of coverage, therefore substantially enhancing the image quality (Fig. 1.2(d)). A
systematic comparison of the two systems is reported in [77].

Experimental procedure

A number of animal experiments were performed in the context of this work. All procedures
involving animal experiments were approved by the Government of Upper Bavaria. Two di�erent
mouse breeds were used, namely athymic Nude-Foxn1 mice (Harlan, Germany) and CD1 mice
(Charles River). All imaging procedures were performed under anesthesia using 1.8% Iso�urane.
During imaging, animals were typically breathing 100% O2 or medical air (20% O2). In certain
cases, mice were sacri�ced during MSOT imaging with an overdose of CO2. In most cases mice
were sacri�ced after MSOT acquisition by a Ketamine/Xylazine overdose and were in the following
stored at -80°C for further analysis.
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Figure 1.2: (a) Annotated color photograph of the MSOT cart system obtained during an in vivo imaging
experiment. The animal holder, the �ber illumination, the imaging plane, the animal and the ultrasound
transducer are annotated with dashed arrows. The image is reprinted and adapted from [78]. (b) Recon-
structed optoacoustic image at a transverse plane corresponding to the abdominal area of a mouse, obtained
using the MSOT cart system. Highly absorbing organs and vascular structures are annotated. (c) Annotated
color photograph of the imaging chamber of the MSOT in Vision system. The animal holder, the imaging
plane, the ultrasound transducer and the �ber illumination are annotated. (d) Reconstructed optoacoustic
image at a transverse plane corresponding to the abdominal area of a mouse, obtained using the MSOT in
Vision system. Organs containing a high concentration of blood like the spleen and the kidneys are evident
due to the high absorption contrast.

1.3.2 Optoacoustic imaging and image formation

Upon photon absorption by molecules, part of the absorbed energy density is converted into heat by
thermalization. The small rise in local temperature leads to local rise in pressure p0(r). Assuming
that most of the absorbed energy is thermalized rather than re-emitted as radiation and under the
assumption that the optical excitation pulse is short enough to justify thermal and stress con�nement
[63], the initial pressure distribution p0(r) can be directly linked to the absorbed energy density
H(r) through the following equation:

p0(r) = Γ(r)H(r) = Γ(r)Φ(r)µa(r) (1.1)

In Eq. 1.1 Γ(r) is the material dependent Grüneisen parameter. The absorbed energy density
H(r) can be written as a product of the local light �uence Φ(r) and the local optical absorption
coe�cient µa(r), i.e. the probability of photon absorption per unit path length (unit cm -1). µa(r)
is the main quantity of interest in optoacoustic imaging.

The tomographic image reconstruction problem of optoacoustic imaging aims at retrieving the
initial ultrasound pressure distribution, p0(r) = p(r, t = 0) from the time-resolved pressure signals
p(rd, t), measured at the ultrasound detectors, placed at positions rd. Under the common as-
sumption of an acoustically homogeneous and acoustically non-absorbing medium, the optoacoustic
pressure wave propagation is described by the following partial di�erential equation (PDE), where
c is the speed of sound [79]:

∂2

∂t2
p(r, t)− c2∇2p(r, t) = Γ(r)

∂

∂t
H(r, t) (1.2)

Under the previously discussed assumptions, the optoacoustic image reconstruction problem
reduces to solving the wave propagation PDE (Eq. 1.2) with boundary conditions de�ned by
the measured pressure signals p(rd, t). The mathematical problem can be equivalently de�ned for
two (r ∈ R2) or three dimensions (r ∈ R3), in practice corresponding to systems that utilize an
ultrasound array that is focused on a 2-D plane or for un-focused 3-D systems, respectively.
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Under the approximation H(r, t) = H(r)δ(t), where δ(t) is the Dirac delta function, a Green's
function of the PDE in Eq. 1.2 can be derived [79], de�ning an alternative and simpler formulation
of the problem that is given by a Poisson-type integral:

p(rd, t) =
1

4πc

∂

∂t

∫
dA

p0(r)

|r− rd|

∣∣∣∣
ct=|r−rd|

(1.3)

This integral also referred to as the spherical Radon transform, relates the measured pressure
waves to the initial pressure distribution through an integration over a sphere in the 3D space, or
a circle in the 2D formulation. This formulation is usually the basis for deriving practical inversion
schemes for image reconstruction in optoacoustic tomography.

There are two main categories of tomographic reconstruction algorithms in optoacoustic imaging.
Back-projection analytical formulas [80] o�er a closed form solution for p0(r), derived by solving Eq.
1.2 analytically. Conversely, model-based inversion approaches [25] perform a numerical, instead
of analytical, inversion of Eq. 1.3. Typical model-based implementations operate either in time
[25, 81, 82] or in the frequency domain [83]. The linear operator of Eq. 1.3 is discretized in the
form of a forward model matrix M - which relates the discretized measured pressure signals to the
discretized initial pressure distribution:

pd = Mp0. (1.4)

In Eq. 1.4, pd is a column vector representing the discretized measured acoustic �eld at the
detectors' position and p0 is a column vector representing the initial pressure distribution on the
grid discretizing the domain. The initial pressure distribution can be estimated from the numerical
inversion of Eq. 1.4, i.e. by solving the least-squares problem prec = argminp0 ‖ pd −Mp0 ‖22.
This can be performed either by computing the pseudoinverse of the model matrix, M† or by
minimizing the residual norm through an iterative method such as gradient descent or conjugate
gradient methods [25].

Model-based reconstruction approaches have been shown to o�er an enhanced image quality
for the particular detection geometry of the MSOT systems used [25], [84]. For this reason, the
model-based approach was used for image reconstruction in this work. The image reconstruction
framework described in [25] and [81] was employed. To increase the numerical stability, a quadratic
Tikhonov regularization was added for the inversion of Eq. 1.4. Particularly for the case of sO 2

estimation (Chapter 6) inversion was performed using both Tikhonov regularization and a non-
negativity constrained iterative inversion algorithm to ensure physical interpretation [85].

In practice, optoacoustic image reconstruction methods recover an approximate and often dis-
torted estimate of the initial pressure distribution due to a number of practical limitations and
additional physical e�ects that are typically not accounted for during signal acquisition and im-
age reconstruction. First, the �nite bandwidth of piezoelectric ultrasound sensors operates as a
band-pass �lter to the otherwise broadband optoacoustic pressure signals. This band-pass operator
propagates distortions to the reconstructed image by introducing negative pixel values and incon-
sistent relative intensities of larger versus smaller structures [86]. Second the 3D �nite aperture of
ultrasound transducers creates an inhomogeneous sensitivity �eld that is spatially dependent and
also depends on the frequencies of the emitted pressure waves [82, 87]. Integration of the pressure
waves on the surface of the ultrasound elements distorts the shape of reconstructed structures and
a�ects the reconstructed intensities. This e�ect is particularly prominent when utilizing 2D focused
ultrasound sensors, as is the case with the systems used in this work [88]. Third, the limited density
of sensor positions induces spatial under-sampling which superimposes streak artifacts in the image
domain [79], while the limited angle of coverage may result in a substantially degraded estimation
of p0(r) in parts of the object that are not fully covered by the ultrasound sensors [89] (limited view
reconstruction artifacts). Fourth, another image distortion e�ect stems from ultrasound attenua-
tion [90, 91], and acoustic heterogeneities [92]. These e�ects are typically considered less prominent
for low frequency tomographic optoacoustic systems and are thus not considered in the simpli�ed
wave propagation model of Eq. 1.2. Fifth, sources of electronic noise and parasitic signals typically
contaminate the measurements and subsequently the reconstructed images [78]. Substantial prior
work has been dedicated to independently addressing the issues mentioned above [82, 86�90, 92].
Nevertheless, it is not possible to account for all such factors simultaneously and such method-
ologies typically complicate image reconstruction often rendering the problem ill-posed and highly
computationally demanding, or require additional measurements.
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The majority of studies based on reconstructed optoacoustic images for further processing (i.e.
spectral unmixing or quanti�cation) implicitly assume that the images o�er an accurate represen-
tation of the absorbed energy density H(r) [26]. As discussed in the previous paragraph, this
assumption is often not justi�ed in experimental practice due to a number of e�ects that are not
easily accounted for by tomographic reconstruction. The assumption followed herein is that the
reconstructed optoacoustic images are related to the absorbed energy density through the following
relation:

P (r) = C(r)H(r) + n(r) (1.5)

In Eq. 1.5 P (r) indicates the reconstructed optoacoustic image. C(r) corresponds to a spatially
varying, unknown scaling factor that includes the e�ects of the Grüneisen parameter and system
calibration e�ects. Without loss of generality for the methods developed in Chapters 2-6, the scaling
factor C(r) can be also assumed sample dependent, i.e. dependent on the relative structures (or the
spatial frequency content) of the sample imaged, thus possibly including some of the scaling e�ects
(but not the image distortions) in�icted due to the systems' electrical and spatial impulse response.
The additive term n(r) = a(r) +w(r) corresponds to various sources of superimposed noise such as
reconstruction artifacts a(r), that are dependent on C(r)H(r), and electronic noise w(r), which is
assumed Gaussian and independent of C(r)H(r).

1.3.3 Light propagation models

Light propagation in absorbing and scattering media is typically modeled analytically by the Ra-
diative Transfer Equation (RTE), which is a particle-based method and neglects wave e�ects. The
RTE relates the light radiance L(r, ŝ, t), at position r, at time t, and propagating along the di-
rection of the unit vector ŝ, to the absorption and scattering coe�cients in the medium (µa and
µs , respectively) and the light source term Q(r, ŝ, t). The absorption (scattering) coe�cient is
de�ned as the probability of photon absorption (scattering, respectively) per unit path length (unit
cm-1). The radiative transfer equation can be derived from the energy conservation principle [63]
and Maxwell's equations [65]. In optoacoustic imaging based on pulsed laser excitation only the
temporally integrated absorbed energy density is of interest and thus only the time-independent
version of the radiative transfer equation is of relevance:

(̂s · ∇+ µt)L(r, ŝ)− µs

∫
Θ(̂s, ŝ′)L(r, ŝ′)dŝ′ = Q(r, ŝ) (1.6)

In Eq. 1.6, the function Θ(̂s, ŝ′) is the probability that a photon travelling in direction ŝ′ will
travel in direction ŝ due to an elastic scattering event and µt = µa + µs. The �uence Φ(r) is the
integral of the radiance L(r, ŝ) over all angles ŝ.

Φ(r) =

∫
L(r, ŝ′)dŝ′ (1.7)

Eq. 1.6 is hard to solve computationally but numerical Monte Carlo methods of light propa-
gation are considered equivalent to the RTE [63]. Monte Carlo light propagation methods obtain
macroscopic physical values such as the �uence by probabilistically modeling the trajectory of mul-
tiple photons in absorbing and scattering media. A large number of photons need to be tracked for
deriving macroscopic physical quantities, which makes Monte Carlo a computationally expensive
approach.

In biomedical optics, the di�usion approximation (DA) of the RTE is typically used to reduce
the complexity of Eq. 1.6. The DA can be solved numerically for arbitrary tissues while analytical
solutions can also be derived in ideal scenarios. To derive the DA from the RTE, the radiance L is
expanded as a series of spherical harmonics and truncated after the �rst term (P1 approximation)
and the source Q is further assumed isotropic. The time-independent DA relates the �uence Φ to
the optical absorption and scattering in the medium and the isotropic source term Q0 as in [63]:

µaΦ(r)−∇ · (D∇)Φ(r) = Q0(r) (1.8)

In Eq. 1.8, D = [3(µa +µ′s)]
−1 is the optical di�usion coe�cient and µ′s is the reduced scattering

coe�cient de�ned as µ′s = (1 − g)µs , where g is the scattering anisotropy factor, expressing the
forward component of scattering. Two conditions are typically considered su�cient for ensuring the
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validity of Eq. 1.8. First µ′s >> µa, which is valid for turbid media such as biological tissue, and
second that the observation is su�ciently far from the source. The reduced scattering coe�cient
µ′s is indicative of the average distance a photon travels in tissue before its initial direction is
randomized. Thus, the DA is considered valid for depths > 1/µ′s, which corresponds to approx. 1
mm for biological tissue in the near-infrared range [93].

An analytical solution of Eq. 1.8 can be derived in ideal cases, as the case of an in�nite homo-
geneous medium. The simplest form of such solutions is de�ned in the 1D case, where the �uence
Φ at a depth z is derived as a function of the incident �uence on the medium's surface Φ0 and the
e�ective attenuation coe�cient µeff =

√
3µa(µa + µ′s):

Φ(z) = Φ0 exp(−µeffz) (1.9)

In the general case of arbitrary tissues with spatially varying absorption and scattering coe�-
cients and an arbitrary boundary, the �uence can be obtained through a �nite element solution of
the DA [10].

This work adopts the DA as the gold standard for simulating light �uence in tissue as it is
concerned with whole body small animal imaging (tissue depth of up to 1 cm is considered) and it
does not focus particularly on the tissue surface (<1 mm) where the DA o�ers reduced accuracy.
A 2D �nite element solution of the DA is used in Chapters 2-4 for simulating the �uence �eld in
tissue and thus simulating the e�ects of spectral coloring on the spectral signatures of molecular
targets. The 1-D analytical solution of the DA (Eq. 1.9) is used in Chapter 6 for deriving the
�uence eigenspectra. A 2D and a 3D �nite element solutions of the DA are used in Chapter 6
for simulating tissues with arbitrarily varying optical properties, which serve as a validation of the
accuracy of the eigenspectra method in estimating blood oxygenation. Moreover, a Monte Carlo
numerical simulation of the photon �uence in multi-layered tissue [94] is used in Chapter 6 for
validating the accuracy of the eigenspectra in the ballistic and semi-ballistic regime.

1.4 The multispectral optoacoustic imaging problem

The excitation wavelength (λ) dependent and position (r) dependent multispectral optoacoustic
images P (r, λ) can be related to the concentrations of the absorbing molecules through the following
relation:

P (r, λ) = C(r)Φ(r, λ)
∑
i

ci(r)εi(λ) + n(r, λ) (1.10)

Φ(r, λ) denotes the space and wavelength dependent light �uence, ci(r) corresponds to the con-
centration of the ith absorber at position r and εi(λ) corresponds to the molar absorption coe�cient
(absorption spectrum) of the ith absorber at excitation wavelength λ. n(r, λ) = a(r, λ)+w(r, λ) is a
superimposed noise term corresponding to both image reconstruction artifacts a(r, λ) and indepen-
dent electronic noise w(r, λ). C(r) is an unknown space-varying scaling factor that corresponds to
the Grüneisen parameter map and system calibration e�ects. As discussed in subsection (1.3.2) C(r)
may also absorb further scaling e�ects due to ultrasound attenuation and the spatial and frequency
dependent sensitivity �eld of the imaging system. Since C(r) is assumed wavelength independent,
the implicit assumption of this statement is that the relative frequency content of optoacoustic
signals does not change substantially across the di�erent excitation wavelengths, so that the scaling
e�ect due to the electrical and spatial impulse response of the system (which are space and acoustic
frequency dependent) are assumed independent of the excitation wavelength. This assumption is
reasonable since the tissue structures are typically similar across di�erent excitation wavelengths.

Eq. 1.10 states that aside to the chromophores' absorption spectra and the noise the light �uence
is a strongly wavelength dependent quantity. As light propagates from shallow to deep tissue, it is
absorbed by the tissue molecules. Light absorption depends on the excitation wavelength, therefore
di�erent wavelengths of optical excitation attenuate di�erently with tissue depth. This phenomenon
introduces a space and wavelength dependent light �uence which alters the spectral measurements
introducing the �spectral coloring� e�ect [26, 27].

The ultimate goal of MSOT is to estimate the concentrations of all tissue absorbers ci(r) from
the reconstructed images P (r, λ). The absorption spectra of tissue intrinsic molecules εi(λ) are
typically considered know, and dictionaries containing such spectra are available in the literature
(Fig. 1.3). Nevertheless, due to the large number of unknown parameters in Eq. 1.10, i.e. C(r),

12



Figure 1.3: Distinct absorption spectra of prominent tissue absorbers: Oxygenated hemoglobin (red) and
deoxygenated hemoglobin (blue), lipids (grey) and water (green). Tabulated values obtained from [43] and
[95]

.

Φ(r, λ) and n(r, λ), ci(r) quanti�cation is a challenging goal which, despite the substantial e�orts,
is still considered an unmet problem [26]. The most challenging task is the estimation of the
�uence Φ(r, λ) which depends on the unknown µa(r) and µ′s(r) (Eq. 1.8) and therefore introduces
a non-linearity to Eq. (1.10). Given an estimation of Φ(r, λ), the concentrations of the absorbers
ci(r) can be estimated up to a common scaling factor per pixel. This valuable information allows
for computing blood oxygenation which is a ratio-metric quantity. Nevertheless, even if Φ(r, λ)
is estimated the unknown scaling factor C(r) further complicates the accurate estimation of the
absolute concentrations of tissue absorbers.

Substantial prior work has been dedicated for modeling and retrieving light �uence maps Φ(r, λ)
computationally from multispectral optoacoustic images. These e�orts are thoroughly discussed
in Sec. (1.4.2). Computational ci(r) quanti�cation methods have been investigated in the case
of simulations and simple phantom con�gurations. Nevertheless, quantitative extraction of the
absorbers' concentrations ci(r) has not been achieved for experimental in vivo data. In experimental
practice most studies operating on tissue images for molecular and physiological imaging adopt
approximate spectral analysis methods that do not model or fully account for Φ(r, λ). Such methods
are further discussed in Sec. (1.4.1) and Sec. (1.4.2).

The current work does not aim at solving the general quanti�cation problem de�ned in Eq.
1.10. Instead it exploits the spectral information for extracting valuable bio-medically relevant
information by formulating two more speci�c but also more feasible sub-problems. Having the two
distinct goals of molecular imaging (extracting molecular targets high sensitivity/speci�city) and
physiological imaging (quantifying blood oxygen saturation) in mind, the general problem de�ned
in 1.10 is reformulated and simpli�ed. For molecular imaging, the goal is to develop a detection
scheme for discriminating extrinsically administered dyes from the absorbing tissue background
with high sensitivity and speci�city, a topic that is introduced in Sec. 1.4.1. As described in
the following section, this goal does not require modeling the light �uence Φ(r, λ), but rather the
spectral variability of the target molecule and the tissue background. For physiological imaging,
the goal is to develop an algorithmic framework for estimating the relative concentrations of HbO 2

and Hb in each pixel, in order to compute blood sO2. This topic is introduced in Sec. 1.4.2. This
problem does not require calculation of the absolute value of Φ(r, λ) at each position r, but only
requires modeling and accounting for the normalized spectrum of the light �uence at each position.
The two sub-problems are analytically described in the following subsections along with concepts
and theory that serve as a basis for the methodologies introduced in Chapters 2-6. Prior work for
addressing these problems is also discussed in the following two subsections and classi�ed into Sec.
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1.4.1 or Sec. 1.4.2, according to its relevance to the particular problem.

1.4.1 Detecting molecular agents with MSOT

Problem statement

When the goal of imaging is to accurately extract the biodistribution of a speci�c molecule within
the tissue, the spectral unmixing problem formulates as a detection problem. By reformulating Eq.
1.10 to separate the contribution of the tissue background and the target molecule we obtain the
following relation:

P (r, λ) = B(r, λ) + ct(r)T (r, λ),

B(r, λ) = C(r)Φ(r, λ)
∑
i

cib(r)εib(λ) + n(r, λ),

T (r, λ) = C(r)Φ(r, λ)εt(λ)

(1.11)

In Eq. 1.11 cib(r) and εib(λ) correspond to the concentrations and absorption spectra of tissue-
intrinsic molecules, while ct(r) and εt(λ) are the concentration and absorption spectrum of the
extrinsically administered molecular target. Molecular target detection seeks to decide between
two competing hypotheses for each pixel in the image, namely ct(r) = 0 (non-existing target), or
ct(r) > 0 (existing target). For detecting the distribution of molecular targets, models that capture
the background spectral variability B(r, λ) and the target spectral variability T (r, λ) are required.
The background spectral variability is notably more di�cult to be accurately modelled than T (r, λ),
due to the uncertainties related to background tissue absorbers, the severe spectral coloring e�ects
due to the light �uence Φ(r, λ) and a multitude of noise sources n(r, λ) that can a�ect the spectral
measurements.

Prior art

Early spectral optoacoustic methods considered for resolving an extrinsically administered agent
utilized only two excitation wavelengths [15, 46, 96]. Two images at distinct wavelengths (one
corresponding to high and one to low absorption of the target molecule) are subtracted and the
contrast resolved is attributed to the agent under the assumption that the background tissue ab-
sorption B(r, λ) is approximately constant for the two wavelengths selected. With the introduction
of OPO tunable lasers in multispectral optoacoustic imaging, the fast acquisition of multiple wave-
lengths was made possible; thus enabling the introduction of more elaborate spectral unmixing
methods in the context of MSOT.

Initial spectral unmixing methods typically assumed a constant light �uence across space and
spectrum (Φ(r, λ) = Φ0) [18, 19, 97], an assumption that reduces Eq. 1.10 into a linear mixture
model (LMM) [98], i.e. the optacoustic spectra are modeled as a linear combination of distinct
absorption spectra of the underlying molecules. In the following, an image proportional to the con-
centrations of the target molecule is obtained by solving the system of linear equations using linear
least squares methods. In this linear unmixing approach, the spectra of HbO2 and Hb are typically
used for modelling the background tissue absorption B(r, λ) [18]. Under this approximation, the
spectrally unmixed components can be retrieved for each pixel in the image through the following
least-squares minimization solution:

c = (ETE)−1ETx (1.12)

In Eq. 1.12 x is the L× 1 vector corresponding to the measured MSOT spectrum of a pixel at
L distinct excitation wavelengths, E is a L×K matrix containing K columns corresponding to the
target and the background molecules' absorption spectra at the selected wavelengths (εi(λ)), and c
is the unmixed K×1 component vector containing to the relative concentration of each molecule at
the corresponding pixel. Wavelength optimization strategies under the LMM assumption have also
been investigated [99]. Due to its simplicity and e�ciency in many scenarios, this straightforward
approach is most commonly used in molecular imaging applications for retrieving the biodistribu-
tion of �uorescent dyes [18, 97], �uorescent proteins [100, 101] and absorbing nanoparticles [102].
Nevertheless, the approximate nature of the LMM renders the linear unmixing approach prone to
severe false positive detection artifacts when the molecular targets are present in low concentration.
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Blind source separation (BSS) algorithms were also considered for addressing the MSOT re-
lated spectral unmixing problem. Speci�cally, the Independent Component Analysis (ICA) [103]
and the Vertex Component Analysis (VCA) [104] were applied in experimental MSOT data con-
taining a molecular target [105, 106]. ICA separates the original MSOT image into K additive
sub-components by iteratively maximizing the higher statistical moments (kurtosis) of the sub-
component images. VCA recovers the unknown spectra of the major components under the as-
sumption that some of the pixels exhibit pure spectra while all other pixels follow a linear mixture
of these spectra. In the following it adopts the LMM using the recovered spectra and a least square
solution as in Eq. 1.12. ICA was found to outperform linear unmixing signi�cantly in certain MOST
molecular imaging studies [105], but the particular reasons and the conditions required for this per-
formance enhancement were not thoroughly explored. Another complication of using blind source
separation algorithms for molecular imaging application is their non-automatic, user-dependent
performance. Typically BSS methods decompose an MSOT image into K components associated
with K di�erent spectra, and the user is called to identify the component of interest based on the
retrieved spectrum and the spatial intensity map. Due to this user-dependent performance, BSS
is unable to o�er an automatic solution of high speci�city, and thus, it is in general not optimally
suited for molecular imaging applications.

The necessity for high sensitivity and speci�city in molecular imaging studies drives the need for
the identi�cation and design of novel spectral detection methods that can o�er better performance
than linear unmixing in terms of sensitivity while also operating globally and in an automatic
fashion. Irrespective of the approach followed, the performance evaluation of the detection schemes
needs to be performed in a statistical manner, i.e. by considering large validation datasets that
exhibit properties realistic to experimental molecular imaging applications. The main challenge in
the design of appropriate multispectral detectors is to accurately model the background spectral
variability B(r, λ) which is a�ected by a number of factors and is thus di�cult to model using
exact spectra. This observation motivated the consideration and development of statistical spectral
detection algorithms that model the background as a multivariate statistical distribution.

Statistical sub-pixel detection

When considering statistical methods in the context of MSOT molecular imaging, there are two
important factors that need to be taken into account. First, the spectrum of the molecular target
will be typically present in a sub-pixel level, i.e. it is unlikely that the target is the only contributor
within a given pixel (since the molecule will be commonly mixed with hemoglobin). Instead it will
be presented superimposed upon the spectrum of the background. This fact demands the adoption
of an additive statistical model and prevents the successful application of full-pixel detection or
common binary classi�cation methods for this goal [107]. This analysis adopts a simple linear
model, namely x = b + κε, where x is the measured spectrum, ε is the spectrum of the molecular
target which is assumed known, κ is a scalar ≥ 0 and b is the background modelled using a
multivariate statistical distribution. The implicit assumption of this model is that that the light
�uence Φ(r, λ) does not substantially distort the target spectrum ε, i.e. T (r, λ) ≈ εt(λ). The second
consideration for deriving a statistical detection algorithm relates to the statistical metric that needs
to be optimized. Detection methods that minimize the probability of error or the misclassi�cation
rate [30] are not well suited to this problem as the spatial extend of the molecular target may be
much smaller than the one of the background (common in molecular imaging applications). In
this case the probability of error will be minimized by classifying each pixel as background [107].
Similarly to other hyperspectral detection applications [107] the Neyman-Pearson criterion [30] is
adopted instead. In this context, the probability of detection is maximized while retaining the
probability of false alarm (i.e. probability of misclassifying a pixel as target) under a constant
threshold.

The Neyman-Pearson criterion leads to a well-de�ned family of statistical detection algorithms
that are derived through the likelihood ratio (LR) criterion:

Λ(x) =
p(x | H1)

p(x | H0)
> γ (1.13)

In Eq. 1.13 p(x | H1) is the conditional probability density function (pdf) of the observation
x under the hypothesis H1 of signal presence, p(x | H0) is the conditional pdf of the observation
x under the hypothesis H0 of signal absence and γ is a selected threshold. The assumptions of
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the additive signal model and further assumptions on the probability distributions of the signal
and the background (e.g. multivariate Gaussian) lead to Neyman-Pearson optimal algorithms such
as the matched �lter [30]. Despite their theoretical optimality, LR detectors are typically not
available due to the unknown parameters of the signal and background distributions. Alternatively,
the generalized likelihood ratio test (GLRT) maximizes the likelihood in both the nominator and
denominator in Eq. 1.13 to derive practical detectors [108�111]. GLRT combined with the additive
signal model and the assumption that the background b follows a multivariate Gaussian distribution
leads to the Adaptive Matched Filter (AMF) [109]. AMF and its variations have found wide practical
applications in a multitude of �elds, such as Radar detection [109], ultrasound beamforming [112]
and hyperspectral remote sensing for military target [107] and gaseous plume detection [113]. AMF
is introduced in the context of MSOT molecular imaging in Chapter 2 and it is found to outperform
previously considered approaches in cases where the target is present in "low probability" within
the data, i.e. cases where the molecule of interest is sparsely present within tissue.

In the design of statistical detection algorithms there are two aspects that largely de�ne the
performance of the detector, namely the selection of a multivariate statistical distribution to model
the background b, and the estimation of the statistics of this distribution, typically the mean µ
and the covariance matrix G [114]. GLRT detectors have been derived under the assumption of
multivariate Gaussian distribution [108, 109] (e.g. AMF) or t-distribution [111] [named elliptically
contoured-GLRT (EC-GLRT)]. A statistical characterization of background data can help to select
a detector that operates best under the conditions of the problem. A more challenging task is
the accurate estimation of the background statistics themselves. Typically statistical sub-pixel
detection algorithms applied on hyperspectral images use all available image pixels to compute the
µ and G of the background statistical distribution. This implies that the target needs to be present
in low probability within the data so that it does not signi�cantly in�uence the computation of
these statistics. However, this approach may lead to considerable performance degradation when
the target is distributed over large areas within the image [113, 115]. For developing an accurate
detector with global applicability, independently of the target size or intensity, novel approaches are
required for robustly estimating the background statistics.

Chapters 2-3 study statistical sub-pixel detection in the context of MSOT molecular imaging.
Chapter 2 introduces statistical sub-pixel detection algorithms, previously employed in hyperspectral
remote sensing imaging, in the context of MSOT molecular imaging. Statistical sub-pixel detection
is found to substantially outperform previously considered methods in the case of localized molecular
targets. Nevertheless, it is also recognized that statistical sub-pixel detection algorithms operate
optimally only in cases when the molecular target is sparsely present within the data. Thus,
their performance may degrade in cases of extensive molecular agent distribution. Following this
observation, Chapter 3 introduces a statistical sub-pixel detection scheme developed according to the
characteristics of MSOT molecular imaging. Both the aspects of background statistical modelling
and the estimation of the parameters of the background statistical distribution are considered. A
novel approach is developed for estimating the covariance matrix of the background distribution,
which allows for global applicability independently of the extent of the molecular target distribution.

1.4.2 Quanti�cation of blood sO2 with MSOT

Problem statement

The most prominent optical absorbers of tissue in the near-infrared window are oxygenated and
deoxygenated hemoglobin (Fig. 1.3). While water and lipids also exhibit considerable absorp-
tion for higher wavelengths, their contributions are typically considered insigni�cant for excitation
wavelengths below 900 nm. Therefore, the tissue absorption coe�cient µa(r, λ) at position r and ex-
citation wavelength λ can be approximated as a linear combination of the concentrations of the two
absorbers cHb(r), cHbO2(r), multiplied by their absorption spectra (εHb(λ), εHbO2(λ), respectively):

µa(r, λ) ≈ εHbO2
(λ)cHbO2

(r) + εHb(λ)cHb(r) (1.14)

Given the absolute values of µa(r, λ), and the known spectra of hemoglobin, the concentrations
of HbO2 and Hb can be straightforwardly estimated by solving the system of linear equations of
Eq. 1.14. Blood sO2 can be in the following computed as the ratio between the oxygenated and the
total hemoglobin concentration:
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sO2(r) =
cHbO2

(r)

cHbO2
(r) + cHb(r)

(1.15)

Optoacoustic imaging does not o�er direct information on tissue optical absorption since the
intensity of the reconstructed images is also in�uenced by the space and wavelength dependent
light �uence Φ(r, λ) and further space varying scale factors (see Eq. 1.10). As already discussed,
wavelength independent scaling factors do not impede the computation of blood oxygen saturation.
However, the space and wavelength dependent light �uence needs to be accounted for, for retrieving
the relative concentrations of HbO2 and Hb and computing blood sO2. The separation of the
unknown light �uence Φ(r, λ) from µa(r, λ) consists the main challenge for performing quantitatively
accurate physiological imaging with spectral optoacoustic methods.

Prior art

Optoacoustic quanti�cation approaches typically seek to retrieve µa(r, λ) from the reconstructed
optoacoustic images. Due to the signi�cance of this goal, a multitude of approaches have been
proposed in the literature that either seek to measure or calibrate for the light �uence Φ(r, λ) in
tissue directly or model it using light propagation or heuristic models and retrieve it computationally
from multispectral optoacoustic images [26]. Despite intensive e�orts, no method has demonstrated
to this point reliable and validated application in experimental optoacoustic images of tissue for
the purpose of blood sO2 estimation [26]. In this Section, we brie�y review previous approaches for
the problem of �uence correction and sO2 estimation from optoacoustic images. It is not the scope
of this section to thoroughly discuss all such methods, which are also presented in recent review
papers [26, 116]. It is rather a goal to classify the di�erent approaches and focus the discussion on
the most general and widely studied approach, the optical property quanti�cation method.

Calibration methods: One approach for quantifying µa(r, λ) is through calibration, i.e.
by independently measuring, calibrating or canceling the e�ects of Φ(r, λ) at certain positions
within tissue. Fluence measurements have been demonstrated in vivo through the invasive localized
insertion of an absorber with known optical properties within tissue [27]. The spectrum of light
�uence at the absorber location is measured and used for �uence correction in the vicinity of the
absorber. Nevertheless, the highly invasive nature of this method has limited its practical use.

Similar approaches seek to measure the light �uence by introducing non-invasively, i.e. through
systemic injection, an absorber (e.g. gold nanorods) that demonstrates a non-linear dependence
on �uence [117] or a reversibly switchable �uorescent protein [118], the transition time of which
depends on the photon density. Another agent-free approach suggests measuring the light �uence
at a certain position within the tissue by locally tagging light using the acousto-optics principle
[119]. The aforementioned concepts have been demonstrated in simulations or proof of principle
phantom experiments but due to their experimental complexity, their practical application in vivo

has not been demonstrated.
Another approach presented in [120] exploits �uence cancellation through the division of op-

toacoustic images obtained at two di�erent oxygenation states of tissue. This �uence cancellation
method allows for quantifying the absolute sO2 values at a tissue position under the assumption
that the sO2 at this position changes between two di�erent states and this change is highly localized.
While the method is interesting, its applicability is restricted to very speci�c cases.

Case speci�c methods: Aside to calibration methods, most approaches that seek to quantify
µa(r, λ) in optoacoustic imaging rely on computational methods that separate µa(r, λ) from Φ(r, λ)
using optoacoustic images and a model for light �uence. The vast majority of such algorithms
model the light �uence Φ(r, λ;µa(r, λ), µ′s(r, λ)) as a function of the spatial distribution of the optical
absorption µa(r, λ) and scattering µ′s(r, λ) coe�cients in tissue, using a light propagation model such
as the DA. A number of studies have focused on providing a solution for simpli�ed scenarios, e.g.
assuming a cylindrical absorber in a purely scattering medium [121], a small absorption perturbation
upon a known absorption/scattering background [122, 123] or assuming known tissue scattering
[124�126]. Since in practice such knowledge on tissue optical properties is not available in arbitrary
tissue images, these approaches, although theoretically interesting and possibly useful in speci�c
scenarios, are not generally applicable in complex tissue images for the purpose of �uence correction
and sO2 estimation.

Optical property quanti�cation approach: In the general case, methods that use a light
propagation model to model light �uence [Φ(r, λ) = Φ(r, λ;µa(r, λ), µ′s(r, λ))] need to recover both
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the absorption µa(r, λ) and the scattering coe�cient µ′s(r, λ). It has been shown that the absorption
and scattering coe�cients cannot be recovered simultaneously from a monochromatic optoacoustic
image P (r), due to non-uniqueness [93]; thus additional information such as (1) multiple illumination
patterns [127, 128] or (2) multispectral excitation and knowledge of the spectra of the underlying
absorbers is required for obtaining a solution [93, 129]. The �rst concept has only been studied
theoretically, and it includes the challenge of dividing two optoacoustic images, a process that
may dramatically increase noise in experimental data. The second concept has been studied both
theoretically and experimentally, and it is perhaps the method that has come closest to providing
a general quanti�cation framework, o�ering promise for experimental data application [26].

Under this problem formulation, estimates on µa(r, λ) and µ′s(r, λ) can be obtained by
comparing the observed absorbed energy density Hobs(r, λ) to the modelled one H(r, λ) =
µa(r, λ)Φ(r, λ;µa(r, λ), µ′s(r, λ)). Speci�cally, let µa and µ′

s denote two column vectors contain-
ing the µa(r, λ) and µ′s(r, λ) values of the discretized domain, and let Hobs be a column vector
containing the measured discretized absorbed energy density, the optical property quanti�cation
approach seeks to obtain µa and µ′

s by minimizign the following residual norm:

Argminεµa,µ
′
s

=
1

2
‖ H(µa,µ

′
s)−Hobs ‖2 +R(µa,µ

′
s) (1.16)

In Eq. 1.16, R denotes a regularization term. A change of variables from (µa, µ
′
s ) to (µa ,

D, D being the di�usion coe�cient) or to (ci µ
′
s, ci being the concentration of the ith absorber)

results in alternative but equivalent problem formulations [93]. In each case, the unknown parame-
ters are iteratively updated until the modelled absorbed energy density H(µa,µ

′
s) converges to the

measured one Hobs. Using a Gauss-Newton method where the Jacobian and the Hessian matrix
are computed e�ciently from the DA equation, Cox et. al. showed that this approach can con-
verge to the unknown parameters in a numerical simulation if the wavelength dependence of the
unknown absorbers (absorption spectra) and the wavelength dependence of scattering are incor-
porated as constraints [93]. Evolving from that seminal work, the optical property quanti�cation
scheme, either considering multispectral measurements or multiple illumination patterns, has been
theoretically investigated in numerical simulations using alternative minimization methods [130],
Bayesian inversion approaches [131], or di�erent light propagation models such as the RTE [132] or
Monte Carlo [133]. Experimentally, an adapted version of the method presented in [93] has been
investigated by Laufer et. al. [134] for quantifying the concentrations of chromophores in a simple
phantom geometry. In this case, the steps of image reconstruction and minimization of Eq. 1.16
are combined in one single inversion scheme. Quanti�cation of the absolute concentration values
of the phantom absorbers was found possible. Nevertheless, the high complexity of the method
even in the case of the simple phantom con�gurations considered further indicates the di�culty of
extending this approach to the case of arbitrary complex tissue data.

Despite its advantage as the most general method proposed so far for quantitative optoacoustic
imaging, the optical property quanti�cation approach is associated with a number of complications
that limit its straightforward application in experimental optoacoustic images of tissue. First the
large scale inverse problem de�ned is highly computationally demanding since it includes a vast
number of optimization variables (namely µa(r, λ) and µ′s(r, λ) for each pixel, reaching thousands
of unknowns for moderate resolutions). Notably, the inversion procedure required several hours
even in a simpli�ed case of partially uniform optical properties involving only 12 unknowns [134].
This indicates that in the general case of a high resolution optoacoustic image this approach would
be rather computationally intractable using current methods. The high computational complexity
of the method may further impede its statistical evaluation over extensive data-sets for assessing the
converging or diverging behaviour of the non-linear optimization scheme under di�erent conditions.
Second the utilization of a light propagation model demands accurate knowledge of the tissue
boundary and the incident light distribution which may be challenging to measure accurately in
certain systems. Third, a signi�cant complication of the optical property quanti�cation approach is
the requirement of full knowledge of the absorbed energy density H(r, λ) in the whole illuminated 3D
volume, since the usage of a light propagation model does not allow to focus the analysis only on a
well-reconstructed part of the image. This restriction complicates the application of this approach in
the case of 2D imaging systems and compromises its application in cases where H(r, λ) is corrupted
by substantial artifacts in some parts of the reconstructed image (i.e. limited view geometries).
Fourth, the minimization problem of (Eq. 1.16) assumes knowledge of the absolute values of the
absorbed energy density H(r, λ). As previously discussed, the estimation of the absolute values
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of H(r, λ) may be challenging due to a number of scaling e�ects (scaling factor C(r)) and is only
possible through a perfectly calibrated system, error-free reconstruction process, and knowledge of
the Grüneisen parameter Γ(r).

Heuristic approach. Another approach worth mentioning models the light �uence heuristi-
cally, not through a light propagation model but through its distinct spatial characteristics. The
logarithmic transform of the optoacoustic image is sparsely represented into a library composed
of two distinct bases with di�erent spatial characteristics [135]. A Fourier base was selected for
capturing the smoothly varying function of Φ(r) and a Haar wavelet base for representing µa(r),
in a sparse manner. Orthogonal matching pursuit was used for decomposition by maximizing the
sparsity of the combined representation, and thus separating the smoothly varying Φ(r) from µa(r).
The performance of the method was demonstrated on phantom images. Limitations of the method
include its requirement of highly accurate image reconstruction and its high sensitivity to recon-
struction artifacts and near-zero values. Additionally, the method cannot distinguish between the
light �uence and the optical absorption when the latter is varying smoothly within the image.

sO2 estimation in in vivo data: Perhaps the most common approximation that is often
used for estimating blood sO2 in experimental multispectral optoacoustic images of tissue is the
linear unmixing approximation, where the light �uence Φ(r, λ) is considered constant across space
and wavelength, and the blood sO2 estimation problem reduces to the solution of Eq. 1.14 and
1.15 [18, 19]. Although this method is popular due to its simplicity, a number of studies (including
the work presented in Chapter 6) demonstrate that this common approximation may substantially
misestimate blood sO2 in deep tissue regions.

Eigenspectra MSOT

The characteristics of the blood sO2 estimation problem in MSOT imaging along with the particular
challenges associated with the optical property quanti�cation approach, served as a motivation for
introducing a novel problem formulation and developing a method, termed eigenspectra MSOT, to
approach this problem. eMSOT is analytically described in Chapter 6. This subsection provides the
reasoning behind the creation of this novel approach and the theoretical and practical advantages
o�ered by this concept.

The eigenspectra MSOT method for blood sO2 estimation was developed with three particular
criteria in mind: (1) The need for a computational �uence correction method that relies only on
normalized optoacoustic spectra and not on absolute values of the absorbed energy density H(r, λ)
which may not be available due to the unknown scaling factor C(r). (2) The need for a method that
can be applied on a well-reconstructed part of the image without requiring full knowledge of H(r, λ)
in the whole illuminated volume, which may be highly corrupted at parts due to reconstruction
artifacts (e.g. from limited view) or unavailable in 2D imaging systems. (3) The need for a small
scale inverse problem that can be solved e�ciently. Given the characteristics of MSOT images
described before, these three criteria were considered crucial for enabling a direct application of a
method in experimental data. Such criteria cannot be satis�ed if a light propagation model is used
to model the light �uence as a function of the spatially varying absorption and scattering coe�cient.
Nevertheless a speci�c �uence model is required for separating Φ(r, λ) from µa(r, λ).

By combining Eq. 1.10 with Eq. 1.14 and omitting the noise factor, the following reformulation
can be achieved:

P (r, λ) = C(r) ‖ Φ(r) ‖2
Φ(r, λ)

‖ Φ(r) ‖2
(cHb(r)εHb(λ) + cHbO2(r)εHbO2(λ)) (1.17)

In Eq. 1.17, Φ(r) is a vector corresponding to the light �uence spectrum at position r, and
||Φ(r)||2 is its norm across all excitation wavelengths. Φ(r, λ)/ ‖ Φ(r) ‖2 is the normalized wave-
length dependence of light �uence at a speci�c position (normalized spectrum), abbreviated as
Φ′(r, λ). The space-only dependent factors C(r) and ‖ Φ(r) ‖2 do not a�ect the estimation of sO2

which is calculated as a ratio once the relative concentrations of HbO2 and Hb are known. By
de�ning C ′(r) = C(r) ‖ Φ(r) ‖2, c′HbO2(r) = C ′(r)cHbO2

(r) and c′Hb(r) = C ′(r)cHb(r), Eq. 1.17
reformulates into the following equation:

P (r, λ) = Φ′(r, λ)(c′Hb(r)εHb(λ) + c′HbO2
(r)εHbO2

(λ)) (1.18)

If the relative concentrations c′HbO2(r) and c′Hb(r) are recovered, the blood oxygen saturation
can be computed for each pixel through Eq. 1.19:
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sO2(r) =
c′HbO2

(r)

c′HbO2
(r) + c′Hb(r)

(1.19)

An estimate of the wavelength dependence of the light �uence Φ′(r, λ), i.e. the spectral pattern
of the light �uence, is required for accurately extracting the relative values of c′HbO2

(r) and c′Hb(r).
In Chapter 6 a novel model is introduced that describes the spectrum of the light �uence Φ′(r, λ)
as an a�ne function of a number of base spectra termed �uence eigenspectra, independently of
the speci�c spatial distribution of the optical properties of tissue. The hypothesis that a few basis
spectra can accurately model Φ′ is based on the observation that the spectrum of light �uence is
not an arbitrary function of wavelength, but it can only lie within a limited subspace of spectral
patterns, which are related to the spectra of the main tissue absorbers, i.e. the ones of HbO2 and
Hb.

This spectral �uence model introduced in Chapter 6 and the problem reformulation of Eq.
1.18 satisfy all three previously de�ned criteria: (1) The formulation of Eq. 1.18 does not rely
on the accurate computation of H(r, λ) in an absolute sense as only the relative concentrations of
hemoglobin are of relevance in this problem formulation. (2) The spectral �uence model introduced
decorrelates the spatial dependence introduced by light propagation models and allows for focusing
the analysis in a well-reconstructed part of an image without demanding full knowledge of H(r, λ)
in the whole illuminated volume. This particular property is very bene�cial since it allows for
bypassing the challenge of considerable reconstruction artifacts which are mainly presented in some
parts of the image and particularly in areas not fully covered by the detectors in limited view
imaging systems. (3) The novel problem formulation allows for a per-pixel inversion and thus it
de�nes a small scale inverse problem that can be solved with high computational e�ciency.

Chapter 6 describes the concept behind the creation of the novel eigenspectra model analyti-
cally and validates its accuracy using light propagation simulation with tissue physiological optical
properties. It further introduces a constrained inversion algorithm for solving Eq. 1.18 termed
eigenspectra MSOT. The constrained inversion algorithm incorporates further heuristic constraints
on the spatial characteristics of the light �uence which are crucial for ensuring inversion stability
and accurate sO2 estimation. The accuracy of the eigenspectra MSOT is validated statistically
through an extensive set of simulations as well as blood phantoms and controlled in vivo experi-
ments. Because eMSOT satis�es the three criteria previously de�ned, it allows for direct application
in experimental in vivo data without further algorithmic adjustments. The eigenspectra MSOT is
used for assessing oxygenation in healthy tissue and hypoxic tumors and the results obtained are
found to correspond well to the expected physiological states, literature-derived values and histolog-
ical gold standards that are performed for validation. The performance of the method is compared
to established methods previously used for analysing in vivo MSOT data.

1.5 Summary and future outlook

The present work studies the problem of MSOT spectral analysis for the purpose of molecular and
physiological imaging. Both application �elds are of key signi�cance for revealing the unique features
of the technology and disseminating it as a potent imaging tool, capable of addressing a wide range
of needs in biological research. Due to the di�erent properties required for successful molecular and
physiological imaging, the two problems are addressed separately. Spectral analysis methods are
developed with the goals of optimizing the sensitivity/speci�city in the case of molecular imaging
and the quanti�cation accuracy of blood sO2 estimation in the case of physiological imaging.

Molecular MSOT imaging is formulated as a multispectral detection problem, and a validation
platform based on experimental animal data is introduced for formally studying this problem under
realistic conditions. Statistical sub-pixel detection algorithms are considered for this goal due to their
ability to accurately model, in a statistical manner, the spectral variability of tissue background,
which is otherwise di�cult to be modelled using exact spectra. Since conventional statistical sub-
pixel detection algorithms, originally developed for remote sensing hyperspectral imaging, are not
optimally suited to the characteristics of MSOT imaging, a novel statistical detection framework
is developed which o�ers both high sensitivity and robust detection performance independently
of the type of molecular imaging application. The method developed is found to substantially
outperform previously considered approaches, such as linear unmixing, o�ering up to �ve times
enhanced molecular imaging sensitivity and global, automatic and user-independent performance.

20



It is expected that this method will serve as a valuable tool for future MSOT molecular imaging
applications. While this work thoroughly studied the aspect of modelling the background spectral
variability, the corruption of the target spectrum due to spectral coloring was not thoroughly studied
and presents one possible direction for future investigation.

Besides algorithmic aspects, experimental parameters a�ecting the MSOT sensitivity, such as
the number of excitation wavelengths, are further studied for optimizing imaging protocols. It is
demonstrated that multispectral excitation and statistical detection algorithms can enhance the
sensitivity 14-40 times as compared to monochromatic optoacoustic imaging, underlining the im-
portance of multispectral methods in molecular imaging studies. More excitation wavelengths are
found to o�er a rather consistent but asymptotical performance enhancement.

Following these observations, MSOT utilizing multiple excitation wavelengths and coupled with
a statistical sub-pixel detection algorithm is investigated for the application of immune cell imaging.
The feasibility of imaging �uorescent labeled T-cells in tissue is demonstrated and �rst insights on
the sensitivity of MSOT in this application are derived through phantoms and animal experiments.
MSOT is found capable of detecting down to 2,500 �uorescent labeled macrophages injected within
a small volume in tissue, an ability that bears promise for in vivo cell imaging applications. Nev-
ertheless, despite the substantial sensitivity enhancement achieved through multispectral methods,
the molecular sensitivity of MSOT in the case of �uorescent dyes still compares unfavourably to the
one of pure optical methods. Speci�cally in the case of immune cell imaging, the MSOT sensitivity
achieved is still substantially lower than the one o�ered by bioluminescence [136]. Therefore, aside
to multispectral methods, more potent contrast mechanisms with higher absorption coe�cients are
required for achieving potent molecular imaging with MSOT.

Accurate imaging of blood oxygen saturation within deep tissue has been a long standing chal-
lenge in the �eld of optoacoustic imaging. The challenge lies both in the particular nature of this
non-linear inverse problem but also in the di�culty of validating the quanti�cation accuracy of al-
gorithms in experimental data. Since there exists no established and reliable method that can o�er
blood oxygenation measurements non-invasively and in high resolution, obtaining ground truth on
blood sO2 values in vivo is particularly challenging. Eigenspectra MSOT was developed for pro-
viding a novel solution to this problem that could be successfully applied to complex experimental
images of tissue. Through numerous simulations, blood phantoms and speci�cally designed in vivo

and post mortem controlled experiments the ability of eigenspectra MSOT to o�er substantially
enhanced quanti�cation accuracy over previously utilized approximate methods was demonstrated.
Aside to controlled experiments, the method was also applied for quantifying blood oxygenation
in the muscle and hypoxic tumors in mice. The resulting sO2 maps appeared in agreement with
the expected physiological values and post mortem histological validation of tumor perfusion and
hypoxia � a result that bears promise for the direct application of the method in pathophysiology
imaging studies.

As far as eigenspectra MSOT is concerned, numerous directions for future work can be identi�ed
that relate both to methodology development and to its biomedical application. From a theoretical
standpoint, a more detailed study of the characteristics of the inverse problem de�ned would be of
interest. While eMSOT convergence and accuracy are established through a statistical validation
employing an extensive and versatile set of simulations, the non-linear optimization problem de-
�ned by eMSOT is non-convex, i.e. accurate convergence cannot be theoretically guaranteed. The
investigation of approaches for a convex relaxation of the inverse problem would o�er the advantage
of a theoretical stability proof, and it is an important goal of future research. Furthermore, a basic
assumption of the method is that the primary tissue absorbers are oxygenated and deoxygenated
hemoglobin and the e�ects of less prominent tissue absorbers are disregarded. Although the appli-
cation of eMSOT in the case of experimental tissue images indicated a good performance, a more
detailed study on the possible in�uence of other less prominent near-infrared tissue absorbers such
as water and lipids would be bene�cial. Moreover, wavelength optimization for minimizing such
in�uence would potentially further increase the quanti�cation accuracy of eMSOT.

From a biological imaging standpoint, a direct next goal would be the comparative study of
eMSOT with other imaging methods capable of sensing oxygenation related values, such as BOLD-
MRI. Moreover, an interesting application of the novel method would be the study and quanti�cation
of tumor hypoxia e�ect on various cancer therapies using a large pool of animal models. Finally,
perhaps the most important future goal would be the adaptation of the method for quantifying
blood oxygenation in arteries, veins and the capillary bed of humans, using a clinical hand-held
MSOT imaging technology.
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Chapter 2

Unmixing molecular agents from

absorbing tissue in multispectral

optoacoustic tomography

2.1 Summary

The paper �Unmixing molecular agents from absorbing tissue in multispectral optoacoustic tomog-
raphy� is authored by Stratis Tzoumas, Nikolaos Deliolanis, Stefan Morscher and Vasilis Ntziachris-
tos. The version herein (Appendix A) is published in the Journal �IEEE Transactions on Medical
Imaging� [137].

While a number of molecular imaging studies have used multispectral optoacoustic methods for
resolving molecular agents such as �uorochromes and absorbing nanoparticles, no work has quanti-
tatively assessed the relative performance of di�erent spectral analysis methods in such applications.
The contribution of this manuscript is threefold. First, the MSOT molecular imaging problem is for-
mulated as a detection problem where the goal of spectral analysis methods is to detect a molecular
target with high sensitivity, i.e. accurate detection at low target concentrations, and high speci�city,
i.e. minimization of false positive detection artifacts. The particular characteristics and challenges
of the problem are discussed, and numerical simulations are performed to estimate the magnitude
of background and target spectral variability. Second, the work reviews and implements state-of-
the-art optical target detection algorithms, originally developed for remote sensing hyperspectral
imaging. Candidate algorithms from all three major categories are considered, namely structured,
statistical and blind unmixing approaches. Aside to methods that were previously considered in
MSOT imaging such as linear unmixing and blind source separation via ICA, statistical sub-pixel
detection algorithms such as the AMF and ACE are introduced for the �rst time in the context
of MSOT. For quantitatively assessing the performance of ICA, which demands a manual step of
component selection, the algorithm semi-blind ICA is implemented. Third, for quantitatively as-
sessing the detection performance of di�erent algorithms in terms of sensitivity a synthetic target
implantation simulation framework is introduced, where molecular targets with di�erent spectral
characteristics are arti�cially implanted onto experimentally derived MSOT images of in vivo tis-
sue. This framework is developed for enabling a quantitative performance evaluation under realistic
conditions. Since the spectral background stems from experimental MSOT images, all physical and
experimental challenges of the problem are included, while the position of the implanted molecular
targets is known precisely and their intensity can be manipulated arti�cially. Moreover, two purely
experimental MSOT imaging datasets of in vivo and post mortem animals containing �uorescent
targets are collected for supporting the quantitative results obtained from simulations.

This study led to a number of interesting conclusions. Both simulated and experimental data
indicate that statistical sub-pixel detection algorithms like AMF can o�er a substantially enhanced
performance as compared to structured methods (linear unmixing) and a comparable or better
performance as compared to blind unmixing (semi-blind ICA) when small targets are considered.
AMF is found more robust than ACE in cases of high noise and when considering only a few
excitation wavelengths. The results derived from the synthetic target implantation data appear
in good agreement with the purely experimental dataset, indicating the validity of the proposed
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quantitative evaluation framework. Finally, it is demonstrated that in the case of statistical sub-
pixel detection algorithms a global threshold could be de�ned for enabling molecular imaging of
high speci�city.

I drafted the article, which was continuously advanced through discussions with all co-authors.
I performed the numerical simulations of MSOT images and reviewed the �eld of hyperspectral
remote sensing imaging for identifying appropriate approaches. I implemented the spectral unmixing
methods and the arti�cial target implantation framework. The experimental in vivo and post

mortem data were acquired by Nikolaos Deliolanis and Stefan Morscher.

2.2 Publication

S. Tzoumas, N.C. Deliolanis, S. Morscher, V. Ntziachristos, "Unmixing molecular agents from
absorbing tissue in multispectral optoacoustic tomography," Medical Imaging, IEEE Transactions

on , vol. 33, no. 1, pp. 48-60, 2014.
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Chapter 3

Statistical molecular target detection

framework for multispectral

optoacoustic tomography

3.1 Summary

The paper �Statistical molecular target detection framework for multispectral optoacoustic tomog-
raphy� is authored by Stratis Tzoumas, Andrii Kravtsiv, Yuan Gao, Andreas Bühler and Vasilis
Ntziachristos. The version herein (Appendix B), has been submitted to the Journal �IEEE Trans-
actions on Medical Imaging.�

Chapter 2 identi�ed statistical sub-pixel detection algorithms, like the AMF, as a very promising
approach for MSOT molecular imaging. By modeling the MSOT tissue background spectra in
a statistical manner, AMF o�ers enhanced ability in suppressing the background and revealing
molecular targets of interest. Nevertheless, limitations were also identi�ed. The AMF assumes
that the spatially-varying MSOT tissue spectra follow a multivariate Gaussian distribution, that
the spectrum of the target molecule is precisely known and that the molecular target lies in �low
probability� within the data. This latter assumption, in particular, restricts the application of AMF
to molecular imaging cases where the target molecule is sparsely present within the tissue and does
not allow for universal applicability. When the molecular agent is present in high amounts within the
tissue, the presence of the target signal within the data compromises the accurate computation of
the background statistics, i.e. the covariance matrix, which is typically computed from all available
pixels of the image under test, with maximum likelihood. This e�ect, commonly referred to as
covariance contamination in the literature, may cause considerable performance degradation.

The objective of this work is to develop a robust statistical detection framework that is specif-
ically suited to the characteristics of MSOT molecular imaging. For achieving this, the aspects of
background statistical modeling and covariance estimation are studied. Using a large experimen-
tal MSOT imaging dataset, we perform a statistical characterization of MSOT background tissue
images and conclude to a detector that is based on the t-distribution, named EC-GLRT detec-
tor. More importantly, we introduce a novel method for estimating the covariance matrix of the
background tissue statistical distribution by merging information from the image under test and
an archive of agent-free (and therefore uncontaminated) MSOT tissue images that serve as training
data. The performance of the novel statistical detection framework is assessed through target im-
plantation simulations and speci�cally designed in vivo controlled experiments, and it is compared
to previously considered methods.

The quantitative evaluations of the detection performance indicate that the EC-GLRT detector
can o�er an enhanced detection performance as compared to AMF. Moreover, the proposed co-
variance estimation approach is found to o�er robust detection performance independently of the
molecular target size or intensity. Simulated and experimental data indicate that the performance
of the developed statistical detection framework outperforms AMF in the case of large molecular
targets and o�ers equivalent performance in the case of weakly absorbing targets. Importantly, the
proposed method o�ers an automatic and universal performance independently of the target size or
intensity.
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I drafted the article, which was continuously advanced through discussions with all co-authors.
Yuan Gao and I performed the statistical characterization of MSOT data and implemented the
data-speci�c EC-GLRT detector. Andrii Kravtsiv and I implemented the simulation framework for
quantitatively assessing the detection performance. I designed the proposed covariance estimation
scheme and integrated it to the EC-GLRT detection approach. I collected the experimental data
for validating the detector's performance.

3.2 Publication

S. Tzoumas, A. Kravtsiv, Y. Gao, A. Buehler, V. Ntziachristos, "Statistical molecular target detec-
tion framework for multispectral optoacoustic tomography," Medical Imaging, IEEE Transactions

on, vol. 35, no. 12, pp. 2534-2545, 2016.
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Chapter 4

E�ects of multispectral excitation on

the sensitivity of molecular

optoacoustic imaging

4.1 Summary

The study �E�ects of multispectral excitation on the sensitivity of molecular optoacoustic imaging�
is authored by Stratis Tzoumas, Antonio Nunes, Nikolaos Deliolanis and Vasilis Ntziachristos. The
version herein (Appendix C) is published in the �Journal of Biophotonics� [138].

Aside to spectral analysis methods, further experimental considerations, such as the number
of excitation wavelengths used, can play an important role in the molecular imaging sensitivity of
MSOT.While Chapter 2 and 3 study algorithmic aspects of the MSOTmolecular imaging sensitivity,
the e�ect of excitation wavelengths has not been thoroughly investigated. This is the topic of this
follow-up work.

A complication of studying the e�ect of wavelengths on the detection sensitivity of MSOT is the
strong relation of sensitivity with the spectral analysis method assumed. An additional complication
relates to the selection of excitation wavelengths and the spectral signature of the molecular target
of interest. Therefore, to understand the e�ect of wavelengths in the context of optoacoustic molec-
ular imaging studies, we consider �ve di�erent molecular optoacoustic methods, i.e. monochromatic
optoacoustic imaging, two dual-wavelength subtraction methods employing di�erent strategies for
wavelength selection, linear unmixing methods employing a wavelength selection approach, and sta-
tistical sub-pixel detection, via the AMF considering a varying number of excitation wavelengths
spanning from 4 to 20 equidistant excitation wavelengths. The detection performance of the di�er-
ent methods is quantitatively assessed through the target implantation simulations introduced in
Chapter 2. Controlled in vivo experiments are further performed for con�rming the observations
on synthetic data under realistic in vivo experimental conditions.

The quantitative analysis performed on both simulated (synthetic) and experimental data sug-
gests that MSOT can e�ectively enhance the molecular imaging sensitivity over monochromatic
optoacoustic imaging in the order of 14 - 40 times, a result that was previously undocumented.
Compared to dual-wavelength subtraction methods, MSOT studies at >10 wavelengths can also
reach up to an order of magnitude sensitivity enhancement. When using 20 wavelength, the sensi-
tivity can be enhanced up to more than 4 times as compared to 3 optimally selected wavelengths
and linear unmixing, indicating that due to the complex nature of the spectral unmixing prob-
lem the common assumption that three wavelengths are adequate for spectrally unmixing a single
molecule from the tissue hemoglobin spectra can be an oversimpli�cation. The quantitative evalua-
tions indicate a rather consistent statistical trend of sensitivity enhancement with wavelengths when
using statistical sub-pixel detection. Nevertheless, it was also observed that in certain cases, fewer
wavelengths can result in equivalent or better performance than more � indicating that a possible
wavelength rejection strategy may result in better class separability between the target agent and
the absorbing background.

Vasilis Ntziachristos and I designed the experiments performed for this study and interpreted
the results. I drafted the article in close communication with Vasilis Ntziachristos and Nikolaos

26



Deliolanis. Antonio Nunes, Nikolaos Deliolanis and I acquired the experimental data.

4.2 Publication

S. Tzoumas, A. Nunes, N.C. Deliolanis, V. Ntziachristos, "E�ects of multispectral excitation on
the sensitivity of molecular optoacoustic imaging," Journal of Biophotonics, vol. 8, no. 8, pp.
629-637, 2015.
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Chapter 5

Immune cell imaging using

multi-spectral optoacoustic

tomography

5.1 Summary

The letter �Immune cell imaging using multi-spectral optoacoustic tomography� is authored by
Stratis Tzoumas, Angelika Zaremba, Uwe Klemm, Antonio Nunes, Karin Schaefer and Vasilis Ntzi-
achristos. The version herein (Appendix D) is published in the journal �Optics Letters� [139]. In
this paper, I share the �rst authorship with Angelika Zaremba.

With recent cell-based therapy studies, such as cell-based cancer immunotherapy, showing the
potential to develop into a novel therapeutic platform, imaging methods capable of resolving cell
migration and homing have gained substantial signi�cance. Bioluminescence and �uorescence imag-
ing which are often considered for this goal o�er reduced spatial resolution and surface weighted
imaging performance and therefore are not ideally suited for resolving the exact cell biodistribu-
tion. MSOT has the potential to resolve contrast stemming from �uorescent dyes in high resolution,
deep within tissue. In this work the abilities of MSOT imaging coupled with statistical sub-pixel
detection are investigated in the context of immune cell imaging. While previous studied showed
the ability of optoacoustic imaging to resolve labeled cells, no systematic study has been performed
to assess the MSOT sensitivity in cell imaging.

The objective of this work is to investigate the MSOT detection ability and sensitivity for
immune cells, labeled with �uorescent dyes. Although �uorescence labels are sub-optimal in terms
of optoacoustic signal intensity, they are well-establish and allow to be also visualized with optical
methods, for validating the MSOT readings.

In this study Jurkat Lymphocytes and J774A.1 mouse macrophages are labeled with a lipophilic,
near-infrared �uorescent cyanine dye (DiR). DiR is incorporated into the cell membrane and pro-
vides absorption contrast with a distinct absorption spectrum, which can be resolved by MSOT.
Experiments are performed for optimizing cell labeling and quantifying labeling e�ciency and cell
viability. In the following, imaging phantoms are prepared, which contain cells at known concen-
trations. Analysis of the MSOT phantom images allows for quantifying and comparing the level of
absorbance of the labeled cells. To con�rm the ability of MSOT to detect labeled cells in tissues and
provide �rst insights on the number of cells required for successful detection, animal experiments
are performed. Di�erent amounts of labeled macrophages are injected into the brain of euthanized
mice, and the mice are imaged using MSOT and subsequently with cryoslicing �uorescence imag-
ing, for validating the position of the cells. Spectral analysis of the MSOT images using AMF is
performed to resolve the spectrum of DiR.

The analysis of the phantom images indicates a linear relationship between the number of labeled
cells and the MSOT signal. The absorbance of labeled cells is quanti�ed, and it is further established
that macrophages exhibit an increased signal as compared to the T cells, a result that is explained
due to the larger surface of macrophages which allows for more e�cient DiR labeling. The analysis
of the animal MSOT images indicates that MSOT coupled with AMF is capable of detecting down
to 2,500 labeled macrophages injected in a small volume within the tissue. This result suggests that
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MSOT combined with AMF can serve as a promising cell imaging method.
Angelika Zaremba, Vasilis Ntziachristos and I designed the experiments performed for this study.

Angelika Zaremba, Vasilis Ntziachristos and I drafted the paper which was advanced through feed-
back from all other co-authors. Angelika Zaremba, Karin Schaefer, and Uwe Klemm performed
and optimized the cell labeling. Uwe Klemm Angelika Zaremba and I performed the phantom and
animal experiments. I analyzed the phantom and the animal data.

5.2 Publication

S. Tzoumas�, A. Zaremba�, U. Klemm, A. Nunes, K. Schaefer, V. Ntziachristos, "Immune cell
imaging using multi-spectral optoacoustic tomography," Optics Letters, vol. 39, no. 12, pp. 3523-
2526, 2014.

29



Chapter 6

Eigenspectra optoacoustic

tomography achieves quantitative

blood oxygenation imaging deep in

tissues

6.1 Summary

The work �Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging
deep in tissues� is authored by Stratis Tzoumas, Antonio Nunes, Ivan Ole�r, Stefan Stangl, Pana-
giotis Symvoulidis, Sarah Glasl, Christine Bayer, Gabriele Multho� and Vasilis Ntziachristos. The
version herein (Appendix E) is currently under review in the journal �Nature Communications�. In
this paper, I share the �rst authorship with Antonio Nunes.

Measurement of tissue and blood oxygenation is crucial for understanding tissue physiology and is
also related to a number of pathological conditions such as cardiovascular disease and cancer hypoxia.
A multitude of imaging and sensing methods have been considered for imaging tissue oxygenation.
Nevertheless, there exists today no established, gold standard method that can quantitatively image
oxygenation with high accuracy, high spatial and temporal resolution and across entire tissues.
MSOT detects the spectra of oxygenated and deoxygenated hemoglobin in high resolution, deep
within tissue; therefore appearing very promising for this goal. However, the accuracy of MSOT in
blood sO2 estimation within deep tissue remains to date limited.

Light propagating in tissue attains a spectrum that varies with location due to wavelength-
dependent �uence attenuation by tissue optical properties. Unless explicitly accounted for, the
wavelength dependent light �uence attenuation alters the detected optoacoustic spectra; an e�ect
commonly termed spectral corruption. Despite substantial prior work, the problem of light �uence
correction in optoacoustic imaging has not been conclusively solved. Therefore, spectral corruption
has limited the quanti�cation accuracy of optoacoustic spectroscopic methods and impeded the goal
of accurate blood sO2 estimation deep in tissues.

In this work a new concept is introduced, which models the wavelength dependence (i.e. the
spectrum) of light �uence as an a�ne function of a few reference base spectra, independently of
the speci�c distribution of tissue optical properties. This model, termed �uence eigenspectra, is
derived by applying Principal Component Analysis (PCA) on a training set of light �uence spectral
patterns, which are computed by simulating light propagation in tissues at di�erent oxygenation
states of hemoglobin and di�erent tissue depths. The eigenspectra model for light �uence allows for
formulating the MSOT blood sO2 estimation problem as a non-linear spectral unmixing problem.
For solving this problem, a constrained non-linear inversion scheme is developed, termed eigen-

spectra MSOT (eMSOT). The non-linear inversion scheme incorporates constraints on the spatial
characteristics of light �uence for achieving accurate convergence and good inversion stability.

The accuracy of the eigenspectra model and eMSOT is validated statistically through an ex-
tensive dataset comprised of numerical simulations of light propagation in arbitrary tissues. Fur-
thermore imaging phantoms containing blood at di�erent oxygenation levels and controlled in vivo
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experiments are performed for validating the eMSOT quanti�cation accuracy in experimental data.
Finally, eMSOT is applied for quantifying blood oxygenation gradients in the skeletal muscle of
animals and in tumors during tumor growth or O2 challenge, and the in vivo MSOT readings are
compared to correlative histological analysis.

Numerical simulations suggest that the eigenspectra model o�ers high accuracy in modelling the
spectrum of optical �uence in arbitrary tissues. Furthermore, the validation of eMSOT through
numerical simulations indicates that the eMSOT blood sO2 estimation accuracy is substantially
enhanced as compared to linear unmixing which as previously used for sO2 is experimental in vivo

data. This conclusion is also supported by the blood phantom and the controlled in vivo experiments
analysis. In the case of skeletal muscle imaging, the blood oxygenation gradients resolved appeared
in agreement with the expected physiological state and previous studies based on invasive microscopy
methods. In the case of tumor imaging, the hypoxic areas resolved in vivo with eMSOT were in
agreement with the perfusion and hypoxia maps obtained through post mortem histological analysis.

I conceived the concept of the eigenspectra. I implemented and optimized eMSOT and performed
the simulations and the numerical validations together with Ivan Ole�r. The concept was contin-
uously advanced through discussions with Ivan Ole�r and Vasilis Ntziachristos. I performed the
blood phantom experiments together with Panagiotis Symvoulidis. Antonio Nunes, Stefan Stangl,
Gabrielle Multhof, Vasilis Ntziachristos and I designed the experimental animal study. Antonio
Nunes performed all in vivo imaging experiments with the help of Sarah Glasl. Antonio Nunes,
Sarah Glasl, Stefan Stangl and Christine Bayer performed the histological analysis. I analyzed all
experimental MSOT data. All authors contributed in interpreting the data and writing the paper.
Vasilis Ntziachristos supervised the project.

6.2 Publication

S. Tzoumas�, A. Nunes�, I. Ole�r, S. Stangl, P. Symvoulidis, S. Glasl, C. Bayer, G. Multho�,
V. Ntziachristos, "Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation
imaging deep in tissues," Nature Communications, vol. 7, pp. 12121, 2016
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Chapter 7

Spatiospectral denoising framework

for multispectral optoacoustic

imaging based on sparse signal

representation

7.1 Summary

The work �Spatiospectral denoising framework for multispectral optoacoustic imaging based on
sparse signal representation� is authored by Stratis Tzoumas, Amir Rosenthal, Christian Lutzweiler,
Daniel Razansky and Vasilis Ntziachristos. The version herein (Appendix F) is published in the
journal �Medical Physics� [78].

Accurate molecular and physiological MSOT imaging demands the acquisition of optoacoustic
signals at multiple excitation wavelengths as well as repetitive signal acquisition and averaging for
minimizing the in�uence of electronic noise. Due to the limited repetition rate of pulsed lasers, this
demand may compromise the temporal resolution of MSOT imaging. The development of denoising
methods which prevent the need for signal averaging in time could potentially advance the dynamic
capabilities of the technology.

In this work, a denoising method is developed for MSOT imaging by exploiting the inherent spar-
sity of multispectral optoacoustic signals both in space as well as across the spectral dimension. By
reviewing fundamental characteristics of multispectral optoacoustic signals in space and across exci-
tation wavelengths, a combined spatiospectral transformation is proposed for o�ering an appropriate
sparse representation of such signals. The localized and broadband nature of optoacoustic signals
in time is captured through a wavelet transform while the inherent compressibility of the signals
in the spectral domain is captured through a Karhunen-Loève transformation. Noise suppression
is achieved in the following by applying thresholding on this combined wavelet - Karhunen-Loève
representation of the signals or images. For validating the accuracy of the method simulations are
formed where white Gaussian noise or parasitic noise is superimposed onto experimental MSOT
signals of in vivo tissue. Purely experimental data containing parasitic noise are further collected
for evaluating the direct applicability of the method.

The combined representation proposed allows for representing MSOT data in a particularly
sparse manner, as evaluated through a Lorenz curve analysis. Moreover, the denoising method pro-
posed allows for e�cient noise suppression with minimal signal loss and considerably outperforms
previously proposed denoising strategies, based on wavelet thresholding, that do not consider mul-
tispectral information. Importantly, the sparse representation proposed o�ers promise for further
applications such as the enhancement of image reconstruction speed, which is implemented in a
follow-up study [140].

I conceived and designed the spatiospectral denoising algorithm with the help of Amir Rosenthal.
I implemented the denoising method, collected the experimental data and implemented the simu-
lations for the quantitative validation of the method. I drafted the article which was continuously
improved through discussions with all other co-authors.
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7.2 Publication

S. Tzoumas, A. Rosenthal, C. Lutzweiler, D. Razansky, V. Ntziachristos, "Spatiospectral denoising
framework for multispectral optoacoustic imaging based on sparse signal representation," Medical

Physics, vol. 41, no. 11, pp. 113301, 2014.
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Unmixing Molecular Agents From Absorbing Tissue
in Multispectral Optoacoustic Tomography
Stratis Tzoumas*, Nikolaos C. Deliolanis, Stefan Morscher, and Vasilis Ntziachristos*

Abstract—Detection of intrinsic or extrinsically administered
chromophores and photo-absorbing nanoparticles has been
achieved by multi-spectral optoacoustic tomography (MSOT).
The detection sensitivity of MSOT depends not only on the signal
to noise ratio considerations, as in conventional optoacoustic (pho-
toacoustic) tomography implementations, but also on the ability to
resolve the molecular targets of interest from the absorbing tissue
background by means of spectral unmixing or sub-pixel detection
methods. However, it is not known which unmixing methods are
optimally suited for the characteristics of multispectral optoa-
coustic images. In this work we investigated the performance of
different sub-pixel detection methods, typically used in remote
sensing hyperspectral imaging, within the context of MSOT. A
quantitative comparison of the different algorithmic approaches
was carried out in an effort to identify methods that operate opti-
mally under the particulars of molecular imaging applications. We
find that statistical sub-pixel detection methods can demonstrate
a unique detection performance with up to five times enhanced
sensitivity as compared to linear unmixing approximations, under
the condition that the optical agent of interest is sparsely present
within the tissue volume, as common when using targeted agents
and reporter genes.

Index Terms—Molecular imaging, multispectral imaging, optoa-
coustic/photoacoustic tomography, spectral unmixing, sub-pixel
target detection.

I. INTRODUCTION

O PTOACOUSTIC tomography, also termed photoa-
coustic tomography, is a highly promising biological and

medical imaging method capable of producing high resolution
optical images of tissues. The ability to image oxygenated and
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deoxygenated hemoglobin and a variety of fluorochromes or
photo-absorbing dyes and nanoparticles has been now well
documented [1]–[8]. Optoacoustic imaging is performed by
illuminating the object of interest with transient light intensity,
which causes a thermo-elastic expansion of the absorbing
moieties within the object and generates broad-band ultrasonic
waves. These ultrasound waves can then be reconstructed into
a 2-D or 3-D image using filtered back-projection algorithms
[9] or model-based approaches [10], [11], the latter typically
providing better quantification.
Of particular importance to biomedical research is the use

of multispectral methods, capable of resolving different chro-
mophores of biological importance [12]. Multispectral optoa-
coustic tomography [13] has been shown capable to visualize
inflammation [14] and cancer targeting agents [15]–[17], ge-
netically expressed proteins [12], [18]–[20] or photo-absorbing
nanoparticles [21]–[24] at depths and resolutions that were not
available previously to optical methods. MSOT involves the il-
lumination of tissues with light at different wavelengths in the
visible and near-infrared region of the spectrum, typically gen-
erating datasets, at three geometrical dimensions and along the
spectral and time dimension, the latter demonstrated studying
for example the dynamic fluorochrome bio-distribution in vivo
[25].
Related to the work herein is the sensitivity and specificity

achieved by different spectral processing methods to resolve in-
trinsic (expressed) and extrinsic (injected) chromophores and
photo-absorbing nanoparticles from the absorbing tissue back-
ground. In particular, while it can be easily predicted that, given
a number of wavelength observations, different spectral pro-
cessing (spectral unmixing) methods will have different abil-
ities to extract the bio-distribution of such chromophores, the
particular performance of different approaches in the context
of MSOT has not been yet studied. The term sensitivity refers
here to theminimum amount of the absorbing agent necessary in
order to be detectable using multispectral methods, while speci-
ficity refers to the minimization of false positives in this extrac-
tion procedure.
MSOT presents a rather unique spectral problem, whereby

depth can alter perceived spectral features and complicate the
unmixing problem. Optical fluence attenuation with depth in-
troduces changes in the detected spectral responses of the ab-
sorbing chromophores in tissue, as compared to their spectral
signatures measured in the photospectrometer. Moreover, since
the optical agents of interest appear usually in a mixture with in-
trinsic tissue chromophores (e.g., blood), their spectral response
will typically appear in a linear combination with background
tissue spectral responses.

0278-0062 © 2013 IEEE
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The problem of separating all intrinsic and extrinsic tissue
chromophores in the context of quantitative optoacoustic
spectroscopy has been previously formulated as a com-
plex nonlinear inversion (or nonlinear image reconstruction)
problem [26]–[28]. Nonlinear inversion approaches based
on light propagation models have been considered for quan-
titatively separating all distinct chromophores within tissue
[26], [29]–[31]. However, due to the high dimensionality,
complexity, and ill-posed nature of the inversion problem, such
methods are being so far mainly restricted to simple phantoms,
or tissue cases with very simple structure. In the case of experi-
mental tissue imaging, a variety of spectral processing methods
spanning, from simple image subtraction at two different wave-
lengths [2], intraclass correlation [3], and linear least squares
fitting using dictionary based spectra of tissue absorption [12],
[15], [17], [19], to more sophisticated, blind-source separation
algorithms such as independent component analysis (ICA) [32]
have been reported. ICA has been found to perform better than
linear least squares fitting [33] for the extraction of extrinsic op-
tical absorbers. Limitations have been also identified however.
Blind approaches produce a number of components that need
to be visually inspected by an expert to select the most relevant
one based on experience and prior knowledge, an approach that
may introduce uncertainty. An additional complication is that
such methods cannot possibly provide confidence limits on the
result produced for detection with high specificity.
The aim of this paper was to investigate different algo-

rithmic approaches for the detection of molecular agents in
the context of MSOT, provide an accurate framework for the
evaluation of their performance under different conditions, and
identify optimal directions for tissue imaging. In Section II,
the problem is theoretically described and formulated and
the key concepts and major challenges of the MSOT-related
spectral unmixing are introduced (Section II-A). Additionally,
a short review of the state-of-the-art optical target detection
algorithms developed and used in remote sensing hyperspectral
imaging is presented (Section II-B), considering structured,
statistical and blind unmixing approaches. In the methodology
(Section III), simulations are initially performed to estimate the
magnitude of the MSOT-related spectral uncertainty expected
in tissue measurements (Section III-B). To tackle the challenge
of a quantitative evaluation, an extensive synthetic dataset
is compiled (Section III-C1) that is based on experimental
MSOT measurements, and the study is further supported
using two experimentally collected datasets (Section III-C2)
with known ground-truth. A comparison of the different de-
tection approaches is presented for both datasets in terms of
sensitivity (Sections IV-B, IV-C, IV-D) as well as specificity
(Section IV-E), while the concluding remarks on algorithmic
performance, optimal choices and future research directions
are presented in Section V.

II. BACKGROUND

The following section initially provides theoretical back-
ground and discusses practical considerations regarding the
MSOT related unmixing problem (Section II-A). Moreover, it
introduces the main categories of optical target detection algo-
rithms developed and applied in remote sensing hyperspectral

imaging (Section II-B), discussing their properties and their
potential application in the case of MSOT.

A. Formulation of the Unmixing Problem in MSOT

1) Mixed Pixel and Spectral Unmixing: The contrast of
MSOT imaging is due to photo-absorbing moieties that can
be intrinsic to tissue, for example hemoglobin or expressed
molecules (e.g., fluorescent proteins) or extrinsically adminis-
tered such as fluorescent agents or nanoparticles. Despite the
generally high resolution of MSOT imaging, this is typically
not high enough to resolve substances in a molecular level. For
this reason, each MSOT pixel (voxel), corresponds usually to
more than one photo-absorber and has a spectral response that
is a linear combination of the spectral responses of all these
absorbers. Due to this per pixel spectral mix, we will refer to
the MSOT pixel as a “mixed pixel,” and the molecular targets
of interest as “sub-pixel” targets. Since the targets typically lie
in a sub-pixel level, only spectral unmixing related methods
can produce robust solutions for this problem.
Spectral unmixing is then a process of estimating the discrete

material components with distinctive spectral signatures from
multispectral measurements [34]. The most popular mixing
model is the linear mixture model (LMM), which assumes that
the measured spectrum is a linear combination of a number of
distinctive spectral signatures

(1)

whereby is a matrix, with being the number
of wavelengths and the image dimensionality (number of
pixels), representing the multispectral measurements. is a

matrix, with representing the number of distinct
components, containing the distinct spectral responses of the
different materials, also called end-members. is the
unknownmatrix containing the amount of each distinct material
in the mixed pixel, also called the abundances. Finally, is the
noise associated with the measurements or the model error.
2) Uncertainty in the Spectral Responses of the Absorbers:

The most prominent tissue optical absorbers are oxygenated
and deoxygenated hemoglobin, nevertheless water, lipids,
melanin and various other metabolites and structural elements
can also have an influence on the measurements. The unique
spectral signatures of such elements are generally known. How-
ever, MSOT can achieve high-resolution deep tissue imaging
and, in this case, the individual spectral responses of various
photo-absorbers measured by MSOT are expected to change
due to the wavelength-dependent light propagation in tissue,
a phenomenon that is also referred to as “spectral coloring”
[28]. As light propagates from shallow to deep tissue it is
absorbed by the tissue intrinsic chromophores. This absorption
is dependent on the wavelength, which means that different
wavelengths of optical excitation attenuate differently with
depth. In other terms, if the optical fluence incident on tissue
surface has a flat (uniform) spectral distribution, the spectral
profile of photons reaching different positions at different
depths would be nonuniform with the nonuniformity increasing
generally with depth. Since each absorber in deep tissue is
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illuminated by an unknown, nonuniform spectral profile of op-
tical fluence incident, its corresponding spectral response will
deviate also from its original spectral signature. This phenom-
enon of “spectral coloring” has been observed in multispectral
optoacoustic measurements and discussed in literature [28],
[35]. For a mathematical formulation of this phenomenon, let
us assume a position within tissue. Then, the absorption spec-
trum, measured by MSOT, would be proportional to a
nonlinear mixture model of the local absorbers, as described in

(2)

In (2), denotes the wavelength and is the spatially
varying function of optical fluence with respect to wavelength.
is the spectral signature (also termed end-member) of the

absorbing component ( , where
is the wavelength dependent molar extinction coefficient of
the material). Finally, indicates the amount (also termed
abundance) of the absorbing component present at a position
( , where is the molar concentration
of the component at position ). Several heuristic methods
have been proposed in order to estimate directly from
optoacoustic images [36], [37], whereas other methods attempt
to estimate simultaneously and using a light
propagation model and solving the nonlinear inversion problem
[29], [30], [38]. Due to nonuniqueness and the ill-posed na-
ture of the optical fluence problem, as well as uncertainties
associated with estimating the optical properties of tissue, such
heuristic and model based approaches may not be sufficiently
robust in tissue measurements with high heterogeneity and
structural complexity.
In addition to the “spectral coloring” phenomenon that is

introduced due to optical fluence attenuation, inexact solutions
of the acoustic inversion problem, exemplified in limited-view
setups, and optoacoustic signal distortions, may superimpose
negative values in parts of the image [39], and thus negative
spectra. Such negative values are common in optoacoustic
reconstructions, and, although lacking physical meaning, they
may still contain valuable structural and spectral information
regarding the presence of a molecular target. Moreover, the pos-
sible influence of additional, unaccounted for, tissue absorbers,
the electronic noise and laser power fluctuations, typically
present in experimental measurements, further complicate
the spectral unmixing problem. All these challenges typically
encountered in biological tissue images lead in the following
to the consideration of statistical methods for addressing the
unmixing problem.
3) Intensity Modulations With Depth: An additional com-

plication induced due to optical fluence attenuation, besides
spectral coloring, is the attenuation of the MSOT signal inten-
sity in different pixels across the image, as a function of depth
and optical properties. In ideal reconstructions, the intensity
of optoacoustic images is expected to drop rapidly with tissue
depth. However in practice the image intensity also depends on
a number of additional parameters, like the instrumentation and
the frequencies utilized by the imaging system, the focal area
and sensitivity field of the ultrasound sensors, the frequency

dependent ultrasound attenuation, as well as the reconstruction
algorithm used for image formation. This observation also
directed herein the consideration of unmixing algorithms that
operate in a scale invariant manner, so as to avoid algorithmic
bias towards high intensity image areas.

B. Optical Target Detection Algorithms

In contrast to the typical linear and nonlinear spectral un-
mixing methods, which attempt to resolve all the spectrally dis-
tinct components present in the image, sub-pixel detection algo-
rithms [40], [41] focus only on the detection of a distinct spectral
target. In this manner they ignore and suppress other absorption
contributions considered as background clutter, offering more
flexibility in modeling the background also as a multivariate sta-
tistical distribution. Sub-pixel detection algorithms are usually
classified into three different categories according the a priori
knowledge they assume regarding the target and background
end-members. Representative algorithms of each category are
presented here.
1) Known End-Members: Under this category lie algorithms

that require full prior knowledge of the spectra of the target as
well as the background. A popular algorithm in this category is
the orthogonal subspace projection (OSP) [42], that is given by
the following equation:

(3)

whereby is the estimated abundance of the target of
interest in each image pixel; is a vector containing
the target spectrum; , where is the
identity matrix, is the matrix containing the spectra
forming the background, and is the
pseudo-inverse of the matrix . The purpose of operator is
to remove from the measurements the part that belongs to the
background. In the application of the OSP to MSOT images, the
matrix contains the spectral response of the optical absorber
of interest, retrieved from literature or from individual measure-
ments, and the background end-member matrix includes the
spectra that are assumed to form the tissue background. We note
that the detection performance of the orthogonal subspace pro-
jection is equivalent to the one of linear least squares fitting.
2) Uncertainty in Background End-Members: In applica-

tions where the background end-members come with uncer-
tainty, it is preferred that the background is not modeled using
distinct spectra, but as a statistical distribution. Multivariate
normal distributions are usually employed for such modeling.
Although the assumption that the spectral background follows a
normal distribution is not always accurate, Gaussian modeling
usually exhibits good performance in many implementations.
Methods in this category initiated from the detector of Kelly
[43] that is derived using the generalized likelihood ratio (GLR)
approach. The most famous adaptations of this detector are
the adaptive matched filter (AMF) [44] and the scale invariant
adaptive cosine estimator (ACE) [45], that have both found
great application for optical target detection problems in remote
sensing hyper-spectral imaging [40].
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The AMF is defined by

(4)

whereby is the vector corresponding to a specific pixel
(at position ) of the original multispectral data after sub-
tracting the mean from each spectral dimension is
the inverse covariance matrix of the demeaned back-
ground, is the spectrum of the target agent and is the
number of background pixels used for the estimation of the co-
variance matrix . If the value of the scalar test statistic
is larger than a defined threshold, the specific pixel at position
is recognized as a positive target.
Under the assumption that the targets appear with low proba-

bility in the image, all available demeaned multispectral data
( pixels) can be used to estimate the covariance of the back-
ground with maximum likelihood. From an MSOT appli-
cation perspective, the assumption of low target probability re-
stricts the use of the AMF to cases where the target agent is
confined (e.g., tumor targeting with probes or reporter genes)
but it would fail to give accurate results in cases where the op-
tical agent is distributed throughout tissue, as for example in
the case of agents that remain for long in the blood circulation
or in the background tissue. In such cases, a multispectral mea-
surement of the background can be retrieved before injection,
in order to compute the background covariance matrix and
use it in the formula of AMF for successful performance.
A rather intuitive, alternative to the GLR [43], [44], inter-

pretation of the function of the AMF is through the sphering
transformation that it performs. The sphering or whitening
transformation is performed by subtracting the mean from the
multispectral data , and multiplying them with the operator

. The effect of the sphering transformation is crucial
since it suppresses the dominant spectral background contri-
butions, enhancing the spectral outliers. After the sphering
transformation, the image is projected in the direction of the
transformed target spectrum .
The AMF makes the assumption that the local background in

each tested area of the image has the same covariance with
the one that has been calculated from all image pixels. This as-
sumption is not always very accurate, especially in images that
demonstrate significant intensity variations like the multispec-
tral optoacoustic images. The adaptive cosine estimator [45] is
the scale invariant alternative to AMF, and is given by (5). As
it has been discussed in (Section II-A), scale invariance is a key
property for the MSOT case

(5)

Both AMF and ACE share a constant false alarm rate (CFAR)
property [44]. The CFAR property allows the detection value to
be invariant of the background scaling, thus a globalized de-
tection threshold can be defined and applied independently of
the detection scenario. This would enable the definition of con-
fidence limits for such algorithms in the detection procedure,
making them more appropriate for biomedical imaging studies.
3) Unknown End-Members—Anomaly Detection: Anomaly

detection [46] is typically employed when there is no prior

knowledge either on the spectrum of interest or on the back-
ground spectra. In this case, the background is modeled in
a statistical sense and the possible targets (“anomalies”) are
recognized as the spectral outliers, namely pixels that exhibit
significantly different spectrum from their local background.
The detection of such outliers is usually performed by mea-
suring the Mahalanobis distance [46] of each pixel from the
center of the background distribution, or by maximizing or
minimizing higher order statistics by means of projection
pursuit [47] or by using the ICA [48].
Such blind approaches incorporate uncertainty in their perfor-

mance and may not offer optimal characteristics for biomedical
applications. However, since the ICA algorithm has showcased
good performance in the extraction of molecular agents [32],
[33], we included a version of the ICA algorithm in the evalua-
tion presented in the next sections. ICA also employs a sphering
transformation as a preprocessing stage, including all the associ-
ated advantages (background suppression and enhancement of
spectral outliers) and limitations (assumption of low probability
targets). Instead of a direct projection on a known spectrum
though, it iteratively maximizes non-Gaussianity using higher
order statistics, such as kurtosis, for the extraction of indepen-
dent components and their corresponding spectral responses. In
MSOT applications, one of these independent components cor-
responds usually to the optical agent of interest and is identified
as the component with a spectral response that is visually “sim-
ilar” to the one of the photo-absorber of interest.

III. METHODS

A. Algorithm Implementation and Application in the Context
of MSOT

The OSP, AMF, and ACE algorithms are implemented
in MATLAB according to the equations of paragraph
(Section II-B). The background spectra , in the case of
OSP, and the spectrum of interest are taken from literature
and interpolated to the wavelengths used in the specific imaging
case. Assuming that hemoglobin is the major tissue absorber,
the spectra of Hb and HbO are used in OSP to model the back-
ground, ignoring any spectral coloring phenomena discussed
in (Section II-A2). A flat spectrum is additionally included for
background modeling, as it has been experimentally found to
increase the unmixing performance in MSOT measurements
[17]. Finally, in the case of AMF and ACE all available pixels
of the multispectral images are used for the calculation of the
background covariance matrix .
Since ICA demands a step of manual component selection it

cannot be included as such in an automated evaluation process.
In an effort to make ICA more robust and automatic, we search
for a single independent component, while constraining the re-
sulting spectrum to lie “close” to the theoretically expected one.
This constrain can be employed in the context of semi-blind
ICA framework proposed and explained in [49] which was im-
plemented using the FastICA [50] algorithm. The optimization
procedure of ICA is adapted so that the resulting spectrum re-
sembles the a priori known target spectrum, with respect to a
correlation tolerance. Such a correlation tolerance can vary from
0 to 1, with 0 promoting purely statistical independence and 1
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indicating complete spectrum constrain. In this way the appli-
cation of ICA may become automatic and the step of compo-
nent selection is eliminated. We note that when the correlation
tolerance is 1, semi-blind ICA is theoretically equivalent to the
adaptive matched filter without though the CFAR property. In
the following we experiment with varying values for the cor-
relation tolerance, to explore possible advantages of statistical
independence against pure spectral priors.

B. Simulation of Photon Propagation and “Spectral Coloring”
in Deep Tissue

To gain estimates on the spectral coloring phenomenon
(Section II-A2) expected in tissues, we employed numerical
simulations of light propagation in a tissue-mimicking model.
The simulations were based on a 2-D finite element solution
of the diffusion equation [51], which is typically used to
model light propagation in turbid media [52]. We assumed a
uniform hemoglobin distribution at a constant oxygen satu-
ration level for background tissue modeling, and a geometry
of a circular tissue slice with a radius of 1 cm. In such ideal
conditions, the wavelength-dependent photon fluence
can be calculated as a function of depth, . An estimation of
the deep-tissue “colored” versions of the original
end-members of various chromophores, was calculated
through a multiplication with the estimated photon fluence

. The background tissue spectral
curves were normalized so that the absorption coefficient at
the isosbestic point of 800 nm was kept constant at
cm , whereas the reduced scattering coefficient was also con-
sidered constant at cm . These values were selected
as representatives to realistic optical properties of tissue in the
near infrared [51]. The results of the simulation are presented
in (Section IV-A), while the light propagation model itself is
used in (Section III-C1) for the production of a close-to-reality
synthetic MSOT dataset.

C. Synthetic and Experimentally Collected MSOT Datasets

To overcome the challenge of accurate and quantitative eval-
uation of the different algorithmic approaches, we have com-
piled close-to-reality synthetic datasets (Section III-C1), based
on experimental MSOT images of animals. Moreover, ex vivo
and in vivo (Section III-C2) datasets have been collected, where
ground-truth on the approximate position of themolecular target
of interest was available.
All optoacoustic images used in this study were acquired

using an experimental multispectral optoacoustic system [13],
[53]. The system utilizes an ultrasound array of 64 elements
covering a limited angle view of 172 . The ultrasound array is
focused in a 2-D plane, resulting in an in-plane resolution of 150
m and an elevational resolution of approximately 800 m. The
ultrasound sensors have a central frequency of MHz with

dB bandwidth of % and an approximate sensitivity of
V/Pa. For laser excitation, a tunable optical parametric

oscillator laser is employed delivering pulses ( ns) at 10
Hz repetition rate. Tissue illumination is achieved through a
number of fiber bundles deployed appropriately to create a uni-
form illumination ring of mmwidth on the surface of the an-
imal, which is exposed to a maximal fluence of mJ cm at

750 nm. Since the laser power varies between wavelengths and
individual pulses, the per-pulse energy of the laser is measured
using a laser diode in order to appropriately scale the signals be-
fore image reconstruction.
1) Synthetic Datasets, Based on Experimental MSOT Im-

ages: In order to create a close-to-reality validation dataset with
exact knowledge of the position, boundaries and relative absorp-
tion of a molecular target of interest, the concept of target im-
plantation [54] was employed and adapted to the MSOT case.
Four synthetic datasets corresponding to two different tissue
backgrounds and two different molecular targets were formed
in this manner as explained analytically below.
Two different multispectral images were acquired from the

regions of the brain and the kidneys of a nude mouse [Fig. 1(a)],
at 20 uniformly sampled wavelengths from 700 nm to 890 nm
with a step of 10 nm. Before image reconstruction, signals
are subject to denoising, performed by a 100-times repetitive
signal acquisition and averaging, and band-pass filtering within
the bandwidth of the ultrasound sensors. The resulting signals
corresponded to a measured peak SNR of dB. Image
reconstruction was performed using a model-based inversion
approach [10], [11] and Tikhonov regularization during the
inversion procedure for reducing reconstruction artifacts due
to limited angle view. The two resulting multispectral optoa-
coustic images, serve as the tissue background on
which molecular targets are artificially implanted.
After image reconstruction, the tissue area is manually seg-

mented and a finite element solution of the diffusion approxima-
tion is computed, based on this geometry, to simulate the optical
fluence for different wavelengths. Uniform optical properties of

cm and cm at 800 nm were assumed,
and a uniform background oxygenation of 70% [Fig. 1(b)].
On each of the multispectral backgrounds cor-

responding to brain and kidneys, molecular targets with the
spectral specifications of Indocyanine Green (ICG) and In-
tegriSense750 were locally added creating thus four distinct
datasets, each corresponding to a specific background-agent
scenario (namely Brain with ICG, Brain with IntegriSense750,
Kidneys with ICG, and Kidneys with IntegriSense750). Each
one of these datasets consists of six image instances where the
target agent has been implanted at different randomly selected
regions of interest (ROI) within the tissue area. Such regions
(ROIs) were set to be small disks of 4-pixel radius [Fig. 1(c)]
simulating small orthotopic tumors within tissue. According to
the position of the implanted molecular target , and the
wavelength-dependent optical fluence simulations , the
colored spectrum of the agent was calculated according to
(6) [Fig. 1(d)]

(6)

The resulting colored spectrum is in the following
appropriately scaled according to the relative position of the
molecular agent in tissue and the optical fluence model as-
sumed. This is achieved by multiplying the spectrum with the
norm of optical fluence across the wavelengths for the specific
position, . An additional scaling factor aims
to match the spectrum with the background scaling, accounting
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Fig. 1. Creation of a synthetic MSOT dataset. (a) Acquisition of multispectral
backgrounds from real measurements. (b) Segmentation of tissue area and ap-
plication of a diffusion approximation light propagation model. (c) Selection of
a ROI for the implantation of a molecular target. (d) Calculation of target spec-
tral coloring according to its position in tissue. (e) Impact of the agent on the
spectral background for different simulated agent concentrations corresponding
to a peak absorption coefficient from 5 cm to 0.01 cm .

for a number of system absolute values such as the system
scaling, the transducer sensitivity, the absolute illumination
and the Grüneisen parameter that is hereby assumed constant.
The calibration factor is computed after comparing the
optoacoustic image of a phantom with known optical properties
with its theoretically expected absorption as predicted by its
optical properties and the optical fluence model assumed.
More specifically the phantom consists of a cylindrical (2 cm
diameter) scattering medium (1% solution of intralipid), with a

cylindrical india ink insertion in the middle (3 mm diameter)
with an absorption coefficient of cm at 700 nm,
as measured using a photospectrometer.
In a final step, for each image instance, different levels of ab-

sorption are simulated for the target agent by superimposing the
appropriately scaled spectrum in the re-
gion of interest, multiplied with 25 logarithmically decreasing
simulated absorption coefficients [as in (7)] spanning from
5 to 0.01 cm [Fig. 1(e)]. The simulated absorption coeffi-
cient values correspond to the peak absorption of the target
agent. In this manner close-to-reality synthetic MSOT images

are formed that contain a component of an extrinsic
optical agent at a known region, and with gradually decreasing
simulated levels of absorption. A pipeline describing the cre-
ation of such a dataset is visualized in Fig. 1

(7)

The main advantage of the technique described above is that
it creates multispectral images where the exact knowledge of the
position and area covered by the target component is available,
while including all challenges encountered in experimental in
vivo measurements. Moreover it enables the compilation of an
unlimited dataset of different agent and background scenarios,
with gradually decreasing agent “concentrations.” We hereby
note that the simulated absolute values of absorption of
the target agent are subject to a number of assumptions (tissue
optical properties, constant Grüneisen parameter) and addi-
tional system effects (i.e., spatial and acoustoelectric impulse
response) not considered here. However, it is only the relevant
values that are of interest in the context of this study for the
comparative evaluation of the algorithmic performance, that is
demonstrated in (Section IV-B).
The detection performance of the different algorithmic ap-

proaches may depend on a number of experimental and system
parameters that affect the ability of unmixing algorithms to suc-
cessfully model the target and background spectral variability.
Such parameters include the levels of electronic noise (that re-
late to the detectors’ sensitivity and optical fluence), the spectral
band of illumination (wavelength sampling) and the laser power
fluctuations with wavelength.
For investigating the algorithmic performance under different

noise levels, random Gaussian noise, independent and of the
same standard deviation across all projections and wavelengths,
was artificially superimposed to the initial signals of the Brain
and Kidneys background before image reconstruction. In this
manner, five additional datasets were formed, corresponding to
peak SNR levels in the signal domain, from 20 to 34 dB. For
testing the algorithmic performance with respect to the number
of excitation wavelengths utilized, the initial multispectral
dataset, corresponding to 20 wavelengths, is subsampled in
order to create six additional datasets corresponding to a
varying number of uniformly sampled wavelengths, from 16 to
5. Finally, for investigating the effect of laser power fluctuation
on the algorithmic performance, the multispectral images are
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multiplied with a random vector of mean 1 and a standard
deviation varying from 0.01 to 0.1. The effect of such system
parameters in the algorithmic performance is demonstrated in
(Section IV-C).
2) Ex Vivo and In Vivo Experimental Data: An ex vivo

dataset collected for evaluation purposes consists of MSOT
measurements obtained from euthanized nude mice .
In two of these mice the esophagus was filled with Cy7 fluo-
rochrome with peak absorption coefficient of 4.6 cm and 2.3
cm . In the third mouse, a capillary tube has been inserted
through the esophagus and filled with Cy7 at varying levels
of peak absorption, namely 14.7 cm , 7.4 cm , and 3.7
cm . Imaging was performed in the lower neck region at
30 wavelengths from 690 nm to 835 nm with a step size of 5
nm. Signal denoising was performed by averaging a hundred
signal repetitions and the images were reconstructed using
model-based inversion.
In vivo measurements were obtained from nude mice = 4)

with orthotopically implanted brain tumors, genetically ex-
pressing a fluorescent protein (FP). The tumors were implanted
at different depths in the brain and their positions were located
with post mortem cryoslicing fluorescent imaging [55]. MSOT,
performed in vivo, obtained 21 sequential slices per mouse at
a step of 1 mm across the entire mouse brain, covering the
entire mouse brain. The wavelengths used for this application
are from 690 nm to 720 nm with a step of 5 nm plus 730 nm,
750 nm, 770 nm, 800 nm, and 830 nm. Signal denoising was
performed by averaging 20 signal repetitions, and the images
were reconstructed using model-based inversion.

D. Evaluation Consideration

1) Evaluation in Terms of Sensitivity: In order to compare the
different detection approaches in terms of sensitivity, a metric
defining whether a target is visible or not needs to be applied.
We assumed that a target was visible if it could be distinguished
from the background, and no considerable false positives were
involved. False positives were defined as the background pixels
with detection values that were larger than the mean detection
value of pixels corresponding to the actual signal. In this respect,
we can define a target as visible if it satisfies the following in-
equality:

(8)

where is the image returned by the detection algorithm,
is the image region that corresponds to the component of in-
terest, the region corresponding to the background and
is the mean detection value of the target pixels. This detection
metric enables a quantitative comparison of the sensitivity limits
of different algorithmic approaches (Section IV-B) on the syn-
thetic dataset (Section III-C1). Since each imaging instance of
the synthetic dataset includes a target implanted in gradually de-
creasing simulated levels of (peak) absorption coefficient from

cm to cm , the sensitivity limit for
an unmixing algorithm on the specific imaging instance can be

defined as the lowest agent absorption level where the implanted
target is successfully detected according to metric (8).
In the cases of ex vivo and in vivo datasets, since the exact po-

sition and area of the component of interest cannot be possibly
extracted with accuracy, no quantitative evaluation is ventured.
The detected components overlaid on the original optoacoustic
images are presented instead, for a qualitative visual compar-
ison (Section IV-C).
2) Evaluation in Terms of Specificity: A detector can be con-

sidered to operate with high specificity if it has a negligible
false alarm rate. When a detector has a constant false alarm
rate (CFAR) property (Section II-B2), the detection value is
relatively immune to background structure and scaling, thus
a globalized detection threshold associated with some specific
false alarm rate can be defined and applied independent of the
imaging scenario. This possibility bears a major significance
from an application perspective, since it would enable utilizing
MSOT imaging in biological studies with high specificity, and
without any need of prior knowledge on the expected result or
validation using other imaging modalities.
By applying the adaptive matched filter and the adaptive co-

sine estimator to the artificial dataset (Section III-C1), we are
able to define a threshold for high confidence detection, that al-
lows a minimum amount of 0.03% false positives on it (less
than 12 pixels for a 200 200 image). This threshold is not
applied in the evaluation for reasons of consistency with the
OSP and the semi-blind ICA, but its application is presented
in (Section IV-E).

IV. RESULTS

A. Spectral Coloring in Deep Tissue Calculated From Optical
Fluence Simulations

Herein the results of the light-propagation simulations of
(Section III-B) that estimate the optical flux related “spec-
tral coloring” are presented. Fig. 2(a) and (b) presents the
depth-profile of optical fluence for a number of different wave-
lengths, for the case of a background oxygenation of 30% and
90%, respectively. Fluence ratios for different wavelengths
are provided for 1 cm depth under the figures, indicating
great discrepancies among different wavelengths. Fig. 2(c)–(f)
demonstrates the effect of the wavelength dependent optical
fluence in the measured spectra. The figure presents the nor-
malized colored versions of the spectral signatures of intrinsic
tissue absorbers (HbO , Hb) and molecular agents (Cy7)
under varying background tissue conditions. The green curves
correspond to the initial spectral signatures of the absorbers,
the red curves to the expected coloring in 1 cm depth, and the
black areas to intermediate cases. All curves are normalized to
disregard any scaling involved and highlight the changes in the
shape of the spectra. The spectral coloring is computed after
multiplying the original spectral signature with the optical flux

, calculated from the simulations in (Section III-B).
Since hemoglobin can be found in varying oxygenation levels
in different regions of biological tissue, a wide spectrum of
uniform background oxygenations is being considered by
the simulations. Fig. 2 presents spectral coloring examples
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Fig. 2. Spectral coloring of optical absorbers in deep tissue. (a), (b) Profile
of optical fluence with depth for a number of important wavelengths, for two
different background oxygenation levels (30% and 90%, respectively). (c)–(f)
Estimated spectral coloring due to the wavelength dependent optical attenuation
for HbO2, Hb, and Cy7, respectively, for background oxygenations of 30% [(c),
(e)] and 90% [(d), (f)]. The green curve corresponds to the original spectrum
while the red one to the spectrum expected in 1-cm-deep tissue. Black areas
correspond to intermediate cases.

under the assumption of 30% [Fig. 2(c) and (e)] and 90%
[Fig. 2(d) and (f)] uniform background tissue oxygenation.
Fig. 2 highlights the inherent physical complexity of the

MSOT-related unmixing problem, introduced due to optical
fluence. Since each absorbing molecule can have a different
spectral response depending on its position, exact modeling
of the targets as well as the background is not feasible using
a finite number of distinct spectra in a linear mixture model.
The diffusion approximation model that has been used here
is a well-established method for modeling light propagation
in tissue [38], [52]. While there is in general significant un-
certainty in estimating the exact optical properties of tissue,
the representative values used here can offer good insight
to the extent of the spectral coloring phenomenon expected
in measurements on animals. Corresponding effects of this
phenomenon can be observed in tissue-mimicking phantoms as
well as multispectral optoacoustic measurements of tissue [35].

B. Detection Performance on the Synthetic Datasets

In this section, we summarize the results of the performance
comparison of the considered sub-pixel detection algorithms
on the synthetic datasets described in (Section III-C1). In each
image instance of the synthetic datasets, the target absorber has

Fig. 3. Sensitivity limits of the different algorithmic approaches for the four
discrete synthetic datasets. (a) Comparison between structured and statistical
approaches. (b) Comparison between blind and deterministic statistical ap-
proaches. The sensitivity limit (y axis) is defined as the minimum simulated
peak absorption coefficient of the agent that is required for successful
detection, according to (8).

been added in gradually decreasing amounts corresponding to a
simulated peak absorption coefficient from cm to

cm . Each detection algorithm is applied conse-
quently to all multispectral images from higher to lower target
amount until the target is not detectable. The lowest success-
fully detected , [according to (8)] is stored for each case
and its value corresponds to the sensitivity limit of the detection
algorithm on the specific image instance. A sensitivity matrix
is computed for each distinct dataset (e.g., brain—ICG) after
applying each unmixing algorithm to all six image instances
(where the agent has been implanted in a different position),
storing the calculated sensitivity (in cm ) for each case.
In Fig. 3 statistics of these matrices in terms of mean and

standard deviation are presented for each distinct dataset and
all algorithms considered. The bar height indicates the average
sensitivity limit of a specific algorithm on all six image in-
stances of a distinct dataset. The error-bar corresponds to the
standard deviation of the sensitivity limits in that set. A lower
sensitivity limit demonstrates better detection performance
since the algorithm is able to extract the agent of interest
in lower concentrations. Fig. 3(a) shows a direct compar-
ison between structured (OSP) and statistical (AMF, ACE)
unmixing algorithms, while Fig. 3(b) evaluates the perfor-
mance of semi-blind-ICA under varying spectral constrains.
Semi-blind-ICA is applied with varying correlation tolerances
from 0.85 to 0.98. Fig. 4 presents two detection examples
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Fig. 4. Detection example from the synthetic dataset. The detection results of
OSP and AMF are overlaid to the anatomical optoacoustic image with red color.
(a) Brain background with an implanted target of ICG at a simulated absorption
coefficient of 0.13 cm . (b) Kidneys background with an implanted target of
Integrisense750 at a simulated absorption coefficient of 0.8 cm . In both cases
the target is successfully detected with the AMF but not with OSP.

where the implanted agent could be detected using AMF but
was below the false positive levels when using OSP.
The evaluation suggests that statistical algorithms such

as AMF and ACE can consistently outperform OSP that as-
sumes known background spectra, increasing the sensitivity
of detection from two [Fig. 3(a)–"Brain-ICG"] to five times
[Fig. 3(a)–"Kidneys-Integrisense750"]. While a significant
variability in the sensitivity limits under different conditions
(background, target agent, location of the implanted target) is
observed, the comparative algorithmic performance appears to
be consistent in all cases.
The performance of semi-blind ICA depends significantly on

the correlation tolerance chosen [Fig. 3(b)]. As the spectral con-
strain increases, the performance of semi-blind ICA increases
also, approaching the performance of AMF. While semi-blind
ICA might converge to the correct “colored” target spectrum at
times, achieving better performance than AMF, it can also di-
verge significantly, converging to an irrelevant solution. This
introduces an uncertainty in the detection performance, which
is also statistically worse than the one of AMF according to
the evaluation. Furthermore, semi-blind ICA starts its conver-
gence process from a random guess, which makes its detection
performance nonreproducible and thus unsuitable for biological
studies. Finally, the performance of AMF and ACE is compa-
rable.

C. Experimental Conditions Affecting the Detection
Performance

In the following the algorithmic performance is investigated
with respect to varying imaging conditions and system parame-
ters, such as the noise levels, the number of wavelengths utilized
as well as intensity errors related to laser power fluctuation.

Fig. 5. Algorithmic performance with respect to system parameters for the Kid-
neys—ICG case. Effect of: (a) noise levels, (b) wavelength sampling, and (c)
laser power fluctuation in the detection sensitivity of the different algorithmic
approaches.

Fig. 5(a) presents the effect of noise in the detection per-
formance of the three algorithmic approaches. Both the AMF
and the ACE demonstrate a gradual performance degradation
with additive random noise which affects their statistical mod-
eling capabilities. The performance of OSP is also influenced by
random noise, in a lower degree however, since the false posi-
tive artifacts that limit its performance mainly stem from image
structures rather than random noise.
Fig. 5(b) compares the algorithmic performance with respect

to the number of wavelengths utilized. All three algorithmic
approaches appear to perform better given a larger number of
wavelengths. The detection performance of ACE appears to be
the fastest one to degrade as the wavelength sampling becomes
sparser, whereas the performance of AMF appears more robust.
OSP demonstrated rather unpredictable performance fluctua-
tions with different wavelength sampling, however the globally
best results are achieved when the full wavelength bandwidth is
used.
Finally, Fig. 5(c) presents the effect of intensity fluctuations

with wavelength to the algorithmic performance, showing that
statistical detection algorithms appear to be relatively immune
to this effect, However, the performance of OSP that relies on
dictionary based spectra for background modeling is highly af-
fected by such kind of noise.
All three graphs [Fig. 5(a), (b), and (c)] correspond to the

Kidneys—ICG dataset, however a similar behavior is observed
in all four agent-background cases.

D. Detection Performance on the Ex Vivo and In Vivo Datasets

Following, a visual qualitative comparison of the detection
results from the different algorithmic approaches is presented
for the cases of in vivo and ex vivo datasets. The detection result
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Fig. 6. (a) Visualization of the detection result of the different algorithms in
the case of two mice of the in vivo scenario (Section III-C2). The detection re-
sults of the different algorithms can be visually compared with the overlay of
the fluorescence (green) on the anatomical images of cryoslicing fluorescence
imaging. (b) Visualization of the detection result of the different algorithms in
the case of the ex vivo scenario (Section III-C2) of euthanized mice with fluo-
rochrome in the esophagus. The position of the fluorochrome should be exactly
in the middle of the reconstructed images (see arrow).

is overlaid onto the optoacoustic image at a single wavelength
for an anatomical reference of the detected component.
The detection images from the in vivo dataset

(Section III-C2), where the target is a fluorescent pro-
tein expressed in tumors in the brain of four mice, are presented
in Fig. 6(a) and Fig. 7. The images correspond to a slice of
the brain containing the tumor. Corresponding cryoslicing
fluorescence images overlaid with the plain color images are
also presented for comparison.
Similarly, the algorithmic performance on two examples of

the ex vivo dataset (Section III-C2) is presented in Fig. 6(b). In
this case the agent component should be exactly in the middle of
the anatomical slice, at the mouse’s esophagus. A black arrow
is pointing the position of the expected component.
The detection performance of the different algorithmic ap-

proaches on the experimental datasets appears consistent with
the evaluation performed on the synthetic one. In the in vivo
case, the adaptive matched filter accurately detects the position
of the tumor in all four cases with an insignificant false posi-
tive rate, whereas the OSP fails to detect it completely in one
case (Fig. 7: Mouse 4) and yields significant false positives, ex-
ceeding the detection value of the actual target, in two other
cases (Fig. 6(a): Mouse 1, Fig. 7: Mouse 3). In the ex vivo case,
statistical detection methods have been found able to success-
fully detect the agent component down to an absorption coeffi-
cient of 2.3 cm , whereas clear detection using the orthogonal
subspace projection was not possible in any case, as the algo-
rithm was constantly producing false positives at much higher
intensities. Being scale invariant, ACE appeared more capable
in capturing the size and the boundaries of the tumors (Mouse
1, Mouse 3), although this is something hard to quantify. More-
over, its performance relies more on the noise levels and the

Fig. 7. Detection results of (a) OSP, (b) semi-blind ICA (corr. tolerance 0.96),
(c) AMF, and (d) ACE in cases of agent present (left) and absent (right) for two
different mice of the in vivo dataset (Section III-C2). In the cases of AMF and
ACE a global threshold (Section III-D2) has been applied. (e)–(f) Validation by
means of cryoslicing fluorescence imaging.

quality of the reconstructed image as scale normalization may
significantly enhance noise. Finally, semi-blind ICA needs to be
significantly constrained in order to converge to a relevant so-
lution (a correlation tolerance of 0.96 had to be used in order to
achieve correct convergence). When the spectral constrain is re-
laxed and smaller correlation tolerances are used, the algorithm
converges to an irrelevant solution in most of the cases, indi-
cating that statistical independence is not a robust standalone
criterion.

E. Comparison in Terms of Specificity

In addition to the comparison in terms of sensitivity pre-
sented before, the specificity of the detection performance
was also investigated. Fig. 7 demonstrates the significance of
applying a global threshold to the detection result in a real
application scenario from the in vivo study (Section III-C2).
The two column groups correspond to mice 3 and 4 of the in
vivo dataset (Section III-C2). The left columns correspond to
axial slices in the brain where there is a tumor and a specific
signal of the fluorescent protein, while in the right ones are
slices where there is no tumor and thus no relevant signal
is present. For the cases of AMF and ACE global detection
thresholds were utilized as described in (Section III-D2). A
non-CFAR algorithm cannot be associated with a globalized
threshold, returning thus a false bio-distribution component
even in the absence of an agent, as well as irrelevant false
positive artifacts when an actual component is present. Such
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detection performance could possibly lead to a wrong diagnosis
if the result is not validated by another imaging modality.

V. DISCUSSION

Theextractionof thebio-distributionofextrinsicopticalagents
injected or expressed in tissue is an important application of
MSOT imaging with a potential to facilitate a wide spectrum of
needs inbiological research, suchas tumor targeting, clearanceof
injected pharmaceuticals or localization of protein expression in
advanced biologicalmodels. The impact of unmixing algorithms
on the resulting diagnosis has been hereby made obvious, espe-
cially by the demonstrated results of the in vivo datasets (Figs. 6
and 7). In general, success of molecular imaging studies for any
biomedical application depends to a large extent on the perfor-
mance of both the system and the algorithms utilized. Specifi-
cally for the case of MSOT, the solution of the nonlinear optical
problem [27], for the accurate extraction and quantification of
chromophores, presents a longstanding challenge that constrains
its successful application in many cases. For the aforementioned
reasons, this paper formulated theMSOT unmixing problem as a
molecular target detection problem, and investigated alternative
methods to the typical inexact linear unmixing and ill-posed non-
linear inversion approaches.
The selection of an appropriate unmixing or sub-pixel detec-

tion algorithm can have a major impact on the sensitivity and ac-
curacy of MSOT defining its capabilities in molecular imaging
applications. However, since the identification of a globally op-
timalmethodcannotbeansweredbasedonpurely theoreticalcon-
siderations, comparative studies of different methods should be
approached employing extensive datasets in a statistical manner
[40]. In the case of MSOT, the production of such datasets con-
stitutes a challenge. Simple phantoms or simulations do not cor-
respond usually to in vivo measurements of animals, typically
oversimplifying tissue imaging conditions, structure and optical
properties. Moreover, a quantitative comparison of algorithmic
performance on experimentally collected datasets is practically
impossible, as it presupposesexactknowledgeof thepositionand
area covered by the molecular component of interest. To over-
come this challenge, in this study we proposed a simple target
implantation technique that has been adapted to the specificities
of the MSOT case. The so created synthetic datasets can enable
a comprehensive and quantitative comparison of different detec-
tion approaches and a thorough evaluation of their performance
under different conditions. To support this evaluation we have
also presented detection examples of in vivo and ex vivo experi-
ments with animals.
Each algorithmic unmixing approach relies on a model to de-

scribe the spectral variability of the background tissue and the
molecular agent of interest. Under the condition of “low target
probability,” which can generally be valid for many molecular
imaging applications, statistical modeling of tissue background
from the available data can significantly outperform standard
structured approaches due to the uncertainties associated with
the measured spectral responses (Section II-A). AMF and ACE
that model the spectral background statistically, employing a
whitening transformation for its suppression have showcased
an enhanced performance in our evaluations, as compared to

OSP which assumes a linear mixture model and a background
following the spectra of hemoglobin. Moreover, it has been
demonstrated that deterministic nonblind approaches can pro-
duce equivalent or better results than blind approaches in terms
of sensitivity, without introducing uncertainty in their perfor-
mance. The AMF demonstrates a more robust performance
than semi-blind ICA in our evaluations, indicating, contrary
to previous belief, that spectral priors for the optical targets
can constitute a much stronger criterion than pure statistical
independence. Finally, proof of principle has been provided that
the CFAR property of the statistical detection algorithms can be
exploited for detection with high specificity, a very important
aspect in the application of the technology in biological studies.
The detection sensitivity of multispectral optoacoustic to-

mography on the one hand depends on the signal amplitude of
the target absorbing agent and on the other hand on the ability
of extracting the agent from the absorbing tissue background.
The first consideration relates mainly to the relative amplitude
of the signal as compared to the background absorption. This
relative amplitude depends on a multitude of case-specific
parameters and system features, such as depth, volume, con-
centration, and absorbance of the molecular agent, tissue optical
properties, the detection sensitivity and frequency bandwidth
of the transducer, the spatial impulse response of the system,
and the image reconstruction approach.
The performed simulations, demonstrate a significant vari-

ance in the sensitivity limits under different conditions like the
depth of the implanted agents the background spectral clutter
and spectral specifications of the target agent. While the target
implantation simulations indeed provide a very realistic plat-
form for comparing the relative detection performance of dif-
ferent algorithmic approaches, a number of assumptions (e.g.,
regarding optical properties and constant Gruneisen parameter)
and additional effects, such as the acoustoelectric and spatial
impulse response of the system and the frequency dependent ul-
trasound attenuation might have a significant effect in the sim-
ulated absolute values of . Specialization of the results for
specific incarnations of optoacoustic imaging for defining abso-
lute sensitivity limits is not attempted here, since many of the
aforementioned parameters are very implementation and case
specific and an argument in this direction would compromise
the generality of the presented analysis.
It is instead aimed at creating a general evaluation framework

for unmixing algorithms in the context of MSOT that includes
all fundamental challenges encountered in experimental tissue
imaging (i.e., spectral coloring effects, optoacoustic signal dis-
tortions, and effects of tomographic reconstructions). Through
this evaluation framework, statistical sub-pixel detection algo-
rithms were identified as the most promising direction for future
application and further research, offering characteristics that ap-
pear very suitable for the particular challenges of the specific
imaging problem. Based on the formulation and the evaluation
framework presented in this paper further studies will be ven-
tured in this direction, both in terms of algorithmic research
as well as in imaging parameter optimization, for enhancing as
well as defining the sensitivity and specificity ofMSOT imaging
in molecular imaging applications.
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Statistical Molecular Target Detection Framework
for Multispectral Optoacoustic Tomography

Stratis Tzoumas∗, Andrii Kravtsiv, Yuan Gao, Andreas Buehler, and Vasilis Ntziachristos∗

Abstract— Statistical sub-pixel detection via the adaptive
matched filter (AMF) has been shown to improve the molecular
imaging sensitivity and specificity of optoacoustic (photoacoustic)
imaging. Applied to multispectral optoacoustic tomogra-
phy (MSOT), AMF assumes that the spatially-varying tissue
spectra follow a multivariate Gaussian distribution, that the
spectrum of the target molecule is precisely known and that
the molecular target lies in “low probability” within the data.
However, when these assumptions are violated, AMF may result
in considerable performance degradation. The objective of this
work is to develop a robust statistical detection framework
that is appropriately suited to the characteristics of MSOT
molecular imaging. Using experimental imaging data, we perform
a statistical characterization of MSOT tissue images and conclude
to a detector that is based on the t-distribution. More importantly,
we introduce a method for estimating the covariance matrix of the
background-tissue statistical distribution, which enables robust
detection performance independently of the molecular target
size or intensity. The performance of the statistical detection
framework is assessed through simulations and experimental
in vivo measurements and compared to previously used methods.

Index Terms— Covariance contamination, molecular imaging,
multispectral optoacoustic tomography, photoacoustic tomogra-
phy, spectral unmixing, statistical sub-pixel detection.

I. INTRODUCTION

MULTISPECTRAL Optoacoustic Tomography (MSOT)
offers high-resolution detection of optically absorbing

reporter molecules at depths beyond the ones reached by
optical microscopy and it is now increasingly considered for
visualizing near-infrared fluorescent proteins, fluorescent dyes
or absorbing nanoparticles, in vivo in small animal or human
studies [1]–[3]. MSOT molecular imaging relies on the iden-
tification of the spectral signature of a reporter molecule from
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the absorbing tissue background and it defines a multispectral
target detection problem [4].

Multispectral target detection is essentially a binary clas-
sification problem where each pixel has to be identified
as target or background. Since the spatial extend of the
target is typically only a small fraction of the whole image,
binary classification algorithms that are based on the min-
imization of the misclassification rate are not well suited
for this problem [5], [6]. Practical multispectral target detec-
tion algorithms are commonly based on the Neyman-Pearson
criterion (maximize the probability of detection while retain-
ing the probability of false alarm under a constant thresh-
old [7]) and are derived using a generalized likelihood ratio
test (GLRT) [5].

Recently, it was shown that the MSOT molecular imag-
ing sensitivity and specificity can be considerably enhanced
through the utilization of GLRT statistical detection methods,
like the adaptive matched filter (AMF) [8], for extracting
weak spectral contributions stemming from molecular agents
of biological significance [4], [9]. AMF allows for statistically
modeling and suppressing the MSOT tissue background, i.e. it
overcomes the challenge of modelling the spectral variability
of tissue using exact spectra. Moreover, by offering a constant
false alarm rate (CFAR), AMF enables molecular imaging of
high specificity, potentially eliminating the need for ex vivo
validation.

AMF would be optimal for MSOT applications if the
spatially-varying background tissue spectra followed a mul-
tivariate Gaussian distribution with known parameters and
the spectrum of the target molecule within tissue would be
known precisely. However, a number of challenges, typi-
cally presented in MSOT molecular imaging applications,
may compromise the detection performance of AMF. First,
the MSOT spectral background may not follow a multi-
variate Gaussian distribution. Second, deep seated molecu-
lar targets, typically exhibit different spectrum than the one
obtained from libraries or individual measurements (spec-
tral mismatch) due to the spectral coloring introduced to
optical absorbers in deep tissue [4]. Third, when the mole-
cular agent is present in high amount within tissue, the
presence of the signal of interest (SOI) within the data
compromises the accurate computation of the background
statistics, i.e. the mean and the covariance matrix, which are
typically computed from all available data with maximum
likelihood. This effect, commonly referred to as covariance
contamination in literature, may cause considerable perfor-
mance degradation [10]–[12]. The two latter effects (i.e. the
spectral mismatch and the covariance contamination) are

0278-0062 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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closely linked since the covariance contamination does not
affect significantly the performance of adaptive processing if
the target signal is precisely known [11], [13].

In this work we introduce a novel statistical detection
framework for resolving molecular agents within the tissue
with multispectral optoacoustic tomography. Using experimen-
tal imaging data, we statistically characterize MSOT tissue
images and conclude to a GLRT detector that is based on the
t-distribution. More importantly, using an archive of agent-
free MSOT tissue images we introduce a novel approach for
estimating the covariance matrix of the background-tissue sta-
tistical distribution. The covariance matrix estimated through
this approach is uncontaminated, thus offering robust detection
performance independently of the molecular target size or
intensity. We validate the performance of the proposed method
statistically using simulations of artificial target implantation
on experimental MSOT data. We further demonstrate the
detection performance in purely experimental MSOT data.

The rest of this manuscript is organized as follows:
In Sec. II, we offer background on the characteristics of
MSOT molecular imaging and introduce statistical sub-pixel
detection in the context of MSOT. In Sec III, we describe the
collection of the imaging dataset and the target implantation
framework that is used for statistically evaluating the detection
performance under different conditions. In Sec. IV we intro-
duce the proposed statistical detection framework. In Sec. V
we quantitatively evaluate the performance of the proposed
statistical detection framework and compare it with currently
utilized methods. Concluding remarks are offered in Sec. VI.

II. BACKGROUND

A. MSOT Imaging of Molecular Targets

The wavelength (λ) dependent and position (r) dependent
multispectral optoacoustic images P(r, λ) can be associated
to the concentrations of the absorbing molecules through the
following relation:

P(r, λ) = C(r)�(r, λ)
∑

i

ci (r)εi(λ) + n(r, λ) (1)

In Eq. (1), �(r, λ) is the space and wavelength dependent light
fluence, εi (λ) are the wavelength dependent molar absorption
coefficients of the optical absorbers (i.e. the absorption spectra)
and ci (r) the unknown associated concentrations at a posi-
tion r. C(r) is a scaling factor associated with system effects
(i.e. the system’s spatial sensitivity field) and the Grüneisen
parameter. Finally, n(r, λ) represents the cumulative effect of
various types of superimposed noise, such as electronic noise
and image reconstruction artifacts.

Quantitative MSOT imaging aims at estimating the con-
centrations of all absorbers within tissue. For achiev-
ing this goal, the unknown optical fluence �(r, λ) must
be estimated and accounted for. Using a light propaga-
tion model, the light fluence can be related to tissue
absorption [μα(r, λ) = ∑

i ci (r)εi(λ)] and scattering coeffi-
cients [μ′

s(r, λ)], i.e. �(r, λ) = �(r, λ;ci (r), μ′
s(r, λ)). Using

this model, non-linear inversion schemes have been proposed
for quantitatively recovering ci (r) and μ′

s(r, λ) [14]. Such non-
linear inversion schemes have been investigated in simulations

and phantoms [15]. Nevertheless, their in vivo application
is still limited, possibly due to the increased complexity of
in vivo tissues. Therefore, the MSOT quantification problem
is considered an unmet challenge [16].

In vivo molecular imaging often seeks to accurately detect
the position and area occupied by a target molecule within the
tissue. In this case, the spectral analysis problem formulates
as a detection problem. By reformulating (1) to separate the
contribution of the tissue background and the target molecule
we obtain:

P(r, λ) = B(r, λ) + ct (r)T (r, λ),

B(r, λ) = C(r)�(r, λ)
∑

i

ci
b(r)ε

i
b(λ) + n(r, λ),

T (r, λ) = C(r)�(r, λ)εt (λ). (2)

In Eq. (2) ci
b(r) and εi

b(λ) are the concentrations and absorp-
tion spectra, respectively, of tissue-intrinsic molecules, while
ct (r) and εt (λ) are the concentration and absorption spectrum
of the extrinsic molecular target. The goal of molecular target
detection is to decide between two competing hypotheses for
each pixel in the image, namely ct (r) = 0 (non-existing
target), or ct (r) > 0 (existing target), for extracting the
position and area occupied by the molecular agent within
tissue. For achieving this, models that capture the background
and the target spectral variability (B(r, λ) and T (r, λ)) are
required. Molecular target detection implies that the amount
of the target to be detected is substantially lower than the
contribution of background molecules. Therefore, throughout
this work it is assumed that the unknown light fluence field
is not affected by the molecular target but only by the back-
ground tissue molecules (Born-type approximation): �(r, λ) =
�(r, λ; ci

b(r), μs′(λ)).
B(r, λ) and T (r, λ) are difficult to be modeled due to the

effects of the light fluence �(r, λ), which is hereby assumed
an unknown function of space and wavelength, and the noise
term n(r, λ). Early spectral optoacoustic methods assumed a
constant light fluence and solved a system of linear equations
for spectrally unmixing all photo-absorbing molecules [17].
Typically, in this linear unmixing approach, the spectra of
oxygenated (Hb-O2 and deoxygenated (Hb) hemoglobin are
used for modeling the background tissue absorption B(r, λ).

B. Statistical Sub-Pixel Detection of Molecular Targets

More recently statistical sub-pixel detection methods were
shown to outperform previous approaches in molecular imag-
ing cases where the target is sparsely present within the
data [4], [9]. Statistical sub-pixel detection methods model the
background spectral variability B(r, λ) using a multivariate
statistical distribution, while the detector is typically derived
through a generalized likelihood ratio test (GLRT) [18].
A well-known algorithm in this category is the AMF [8]:

DAM F (xi) = 1

NsT G−1s
(sT G−1(xi − µ))2 (3)

In Eq. (3), xi is an L-dimensional vector corresponding to
the MSOT intensity of the pixel under test (L being the number
of wavelengths), s is an L-dimensional vector representing
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the absorption spectrum of the target molecule (i.e. εt (λ)). µ

and G are the mean and the covariance matrix (L x L) of
the multivariate Gaussian distribution that models the spectral
background. Under the assumption that the molecular target
lies in “low probability” within the data, the parameters µ

and G of the background statistical distribution can be com-
puted from the all available pixels with maximum likelihood,
i.e. µ = 1

N

∑N
i=1 xi and G = 1

N

∑N
i=1 (xi − µ)(xi − µ)T ,

where N is the number of pixels in the MSOT image.
The performance of statistical detection algorithms depends

on the accurate computation of its parameters, i.e. the mean µ

and the covariance matrix G [19]. If the true covariance matrix
G was known, an inaccurate estimate of the mean value only
affects the scaling of the detection image. Conversely, inaccu-
rate computation of the covariance matrix can have a major
adverse impact on the target detectability [10], [12], [13].
Inaccurate computation of G may result from the prominent
presence of the target spectrum within the pixels that are used
for its computation (covariance contamination). A method
previously considered for mitigating this effect is diagonal
loading [20], i.e. the superposition of a diagonal matrix with
constant entries to the sample covariance matrix multiplied by
a scalar b called loading factor, i.e. Gdl = G + bI. If b is
appropriately selected, diagonal loading has been shown to
mitigate the effects of covariance contamination in hyperspec-
tral imaging [12]. However, the optimal value of b, depends on
the level of contamination, which is generally unknown and
may vary substantially depending on the molecular imaging
application at hand. For this reason, diagonal loading does
not present a robust solution for the MSOT molecular target
detection problem.

III. IMAGING DATA AND TARGET IMPLANTATION

A. Synthetic MSOT Data

The quantitative evaluation of detection algorithms in the
context of MSOT molecular imaging is performed using
artificial target implantation on experimental MSOT data, a
concept that was previously described in [4].

1) Experimental MSOT Dataset of Tissue Background:
Experimental MSOT images of in vivo background tissue were
obtained using an In Vision 256-TF MSOT system (iThera
Medical GmbH, Munich Germany). A previous version of
this system is analytically described elsewhere [21]. The
MSOT scanner acquires 2D images at a transverse slice in
the focal plane of the ultrasound array. By translating the
animal in the imaging chamber, multiple 2D images can be
acquired, covering the whole body. Imaging was performed at
21 different excitation wavelengths from 700 nm to 900 nm
with a step size of 10 nm. Image reconstruction was performed
using a model-based inversion algorithm [22] with Tikhonov
regularization. After image reconstruction the tissue area was
manually segmented in each image.

The imaging dataset includes three nude mice, imaged
in vivo at 41-45 different 2D slices covering the entire area
of the brain and the area of the liver, kidneys and the lower
abdomen area. Each mouse was imaged at two different
physiological conditions (breathing 100% O2 and 20% O2,

Fig. 1. Statistical characterization of MSOT data through the exceedance
probability of their Mahalanobis distance distribution. (a) Probability of
exceedance of the Mahalanobis distance of 10 different MSOT images
(green solid lines). The theoretical exceedance probability of the χ2 distribu-
tion (blue dashed line) and the F distribution with different degrees of freedom
(dash-dotted lines) are also presented for comparison. (b, c) Comparison of the
exceedance probability of the Mahalanobis distance of two different MSOT
images (b, c solid green lines) with the FL ,v distribution (dash- dotted lines),
where v is selected by minimizing the exceedance metric.

i.e. medical air). Two different oxygenation conditions were
employed to consider changes in the spectra of hemoglobin
in tissue that affect the background spectral variability. The
imaging dataset is composed of 292 multispectral images in
total.

2) Target Implantation 1: Small Targets: Target implan-
tation is achieved through the artificial superposition of
targets with the spectra of Indocyanine Green (ICG) or
IntegriSense750 (PerkinElmer Inc. Massachusetts, U.S.) at
randomly selected positions upon the MSOT background-
tissue image. The introduced disk-shaped targets (radius
4 pixels; 37 pixels in total) are implanted at 20 simulated
peak absorption coefficients decreasing exponentially from
3 to 0.02 cm−1. The intensity of the implanted target at
each pixel is defined by the simulated absorption coefficient
and the light fluence at this pixel [�sim(r, λ)] which is
simulated using a 2D finite element solution of the diffusion
approximation and uniform tissue optical properties stemming
from literature [4]. The simulated optical fluence is wavelength
dependent introducing changes in the spectral signature of the
implanted molecular targets, which is computed per pixel as in
simp (r, λ) = sorig(r, λ)�sim (r, λ). We assumed a Born-type
approximation where we neglect the effect of the molecular
target itself on the simulation of �sim (r, λ). A more analytical
description of the target implantation on MSOT images is
provided in Ref. [4] and Supp. Fig. 1. We note that, due to a
number of simplifying assumptions the simulated absorption
coefficient of the implanted targets may not be accurate in
absolute value. However, this does not impair the quantitative
evaluation since it is only the relative detection performance
that is of interest.

A target is considered detectable if there exists a detection
threshold Ts that allows for more than 70% of true positives
(the true positive set is defined as TP ={i ∈ Dt : D(xi ) > Ts})
and less than 0.045% false positives (the false positive set is
defined as FP = {i ∈ Db: D(xi ) > Ts}):

∃Ts : |T P | > 0.7 |Dt | ∧ |F P | < 0.00045 |Db| , (4)

where i is the pixel index, Db and Dt are the sets of pixels
corresponding to the background and target, respectively, and
| · | denotes the cardinality of the set. D(xi) is the detection
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value attributed to the pixel i.. We note that the percentage
of 0.045% for false positives was selected because the back-
ground area is much larger than the target area. The value
0.00045|Db| is equivalent to 0.5|Dt|.

In the case of small implanted targets, the detection per-
formance is assessed in terms of minimum detectable agent
amount (MDAA; unit cm−1) that is required for successful
detection, according to inequality (4). Lower MDAA values
indicate higher molecular imaging sensitivity.

3) Target Implantation 2: Large Targets: For quantifying
the effects of covariance contamination due to the presence of
the molecular target, the target implantation framework was
adapted for further considering targets of varying sizes. A large
rectangular target occupying a total area of 4096 pixels is
initially implanted in tissue background at a randomly selected
position. This initial target is iteratively divided into 2, 4,
8 and 16 equally sized rectangular regions corresponding to
2048, 512 and 256 pixels, respectively. In each division stage
the target is sequentially implanted at all positions covering
the whole initial area of 4096 pixels. In each case the target
absorber is implanted at 7 exponentially decreasing simulated
absorption coefficient from 3 to 0.03 cm−1. The spectrum
of the target at each pixel is computed as in simp (r, λ) =
sorig (r, λ)�sim (r, λ). �sim (r, λ) is computed as described
in (III-A-2) considering only background tissue absorbers.

For large targets the visibility metric defined in (4) does
not offer appropriate intuition on the detection result. Instead,
the percentage of the detected pixels, i.e. the percentage of
pixels within the target area that are attributed detection values
larger than a threshold Tb, is computed. This threshold is
defined as the average of the 500 larger false-positive detection
values (i.e. Tb = (1/500)

∑500
i=1 Ds

b(i), where Ds
b is a vector

containing the detection values attributed to the background
sorted in descend order). The average of 500 pixels was
selected for avoiding the dominant influence of small outliers
in the quantitative analysis. While the region of interest (ROI)
corresponding to the target changes according to the target
size and position, the same ROI was always used for the
computation of false positives. The same false positive ROI
was used in order to facilitate a straightforward comparison
where any performance differences between large and smaller
targets are directly attributed to the effect of covariance
contamination (see Suppl. Fig. 2). In each target division stage
the total percentage of detected pixels within the whole initial
area of 4096 pixels is computed.

B. Experimental Imaging Dataset

For confirming observations stemming from synthetic data,
a purely experimental MSOT dataset of mice containing
fluorescent molecular targets was compiled:

1) In Vivo Localized Insertion Dataset: A capillary
tube (diam. 0.86 mm) containing a fluorescent dye was
rectally inserted into an anesthetized CD1 mouse and the
animal was imaged in the lower abdominal area. The
capillary tube was iteratively filled with the fluorochrome
Alexa Fluor 750 (AF750) at an optical density ranging from
6.6 to approx. 0.2 OD for achieving different target intensities.

Fig. 2. Comparison of MSOT background-tissue covariance matrices.
(a, b) Covariance matrices stemming from two different mice (G1

GL and G2
GL,

respectively) using data from the whole body and two different breathing
conditions. (c) Graph presenting the distance between G1

GL and the covariance
matrices Gk

s corresponding to all anatomical slices of mouse 3. Cov. Dist.
= ‖G1

GL/‖G1
GL‖F − Gk

s /‖Gk
s ‖F ‖F . (d, e) Covariance matrices produced

from single anatomical slices of mouse 3 corresponding to the median (d)
and maximum (e) distance as compared to G1

GL.

The same experiment was performed using the fluorochrome
Alexa Fluor 790 (AF790). The dataset is described
in Ref. [9]. Imaging was performed at 21 wavelengths from
700 to 900 nm with a step size of 10 nm. The fluorescent
target appeared at an imaging depth of ∼1 cm in the transverse
MSOT image.

2) Brain Tumor Dataset: A nude mouse bearing
a brain tumor expressing a near-infrared fluorescent
protein (U87-iRFP) was imaged at 12 different wavelengths
(690, 695, 700, 705, 710, 715, 720, 730, 750, 770, 800, and
830 nm) in the area of the brain. Fluorescence cryoslicing
imaging was employed for validating the location of iRFP
post-mortem. The study is described in Ref. [3].

3) Bain Injection Dataset: Different amounts of
fluorescently labelled macrophages were injected in the
left and the right brain hemisphere of a euthanized
nude mouse. Cells were labeled with the near-infrared
fluorescent cyanine dye 1,1’-Dioctadecyl-3,3,3’,3’-
Tetramethylindotricarbocyanine Iodide (DiR). The exact
position of the implanted cells was identified post-mortem
through cryoslicing fluorescent imaging. Imaging was
performed at 21 wavelengths from 700 to 900 nm with a
step size of 10 nm. The dataset is analytically described
in Ref. [23].

4) Systemic Injection of ICG: 40 nmoles of Indocyanine
Green (ICG) diluted in 200 μL saline were injected in the
tail-vein of a nude mouse and in the following the animal
was imaged in the area of the liver. ICG has been previously
documented to accumulate in the liver [24]. Imaging was
performed at 21 wavelengths from 700 to 900 nm with a step
size of 10 nm.

5) Systemic Injection of AF750: 1.2 nmoles of Alexa
Fluor 750 (AF750) diluted in 200 μL saline were injected in
the tail-vein of a nude mouse and the animal was imaged in the
area of the bladder, where AF750 accumulates [24]. Imaging
was performed at 21 wavelengths from 700 to 900 nm.

All animal procedures were approved by the District
Government of Upper Bavaria.
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IV. ROBUST STATISTICAL DETECTION FRAMEWORK

In this section we describe the statistical detection frame-
work developed. In (IV-A), we consider the issue of MSOT
background-tissue statistical modeling and in (IV-B) we intro-
duce a robust covariance estimation approach for mitigating
the effects of covariance contamination. The two concepts
are combined in (IV-C) for deriving the proposed statistical
detection framework.

A. Statistical Characterization of MSOT Data and
EC-GLRT Detection

Identifying a statistical distribution that accurately describes
the background spectral variability B(r, λ) is an important
factor in the design of a target detection algorithm [19].
We hereby compare the multivariate Gaussian assumption,
followed by AMF, to the multivariate t-distribution which
offers better ability to model multidimensional data with
longer tails [25]. Both the Gaussian and the t-distribution
belong to the family of the elliptically contoured distributions
that were introduced by Manolakis et. al. in hyperspectral
imaging for the purpose of synthetic data generation [25].
For statistically characterizing the multidimensional MSOT
data we use univariate statistics of their Mahalanobis distance
distribution as proposed in [25], [26].

The Mahalanobis distance of L-dimensional data that follow
the multivariate Gaussian distribution (mG see Appendix A)
is distributed as a χ2 distribution with L degrees of freedom.
By contrast, the Mahalanobis distance of data following the
multivariate t distribution with v degrees of freedom (mt,
see Appendix B) is distributed as an F distribution with
parameters L and v. By studying the Mahalanobis distance
distribution of experimental MSOT data, an appropriate mul-
tivariate statistical distribution can be potentially identified for
modeling the MSOT tissue background.

The probability of exceedance, which corresponds to
the probability that the data will exceed a certain
value (Appendix C), has been proposed for statistically
characterizing the Mahalanobis distance of multidimensional
data [26]. The exceedance metric (Eq. (5)), compares the
distribution of the Mahalanobis distance m (Appendix B)
to a known probability density function (PDF) f , allowing
for the identification of appropriate distributions as well as
unknown parameters of such distribution. The exceedance
metric is defined through the inverse exceedance probabil-
ity (Appendix C) as in:

Mexc(m, f ) =
K∑

i=1

∣∣∣E−1
m (Pi ) − E−1

f (Pi )
∣∣∣, (5)

In Eq. (5), Pi are K logarithmically spaced values of the
exceedance probability spanning the range from 1 to 10−4,
and E−1 is the inverse exceedance probability (Appendix C).
Em is the exceedance probability of the Mahalanobis distance
distribution of the data, computed numerically, and E f is the
theoretical exceedance probability of the PDF f , which is
computed from the analytical expression of f .

Fig. 1(a) presents the probability of exceedance of the
Mahalanobis distance for 10 different MSOT background

images corresponding to different anatomical areas of a mouse
ranging from the brain to the abdominal region (green solid
lines). The theoretical exceedance probabilities of the associ-
ated χ2distribution (blue dashed line) and the F distribution
for different values of the parameter v (dash-dotted lines)
are also presented for comparison. From the exceedance
probability plot it is obvious that the Mahalanobis distance
of MSOT data does not follow a χ2 distribution, while the
F distribution provides a far better fit. This indicates that
the t-distribution may be more appropriate for modeling the
MSOT tissue background. Fig. 1(b), (c) present the distribution
of the Mahalanobis distance for two different MSOT images
(solid green lines). The dash-dotted black lines correspond to
the exceedance probability of the FL ,v , where the parameter v
is computed as the value that minimizes the exceedance metric
of (5). We observed that different MSOT images may corre-
spond to different degrees of freedom v. Fig. 1(b), (c) further
suggest that the F distribution with optimally selected para-
meter v appears capable of modeling well both the main body
as well as the tails of the Mahalanobis distance distribution.

Theiler et. al. have derived a generalized likelihood ratio
test (GLRT) detector for multivariate data following the
t-distribution with v degrees of freedom (v > 2), termed
EC-GLRT detector [27]:

DEC−G L RT (xi )

= (v − 1)

(v − 2)+(xi −μ)T G−1(xi −μ)

(sT G−1(xi − μ))2

sT G−1s
(6)

In Eq. (6), G is the covariance matrix which can be calculated
with maximum likelihood and v are the degrees of freedom of
the t-distribution. For v = ∞ the EC-GLRT detector becomes
equivalent to AMF. EC-GLRT requires an estimate of the
parameter v, which is hereby estimated for each dataset under
test through the minimization of the exceedance metric of (5):

v̂ = Arg min
v

Mexc(m, F ′
L ,v ), (7)

B. Robust Covariance Matrix Estimation Through
Quasi-Local Covariance Shrinkage

A major challenge in achieving simultaneously sensitive
and robust detection performance is the estimation of a
covariance matrix that is always uncontaminated from the
SOI and also close to the true covariance matrix. To achieve
this we introduce a covariance estimation scheme where the
sample covariance matrix is appropriately merged with an
uncontaminated, global covariance matrix derived from an
archive of agent-free MSOT images of tissue background.
Our covariance estimation approach follows three distinct
steps. In a first step, an uncontaminated covariance matrix is
estimated by combining the sample covariance matrix of the
MSOT image under test and a global covariance matrix that
is computed using uncontaminated training data. In a second
step, the level of contamination of the image under test is
estimated by comparing its sample covariance matrix with a
dictionary of uncontaminated ones. Finally, in a third step, the
uncontaminated covariance matrix and the sample covariance
matrix are appropriately merged based on the estimated level
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of covariance contamination. Step one is described in (IV-B-1)
and steps two and three are described in (IV-B-2).

1) Estimation of Uncontaminated Covariance Matrix Using
Training Data: In MSOT imaging an un-contaminated global
covariance matrix can be computed using training data stem-
ming from animals where no molecular agents have been intro-
duced. Fig. 2(a), (b) present two global covariance matrices
(G1

GL and G2
GL, respectively) computed from two different

mouse datasets (mouse 1 and 2, respectively). Each global
covariance matrix was computed as the sample covariance
matrix over all pixels of MSOT images spanning the whole
body of each mouse and from two different in vivo breathing
conditions in each case (see Sec. III-A-1). We observe close
consistency in the structure of the two covariance matrices.
A third mouse dataset was used for investigating differences
in the structure of the covariance matrix per anatomical slice
and physiological condition. Fig. 2(c) presents the Frobenious
norm distance between the normalized global covariance
matrix G1

GL/||G1
GL|| and the normalized sample covariance

matrices Gk
s/||Gk

s || corresponding to different anatomical
slices and physiological conditions of mouse 3. Normalization
is performed to consider changes in the structure rather than
the intensity of the covariance matrix. The covariance matrices
of mouse 3 corresponding to the median and the maximum
norm distance are presented in Fig. 2(d), (e), respectively.
Despite the dramatic differences in anatomy and tissue phys-
iology we observe that the covariance matrix of background-
tissue retains a rather consistent structure, indicating the pos-
sibility of using training data for covariance estimation.

While GGL is uncontaminated, its deviation from the sample
covariance matrix of the MSOT image under test may lead to
ill background modeling. An alternative quasi-local covariance
matrix can be computed through the combination of the global
and the sample covariance matrix of the MSOT image under
test through the following formula:

GQL = UGL(diag(UT
GLGsUGL))UT

GL, (8)

In (8) UGL is the matrix containing the eigenvectors of GGL
and Gs is the sample covariance matrix of the multispectral
image under test. diag indicates the operator that retains the
diagonal elements of the matrix while setting the rest to zero.

GQL is uncontaminated by the SOI, as its eigenvectors
are not influenced by the target spectrum [13], while it
further preserves characteristics of the sample covariance of
the data under test. We note that similar covariance estimators
have been previously proposed in literature for cases of ill
covariance computation due to limited samples [28].

2) Covariance Shrinkage: GQL may still deviate from Gs,
possibly leading to a reduced detection performance when
the data are uncontaminated. Ideally the estimated covariance
matrix would vary between Gs and GQL depending on the
level of SOI contamination. To achieve this we employ the
covariance shrinkage scheme:

Gest = (1 − a)Gs + aGQL, (9)

where the shrinkage parameter α can vary between 0 (optimal
in the case of uncontaminated data) and 1 (optimal in the

case of highly contaminated data) adapting to the level of
covariance contamination.

The level of contamination could be theoretically estimated
through the distance between the sample covariance matrix
and the true background covariance matrix, || Gs − Gtrue||F .
Assuming that the unknown, true covariance matrix lies within
a dictionary DG of uncontaminated covariance matrices stem-
ming from training MSOT images, the following metric can
offer an insight on the level of contamination of the sample
covariance matrix:

mc = Min
Gtrue∈DG

∥∥∥∥
Gs

‖Gs‖F
− Gtrue

‖Gtrue‖F

∥∥∥∥
F

(10)

By means of cross-validation in simulated data, we empirically
concluded to the following rule for estimating the shrinkage
level using the contamination metric mc:

a = min{1, κ
√

mc} (11)

The empirical rule of Eq. (11) and the selection of the
parameter κ = 4 is explained in (V-B-2). The value of
parameter κ was retained constant in all evaluations.

C. Robust Statistical Detection Framework

The hereby proposed statistical detection framework com-
bines the EC-GLRT detector of IV-A with the covariance
matrix estimation scheme of IV-B .

In a first step the sample covariance matrix Gs of the
MSOT image under test is estimated using all available pixels
and the level of contamination is assessed through metric mc

of Eq. (10). The covariance matrix dictionary DG is computed
from the archive of agent-free MSOT images corresponding
to the experimental data of Sec. III-A-1. We note that in the
cross-validation presented in Sec. V, all covariance matrices
corresponding to the mouse under test were excluded from
the dictionary DG, which typically includes ∼ 200 different
covariance matrices. Using the metric mc, the loading level α
is computed according to Eq. (11). The covariance matrix Gest
is estimated through Eq. (9) using the GQL covariance matrix
of Eq. (8). The GGL covariance matrix is estimated from all
available agent-free MSOT data of Sec. III-A. Similarly to
the case of DG, in the cross-validation presented in Sec. V,
all MSOT data corresponding to the mouse under test were
excluded from the computation of GGL.

In a last step, the final detection result is computed. In this
step, the MSOT image is initially analysed using the AMF
formula of Eq. (3) using Gest and the detection result DAMF(xi)
is compared to a predefined threshold TAMF that is associated
with a small false alarm probability (TAMF was selected such
that |{i ∈ A : D(xi ) > TAM F }| = 0.00002|A|, where A is the
complete set of pixels of the training dataset). If DAMF(xi ) <
TAMF∀xi, the AMF has not detected a strong target in the
image. In this case, the parameter v is computed according
to Eq. (7) and in the following DEC−GLRT(xi) is computed
according to Eq. (6) using Gest and returned as the output
of the detection scheme. If DAMF(xi ) > TAMF, the AMF has
recognized a strong target. In this case, DAMF(xi) is returned as
the output of the detection scheme. This latter test is performed
for facilitating a better target visualization, as, in the case of
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Algorithm 1 Robust Statistical Detection Framework
1. Compute the sample mean µ and covariance matrix Gs

of the MSOT image x under test:

µ= 1

N

∑N

i=1
xi , Gs = 1

N − 1

∑N

i=1
(xi −µ)(xi −µ)T

2. Compute GGL as the sample covariance matrix over
all training data. Compute GQL from GGL and Gs
according to (8). Compute the covariance matrix dic-
tionary DG from each available training MSOT image
independently.

3. Estimate the covariance matrix as in:

Gest = (1 − a)Gs + aGQL

where α is computed from (11) with respect to the metric
mc of (10).

4. If DAMF(xi ) < TAMF∀ i , v̂ = Arg min
v

Mexc(m, F ′
L ,v ),

else v̂ = ∞.
5. Return: D(xi ) = (v−1)

(v−2)+(xi−μ)T G−1
est (xi−μ)

(sT G−1
est (xi−μ))2

sT G−1
est s

Fig. 3. (a, b) Quantitative comparison of AMF and EC-GLRT in terms
of MDAA (see Sec. III-A-2) for the cases of ICG (a) and Integrisense750
implanted targets (b). The bar height corresponds to the mean MDAA and the
errorbar to the standard deviation over all images employed for evaluation. The
six grey errorbars correspond to three different mice imaged at two different
physiological conditions each (Sec. III-A-1). The black errorbars correspond
to statistics stemming from all data. EC-GLRT with appropriate selection
of parameter v offered consistently a statistically enhanced performance.
(c-h) Examples of detection result using AMF (c, e, g) and EC-GLRT (d, f, h)
for the same target intensity. The detection result is overlaid onto the
anatomical optoacoustic image with green pseudocolor. The yellow arrows
point the target positions and the red arrows point the false positives.

strong targets EC-GLRT does not offer optimal visualization
due to its intensity normalization property. Algorithm 1 sum-
marizes the hereby proposed detection scheme.

V. RESULTS

A. Performance of EC-GLRT

Figs. 3(a), (b) present a quantitative performance compar-
ison, in terms of MDAA, of AMF vs. EC-GLRT as evalu-
ated using the target implantation framework of Sec. III-A-2.

Fig. 4. Comparison of AMF and EC-GLRT in purely experimental data.
(a) Mouse brain with two lesions of DiR labelled cells. (b) Mouse brain
with a tumor expressing iRFP fluorescent protein. (c) Mouse abdomen with
a fluorescent target corresponding to a capillary tube containing AF750.
In each case, the detection result is presented standalone on the right side and
overlaid onto the anatomical image with green pseudocolor on the left side.
Yellow arrows indicate the position of the targets, while red arrows indicate
false positives. The standalone detection images corresponding to AMF are
presented in square root for facilitating a better visual comparison.

Two different spectral targets are considered, namely
ICG (Fig. 3(a)) and IntegriSense750 (Fig. 3(b)). The sta-
tistical evaluation was performed using target implantation
on all background MSOT images of the imaging dataset
(Sec. III-A-1), and 6 different target positions per image. The
six grey error-bars correspond to statistics stemming from
the three individual mice imaged at two different physio-
logical conditions each. The black error-bars correspond to
statistics stemming from all data. The bar height corresponds
to the mean MDAA and the error-bar to the standard devi-
ation. According to the quantitative evaluation, EC-GLRT
allows for detecting the implanted targets at 20%–30% lower
simulated absorbance, therefore offering a statistical per-
formance enhancement that is consistent for all mice and
for both implanted targets. Examples of three representative
detection cases where the detection result is overlaid onto
the anatomical image with green pseudo-color are presented
in Fig. 3(c)–(h). The first column (Fig. 3(c), (e), (g)) corre-
sponds to AMF, while the second column (Fig. 3(d), (f), (h))
corresponds to EC-GLRT. For the same target intensity,
EC-GLRT resolved the targets (yellow arrows) with less false
positives (red arrows) as compared to AMF.

Fig. 4 presents examples of AMF vs EC-GLRT comparison
in the case of purely experimental data. Fig. 4(a) corresponds
to a case where fluorescently labelled cells have been intro-
duced in the left and right brain hemispheres of a mouse
post mortem (Sec. III-B-3). Fig. 4(b) corresponds to a mouse
brain containing a tumor that is expressing a near infrared
fluorescent protein (Sec. III-B-2). Fig. 4(c) corresponds to
the dataset described in Sec. III-B-1, where a capillary tube,
containing AF750 at an optical density of 0.53 OD has been
introduced within tissue. In each case yellow arrows indicate
the position of the fluorescent target. In all three cases the
detection performance of AMF (first column) is compromised
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Fig. 5. Effects of covariance contamination on the detection performance of
AMF. (a) Statistical evaluation of AMF detection performance in terms of the
% of detected pixels (y-axis) for different target sizes (colors) and different
target intensities (x-axis), using the target implantation of Sec. III-A-3.
Statistics are derived from target implantation on 6 different MSOT images
and 6 different target positions per MSOT image. (b-d) Examples of the AMF
detection performance in the case of a large target implanted at three different
intensities. (e-g) Detection result of uncontaminated AMF for the same targets.
(h) Statistical evaluation of the detection performance of standard (black)
and uncontaminated AMF (blue) in the case of large targets (4096 pixels)
as a function of relative signal strength. Statistics are derived from target
implantation on all MSOT images of the experimental dataset (Sec. III-A-1).

by false positive detection artifacts. Conversely, EC-GLRT
(second column) achieves detection of the molecular target
with considerably reduced false positives. In each case the
detection result is overlaid onto the anatomical image with
green pseudocolor (left) and is also presented independently
(right) for facilitating a straightforward comparison.

B. Effects of Covariance Contamination and Quasi-Local
Covariance Shrinkage

1) Effects of Covariance Contamination: Fig. 5 presents the
effects of covariance contamination on the detection perfor-
mance of AMF. A statistical evaluation of the detection per-
formance of AMF, in terms of percentage of detected pixels,
was performed through the implantation of targets of varying
sizes, as described in Sec. III-A-3. Statistics on the percentage
of detected pixels (y axis) for different target sizes (colors) and
different target intensities (x axis) are presented in Fig. 5(a).
Small targets of 256 pixels (green errorbars) appear fully
detectable above a certain simulated agent absorbance. Con-
versely, in the case of larger targets of 2048 pixels the detection
performance is compromised when these targets appear in
high intensities, as an effect of covariance contamination.
The effects of covariance contamination are more evident
in the case of the largest implanted targets (4064 pixels),
where the targets are no longer fully detectable at any
simulated target intensity. Fig. 5(b)–(d) present the detection
result of AMF in the case of a large implanted target for
three different simulated intensities. For comparison purposes,
Fig. 5(e)–(g) present the ideal detection result of AMF where
the uncontaminated background covariance matrix is used
instead. Evidently, due to the covariance contamination caused
by the large target size, parts of the target are not detectable

Fig. 6. Evaluation of the QL shrinkage approach.. (a) Values obtained
by

√
mc (Eq. (10)) under different levels of RSS (x-axis) and under dif-

ferent wavelength sampling approaches (color-bars). The values obtained by
α [Eq. (11)] for three different

√
mc values are presented with horizontal lines.

(b) Performance comparison of AMF, GL AMF, and QL shr. AMF in terms
of % of detected pixels in the case of large targets (4098 pixels). Statistics
correspond to ICG targets implanted on all background MSOT images.
(c) Performance comparison of AMF, GL AMF, and QL shr. AMF in terms
of MDAA for the case of small ICG implanted targets. The six grey errorbars
correspond to three different mice imaged at two different physiological
conditions each. The black errorbars correspond to statistics stemming from all
data. (d) Comparison of the detection performance of QL shrinkage (red) and
diagonal loading using two different constant loading levels, i.e. b = 0.1 (blue)
and b = 0.01 (black). Statistics in (a)-(d) correspond to target implantation
on all experimental data of Sec. III-A-1.

by AMF at any simulated target intensity. The percentage
of detected pixels according to the quantitative evaluation is
presented in the lower left part of the individual images.

A more straightforward approach for assessing the per-
formance degradation due to covariance contamination is by
investigating the detection performance as a function of the
relative signal strength (RSS), i.e. ||T (r, λ)||2/||B(r, λ)||2,
where T (r, λ) represents the implanted target and B(r, λ)
represents the background. Fig. 5(h) presents the detection
performance of AMF in the case of large targets (4064 pixels)
as a function of RSS (black errorbars). The performance of
uncontaminated AMF (blue errorbars) is also presented for
comparison. Statistics correspond to targets implanted on all
MSOT images of the experimental dataset (Sec. III-A-1).

2) Performance of Quasi-Local Covariance Shrinkage:
Fig. 6 presents the performance of the proposed quasi-local
covariance shrinkage scheme (QL shr. AMF; see Supp. Table I,
Appendix). Fig. 6(a) presents the values of

√
mc (Eq. (10))

obtained in the case of large ICG implanted targets of
4096 pixels as a function of the RSS. The three differ-
ent color-bars correspond to wavelength sampling of 21,
10 and 7 equally spaced wavelengths spanning the range
of 700-900 nm. The metric mc appears capable of identifying
high levels of covariance contamination (RSS≥ 20%), but
there is considerable overlap in its values in low contamination
levels (RSS<20%). The empirical rule of Eq. (11) and the
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value of parameter κ were selected in such a way so that
α = 1 when the value of mc indicates a substantial level of
contamination (RSS≥ 20%). Due to the overlap of mc values
in the case of low or no contamination, α is typically larger
than zero even in uncontaminated cases. The values obtained
by mc under different levels of contamination are relatively
unaffected by different wavelength sampling strategies.

Fig. 6(b) presents a quantitative performance comparison
of GL AMF (Supp. Table I, Appendix) and QL shr. AMF in
the case of large ICG implanted targets of 4096 pixels (high
contamination), in terms of % of detected pixels (y-axis) and
as a function of RSS (x-axis). The performance degradation
of AMF, caused by covariance contamination (black error-bars
in Fig. 6(b)), is mitigated by the use of an uncontaminated
covariance matrix. In the case of large implanted targets, both
GL AMF (blue) and QL shr. AMF (red) offer a comparable
performance, successfully mitigating the effects of covariance
contamination.

Fig. 6(c) presents a quantitative performance comparison in
the case of small ICG targets (uncontaminated case), in terms
of MDAA (Sec. III-A-2). In the case of small targets GL AMF
offers worse detection performance as compared to AMF,
increasing the MDAA from 1.5 to 3 times. This performance
degradation is expected since in the uncontaminated case, the
sample covariance matrix offers better modeling abilities than
the global one. QL shr. AMF offers an improved performance
with respect to GL AMF, which is only 1.1-1.6 times worse
than the one of AMF.

Finally Fig. 6(d) presents a performance comparison of the
proposed quasi-local covariance shrinkage approach (QL shr.
AMF) and the previously considered diagonal loading scheme
(DL AMF; Supp. Table I, Appendix) [12]. A high level of
diagonal loading (b = 0.1) offers good performance in the
case of high target intensities but a considerably reduced per-
formance in the case of low target intensities (blue errorbars).
Conversely a lower level of diagonal loading (b = 0.01)
offers reduced detection performance in the case of high
target intensities (black errorbars). Evidently, QL shr. AMF
(red errorbars) offers a substantially enhanced performance as
compared to DL AMF.

C. Evaluation of Statistical Detection Framework Over
Existing Approaches

Fig. 7 compares the performance of the proposed robust
statistical detection framework (RSDF) to the one of AMF
and to least-squares (LS) spectral fitting [17] which have been
previously used in MSOT molecular imaging. In the case
of LS fitting the spectra of oxygenated and deoxygenated
hemoglobin were used for modeling the tissue background.
Fig. 7(a) presents a quantitative comparison in the case
of small targets, using the target implantation framework
of Sec. III-A-2. According to the simulations, LS fitting offers,
on average, 5 times reduced detection performance as com-
pared to AMF and RSDF. AMF and RSDF offer comparable
performance. Statistics correspond to all experimental data
of Sec. III-A-1. Fig. 7(b) presents the detection results of LS
fitting, AMF and RSDF for a representative simulation where

Fig. 7. Quantitative comparison of LS fitting, AMF and RSDF in simulated
data. (a) Performance comparison in terms of MDAA for the case of small
ICG targets (Sec. III-A-2). The six grey errorbars correspond to three different
mice imaged at two different physiological conditions each (Sec. III-A-1). The
black errorbars correspond to statistics stemming from all data. (b) Detection
examples of LS fitting, AMF and RSDF in two cases where a small ICG
target has been implanted in a low (left) and a high (right) intensity. Yellow
arrows indicate the position of the target, while red arrows indicate false
positives. The parameters α and v of RSDF are further presented in each
case. (c) Performance comparison in terms of % of detected pixels for the case
of large (4096 pixel) targets (Sec. III-A-3). Statistics are derived from target
implantation on 6 different MSOT images and 6 different target positions per
image. (d) Detection examples of LS fitting, AMF and RSDF in two cases
where a large ICG target has been implanted at a low (left) and a high (right)
intensity. The percentage of detected pixels is presented in each case in the
upper right part of the image.

the small ICG target has been implanted onto the experimental
MSOT image at two different simulated intensities. The target
position is indicated by the yellow arrows while red arrows
indicate false positives.

Fig. 7(c) presents a comparison of LS fitting, AMF and
RSDF in the case of large targets (4096 pixels), in terms of %
of detected pixels. LS fitting offers good detection perfor-
mance in the case of high target intensities (μα > 0.65 cm−1)
but a considerably reduced performance in the case of low
target intensities. AMF offers reduced detection ability in
all simulated target intensities due to the effects of covari-
ance contamination. Conversely, RSDF offers a considerably
enhanced performance as compared to AMF and LS fitting.
Fig. 7(d) presents the detection results of LS fitting, AMF and
RSDF for a representative simulation where the ICG target
has been implanted at two different intensities.

Fig. 8 presents detection examples stemming from purely
experimental data. The first column corresponds to LS fitting,
the second to AMF and the third to RSDF. In the latter
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Fig. 8. Comparison of the detection result of LS fitting (left column), AMF
(middle column) and RSDF (right column) in the case of purely experimental
data. In the latter case the parameters α and v are presented within the image.
(a) DiR labelled macrophages introduced in the left and right brain hemisphere
(arrows). (b-d) MSOT images with an insertion of AF790 (b), AF750 at an
optical density of approx. 0.25 OD (c) and AF790 at 6.6 OD (d) introduced
within tissue (arrows), as described in Sec. III-B-1. (e) MSOT images of
the abdominal area after systemic injection of 1.2 nmoles of AF750. AF750
accumulates in the area of the bladder (dashed line). (f) MSOT images of
the liver after systemic injection 40 nmoles of ICG. In all cases the detection
result in overlaid onto the anatomical image with green pseudocolor.

case, the values of α and v are further presented alongside
the images. Fig. 8(a) corresponds to brain images with DiR
labelled macrophages (Sec. III-B-3). The position of the cells
(yellow arrows) is accurately detected by AMF and RSDF
but not by LS fitting which yields substantially stronger false
positive detection artifacts. Fig. 8 (b-c) corresponds to the
dataset described in Sec. III-B-1 where a capillary tube con-
taining AF790 (b) and AF750 at an optical density of approx.
0.25 OD (c) has been been introduced in deep tissue has been
introduced in deep tissue. The location of the fluorochrome
(yellow arrows) is detectable only by RSDF (c), or by both
AMF and RSDF (b), but not by LS fitting which yields false
positives at higher intensities. Fig. 8(d) presents an MSOT
image of the same experiment, but in this case the capillary
tube has been filled with a high concentration of AF790,

corresponding to 6.6 OD. In this case LS fitting and RSDF
accurately detect the position of the target, while the per-
formance of AMF is considerably compromised due to the
effect of covariance contamination. Fig. 8(e) corresponds to
the dataset described in Sec. III-B-5, where the accumulation
of AF750 in the bladder is monitored. Again, the detection
performance of AMF is compromised due to the large target
size, while LS fitting and RSDF accurately detect the fluo-
rochrome bio-distribution in the bladder (dashed line). Finally
Fig. 8(f) corresponds to the dataset describe in Sec. III-B-4
where MSOT monitors the accumulation of ICG in the liver.
Both RSDF and LS fitting resolve an extensive distribution
of ICG in the area of the liver, whereas AMF fails due
to the effects of covariance contamination. The detection
results of Fig. 8 demonstrate that RSDF combines high
molecular imaging sensitivity (Fig. 8(a)–(c)) with a robust
performance that is not affected by the target size or inten-
sity (Fig. 8(d)–(f)).

VI. DISCUSSION AND CONCLUSIONS

Spectral analysis methods play a fundamental role in the
ability to extract valuable molecular information from mul-
tispectral optoacoustic images. The ultimate goal of spectral
unmixing in MSOT imaging is the quantification of the con-
centrations of all absorbing molecules within tissue. Despite
substantial prior work, the quantification of the absorbers’
concentrations in experimental in vivo images is considered
still an open challenge [16].

This work considers the problem of multispectral detection
of extrinsic molecular agents in MSOT imaging. As opposed
to spectral unmixing, the spectral detection problem seeks to
identify the position and area occupied by molecular targets
within the tissue [29] and it has a direct application on MSOT
molecular imaging. While the multispectral detection problem
can be formulated as a binary classification problem, it has
some characteristic properties that largely affect the devel-
opment of appropriate algorithms. First, while sufficient data
are typically available for accurately training the background
class, the sparsity of the targets typically hinders the successful
training of the target class. Second, the minimization of the
misclassification rate is not a good performance metric when
the goal is to detect targets that are considerably smaller
than the background [5], [6]. For these reasons, practical
multispectral detectors typically follow a GLRT approach
which seeks to maximize the probability of detection while
retaining the probability of false alarm under a predefined
threshold (Neyman Pearson criterion) [7]. Moreover, most
practical GLRT detectors do not train a target class but assume
a linear model of a known target spectrum superimposed on
a background that is modeled statistically [5].

GLRT statistical sub-pixel detection has been shown to
offer an enhancement in the molecular imaging sensitivity of
MSOT [4]. However, common statistical sub-pixel detection
algorithms are not optimally suited to the particular character-
istics of MSOT molecular imaging. In this work we introduced
a robust statistical detection scheme designed according to the
characteristics of MSOT molecular imaging. We studied both
the aspects of background statistical modeling and covariance
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matrix estimation that are key parameters for the design of
statistical sub-pixel detectors [19]. This work did not study
the effects of spectral mismatch in the detection performance,
which will be assessed in future work.

Through a statistical characterization of experimental
background-tissue MSOT data we found that the t-distribution
appears more accurate in modeling both the main body and the
tails of the MSOT data. This observation led to the utilization
of a data-adaptive EC-GLRT detector, which in turn offered
an enhancement in the detection performance observed both
in simulated and experimental data (Fig. 3, 4).

The most significant pitfall of statistical sub-pixel detection
in the context of MSOT is the effect of covariance contam-
ination in the cases of extensive presence of the molecular
target. Using target implantation simulations of varying target
sizes we quantitatively assessed this effect and found that
the performance of AMF degrades substantially in the case
of large molecular targets (Fig. 5). This effect was also
demonstrated in experimental MSOT data (Fig. 8(e), (f)).

For mitigating the effect of covariance contamination we
introduced a covariance estimation approach that exploits an
archive of training background-tissue MSOT images. Through
the comparison of covariance matrices stemming from dif-
ferent anatomical regions and physiological conditions we
observed a consistency in the structure, which indicated the
possibility of using training data for covariance estimation.
However, the simplistic exchange of the sample covariance
matrix with a global covariance matrix computed from training
data, caused a substantial negative effect on the detection per-
formance in the case of low contamination (Fig. 6), reducing
the detection performance up to 3 times. For overcoming this
effect we designed a covariance estimation approach, where a
quasi-local uncontaminated covariance matrix is appropriately
merged with the sample covariance matrix based on the
estimated level of the covariance contamination. The pro-
posed covariance estimation scheme offers robust performance
that is not affected by covariance contamination, while also
retaining good performance in the uncontaminated case. The
proposed covariance estimation scheme considerably outper-
formed diagonal loading, a method previously proposed for
mitigating the effects of covariance contamination in hyper-
spectral remote sensing [12].

The performance of the proposed robust statistical detection
framework was evaluated statistically using extensive target
implantation simulations and considering targets of different
sizes and intensities. The method was found to considerably
outperform adaptive matched filter in the case of large targets
and the LS fitting approach in the case of weakly absorbing
targets. Importantly, RSDF offers an automatic and universal
performance independently of the target size or intensity.
A number of purely experimental imaging studies further con-
firmed the direct applicability of the method in experimental
molecular imaging data.
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Molecular optoacoustic (photoacoustic) imaging typically
relies on the spectral identification of absorption signa-
tures from molecules of interest. To achieve this, two or
more excitation wavelengths are employed to sequentially
illuminate tissue. Due to depth-related spectral dependen-
cies and detection related effects, the multispectral opto-
acoustic tomography (MSOT) spectral unmixing problem
presents a complex non-linear inversion operation. So far,
different studies have showcased the spectral capacity of
optoacoustic imaging, without however relating the
performance achieved to the number of wavelengths em-
ployed. Overall, the dependence of the sensitivity and
accuracy of optoacoustic imaging as a function of the
number of illumination wavelengths has not been so far
comprehensively studied. In this paper we study the im-
pact of the number of excitation wavelengths employed
on the sensitivity and accuracy achieved by molecular op-
toacoustic tomography. We present a quantitative analy-
sis, based on synthetic MSOT datasets and observe a
trend of sensitivity increase for up to 20 wavelengths. Im-
portantly we quantify this relation and demonstrate an up
to an order of magnitude sensitivity increase of multi-wa-
velength illumination vs. single or dual wavelength optoa-
coustic imaging. Examples from experimental animal stu-
dies are finally utilized to support the findings.

In vivo MSOT imaging of a mouse brain bearing a tumor
that is expressing a near-infrared fluorescent protein. (a)
Monochromatic optoacoustic imaging at the peak excita-
tion wavelength of the fluorescent protein. (b) Overlay of
the detected bio-distribution of the protein (red pseudo-
color) on the monochromatic optoacoustic image. (c) Ex
vivo validation by means of cryoslicing fluorescence im-
aging.
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1. Introduction

Optoacoustic imaging comes with remarkable mole-
cular imaging capabilities, enabling the visualization
of optical absorbing agents at high resolution and ac-
curate spatial localization within deep tissue [1]. The
ability to image fluorescent dyes [2–4], near-infrared
fluorescent proteins [5, 6] or photo-absorbing nano-
particles [7, 8] has been demonstrated in a number
of applications. The combination of high resolution
imaging with sensing of optical contrast within sev-
eral mm to cm deep inside tissues leads to new diag-
nostic or theranostic abilities and provides a novel
tool for biological discovery.

The molecular imaging capabilities of optoacous-
tic imaging relate to the overall ability to reliably re-
solve the presence of molecules of interest from the
absorbing tissue background [9]. For this reason, two
or more excitation wavelengths are utilized in many
applications in order to enhance the contrast of a spe-
cific molecule and enable the accurate visualization
of its bio-distribution. Specifically, a number of stu-
dies operate using dual wavelength excitation and
simple subtraction techniques [10, 11], linear approx-
imations of the spectral unmixing problem [3, 6, 12],
correlation based approaches [8], or blind source se-
paration algorithms [13, 14] and adaptive detection
approaches [9]. Today, there are no systematic stu-
dies offering a thorough relation of these approaches
to the performance achieved as a function of the exci-
tation wavelengths, although comparisons of a small
set of methods can be found in the literature.

In this work we studied the effect of the number
of excitation wavelengths employed on the underly-
ing molecular imaging sensitivity and accuracy. Such
relationship has not been yet established. Corre-
spondingly different optoacoustic studies report on
the ability to perform molecular imaging without re-
lating the performance achieved to the excitation
wavelengths employed. Intuitively, information from
additional excitation wavelengths can be effectively
used to improve performance in the sense of sensi-
tivity or quantification accuracy. However, a particu-
lar complication for studying the relation of wave-
length number and MSOT performance is that the
MSOT unmixing problem is a complex non-linear
and ill-posed open problem [15]. We hereby formu-
late the unmixing problem of MSOT as a molecular
target detection problem and investigate the relative
sensitivity achieved using monochromatic, dual wa-
velength and multispectral optoacoustic tomography
as a function of the excitation wavelengths em-
ployed. We base our conclusions on a statistical
quantitative analysis performed using synthetic
MSOT datasets that were created using target im-
plantation on experimental measurements [9]. This
analysis is supported by examples from purely ex-
perimental in vivo data obtained from animals.

2. Background

The wavelength (λ) dependent and position (r) de-
pendent multispectral optoacoustic images P(r, λ)
can be associated to the concentrations of the ab-
sorbing molecules through a non-linear relation i.e,

Pðr; λÞ ¼ CðrÞ Φðr; λÞ �P
i

ciðrÞ εiðλÞ ð1Þ

where Φ(r, λ) is the wavelength dependent unknown
optical fluence, εi(λ) are the wavelength dependent
molar extinction coefficients of the optical absorbers
in the sample and ci(r) the unknown associated con-
centrations at a position r. Finally C(r) is a scaling
factor associated with system effects and the photo-
acoustic efficiency (Grüneisen parameter Γ(r)).

Many studies have linearly approximated Eq. (1)
by assuming constant Φ(r, λ) throughout tissue and
invert Eq. (1) for unmixing several photoabsorbing
agents using least squares methods [3, 6, 12]. In
many cases, spectra of oxygenated (Hb–O2) and
deoxygenated (Hb) hemoglobin are typically used
for modeling the tissue absorption. This approach
may be fairly accurate for superficial tissues, where
the optical fluence does not change over the field
imaged. But even in such simple cases where some
linearity can be efficiently approximated, there is no
direct relationship established between the number
of wavelengths required as a function of absorbers
resolved and the underlying signal to noise ratio
available. Moreover, the linear approximation is in-
creasingly non accurate as the imaging depth in-
creases. In deep tissue, the unknown Φ(r, λ) may
have a non-straightforward effect on the perform-
ance of the inexact linear fitting under different
wavelength sampling cases.

Another relatively straightforward approach con-
sidered for spectral optoacoustic imaging of an ex-
trinsically administered agent is the use of only two
wavelengths [10, 11]. This method is generally con-
sidered for opto-acoustic agents with a relatively
sharp feature in their spectrum. Typically, the two
wavelengths are selected around the sharp spectral
feature, i.e. in close spectral proximity. Then the
images obtained in the two wavelengths are sub-
tracted and the contrast resolved is attributed to the
administered agent under the assumption that the
background tissue absorption does not change signif-
icantly between these two wavelengths.

Iterative model based inversion approaches have
also been suggested to solve Eq. (1) [15–17]. Typi-
cally, such approaches attempt to relate the optical
fluence dependence Φ(r, λ; μα(r, λ), μs(r, λ)) on tissue
optical absorption μα(r, λ) and scattering μs(r, λ) coef-
ficients, using a light propagation model. In this man-
ner they define a non-linear inversion problem for si-
multaneously estimating Φ(r, λ) and the concentra-
tions ci(r) of the absorbers. It has been shown in the
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simple case of a partially homogeneous phantom [17]
that 8 wavelengths can result in accurate inversion.
However, no in vivo demonstrations have become
available with this approach, possibly due to the in-
creased complexity of tissues in vivo leading to an ill-
posed problem that may be hard to be inverted.

More recently statistical sub-pixel detection tech-
niques [9] were tested in the context of MSOT and
were shown to improve upon previous approaches in
molecular imaging cases where the molecular target
is present in “low probability” within the data (such
as cases of tumor targeting or expression of fluores-
cent proteins). Such methods model the combined
effect of tissue absorption and optical fluence as well
as any other background spectral perturbation in-
duced due to noise and negative values using a mul-
tivariate statistical distribution (typically Gaussian)
derived from the available data.

A complication of studying the effect of wave-
lengths on the detection sensitivity of a spectral tar-
get is therefore the strong relation of sensitivity with
the unmixing method assumed. An additional com-
plication relates to the particular selection of wave-
lengths and chromophore employed. Herein, five
different implementations of target detection ap-
proaches were investigated as described in the meth-
ods, to impart a more general understanding of the
influence of wavelength number on the MSOT sensi-
tivity in the context of different spectral algorithms.

3. Methods

3.1 Multispectral optoacoustic measurements

Synthetic data and experimental measurements from
mice were employed to study the effect of excitation
wavelengths on the MSOT detection sensitivity.
Both the experimental and synthetic data supporting
this study were acquired using two small animal to-
mographic optoacoustic imaging systems. Specifi-
cally, a prototype 64-element MSOT system and a
state of the art 256-channel real-time imaging MSOT
scanner (iThera Medical GmbH, Kreiling Germany)
were employed. The general characteristics of the
prototype system are described in [18]. Briefly, the
system employs an OPO tunable laser (wavelength
range 680–950 nm) for illumination, with 10 Hz pulse
repetition rate, and parallel 64-channel ultrasound
detection employing a curved ultrasound array. Im-
age acquisition speed is 10 frames per second. The
elements of the ultrasound array (5 MHz central
frequency with –6 dB of >50%) are deployed in a
circular 2-D geometry around the sample (radius
4 cm) covering an angle of 172 degrees. The 256-
channel system shares common characteristics with
the 64-channel system but utilizes an array of 256 ul-

trasound elements covering an angle of 270 degrees
instead of 64 channels covering 172 degrees. Data
from two different systems were used to investigate
the generality of the conclusions under different in-
strumentation conditions. All optoacoustic images
were reconstructed using a model-based inversion al-
gorithm described in [19, 20] and Tikhonov regulari-
zation in the inversion process.

3.1.1 Synthetic data

The synthetic MSOT data employed in this study were
previously described in [9]. The data are formed by
applying a target implantation technique on experi-
mental MSOT images of animals acquired in vivo.
Briefly, experimental multispectral optoacoustic
images of a nude mouse (in the areas of brain and kid-
neys) were acquired in vivo using the prototype 64-
channel MSOT system, and a spectral target was artifi-
cially introduced on the reconstructed images at dif-
ferent positions and in gradually decreasing simulated
concentrations. Herein, two different spectral targets
were considered. One spectral target assumed the
spectrum of Indocyanine Green (ICG) with peak ab-
sorption at 780 nm. The second spectral target assumed
the spectrum of IntegriSense750 (Perkin-Elmer Inc.
Massachusetts, U.S.) with an absorption peak at
750 nm. Therefore four dataset cases were generated,
i.e. Brain-ICG, Brain-IntegriSense750, Kidneys-ICG,
and Kidneys-IntegriSense750. The spectral target was
placed either near the tissue surface (Brain-ICG, Kid-
neys – IntegriSense750), or deep within tissue (Brain-
IntegriSense750, Kidneys – ICG) at 6 distinct and ran-
domly selected positions for each distinct dataset case.
The target was always implanted at 25 logarithmically
decreasing intensities simulating gradually decreasing
agent concentrations corresponding to a peak absorb-
ance from 5 cm–1 to 0.01 cm–1. The intensity at each po-
sition is defined by the simulated concentration of the
spectral target and light intensity in the specific position
as computed using a light propagation model and as-
sumptions on tissue optical properties [9].

3.1.2 In-vivo data

To confirm the observations from synthetic data we
performed MSOT of animals in vivo. A polyester ca-
pillary tube (with inner and outer diameters of
0.86 mm and 1.26 mm, respectively) was rectally in-
serted into an anesthetized CD1 mouse, instead of a
rectal thermometer, and the animal was imaged using
the 256 channel MSOT system in the lower abdominal
area. The capillary tube was iteratively filled with the
fluorochrome Alexa Fluor 790 at decreasing concen-
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trations corresponding to optical absorption of
15.2 cm–1, 5.06 cm–1 and 1,265 cm–1. For this experi-
ment 22 wavelengths were utilized in the range
690 nm to 900 nm with a step size of 10 nm. Addition-
ally, a nude mouse with a brain tumor expressing a
near-infrared fluorescent protein (iRFP) was imaged
in the head area using the prototype 64-element
MSOT system at 12 different wavelengths (690, 695,
700, 705, 710, 715, 720, 730, 750, 770, 800, and 830 nm)
[5]. Fluorescence cryoslicing imaging was employed in
this case as the gold standard for validating the MSOT
studies [21].

3.2 Target detection methods

Five spectral target detection approaches were con-
sidered in this study to better understand the effects
of different algorithms, wavelength selection ap-
proaches, and number of excitation wavelengths em-
ployed on the sensitivity achieved.

Method 1 (M1) assumed monochromatic optoa-
coustic imaging at the peak absorption wavelength
of target molecule.

Method 2 (M2) assumed imaging at two wave-
lengths and subsequent subtraction of the resulting
images. Method 2 employed one measurement at a
wavelength at the peak of the absorption spectrum
and a second measurement intuitively at a wave-
length where the spectral target exhibited low ab-
sorption but close to the wavelength of the maxi-
mum absorption. For ICG the low absorption wave-
length was selected at 850 nm. For IntegriSense750
the low absorption wavelength was chosen at
800 nm. For Alexa Fluor 790 the low absorption wa-
velength was chosen at 890 nm. For iRFP the low
absorption wavelength was selected at 730 nm.

Method 3 (M3) was also a subtraction method
which performed imaging at 2 wavelengths. Method
3 employed one measurement at a wavelength at the
peak of target absorption (as in Method 2) but then
iteratively tested all different possibilities for the sec-

ond wavelength in order to optimize the detection
result. This method was only applied in the synthetic
dataset, where prior knowledge of the known target
was available, in order to identify the best possible
result achievable using only two wavelengths. We
note that this method is not applicable in practice,
where the target location is unknown.

Method 4 (M4) was based on the assumption that
the absorbing tissue background can be modeled as
a linear mixture of the spectra of hemoglobin:

x ¼ SA ð2Þ

In Eq. (2), x is the matrix of the multispectral opto-
acoustic images (with dimensionality M × N, where
M is the number of wavelengths and N the number
of pixels), S is the M × K spectrum matrix, with K
being the number of components (here K = 3,
namely oxy- and deoxy- hemoglobin and the agent),
and A is the K × N unknown matrix proportional to
the concentrations of the three unmixed compo-
nents. In this case, the unmixed agent component
can be obtained by the third row of matrix A. The
matrix A is estimated under a least squares approach
as in A = S+x, where S+ is the Moore-Penrose pseu-
doinverse of matrix S. Under the assumption of the
linear mixture model (Eq. (2)), three wavelengths
are theoretically adequate for unmixing a molecular
target from oxy- and deoxy-hemoglobin. In this case
the three wavelengths were optimally selected for
minimizing the condition number of the spectrum
matrix S. Specifically the 3 × 3 matrix S was com-
puted for all possible 3-wavelength combinations,
and its condition number was calculated. The matrix
S (and the associated wavelength sampling) that is
associated with the minimum condition number was
selected for spectral unmixing. Similar approaches
have been proposed for wavelength selection in op-
toacoustic imaging [22, 23].

Method 5 (M5) was statistical sub-pixel detection,
(assuming multispectral imaging of more than 3 wa-
velengths) by means of the Adaptive Matched Filter
(AMF) [24]. The application of this method in the
context of MSOT data is explained in [9]. Briefly,

Table 1 Molecular target detection methodologies.

Name Method Wavelength selection

M1 Contrast of single wavelength optoacoustic image Peak excitation wavelength of fluorochome
M2 Dual wavelength subtraction First wavelength at peak excitation and intui-

tively selected second wavelength.
M3 Dual wavelength subtraction First wavelength at peak excitation and optimally

selected second wavelength
M4 Linear unmixing with hemoglobin spectra and agent

spectrum.
3 wavelengths selected for minimizing the condi-
tion number of spectrum matrix S.

M5 Adaptive Matched Filter Uniformly sampled

* Selected methodologies for molecular opotacoustic imaging.
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the unmixed agent component at a specific position
r is given by the following equation:

DðxrÞ ¼ 1
sTΣ�1s

� sTΣ�1ðxr � μÞ ð3Þ

where xr is the M × 1 data vector corresponding to
position r, s is the M × 1 spectrum of the target
agent, and Σ and μ are the assumed covariance and
mean of the background, respectively. To under-
stand the performance of this method in relation to
the number of wavelengths employed we applied the
AMF algorithm for a different number of uniformly
sampled wavelengths, i.e. for 20, 16, 13, 10, 8, 7, 5, 4
wavelengths

As evident from the selection of methods herein,
only Method 5 can examine the effect of an increas-
ing number of wavelengths on the MSOT accuracy.
Therefore the selection of methods 1–4 is done for
comparison purposes, in order to better understand
the importance of illumination wavelengths against
established optoacoustic methods utilizing 1 or 2 wa-
velengths or methods that seek to minimize wave-
lengths by following an optimal wavelength selection
strategy. Methods 2, 4 are often employed in the lit-
erature since many optoacoustic studies today gener-
ate measurements at a small number of wavelengths.
We note that wavelength selection prior to measure-
ments presupposes exact knowledge of the opto-
acoustic spectra of tissue, and thus it becomes possi-
ble only under the assumption of the linear mixture
model with hemoglobin. In the last category (M5)
we selected the AMF since it has been shown to out-
perform linear unmixing approaches for such con-
fined spectral targets [9]. In the context of AMF it is
not possible to select the excitation wavelengths in
an optimal sense prior to imaging. For this reason, in
the case of AMF we selected an equidistant distribu-
tion of wavelengths.

3.3 Sensitivity analysis

Each of Methods 1–5 used with a certain synthetic
dataset was applied sequentially to data obtained
from all the spectral target titrations corresponding
to a simulated peak absorption coefficient from μαsim

= 5 cm–1 to μαsim = 0.01 cm–1. This was performed in
order to determine the value of agent absorbance
for which the spectral target was no longer visible
using a specific detection method. Visibility was de-
fined as a relation between true positive and false
positive detected pixels using a metric defined in [9].
Specifically, a target is considered invisible if the
mean value of the true positive detected pixels is
smaller than the mean value of false positives (i.e.
non-target pixels with detection values higher than
the mean detection values of the target). Examples

of marginally visible targets and targets that are con-
sidered invisible, according to this metric, are pre-
sented in Figure 1. Correspondingly, sensitivity is de-
fined herein as the minimum simulated absorbance
of a spectral target that is necessary for the accurate
extraction of its bio-distribution from the absorbing
tissue background. A sensitivity matrix is computed
for each distinct dataset (e.g. Brain – ICG) after ap-
plying each method to all 6 image instances corre-
sponding to the different target locations. In the fol-

Figure 1 (A). Quantitative analysis of MSOT sensitivity (y-
axis) as a function of wavelengths. The graphs correspond
to the synthetic datasets of (i) Brain – ICG, (ii) Brain – In-
tegriSense750, (iii) Kidneys – IntegriSense750, (iv) Kidneys
– ICG. (B). Detection examples from the Kidneys – ICG
dataset. (i), (ii) Detection examples for marginally detected
targets using M3 and M5 respectively. (iii), (iv) Detection
examples for targets considered undetected using M3 and
M5 respectively.
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lowing statistics corresponding to the mean and the
standard deviation of the sensitivity matrix are com-
puted and presented for comparison of the different
approaches.

4. Results

4.1 Synthetic data

Figure 1A presents a quantitative analysis of the four
synthetic data cases employed herein and depicts the
MSOT sensitivity as a function of wavelengths and
spectral method selected. Lower μα values in the y-axis
indicate better sensitivity. The values in each graph
correspond to the mean sensitivity values calculated
for 6 different randomly selected positions of the im-
planted target, and the error bars correspond to the
standard deviation from all 6 target positions. Fig-
ure 1B presents two detection examples from the Kid-
neys – ICG dataset with the detection result superim-
posed on the anatomical image using red color. Figure
1B (i) and (iii) correspond to the detection result ob-
tained using M3 when the target was implanted at a
simulated absorbance of 0.38 cm–1 and 0.29 cm–1, re-
spectively. Figure 1B (ii) and (iv) correspond to the
detection result obtained using M5 with 20 wave-
lengths when the target was implanted at a simulated
absorbance of 0.17 cm–1 and 0.13 cm–1, respectively.
The molecular target is considered marginally visible
in Figure 1B (i) and Figure 1B (ii), and invisible in Fig-
ure 1B (iii) and Figure 1B (iv), according to the visibi-
lity metric employed. The yellow arrows on the figures
indicate the position of the implanted target while the
blue arrows indicate false positive detected areas.

Table 2 summarizes ratios that quantitatively de-
monstrate the sensitivity enhancement achieved
using (i) M5 with 20 excitation wavelengths as com-
pared to monochromatic optoacoustic imaging (M1),
(ii) M5 with 20 excitation wavelengths as compared
to M2, (iii) M5 with 20 excitation wavelengths as
compared to M3, (iv) M5 with 20 excitation wave-
lengths as compared to M4 and (iv) M5 with 20 ex-

citation wavelengths as compared to M5 with 4 exci-
tation wavelengths.

4.2 In vivo data

Figure 2 depicts the images from the in vivo mouse
study obtained from the lower abdominal area for
different methods and fluorochrome concentrations.
Figure 2(a), (c), (e) show the detection result ob-
tained by Method 1 for 15.2 cm–1, 5.06 cm–1 and
1.265 cm–1 respectively. Without spectral differentia-
tion it is difficult to understand where the spectral
target is located only by observing the image. How-
ever since we know by means of the controlled ex-
periment that the fluorochrome is located at the area
pointed to by the yellow arrow, it is clear that the
fluorochrome can be seen at 15.2 cm–1 and 5.06 cm–1

but virtually disappears at 1.265 cm–1.
Figure 2(b), (d), (f) shows the corresponding re-

sults when using M2. Image subtraction allows for
the generation of a “spectral target” image which
can be superimposed on the “anatomical” image
using red color in this case. This improves the ability

Table 2 Quantitative ratios, demonstrating the sensitivity enhancement achieved under different spectral methods
and as a function of wavelengths.

Dataset Sensitivity comparison

(i)* (ii) (iii) (iv) (v)

(a) Brain – ICG 40.6 12.2 7.3 3.7 1.5
(b) Brain –Integr. 750 19.5 9 5.9 1.7 1.9
(c) Kidneys – ICG 21.1 3.9 3 4.1 1.8
(d) Kidneys – Integr. 750 14 11.1 5.6 4.8 2.2

* Sensitivity enhancement of M5 (20 wav.) vs. (i) M1, (ii) M2, (iii) M3, (iv) M4, (v) M5 (4 wav.).

Figure 2 Visual comparison of the detection results of
monochromatic optoacoustic imaging using M1 (a, c, e),
dual wavelength imaging using M2 (b, d, f), 3 wavelength
imaging (specifically 690 nm, 790 nm and 900 nm) using M4
(g) and multispectral optoacoustic imaging using M5 and 22
wavelengths (h), in the case of a fluorochrome present in
deep tissue in varying concentrations. The yellow arrows
point at the expected position of the fluorochome.
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to understand the presence of a spectral target on
the image, as demonstrated by comparing for exam-
ple Figure 2(c) to (d). Method 2 also shows that in
contrast to Method 1, it can also resolve the spectral
target at the 1,265 cm–1 absorbance (Figure 2(f)).
However, Figure 2(f) also reveals that several false
signals appear on the image which compromise the
overall accuracy of the method. The false signals can
be attributed to spectral differences in other areas of
the tissue, due to the wavelength dependent tissue
absorption.

Finally, Figure 2(g), (h) show the corresponding
results of Method 4, and Method 5 utilizing 22 wave-
lengths, respectively, applied in the case of the
1.265 cm–1 absorbance. In the case of M4 (Figure 2
(g)) false positives in irrelevant parts of the image
compromise the ability of the method to detect the
target. In the case of M5 (Figure 2(h)) the target ap-
pears accurately detected with minimal false posi-
tives.

Figure 3 presents results from the in vivo study
imaging a brain tumor expressing iRFP. Figure 3(a)
presents the monochromatic optoacoustic image at
the peak absorption wavelength of the fluorescent
protein, whereby it is not possible to identify the tu-
mor cells. Figure 3(b) presents the detection result
when using Method 5 with 12 wavelengths, overlaid
to the anatomical image. Figure 3(c) presents the va-
lidation using cryoslicing fluorescent imaging. Figure
3(d) depicts the detection result from the in-vivo
brain tumor study when using M2. Figure 3(e) pre-
sents the corresponding detection result when using
M4, Figure 3(f) shows the detection result when
using M5 with 4 wavelengths, and Figure 3(g) shows
the detection result when using M5 with 12 wave-
lengths.

The results visually represent in the in vivo case a
performance similar to the one observed on Figure 1
for synthetic data, i.e. that an increase in the number
of wavelengths and use of the AMF algorithm can im-
prove the in vivo detection sensitivity and accuracy by
suppressing false positive detection artifacts.

5. Discussion

Sensitivity is an important parameter in MSOT and
overall optoacoustic imaging, which is not yet thor-
oughly studied in literature, mainly due to the de-
pendence on several parameters including depth, tis-
sue optical properties and imaging methodology em-
ployed. By identifying optimal strategies for sensitive
MSOT imaging one can ultimately also approach the
issue of accurately quantifying the sensitivity of each
strategy based on a validated methodology. In this
study we opted to establish a relation between the
number of illumination wavelengths employed and
the sensitivity achieved. We showed quantitatively
what can be also intuitively understood, that the sen-
sitivity of molecular optoacoustic imaging depends
on the number of excitation wavelengths employed
and cannot be defined independently of their num-
ber.

The fundamental question of the effect of multi-
ple excitation wavelengths on the performance of
optoacoustic imaging is however not only of theore-
tical significance in determining the sensitivity of the
optoacoustic method but also required in the design
of appropriate optoacoustic systems and experimen-
tal protocols. However, a complication in addressing
this question relates to the spectral unmixing ap-
proach assumed. Different spectral unmixing algo-
rithms have been considered and more may be pro-
posed in the future. The overall performance de-
pends on a number of parameters such as the prop-
erties of the tissue and the spectral target, the
particular system and geometry employed and the

Figure 3 Visual comparison of the detection results of dif-
ferent molecular optoacoustic methods in the case of in
vivo MSOT imaging of a mouse brain bearing a tumor that
is expressing a fluorescent protein. (a) Monochromatic op-
toacoustic imaging at the peak excitation wavelength of the
fluorescent protein (M1). (b) Overlay of the detection re-
sult using M5 with 12 excitation wavelengths, and the ana-
tomical optoacoustic image. (c) Validation of the position
of the fluorescent protein by means of cryoslicing fluores-
cence imaging. (d–g) Detection result using: (d) M2 (se-
lected wavelengths 680 nm and 730 nm), (e) M4 (selected
wavelengths 700 nm, 750 nm and 830 nm), (f) M5 with four
excitation wavelengths (700 nm, 715 nm, 750 nm and
830 nm) and (g) M5 using 12 excitation wavelengths.
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mathematical method considered for image recon-
struction. In this study we selected to employ the
AMF algorithm that has been recently shown to be
superior to linear unmixing methods as it allows ac-
curate spectral detection independently of assump-
tions of the background tissue properties or optical
fluence present. In that respect the AMF approach
is robust for in vivo measurements under the as-
sumption of sparse spectral agent distribution, as the
case of fluorochromes targeting spatially localized le-
sions. To understand this method and the effect of
wavelengths in the context of simpler optoacoustic
studies considered so far we also utilized a single wa-
velength (Method 1), two dual-wavelength subtrac-
tion methods (Method 2, Method 3), as well as a
method that seeks to minimize the excitation wave-
lengths employed through an optimal wavelength se-
lection approach (Method 4).

The particular strategy followed for wavelength
selection presents an additional complication for
studying the sensitivity as a function of the excitation
wavelengths employed. Optimal wavelength selec-
tion prior to imaging can only be considered under
the assumption of an a priori structured model that
describes the background spectral variability. Cur-
rently, wavelength selection approaches have only
been considered under the assumption that tissue
background follows a linear mixture model with the
spectra of hemoglobin, which does not consider
depth related nonlinearities, noise and reconstruc-
tion related effects. One such approach has been in-
cluded herein for reasons of consistency. In the case
of statistical sub-pixel detection algorithms, such as
AMF, a similar wavelength selection approach can-
not be followed, due to the fact that the spectral tis-
sue background is not considered known, but is
modelled from the available data. For this reason, in
the case of the AMF we followed a uniform wave-
length sampling approach.

Studies were performed on both simulated (syn-
thetic) and in vivo data. Synthetic data help better
understand the effect of different parameters on the
result, as they offer full control of the experimental
parameters. In vivo studies then helped confirm the
observations on synthetic data under realistic in vivo
experimental conditions. The findings clearly de-
monstrate that MSOT can effectively enhance the
sensitivity over monochromatic optoacoustic imaging
in the order of 14–40 times (Figure 1). This indicates
that the sensitivity of MSOT is more than an order
of magnitude better than single wavelength opto-
acoustic imaging when detecting spectral moieties, a
result that was previously undocumented. Compared
to dual-wavelength subtraction methods, MSOT stu-
dies at >10 wavelength further reveal a significant
sensitivity enhancement that can also reach up to an
order of magnitude, even in cases whereby the tar-
get absorption spectrum is sharp; a requirement for

subtraction methods. The experimental results in
Figures 2 and 3 confirm the results of the synthetic
data quantitative evaluation, showing the ability of
MSOT to accurately extract a fluorochrome deep
within tissue in vivo, at the optical density which
cannot be accurately retrieved by monochromatic or
subtraction methods. This is optimally demonstrated
in the tumor imaging example shown in Figure 3
whereby only Method 5 at 12 wavelengths accurately
resolves the genetically modified cells.

The quantitative evaluations on synthetic data in-
dicate a rather consistent trend of sensitivity en-
hancement with wavelengths when using an adaptive
detection algorithm (namely AMF). When using 20
wavelength, the sensitivity can be enhanced up to
more than 4 times as compared to 3 optimally se-
lected wavelengths and linear unmixing, showing
that a frequently followed assumption that that three
wavelengths are adequate for unmixing blood and a
single fluorochrome can be an oversimplification.
Since the spectral unmixing problem is non-linear,
and the background tissue spectral perturbations are
additionally affected by a multitude of noise and re-
construction related factors, more wavelengths can
indeed offer better tissue modeling capabilities. Spe-
cifically, we observed a rather consistent perfor-
mance enhancement of doubling the sensitivity in
the cases between 4 and 20 wavelengths.

Finally we observed that in certain cases (e.g.
Figure 1A (ii)) using less wavelengths can result in
equivalent or better performance than more. Indeed
it is theoretically possible that less wavelength may
result in better class separability between the target
agent and the absorbing background [25]. In this re-
spect, class separability metrics have been proposed
for identifying optimal wavelength subsets in order
to optimize the detection performance [25]. How-
ever when statistical detection methods are con-
cerned, wavelength selection is a post-processing
step, since such wavelength rejection methods pre-
suppose that all wavelengths have been previously
acquired.

6. Conclusion

In conclusion, multiple excitation wavelengths and
appropriate unmixing algorithms have a major im-
pact on sensitivity as compared to single or dual wa-
velength optoacoustic imaging. Moreover, sensitivity
exhibits a statistical trend of increase with the num-
ber of wavelengths employed. Wavelength selection
may have an additional impact on the sensitivity
achievable. However, wavelength selection is gener-
ally based on approximate and rather inaccurate
models for background absorption spectral variabil-
ity. In this respect, the employment of more excita-
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tion wavelengths provides higher probability to accu-
rately capture and account for the absorption spec-
tral variability, and thus better probability for sensi-
tive molecular imaging. The statistical evaluation of
Figure 1 can be considered for general guidance in
selecting the number of wavelengths desired.

This study investigated the effect of the excitation
wavelengths on the sensitivity of molecular opto-
acoustic imaging. This study did not establish the ex-
act sensitivity limits under different scenarios. This
latter case is the object of follow up studies which
would have to take into consideration the reported
results and define then sensitivity for a particular
system and experimental scenario under assumptions
specific to the problem studied.
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Multispectral optoacoustic tomography (MSOT) offers the potential to image in high-resolution cells tagged with
optical labels. In contrast to single wavelength imaging, multispectral excitation and spectral unmixing can differ-
entiate labeled moieties over tissue absorption in the absence of background measurements. This feature can enable
longitudinal cellular biology studies well beyond the depths reached by optical microscopy. However, the relation
between spectrally resolved fluorescently labeled cells and optoacoustic detection has not been systematically
investigated. Herein, we measured titrations of fluorescently labeled cells and establish the optoacoustic signal
generated by these cells as a function of cell number and across different cell types. We then assess the MSOT
sensitivity to resolve cells implanted in animals. © 2014 Optical Society of America
OCIS codes: (170.5120) Photoacoustic imaging; (170.3880) Medical and biological imaging; (170.1530) Cell analysis.
http://dx.doi.org/10.1364/OL.39.003523

Microscopy plays a critical role in cell biology, enabling
observations of cell–cell and cell–host interactions in
vivo [1]. However, the limited penetration of microscopy
methods only allows superficial observations. Many
applications, however, require cell imaging at different
scales. Recent cell-based therapy studies, including cell-
based cancer immunotherapy and stem cell treatments,
have shown the potential of cell therapy to develop
into a novel therapeutic platform. Various therapeutic
cell types, such as T cells, dendritic cells and natural
killer cells are administered to cancer patients after
ex vivo manipulation to target and inhibit tumor growth,
with significantly fewer side effects on normal cells [2].
Likewise, macrophages have been considered for treating
cancer, fibrosis, and inflammation [3–5]. However, the as-
sessment of therapeutic cell bio-distribution largely relies
on ex vivo examinations. As a result, the migration and
targeting of cells and underlying dynamic processes have
not yet been fully elucidated, even though critical for
understanding the mechanisms leading to successful
treatment.
Imaging methods that allow the macroscopic visualiza-

tion of cell bio-distribution through entire living organ-
isms have been considered, but come with their own
limitations. The most popular modality, bioluminescence
imaging (BLI), is fundamentally limited by a lack of
quantification. The signal recorded in BLI is a surface-
weighted low resolution photon intensity signal, with
limited ability to accurately resolve its spatial origin in
three dimensions or relate this signal to the number of
cells generating it. Fluorescence epi-illumination imaging
(FEI) comes with similar limitations. Diffuse optical
tomography approaches and nuclear imaging methods,
such as fluorescence molecular tomography (FMT) or
Positron Emission Tomography, respectively, have also
been considered. They typically offer three-dimensional
imaging ability and better quantification capacity over
BLI or FEI, but are similarly limited by resolution that
is no better than 1 mm in small animals and worse in
larger animals. Overall, nuclear imaging techniques are

further limited by the need to employ radioisotopes,
which decay and do not enable long-term observations.
Conversely, optical methods, such as FMT, allow for
longitudinal studies but are less sensitive to nuclear
methods, particularly as the depth of the activity in-
creases. High-resolution radiologic methods, such MRI
and x-ray CT are less frequently regarded for imaging
cells due to their low sensitivity.

With the advent of multispectral optoacoustic tomog-
raphy (MSOT), there are novel possibilities for macro-
scopic cell imaging. MSOT can offer optical contrast in
high-resolution, beyond the penetration depth of conven-
tional microscopy. The ability to image un-labeled, highly
absorbing cells [6], or cells labeled with fluorescent pro-
teins and nanoparticles, has been already demonstrated
[7–9]. However, no systematic study has been so far
performed to assess MSOT sensitivity in immune cell
imaging.

In this Letter, we take a first step toward relating MSOT
signals to the spectrally resolved absorption properties of
labeled immune cells. A particular MSOT feature is the
use of multiwavelength illumination and the application
of spectral unmixing techniques to capture the spectra of
different absorbing moieties. Recently, we have reported
on the use of statistical sub-pixel detection techniques
[10] yielding sensitive and accurate MSOT sensing,
beyond the capacity of linear unmixing methods. Of par-
ticular importance was to identify the sensitivity of MSOT
combined with appropriate spectral processing methods
for the application of cell imaging. We employ these
methods herein, for understanding the detection ability
for cells labeled with fluorescent dyes. From an opto-
acoustic detection standpoint, fluorescent labels present
perhaps a worst case scenario for cell imaging with
MSOT over other labeling methods, such as gold nano-
particles [11]. From a biology point of view, however,
fluorescent labels are better established and character-
ized. Importantly, fluorescent labels come with the
advantage that the cells can be also visualized by
traditional optical methods, for example fluorescence
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microscopy, to better understand the loading and other
biological parameters.
For MSOT measurements, we employed a state-of-the

art 256-channel real-time imaging MSOT scanner (iThera
Medical GmbH, Kreiling, Germany). The general charac-
teristics of a similar 64-channel system have been
described elsewhere [12]. The system employs an OPO
tunable laser for illumination in the NIR and parallel de-
tection of 256 channels to achieve fast, real-time imaging.
Two types of cells were employed in the studies to exam-
ine the effects of cell variability. Jurkat T cells were
grown in RPMI 1640 media (Invitrogen No. 31870074)
containing 10% FBS, 2 mM l-glutamine, 1 mM sodium
pyruvate, nonessential amino acids, and penicillin–
streptomycin. In addition, J774A.1 mouse macrophages
were cultured in RPMI 1640 media, including 10% FBS
and penicillin–streptomycin. Cells were labeled with the
near-infrared fluorescent cyanine dye 1,1’-dioctadecyl-
3,3,3’,3’-tetramethylindotricarbocyanine iodide (DiR)
for optoacoustic detection. DiR is a lipophilic, near-
infrared fluorescent cyanine dye that can be incorpo-
rated into the cell membrane. For labeling, 1 × 106 cells
were incubated with DiR for 15 min at room temperature
while mixing every 5 min. Optimal labeling results were
determined by testing different DiR concentrations and
monitoring cell viability using MTT assay (Roche
Applied Science, Penzberg, Upper Bavaria, Germany),
according to the manufacturer’s instruction. Optimal la-
beling of the J774A.1 macrophage cell line was achieved
using 10 μM DiR, leading to an overall labeling of about
99.6% of cells (SD� 0.58%) and a cell viability of 97%.
Optimal labeling of Jurkat cells was found when using
5 μM DiR, which led to an overall labeling of 97.6%
(SD� 1.23%) and a cell viability of about 91%. The
degree of cell labeling was determined by counting
fluorescence-positive cells in the overlay with the DIC
image (n � 4).
MSOT cell imaging in vitro. Cells were first imaged

in vitro by utilizing 2 cm–diameter cylindrical phantoms
made of 1.3% agar (Sigma-Aldrich) and 1.2% by volume
Intralipid emulsion (Sigma-Aldrich), leading to an opti-
cally diffusive medium with acoustic properties similar
to those of tissue. The use of an absorption-less phantom
was selected herein to explicitly study the signal contri-
bution of only the labeled cells. Measurements in animals
then provided a reference medium with tissue absorption
for comparison purposes. The labeled cells were en-
closed within a 3 mm diameter plastic tube implanted
into the agar cylinder, as shown in Fig. 1(a). Both Jurkat
cells [Fig. 1(b)] and J774A.1 cells [Fig. 1(c)] were imaged
using exactly the same imaging parameters. The labeled
cells were enclosed within a 3 mm diameter plastic tube
implanted into the agar cylinder, as shown in Fig. 1(a).
Three different labeled cell concentrations were inserted
into the 3 mm tubes, corresponding to 1250, 2500, and
5000 cells in the volume imaged. Unlabeled cells were
also imaged as controls (Fig. 1). MSOT imaging was per-
formed in one imaging plane (∼200 μm in plane resolu-
tion, ∼800 μm cross section). The phantom images
were reconstructed at a wavelength of 720 nm, where
the DiR signal is prominent [Figs. 1b(i)–1b(iii) and
Figs. 1c(i)–1c(iii)]. Overall, a linear increase in signal

intensity with increasing cell number is observable
[Figs. 1b(iv) and 1c(iv)], as it is theoretically expected.

The relative absorbance of labeled cells was character-
ized using the same scattering phantom as the one
described in Fig. 1(a). For contrasting the signal obtained
from labeled cells with a well-characterized absorption
signal, we employed India Ink for reference measure-
ments. In particular, labeled Jurkat [Fig. 2(a)] and
J774A.1 cells [Fig. 2(b)] were sequentially imaged next
to an insertion of black India Ink with an absorbance
of μα � 0.5 cm−1, the latter determined by a photospec-
trometer. Imaging was performed at 720 nm using MSOT.
The optoacoustic signal intensity produced by 5000
Jurkat [Fig. 2(a)] and J774A.1 cells [Fig. 2(b)] was imaged
together with an identical amount of ink. We observed
that the optoacoustic signal produced by J774A.1 cells
was almost twice as high as the one produced by
Jurkat cells [Fig. 2(c)]. To explain this difference, we
measured the cell sizes and found that macrophages
had larger diameters compared with the T cell line
[Fig. 2(d)]: J774A.1 � 17.94 μm, SD� 1.99; Jurkat �
13.44 μm; SD� 2.1; (statistics stemming after counting
n � 47 cells per cell line using the “Leica Application
Suite” software). The larger cell diameters of the
J774A.1 cells represents a near doubling of cell surface,
which indicates double DiR concentration per cell and
can explain the optoacoustic signal measured [Fig. 2(c)].

Fig. 1. In vitro optoacoustic imaging (720 nm) of DiR-labeled
cells. (a) Schematic of the phantoms used in the in vitro tests.
Labeled and unlabeled cells are inserted in 3 mm diameter tubes
that are placed within a 20 mm diameter scattering phantom.
(b) Imaging of Jurkat cells: (i)–(iii) optoacoustic signal gener-
ated by 1250, 2500, and 5000 DiR-labeled cells, respectively; and
(iv) optoacoustic signal intensity comparison for different
amounts of labeled cells. The bar heights indicate the mean in-
tensity within the region of interest and the error bars indicate
the standard deviation. (c) Imaging of J774A.1 cells: (i)–(iii)
optoacoustic signal generated by 1250, 2500, and 5000 DiR-
labeled J774A.1 cells, respectively; and (iv) optoacoustic signal
intensity comparison for different amounts of labeled cells. The
bar heights indicate the mean intensity within the region of in-
terest and the error bars indicate the standard deviation.
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Labeled cells are highly scattering, making photo-
spectrometry a nonideal method for estimating their ab-
sorbance in absolute values. Optoacoustic imaging can
serve as a better alternative in this respect. Assuming that
the differences in Grüneissen coefficient are insignifi-
cant, we can quantify the absolute absorbance of the la-
beled cells through comparison with the black India Ink.
Specifically, based on Fig. 2(c), we found that 5000
Jurkat cells produce an optoacoustic signal that corre-
sponds to μα of ∼0.12 cm−1, and 5000 J774A.1 cells to
μα of ∼0.25 cm−1. Using this information, and the linear
signal response as a function of cell number (Fig. 1),
we can approximate the absorbance as a function of
the number of cells. Knowing that tissue absorption in
the NIR ranges is in the area of 0.1 to 0.4 cm−1 [13], we
hypothesize that, to produce enough contrast for accu-
rate MSOT sensing, cell clusters in the range of 1000–
10,000 would be required.
Animal imaging. To confirm the theoretical predic-

tion and the overall ability to detect labeled immune cells
in tissues, we selected the cell line with the stronger la-
beling ability to provide first insights into the MSOT sen-
sitivity for fluorescently labeled cells. We performed two
experiments. In each experiment we injected two differ-
ent amounts of cells in the left (injection 1) and the right
brain hemispheres (injection 2) of a euthanized mouse. In
experiment A, we injected locally 25,000 J774A.1 cells in
the left and 10,000 J774A.1 cells in the right brain hemi-
sphere. In experiment B, we injected locally 5000 J774A.1
cells in the left and 2500 J774A.1 cells in the right brain
hemisphere. Mice were euthanized before cell injection
and then imaged using MSOT. After MSOT imaging,
the mice were imaged using cryoslicing fluorescence
imaging [14] to verify the position of the cell insertions.
Euthanasia was performed according to procedures
approved by a local subcommittee on animal research.
For MSOT imaging, the mice were placed horizontally

on a thin polyethylene membrane and placed within the

MSOT scanner. Sound coupling and animal temperature
maintenance was achieved by surrounding the mem-
brane with water actively controlled at 34°C. Excitation
wavelengths from 700 to 900 nm, in steps of 10 nm, were
collected. MSOT images were reconstructed for each
wavelength using a model-based reconstruction algo-
rithm [15]. Afterward, the cell bio-distribution was spec-
trally resolved from the absorbing tissue background
using the measured spectrum of the labeled cells and an
adaptive matched filter (AMF), as in [10]. After the com-
pletion of each MSOT measurement, the mice were fro-
zen and tissue slices were photographed and imaged with
a fluorescence camera. The fluorescence measurements
were superimposed in green pseudocolor on the color
images. The fluorescence cryoslice images are shown
next to the MSOT images for validation purposes.

Figure 3 depicts the results from experiments A and B.
In each case, the cell insertions are explicitly pointed
with white arrows. Figures 3(a) and 3(b) correspond
to experiment A and Figs. 3(c) and 3(d) to experiment
B. Figure 3(a) presents an overlay of the J774A.1 cell
bio-distribution as detected using MSOT/AMF unmixing
(red) on the anatomical optoacoustic image at 900 nm.
Figure 3(b) shows a corresponding fluorescence cryo-
slice image, which confirms the results of the noninva-
sive MSOT image. We note that the signals captured
by fluorescence imaging are generally of lower resolution
(due to photon diffusion) compared with the MSOT
images, and some minor disagreement is expected.
Figure 3(c) demonstrates imaging of macrophages at
amounts of 5000 and 2500. In all cases, the signals are
reliably detected.

Our data show that the J774A.1 macrophages were
detectable in ex vivomice via MSOT in all four titrations,
from 25,000 to 2500 cells. Retrospective analysis, based

Fig. 2. Comparison and quantification of the absorbance of
DiR-labeled cells. Single-wavelength (720 nm) optoacoustic
phantom images of (a) 5000 DiR-labeled Jurkat cells and
(b) J774A.1 cells, next to black India Ink of absorption coeffi-
cient 0.5 cm−1. (c) Comparison in terms of optoacoustic signal
intensity between the ink reference and the 5000 Jurkat and
J774A.1 cells. (d) Comparison of the cell diameters of Jurkat
and J774A.1 cells.

Fig. 3. Ex vivo animal study. (a) and (c) Overlay of the spec-
trally resolved signal stemming from the DiR-labeled J774A.1
cells (red color) onto the anatomical optoacoustic image (at
900 nm) for experiments A and B, respectively. The white ar-
rows indicate the positions of the cell insertions. (b) and
(d) Overlay of the fluorescent signal stemming from the DiR-
labeled cells (green color) onto the anatomical cryoslice image
for experiments A and B, respectively.
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on the signal-to-noise characteristics of these four mea-
surement points, indicates that sensitivities of the order
of 1000 cells or less may be possible. However, an exact
determination of sensitivity is best performed on a per
case basis. MSOT sensitivity depends on multiple param-
eters, including system parameters, in particular the light
intensity deposited on the tissue, the ultrasound detector
sensitivity, the excitation wavelengths employed, and the
spectral unmixing method utilized. It further depends on
the depth of the cell activity and the optical properties of
tissue. A third dependence of the sensitivity is on the le-
sion size. Cells distributing over a larger volume will gen-
erally generate lower ultrasound frequencies than cells
accumulating in smaller lesions. Since higher ultrasound
frequencies attenuate more strongly than lower frequen-
cies, the detection of cells over very small volumes will
be more challenging. Finally, a fourth dependence is on
the particular label employed.
We should note that it is common to determine opto-

acoustic sensitivity by multiplying the total number of
cells imaged with the ratio of the volume of the opto-
acoustic voxel over the total volume that the cells are
distributed in. This gives some very favorable sensitivity
numbers, which may be rather inaccurate. This is be-
cause, as mentioned, a very small volume emits an opto-
acoustic signal of much higher frequency content, which
is attenuated more strongly than the lower frequency sig-
nals emitted from a larger volume. This nonlinear rela-
tionship of sensitivity with volume has been shown
before [16]. Instead, sensitivity should be demonstrated
on a per case basis for the actual distribution volume, or
by using models that account for this nonlinear behavior.
The demonstration of experimentally detecting at least

∼2500 cells from a small volume inside tissue gives a first
indication of MSOT as a cell imaging method. An impor-
tant additional parameter that will affect sensitivity is the
labeling approach employed. Herein, we selected a fluo-
rescent label that is commonly employed for cell imaging
applications and binds to the surface of the cells. We
observe that the size of the cell surface plays an impor-
tant role on the optoacoustic signal generated and that
smaller cells may be more challenging to detect. Alterna-
tive labels, such as gold nanoparticles, could potentially
improve detection sensitivity. However, the ability to of-
fer better detection characteristics with nanoparticles
should be explicitly demonstrated, as it relies also on
labeling efficiency, i.e., how many particles can be taken
up by the target cells.
In summary, we have demonstrated, for the first

time to our knowledge, the ability of MSOT to image,
within tissue, leukocytes labeled with a fluorescent

dye. Of particular importance was the identification of
sensitivity metrics as they relate to biological explora-
tion. For this reason, signals obtained from labeled cells
were first contrasted to signals obtained from character-
ized amounts of India Ink. Then, measurements from an-
imals were obtained to interrogate the ability and
sensitivity to resolve cells in tissues.

All animal experiments were approved by the District
Government of Upper Bavaria. We thank the groups of
Prof. Angela Krackhardt, Technische Universität
München, Germany, for providing the Jurkat cells. We
further acknowledge support from EU project FAMOS
(FP7 ICT, Contract 317744) (Spectral algorithms), the
Federal Ministry of Education and Research, Photonic
Science Germany (Tech2See-13N12624) (Cell labeling)
the ERC Advanced Grant (233161) (MSOT development).
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Light propagating in tissue attains a spectrum that varies with 

location due to wavelength-dependent fluence attenuation, an 

effect that causes spectral corruption. Spectral corruption has 

limited the quantification accuracy of optical and optoacoustic 

spectroscopic methods and impeded the goal of imaging blood 

oxygen saturation (sO2) deep in tissues; a critical goal for the 

assessment of oxygenation in physiological processes and disease. 

Here, we describe light fluence in the spectral domain and 

introduce eigenspectra Multispectral Optoacoustic Tomography 

(eMSOT) to account for wavelength dependent light attenuation 

and estimate blood sO2 within deep tissue. We validate eMSOT in 

simulations, phantoms and animal measurements and spatially 

resolve sO2 in muscle and tumors, validating our measurements 

with histology data. eMSOT shows substantial sO2 accuracy 

enhancement over previous optoacoustic methods, potentially 

serving as a valuable tool for imaging tissue pathophysiology. 

 

The assessment  of tissue oxygenation is crucial for 

understanding tissue physiology and characterizing a 

multitude of conditions  including cardiovascular disease, 

diabetes,  cancer hypoxia
1
 or metabolism. Today, tissue 

oxygenation (pO2) and hypoxia measurements remain 

challenging and often rely on invasive methods that may 

change the tissue physiology, such as single point needle 

polarography or immunohistochemistry
2
. Non-invasive 

imaging methods have been also considered, underscoring the 

importance of assessing pO2, but come with limitations. 

Positron emission tomography (PET) or single-photon 

emission computed tomography (SPECT) assess cell hypoxia 

through the administration of radioactive tracers
2
, but are often 

not well suited for quantifying tissue oxygenation, suffer from 

low spatial resolution and are unable to provide longitudinal or 

dynamic imaging capabilities. Electron paramagnetic 

resonance imaging
3
 can measure tissue pO2 but is not widely 

used and offers limited spatial and temporal resolution. 

Imaging methods using tracers may be further limited by 

restricted tracer bio-distribution, in particular to hypoxic areas. 

Tracer-free modalities have also been researched, in particular 

BOLD MRI
4
, which however primarily assesses only 

deoxygenated hemoglobin and therefore presents challenges in 

quantifying oxygenation and blood volume
5
. 

Measurement of blood oxygen saturation levels (sO2) is a 

vital tissue physiology measurement and can provide an 

alternative way to infer tissue oxygenation and hypoxia. 

Arterial sO2 is widely assessed by the pulse oximeter, but this 
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technology cannot be applied to measurements other than 

arterial blood. Optical microscopy methods like 

phosphorescence quenching microscopy
6
 or optoacoustic 

(photoacoustic) microscopy
7
 can visualize oxygenation in 

blood vessels and capillaries but are restricted to superficial 

(<1mm depth) measurements.  Diffuse optical methods 

received significant attention in the last two decades for 

sensing and imaging oxy- and deoxygenated hemoglobin 

deeper in tissue
8
. Despite recent progress

9
, diffuse optical 

methods are inherently limited in spatial resolution and 

accuracy, due to photon scattering. Owing to the high 

heterogeneity of blood sO2 in tissue, the values reported by 

diffuse optical methods are often hard to interpret.  

 Multispectral optoacoustic tomography (MSOT) detects the 

spectra of oxygenated and deoxygenated  hemoglobin in high 

resolution deep within tissues, since signal detection and 

image reconstruction are not significantly affected by photon 

scattering
10,11

. Despite the principal MSOT suitability for non-

invasive imaging of blood oxygenation, accuracy remains 

limited by the dependence of light fluence on depth and light 

color. Unless explicitly accounted for, the wavelength 

dependent light fluence attenuation with depth alters the 

spectral features detected and results in inaccurate estimates of 

blood sO2
12,13

.  Despite at least two decades of research in 

optical imaging, the problem of light fluence correction has 

not been conclusively solved. To date this problem has been 

primarily studied from an optical property quantification point 

of view
14,13

. However, it is not possible today to accurately 

image tissue optical properties in-vivo, in high-resolution, and 

compute light fluence
13

. Therefore, quantitative sO2 

measurement deep in tissue in-vivo remains an unmet 

challenge. Conventional spectral optoacoustic methods
15,16

 

typically ignore the effects of light fluence and employ linear 

spectral fitting with the spectra of oxy- and deoxy-hemoglobin 

for estimating sO2 (linear unmixing), a common simplification 

that can introduce substantial errors in deep tissue. 

In this work we found that the spectral patterns of light 

fluence expected within the tissue can be modeled as an affine 

function of a few reference base spectra, independently of the 

specific distribution of tissue optical properties or the depth of 

the observation. We show how this principle can be employed 

to solve the spectral corruption problem without knowledge of 

the tissue optical properties, and significantly increase the 

accuracy of spectral optoacoustic methods. The proposed 

method, termed eigenspectra-MSOT (eMSOT), can provide 

quantitative estimation of blood sO2 in deep tissue. We 
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demonstrate the superior performance of the method with 

more than 2000 simulations, phantom measurements and in-

vivo controlled experiments. Then, using eMSOT, we image 

oxygen gradients in the skeletal muscle in-vivo, previously 

only accessible through invasive methods.  Furthermore, we 

show the application of eMSOT in quantifying blood 

oxygenation gradients in tumors during tumor growth or O2 

challenge and relate label-free non-invasive eMSOT readings 

to tumor hypoxia; demonstrating the ability to measure 

quantitatively the perfusion hypoxia level in tumors, as 

confirmed with invasive histological gold standards. 

RESULTS 

 

eMSOT concept and application 

A new concept of treating light fluence in diffusive 

media/tissues is introduced, based on the observation that the 

light fluence spectrum at different locations in tissue is the 

result of a cumulative light absorption operation by tissue 

chromophores, such as hemoglobin. We therefore 

hypothesized that there exists a small number of base spectra 

that can be combined to predict any fluence spectrum present 

in tissue; therefore avoiding the unattainable task of knowing 

the distribution of tissue optical properties at high resolution. 

To prove this hypothesis, we first applied Principal 

Component Analysis (PCA) on 1470 light fluence spectral 

patterns, which were computed by simulating light 

propagation in tissues at 21 different (uniform) oxygenation 

states of hemoglobin and 70 different discrete depths 

(Methods). PCA analysis yielded four significant base 

spectra, i.e. a mean light fluence spectrum (Figure 1a) and 

three fluence Eigenspectra (Figure 1b-d). PCA was used due 

to its optimality in modeling the spectral variability of light 

fluence in a linear manner (see Methods). We found that the 

selection of three Eigenspectra offers a simple model with 

relatively high modeling accuracy (Figure 1e). 

We then postulated that light fluence spectra in arbitrary 

and non-uniform tissues can be modeled as a superposition of 

the mean fluence spectrum (ΦM) and the three Eigenspectra 

(Φi(λ), i=1..3)  multiplied by appropriate scalars m1, m2 and 

m3, termed Eigenfluence parameters. To validate this 

hypothesis we computed the light fluence in >500 simulated 

tissue structures of different and non-uniform optical 

properties and hemoglobin oxygenation values 

(Supplementary Note 1). For each pixel, we fitted the 

simulated light fluence spectrum to the Eigenspectra model 

and derived the Eigenfluence parameters (m1, m2, m3) and a 

fitting residual value. The residual value represents the error 

of the Eigenspectra model in matching the simulated data and 

typically assumed values below 1% (see Supplementary Note 

1, Supplementary Fig. 1) indicating that three Eigenspectra 

can accurately model all simulated fluence spectra generated 

in tissues of arbitrary structure. We further observed that the 

values of m2 vary primarily with tissue depth while the values 

of m1, m3 also depend on the average levels of background 

tissue oxygenation (see Figure 1f-h). Intuitively this indicates 

that the second Eigenspectrum Φ2(λ) is mainly associated with 

the modifications of light fluence spectrum due to  depth and 

the average optical properties of the surrounding tissue, while 

the first Eigenspectrum Φ1(λ)  is also associated with  the 

“spectral shape” of  light fluence that relates to the average 

oxygenation of the surrounding tissue. Localized 

measurements of light fluence spectra obtained in vivo and 

post mortem corroborated these observations (Supplementary 

Fig. 2). 

 Following these observations, we propose eigenspectra 

MSOT (eMSOT), based on three eigenspectra Φ1(λ), Φ2(λ), 

Φ3(λ), as a method that formulates the blood sO2 estimation 

problem as a non-linear spectral unmixing problem (see 

Methods), i.e.: 

 

HbO2 HbO2 Hb Hb( , ) '( ) ( ' (, ) ( ) ' ( ) ( )),P c c          r r r r        (1) 

 

where P(r,λ) is the multispectral optoacoustic image intensity  

obtained at a position r and wavelength λ, εHbO2(λ) and  εHb(λ) 

are the wavelength dependent molar extinction coefficients of 

oxygenated and deoxygenated hemoglobin, c′HbO2(r) and 

c′Hb(r) are the relative concentrations of oxygenated and 

deoxygenated hemoglobin (proportional to the actual ones 

with regard to a common scaling factor, see Methods), and 

Φ′(r,λ)  = ΦM(λ)  + m1(r)Φ1(λ) + m2(r)Φ2(λ) + m3(r)Φ3(λ). Eq. 

(1) defines a non-linear inversion problem, requiring 

measurements at 5 wavelengths or more for recovering the 5 

unknowns, i.e. c'HbO2(r), c'Hb(r), m1(r), m2(r), m3(r) and is 

solved as a constrained optimization problem (see Methods, 

Supplementary Note 2, Supplementary Fig. 3).  Since the 

light fluence varies smoothly in tissue, we only compute the 

Eigenfluence parameters on a coarse grid subsampling the 

region of interest (Figure 1i), for computational efficiency. 

Then, cubic interpolation is employed to compute the 

Eigenfluence parameters in each pixel within the convex hull 

of the grid (Figure 1j) and calculate a fluence spectrum 

Φ′(r,λ) for each pixel using these parameters.  Eq. (1) is then 

solved for c′HbO2(r) and c′Hb(r) and sO2 is computed (see 

Methods).  

The performance of eMSOT was validated using simulated 

data obtained from a light propagation model (finite element 

solution of the diffusion equation) applied on >2000 randomly 

created maps of different optical properties, simulating 

different tissue physiological states (Supplementary Note 3). 

Figure 1k depicts a representative example of a simulated 

blood sO2 map and visually showcases the differences 

between the eMSOT sO2 image (middle),  the sO2 image 

obtained using linear unmixing (left) and the original sO2 

simulated image (right). eMSOT offered  significantly lower 

sO2 estimation error with depth, compared to the linear fitting 

method (Figure 1l).  A substantially improved sO2 estimation 

accuracy was observed using eMSOT over linear unmixing 

when we analyzed the complete simulation data-set (Figure 

1m). In particular, for imaging tissue depths of >5mm eMSOT 

offered a 3-8 fold sO2 estimation improvement over linear 

unmixing (Supplementary Fig. 4n). A thorough validation of 

eMSOT performance across different data-sets, optical 

properties and grid densities is presented in  Supplementary 

Note 3, Supplementary Tables 1 and 2, and Supplementary 

Fig. 4.
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Figure 1. eMSOT concept and application. (a-d) The Eigenspectra model composed of a mean fluence spectrum ΦM(λ) (a) and the three 

fluence Eigenspectra Φ1(λ), Φ2(λ) and Φ3(λ), (b), (c), (d), respectively, as derived by applying PCA on a selected training data-set of light 

fluence spectra (Methods). (e) Statistics of the L2 norm error of the Eigenspectra model on the training dataset for different model 

dimensionalities. Error-bar denotes s.d.. (f-h) Values of the parameters m1, m2 and m3 as a function of tissue depth (y axis) and tissue 

oxygenation (x axis). The values have been obtained after fitting the light fluence spectra of the training data-set (see Methods) to the 

Eigenspectra model.  (i) Application of a circular grid (red points) for eMSOT inversion on an area of a simulated MSOT image. (j) After 

eMSOT inversion the model parameters m1, m2 and m3 are estimated for all grid points and maps of m1, m2 and m3 are produced for the convex 

hull of the grid by means of cubic interpolation. These maps are used to spectrally correct the original MSOT image. (k) Blood sO2 estimation 

using linear unmixing (left), eMSOT (middle) and Gold standard sO2 (right) of the selected region. (l) sO2 estimation error of the analyzed area 

sorted per depth in the case of linear unmixing (red points) and eMSOT (blue points). (m) Mean sO2 error of linear unmixing (red) and eMSOT 

(blue) corresponding to >2000 simulations of random structures and optical properties (see Supplementary Note 3). 

 

For experimentally assessing the accuracy of eMSOT, we 

performed a series of blood phantom experiments that suggest 

an up to 10-fold more reliable sO2 estimation derived by 

eMSOT, as compared to conventional linear unmixing 

(Supplementary Note 4, Supplementary Fig. 5). In addition, 

controlled mouse measurements (n=4) were performed in-

vivo,  under gas anesthesia, by rectally inserting capillary 

tubes containing blood at 100% and 0% sO2 levels (Methods). 

The mice were imaged in the lower abdominal area under 

100% O2 and 20% O2 breathing conditions (Figure 2a). 

Figure 2a presents the eMSOT grid applied on the images 

processed (left column), the sO2 maps obtained with linear 

unmixing (middle column) and with eMSOT (right column). 

The spectral fitting of linear unmixing (left) and eMSOT 

(right) corresponding to a pixel in the area of the capillary tube 

(yellow arrows in a) are presented in Figure 2b along with the 

estimated sO2 values. In the controlled in-vivo experiments, 

the mean linear unmixing error ranged from 16 to 35% while 

eMSOT offered a mean sO2 error ranging from 1 to 4% 

indicating an order of magnitude improved accuracy (Figure 

2c). 
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Figure 2. Comparison of eMSOT sO2 estimation accuracy over 

conventional spectral optoacoustic method. (a) eMSOT application 

in the case of in-vivo controlled experiments under 100% O2 (a upper 

row) and 20% O2 (a lower row) breathing. Capillary tubes containing 

blood of 100% sO2 (upper row) and 0% sO2 (lower row) were 

inserted within tissue (arrows). Scale bar 1cm. (b) Spectral fitting and 

sO2 estimation in the insertion area (yellow arrows in a) using linear 

unmixing (left column) and eMSOT (right column). The blue curves 

correspond to P(r,λ) (left column) and PeMSOT(r,λ) (right column) 

while the red curves correspond to cHbO2
lu(r)εHbO2(λ)+cHb

lu(r)εHb(λ) 

(left column; the term lu refers to linear unmixing) and 

c'HbO2
eMSOT(r)εHbO2(λ)+c'Hb

eMSOT(r)εHb(λ) (right column). (c) sO2 

estimation error using eMSOT (blue) and linear unmixing (red) in all 

four animal experiment repetitions m1-m4. Two values are reported 

for each experiment corresponding to a 100% sO2 insertion (left) and 

0% sO2 insertion (right). Statistics are derived from all pixels in a 

region of interest (ROI) corresponding to the insertion area for each 

dataset. The boxes include 25%-75% and the error-bars 9%-91% of 

the data. The mean value is denoted with the plus symbol.  

 
Imaging blood oxygenation gradients in muscle and tumor 

 

Blood oxygenation and oxygen exchange in the 

microcirculation have been traditionally studied through 

invasive, single-point  polarography or microscopy 

measurements in vessels and capillaries of the skeletal 

muscle
17

. Research for macroscopic methods that could non-

invasively resolve muscle oxygenation was broadly pursued in 

the past two decades by considering Near-Infrared 

Spectroscopy (NIRS) and Diffuse Optical Tomography 

(DOT), which, however can only report bulk tissue sO2 

values
18,19

. In a next set of experiments we, therefore, studied 

whether eMSOT could non-invasively quantify the 

oxygenation gradient in the skeletal muscle and we compared 

this performance to conventional spectral optoacoustic 

methods. eMSOT was applied in the area of the hindlimb 

muscle of mice undergoing an O2 challenge as described in 

Supplementary Note 5 (n=6 animal experiments); three of 

the mice were then sacrificed with an overdose of CO2, the 

latter binding to hemoglobin and deoxygenating blood.   

eMSOT applied in the hindlimb muscle area (grid shown 

in Figure 3a) resolved oxygenation gradients as a function of 

breathing  conditions in-vivo (Figure 3 b-c)  and post-mortem 

after CO2 breathing (Figure 3d). The post-mortem 

deoxygenated muscle served herein as a control experiment 

and was also analyzed with linear unmixing for comparison 

(Figure 3e). In the post-mortem case, linear unmixing 

overestimated the sO2 as a function of tissue depth (Figure 3e) 

and yielded large errors in matching the tissue spectra (Figure 

3f – upper row). Conversely, eMSOT offered sO2 

measurements in agreement with the expected physiological 

states (Figure 3b-d) and consistently low fitting residuals 

(Figure 3f – lower row, Supplementary Fig. 6).  Figure 3d-e 

and Figure 3f demonstrate the prominent effects of spectral 

corruption with depth that impair the accuracy of conventional 

spectral optoacoustic methods but are tackled by eMSOT. The 

estimated blood sO2 values corresponding to a deep tissue area 

(yellow rectangle in Figure 3b) are tabulated in Figure 3g  for 

eMSOT and linear unmixing and depict that the latter 

demonstrated unrealistically small sO2 changes between the 

normoxic in-vivo and anoxic post-mortem (after CO2 

breathing) states.  

In addition to physiological tissue features, MSOT also 

reveals tissue morphology. MSOT images at a single 

wavelength (900 nm) captured prominent vascular structures 

likely corresponding to femoral vessels or their branches 

(Figure 3h) with implicitly co-registered eMSOT blood-

oxygenation images (Figure 3i). This hybrid mode enables the 

study of physiology at specific tissue areas. We selected to 

study blood oxygenation measurements at a region of interest 

around large vessels (ROI-1; Figure 3h) and a region of 

interest within the muscle presenting no prominent vascular 

structures (ROI-2; Figure 3h) for the 100% O2, 20% O2 and 

CO2 breathing conditions. Average tissue sO2 was typically 

measured at 60%-70% saturation under medical air breathing 

and at 70%-80% saturation under 100% O2 breathing near 

large vessels (Figure 3j). Average tissue blood oxygenation 

away from large vessels (ROI-2) was estimated consistently 

lower, at 35 -50% saturation under normal breathing 

conditions and 45-60% saturation under 100% O2 breathing 

(Figure 3k).  

The low blood saturation values in tissue (35 -50%) cannot 

be explained by considering arterial and venous blood 

saturation. However, previous studies based on direct 

microscopy measurements in vessels and capillaries through 

polarography, hemoglobin spectrophotometry and 

phosphorescence quenching microscopy have revealed  

similar oxygenation gradient in the skeletal muscle
17

 with 

hemoglobin saturation in the femoral artery found to range 

between 87-99% sO2
17,20

, while rapidly dropping down to 50-

60% sO2 in smaller arterioles
20,21

.  The average oxygen 

saturation in venules and veins has been found to range 

between 45%-60% sO2 under normal breathing conditions, 

reaching up to 70% at 100% O2 breathing
21,22

. Average 

capillary blood oxygenation has been estimated at 40% sO2 

with a large standard deviation
22

, often reported lower, at an 

average, than venular oxygenation
17

. Therefore, the eMSOT 
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values measured at ROI-1 possibly relate to a weighted 

average of arterial/arteriolar and venous/venular sO2 in the 

skeletal muscle, while the values measured at ROI-2, which 

anatomically presents no prominent vasculature, relate more to 

capillary sO2 measurements.   

 
Figure 3. eMSOT measurements of tissue blood oxygenation in the muscle. (a-d) eMSOT grid applied on the area of the hindlimb muscle 

(a) and eMSOT tissue blood sO2 estimation in the case of 100% O2 breathing (b), 20% O2 breathing (c) and post-mortem after CO2 breathing 

(d). (e) sO2 estimation using linear unmixing in the post mortem case after CO2 breathing. Scale bar 1cm. (f) Normalized spectra, spectral 

fitting and sO2 values of linear unmixing (upper row) and eMSOT (lower row) for the three points indicated in (d) and (e). The blue curves 

correspond to P(r,λ) (upper row) and PeMSOT(r,λ) (lower row) while the red curves correspond to cHbO2
lu(r)εHbO2(λ)+cHb

lu(r)εHb(λ) (upper row) 

and c'HbO2
eMSOT(r)εHbO2(λ)+c'Hb

eMSOT(r)εHb(λ) (lower row). (g) Estimated blood sO2 of a deep tissue area (yellow box in b) using eMSOT (blue) 

and linear unmixing (red) under different breathing conditions of CO2, 20% O2 and 100% O2. (h) Anatomical MSOT image of the hindlimb 

area at an excitation wavelength of 900 nm. Two regions were selected for presenting the sO2 values, one close to prominent vasculature (ROI-

1) and one corresponding to soft tissue (ROI-2). Scale bar 0.5cm. (i) eMSOT sO2 estimation in-vivo under 100% (left) and 20% O2 breathing 

(middle) and post-mortem after CO2 breathing (right). Scale bar 0.5cm. (j, k) Estimated tissue sO2 of ROI-1 (j) and ROI-2 (k) under 100% 

(red) and 20% O2 breathing (green) and post-mortem after CO2 breathing (blue). The x-axis positions correspond to 6 different animal 

experiment repetitions. Statistics in g, j and k are derived from all pixels in the corresponding ROIs. The boxes include 25%-75% and the 

errorbars 9%-91% of the data. The mean value is denoted with the plus symbol. 

 

The improved accuracy observed in eMSOT over previous 

approaches and general agreement with invasive tissue 

measurements prompted the further study of perfusion 

hypoxia emerging from the incomplete delivery of oxygenated 

hemoglobin in tissue areas. We hypothesized that 

measurements of blood saturation could be employed as a 

measure of tissue hypoxia, assuming natural hemoglobin 

presence in hypoxic areas. To examine this hypothesis we 

applied eMSOT to measure blood oxygenation in 4T1 solid 

tumors orthotopically implanted in the mammary pad of 8 

mice (Methods, Supplementary Note 6). MSOT revealed the 

tumor anatomy and eMSOT exposed tumor heterogeneity, 

which was found consistent to anatomical features identified 

through cryoslice color photography and H&E staining 

(Supplementary Note 6, Supplementary Fig. 7c-g). 

Furthermore, imaging tumors at different time-points revealed 

the progression of hypoxia during tumor growth (Figure 4a-

b). The spread of hypoxia, i.e. the percentage of the hypoxic 

area (area presenting sO2 values below a threshold which 

varied from 50% to 25% sO2) over the total tumor area, also 

increased during tumor progression (Figure 4c).  Following 

the in-vivo measurements we harvested the tumor tissue and 

related the non-invasive eMSOT findings to the histological 

assessment of tumor hypoxia (see Supplementary Note 6 & 

Supplementary Fig. 7). Tumor tissue was stained by Hoechst 

33342
23

 (indicating perfusion) and Pimonidazole
24

 (indicating 

cell hypoxia). The results indicated close correspondence 

between the hypoxic areas detected by eMSOT using 

hemoglobin as a hypoxia sensor (Figure 4b) and the histology 

slices (Figure 4d). We found that eMSOT could not only 

quantitatively distinguish between high and low hypoxia 

levels in the tumors, but the spatial sO2 maps further presented 

congruence with the spatial appearance of hypoxia spread and 

reduced perfusion seen in the histology slices (Figure 4e-g). A 

quantitative congruence analysis is shown in Supplementary 

Figure 7. Finally, clear differences were also observed 

between the hypoxic tumor and healthy tissue response to an 

O2 breathing challenge (Figure 4h; Supplementary Fig. 8), 

with areas in the core of the tumor presenting a limited 

response to such external stimuli, likely due to the presence of 

non-functional vasculature. 
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Figure 4. eMSOT measurements of tissue blood oxygenation in tumor. (a-b) sO2 maps of a 4T1 tumor implanted in the mammary pad at 

day 6 (a) and day 10 (b) after cell inoculation. Dashed lines represent a segmentation of the tumor area. Scale bar 1cm. (c) Bar-plot presenting 

the percentage of the total tumor area containing sO2 values lower than a specific sO2 threshold (x-axis). Blue bars correspond to the tumor 

imaged at day 6 and red bars correspond to the tumor imaged at day 10, presented in (a, b). (d) Merged Hoechst 33342, CD 31 and 

Pimonidazole staining of the tumor presented in (b). Scale bar, 2mm.  (e-g) Examples of a highly perfused (upper row) and a low perfused 

(lower row) tumor analysed with eMSOT for sO2 estimation (e), Hoechst 33342 staining (f), and merged with Pimonidazole staining (g). 

Tumor areas presenting lower sO2 values in eMSOT measurements also showed lower Hoechst 33342 signal intensity, representing reduced 

perfusion in these areas.  Scale bar, 2mm. (h, left) sO2 maps of a tumor under an O2–CO2 challenge. Scale bar 1cm. The computed sO2 values 

and the eMSOT spectral fit of points 1 and 2 (arrows) are presented in (h right) for the three breathing conditions. The blue curves correspond 

to PeMSOT(r,λ) while the red curves correspond to c'HbO2
eMSOT(r)εHbO2(λ)+c'Hb

eMSOT(r)εHb(λ) 

 

DISCUSSION 

Spectral corruption has so far limited the potential of 

optical and optoacoustic methods to offer accurate, 

quantitative assessment of blood oxygen saturation deep inside 

tissues. Conventional computational methods in optical 

imaging propose to invert a light transport operator to recover 

tissue optical properties (absorption and scattering)
13

; then use 

these properties for calculating tissue physiological 

parameters. However, the very high numerical complexity and 

ill-posed nature of the inversion problem has not allowed so 

far accurate, high-resolution sO2 imaging. We hereby followed 

an alternative approach that describes the spectral features of 

light fluence as a combination of spectral base functions. 

Using this principle, we formulated the sO2 quantification 

problem as a non-linear spectral unmixing problem that does 

not require knowledge of tissue optical properties or the 

inversion of a light transport operator.  Effectively, eMSOT 

converts sO2 imaging from a problem that is spatially 

dependent on light propagation and optical properties, as 

common in traditional optical methods, to a problem solved in 

the spectral domain. Therefore, sO2 can be directly quantified 

without estimating tissue optical properties.  

eMSOT requires theoretically at least 5 excitation 

wavelengths for resolving spectral domain parameters and the 

relative oxygenated and deoxygenated hemoglobin 

concentrations. We hereby utilized 21 wavelengths for 

ensuring high accuracy. The recent evolution of video-rate 

MSOT imaging systems, based on fast tuning optical 

parametric oscillator lasers
25

 allows the practical 

implementation of the method. Modern MSOT systems offer 5 

wavelength scans at 20Hz or better. Therefore eMSOT is a 

technology that optimally interfaces to a new generation of 

fast and handheld spectral optoacoustic systems
26

. 

The method developed demonstrated quantitative, non-

invasive blood oxygenation images in phantoms and tissues 

in-vivo (muscle and tumor) in high-resolution, showing good 

correlation with the expected physiological state or the 

histologically observed spatial distribution of perfusion and 

hypoxia. eMSOT measures blood oxygenation. We 

hypothesized that a correlation exists to tissue oxygenation 

measurements by assuming a wide presence of hemoglobin in 

tissues. We demonstrated congruence (Supplementary Note 

6) between traditional invasive histological assays resolving 

tissue hypoxia and eMSOT analysis. Importantly, not only 

average values are resolved, but there is a close spatial 

correspondence between hypoxia patterns resolved by eMSOT 

non-invasively and histological analysis (Figure 4, 

Supplementary Fig. 7).  

High-resolution non-invasive imaging of blood 

oxygenation across entire tissues and tumors offers novel 

abilities in studying physiological and pathological conditions. 

This goal has been pursued for decades with near-infrared 

methods, but the strong effects of photon scattering and 
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photon diffusion on the signals detected limited the imaging 

resolution and often impeded accurate quantification
27

. 

Optoacoustic imaging improves the resolution achieved, over 

diffuse optical imaging methods but its sO2 estimation 

accuracy has been limited so far by depth-dependent fluence 

attenuation and spectral corruption effects. We showed that 

conventional spectral optoacoustic methods employing linear 

unmixing can significantly misestimate blood saturation 

values in several controlled measurements, including 

simulations and animal measurements. eMSOT was tested on 

a vast data-set consisting of >2000 tissue simulations and was 

consistently found to provide from a comparable to 

substantially better sO2 estimation accuracy over linear 

unmixing. (Supplementary Note 3). The large number of 

simulations was necessary to validate eMSOT, which presents 

a non-convex optimization problem. eMSOT was further 

tested on tissue mimicking blood phantoms (Supplementary 

Note 4) and controlled in-vivo experiments (Figure 2, 

Supplementary Note 5). In all cases tested, eMSOT offered 

from comparable to significantly more accurate performance 

over conventional spectral optoacoustic methods. 

A particular challenge in this study was the confirmation 

of the eMSOT values obtained in-vivo. Polarography 

measurements are invasive, disrupt the local 

microenvironment and do not allow to recover spatial 

information. Nuclear methods using tracers are not well suited 

for longitudinal studies and utilize tracers which need to 

distribute in hypoxia areas i.e. areas with problematic supply. 

Therefore the results may not directly compare to eMSOT, 

even though such study is planned as a next step. BOLD MRI 

only resolves the effects of deoxygenated hemoglobin but 

cannot observe oxygenated hemoglobin. For this reason, we 

selected to utilize traditional histology methods, using 

cryoslicing, which allows to maintain spatial orientation so 

that eMSOT and histological results could be compared not 

only in terms of quantity but also in regard to the spatial 

appearance.  

eMSOT proposes a solution to a fundamental challenge in 

optical and optoacoustic imaging. In the absence of 

established and reliable methods that can image blood 

oxygenation, it may be that eMSOT becomes the gold 

standard method in blood and tissue oxygenation studies. Its 

congruence with tissue hypoxia may also allow a broad 

application in tissue and cancer hypoxia studies. Nevertheless 

eMSOT performs optimally when applied on well-

reconstructed parts of optoacoustic images (Supplementary 

Note 5). For this reason, it was selectively applied herein to 

the part of the image that is within the optimal sensitivity field 

of the detector employed. An eMSOT advantage is that it is 

insensitive to scaling factors such as the Grüneisen coefficient 

or the spatial sensitivity field of the imaging system 

(Methods).  However, due to its scale invariance eMSOT only 

allows for quantifying blood sO2 and not absolute blood 

volume, a goal that will be interrogated in future studies. Next 

steps further include the eMSOT validation with a larger pool 

of tissue physiology interrogations spanning from cancer, 

cardiovascular and diabetes research, relation of physiological 

phenotypes to metabolic and “-omic” outputs and in clinical 

application. 

METHODS 

Animal preparation and handling  

All procedures involving animal experiments were 

approved by the Government of Upper Bavaria. For the 

preparation of orthotopic 4T1 tumor models, 8 week old, adult 

female, athymic, Nude-Foxn1 mice (Harlan, Germany) were 

orthotopically inoculated in the mammary pad with cell 

suspensions (0.5 million 4T1 cells (CRL-2539). Animals 

(n=8) were imaged in-vivo using MSOT after the tumors 

reached a suitable size. All imaging procedures were 

performed under anesthesia using 1.8% Isoflurane. In the O2 

challenge experiment, the mouse was initially breathing 100% 

O2 and in the following medical air (20% O2). During the O2 

Challenge, the mice were stabilized for a period of 10 minutes 

under each breathing condition before MSOT acquisition. For 

controlled mouse measurements (n=4), MSOT acquisition was 

performed on mice under gas anesthesia and breathing 100% 

O2 or 20% O2 by rectally inserting a capillary tube containing 

pig blood at 100% or 0% sO2 oxygenation levels. Mice were 

sacrificed during MSOT imaging with an overdose of CO2 or 

after MSOT acquisition by a Ketamine/Xylazine overdose. In 

the following the mice were stored at -80°C for further 

analysis.   

4T1 cell line was acquired from ATCC (ATCC-CRL-

2539, #5068892). The cells were authenticated by the ACTT 

by several analysis tests: Post-Freeze viability, Morphology, 

Mycoplasma contamination, post freeze cell growth, 

interspecies Determination; bacteria & fungal contamination. 

Additional mycoplasma contamination tests were also 

performed. For the animal studies no randomization, blinding 

or statistical methods were performed. 

MSOT imaging  

Optoacoustic imaging was performed using a real-time 

whole body mouse imaging scanner, MSOT In Vision 256-TF 

(iThera-Medical GmbH, Munich, Germany). The system 

utilizes a cylindrically focused 256-element transducer array at 

5MHz central frequency covering an angle of 270 degrees. 

The system acquires cross-sectional (transverse) images 

through the animal. The animals are placed onto a thin clear 

polyethylene membrane. The membrane separates the animals 

from a water bath, which is maintained at 34°C and is used for 

acoustic coupling and maintaining animal temperature while 

imaging. Image acquisition speed is at 10Hz
28

. Imaging was 

performed at 21 wavelengths from 700 nm to 900 nm with a 

step size of 10 nm and at 20 consecutive slices with a step size 

of 0.5 mm. Image reconstruction was performed using a 

model-based inversion algorithm
29,30

 with a non-negativity 

constraint imposed during inversion and with Tikhonov 

regularization.  

eMSOT method  and sO2 maps 

All optoacoustic images P(r,λ) obtained over excitation 

wavelength λ were calibrated to correct for the intensity of 

laser power per pulse, and for the absorption of water 

surrounding the tissue. With HbO2 and Hb being the main 

tissue absorbers in the near-infrared, multispectral 
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optoacoustic images can be related to the concentrations of 

oxy- and deoxy-hemoglobin through Eq. (2).   

2 HbO2 HbO2 Hb Hb

2

( , )
( , ) ( ) || ( ) || ( ( ) ( ) ( ) ( )).

|| ( ) ||
P C c c

 
     

r
r r Φ r r r

Φ r

 

                       (2) 

 

In Eq. (2), Φ(r,λ) is the space and wavelength dependent 

optical fluence, C(r) is a spatially varying scaling factor 

corresponding to the effects of the system’s spatial sensitivity 

field and the Grüneisen coefficient, εHbO2(λ) and εHb(λ) are the 

wavelength dependent molar extinction coefficients of 

oxygenated and deoxygenated hemoglobin, while cHbO2(r) and 

cHb(r) the associated concentrations at a position r. Φ(r) is a 

vector corresponding to the light fluence spectrum at position 

r, and ||Φ(r)||2 is its norm across all excitation wavelengths at 

a position r. We define Φ′(r,λ) = Φ(r,λ)/||Φ(r)||2 which 

corresponds to the normalized wavelength dependence of light 

fluence at a specific position (i.e. normalized spectrum of light 

fluence). 

The space-only dependent factors C(r) and ||Φ(r)||2 do not 

affect the estimation of blood sO2 which is calculated as a 

ratio once the relative concentrations of HbO2 and Hb are 

known. We define c′HbO2(r) = C′(r)cHbO2(r)  and 

c′Hb(r)=C′(r)cHb(r), respectively, where C′(r) = C(r)||Φ(r)||2  is 

a common, space-only dependent scaling factor. Using this 

notation, Eq. (2) can be transformed into Eq. (1). Given 

c′HbO2(r) and c′Hb(r), blood oxygen saturation can be computed 

as in: 

 

HbO2
2

HbO2 Hb

' ( )
( ) .

' ( ) ' ( )

c
sO

c c




r
r

r r
  (3) 

 

For the accurate quantitative extraction of the relative 

concentrations c′HbO2(r) and c′Hb(r), accounting for, or 

estimating the wavelength dependence of the light fluence 

Φ′(r,λ) is further required.  

The Eigenspectra model. eMSOT is based on the 

observation that the spectral patterns of light fluence present in 

tissue can be modeled as an affine function of only a few base 

spectra, independently of tissue depth and the specific 

distribution of optical properties of the tissue imaged. This 

hypothesis stems from the notion that the spectrum of light 

fluence is the result of the cumulative light absorption by 

hemoglobin; thus the spectrum of light fluence will always be 

related to the spectra of hemoglobin in a complex non-linear 

manner. This complex relation can be linearized using a data-

driven approach, i.e. through the application of Principal 

Component Analysis (PCA) on a selected set of light fluence 

spectra. 

The wavelength dependence of the light fluence was herein 

modeled as a superposition of a mean fluence spectrum ΦΜ(λ) 

and a linear combination of a number of light fluence 

Eigenspectra Φi(λ). This model was derived by applying PCA 

on a training dataset comprised of a set of light fluence 

spectral patterns. Briefly, a training dataset was formed 

through the creation of multispectral light fluence simulations 

using the 1-D analytical solution of the diffusion equation for 

infinite media. A set of light fluence spectral patterns Φz,ox(λ)  

were computed for high physiological tissue optical properties 

(μα=0.3 cm
-1

, μs′=10 cm
-1

), tissue depths ranging from z=0 to 

z=1 cm with a step size of 0.143 mm (70 discrete depths in 

total) and for  21 different uniform background tissue 

oxygenations (ox ∊ {0%, 5%, 10%, …, 100%}). The so 

computed set of light fluence spectra Φz,ox(λ) was normalized 

(Φ’z,ox(λ) = Φz,ox(λ)/||Φz,ox||2) and used in the following as 

training data in the context of PCA in order to create an affine, 

3-dimensional model consisting of a mean fluence spectrum 

ΦΜ(λ) and three Eigenspectra Φi(λ). PCA was used for 

offering a minimum square error property in capturing the 

spectral variability of the simulated light fluence spectra, in a 

linear manner. Three components were selected for providing 

a relatively simple model while also offering a small model 

error with respect to the training data-set (Figure 1e). The 

wavelength dependence of the light fluence Φ′(r,λ) at any 

arbitrary tissue position r can thus be modeled as a 

superposition of the mean fluence spectrum and three fluence 

Eigenspectra multiplied by appropriate scalar parameters 

m1(r), m2(r), and m3(r), (hereby referred to as Eigenfluence 

parameters) as per Eq. (4): 

 

1 1 2 2 3 3'( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( )m m m            r r r r       (4) 

 

The so created 3-dimensional affine forward model of the 

wavelength dependence of light fluence was tested with regard 

to light fluence spectral patterns produced in completely 

heterogeneous media with varying and randomly distributed 

optical properties and oxygenation values and demonstrated 

high accuracy (Supplementary Fig. 1). The forward model 

was further tested through in-vivo and ex-vivo light fluence 

measurements, obtained from controlled experiments 

(Supplementary Fig. 2).  

Through simulations, it was observed that the values of the m2 

Eigenfluence parameter relate primarily to tissue depth and the 

average tissue optical properties. This trend was observed both 

in the case of tissue simulations with uniform optical 

properties (Figure 1g) as well as in complex and randomly 

created tissue simulations described in Supplementary Note 

1, 3. Conversely, the values of the Eigenfluence parameters m1 

and m3 relate both to tissue depth as well as to tissue 

background oxygenation. Specifically both m1 and m3 present 

a trend of increasing absolute values with depth and a sign that 

relates to background tissue oxygenation. These observations 

were confirmed with in-vivo and ex-vivo light fluence 

measurement experiments (Supplementary Note 1).  

Model Inversion. Using the Eigenspectra model of light 

fluence, the blood sO2 quantification problem at a position r 

formulates as the problem of estimating c′HbO2(r) and c′Hb(r) 

by minimizing f(r; m1(r), m2(r), m3(r), c′HbO2(r), c′Hb(r)), for 

brevity noted f(r), defined according to Eq, (5): 
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A solution for the 5 unknowns (namely the 3 light fluence 
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model parameters, 
1...3( )m r  and the relative blood 

concentrations c′HbO2(r) and c′Hb(r)) can be obtained using a 

non-linear optimization algorithm and at least 5 excitation 

wavelengths. The relative blood concentrations c′HbO2(r) and 

c′Hb(r) are proportional to the actual ones (cHbO2(r) and cHb(r)) 

with regard to a common scaling factor. However, as stated 

before, this fact does not affect the computation of sO2.  

The minimization problem defined by Eq. (5) is ill-posed 

and may converge to a wrong solution unless properly 

constrained. For achieving inversion stability and accurate sO2 

estimation results, the cost function f of Eq. (5) is 

simultaneously minimized in a set of grid points placed in the 

image domain (Figure 1i), where three independent 

constraints are further imposed to the Eigenfluence 

parameters. These constraints correspond to the relation of the 

Eigenfluence parameters between neighbor grid points and to 

the allowed search space for the Eigenfluence parameters:  

(i) Since the values of the second Eigenfluence parameter 

m2 present a consistent trend of reduction with tissue depth 

observed both in the case of uniform tissue simulations (see 

Fig. 1g) as well as in simulations with random structures, m2 is 

constrained to obtain smaller values in the case of grid points 

placed deeper into tissue.  

(ii) As the light fluence spectrum is bound to vary smoothly 

in space due to the nature of diffuse light propagation, large 

variations of the Eigenfluence parameters m1, and m3 between 

neighbor pixels are penalized. This spatial smoothness 

constraint is achieved through the incorporation of appropriate 

regularization parameters αi to the cost function for 

constraining the variation of the model parameters (see Eq. 

(6)). The values of the regularization parameters were selected 

using cross-validation on simulated data-sets (Supplementary 

Note 2). 

(iii) Since the values of m1 and m3 are strongly dependent 

on background tissue oxygenation, an initial less accurate 

estimation of tissue sO2 can be effectively used to reduce the 

total search-space to a constrained relevant sub-space. The 

limits of search space for the Eigenfluence parameters m1 and 

m3 corresponding to each grid point are identified in a 

preprocessing step as analytically described in 

Supplementary Note 2.  

Assuming a polar grid of P arcs (arcs are enumerated with 

the enumeration initiating from tissue surface) and L radial 

lines (see Supplementary Fig. 3b) with a total of PL points at 

positions rp,l, and let the vector mi =[mi(r1,1), mi(r1,2), …, 

mi(r1,L), mi(r2,1), …, mi(rp,l),…,mi(rP,L)]
T
 correspond to the 

values of the Eigenfluence parameter i (i=1, 3) over all such 

points, the new inverse problem is defined as the minimization 

of cost function fgrid defined in Eq. (6) under the constraints 

defined in Eq. (7). 
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In Eq. (6), the term 
1 1 2 3 3 2|| || || ||a aWm Wm implements the 

spatial smoothness constraints imposed on m1(rp,l)  and 

m3(rp,l). The matrix W  describes a connectivity graph defined 

on the grid of points assumed (Supplementary Fig. 3b) and 

its structure and function are analytically described in 

Supplementary Note 2. In Eq. (7) 
min

2T and 
max

2T  are the 

search-space limits for m2(rp,l)  which are constant for all grid 

points and correspond to the maximum and minimum values 

of m2 on the training data-set (Figure 1g). 
min

,( )i p lT r and  

max

,( )i p lT r , with i=1,3 are the search-space limits for m1(rp,l)  

and m3(rp,l), which are computed per grid point in a 

preprocessing step as described in Supplementary Note 2. 

The inverse problem defined by Eq. (6), (7) was hereby solved 

through the utilization of the sequential quadratic 

programming algorithm of MATLAB toolbox.  

Fluence correction and sO2 quantification. The 

minimization of cost function fgrid (Eq. (6)) under the 

constraints of Eq. (7) yields an estimate of mi(rp,l) for each 

Eigenfluence parameter i and each grid point rp,l. The 

Eigenfluence parameters in the convex hull of the grid are in 

the following estimated by means of cubic interpolation. We 

note that due to the nature of diffuse light propagation the 

Eigenfluence parameters are expected to vary smoothly in 

tissue and thus their interpolation is not expected to introduce 

large errors in the result (see Supplementary Note 3 and 

Supplementary Table 2). The wavelength dependence of 

light fluence is computed for each pixel within the convex hull 

of the grid as in Φ′(r,λ)  = ΦM(λ) + m1(r)Φ1(λ) + m2(r)Φ2(λ) + 

m3(r)Φ3(λ), where Φi(λ) is the ith fluence Eigenspectrum. 

Finally, a spectrally-corrected eMSOT image is obtained after 

dividing the original image P(r,λ) with the normalized 

wavelength dependent light fluence Φ′(r,λ) at each position r 

and wavelength λ, i.e. P
eMSOT

(r,λ) = P(r,λ)/ Φ′(r,λ). The 

relative concentrations of HbO2 and Hb (c'HbO2
eMSOT(r), 

c'Hb
eMSOT(r)) are computed for each pixel of P

eMSOT
(r,λ) image 

independently through nonnegative constrained least squares 

fitting with the spectra of oxygenated and deoxygenated 

hemoglobin. Thus the eMSOT blood sO2 maps retain the 

original resolution of the MSOT imaging system. 

We note that both the Eigenspectra model and the inversion 

scheme were hereby optimized for the application of small 

animal imaging. The Eigenspectra model was trained for a 

maximum depth of 1 cm and the inversion scheme was 

designed with respect to the same tissue depth and optical 

properties within the physiological range (Supplementary 

Note 2, 3). 

Linear unmixing. Under the simplifying assumption that 

the light fluence attains a flat spectrum irrespective of the 

tissue position Φ(r,λ) = Φ(r) and by assuming hemoglobin as 



10 

 

the major absorber in tissue, optoacoustic spectra can be 

modeled as a linear combination of the spectra of oxy- and 

deoxy-hemoglobin. The term linear unmixing refers hereby to 

the computation of the relative concentrations of HbO2 and Hb 

(cHbO2
lu(r), cHb

lu(r)) and subsequently blood sO2, through 

nonnegative constrained least squares fitting of the original 

image P(r,λ) with the spectra of Hb and HbO2. 

Blood phantom preparation 

 For validating the accuracy of eMSOT in quantifying 

blood oxygenation in deep tissue, we prepared tissue 

mimicking phantoms, containing blood at known 

oxygenations levels. Specifically, for simulating tissue 

background, 2cm –diameter cylindrical solid phantoms were 

created by using 1.5% Agarose Type I, Sigma-Aldrich 

(solidifying in <37
o
), 2% intralipid and 3-5% freshly extracted 

pig blood diluted in NaCl. Different blood oxygenation levels 

were achieved by diluting oxygen in whole blood 

(oxygenation process) or by mixing the blood with different 

amounts of Sodium Dithionite (Na2O4S2) (deoxygenation 

process)
31

. The blood oxygenation levels were monitored 

using a Bloodgas Analyzer (Eschweiler Gmbh & Co. KG, Kiel 

Germany). 

Cryoslicing color imaging and H&E staining of tumors   

After MSOT acquisition, a subset of the mice bearing 4T1 

mammarian tumors (n=4) were sacrificed and examined for 

tumor and tissue anatomy. Mice were embedded in an optimal 

cutting temperature compound (Sakura Finetek Europe BV, 

Zoeterwonde, NL) and frozen at -80°C. In the following the 

mice were sliced at an orientation similar to the one of MSOT 

imaging and color photographs were recorded. The cryoslicing 

imaging system is based on a cryotome (CM 1950, Leica 

Microsystems, Wetzlar, Germany), fitted with CCD-based 

detection camera. During this process, 10 µm slices 

throughout the whole tumor volume were collected for further 

histological analysis. 

Several slides per tumor were subjected to H&E staining 

and imaging. The slides containing 10µm cryo-sections were 

first pre-fixed in 4% PFA (Santa Cruz Biotechnology Inc., 

Dallas, Texas, USA). Then, they were rinsed with distilled 

water and incubated 30 seconds with Haemotoxylin acide by 

Meyer (Carl Roth, Karlsruhe, Germany) to stain the cell 

nuclei. The slides were then rinsed in tap water again before 

incubation for 1 second in Eosin G (Carl Roth, Karlsruhe, 

Germany) to stain cellular cytoplasm. After rinsing in distilled 

water, the slides were dehydrated in 70%, 94% and 100% 

ethanol and incubated for 5 minutes in Xylene  (Carl Roth, 

Karlsruhe, Germany) before being cover slipped with 

Rotimount  (Carl Roth, Karlsruhe, Germany) cover media. 

Representative slides were observed using Zeiss Axio Imager 

M2 microscope with AxioCam 105 Color, and pictures were 

then processed using a motorized stitching Zen Imaging 

Software (Carl Zeiss Microscopes GmbH, Jena, Germany).     

Pimonidazole staining of tumor tissues.  

A subset of the tumor-bearing mice (n=4) was examined 

for functional characteristics of the tumors by Pimonidazole 

histological staining. The hypoxia marker Pimonidazole 

(Hypoxyprobe, catalog #HP6-100 kit, Burlington, MA, USA) 

was injected i.p. at 100 mg/kg body weight in a volume of 0.1 

ml saline ≈1.5h before tumor excision, and the perfusion 

marker Hoechst 33342 (Sigma, Deisenhofen, Germany) was 

administered i.v. at 15 mg/kg body weight in a volume of 0.1 

ml saline 1min before the tumor-bearing mice were sacrificed. 

The tumors were excised immediately after the animals were 

sacrificed. The orientation of the tumors with respect to the 

mouse body was retained. 8 µm cryosections were sliced 

throughout the tumor. The cryosections were fixed in cold 

(4°C) acetone, air dried and rehydrated in PBS before staining. 

Pimonidazole was stained with the FITC-labelled anti-

Pimonidazole antibody (Hypoxyprobe, Burlington, MA, USA) 

diluted 1:50 in primary antibody diluent (PAD, Serotec, 

Oxford, U.K.) by incubating for 1h at 37°C in the dark.  

Code and data availability 

The code and all relevant data of this work will be made 

available upon request. 
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Supplementary Figure 1.  Numerical validation of the Eigenspectra model of light fluence in tissue simulations of arbitrary structures. 
(a,b) Examples of the assumed random spatial maps of (a) μα(r) at 800 nm and (b) μs′(r), with random, normally distributed values. (c) 

Example of a random spatial map of sO2. (d) Example of multi-wavelength absorbed energy density simulation (wavelength 800 nm 

presented), created using the FEM DE light propagation model. (e) Statistics (–error-bars indicate standard deviation) of the fitting residual of 

the Eigenspectra model computed from all pixels of each simulated multispectral dataset. (f) Error propagated to sO2 estimation due to the 

fluence approximation using the Eigenspectra model (forward model error). (g-i) Examples of tissue simulations of low spatial variation of 

optical properties (g), partially uniform optical properties with highly absorbing vessel like structures (h) and cases of high melanin absorption 

at the tissue surface as well as wavelength dependent scattering (i). (j-l) Statistics of the fitting residual of the forward model corresponding to 

the simulations presented in (g-i), respectively. (m) Monte Carlo simulations of the wavelength dependent light fluence (fluence of one 

wavelength is presented) in the ballistic and semi-ballistic regime, assuming semi-uniform multi-layered tissue; Layers are highlighted with red 

arrows and their optical properties are summarized in the enclosed table. Statistics of the fitting residual of the Eigenspectra model (mean and 

standard deviation) are also presented. 



Supplementary Figure 2. Validation of the Eigenspectra model using light fluence measurements obtained in vivo and post mortem. (a) 
MSOT image (one wavelength presented) of a CD1mouse imaged in the abdominal region with a capillary tube containing a reference absorber 

inserted in the lower abdominal area (red circle). Scale bar, 1 cm. (b) Comparison of the measured spectrum of light fluence in the area of 

absorber insertion (black curves) with the fitted spectrum using the 3-dimensional Eigenspectra model in the case of in-vivo imaging (blue 

curve) and post-mortem imaging (red curve). (c) The two light fluence spectra corresponding to the in vivo (blue) and post mortem case (red) 

are decomposed into a linear combination of spectra ΦM(λ), m1Φ1(λ), m2Φ2(λ) and m3Φ3(λ). 

Supplementary Figure 3. Explanation of eMSOT constrained inversion. (a) eMSOT inversion is performed simultaneously on a grid of 

points in the image domain (red points).  (b) A non-directed weighted connectivity graph defined on the grid of points penalizes large 

variations of the Eigenfluence parameters m1 and m3 between neighbor points. The penalization is inversely proportional to the distance w 

between the grid points. (c) A directed graph on the grid of points enforces a decrease on the values of m2 with depth. (d-f) An initial 

approximation of tissue blood oxygenation is obtained using nonnegative constrained least squares fitting (d) and used for obtaining a prior 

estimate of ḿ1(r) (e) and ḿ3(r) model parameters. These prior estimates are used for constraining the total search space for m1 and m3 during 

optimization. (f) Prior ḿ1 estimate (blue line), limits of the search space (blue vertical lines), actual m1 values (green line) and m1 values 

estimated after optimization (red line) for a radial line of the grid presented in (a).  



 

Supplementary Figure 4. Numerical validation of eMSOT in simulations of arbitrarily structured tissues. (a) Examples of the assumed 

random maps of optical absorption, optical scattering and sO2 varying from finely granulated to smoothly varying structures and vessel-like 

patters. The combination of these maps was used to simulate the absorbed energy density of complex tissue using a light propagation model. 

(b) The simulations of multispectral absorbed energy density were formed using varying mean optical properties simulating weakly to strongly 

absorbing/scattering tissue. (c) Simulated multispectral optoacoustic image (one wavelength presented). A polar grid is placed on the upper left 

part of the image for analysis using eMSOT. (d) Original (green) and noisy (blue) simulated absorbed energy density spectrum stemming from 

one pixel of (c). (e-g) Maps of Eigenfluence parameters m1, m2 and m3, respectively, obtained after inversion and interpolation. (h-i) sO2 

estimation using linear unmixing (h) and eMSOT (i). (j) Actual simulated sO2 map. (k) sO2 estimation error corresponding to all pixels of the 

analyzed area using conventional linear unmixing (red points) and eMSOT (blue points), sorted per depth. (l) Mean sO2 error of linear 

unmixing (red) and eMSOT (blue) corresponding to each simulated data-set tested (2358 data-sets in total). (m) Histogram of the mean sO2 

estimation error corresponding to eMSOT (blue) and linear unmixing (red) for all simulated data-sets tested. (n) Histogram of the relative sO2 

estimation error of linear unmixing as compared to eMSOT for all simulated data-sets tested and simulated tissue depths > 5mm.   
 

 



Supplementary Figure 5. Validation of eMSOT using blood phantoms.  (a, b) eMSOT sO2 estimation in the case of a uniformly 

deoxygenated blood phantom (a) and a uniformly oxygenated phantom (b). Scale bar, 1 cm. (c, d) sO2 estimation error of eMSOT (blue dots) 

and linear unmxing (red dots) sorted per depth for the case of the deoxygenated phantom (c) and oxygenated phantom (d).  (e, f) eMSOT grid 

application (e) and sO2 estimation (f) in the case of a blood phantom with non-uniform background oxygenation containing an insertion of 0% 

sO2. The insertion area is marked with a yellow dashed circle. Scale bar, 1 cm. (g, h) Spectral fitting and sO2 estimation corresponding to a 

pixel in the insertion area in (f) using linear unmixing (g) and eMSOT (h). The blue curves correspond to P(r,λ) (g) and PeMSOT(r,λ) (h) while 

the red curves correspond to cHbO2
lu(r)εHbO2(λ)+cHb

lu(r)εHb(λ) (g) and c'HbO2
eMSOT(r)εHbO2(λ)+c'Hb

eMSOT(r)εHb(λ) (h). (i) Statistics on the sO2

estimation error of eMSOT (blue) and linear unmixing (red) corresponding to the insertion region of eight different phantoms of four different 

backgrounds each containing an insertion of 0% and 100% sO2. (j) Statistics on the fitting residual of eMSOT (blue) and linear unmixing (red) 

corresponding to the insertion region.  Statistics in (i, j) are derived from all pixels the ROIs corresponding to the insertion area of each 

phantom. The boxes include 25%-75% and the error-bars 9%-91% of the data. The mean value is denoted with the plus symbol. 

Supplementary Figure 6. Explanation of eMSOT application on experimental tissue images. (a) Initial sO2 maps (computed using linear 

unmixing) corresponding to multiple MSOT slices surrounding the central slice to be analyzed. (b) Prior ḿ1(r) map computed using a 3D FEM 

DE light propagation model and the initial sO2 maps as described in Supplementary Note 2. (c) Selection of a high intensity area in a well-

reconstructed part of the image for the automatic application of a grid for eMSOT application. Scale bar, 1 cm. (d) Prior ḿ1 (blue line), limits 

of search space (blue vertical lines) and estimated m1 after eMSOT inversion, corresponding to a radial line of the grid in (c). (e-g) m2 (e), m1 

(f) and sO2 maps (g) computed after eMSOT inversion for the same tissue area under three different breathing conditions. (h) Original

optoacoustic spectra (P(r,λ); left, blue), eMSOT spectra (PeMSOT(r,λ); middle, blue) and estimated spectrum of light fluence (right)

corresponding to a deep tissue point (yellow arrow in g). Red curves correspond to cHbO2
lu(r)εHbO2(λ)+cHb

lu(r)εHb(λ) (left) and

c'HbO2
eMSOT(r)εHbO2(λ)+c'Hb

eMSOT(r)εHb(λ) (middle). The fitting residual and the estimated sO2 value are also presented in each case.



Supplementary Figure 7. eMSOT tumor imaging and histological validation. (a) Schematic representation of MSOT imaging at a 

transverse slice within the tumor area (b) Cross-sectional optoacoustic image at a central tumor transverse slice. The tumor region is segmented 

with a dashed line. The eMSOT grid is further presented (blue and red dots). (c) Image of the lower abdominal area displaying the orthotopic 

mammary tumor. Dashed lines present the orientation of cryoslicing and MSOT imaging. (d-g) Anatomical optoacoustic image (d; Scale bar, 

1cm, m: muscle, sc: spinal cord) and the corresponding cryosliced color photography (e), H&E staining of the tumor region (f; Scale bar, 2mm) 

and eMSOT sO2 analysis of the tumor area (g). (h, lower) Excised tumor used for functional staining. Yellow dashed lines indicate the slicing 

orientation. (i-l) Examples of a highly perfused (upper row) and low perfused (lower row) tumor analysed with eMSOT for sO2 estimation (i), 

CD31 staining (j), Hoeachst33342 staining (k), and merged with Pimonidazole staining (l). Scale bar, 2mm. The tumor margins are presented 

in (i) indicated by yellow dashed lines. Blue dashed rectangles indicate a region in the tumor core, the average sO2 values of which is displayed 

on the upper right. The intensity ratio of Hoechst33342 staining was calculated by dividing the mean intensity value in the tumor core (green 

dashed rectangle in (k)) over the one in the tumor boundary (grey rectangle in (k)). 

Supplementary Figure 8. Comparison of healthy tissue and tumor sO2 measurements under a breathing challenge. (a-c) Healthy tissue 

(left) and tumor (right) sO2 estimation post-mortem after CO2 breathing (a) and in-vivo under 20% O2 (b) and 100%  O2 breathing (c). 



 
 Physiological range (30%-80% mean sO2) 0%-30% 

mean sO2 

80%-100% 

mean sO2 

Vessel network 

(30%-80% sO2) 

μα
mean (cm-1) 

μs 
mean(cm-1) 

[0.07-0.15] 

[7-11] 

[0.2-0.3] 

[7-11] 

[0.07-0.3] 

[7-11] 

[0.07-0.3] 

[7-11] 

[0.1, 0.2, 0.3] 

[7, 9, 11] 

Noise lvl. 2.5% 4.5% 2.5% 4.5% 2.5% 2.5% 2.5% 2.5% 

Scale       1-3 3-6 

Mean sO2 

error 

2.36% 

(4.54%) 

2.67% 

(4.65%) 

2.82% 

(7.9%) 

3.38% 

(7.9%) 

5.1% 

(15.6%) 

1.85% 

(11%) 

2.45% 

(5.83%) 

2.0% 

(4.4%) 

% of pixels 

<10% error 

98.6% 

(89.4%) 

98.1% 

(89.1%) 

97.1% 

(70.8%) 

95.0% 

(70.4%) 

85.8% 

(38%) 

99.5% 

(56%) 

98.3% 

(81.7%) 

99.1% 

(87.5%) 

% of pixels 

<15% error 

99.8% 

(97.2%) 

99.7% 

(97%) 

99.3% 

(85%) 

98.7% 

(84.8%) 

97% 

(57%) 

99.9% 

(74.9%) 

99.8% 

(93%) 

99.8% 

(96%) 

 

Supplementary Table 1. Statistics of the eMSOT performance as evaluated on a large simulated data-set composed of 2358 distinct 

simulations (red corresponds to conventional linear unmixing).  

 

 

 
Grid points 12 30 56 108 

Av. computational speed (sec) 1.8 sec 10 sec 52 sec 487 sec 

Mean sO2 error 3.16% 2.74% 2.5% 2.36% 

% of pixels <10% error 95.9% 97.7% 98.1% 98.5% 

 

Supplementary Table 2. Statistics of the eMSOT performance as a function of grid density. Statistics correspond to 108 simulated data-

sets of μα
mean ∊ [0.1-0.3] cm-1, μs 

mean=10cm-1 and mean sO2 varying between 30%-80%. 

 

 
 

  



Supplementary Note 1: Numerical and experimental validation of the Eigenspectra model of light fluence (forward model 

validation). 

For validating the accuracy of the Eigenspectra model for light fluence (ΦM(λ), Φ1(λ), Φ2(λ), Φ3(λ))  over light fluence spectra 

created in arbitrary tissues, we created simulations of the absorbed energy density of arbitrary tissues at different wavelengths 

(700 nm to 900 nm with a step of 10 nm), using light propagation models. Assuming a circular structure of 1 cm radius, random 

maps of optical absorption [μα(r)] and reduced scattering coefficient [μs′(r)] were formed (Supplementary Fig. 1a and b, 

respectively), the values of which follow a Gaussian distribution (μα(r) ~N(μα
mean

, μα
std

)  where μα
mean

 ∈{0.07, 0.1, 0.15, 0.2,

0.25, 0.3, 0.35} cm
-1 

and μα
std

=0.1 cm
-1

, μs′(r) ~ N(μs
mean

, μs
std

)  where μs
mean∈{7, 9, 11} cm

-1 
and μs

std
=3 cm

-1
.  The so created

absorption maps (μα(r)) correspond to tissue absorption at an excitation wavelength of 800 nm (isosbestic point of hemoglobin). 

The absorption maps for different excitation wavelengths are computed based on the one at 800 nm and the absorption spectra of 

oxy- and deoxy-hemoglobin. The relative amount of oxy- versus deoxy-hemoglobin at each position r is defined by a random 

map of tissue blood oxygenation (Supplementary Fig. 1c). Different blood sO2 maps were simulated (one example presented in 

Supplementary Fig. 1c) with spatially varying random oxygenation values, and with an average tissue oxygenation varying 

from ~10% to 90% and a standard deviation of 30%. 

The multispectral absorption and scattering maps were employed in a 2D finite-element-method (FEM) solution of the 

diffusion equation (DE)
1
 to simulate multispectral optoacoustic data-sets (i.e. multi-wavelength absorbed energy density) of 

tissue with arbitrary structure, optical properties and oxygenation. One such example is shown in Supplementary Fig. 1d for a 

single wavelength. From these datasets, the normalized wavelength dependent light fluence Φ′(r,λ)=Φ(r,λ)/||Φ(r)||2 was 

calculated for each position r in the image. The residual value obtained after comparing the simulated fluence spectra Φ′(r) to 

their approximation using the basis functions of the Eigenspectra model (Φ′Model(r)) was computed (res =||Φ′(r)- 

Φ′Model(r)||2/||Φ′(r)||2) for each pixel in the image r and statistics of this residual value are presented in Supplementary Fig. 1e. 

Statistics correspond to all pixels of 21 simulations per mean oxygenation level, corresponding to different mean optical 

absorption and scattering (231 simulations in total). Supplementary Fig. 1f further plots the error of the forward model in the 

sO2 estimation (i.e. the error propagated in sO2 estimation due to the approximation of Φ′(r,λ) with Φ′Model(r,λ)).  

The Eigenspectra forward model was tested with 231 simulations of high (Supplementary Fig. 1a-c) and 231 simulations of 

low spatial variation of optical properties (example shown in Supplementary Fig. 1g) and blood oxygenation maps. Moreover 

the forward model was tested in simulations of blob-like features (representing organs) and vessel-like structures 

(Supplementary Fig. 1h). In this case, the blob-like structures correspond to μα = 0.3 cm
-1

, the background to μα = 0.1 cm
-1

 and

the vessel like structures to μα = 5.4 cm
-1

 and μs′ = 16 cm
-1

. The μs′ and sO2 maps corresponding to the background followed a

random distribution as previously described and the sO2 of the vessel-like structure was retained uniform and 25% higher than 

the mean oxygenation of the background.  Statistics on the fitting residual of the forward model on the simulations of 

Supplementary Fig. 1a, g, h are presented in Supplementary Fig. 1e, j, k, respectively. We observed a small error in the 

forward model independently of tissue structure and the variations of optical properties and tissue oxygenation.  

To assess the potential influence of parameters not included in the model such as the absorption of melanin and the 

wavelength dependence of scattering we further created simulations containing a strongly absorbing melanin component at the 

tissue surface (μα = 2.5 cm
-1

) and an exponentially decaying scattering coefficient (μs′= 18.9(λ/500)
-0.6

 cm
-1

) that corresponds to

whole blood measurements
2
; an example presented in Supplementary Fig. 1i. The assumed optical properties were again 

following a normal distribution with μα (r)~N(μα
mean

, μα
std

) where μα
mean

 ∈{0.07, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35}cm
-1 

and μα
std

=0.1

cm
-1

, μs′(r) ~ N(μs
mean

, μs
std

) ) where μs
mean

 ∈{7, 9, 11} and μs
std

 =3 cm
-1

 (21 simulations per mean oxygenation, 231 simulations in

total). Similar to the absorption maps, the so created scattering maps μs′(r) correspond to tissue scattering at an excitation 

wavelength of 800 nm. The scattering maps for different excitation wavelengths are computed based on the one at 800 nm and 

the exponentially decaying curve of the scattering coefficient.  In this case the fitting residual of the forward model is increased 

(Supplementary Fig. 1 l) but is still preserved in relatively low levels indicating that the model retains accuracy despite the 

simplifying assumptions in its creation.   

The accuracy of the forward model in the ballistic regime was tested using Monte Carlo simulations
3
 of multi-layered tissue 

(Supplementary Fig. 1 m). Four different tissue layers were assumed with different oxygenation levels and optical properties. In 

this case the fitting residual of the forward model is similar to the one when using the diffusion equation: 0.61±0.22%.  

The graphs indicate a small model error, supporting the hypothesis that a simple affine model with only three Eigenspectra 

can capture the spectral variability of Φ′(r,λ) in complex tissue structures, independently of the distribution of the optical 

properties. We hereby note that the error in sO2 estimation depicted in Supplementary Fig. 1f is just indicative of the model 

accuracy (error of the forward model) and does not relate to the actual blood sO2 estimates that can be obtained through this 

procedure by solving the inverse problem (estimation error of the inverse problem). 

To experimentally investigate the validity of the Eigenspectra model of light fluence we obtained measurements from small 

animals in-vivo and post-mortem. We measured the light fluence in tissue by inserting a reference chromophore with well 

characterized spectrum within tissue. Specifically, a capillary tube was rectally inserted into an anesthetized CD1 mouse and the 

animal was imaged in the lower abdominal area in-vivo using the MSOT system. The capillary tube was filled with black India 

ink, the spectrum of which was previously measured in the photospectrometer. The animal was imaged in-vivo under 100% O2 

breathing and ex-vivo. These two different physiological conditions were employed in order to investigate the influence of the 

average background tissue oxygenation on the spectrum of the light fluence. 



The per-wavelength image intensity at the region of the ink insertion (i.e. the optoacoustic measured spectrum which 

corresponds to the multiplication of the local absorption with the local light fluence) was elementwise divided by the actual 

absorption spectrum of ink. The resulting spectrum after division corresponds to the wavelength dependence of the local light 

fluence. The measured light fluence spectrum computed in this way was fitted to the Eigenspectra model and the two curves and 

the fitting residual are presented in Supplementary Fig. 2.  

Supplementary Fig. 2a presents a single wavelength optoacoustic image of the mouse in the abdominal area. The area where 

the light fluence is measured is indicated with a red circle. Supplementary Fig. 2b presents the spectrum of the experimentally 

measured light fluence (black curves) and the fitting result using the Eigenspectra model in the case of in-vivo (blue curve) and 

post-mortem imaging (red curve). The low fitting residuals indicate good agreement of the model with experimental reality. 

Supplementary Fig. 2c presents the decomposition of the two fitted light fluence spectra as a linear combination of the mean 

fluence spectrum and the three Eigenspectra. While the first and the third Eigenspectra components change dramatically with 

respect to the two different tissue oxygenation states, the second component that corresponds to tissue depth remains relatively 

unchanged. Moreover the values of the m1 parameter obtained after fitting were positive in the post-mortem case and negative in 

the in vivo case, an observation that is in accordance with the dependence of m1 on background tissue oxygenation, presented in 

Figure 1f. This observation was confirmed by performing the same experiment in 2 more animals. Overall, the low fitting 

residual even in the case of experimental data obtained in-vivo indicates good agreement between theory and experimental 

reality.  

Supplementary Note 2: Constrained inversion 

Spatial smoothness constraint. The spatial characteristics of light fluence were exploited for overcoming the ill-posed 

nature of the optimization problem defined by Eq. (5). In contrary to tissue absorption which can vary arbitrarily, the light 

fluence is bound to vary smoothly in space due to the nature of diffuse light propagation. In the context of the Eigenspectra 

model inversion, such a priori information can be incorporated by attempting simultaneous inversion on a grid of points defined 

in the image domain (an example of such a grid is shown in Supplementary Fig. 3a).  

In our implementation, this ad hoc spatial smoothness constraint is enforced by assuming a weighted non-directed graph 

(Supplementary Fig. 3b) that connects the neighbor grid points with edges that carry weights w, which are inverse proportional 

to the distance between the neighbor grid points. As described in Methods, a circular grid of P arcs and L radial lines 

(Supplementary Fig. 3b) is assumed containing PL points at positions rp,l. The arcs are enumerated from 1 to P, with higher 

indexes indicating larger tissue depths. We define the vector mi =[mi(r1,1), mi(r1,2), …, mi(r1,L), mi(r2,1), …, mi(rp,l),…,mi(rP,L)]
T

(dimensions PL×1) which contains all values of the Eigenfluence parameter i (i=1…3) over all grid points. Using this notation 

the objective function of the eMSOT inverse problem is defined in Eq. (6), where the term 1 1 2 3 3 2|| || || ||a aWm Wm

enforces the ad hoc spatial smoothness constraints imposed on m1 and m3. 

The matrix W implements the weighted non-directed connectivity graph (Supplementary Fig. 3b) and it has dimensions of 

K×PL, where K is the total number of edges of the connectivity graph: K=|E| where E is the set of all edges of the connectivity 

graph. We re-enumerate grid points as follows: rp,l → r(p-1)P+l, so that every grid point has a corresponding index in the range of 

1… PL. Let u and v be the indices specifying two of the grid points: ru and rv. If these points are connected, the pair eu,v = (ru, rv) 

is an edge, i.e. eu,v ∈ E . Let us now enumerate the edges of the graph and let ku,v ∈ {1…K} be the index of an edge eu,v.  Each row 

of matrix W corresponds to a single edge of the connectivity graph shown in Supplementary Fig. 3b, and it contains only two 

non-zero elements corresponding to the points it connects. For instance, for an edge eu,v  there is a corresponding row in W with 

an index ku,v that has non-zero elements at the columns u and v corresponding to the connected points ru and rv. The values of the 

two non-zero elements per row are: 
, , ,( )

u vk u u vd eW  and 
, , ,( )

u vk v u vd e W ,  where 
, 2

( ) 1/u v u vd e  r r . The multiplication 

Wmi results into a vector of K elements (corresponding to the K edges), which are equal to
,( )( ( ) ( ))u v i u i vd e m mr r . When the

regularization terms 

,

2 2

,2
( )( ( ) ( ))

u v

i u v i u i v
e E

d e m m


 Wm r r , i=1,3,  are added to the minimization function fgrid, they 

enforce a simultaneous minimization of the spatial variation of m1 and m3 Eigenfluence parameters. 

The values of the regularization parameters α1 and α3 were selected using cross-validation on simulated data-sets with finely 

granulated structures (Supplementary Fig. 1a-c). We did not observe high sensitivity of the result obtained to small changes of 

the regularization parameters. The same values for the regularization parameters were used for all simulated and experimental 

data presented in the work.   

Constraint of m2 with tissue depth. An additional spatial fluence constraint is applied in the case of the second Eigenfluence 

parameter m2. Through simulations of uniform optical properties as well as simulations with randomly varying optical properties 

it was observed that the values of m2 are strongly and consistently associated with tissue depth, obtaining lower values in deeper 

tissue areas. Through the definition of an additional directed graph based on the assumed gird (Supplementary Fig. 3c) the 

value of m2 at a certain grid point was enforced to obtain larger values than the ones of its direct neighbors placed deeper in 

tissue. Since the grid arcs are enumerated from 1 to P, with higher indexes indicating larger tissue depths this constraint is 

expressed through the following set of inequalities:  



2 1, 2 , 2 1, 1 2 , 2 1, 1 2 ,( ) ( ), ( ) ( ), ( ) ( ), , ,p l p l p l p l p l p lm m m m m m p l       r r r r r r

Search-space constraints through an initial sO2 approximation. For further enhancing the inversion stability, additional 

constraints were imposed to the Eigenfluence parameters that relate to both depth and background tissue oxygenation (i.e. m1 and 

m3) based on a first approximate estimate of tissue blood oxygenation. By performing linear spectral unmixing on the raw 

multispectral optoacoustic images P(r,λ) a first estimation map of blood sO2 levels can be obtained. It is noted that this sO2 map 

is incrementally erroneous with tissue depth, however it can serve as a first approximation for constraining the total search-space 

for m1 and m3 to a more relevant sub-space. Using the so created sO2 map (Supplementary Fig. 3d) and by assuming uniform 

tissue optical properties (i.e. μα= 0.3 cm
-1

 at 800 nm and  μs′=10 cm
-1

) a light fluence map is simulated using a FEM of the DE.

By fitting the simulated light fluence spectra Φ′(r,λ) to the Eigenspectra model, prior estimates of all model parameters ḿ1(r), 

ḿ2(r) and ḿ3(r) can be obtained for each pixel r. A map of ḿ1(r) corresponding to the sO2 map of Supplementary Fig. 3d is 

presented in Supplementary Fig. 3e while the values of ḿ1(rp,l) for all grid positions rp,l  corresponding to one radial line of the 

gird in Supplementary Fig. 3a are presented in Supplementary Fig. 3f (blue line).  

The optimization problem of Eq. (6) is solved, with the values of m1(rp,l) and m3(rp,l) constrained to lie within a region 

surrounding the initial prior estimate ḿi(rp,l) (blue vertical lines in Supplementary Fig. 3f): 

min max

, , ,( ) ( ) ( ), , , 1,3.i p l i p l i p lT m T p l i   r r r

The limits of the allowed search space (Ti
min

(rp,l), Ti
max

(rp,l)) were selected ad hoc as a function of the prior Eigenfluence

values ḿi(rp,l) and tissue depth, through the comparison of the prior and the real Eigenfluence parameters computed in tissue 

simulations of varying (uniform) optical properties (μα ∊ [0.1-0.3]cm
-1

 at 800 nm, μs′=10 cm
-1

) and all uniform oxygenation

levels. It is noted that the allowed search space is incrementally larger with tissue depth since in deep tissue the original sO2 

estimates (and thus the Eigenfluence priors) usually deviate significantly from the true values. Supplementary Fig. 3f presents 

an example of constrained inversion corresponding to a radial grid line of the simulation of Supplementary Fig. 3a: The blue 

line indicates the prior ḿ1(rp,l) across a radial line of the grid, the blue vertical lines indicate the limits of search space, the green 

line indicates the actual m1(rp,l)
 
values of the grid points and the red line the estimated ones after nonlinear optimization. The 

same function for computing the limits (Ti
min

(rp,l), Ti
max

(rp,l)) as a function of the prior ḿi(rp,l) estimate and tissue depth was used

for all simulated and experimental data presented in the work. We note that this constraint (identified through trends in uniform 

tissue data) may not always be exact in data of complex structures of optical properties and oxygenation; thus excluding in 

certain cases the optimal solution from the allowed search space. Despite this, the evaluation of Supplementary Note 4 

indicated that the enforcement of this constraint typically leads to a solution close to the optimal one even in such cases, while it 

minimizes the possibility or an irrelevant convergence in all cases; sacrificing thus accuracy for robustness.  

Supplementary Note 3: Numerical validation of eMSOT. 

For investigating the ability of eMSOT to obtain accurate quantitative estimates of tissue blood oxygenation we validated its 

performance using numerical simulations of multi-wavelength absorbed energy density. The absorbed energy density simulations 

were formed as described in Supplementary Note 1 using random or semi-random maps of absorption, scattering coefficient 

and blood oxygenation. A large validation data-set of 2358 different simulations was employed. The optical properties and sO2 

maps followed a random spatial variation with different structural characteristics ranging from finely granulated to smoothly 

varying structures (Supplementary Fig. 4a) as well as highly absorbing vascular structures with an absorption coefficient 

ranging from 1 to 6 times larger than the mean tissue background (Supplementary Fig. 4a right low). In each case the mean 

tissue optical properties varied from low to high tissue absorption and scattering (Supplementary Fig. 4b) in the physiological 

range (μα
mean∈ {0.07, 0.1, 0.15, 0.2, 0.25, 0.3} cm

-1
 at 800 nm and μs

mean
 ∈ {7, 9, 11} cm

-1
). For each combination of μα

mean
,

μs
mean

, different random blood sO2 maps were assumed ranging from a mean tissue oxygenation of 10% to 90%. Random

Gaussian noise with energy varying from 2.5% to 4.5% of the original energy of the spectra in each pixel was further 

superimposed. 

Supplementary Fig. 4c presents a simulated multispectral optoacoustic image (one wavelength presented) after 

incorporating the optical property maps in a FEM solution of the diffusion equation. A polar grid of 50 points is applied in the 

upper-left part of the simulation for the application of the eMSOT method. The parameters of inversion and the constraints 

employed were the same with the ones used for analyzing the in-vivo datasets and are analytically described in Methods and 

Supplementary Note 2. An example of the original (green) and the noisy spectrum (blue) corresponding to a pixel of 

Supplementary Fig. 4c with 4.5% superimposed random noise is visualized in Supplementary Fig. 4d. Supplementary Fig. 

4e-g present the recovered maps of the Eigenfluence parameters m1(r), m2(r) and m3(r) after inversion and interpolation in the 

convex hull of the grid. Supplementary Fig. 4h-j present the sO2 estimation using linear unmixing (h), eMSOT sO2 estimation 

(i), as well as the actual simulated sO2 map (j). Supplementary Fig. 4k presents the corresponding errors in sO2 estimation of 



eMSOT (blue points) and linear unmixing (red points) in all pixels of the analyzed area, sorted per depth. The sO2 estimation 

error maps in the whole analyzed area were used for statistically evaluating the eMSOT performance. 

Upon evaluation of the method on a set of 2358 created simulations, we observe that in the physiological range of mean 

tissue oxygenation between 30% and 80% the mean sO2 estimation error ranges from 2.4% to 3.4% depending on the levels of 

random noise, while in ~97% of the cases the sO2 error did not exceed 10% (Supplementary Table 1). We did not observe 

dramatic performance differences between different mean optical properties or different structures of the optical properties. We 

further did not observe significant performance degradation with high levels of superimposed noise indicating that the inversion 

scheme is rather robust to noise. The largest errors were observed in the case of less than 30% mean tissue oxygenation. In this 

case the mean sO2 error was 5% and in ~97% of the cases the error was less than 15%. The results of the statistical evaluation of 

the method over all simulations tested are analytically presented in Supplementary Table 1.  

 Supplementary Fig. 4l presents the mean sO2 error of linear unmixing and eMSOT corresponding to each simulated data-

set tested, while Supplementary Fig. 4m present the histogram of the mean sO2 error corresponding to all simulations.  In 88% 

of all cases tested, eMSOT offered a lower mean estimation error than conventional linear unmixing. In the rest 12% of the cases 

linear unmixing offered a better estimation, but the mean sO2 errors were comparable and both were lower than 8%.  Finally, 

Supplementary Fig. 4n presents a histogram of the relative sO2 error yielded by linear unmixing over eMSOT for all simulated 

data-sets tested and for simulated tissue depths>5 mm; indicating that eMSOT typically offered 3 to 8-fold enhanced sO2 

estimation accuracy in deep tissue. 

The statistical evaluation of Supplementary Table 1 corresponds to the application of a polar grid of an angle step of π/20 

rads and a radial step of 0.14 cm (40 grid points). The effect of the grid density on the sO2 estimation accuracy was further tested 

through the application of different grid densities containing 12, 30, 49 and 108 grid points deployed in a π/4 disk area; the 

results are summarized in Supplementary Table 2. We observed that the sO2 estimation accuracy does not increase dramatically 

with an increased grid density due to the smooth spatial variations of light fluence in tissue. 

Supplementary Note 4: Validation of eMSOT with tissue mimicking blood phantoms 

Blood phantoms with controlled oxygenation levels were created for validating the eMSOT accuracy under experimental 

conditions where gold standard is available. Different blood sO2 levels were created by adding different amounts of Sodium 

Dithionite (Na2O4S2)
4
, a chemical that allows for efficient deoxygenation of blood. Control experiments indicated that blood

solutions in NaCl and intralipid could be stably retained at 100% sO2 under no Na2O4S2 addition and at 0% under 100 mg/g 

Na2O4S2 addition. When Na2O4S2 was added at a concentration of 2-4 mg/g, blood solutions were initially deoxygenated but 

would gradually change to higher oxygenation levels.   

A number of cylindrical (diameter 2cm) tissue mimicking solid blood phantoms were created consisting of 3%-5% blood in a 

solution of NaCl, intralipid (2%) and low temperature melting Agarose. Four different states of background blood oxygenation 

were formed though the administration of 100 mg/g Na2O4S2 (corresponding to 0% sO2 background), 3 mg/g Na2O4S2, 4 mg/g 

Na2O4S2 (corresponding to an unknown and spatially varying sO2 in background) and 0 mg/g Na2O4S2 (corresponding to 100% 

sO2 background). A 3mm diameter insertion containing a sealed capillary tube filled with 20% blood at 0% sO2 and 100% sO2 

was introduced at a depth of 5-8mm within each solid blood phantom. The phantoms were imaged using MSOT and the images 

were analyzed using the eMSOT method and conventional linear unmixing.  

Supplementary Fig. 5a-b present the application of the eMSOT method in the case of a uniform phantom of 0% sO2 and a 

phantom of 100% sO2, respectively. Supplementary Fig. 5c-d  present the sO2 estimation error of the eMSOT method (blue 

dots) and linear unmixing (red dots) for all analyzed pixels sorted per imaging depth.  

 Supplementary Fig. 5e-f present the application of the eMSOT method in the case of a phantom with an unknown, non-

uniform sO2 background and an insertion of 0% sO2 blood. The eMSOT grid is placed appropriately to cover the insertion area. 

Supplementary Fig. 5g-h present the initial spectrum in the insertion area [P(r,λ)] and the sO2 estimation using linear unmixing 

(g) as well as the corrected spectrum [P
eMSOT

(r,λ)] and sO2 estimation using eMSOT method (h).  Supplementary Fig. 5i

summarizes the sO2 estimation error of linear unmixing (red) and eMSOT method (blue) corresponding to the insertion area in

the case of 8 different blood phantoms (4 different backgrounds and 2 different insertions per background). eMSOT offers higher

accuracy with an sO2 estimation error that is typically less than 10%, as opposed to linear unmixing that can be associated with

errors as high as 30%. Finally, Supplementary Fig. 5i presents the fitting residual of linear unmixing (red) and eMSOT (blue) in

each case.

Supplementary Note 5: Application of eMSOT on experimental tissue images 

In experimental tissue data (muscle and tumor analysis) the prior ḿ1(r) and ḿ3(r) maps were computed as described in 

Supplementary Note 2 by using a 3D FEM DE light propagation model and 20 sO2 maps corresponding to 20 consecutive 

MSOT slices (with a step size 0.5 mm) surrounding the central slice to be analyzed (Supplementary Fig. 6a). This was 

performed in order to provide robust Eigenfluence prior estimates even in cases of substantial sO2 variations in the 3D 

illuminated volume (MSOT illumination width ~ 1 cm). Supplementary Fig. 6b presents the prior ḿ1(r) map corresponding to 

an animal imaged post-mortem after CO2 breathing.  

eMSOT accuracy depends on the quality of the measured optoacoustic spectra in the grid area. For ensuring successful 

application, an image area of high intensity (high SNR) and fidelity (visually presenting no reconstruction artefacts e.g. due to ill 



acoustic coupling) and typically corresponding to the central-upper part of the image (corresponding to the focal area of the 

ultrasound sensors and eliminating the possibility of reconstruction artefacts due to the limited angle of coverage) was selected 

for applying the eMSOT method. Upon manual segmentation of an area, a polar grid is automatically applied in the image 

domain (Supplementary Fig. 6c). The grid point location is automatically updated so that the points occupy the highest intensity 

pixels in their local vicinity. Grid points that correspond to image values under a predefined threshold (i.e. red points in 

Supplementary Fig. 6c) are excluded from the inversion process. The measured optoacoustic spectra corresponding to the grid 

points are in the following used in the context of the constrained inversion algorithm described in Methods and Supplementary 

Note 2 to obtain estimates of m1(rp,l),
 
m2(rp,l)

 
and

 
m3(rp,l)

 
for each grid point rp,l. Supplementary Fig. 2d presents the prior 

ḿ1(rp,l)
 
(blue line), the limits of search space (blue vertical lines) and the m1(rp,l) estimated by the constrained inversion (red line) 

for a radial line of the grid in Supplementary Fig. 6c.  

Upon the estimation of m1(rp,l),
 
m2(rp,l)

 
and

 
m3(rp,l) in all grid points, the Eigenfluence maps for the intermediate grid points 

are computed by means of cubic interpolation (see Methods). Supplementary Fig. 6e, f presents the m2(r) (e) and m1(r) (f) 

Eigenfluence maps corresponding to the same tissue area imaged under different physiological conditions, namely post-mortem 

after CO2 breathing (left), in-vivo under 20% O2 breathing (middle) and in-vivo under 100% O2 breathing (right). While the m2(r) 

spatial map that corresponds mainly to tissue depth remains relatively unchanged under all three physiological conditions, m1(r) 

that corresponds more to background tissue oxygenation presents substantial differences between the three different states. The 

Eigenfluence maps are used to correct for the wavelength dependence of light fluence in the selected tissue area (Methods) and 

in the following blood oxygen saturation maps are computed using non-negative constrained least squares fitting of the corrected 

eMSOT image with the spectra of oxy- and deoxy-hemoglobin (Supplementary Fig. 6g). Pixels that are associated with a fitting 

residual above a certain threshold are excluded from the sO2 maps. 

After eMSOT application, the raw optoacoustic spectra (blue lines in Supplementary Fig. 6h left) are decomposed into the 

element-wise product of the corrected normalized absorption spectra (blue lines in Supplementary Fig. 6h middle) and the 

estimated light fluence spectra (Supplementary Fig. 6h right). While linear fitting with the spectra of oxy- and deoxy-

hemoglobin results in a high fitting residual and an inaccurate sO2 estimation when applied on the raw optoacoustic spectra (red 

lines in Supplementary Fig. 6h left), it results in a low fitting residual after eMSOT correction (red lines Supplementary Fig. 

6h middle) independently of tissue depth.  

Supplementary Note 6: Imaging tumor hypoxia with eMSOT and histological validation 

Mice (n=8), bearing orthotopically implanted 4T1 mammary tumors were imaged with MSOT at transverse slices in the 

lower abdominal area (schematic representation in Supplementary Fig. 7a). Supplementary Fig. 7b presents an anatomical 

optoacoustic image showing a slice which corresponds approximately to the central section of the tumor. The tumor region 

(upper right part of the image) can be recognized as it displays an enhanced contrast and different anatomic characteristics as 

compared to the symmetric normal tissue region. The tumor region is manually segmented (dashed segmentation line, 

Supplementary Fig. 7b). The eMSOT grid is set to cover the tumor area as well as adjacent healthy tissue (Supplementary Fig. 

7b right).  

After MSOT imaging, the mice were sacrificed and prepared for histological analysis. A subset of the mice (n=4) were 

examined for tumor and tissue anatomy. Following MSOT acquisition, the mice were frozen and the lower abdominal region 

containing the tumor mass (dashed lines in Supplementary Fig. 7c) was cryosliced in transverse orientation, similar to the one 

of MSOT imaging (see Supplementary Fig. 7a). True color images of the whole body, including the tumor mass, were obtained 

and histological slices derived thereof were isolated for H&E staining. Supplementary Fig. 7d-g presents an anatomical 

optoacoustic image at the central tumor cross-section (d), the corresponding cryoslice true color photography (e), H&E tumor 

staining (f) and eMSOT sO2 analysis (g). The cryoslice true color photography displays the tumor heterogeneity, presenting sub-

regions with prominent red color (marked in Supplementary Fig. 7e with an asterisk). These central necrotic areas, appearing to 

be suffused with blood, spatially correlate to the central hypoxic region in the core of the tumor as identified in the eMSOT 

image (Supplementary Fig. 7g; marked with an asterisk). Central necrotic areas could be confirmed by H&E staining 

(Supplementary Fig. 7f).    

Another subset of the mice (n=4) was examined for functional characterization of the tumors through 

CD31/Hoeachst33342/Pimodinazole histological staining. Throughout this process, the tumors were excised and the 3D 

orientation of the tumor with regard to the MSOT image was retained (Supplementary Fig. 7h, lower picture). In the following, 

the excised tumors were sectioned and ~8 µm thick slices were immunohistochemically stained for studying micro-

vascularization (CD31 staining) and cellular hypoxia (Pimonidazole staining). Vascular perfusion was determined following 

Hoechst33342 detection.   

Supplementary Fig. 7i presents the eMSOT sO2 estimation of two tumors presenting different levels of oxygenation. The 

tumor areas, as identified by the anatomical images, are segmented with a yellow dashed line. The average sO2 levels of the 

central tumor areas (blue dashed rectangle) are further displayed in the image. The corresponding CD31 staining, as shown in 

Supplementary Fig. 7j  reveals a dense tumor microvasculature in both tumors. This might explain the high tumor contrast in 

optoacoustic imaging. Hoechst 33342 staining (Supplementary Fig. 7k) reveals substantial differences in the perfusion patterns 

of the two tumors, with the first tumor appearing to be perfused  both in the boundary (grey dashed box) and the core (green 

dashed box). In an effort to quantify the perfusion patterns, the ratio of the Hoechst image intensity in the core vs the boundary 



was computed (intensity ratio 48%). The second tumor displays less perfusion in the core, as compared to the boundary 

(intensity ratio 19%). This finding indicates less functionality of the microvasculature in the core, which might explain the lower 

eMSOT sO2 values as compared to the first tumor. The less perfused tumor areas (dark areas in k) appear spatial congruence 

with the areas of reduced blood oxygenation revealed by eMSOT (i). The non-perfused tumor areas further appear spatially 

correlated to cell hypoxia as identified by Pimonidazole staining (l, green). Cell hypoxia, as determined by Pimonidazole 

staining, may be a consequence of both, perfusion hypoxia (revealed by Hoechst33342 and eMSOT) and also diffusion hypoxia, 

which does not display eMSOT signal. Although, due to technical reasons, it may be challenging to achieve exact co-registration 

between in-vivo eMSOT tumor images and ex-vivo histology, the given histological analyses present strong evidence on the 

ability of eMSOT to detect perfusion related hypoxia within solid tumors. Furthermore, clear discrimination of different levels of 

hypoxia within single tumors, as well as intra-tumoral hypoxia-related heterogeneity could be demonstrated.
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Purpose: One of the major challenges in dynamic multispectral optoacoustic imaging is its relatively
low signal-to-noise ratio which often requires repetitive signal acquisition and averaging, thus
limiting imaging rate. The development of denoising methods which prevent the need for signal
averaging in time presents an important goal for advancing the dynamic capabilities of the technology.
Methods: In this paper, a denoising method is developed for multispectral optoacoustic imag-
ing which exploits the implicit sparsity of multispectral optoacoustic signals both in space and
in spectrum. Noise suppression is achieved by applying thresholding on a combined wavelet-
Karhunen–Loève representation in which multispectral optoacoustic signals appear particularly
sparse. The method is based on inherent characteristics of multispectral optoacoustic signals of
tissues, offering promise for general application in different incarnations of multispectral optoacoustic
systems.
Results: The performance of the proposed method is demonstrated on mouse images acquired in vivo
for two common additive noise sources: time-varying parasitic signals and white noise. In both cases,
the proposed method shows considerable improvement in image quality in comparison to previously
published denoising strategies that do not consider multispectral information.
Conclusions: The suggested denoising methodology can achieve noise suppression with minimal sig-
nal loss and considerably outperforms previously proposed denoising strategies, holding promise for
advancing the dynamic capabilities of multispectral optoacoustic imaging while retaining image qual-
ity. C 2014 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4893530]

Key words: optoacoustic imaging, photoacoustic imaging, multispectral imaging, denoising, wavelets,
sparse signal representation

1. INTRODUCTION

Optoacoustic tomography, also termed photoacoustic tomog-
raphy, measures acoustic waves generated by the absorption of
pulsed or modulated light in tissue and forms 2D or 3D optical
absorption images within several millimeters to centimeters
deep inside tissues.1–4 A number of optoacoustic imaging
systems have been suggested spanning from microscopy5 and
tomographic systems for preclinical small animal imaging,1,2,6

to systems developed for intravascular imaging,7 endoscopy8,9

or breast imaging.10,11 Optoacoustic imaging performed with
monochromatic illumination can produce high resolution im-
ages of soft tissue anatomy and vasculature. By illuminating
tissue at multiple wavelengths and utilizing spectral unmixing
techniques, tissue physiological and molecular features can

also be resolved.12 Multispectral optoacoustic tomography
(MSOT) has been shown to resolve the biodistribution of
fluorescent proteins13,14 or molecular probes of biological
importance such as fluorescent or other absorbing dyes,15–17

or visualize blood oxygenation.5

Advances in data acquisition systems, the possibility of
wavelength tuning between individual pulses without addi-
tional overhead, and fast laser pulsing have enabled MSOT to
be performed at video-rates,18 facilitating its use for dynamic
imaging and enabling handheld imaging while minimizing
motion artifacts. Video-rate MSOT may facilitate its clinical
translation in applications where rapid acquisition and imme-
diate feedback is required.7,8 Additionally, imaging at high
frame rates opens new possibilities for preclinical studies,

113301-1 Med. Phys. 41 (11), November 2014 0094-2405/2014/41(11)/113301/13/$30.00 © 2014 Am. Assoc. Phys. Med. 113301-1



113301-2 Tzoumas et al.: Spatiospectral denoising framework for multispectral optoacoustic imaging 113301-2

e.g., monitoring of rapid biological processes such as real-
time studies of pharmacokinetics,19 physiological responses
to drugs, or blood oxygenation changes for neuroimaging
applications.20,21

Signal-to-noise ratio (SNR) in optoacoustic imaging is
limited by the amount of excitation energy that can be
safely deposited in tissue, as regulated by ANSI limits.
To further improve the sensitivity achievable, it becomes
therefore important to develop methods that maximize the
SNR achieved and reduce the noise present in the detected
signals and the reconstructed images. A common approach
for increasing the SNR relies on repetitive signal acquisition
and averaging (also termed temporal averaging or signal
averaging). However, signal averaging slows down the ac-
quisition of individual frames and hinders fast imaging of
dynamic phenomena. In this respect, alternative approaches
based on hardware solutions or signal-processing methods
are of interest for enhancing the SNR and thus the quality
of optoacoustic images without affecting temporal resolution.

In this work, we present the problem of noise reduc-
tion in optoacoustic imaging and review signal characteris-
tics and previously proposed approaches. We subsequently
present a combined spatial and spectral transformation
for sparsely representing multispectral optoacoustic signals,
namely, the wavelet-Karhunen–Loève transformation, that
have been previously applied for denoising color images.22

By adapting this methodology to the optoacoustic case, we
formulate a spatiospectral denoising method that utilizes
a translation-invariant wavelet-Karhunen–Loève transform
(w-KLT) and information from all available optoacoustic
signals corresponding to all wavelengths and projections.
The presented method is validated on simulations based
on experimentally derived datasets and compared qualita-
tively and quantitatively with previously proposed noise
reduction strategies. We demonstrate that the combination
of structural and spectral processing improves consider-
ably the denoising performance over previously considered
approaches.

2. BACKGROUND

Optoacoustic signals are typically corrupted by additive
electronic noise caused by common system thermal noise
or electromagnetic interference. While the use of advanced
hardware solutions may suppress noise levels, the SNR
achieved in the measurements is typically limited. Therefore,
signal-processing-based denoising methods are of interest for
further improving image quality.

2.A. Signal averaging approaches

A common procedure reported in numerous applications of
optoacoustic imaging is signal denoising via temporal averag-
ing.AssumingwhiteGaussiannoise,thesignalSNR[mostcom-
monly defined in decibels as SNR= 20 log10(S/σnoise), where S

may indicate the peak, the mean, or the root-mean-square of the
effective signal, while σnoise is typically the standard deviation
of the noise] increases with the 10 log10(NT) rule, where NT is
the number of averaged repetitions of the same signal. Signal
averaging involves no information loss when temporal changes
such as motion or physiological changes of tissue can be dis-
regarded. However, such changes cannot be always ignored in
practice,whichcompromisestheapplicabilityoftemporalaver-
aging in in vivo applications. In addition, averaging reduces the
effective frame rate which limits the imaging speed achievable.
The overhead of signal averaging becomes more problematic in
multispectralimageacquisitioninwhichcase NT ×M pulsesare
required instead of M , where M is the number of wavelengths
sampled.

A form of spatial averaging is additionally performed on the
surface of finite-size ultrasound detectors. Ultrasound sensors
with large numerical aperture are typically utilized in opto-
acoustic imaging for providing increased SNR, which is pro-
portional to their surface. Conversely, signal integration over
large surfaces introduces a broadening in the impulse re-
sponse of the system and may distort the reconstructed im-
ages.23,24 When the imaging system is tomographic, the image
reconstruction algorithm effectively offers noise suppression
through the superposition of projection signals in the image
domain. However, such noise suppression in the process of
image formation has less impact in the case of nontomographic
systems such as microscopes, endoscopes, or intravascular
catheters.

2.B. Denoising via thresholding
in sparse representations

Filtering in the frequency domain is a common approach
for suppressing random noise and it is more effective for
cases where the spectrum of the signal collected has little
overlap with the spectrum of noise. However, since opto-
acoustic signals are broadband, it is in principle difficult to
separate them from white random noise without introducing
considerable signal loss or signal distortions. Optoacoustic
signals are well-localized in time and may be modeled as
a superposition of N-shaped pulses that correspond to sig-
nals generated by elementary spherelike structures.25 This
characteristic indicates that wavelet representations, and es-
pecially translation-invariant wavelet frames, could offer an
effective sparse representation which could offer robust de-
noising methods. Various wavelet-thresholding approaches
have been implemented for the restoration of optoacoustic sig-
nals without affecting temporal resolution.26 Such approaches
typically implement different thresholding operators in or-
thogonal wavelet bases11,27,28 or translation-invariant wavelet
frames,29 while the selection of the mother wavelet is usually
performed in an ad hoc manner in order to resemble the the-
oretical N-shape of optoacoustic pressure signals. Moreover,
sparse representations of optoacoustic signals and images in
wavelet bases have been recently used to enhance the image
reconstruction quality using compressed sensing approaches30
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or the reconstruction speed31 in model-based inversion
approaches.

All aforementioned variations of the general wavelet-
thresholding framework32 have demonstrated denoising
capabilities by exploiting the sparsity offered in wavelet repre-
sentations of optoacoustic signals. However, when multispec-
tral optoacoustic imaging is utilized, such approaches perform
suboptimally since they ignore the available multispectral in-
formation, which can be effectively used for further decorre-
lating the true signal from noise. The optoacoustic spectral
responses of tissue consist of a linear combination of a small
number of spectral signatures associated with tissue-intrinsic
absorbers such as hemoglobin and melanin. Light attenuation
with depth additionally affects the measured spectra (spec-
tral coloring) in a nonlinear manner;33 however, in general,
since the different spectral signatures are few, it can be ex-
pected that the multispectral information of tissue can be ef-
fectively captured in a sparse manner. This hypothesis has
directed herein the consideration of a combined representation
that takes advantage of signal characteristics both in the space
and in the spectral dimension using the combined wavelet-
Karhunen–Loève transform.22

3. THEORY

In this section, we provide a concise overview of the
Karhunen–Loève transform and its integration with the
wavelet transform. We seek herein to identify a sparse dic-
tionary for the optoacoustic signals that would represent their
temporal (or spatial) features and integrate additional spectral
information. In MSOT, or other multichannel acquisitions, sig-
nals commonly exhibit correlation within the different wave-
lengths (channels) employed; however, in this case white noise
is completely uncorrelated. Taking advantage of this informa-
tion, multichannel denoising techniques may better decorre-
late the true signal from noise, enabling more efficient noise
suppression. While Bayesian approaches can also be of rel-
evance when stochastic signal modeling is available, simple
thresholding operators can also be applied in sparse represen-
tations of the multispectral information. An ideal denoising
approach would exploit both structural and spectral priors for
defining a maximally sparse representation of the signals. In
the case of multispectral images or signals, such a represen-
tation can be offered by the wavelet-Karhunen–Loève trans-
form that has been previously explored for denoising RGB
images.22

3.A. The Karhunen–Loève transform

The KLT, also referred to as principal component anal-
ysis, is a linear transformation that offers the possibility of
representing a set of observations in a new orthogonal ba-
sis with the property of minimizing the mean square error
(MSE) (from all possible orthonormal transformations) when
truncating coefficients. In this respect, the KLT can offer a
representation, where a set of highly correlated observations,

such as multispectral optoacoustic signals and images, can be
represented in a compressed manner by concentrating their
energy in only a few coefficients (first principal components).
Given a set of L observations X(t)= (x1(t),x2(t),. . .,xL(t))T
(i.e., a set of multisensory signals or multispectral images) with
t = 1. . .N (N being the dimension of each signal) and their
mean values M= (m1,. . .,mL)T , and let the mean-free vector
X′(t)= (x ′1(t),x ′2(t),. . .,x ′L(t))T =X(t)−M, the KLT Y(t) of
vector X(t) is defined by the following linear relation:

Y(t)=V X′(t). (1)

In Eq. (1), Y(t)= (y1(t),y2(t),. . .,yL(t))T and the orthonor-
mal matrix V is a L×L matrix, the rows of which are formed
by the eigenvectors of the covariance or the correlation matrix
G of X′. The eigenvector matrix V defines thus an orthonormal
basis that is specific to the set of observations X and pro-
vides a compressed representation with most signal energy
accumulated in the first coefficients when these observations
are highly correlated. The correlation matrix G is calculated
from the mean-free data x ′l(t) according to the following
equation:

Gm,n =

N
t=1 x ′m(t)x ′n(t)N

t=1 x ′m(t)2
N

t=1 x ′n(t)2
. (2)

The original signals can be recovered by projecting them to
the initial space after applying the inverse KLT

X(t)=VTY(t)+M. (3)

3.B. Wavelet-Karhunen–Loève transform

The combined w-KLT of a set of observations is derived
through the sequential computation of the wavelet transform
of each observation in space followed by the KLT of the
resulting set of mean-free detail and approximation wavelet
coefficients. In accordance with the notation of Sec. 3.A,
let c′l( j,k) denote the mean-free detail wavelet coefficients
of the observation signal xl(t) that correspond to the scale
index j (1 ≤ j ≤ J) (index of wavelet decomposition level)
and the position index k (1 ≤ k ≤ Nj, with Nj depending
on the scale j for orthonormal while being constant for
translation-invariant wavelet transforms) and c′l(J+1,k),
the associated mean-free approximation coefficients, and let
the vector of the observations C′( j,k)= (c′1( j,k),c′2( j,k),
. . .,c′L( j,k))T , and the subtracted mean values M( j)
= (m1( j),m2( j),. . .,mL( j))T (we note that the means of the
detail coefficients are zero). Then, the w-KLT can be defined
by the following relation:

Y( j,k)=UC′( j,k). (4)

Here, Y( j,k)= (y1( j,k),y2( j,k),. . .,yL( j,k))T is the vector of
the transformed coefficients, while the L×L eigenvector ma-
trix U is computed from the correlation matrix G of the
demeaned wavelet coefficients either per wavelet scale22 or
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uniformly for all scales. Since in general the wavelet coeffi-
cients will correspond to both signal and noise, only the high
valued coefficients (that more probably correspond to signal
rather than noise) can be used for a better estimation of the

correlation matrix G, an approach that has been proposed in
Ref. 22. In this respect, the correlation matrix is computed in
accordance with Eq. (2), where instead of the signal values
x ′l (t), the high valued wavelet coefficients are used

Gm,n =

J+1
j=1
N j

k=1ρT
corr[c′m( j,k)]ρT corr[c′n( j,k)]J+1

j=1
N j

k=1ρT
corr[c′m( j,k)]2

J+1
j=1
N j

k=1ρT
corr[c′n( j,k)]2

. (5)

In Eq. (5), ρT
corr(c) is a preliminary threshold operator

applied only for the calculation of G. It is important to
note that the threshold operator ρT

corr(c) is not associated
with signal rejection but with a selection of wavelet coef-
ficients that will contribute to the calculation of the cor-
relation matrix. We note that for reasons of consistency
with previous implementations of the same transform,22 we
used the correlation matrix to compute KLT. However, the
covariance matrix (that is more commonly selected) of-
fers similar performance while also enhancing computation
speed.

The original signals xl(t) can be recovered by projecting the
Karhunen–Loève transformed wavelet coefficients Y( j,k) to
the initial wavelet space using C( j,k)=UTY( j,k)+M( j) and
a subsequent signal reconstruction from the wavelet coeffi-
cients cl( j,k). This process will be referred to as the inverse
w-KLT.

4. METHODS

In this section, the w-KLT-based denoising scheme for mul-
tispectral optoacoustic signals and images is described. MSOT
images are typically formed by a large set of measured opto-
acoustic pressure signals xl (p,t) of spatial (or temporal) di-
mension t = 1. . .N that correspond to a number of the different
projections (i.e., time resolved signals corresponding to spe-
cific ultrasound transducer positions, p= 1. . .Np) and excita-
tion wavelengths (l = 1. . .Nw). The measured signals typically
correspond to the true optoacoustic signals sl (p,t) with some
level of superimposed random noise nl(p,t)

xl (p,t)= sl (p,t)+nl(p,t). (6)

Noise for different spectral bands and projections is typ-
ically assumed to be independent white Gaussian with a
variance σ2

p,l
that can be accurately estimated from exper-

imental measurements possibly from the first signal sam-
ples, where no true optoacoustic signal is expected to be
present.

A three-step procedure is hereby presented for signal de-
noising. In the first step, noisy signals xl (p,t) are subject to
the w-KLT transformation thus giving rise to the w-KLT coeffi-
cients yl(p, j,k) according to the formulation in Sec. 3.B. In the
second step, a nonlinear thresholding operator ρT is applied

to these coefficients to reject noise while retaining the relevant
signal. Finally, in the third step, the estimated denoised signals
x̃l (p,t) are recovered after transforming the thresholded w-
KLT coefficients ỹl(p, j,k) to the original space with the inverse
w-KLT transform. The details of the denoising algorithm and
its application are described in Subsections 4.A–4.D.

4.A. Decomposition stage

Spatial and spectral decorrelation of the optoacoustic sig-
nals from the associated random noise is achieved using the
w-KLT. A translation-invariant wavelet transform was utilized
for decomposing the signals in space. Translation-invariant
wavelet transforms are redundant frame representations that
typically offer enhanced denoising capabilities.34 Daubechie’s
mother wavelet 2 (db2) (Ref. 35) has been selected in an
ad hoc manner for wavelet decomposition, since its bipolar
shape is expected to capture the inherent N-shape of optoa-
coustic signals. Wavelet decomposition is performed along
dimension t in the signal domain leading to cl (p, j,k) wavelet
coefficients according to the formulation of Sec. 3.B, where
p corresponds here to the different projections and k = 1. . .N
for all scales of the detail as well as for the approximation
coefficients.

Computation of the correlation matrix is a key step for
decorrelating the signal from noise. Following the paradigm of
Ref. 22 only high valued wavelet coefficients were selected to
contribute in estimation of matrix G. This is performed using a
preliminary hard thresholding operator ρT corr, associated with
threshold Tp, j,l

corr, which is applied on the mean-free wavelet
coefficients

ρT
corr[c′l (p, j,k)]

=



c′l (p, j,k) if |c′l (p, j,k)| ≥Tp, j,l
corr

0 if |c′l (p, j,k)| <Tp, j,l
corr . (7)

Since the same tissue absorbers (and thus spectral re-
sponses) are expected to be captured in all projections and
scales of the wavelet transform, all available high valued
wavelet coefficients are combined for the calculation of a
global correlation matrix G, that is computed in accordance
with Eq. (5), including the wavelet coefficients from all avail-
able projections
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Gm,n =

Np

p=1
J+1

j=1
N

k=1ρT
corr[c′m(p, j,k)]ρT corr[c′n(p, j,k)]Np

p=1
J+1

j=1
N

k=1ρT
corr[c′m(p, j,k)]2

Np

p=1
J+1

j=1
N

k=1ρT
corr[c′n(p, j,k)]2

(8)

The correlation matrix results in the creation of a base
of eigenvectors U after eigendecomposition. Projecting the
wavelet coefficients on base U results in the w-KLT coeffi-
cients yl (p, j,k) of the original signals xl (p,t).

4.B. Thresholding stage

The w-KLT coefficients yl (p, j,k) of the original signals
xl (p,t) are in the following subject to a thresholding operator
ρT that aims to reject noise while preserving most of the energy
of the actual signal. The denoised coefficients are obtained
as ỹl (p, j,k)= ρT(yl (p, j,k)). A hard thresholding operator has
been hereby selected that is associated with a threshold value
Tp, j,l

ρT [yl (p, j,k)]=



yl (p, j,k) if |yl (p, j,k)| ≥Tp, j,l

0 if |yl (p, j,k)| <Tp, j,l

. (9)

Threshold values are typically selected to be proportional
to the standard deviation of the noise, meaning that the value
of the threshold Tp, j,l may vary with spectral dimension l,
projection p, or the wavelet scale j if the standard deviation of
the noise is not uniform across such dimensions (e.g., colored
noise). Colored noise with a varying standard deviation across
such dimensions can be typical in multispectral optoacoustic
measurements as the laser power varies with wavelength and
the sensitivity of ultrasound sensors typically varies with fre-
quency.

Since the thresholding operator is applied in the w-KLT
of the signals, it is important to calculate the noise variance
in this representation. Let σ2

p, j,l
be a noise variance esti-

mate in the original wavelet transform and let the vector Sp, j

= (σ2
p, j,1,σ

2
p, j,2,. . .,σ

2
p, j,Nw

)T , then in the w-KLT representa-
tion, the noise variance in each spectral channel, projection,
and frequency band can be easily computed analytically as
S′p, j =U2Sp, j, with S′p, j = (σ′2p, j,1,σ′2p, j,2,. . .,σ′2p, j,Nw

)T , where
U2 is the elementwise (Hadamard) product of the eigenvector
matrix with itself, U2=UoU.

Two thresholding operators have been defined up to now,
one being ρT

corr applied for the calculation of the correlation
matrix and one being ρT applied in the final denoising step.
The associated thresholds are defined as Tp, j,l

corr= λcorrσp, j,l

and Tp, j,l = λσ
′
p, j,l.

4.C. Validation platform based
on experimental measurements

The performance of the presented spatiospectral denois-
ing technique was directly evaluated on MSOT images and
signals. A dataset obtained from in vivo small animal imaging

was selected to offer a suitable validation platform whereby
signals demonstrate realistic properties both structurally and
spectrally.

Multispectral optoacoustic cross-sectional images of the
mouse head and the kidney area were acquired at 22 uni-
formly sampled wavelengths (Nw = 22) from 690 to 900 nm
with a step size of 10 nm (Fig. 1). The data were acquired
using an experimental MSOT setup described in Ref. 6.
A picture of the system is presented in Scheme 1, where the
illumination, the ultrasound array, the animal positioning, the
animal holder, and the imaging plane are pointed with dashed
arrows. The system employs an OPO tunable laser for illu-
mination with pulse repetition rate of 10 Hz. Illumination is
guided through fiber bundles in order to create a ring-shaped il-
lumination pattern (∼7 mm width) on the surface of the animal.
Parallel ultrasound detection of 64 channels (acquiring simul-
taneously 64 “projection” signals, Np = 64) is achieved using a
curved ultrasound array. The elements of the ultrasound array
(5 MHz central frequency with −6 dB of >50%) are deployed
in a circular 2D geometry around the sample (radius 4 cm)
covering an angle of 172◦. The system acquires 2D images in
a transverse slice through the animal in the x–y plane. The
effective field of view of the imaging system is 2.5 × 2.5 cm
and is depicted in Scheme 1 using a transparent rectangle.

The original signals [Fig. 2(a)] were averaged 100 times
and band-pass filtered within the bandwidth of the ultrasound
sensors, to diminish system electronic noise. The averaged and
filtered signals [Fig. 2(b)] were assumed to be noise-free serv-
ing as the gold standard sl (p,t) for calculating the estimation
error and evaluating the current method against previously pro-
posed approaches. From the acquired signals, 2D optoacoustic
images were reconstructed using a 2D model-based inversion
algorithm.36,37

S 1. Annotated color photograph of the experimental MSOT imaging
setup. The animal holder, the fiber illumination, the imaging plane, the
animal, and the ultrasound transducer are annotated with dashed arrows.
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F. 1. In vivo multispectral optoacoustic measurements used for the creation
of noise simulations. (a) and (b) Anatomical image of a mouse brain at an
excitation wavelength of 690 nm (a) and 900 nm (b). (c) and (d) Anatomical
image of the kidney area of a mouse at an excitation wavelength of 690 nm
(c) and 900 nm (d).

Random white Gaussian noise nl(p,t) independent across
the spectral channels was artificially superimposed to the orig-
inal signals sl (p,t) at equal standard deviations for each pro-
jection and wavelength,σl,p =σ. The superimposed noise was
selected to be either independent across projections and wave-
lengths [Fig. 2(g)], or “parasitic” [Fig. 2(f)]. In the case of para-
sitic noise, the noise is also random Gaussian and independent
across the wavelengths, but the same noise pattern is superim-
posed on each one of the projections p. Such parasitic noise
may be present in optoacoustic systems that utilize ultrasound
arrays (simultaneous acquisition of all signal projections), in
the presence of electromagnetic interference. Parasitic noise

causes the production of ring artifacts after image reconstruc-
tion [Fig. 2(f)] making the noise influence obvious and distin-
guishable from the actual image structures at visual inspection.
Using this technique for producing noise simulations does not
bias the performance of the denoising methods when these
are applied in the signal domain. Each signal in the dataset
of Np projections and Nw wavelengths will correspond to a
different peak signal-to-noise ratio (PSNR) according to the
signal amplitude and the noise levels. The average PSNR of
all signals of a specific dataset is used as an indicator of the
level of the superimposed noise.

4.D. Evaluation of denoising performance

Evaluation of the denoising performance was performed
both qualitatively, by visual inspection of the denoised sig-
nals and the reconstructed images, and quantitatively through
the calculation of the estimation error esig. For each set of
measured optoacoustic signals, consisting of Np×Nw pressure
signals, the average normalized error across all projections and
wavelengths is calculated from the denoised (x̃l (p,t)) and gold
standard (sl (p,t)) signals

esig=
1�

NpNw

�
Nw
l=1

Np
p=1

N
t=1(x̃l (p,t)− sl (p,t))2N

t=1sl (p,t)2
. (10)

The quantitative evaluation of the estimation error is com-
puted in the signal (and not image) domain in order to avoid
introducing bias from the reconstruction algorithm employed.
However, visual inspection is performed in the image do-
main to better identify the effect of signal loss on the asso-
ciated tissue structures, while the MSE between the images

F. 2. Noise simulations based on small animal imaging data. (a) A typical optoacoustic signal before any processing. (b) Optoacoustic signal after 100 averages
and band-pass filtering, assumed as the gold standard sl (p,t). (c) Noisy signal x̃l (p,t) = sl (p,t)+nl (p,t) produced after superimposing noise of σ = 1 to the
original signal sl (p,t). (d) Optoacoustic image of a mouse brain, reconstructed from the unprocessed signals. (e) Optoacoustic image reconstructed from gold
standard signals sl (p,t). (f) and (g) Optoacoustic image reconstructed from noisy signals x̃l (p,t) with superimposed parasitic (f) and independent noise (g).
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F. 3. Sparsity comparison of multispectral optoacoustic signals of the brain dataset in different signal representations. (a) Lorenz curves for Gaussian noise
(blue solid curve), MSOT signals (red dashed curve), translation-invariant wavelet transform of MSOT signals (cyan dash-dot curve), and translation-invariant
w-KLT of MSOT signals (black dot curve). (b) Lorenz curves for MSOT signals in the translation-invariant wavelet domain using different mother wavelets.
(c) and (d) Magnification of the upper-left part of (a) and (b), respectively.

reconstructed from the denoised signals with respect to the
images reconstructed from the noise-free signals are also
provided.

5. RESULTS

This section summarizes the results of the spatiospec-
tral denoising method on experimental and artificially gen-
erated noisy datasets of multispectral optoacoustic signals
and images. Section 5.A compares signal sparsity of multi-
spectral optoacoustic signals under different representations.
Section 5.B presents a qualitative and quantitative evalua-
tion of the spatiospectral denoising method and a comparison
with previously proposed denoising strategies. Section 5.C
discusses the application of the method in the signal and the
image domain. Finally, Sec. 5.D demonstrates the application
of the presented method in purely experimental noisy datasets.

5.A. Sparsity of multispectral optoacoustic signals
in different representations

The efficiency of denoising approaches that are based
on thresholding operators highly relies on the sparsity of-
fered in the selected signal representation. Figure 3(a) shows
the Lorenz curves38 of the signal energy for the cases of
white Gaussian noise (blue solid curve) and of the mul-
tispectral optoacoustic dataset of the brain used in this
study in the original (red dashed curve), the translation-
invariant wavelet (cyan dash-dot curve), and the w-KLT (black
dot curve) representation. We note that the Lorenz curve
for white Gaussian data is independent of the base used.

Figure 3(b) shows the Lorenz curves of the signal energy
for the same dataset in the original (red solid curve) and in
the translation-invariant wavelet transform using three dif-
ferent mother wavelets with compact support but different
spatial patterns, namely, Daubechie 1 (db1, also referred to
as Haar), Daubechie 2 (db2), and Symmlet 4.35 Figures 3(c)
and 3(d) present a magnification of the upper-left part of
Figs. 3(a) and 3(b), respectively, for a better visualization of
the curve differences.

Clearly, the w-KLT transform offers greatly enhanced spar-
sity as compared to the wavelet transform, compressing most
signal energy in only a few coefficients. Moreover, the differ-
ences in sparsity under different wavelet bases are minimal
indicating that the selection of an optimal wavelet basis is of
much less significance as compared to the utilization of the
available spectral information.

5.B. Evaluation of denoising performance and
comparison with previously proposed approaches

In this section, the performance of the presented spatiospec-
tral denoising method is validated and compared against pure
spatial denoising. Spatial denoising refers, here, to the use of
hard thresholding on the translation-invariant wavelet trans-
formation of the signals with a threshold that is proportional
to the standard deviation of the noise (Tp, j,l

spatial= λσp, j,l).
This purely spatial denoising method is similar to previ-
ously published denoising strategies for optoacoustic imag-
ing.11,27–29 Spatiospectral denoising refers to our proposed use
of hard thresholding in the w-KLT domain as described in
Sec. 4. Both methods use the same mother wavelet (db2) and
the same decomposition level to facilitate a straightforward
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F. 4. Quantitative comparison of the estimation errors as computed by Eq. (10), between spatial (blue solid curves) and spatiospectral denoising (red dot
curves). The errorbars indicate the standard deviation of the normalized average estimation error among ten different noise instantiations. (a) and (b) Quantitative
comparison of the estimation errors for different selection of the threshold T = λσ, with λ varying from 1 to 3. (c) and (d) Quantitative comparison of the
estimation errors for different noise levels from a mean PSNR of 8–18 dB. (e) and (f) Quantitative comparison of the estimation errors (mean PSNR = 13 dB)
with a varying number of sampled wavelengths from 4 to 22 wavelengths in total. For all cases, the first column [(a), (c), and (e)] corresponds to the brain
dataset, while the second column [(b), (d), and (f)] corresponds to the kidney dataset.

comparison. Thus, any performance differences are associ-
ated with the utilization of the additional spectral information.
The results obtained by these two methods were compared
quantitatively (Fig. 4) by means of the average normalized
estimation error as computed by Eq. (10). The quantitative
evaluation is performed under ten different instantiations of
random Gaussian noise and the mean and standard deviation
(errorbars) of the normalized average estimation error are pre-
sented. Qualitative comparisons were also performed based on
visual inspection of the denoised signals and the associated
reconstructed images (Figs. 5 and 6). Finally, Fig. 7 presents a
visual comparison between signal averaging and the proposed
spatiospectral denoising method.

Figure 4 presents a direct quantitative comparison between
the spatial and the spatiospectral denoising methods with re-
spect to the estimation error of Eq. (10). Figures 4(a) and 4(b)
present the estimation error for the brain and kidney MSOT
datasets, respectively, as a function of the threshold value T
= λσ, with λ ∈ [1,3]. The average PSNR of the noisy signals
was 13 dB. The graphs indicate that the estimation error pro-
duced by spatiospectral denoising (red dot curve) is consider-

ably lower than the one of spatial denoising (blue solid curve)
independently of the threshold value, indicating better noise
rejection with less signal loss. Moreover, the graphs indicate
optimal threshold values for the two methods. Specifically λ

was selected to be 2 for spatial denoising and 2.5 for spa-
tiospectral denoising for the rest of the evaluation (we note
that λcorr was selected to be 2 under a similar evaluation).
Figures 4(c) and 4(d) present a comparison of the estimation
error as a function of the superimposed noise (average PSNR ∈
[8,18] dB). Spatiospectral denoising consistently outperforms
spatial denoising and appears more efficient in cases of high
noise. Finally, Figs. 4(e) and 4(f) show a direct comparison
of the two methods with a varying spectral dimension from
4 to 22 wavelengths (average PSNR of 13 dB and λ being 2
for spatial and 2.5 for spatiospectral denoising). When more
wavelengths are used, the spatiospectral denoising method
results in a lower estimation error; however, it considerably
outperforms standard spatial denoising even in the case of only
four wavelengths.

Figure 5 offers a visual comparison between spatial and
spatiospectral denoising in the case of parasitic noise of
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F. 5. Comparison between signals and images obtained using spatial and spatiospectral denoising in the case of superimposed parasitic noise of PSNR = 13 dB.
(a) Overlay of w-KLT thresholded signal on noisy. (b) Overlay of wavelet thresholded signal on noisy. (c) Gold standard signal. (d)–(g) Reconstructed image of
the brain at 690 nm from (d) noisy signals, (e) spatial signal denoising, (f) spatiospectral signal denoising, and (g) gold standard signals. (h)–(k) Corresponding
reconstructed images of the kidneys’ area at 690 nm.

PSNR = 13 dB. Figure 5(a) presents an overlay of a
noisy signal of an arbitrarily selected projection and wave-
length with the denoised signal after using the spatiospec-
tral denoising method. Figure 5(b) shows an overlay of the
same noisy signal with the signal after spatial denoising.
Figure 4(c) displays the noise-free signal for comparison.
Figures 5(d)–5(g) show the images of the brain at 690 nm
reconstructed from the noisy signals [Fig. 5(d)], from the sig-
nals after spatial denoising [Fig. 5(e)], from the signals af-
ter spatiospectral denoising [Fig. 5(f)] and from the noise-
free signals [Fig. 5(g)]. Finally, Figs. 5(h)–5(k) present the
reconstructed images of the kidneys at 690 nm corresponding

to the noisy (h), spatially denoised (i), spatiospectrally de-
noised (j), and noise-free (k) associated signals.

Inspection of the denoised signals [Figs. 5(a) and 5(b)]
demonstrates that both methods effectively remove most of the
Gaussian noise. However, fine signal details that are retained in
the case of spatiospectral denoising [Fig. 5(a)] were rejected in
the case of spatial denoising [Fig. 5(b)], where only the coarse
signal structure is preserved. Inspection of the associated re-
constructed images [Figs. 4(e) and 4(i) for spatial and Figs. 5(f)
and 5(j) for spatiospectral denoising] indicates that such loss
of information may result in a major degradation of the struc-
tural information. Both in the case of the brain [Fig. 5(f)] and

F. 6. Comparison between images obtained using spatial and spatiospectral denoising in the case of independent noise of PSNR = 13 dB. (a)–(d) Reconstructed
image of the brain at 900 nm from (a) noisy signals, (b) spatially denoised, (c) spatiospectrally denoised signals, and (d) gold standard signals. (e)–(h)
Corresponding reconstructed images of the kidneys’ area at 900 nm.
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F. 7. Visual comparison between signal averaging and denoising using the
spatiospectral denoising method. (a) Initial image reconstructed from signals
with parasitic noise (PSNR 13 dB). (b) Image corresponding to five averaged
signal repetitions (20 dB). (c) Image corresponding to ten averaged signal
repetitions (23 dB). (d) Image reconstructed after spatiospectral denoising
the original noisy signals of average PSNR 13 dB.

the kidney dataset [Fig. 5(j)], the proposed method appears to
effectively remove the parasitic noise, while preserving most
image structure, indicating minimal signal loss.

Figure 6 offers a visual comparison between spatial and
spatiospectral denoising in the case of uncorrelated noise
resulting in a signal PSNR of 13 dB. The images of the
brain [Figs. 6(a)–6(d)] and kidney datasets [Figs. 6(e)–6(h)]
at 900 nm are presented, as reconstructed from the noisy
[Figs. 6(a) and 6(d)], spatially denoised [Figs. 6(b) and 6(f)],
spatiospectrally denoised [Figs. 6(c) and 6(g)], and noise-
free signals [Figs. 6(d) and 6(h)]. Once again spatiospectral
denoising [Figs. 6(c) and 6(g)] demonstrates efficient noise
rejection while preserving fine image structures, which are
lost in the case of pure spatial denoising [Figs. 6(b) and 6(f)].

Finally, Fig. 7 shows a visual comparison between sig-
nal averaging and the spatiospectral denoising method.
Figure 7(a) shows an image of the brain dataset at 690 nm,
with superimposed parasitic noise of average PSNR = 13 dB.
Figures 7(b) and 7(c) show the denoised images, obtained
by temporal averaging as a function of averaged signal
repetitions. The initial PSNR of 13 dB [Fig. 7(a)] is increased
to 20 [Fig. 7(b)] and 23 dB [Fig. 7(c)] after five and ten
averaged signal repetitions, respectively. The image quality
after ten averaged signal repetitions closely resembles the de-
noised image obtained by spatiospectral denoising shown in
Fig. 7(d), indicating the potential of faster image acquisition
with the same image quality, in the case of noisy systems.

5.C. Denoising in the image domain

Denoising can be equivalently applied in the signal or the
image domain. If the system is tomographic and the noise is
independent across projections, the SNR level in the image
domain is expected to be higher, offering an advantage in the
case of nonlinear thresholding approaches (we note that this
applies less in the case of nontomographic modalities or in the
case of parasitic noise). Moreover, the wavelet representation
in the image domain may offer enhanced sparsity making a
thresholding denoising method more efficient. However, the
denoising performance will also depend on the performance
of the tomographic reconstruction algorithm employed. Re-
construction artifacts further contribute to noise in the image
domain, while the estimation of the noise levels in the image
domain can be more challenging. Figure 8 presents a compar-
ison between denoising in the signal and the image domain.
Figure 8(a) presents an image from the brain dataset at 900 nm
reconstructed from noisy signals with PSNR = 13 dB; Fig.
8(b) shows the reconstructed image that corresponds to the
denoised signals using spatiospectral denoising in the signal
domain and Fig. 8(c) presents the resulting image after using
spatiospectral denoising in the image domain. In the latter

F. 8. Comparison between denoising in the signal and the image domain. (a) Noisy image. (b) Denoising in the signal domain followed by image
reconstruction. (c) Denoising in the image domain. (d) Reconstruction from the noise-free signals. (e) Comparison of sparsity between the wavelet transform in
the image and the signal domain.
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F. 9. Denoising of a purely experimental dataset in the case of very strong parasitic noise due to electromagnetic interference. (a) and (c) Original multispectral
images of a nude mouse in the abdominal area with a subcutaneous tumor, at wavelengths of 700 and 900 nm, respectively. (b) and (d) Corresponding
reconstructed images after spatiospectral signal denoising. (e) Overlay of original noisy and denoised signal. (f) and (g) Magnification of central tissue area
of (c) and (d), respectively.

case, a 2D wavelet transform with the same mother wavelet
(db2) was applied in the reconstructed image. Figure 8(d)
presents the image reconstructed from the noise-free signals.
Finally, Fig. 8(e) presents a comparison on the sparsity offered
by wavelet transforms in the signal and image domain with
no noise present. While the wavelet transform in the image
domain offers higher sparsity, when denoising is applied in
the image domain, the MSE with respect to the image recon-
structed from the noise-free signals appears higher. This may
be due to the fact that some reconstruction artifacts are also
rejected. However, this effect is hard to quantify.

5.D. Application in experimentally derived
noisy datasets

In the following, the performance of the denoising method
is demonstrated in a purely experimental dataset acquired
from the abdominal area of a nude mouse bearing a subcuta-
neous tumor. Imaging was performed at eight uniformly sam-
pled wavelengths (Nw = 8) from 700 to 900 nm. A similar
MSOT setup to the one described in Sec. 4.C was hereby
used that employs an ultrasound array of 256 elements (Np

= 256) covering an angle view of 270◦. Strong para-
sitic noise was present in the experimental data at certain
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projections due to electromagnetic interference, which led to
the formation of ring artifacts in the image domain after to-
mographic reconstruction. Figure 9 shows the application of
the spatiospectral denoising method on the experimental data.
Figures 9(a) and 9(c) correspond to the images reconstructed
from the noisy signals at 700 and 900 nm, respectively. Fig-
ures 9(b) and 9(d) correspond to the images reconstructed
from the associated denoised signals. Figure 9(e) shows the
superposition of a noisy and the associated denoised signal,
correspond to an arbitrary projection and wavelength. Finally,
Figs. 9(f) and 9(g) present a magnification of the central tissue
for better visual inspection. The presented spatiospectral de-
noising method successfully restores the data by rejecting the
superimposed noise while preserving fine image details.

6. DISCUSSION

One of the major challenges in MSOT is the relatively
low SNR of the detected ultrasound signals. To overcome
this challenge, repetitive signal averaging or a hardware
approach is usually adopted (e.g., the employment of low-
noise electronics, electric insulation, and large ultrasound de-
tectors). However, hardware solutions often come with disad-
vantages such as high cost, bulky setup, and image distortions,
while signal averaging largely compromises the temporal reso-
lution. In contrast, algorithmic solutions have the advantage of
improving image quality based on available data without any
additional cost other than computation time and some potential
signal loss.

In this paper, we sought to identify a highly sparse rep-
resentation for multispectral optoacoustic signals for formu-
lating a general denoising methodology for this imaging
technology. Optoacoustic signals are well-localized in space
and can be modeled as a superposition of N-shaped pulses,
indicating that wavelet bases with compact support can offer
an appropriate sparse representation. Additionally, the opto-
acoustic spectral responses of tissue consist of a nonlinear
combination of a small number of spectral signatures asso-
ciated with tissue-intrinsic absorbers, indicating that spec-
tral profiles can further be sparsely represented using an
appropriate transformation. By reviewing such fundamen-
tal signal characteristics both in space and in spectrum,
we identified the w-KLT as a highly suitable representa-
tion for MSOT signals. When applied in experimental tis-
sue data obtained in vivo, this transformation showcased
substantially increased sparsity as compared to common
alternative representations (Fig. 3). A number of denois-
ing studies in optoacoustic imaging were mainly seeking
to identify an appropriate mother wavelet.27–29 The pre-
sented Lorenz curves (Fig. 3) indicate that the mother
wavelet has a much lower impact as compared to the fur-
ther utilization of the multispectral information that is often
available.

The proposed denoising method was applied mainly in the
signal domain where an accurate estimation of the noise levels
is typically available. An application in the image domain can
be more challenging due to the influence of the reconstruction
algorithm employed and the lack of gold standard. In the signal

domain, the method combines information from all available
signals stemming from different projections for the calcula-
tion of a single correlation matrix G. In contrast to common
multispectral images, MSOT signals are expected to contain
similar spectral characteristics across different frequencies and
projections. In this respect, one global correlation matrix G
may result in more robust performance, especially in cases
where certain frequencies or projections are more prone to
noise than others.

Evaluated on biological samples imaged in vivo, the
presented denoising framework demonstrated great noise
suppression capabilities with minimal signal loss while con-
siderably outperforming previously proposed strategies that
are based solely on spatial signal characteristics (Figs. 5 and 6).
Computationally, the methodology does not introduce signifi-
cant overhead over the simple wavelet-thresholding approach.
Specifically, the required computational time for denoising
a dataset composed of 22 wavelengths, 64 projections, and
1024 samples per projection using an Intel i5-4200U CPU
is 20 s for spatiospectral denoising versus 17.5 s for spatial
denoising, indicating an overhead of ∼15%. A potential draw-
back of the presented approach is the possible misclassification
of true optoacoustic signals as noise when such signals corre-
spond to spectral outliers, like molecular agents with a distinct
spectrum that appear in very low amounts within tissue.33 For
such applications of the technology, an alternative denoising
approach that is not associated with signal loss should ideally
be developed.

Our current work demonstrated the denoising capabilities
in the case of a tomographic multispectral optoacoustic sys-
tem, but the proposed approach could similarly be applied
to multispectral optoacoustic microscopy, as well as clinical
translations of the technology, that demand rapid image ac-
quisition and immediate feedback. In addition, the w-KLT
that was hereby identified to offer very suitable properties in
terms of sparsity for multispectral optoacoustic signals and
images could be potentially further exploited for data compres-
sion or in the context of advanced tomographic reconstruction
approaches31 for enhancing the reconstruction speed of multi-
spectral optoacoustic images.
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