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"Be true to the game, because the game will be true to you. If you try to
shortcut the game, then the game will shortcut you. If you put forth the e�ort,
good things will be bestowed upon you. That's truly about the game, and in

some ways that's about life too."

- Michael Jordan
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Abstract

This thesis presents �nite element complexity reduction techniques for eigenvalue
problems. For parameter dependent problems, we propose an adaptive reduced ba-
sis algorithm for multi-query outputs with applications to vibro-acoustics. Further
e�ciency is gained by component mode synthesis and mortar techniques. Additio-
nally we generalize the concept of energy-corrected �nite elements to higher order
and eigenvalue problems to overcome the pollution e�ect on non-convex polygonal
domains.
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Zusammenfassung

In dieser Arbeit behandeln wir Methoden zur Komplexitätsreduktion bei �niten
Elementen für Eigenwertprobleme. Mit einem adaptiven reduzierte Basen Algo-
rithmus approximieren wir gleichzeitig mehrere Outputs eines parameterabhängi-
gen Problems aus der Vibro-Akustik. Die E�zienz wird durch Component Mode
Synthesis und Mortar Techniken weiter verbessert. Auÿerdem verallgemeinern wir
das Konzept der Energiekorrektur für �nite Elemente auf höhere Ordnungen und
Eigenwertprobleme, um den Pollution-E�ekt auf nichtkonvexen polygonalen Ge-
bieten zu überwinden.
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Chapter I.

Introduction and mathematical

background

In this chapter we introduce the modeling problem as well as the theoretical and

numerical background for the results presented in this thesis.

1. Introduction

Eigenvalue problems, whose solutions consist of the eigenmodes and eigenfrequen-

cies of a system, arise in many physical and technical application areas. Among

those are the vibro-acoustic analysis of building structures, which is the motivation

of this work, as well as applications in areas such as electrical circuits and chemical

engineering.

Mathematical models and numerical simulations play an important role during the

planning process of a building [130, 132, 133]. Besides static and energetic con-

siderations, also the vibro-acoustical analysis is a crucial part in developing an

elaborate construction plan. After the construction of the building is completed,

the impact as well as the airborne noise will be measured and have to ful�ll strict

requirements [131, 149].

Figure 1.1: Timber building example.[5]
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In order to ensure that these standards will be met upon completion of the building,

mathematical models are set up and sophisticated numerical methods are employed

for the solution of the eigenvalue problems arising during the vibro-acoustical ana-

lysis. The geometry of a building like the one depicted in Figure 1.1 is extracted

from a building information model (BIM), which gives information on the physical

and functional properties of a building in digital form. A standard data model in

the building industry are the Industry Foundation Classes (IFC), which are sup-

ported by many computer-aided design (CAD) software packages.

In a general setting, the eigenfrequencies and eigenmodes of the structure as well

as the stimulation and the damping are required. Determining the eigenfrequencies

and eigenmodes of a structure, which are here the solutions of a linear elasticity

eigenvalue problem, allows to identify its vibrational spectrum for a given stimu-

lation using modal superposition (spectral analysis) as in [130]. Modal analysis

is typically useful when investigating low frequencies combined with a low eigen-

mode density. This applies to timber-frame constructions as depicted in Figures 1.1

and 1.2, where acoustic de�cits can be found, for example at the intersection of

thin walls with ceilings, especially for frequencies below 100 Hz. In the context of

these buildings, modal analysis is used to calculate the noise level at the separating

and �anking components of the structure, see Figure 1.2.

Figure 1.2: Building components.[56]

From this, the sound pressure level in the space under consideration can be calcu-

lated using modal coupling [130]. It is important to model the possible couplings

of timber elements in a mechanically consistent way regarding vibro-acoustics.

The numerical simulation of the problems allows to gain insight into the behavior
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of the system under varying parameters. These predictions give the opportunity

to reevaluate the system and make changes to the materials used or to the con-

struction itself while reducing temporal and monetary costs.

The challenge is to obtain results which are accurate and achieved in a su�ciently

small time span. It has to be taken into account that simulations may have to be

performed several times during the course of a project. In order for the models to

be su�ciently accurate, very large and detailed systems are used for the modeling

of the physical phenomena. The simulation of these large-scale systems is very

expensive in terms of time and hardware. Thus not only the solutions of this de-

tailed eigenvalue problem play a role, but also the need for reduced order models,

which are signi�cantly smaller while preserving the important characteristics of the

original system.

In this thesis, we focus on the eigenfrequencies and the eigenmodes of a building

structure in the context of model order reduction. The numerical methods were

developed with the goal of including them into the planning process of a timber

building. This allows the optimal design of single components and the investigation

of their vibrational coupling as well as the vibro-acoustic properties of the entire

building in an early stage of the planning process. The results presented in this

thesis do not only apply to the speci�c physical situations considered, but can be

generalized to a wide range of application areas.

The structure of this thesis is as follows: In Section 2 of Chapter I, we introduce

the de�nitions and the theoretical as well as the numerical background constituting

the foundation of the work conducted in this thesis. We start by introducing the

necessary function spaces, then we give a short introduction to the equation of

linear elasticity, which is used to model the building structures. Finally we present

the general eigenvalue problem, which is the tool for obtaining the eigenfrequencies

and eigenmodes of a structure.

Chapter II consists of Section 3 and Section 4, where complexity reduction in

the sense of mortar methods is presented. In Section 3, we start by introducing

mortar �nite element methods for eigenvalue problems. These are non-conforming

domain decomposition methods, in which the global domain is decomposed into

overlapping or non-overlapping local subdomains in a geometrically conforming or

non-conforming way. The central idea of mortar techniques is to replace the strong

continuity condition of the solution across the interface by a weak one. Mortar
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�nite elements allow to mesh subdomains of the building such as walls and ceilings

independently. This is useful since global meshing is very expensive. We demon-

strate the suitability of the mortar method for high order �nite elements and apply

mortar methods to domains ranging from L-shape domains to whole buildings.

In Section 4 we derive a new mortar formulation designed to replace an explicitely

discretized elastomer with a new coupling condition. To this end tailored Robin

conditions are applied at the interface as coupling conditions instead of the more

standard continuity constraints. We derive the dimensional reduced model with

the new coupling condition, show the stability of the model by numerical experi-

ments and subsequently test the performance of the new formulation on benchmark

examples and demonstrate the engineering relevance for practical applications.

The following Chapter III deals with model order reduction approaches in the

sense of reduced basis methods for eigenvalue problems. The chapter is divided

into Section 5, Section 6 and Section 7.

In Section 5 we present a model reduction framework for parameterized eigenvalue

problems by a reduced basis method, which is of particular interest for applicati-

ons in vibro-acoustics since many evaluations have to be performed with changing

parameters during the planning process. In contrast to the standard single output

case, we approximate several outputs simultaneously, namely a certain number of

the smallest eigenvalues. For a fast and reliable evaluation of these input-output

relations, we analyze a posteriori error estimators for eigenvalues. Moreover, we

show di�erent greedy strategies and study their performance systematically. We

pay special attention to multiple eigenvalues, whose appearance is parameter de-

pendent.

In Section 6 we present the reduced basis method for eigenvalue problems in combi-

nation with isogeometric mortar methods. In contrast to �nite elements, isogeome-

tric methods allow to approximate a larger spectrum of eigenvalues and also curved

geometries more accurately. We demonstrate that also in this context reduced basis

eigenvalue methods are useful to reduce computation cost and time, where we are

able to eliminate the Lagrange multipliers introduced by the mortar coupling and

formulate a reduced eigenvalue problem for a symmetric positive de�nite matrix.

In Section 7 the component mode synthesis is presented. This method consists of
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dividing a large global geometry setting into many smaller subgeometries. Then

instead of considering the eigenvalue problem on the global geometry, it is subdi-

vided into several local eigenvalue problems, which are solved on their own and

then coupled to recover the global problem. This is especially useful in the vibro-

acoustic analysis of building structures since it is straight-forward to divide the

building structure into smaller substructures such as walls and ceilings. Thus using

reduced basis methods for eigenvalues instead of �nite element solutions allows a

further complexity reduction to save time while achieving a satisfying accuracy.

In Chapter IV, which contains Section 8, Section 9 and Section 10, we then deal

with issues related to corner singularities, which arise in polygonal domains with

reentrant corners. These can be found in buildings as, e.g., depicted in Figure 1.2,

at window frames and doors and where walls meet the ceiling. The impact of the

singularities on the numerical calculations is investigated and adequate counterme-

asures are presented.

We begin Section 8 by demonstrating the impact of the singularities theoretically

in a simpli�ed setting, given by the Laplace equation in two dimensions. It is well

known that the regularity of the solutions of elliptic partial di�erential equations on

domains with reentrant corners is limited depending on the maximal interior angle.

This pollution e�ect on the solutions results in reduced convergence rates in the

L2- and H1-norms for �nite element approximations on families of quasi-uniform

meshes and cannot be compensated by applying weighted norms. Furthermore

we shortly describe the graded mesh method, which is a well-known procedure to

obtain optimal L2-convergence in the �nite element context.

In Section 9, we introduce the energy correction method for the two-dimensional

Laplace equation, which is a method for domains with reentrant corners to re-

gain optimal order of convergence in weighted L2-norms as well as in the standard

L2-norm. This is achieved by a local modi�cation of the bilinear form in a vici-

nity of the singularity, which allows to overcome the pollution e�ect. We present

convergence results in weighted Sobolev spaces and illustrate them by numerical

tests that demonstrate optimal convergence rates for linear �nite elements. Furt-

hermore we show numerically that optimal convergence can be achieved for the

three-dimensional Laplace equation as well as for the two-dimensional elasticity

equation. We then extend the theoretical as well as the numerical results to in-

clude higher order �nite elements for the two-dimensional Laplace equation. In
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addition we show for the corresponding Laplace eigenvalue problem that an opti-

mal convergence rate for the eigenvalues can be obtained.

In Section 10, we show that it is possible to obtain optimal L2-convergence by

compensating the lack of full elliptic regularity in the dual problem if we have

additional regularity of the exact solution. This is achieved using an elliptic shift

theorem if the underlying boundary value problem admits a shift by more than 1
2
.

2. Mathematical background

In this section, we set up the foundation for the results presented in this thesis,

namely the necessary function spaces and equations and introduce the problem

setting. Nevertheless it should be noted that the results presented in the following

chapter are a recap of well-known results from standard literature.

2.1. Sobolev spaces

The theoretical as well as the numerical results in the following are based on the

notion of weak derivatives and the corresponding Sobolev function spaces. Weak

derivatives are a generalization of the concept of classical derivatives suitable for

modern function spaces based on Lebesgue function spaces. We now consider the

relevant standard results on Sobolev spaces and introduce the de�nitions needed.

For more details we refer to the introductory texts [1, 29, 30, 97].

In the following let Ω ⊂ Rd, d ∈ {2, 3} be a bounded polyhedral domain whose

boundary is denoted by Γ := ∂Ω. We consider now functions u : Ω → R and

their partial derivatives Dβu. In this formulation the multiindex β of order |β| =

β1 + . . .+ βd denotes a vector of the form β = (β1, . . . , βd), where each component

βi is a non-negative integer. Then the set of the partial derivatives of order k,

where k is a non-negative integer, is denoted by

Dku(x) := {Dβu(x) : |β| = k},

where

Dβu(x) :=
∂|β|u(x)

∂xβ11 . . . ∂xβdd
= ∂β1x1 . . . ∂

βd
xd
u(x).

If functions and their partial derivatives satisfy certain properties, they lie in

function spaces. The Lebesque spaces of integrable functions for 1 ≤ p < ∞
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are de�ned as

Lp(Ω) := {u : Ω→ R :

∫
Ω

|u(x)|p dx <∞}

and for p =∞ as

L∞(Ω) := {u : Ω→ R : ess sup{|u(x)|, x ∈ Ω} <∞}.

The corresponding norms are de�ned as

‖u‖Lp(Ω) :=

(∫
Ω

|u(x)|p dx
)1/p

and

‖u‖L∞(Ω) := ess sup{|u(x)|, x ∈ Ω},

respectively. Integrability can also be de�ned locally and the set of locally integra-

ble functions is given by

L1
loc := {u : u ∈ L1(K), K ⊂ Ω compact}.

If β is a multiindex and u, v ∈ L1
loc, we say that u has the β-th weak derivative v,

i.e. Dβu = v, if ∫
Ω

uDβφ dx = (−1)|β|
∫

Ω

vφ dx

for all in�nitely di�erentiable test functions φ ∈ C∞c (Ω) with compact support.

We are now prepared to de�ne Sobolev spaces: For integer orders k ∈ N0 and

1 ≤ p ≤ ∞ we de�ne the Sobolev spaces as

W k,p(Ω) := {u ∈ L1
loc : Dβu ∈ Lp(Ω), |β| ≤ k},

the space of all locally integrable functions such that, for each multiindex up to

order k, the weak derivative exists and belongs to Lp(Ω). The corresponding norms

are de�ned as

‖u‖Wk,p(Ω) :=


( ∑
|β|≤k

∫
Ω
|Dβu|p dx

)1/p

, 1 ≤ p <∞∑
|β|≤k

ess supΩ|Dβu| , p =∞
.

All Sobolev spaces W k,p are Banach spaces as well as Lp spaces. The case p = 2
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constitutes a special case since then a natural inner product on the Sobolev space

W k,2 is induced by the norm. Thus these spaces are Hilbert spaces and will be

denoted by Hk(Ω) := W k,2(Ω) in the following. For simplicity of the notation we

use the abbreviations ‖u‖k := ‖u‖Hk(Ω) and ‖u‖0 := ‖u‖L2(Ω).

For some of the following chapters we also require the notion of weighted Sobolev

spaces as introduced in [67, 97]. For this let r = r(x) ≥ 0 denote the distance of

the point x to an arbitrary but �xed point xc, e.g., a singular point. For α ∈ R we

de�ne the weighted Sobolev spaces

Hk
α(Ω) := {u : rα+|β|−kDβu ∈ L2(Ω), |β| ≤ k}

equipped with the norm

‖u‖k,α := ‖u‖k,α;Ω :=

∑
|β|≤k

‖rα+|β|−kDβu‖2
L2(Ω)

1/2

,

see e.g. [96]. Until now we have only de�ned Sobolev spaces Hk(Ω) for integer k.

In the following we will de�ne the corresponding interpolation spaces for fractional

values of s = k + τ with τ ∈ (0, 1), which include fractional order Sobolev spaces

as well as the Besov spaces. In order to do that we will introduce interpolation

spaces using the so-called real- or K-method as de�ned for example in [1, 10, 159].

Let X, Y be two separable Hilbert spaces with X ⊂ Y dense in Y . Then we can

de�ne the interpolation spaces as

(X, Y )θ,q := {u ∈ Y : ‖u‖(X,Y )θ,q <∞}

with the norms

‖u‖(X,Y )θ,q :=


(∫∞

0
[t−θK(u, t)]q dt

t

)1/q
, for 1 ≤ q <∞,

sup
0<t<∞

{t−θK(u, t)}, for q =∞,

for θ = s− k with integer k, where k < s < k + 1 and

K(u, t) := inf
v∈X,w∈Y,v+w=u

{‖v‖X + t‖w‖Y }.
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We can now de�ne Hs as

Hs(Ω) := (Hk(Ω), Hk+1(Ω))θ,2.

Furthermore the space H1
0 (Ω) is de�ned as the subspace of H1(Ω) in which the

traces vanish on ∂Ω as in [1, 55].

Of special interest for the mortar method is the space H
1
2 (∂Ω), which is the trace

space of the H1(Ω) and can be de�ned by interpolation as

H
1
2 (∂Ω) := (L2(∂Ω), H1(∂Ω)) 1

2
,2.

For a detailed review of trace theorems see [1].

For s > 0, s 6∈ N, and q ∈ [1,∞] the Besov space Bs
2,q(Ω) is de�ned by interpolation

as

Bs
2,q(Ω) := (Hbsc(Ω), Hdse(Ω))θ,q, θ = s− bsc.

Integer order Besov spaces Bn
2,q(Ω) with n ∈ N are also de�ned by interpolation

and can be stated according to [159] as

Bn
2,q(Ω) := (Hn−1(Ω), Hn+1(Ω))1/2,q, n ∈ N.

In order to give some indication of the relevance of the second parameter q in the

de�nition of the Besov spaces, we recall the (continuous) embeddings [77]

Hs+ε(Ω) ⊂ Bs
2,1(Ω) ⊂ Hs(Ω) ⊂ Bs

2,∞(Ω) ⊂ Hs−ε(Ω), ε > 0.

In the following chapters, the notion of the dual space will arise in several of the

theorems and proofs. If X denotes a real vector space, we denote its dual space

by X ′. The space X ′ contains all continuous, linear mappings from X to R. If the
space X is normed, the dual norm on X ′ is de�ned as

‖f‖X′ := sup
x∈X

f(x)

‖x‖X
.

The dual space of Hs(Ω) is denoted by H−s(Ω).
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2.2. Variational formulation and the �nite element method

The �nite element method (FEM) is a widely used numerical technique for ap-

proximating solutions of boundary value problems. It relies on the variational

formulation of the boundary value problem, which will be introduced below.

Let Ω ⊂ Rd be de�ned as above and let our simpli�ed model problem be stated as

−∇ · (A(x)∇u) = f in Ω, u = 0 on ∂Ω. (1)

We assume that A ∈ Rd×d and f are su�ciently smooth. Moreover A is assumed

to be symmetric and uniformly positive de�nite and A(x) ≥ α0 I for some α0 > 0

and all x ∈ Ω. The boundary value problem (1) can then be restated in the weak

form using partial integration, where it reads:

Find u ∈ V := H1
0 (Ω) such that

a(u, v) = l(v), v ∈ V. (2)

Here a(u, v) :=
∫

Ω
A∇u · ∇v dx denotes the bilinear form and l(v) :=

∫
Ω
fv dx is

the linear form. The existence and uniqueness of a weak solution to this problem

are given by the Lax-Milgram lemma as stated in [29, 30, 37].

Theorem 1 (Lax-Milgram). Given a Hilbert space H and a continuous, coercive

bilinear form a : H × H → R, i.e. a mapping such that for u, v ∈ H and for

positive constants c1, c2

|a(u, v)| ≤ c1‖u‖H‖v‖H and |a(u, u)| ≥ c2‖u‖2
H ,

as well as a continuous linear functional l ∈ H ′, there exists a unique u ∈ H such

that

a(u, v) = l(v), v ∈ H.

We approximate the continuous problem given in (2) by its discrete variational

formulation. In order to do that we de�ne (Th)h>0 as a family of triangular meshes

obtained by uniform re�nement of a conform triangulation of the domain Ω. We

then denote the standard �nite element space of continuous piecewise polynomials

of degree k by

V k
h := {v ∈ H1

0 (Ω) : v|T ∈ Pk(T ), T ∈ Th}.

In the classical case of second order elliptic equations on a convex domain with

an H1-coercive bilinear form, the �nite element method is of optimal convergence
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order in the H1- and L2-norm, as stated in the following theorem. Its proof uses

a duality argument known as the �Nitsche trick�, which is an important tool for

the convergence analysis in norms such as the L2-norm. The textbook procedure

for optimal order convergence in L2 is to exploit full elliptic regularity for the dual

problem. Versions of this theorem and the corresponding proof can be found e.g.

in [29, 37, 155].

Theorem 2. Let V k
h be the �nite element space and u ∈ Hk+1(Ω). Then, the �nite

element approximation uh di�ers from the true solution u of (2) in the H1-norm

by

‖u− uh‖1 . hk‖u‖k+1,

and under additional assumption of H2-regularity in the L2-norm by

‖u− uh‖0 . hk+1‖u‖k+1.

Proof. The �rst inequality can be shown using the Céa-lemma as stated in [29,

Lemma 4.2] and an interpolation theorem [29, Lemma 6.4]:

‖u− uh‖1 ≤ C inf
vh∈V kh

‖u− vh‖1 ≤ Chk‖u‖k+1.

For the second inequality we use duality arguments, Galerkin orthogonality and

continuity of the bilinear form to obtain that for v ∈ V k
h

‖u− uh‖0 = sup
g∈L2(Ω)

(g, u− uh)
‖g‖0

= sup
g∈L2(Ω)

a(u− uh, ϕg)
‖g‖0

= sup
g∈L2(Ω)

a(u− uh, ϕg − v)

‖g‖0

≤ C‖u− uh‖1 sup
g∈L2(Ω)

inf
v∈V kh

‖ϕg − v‖1

‖g‖0

,

where ϕg ∈ H1
0 (Ω) is the uniquely de�ned weak solution of a(w,ϕg) = (g, w) with

w ∈ H1
0 (Ω) and g ∈ L2(Ω). Since H2-regularity holds, we have that ‖ϕg‖2 ≤ ‖g‖0.

This approximation is also known as the �Aubin-Nitsche-Lemma� mentioned above.

Together with the estimation for the H1-error, this leads to

‖u− uh‖0 ≤ Ch‖u− uh‖1 ≤ Chk+1‖u‖k+1.

In order to demonstrate the numerical performance, we consider a convex domain
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with its respective uniform re�nement as shown in Figure 2.1 and investigate the

performance for ansatz functions of order one to three. For the demonstration of

optimal convergence, we consider the simple Poisson model equation

−∆u = f in Ω, u(x, y) = sin(πx) sin(πy) on ∂Ω.

Figure 2.1: Uniform mesh re�nement on a unit square.

The corresponding optimal convergence results as stated in the above Theorem 2

are depicted in Table 2.1 for the L2-norm and in Table 2.2 for the H1-norm.

k = 1 k = 2 k = 3

level ‖u− uh‖0 rate ‖u− uh‖0 rate ‖u− uh‖0 rate
1 1.1534e-01 - 4.7914e-03 - 3.5346e-04 -
2 3.2465e-02 1.83 5.6526e-04 3.08 2.1803e-05 4.02
3 8.3735e-03 1.96 6.9303e-05 3.03 1.3432e-06 4.02
4 2.1100e-03 1.99 8.6184e-06 3.01 8.3249e-08 4.01
5 5.2856e-04 2.00 1.0759e-06 3.00 5.1803e-09 4.01
6 1.3221e-04 2.00 1.3445e-07 3.00 3.2227e-10 4.01

Table 2.1: Optimal L2-convergence rates on convex domain for ansatz functions of
order one, two and three.

k = 1 k = 2 k = 3

level ‖u− uh‖1 rate ‖u− uh‖1 rate ‖u− uh‖1 rate
1 8.6008e-01 - 1.3015e-01 - 1.3329e-02 -
2 4.3534e-01 0.98 3.3432e-02 1.96 1.6579e-03 3.01
3 2.1801e-01 1.00 8.4219e-03 1.99 2.0612e-04 3.01
4 1.0904e-01 1.00 2.1097e-03 2.00 2.5685e-05 3.00
5 5.4521e-02 1.00 5.2769e-04 2.00 3.2054e-06 3.00
6 2.7261e-02 1.00 1.3194e-04 2.00 4.0035e-07 3.00

Table 2.2: Optimal H1-convergence rates on convex domain for ansatz functions of
order one, two and three.
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2.3. Elasticity equation

In the following, we will brie�y introduce the principal concepts of linear solid

mechanics required for the mathematical modeling of building structures. We do

not intend to give an extensive overview of the topic, but will rather introduce the

necessary basics for solid mechanics. For further details on solid and structural

mechanics we refer to the literature such as [29, 134, 147, 183].

It is our aim to determine the displacements u of an elastic material, assuming

small displacements. In the three-dimensional setting, a displacement corresponds

to a mapping φ : Ω→ R3, which is given by

φ = Id+ u.

Here φ(x) is the new location of the original point x ∈ Ω under the mapping u.

The mapping φ is called a deformation if its deformation gradient

∇φ =


∂φ1

∂x1

∂φ1

∂x2

∂φ1

∂x3

∂φ2

∂x1

∂φ2

∂x2

∂φ2

∂x3

∂φ3

∂x1

∂φ3

∂x2

∂φ3

∂x3


statis�es det(∇φ) > 0.

Then the Green-Lagrange strain tensor is given as 1
2
(∇φT∇φ− I), where I ∈ R3×3

denotes the identity matrix. In linear solid mechanics, only the linear parts are

considered, yielding the linearized strain tensor de�ned as

ε(u) :=
1

2
(∇u+∇uT ).

The tensor describes local deformations inside the body such as extensions, volume

changes and shear strains. To represent the symmetric tensor with reduced order

we use the Voigt notation, which allows to write the second order tensor as

ε = [εx, εy, εz, εxy, εyz, εzx]
T .

The relationship between stress and strain depends on the constitutive law of the

speci�c material. If we assume that Hooke's law holds, this relationship is linear

and the linearized stress σ is de�ned as

σ(u) := Cε(u),
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where C denotes Hooke's tensor, which we assume to be positive de�nite. Depen-

ding on the matrial law, the matrix C changes: In the most general case of an

anisotropic material, the matrix can have 31 independent entries. We will however

restrict our studies to the orthotropic and isotropic cases due to the materials con-

sidered in the planning process. According to [130] for orthotropic materials like

wood, which contain �bers with di�erent orientations and thus di�erent Young's

moduli, the sti�ness tensor C takes the form

C =



A11 A12 A13 0 0 0

A21 A22 A23 0 0 0

A31 A32 A33 0 0 0

0 0 0 Gxy 0 0

0 0 0 0 Gyz 0

0 0 0 0 0 Gzx


with the material parameters

A11 =
Ex
D0

(1− ν2
yz

Ez
Ey

), A12 = A21 =
Ey
D0

(νxy + νyzνzx
Ez
Ey

),

A13 = A31 =
Ez
D0

(νxyνyz + νzx), A22 =
Ey

D0

(1− ν2
zx

Ez
Ex

),

A23 = A32 =
Ez
D0

(νyz + νxyνzx
Ey
Ex

), A33 =
Ez
D0

(1− ν2
xy

Ey
Ex

),

where

D0 = 1− ν2
yz

Ez
Ey
− ν2

xy

Ey
Ex
− 2νxyνyzνzx

Ez
Ex
− ν2

zx

Ez
Ex
.

Since orthotropic materials have di�erent material properties depending on the

direction in space, we have to consider a total of nine independent parameters.

While Ei, i ∈ {x, y, z} denote Young's moduli, the

Gij with (i, j) ∈ {(x, y), (y, z), (z, x)}

denote the shear moduli and the

νij with (i, j) ∈ {(x, y), (y, z), (z, x)}

denote Poisson's ratios. For orthotropic materials the Poissons's ratios represent

three independent material parameters. In this case the only relation between the

ratios is νijEj = νjiEi. To ensure that C is positive de�nite it has to satisfy the
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conditions

Ex
Ey

> ν2
xy and D0 > 0

on the parameters. Isotropic materials constitute the simplest possible case with

C stated as

C =
E

(1 + ν)(1− 2ν)



(1− ν) ν ν 0 0 0

ν (1− ν) ν 0 0 0

ν ν (1− ν) 0 0 0

0 0 0 (1− 2ν) 0 0

0 0 0 0 (1− 2ν) 0

0 0 0 0 0 (1− 2ν)


according to [29]. In the isotropic case we have considerably less parameters since

the parameters Ei and νi do no longer depend on the direction such that all the

Poisson's ratios have the same value, and the Gi,j can be calculated from them. In

the isotropic case, σ can also be written using the Lamé constants µ̃ and λ̃, which

depend on E and ν and are de�ned as

µ̃ :=
E

2(1 + ν)
and λ̃ :=

νE

(1 + ν)(1− 2ν)
.

In this case, the Poisson ratio ful�lls −1 < ν < 1
2
in order to have a positive de�nite

C. Then σ can be written as

σ(u) = 2µ̃ε(u) + λ̃ trace (ε(u))I.

The forces inside a body have to be in equilibrium with the forces acting on the

body. Thus the equilibrium condition of an elastic body according to Cauchy's law

is given by the equation

−div σ(u) = f in Ω, (3)

where f is the volume force acting on the body and the divergence operator is

taken row-wise. In the isotropic case this can be simpli�ed to

−(2µ̃ div ε(u) + λ̃ grad div u) = f in Ω.

27



This equation together with the respective boundary conditions, such as Dirichlet

(ΓD) or Neumann (ΓN) boundary conditions, determines the displacement in the

static case. Dirichlet conditions have to be imposed when the body is clamped at

the respective boundary and Neumann conditions are imposed wherever there are

boundary tractions. In order to obtain the dynamical case, we can use Newton's

second law

−div σ(u) = f − ρ∂
2u

∂t2
, in Ω and t > 0, (4)

where ρ denotes the density. In order to complete the dynamical case, suitable

initial and boundary conditions have to be set.

2.4. Eigenvalue problems

In this section, we recall how, from the dynamical case (4) achieved in the last

section, we can obtain the eigenvalue problem. We furthermore discuss some of the

important properties of the eigenvalue problem and its fundamental solution. This

topic is dealt with in many excellent literature references, details on this topic can

be found in [10, 23] and the references therein. We consider now the linear elas-

ticity case as an example for an elliptic eigenvalue model problem. All the results

derived in the following also hold true for more general elliptic systems and are

derived analogously.

Let us now follow [10] and take f = 0 in the dynamic elasticity equation. For

u(x, t) 6= 0 we can use separation of variables to write the solution u as

u(x, t) = u(x)T (t).

Inserting this into the dynamic elasticity equation leads to

−T (t)div σ(u(x)) = −ρu(x)
∂2T (t)

∂t2
in Ω and t > 0

⇔ −div σ(u(x))

ρu(x)
= −

∂2T (t)
∂t2

T (t)
in Ω and t > 0.

Since the expressions are equal, but depend on only x and only t, they have to be

equal to a constant, which will be denoted by λ ∈ R. We thus need to �nd λ ∈ R
and u(x) such that

−div σ(u(x)) = λρu(x) in Ω,

while ful�lling the respective boundary conditions. The problem as stated above
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is called an eigenvalue problem, where λ is the eigenvalue and u(x) is the eigen-

function. The tuple (λ, u) is called the eigenpair of the problem. The eigenvalues

of the above problem are numbered as

0 < λ1 ≤ λ2 ≤ . . .

and the corresponding normalized eigenfunctions denoted by ui are orthonormal,

ful�lling ∫
Ω

ui(x)uj(x) dx = δij,

where δij denotes the Kronecker symbol. Furthermore the eigenfunctions are com-

plete in L2, which means that h(x) =
∞∑
i=1

αiui(x) for every h(x) ∈ L2. Then every

eigenvalue λi has to satisfy the equation

−∂
2T (t)

∂t2
= λiT (t), t > 0.

The solution to this problem is easily determined to be

Ti(t) = ai sin(
√
λi(t+ bi))

with the arbitrary constants ai and bi, which can be determined using the initial

conditions. We can thus �nd the solutions as ui(x)Ti(t), which allows us to rewrite

u(x, t) as

u(x, t) =
∞∑
i=1

ui(x)ai sin(
√
λi(t+ bi)).

The summands in the above equation are called the eigenvibrations of the problem,

whose shapes are determined by the functions ui(x) and whose frequencies by the

eigenvalues through
√
λi.

Our model problem under investigation in the building consists of the linear elas-

ticity eigenvalue problem

−div σ(u) = λρu in Ω

with Dirichlet boundary conditions on a closed non-trivial subset ΓD of the boun-

dary ∂Ω and homogeneous Neumann conditions on ∂Ω \ ΓD.
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We now consider the variational formulation of the eigenvalue problem. Then the

variational formulation of the elasticity eigenvalue problem (3) reads:

Find the eigenvalues λ ∈ R and the eigenfunctions

u ∈ V :=
{
v ∈ (H1(Ω))d | v|ΓD = 0

}
such that

a(u, v) = λ m(u, v), v ∈ V. (5)

The required bilinear forms

a(·, ·) : (H1(Ω))d × (H1(Ω))d → R and m(·, ·) : (L2(Ω))d × (L2(Ω))d → R

are given as

(u, v) 7→ a(u, v) :=

∫
Ω

Cε(u) : ε(v) dx

and

(u, v) 7→ m(u, v) := ρ(u, v)L2(Ω) := ρ

∫
Ω

u · v dx.

In the following chapters, we will use several di�erent discretizations for this va-

riational formulation, which will be described in detail in the respective chapters.

Nevertheless certain properties of the continuous problem, such as the ordering and

positivity properties of the eigenvalues and the orthonormality of the eigenfuncti-

ons, remain valid in the discrete case. Furthermore for conforming discretizations,

the discrete eigenvalues λh always approach the continous ones from above, i.e.

λ ≤ λh, and the approximation of the eigenvalues is of order O(h2k), while the ap-

proximation of the eigenfunction is of order O(hk+1) if we have su�cient regularity.

The corresponding detailed proofs can be found in the book [10].

To demonstrate the described convergence results numerically, we choose for simpli-

city the Laplace eigenvalue problem ∆u = λu with Neumann boundary conditions

on a unit square as depicted in Figure 2.1. In the following Tables 2.3 and 2.4

we depict the optimal convergence rates of the eigenvalues of O(h2k) for ansatz

functions of order one and two, respectively.
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1.EV 2.EV 3.EV 4.EV 5.EV
level |λ− λh| rate |λ− λh| rate |λ− λh| rate |λ− λh| rate |λ− λh| rate
1 0.4874 - 0.4882 - 2.9177 - 7.9347 - 7.9885 -
2 0.1250 1.96 0.1250 1.97 0.7474 1.96 2.0087 1.98 2.0322 1.97
3 0.0316 1.99 0.0316 1.99 0.1891 1.98 0.5048 1.99 0.5076 2.00
4 0.0079 2.00 0.0079 2.00 0.0475 1.99 0.1266 2.00 0.1269 2.00
5 0.0020 2.00 0.0020 2.00 0.0119 2.00 0.03170 2.00 0.0317 2.00

Table 2.3: Errors and rates for eigenvalue approximation of order one in the optimal
case.

1.EV 2.EV 3.EV 4.EV 5.EV
level |λ− λh| rate |λ− λh| rate |λ− λh| rate |λ− λh| rate |λ− λh| rate
1 0.0047 - 0.0049 - 0.0615 - 0.2768 - 0.2793 -
2 0.0003 3.90 0.0003 3.94 0.0043 3.84 0.0196 3.82 0.0196 3.83
3 2.0014e-05 3.97 2.0058e-05 3.98 0.0003 3.95 0.0013 3.94 0.0013 3.94
4 1.2573e-06 3.99 1.2549e-06 4.00 1.7584e-05 3.99 8.0432e-05 3.99 8.0426e-05 3.99
5 7.3055e-08 4.11 7.0385e-08 4.16 1.0414e-06 4.08 4.7606e-06 4.08 4.7551e-06 4.08

Table 2.4: Errors and rates for eigenvalue approximation of order two in the optimal
case.

It should also be noted that for the error given by |λ− λh|, we have to compute a

reference solution which was obtained on a level seven re�ned mesh.
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Chapter II.

Model reduction by mortar

techniques

The results in this chapter were partly published by the author with S. Kollmanns-

berger, F. Frischmann, E. Rank and B. Wohlmuth in the paper entitled "A new

mortar formulation for modeling elastomer bedded structures with modal-analysis

in 3D" in Advanced Modeling and Simulation in Engineering Sciences in the year

2014, [75].

3. Mortar methods for vibro-acoustics

In the context of timber building constructions, a method to divide a large struc-

ture into smaller substructures such as walls, �oors and ceilings and mesh them

separately is helpful in many cases. The construction of analysis-suitable confor-

ming three-dimensional meshes in this complexity is non-trivial and increases the

number of elements signi�cantly as a local mesh re�nement in only one of the com-

ponents automatically spreads to the others. In the following, we build on the work

of [175], which demonstrates the excellent applicability of the mortar method for

problems in structural mechanics for discretizations of high orders.

3.1. Introduction to mortar �nite element methods

Mortar methods are domain decomposition methods as depicted in Figure 3.1,

which allows a separate independent meshing of the subdomains. This enforces

that the approximative solution satis�es an equality in the weak sense on the sub-

domain boundaries Γs,m inside the domain Ω instead of the more strict C0 con-

tinuity of the ansatz space of the �nite element solution on the whole domain. Thus

�nite element calculations can be performed on non-conforming meshes, as suitable

for our building simulations. Using mortar methods allows to mesh and discretize

walls and slabs separately although this may result in non-matching meshes at

the interfaces. The mortar method thus signi�cantly reduces the complexity of the

mesh generation and allows for great �exibility of the numerical setting, making the

setting computationally attractive for a variety of numerical problems, for exam-

ple coupled multi-physics problems. The original mortar method was introduced
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Figure 3.1: Illustration of a non-conforming coupled mortar mesh.

by [19] and can be formulated in several ways. The formulation as proposed by [19]

is a method to couple spectral elements with �nite elements, where the ansatz space

is weakly constrained. We will however in the following focus on the formulation

as introduced in [16], which views the mortar method in the more popular context

of enforcing the coupling conditions by means of Lagrange multipliers, which relies

on an abstract saddle point formulation. The formulation by means of Lagrange

multipliers allows to identify the multipliers with the normal stress on the contact

between two subdomains. Furthermore the saddle point formulation is bene�cial

since several well-known convergence results from functional analysis such as the

inf-sup (Babuska-Brezzi) condition [29, 30] are applicable. Further theoretical re-

sults can be found in [16, 17, 19, 176].

Mortar methods have been applied successfully to many engineering applications,

including elastic contact problems [71, 127, 153, 177], dynamic and static struc-

tural analysis [35, 58, 72], coupled problems in acoustics [57, 164] and �ow pro-

blems [95, 125, 126]. Further, the mortar method is used to simulate eigenvalue

problems in [33, 98]. Most contributions deal only with �rst or second order appro-

aches. For a detailed review on mortar methods see e.g. [176] and the references

therein. Mortar methods are also used for high order �nite elements and the corre-

sponding theory is well understood [18, 152]. Nevertheless the implementation of

higher order quadrature formulas on cut elements in three-dimensional simulations

is technically challenging.

In the following we will start by giving a short introduction to the mortar setting,
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starting from the domain partitioning

Ω̄ =
I⋃
i=1

Ω̄i

of the domain Ω into I non-overlapping subdomains Ωi. We then de�ne the common

interface between two components as

Γs,m := ∂Ωs ∩ ∂Ωm,

where one of the adjacent subdomains is chosen as the master (m) and one as the

slave (s) domain. By Γ we denote the union of all these interfaces, i.e.

Γ :=
⋃

(s,m)

Γs,m.

In order to obtain the �nite element solution, we now de�ne the spaces needed for

the mortar formulation. The solution lies in the primal space, which is de�ned as

the product space

X :=
I∏
i=1

V (Ωi) ,

where

V (Ωi) := {u | u ∈ (H1(Ωi))
d, u(ΓD ∩ ∂Ωi) = 0}

with i = 1, . . . , I and the dimension d ∈ {1, 2, 3}. The space needed for the weak

matching on our subdomain interfaces is the Lagrange multiplier space, which is

denoted by

M :=
∏

(s,m)

(H−
1
2 (Γs,m))d,

where H−
1
2 (Γs,m) is the dual space of H

1
2 (Γs,m). Also note at this point that our

Lagrange multipliers live on the slave side.

Then we can formulate the weak coupling condition on the interface as

b(u, τ̂) = 0, τ̂ ∈M

with the bilinear form b(u, τ̂) :=
∫
Γ
[u]τ̂ dx for τ̂ ∈ M , where the jump over the

interface is de�ned as [u] := us − um. We can now introduce a mortar formulation

uh on the discrete space Xk
h =

∏
i V

k
h (Ωi) of �nite elements of polynomial degree
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k on the separate subdomains with the discrete Lagrange multiplier space Mh. In

order to obtain the mortar solution, we will use the saddle point formulation, where

the weak continuity condition is enforced on Γ as an additional variational equation

resulting in the formulation:

Find (uh, τh) ∈ Xk
h ×Mh such that

a(uh, vh) + b(vh, τh) = l(vh), vh ∈ Xk
h

b(uh, τ̂h) = 0, τ̂h ∈Mh.

In this setting a(·, ·) denotes a bilinear and l(·) a linear form of a model problem

as e.g. (2). Note that in the cases of a mortar interface intersecting a Dirichlet

boundary or two mortar interfaces intersecting each other where more than two

subdomains meet, a con�ict of constraints can arise. This is due to the fact that

standard choices of the Lagrange multipliers impose the weak coupling condition,

while the Dirichlet boundary already sets a certain value on the speci�c points. In

the case of two mortar interfaces there are overconstraints on the corresponding

points. Details on the treatment of such points can be found in [176].

Due to the composition of the timber constructions in our project, which consist

of thin, layered and orthotropic material, we aim for a fully three-dimensional re-

solution of the slabs and walls. For this purpose, we use the high order version

of the �nite element method, as presented for example in [158]. Moreover, it is

well suited for the computation of solid, but thin-walled structures because it is

robust in terms of the large aspect ratios of the elements which arise naturally in

fully three-dimensional models of plates and shells [135]. It also provides better

accuracy and convergence properties than low order �nite elements. In addition,

the high order version of the FEM has already been shown to lead to excellent

results for the analysis of sound transition through timber structures [130].

In the following we will apply high order (up to a polynomial degree of 20) techni-

ques to approximate eigenvalues and eigenmodes in cross-laminated timber struc-

tures.

3.2. Mortar for eigenvalue problems

We now consider mortar methods for eigenvalue problems in a general setting.

Due to our aim of applying our results to the vibro-acoustic analysis of timber

building structures, we recall the linear elasticity eigenvalue problem as presented
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in Section 2.4, which is given by

−div σ(u) = λρu. (6)

We will assume that the domain Ω ⊂ R3 is bounded and polyhedral. In addition,

we enforce Dirichlet boundary conditions on a non-trivial set ΓD and homogeneous

Neumann boundary conditions on the remaining parts of the boundary. We now

need an adequate domain partitioning for the mortar method. For simplicity, in

the �rst investigations we use only two subdomains such that there is just one

interface. The domain Ω is decomposed into the two non-overlapping subdomains

Ωm and Ωs, so that

Ω̄ = Ω̄m ∪ Ω̄s, Ωm ∩ Ωs = ∅.

In our example, in the context of timber buildings the wall could correspond to

the slave domain and the ceiling to the master domain. Following standard proce-

dures we de�ne the common interface Γs,m and the Lagrange multiplier space by

M := (H−
1
2 (Γs,m))3. Furthermore in this setting we assume to have no crosspoints

such that ∂Γs,m ∩ Γ
D

= ∅ and thus no modi�cations on ∂Γs,m have to be taken

into account. The primal space X is de�ned as above in Section 3.1. Now we can

de�ne our bilinear forms for the mortar method as a special case of the ones above

with only two subdomains as

a(u, v) := aΩm(u, v) + aΩs(u, v), b(u, τ̂) :=< us − um, τ̂ >∗,

m(u, v) := mΩm(u, v) +mΩs(u, v),

where < ·, · >∗ denotes the duality pairing of (H
1
2 (Γs,m))3 and (H−

1
2 (Γs,m))3 and

aΩi(·, ·), mΩi(·, ·) are de�ned by

aΩi(u, v) :=

∫
Ωi

Cε(u) : ε(v) dx, mΩi(u, v) := ρ

∫
Ωi

u · v dx.

The eigenvalue problem (6) can then be written in the following variational form:

Find the eigenvalues λ ∈ R, the eigenfunctions u ∈ X and the Lagrange multiplier

τ ∈M so that

a(u, v) + b(v, τ) = λm(u, v), v ∈ X
b(u, τ̂) = 0, τ̂ ∈M.

(7)

Equation (7) now de�nes the saddle point problem arising from the mortar method.

The Lagrange multiplier τ corresponds to the negative surface traction −σn of
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Ωs on the interface Γs,m, where n is the outward unit normal of Ωs. For the

discretization of the primal variable of (7), we employ hexahedral �nite elements

of high order on each subdomain Ωm,Ωs. The dual space is discretized by the

trace space of the discrete primal space on Ωs. This choice guarantees inf-sup

stability [17, 176] and the mortar method for solving (7) can be written as

A(u, τ ; v, τ̂) = λm(u, v)

with A(u, τ ; v, τ̂) := a(u, v) + b(v, τ) + b(u, τ̂). The bilinear form A(·, ·; ·, ·) ful�lls
the conditions in [10, Remark 13.4], and thus the theory given in [10, Section 8]

ensures convergence of the discrete eigenvalues and eigenfunctions.

As a �rst example, we consider two plates as depicted in Figure 3.2 in order to

compare the mortar discretization to the conforming discretization.

Figure 3.2: L-shaped connection of a slab to a wall in the �rst example. Measure-
ments in meters.

It resembles a rigidly supported wall connected to a slab on one side and clamped

at the other side. The corresponding discretizations are depicted in Figure 3.3. The

discretization consists of ten hexahedral elements in the conforming case on the left

and eight in the mortar case on the right. At this stage, for simplicity we consi-

der the components to consist of one isotropic material. For our case of simpli�ed

timber materials we assume that Young's-modulus has the value 9790 · 106[N/m2]

and the Poisson ratio ν is 0.05.

The variational formulation in the conforming case is de�ned as in Section 2.4,

Equation (5) and we again use elements of high order associated with hexahedral

meshes. The basis functions are hierarchical shape functions based on integrated

Legendre polynomials [157, 158].
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Figure 3.3: Hexahedral discretization: Left conforming, right mortar.

The eigenvalues for a sequence of high order FEM computations with polynomial

degree k ∈ {3, 7, 10, 15} are depicted in Table 3.1 along with the relative di�erences

between the conforming and the mortar discretization. The main observation here

is that for both methods the approximations of the eigenvalues are very similar to

each other. Furthermore we observe that the di�erences between the two methods

decrease with increasing polynomial degree. In Figure 3.4 the respective eigen-

k=3 k=7
EV Conform Mortar % Conform Mortar %
1 50.720 50.852 0.261 50.289 50.298 0.019
2 70.755 72.006 1.768 69.172 69.942 1.113
3 76.534 78.317 2.330 74.456 74.833 0.506
4 90.707 91.976 1.399 87.931 88.491 0.637
5 159.423 168.390 5.624 125.276 126.069 0.632
6 174.712 174.869 0.090 159.311 159.393 0.051
7 179.359 185.147 3.227 172.931 172.966 0.020

k=10 k=15
EV Conform Mortar % Conform Mortar %
1 50.282 50.288 0.012 50.278 50.281 0.006
2 68.929 69.518 0.854 68.749 69.062 0.455
3 74.304 74.535 0.311 74.220 74.341 0.162
4 87.685 88.101 0.475 87.545 87.768 0.255
5 124.818 125.340 0.418 124.581 124.842 0.210
6 159.264 159.315 0.032 159.237 159.264 0.016
7 172.884 172.911 0.016 172.865 172.882 0.010

Table 3.1: Comparison of eigenfrequencies of the L-shaped wall-slab con�guration.
No elastomer between the wall and slab. The unit for the eigenfrequen-
cies is [Hz].

functions 1, 3 and 5 are depicted as an example for both the conforming method in

the �rst row and the mortar method in the second row. The presented eigenfuncti-
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ons have the polynomial degree of k = 15. Also at this point the main observation

is the very good agreement between the eigenmodes.

Figure 3.4: Eigenfunction comparison of an L-shape wall-slab con�guration of order
k = 15.

In the next step we investigate multiple interfaces and their impact on the simu-

lation di�erences between the mortar and conforming approaches. Therefore we

proceed with an example which contains three interfaces and four subdomains. Also

in this case we will have no crosspoints. This time we have seven elements for the

conforming discretization and four elements in the mortar case. In Table 3.2, we

show the di�erences of the �rst seven eigenvalues between the simulations perfor-

med with a conforming method and the ones performed using the mortar method

again using ansatz functions of order k ∈ {3, 7, 10, 15}. The mesh for the multiple

interfaces is coarser than the one in the wall-slab setting. Note that the coarser

mesh is the reason for the bigger di�erences between the mortar and the confor-

ming approach for orders k = 3 and k = 7 in Table 3.2 and not the larger number

of mortar interfaces. Again we observe very good agreement of the eigenvalues,

which becomes noticeably better with increasing polynomial degree.

In Figure 3.5, we illustrate the respective eigenfunctions for the eigenvalues 1, 3 and

5 for order k = 15. Also in this test case a very good accordance of the resulting

eigenmodes can be observed.
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k=3 k=7
EV Conform Mortar % Conform Mortar %
1 8.837 9.139 3.417 8.782 8.872 1.025
2 11.191 11.926 6.568 11.092 11.250 1.425
3 14.028 14.504 3.393 13.768 13.894 0.915
4 50.993 56.955 11.691 45.621 45.719 0.215
5 80.825 92.520 14.470 65.627 66.093 0.710
6 83.182 98.240 18.103 75.210 76.556 1.790
7 103.601 118.300 14.188 82.120 83.420 1.583

k=10 k=15
EV Conform Mortar % Conform Mortar %
1 8.760 8.826 0.753 8.740 8.780 0.458
2 11.057 11.168 1.004 11.021 11.091 0.635
3 13.707 13.776 0.503 13.671 13.709 0.278
4 45.596 45.666 0.154 45.574 45.618 0.097
5 65.504 65.837 0.508 65.392 65.604 0.324
6 74.964 75.346 0.510 74.811 75.019 0.278
7 81.758 82.692 1.142 81.457 82.030 0.703

Table 3.2: Comparison of eigenfrequencies of the geometry shown in Figure 3.5.
The unit for the eigenfrequencies is [Hz].

Figure 3.5: Eigenfunction comparison of multiple interface geometry con�guration.

3.3. Application to a four level timber building

In the following, we proceed with an engineering example of a detailed four story

timber building similar to the one depicted in Figure 3.6. As described in Section 1,

building information models (BIM) are used in a building planning process to

evaluate di�erent problem settings as for example the modal superpositions for a
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Figure 3.6: Four story timber building in Bad Aibling. [5]

vibro-acoustical analysis. From the building information model we can extract the

geometries of the building and set up our model as depicted in Figure 3.7 with the

respective material parameters.

After extracting the geometries we proceed with the meshing. Due to the use of

mortar methods, the meshing process is especially bene�cial in large building set-

tings like ours since every geometry part can be treated independently. Nevertheless

it is crucial for obtaining good simulation results to ensure that the interfaces on

which we impose the weak couplings of the domains have no gaps or intersections.

Geometries, and thus also the resulting meshes, from BIM and CAD programs are

often inaccurate in that some neighboring domains are not connected, such that

gaps occur and interfaces are not identical. Then incorrect solutions, as the ones

depicted in the �rst row of Figure 3.8, are obtained with the incorrect mesh. As ex-

Figure 3.7: Model of a four story timber building without roof.
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pected, due to the fact that the domains are not coupled, the displacements are not

transferred over the interface. It is advisable to check the mesh in a post-process

before the simulations and correct the mesh appropriately. If the modeling, mes-

hing and coupling is executed correctly, simulation results like the ones depicted in

the second row of Figure 3.8 are obtained.

Figure 3.8: Simulation results for coupled (second row) and uncoupled (�rst row)
mortar interfaces for two di�erent eigenvectors on the left and right.

In the context of our timber building project, we have performed a detailed mo-

del of a four story timber building as depicted in Figure 3.7. In order to perform

these simulations, we have imposed the orthotropic timber material parameters

which vary on the di�erent walls of the building. The timber walls and slabs are

made from laminated �ber consisting of several layers, which could be considered

separately. However we assume that each component has an average blurred ma-

terial parameter. The mortar calculations have been performed using second order

elements, which leads to a system of 146.388 degrees of freedom. The resulting

�rst 14 eigenvalues for a representative parameter set can be found in Table 3.3

and simulations of the eigenfunctions to the �rst, �fth, tenth and �fteenth eigen-

values can be found in Figure 3.9. As expected the �rst eigenvalues are global,

with displacements of the whole structure with the building moving in x-direction.

For higher modes it can be observed that the vibrations are found mostly in areas

where there are no bearing walls to stabilize the building and sti�en the geometry.
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EV EV EV EV
1 5.118 8 15.346 15 20.711 22 22.850
2 5.302 9 15.510 16 21.034 23 23.107
3 7.167 10 15.657 17 21.424 24 23.478
4 8.072 11 16.560 18 21.475 25 23.745
5 13.163 12 17.022 19 21.727 26 24.036
6 13.970 13 17.838 20 21.942 27 24.415
7 14.879 14 19.569 21 22.373 28 24.673

Table 3.3: Eigenvalues of the four story timber building.

Figure 3.9: Simulated eigenmodes 1, 5, 10 and 15 of the four story timber building.

4. Model reduction of an elastomeric bedded

structure

In the following, we consider the same setting as in the previous section with the

di�erence that now the structures are interconnected by thin elastomer layers. To

this end, we introduce a new dimensional reduced model which captures eigen-
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values and eigenmodes of elastomeric coupled domains in timber structures. Our

motivation to derive such a formulation stems from the need to compute the modal

analysis which is a main part of vibro-acoustical analysis. In order to control sound

transmissions between slabs and walls, these components are often connected by

elastomers, which we model by using the linear elasticity equation because of their

very thin character.

4.1. Elastomer modeling and in�uence

The modeling of elastic interface boundary conditions has been the subject for

low orders in [70, 143, 174]. Also the modeling of interface elements has been

investigated in [118, 179], with a spring boundary condition in [24] and with a

Robin-type condition in [13]. Furthermore the elastic foundation model, which

is a complexity reduction method in the context of Hertzian contact problems, is

presented in [89]. The modeling of an elastomer for vibration isolation has been

the subject in [12, 36]. These papers take many mechanical properties like strain

and damping directly into account. Alternatively, the modal and spectral analysis

can be realized by the modal superposition. In this case, the eigenmodes of the

undamped system are required, and the damping is only taken into account in a

postprocessing step. Thus we will in the following neglect the damping. Moreover,

the elastomer is modeled in terms of the linear elasticity equations because it is

comparatively thin in one space direction [130].

In order to obtain an idea of the in�uence of the elastomer, it is discretely re-

presented by a thin layer of hexahedral elements. The discretization is depicted

in Figure 4.1. The green hexahedral elements in Figure 4.1 mark the elastomer and

the material properties for typical elastomers are as given in Table 4.1, where hard

materials are listed �rst. We further add the timber material used for the wall and

slab, which is for simplicity, as in the previous section 3.2, an isotropic material.

The speci�c type of elastomer chosen in a practical application then depends on

the dead load to be expected on the elastomer. In Table 4.1 Poisson's ratio and

Young's modulus are denoted by ν and E, respectively.

Timber Elast 1 Elast 2 Elast 3 Elast 4 Elast 5
E in [N/m2] 9790 · 106 1.8 · 107 8.0 · 106 3.7 · 106 1.7 · 106 8.0 · 105

ν in [−] 0.05 0.4 0.4 0.4 0.4 0.4

Table 4.1: Elastomer properties for the simulations.
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Figure 4.1: Conforming discretizations of the structure whose geometry is described
in Figure 3.2. The thin elastomer layer is discretely represented.

The resulting eigenvalues with ansatz functions of order k = 10 for the di�erent

simulations with the given elastomers are depicted in Table 4.2. Eigenvalues corre-

sponding to a direct connection of wall and slab are depicted as well. It is readily

EV No Elast. Elast. 1 Elast. 2 Elast. 3 Elast. 4 Elast. 5
1 50.282 48.584 47.472 45.933 43.157 38.357
2 68.929 52.437 51.461 50.461 48.676 45.275
3 74.304 64.128 61.773 58.287 52.669 45.588
4 87.685 79.851 77.797 74.245 68.109 59.885
5 124.818 110.669 105.449 98.276 90.290 84.003
6 159.264 149.448 141.577 127.098 106.626 89.151
7 172.884 160.956 154.662 140.762 123.733 105.596
8 178.886 162.633 155.910 145.873 127.320 111.518

Table 4.2: In�uence of the di�erent elastomers on the eigenfrequencies given in
[Hz].

apparent that, depending on the mode and the elastomer under contemplation, the

eigenvalues of the system with an elastomer layer are about 5 − 35[%] lower than

without the elastomer. This is related to the fact that the coupling of the slab to

the wall becomes weaker. Figure 4.2 illustrates the relative decay of each eigenvalue

computed from the results depicted in Table 4.2.

Furthermore in Figure 4.3 we depict the eigenfunction for eigenvalue one to show

the elastomer in�uence on the modes. Here it should be noted that the elastomer

decouples the wall from the slab and therefore the displacement of one domain is

not propagated through the elastomer.
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Figure 4.2: Dependence of the �rst eight eigenvalues of the elastomer (left) and
relative decay with respect to no elastomer for the �rst 20 eigenvalues
(right).

Figure 4.3: Elastomer in�uence on the �rst eigenfunction. First row depicts the
cases without elastomer layer, with elastomer 1 and with elastomer 2.
Second row depicts the elastomers 3 to 5.

4.2. Model reduction of the elastomer

This section will lay out a new modeling approach for the coupling, in order to

replace an elastomer. As mentioned above, this new coupling condition results in

a dimensional reduced model, which avoids the meshing of the three-dimensional

subdomain that corresponds to the elastomer. Dimensionally reduced models are
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very attractive from a computational point of view. However, new challenges arise

such as the formulation of a suitable coupling condition and its numerical realiza-

tion. Our new coupling condition still yields a saddle point problem which �ts into

the implementational framework of mortar methods.

We enforce a non-standard Robin-type condition at the interface by means of La-

grange multipliers instead of the continuity requirements. Robin-type interface

conditions have been used to glue non-conforming grids, see, e.g., [61]. We extend

this concept to elastomeric coupled domains. The main di�erence to the current

work is that our coupling condition not only aims to glue two non-conforming grids

together, but is also able to replace the whole explicit discretization of an elastomer

as depicted in Figure 4.4. Therefore, it goes beyond a simple domain decompositon

method, it provides also a dimensionally reduced model.

Figure 4.4: Mortar discretization of the structure whose geometry is described in Fi-
gure 3.2. The thin elastomer layer is condensed into the mortar inter-
face.

The modeling ideas corresponding to the cases depicted in Figure 4.1 and Figure 4.4

are depicted in Figure 4.5 on the left and right, respectively.

Due to the very thin elastomer layer, in our case 1.2[cm], we simplify the transversal

shear in the elastomer and neglect the mass of the elastomer. We assume the

elastomer displacement to be linear in z-direction on the solution between the slab

and the wall. Without loss of generality, we assume the coordinate system of the

mortar interface to be at z = 0. Therefore, we de�ne our simpli�ed displacement

in the spirit of a Taylor series with z ∈ [0, d], where d denotes the thickness of the
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Figure 4.5: Modeling concept: Thin layer (left) and interface formulation (right).

elastomer as

u(x, y, z) = us(x, y) +
z

d
(um(x, y)− us(x, y)).

With this de�nition and with [u] := (um(x, y) − us(x, y)), the gradient of the

displacement �eld at z = 0 is given by

∇u|z=0 =

(us)1,x (us)1,y
1
d
[u]1

(us)2,x (us)2,y
1
d
[u]2

(us)3,x (us)3,y
1
d
[u]3

 .

Now the linearized elastic strain reads

ε(u|z=0) =
1

2

 2(us)1,x (us)1,y + (us)2,x
1
d
[u]1 + (us)3,x

(us)2,x + (us)1,y 2(us)2,y
1
d
[u]2 + (us)3,y

(us)3,x + 1
d
[u]1 (us)3,y + 1

d
[u]2

2
d
[u]3

 .

Further, we assume the following standard linear isotropic stress-strain relationship

with the Lamé parameters µ̃ and λ̃ to hold in the elastomer, i.e.,

σ = 2µ̃ε+ λ̃ tr(ε)I,

where I denotes the identity matrix. As the interface is assumed to be aligned to

z=0, the normal vector on Γs,m directed towards Ωm is given by n = [0, 0, 1]T . The
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�uxes are then explicitly given by

σ|z=0n =

µ̃(1
d
[u]1 + (us)3,x)

µ̃(1
d
[u]2 + (us)3,y)

2µ̃1
d
[u]3

+ λ̃

 0

0

tr(ε)



=


µ̃
d
[u]1 + µ̃(us)3,x

µ̃
d
[u]2 + µ̃(us)3,y

(2µ̃
d

+ λ̃
d
)[u]3 + λ̃((us)1,x + (us)2,y)

 (8)

and Equation (8) represents the new coupling condition between displacements and

surface traction in the strong form.

Note that in comparison to the standard mortar coupling condition us − um = 0,

we additionally obtain dependencies on the derivatives (us)3,x,(us)3,y,(us)1,x,(us)2,y,

and the surface traction τs = −σ|z=0n interacts as a spring term with the displa-

cement. The corresponding bilinear forms are now given by

b̃(u, τ̂) =

 < [u]1, τ̂1 >
∗ +d < (us)3,x, τ̂1 >

< [u]2, τ̂2 >
∗ +d < (us)3,y, τ̂2 >

< [u]3, τ̂3 >
∗ +β(< (us)1,x, τ̂3 > + < (us)2,y, τ̂3 >)

 ,

c(τ, τ̂) = < τ, τ̂ >,

with < ·, · > being the (H−
1
2 (Γ(s,m)))

3 scalar product and β = λ̃d/(2µ̃+ λ̃). We

note that this scalar product on the dual space is realized within the discrete setting

as an L2-surface integral. Both τ and τ̂ are given by the mesh on the slave side,

and thus a standard quadrature formula can be easily applied. For given surface

tractions τi, the force equilibria of both bodies Ωi read

aΩi(u, vi)+ < vi, τi > = λmΩi(u, vi).

Neglecting the di�erence between −τs = σ|z=0 n and τm = σ|z=d n, setting τ = τs

and adding both equations we obtain

a(u, v) + b(v, τ) = λm(u, v). (9)

The new coupling condition Equation (8) in the weak form and Equation (9) lead
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to the dimensionally reduced model given by

a(u, v)+ b(v, τ) = λm(u, v), v ∈ X
b̃(u, τ̂)− αc(τ, τ̂) = 0, τ̂ ∈M

(10)

with the modeling parameter α de�ned as

α :=


d
µ̃

0 0

0 d
µ̃

0

0 0 d

2µ̃+λ̃

 .

Note that the parameters α and β can be directly computed from the properties

of the elastomer. Replacing X by Xk
h and M by Mh gives the discrete version

of Equation (10) yielding approximations λh of the eigenvalues.

We now test the new mortar model given above by using the discretization depicted

in Figure 4.4. The results are compared to the classical, conforming discretization,

as depicted in Figure 4.1, where the elastomer was modeled explicitly and calcula-

ted in Section 4.1.

Table 4.3 depicts the �rst eight eigenvalues obtained by the new mortar model

along with the relative deviation from the eigenvalues of the explicitly modeled

elastic layer whose results were given in Table 4.2.

Elast 1 Elast 2 Elast 3 Elast 4 Elast 5
EV Value % Value % Value % Value % Value %
1 48.664 0.165 47.511 0.082 46.034 0.218 43.206 0.112 38.545 0.490
2 52.678 0.459 51.628 0.325 50.685 0.443 48.997 0.659 45.846 1.262
3 64.315 0.292 61.916 0.231 58.685 0.682 52.891 0.421 46.082 1.083
4 80.059 0.260 78.252 0.585 75.113 1.170 69.159 1.542 61.539 2.763
5 110.912 0.220 105.784 0.317 99.112 0.850 90.606 0.350 84.208 0.243
6 149.371 0.052 141.757 0.127 128.750 1.300 107.303 0.635 89.468 0.355
7 161.365 0.254 155.063 0.259 142.314 1.103 124.127 0.319 109.623 3.814
8 162.967 0.205 157.058 0.737 148.494 1.797 130.530 2.521 111.558 0.036

Table 4.3: Eigenfrequencies given in [Hz] for the new modeling approach along
with the relative deviation from the conforming discretization depicted
on the left hand side of Figure 4.4.

All computations are carried out with a polynomial degree of k = 10. We observe

that the new model is able to reproduce the eigenvalues to an accuracy of at least

4%. Not only the eigenvalues but also the eigenmodes of the two di�erent discreti-
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zation models are required to match closely. Figure 4.6 shows selected eigenvectors

of elastomer 5. The upper row provides the eigenvectors, as computed by an ex-

plicit modeling of the elastomer, while the lower row represents the corresponding

eigenvectors of the new mortar method.

Figure 4.6: Comparison between eigenmodes 1, 3, 4 and 7. Top row: Conforming,
hexahedral discretization. Bottom row: New mortar method. Note
that the greyscale shows the displacement.

Obviously, di�erent types of modes, such as lateral and transversal shear modes as

well as pure compression and traction modes, are equally well represented. While

in the upper row the elastomer undergoes severe deformations, these are approx-

imated by the coupling conditions at the interface between wall and slab in the

lower row. Note that the missing elements for the elastomeric layer result from the

reduction of the dimension. Moreover, the sequence of the eigenmodes remains the

same in both models.

We also analyse the eigenmodes by a modal assurance criterion as it is described

in [120], which determines the correlation of the eigenmodes. For a good corre-

lation, the resulting matrix should have a diagonal with values greater than 0.9.

Diagonal values close to 0 mean a poor correlation. The modal assurance criterion

matrices show very good results for all investigated practically relevant elastomers.

We show as an example the modal assurance criterion matrix for elastomer 5 in Ta-

ble 4.4. Together with the eigenmodes depicted in Figure 4.6, this con�rms the

good results for the newly developed coupling condition. Furthermore, it is poin-

ted out that the number of elements is reduced by one third even in this small

example. Herein, the boundary conforming model requires 12 hexahedral elements

while only 8 hexahedral elements su�ce for the new mortar approach. However,
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MACE51.2[cm]=

u1 u2 u3 u4 u5 u6 u7 u8

u1 1.000 0.000 0.004 0.000 0.002 0.000 0.000 0.000
u2 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
u3 0.003 0.000 0.999 0.000 0.000 0.000 0.003 0.000
u4 0.000 0.000 0.000 0.999 0.000 0.000 0.000 0.000
u5 0.001 0.000 0.000 0.000 1.000 0.000 0.000 0.000
u6 0.000 0.000 0.000 0.000 0.000 1.000 0.002 0.000
u7 0.000 0.000 0.000 0.000 0.000 0.000 0.998 0.000
u8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Table 4.4: Modal assurance criterion for the modeling of elastomer 5 split in x, y
and z direction.

and most importantly, the mesh generation is simpler using the reduced model in

the sense that each wall or slab can now be meshed separately before the discreti-

zed components are glued back together.

A key assumption of the new approach is that the displacement �eld varies only li-

nearly in the direction perpendicular to the two opposite interfaces of the elastomer

with adjacent structures. In order to investigate the validity of this assumption,

we vary the thickness of the elastomer and show its in�uence on the corresponding

eigenvalues. At this point it is noted that the thickness of the elastomers for ty-

pical wall-slab con�gurations is below 3[cm]. In practical applications, thicknesses

range from 1[cm] to 1.5[cm]. The reference solution is again computed using the

conforming �nite element method. We perform our simulation with two further

thicknesses of the elastomer. The �rst thickness is 3[cm], which is the maximum

relevant thickness and the second thickness is 4[cm], which is beyond the typical

application range. The corresponding results for the investigation for the two ela-

stomer thicknesses are depicted in Table 4.5 and Table 4.6, respectively. The tables

also show the relative deviation between the new model and the explicitly modeled

Elast 1 Elast 3 Elast 5
EV Conform New % di� Conform New % di� Conform New % di�

Method Method Method Method Method Method
1 46.873 46.828 0.096 42.043 42.282 0.568 29.716 30.419 2.367
2 51.223 51.504 0.549 47.783 48.655 1.825 36.608 37.718 3.033
3 60.827 61.081 0.416 50.929 51.658 1.432 37.274 39.155 5.047
4 76.991 78.028 1.347 65.466 68.104 4.031 48.848 51.360 5.143
5 103.857 104.722 0.833 88.359 89.365 1.139 76.357 76.166 0.251
6 138.595 139.275 0.491 101.474 103.915 2.406 79.253 79.477 0.283
7 151.783 152.988 0.794 119.491 121.222 1.449 84.601 88.684 4.826
8 153.680 156.466 1.813 119.571 127.398 6.546 103.182 102.752 0.416

Table 4.5: Eigenfrequencies given in [Hz] for the conform and the new method with
the corresponding relative deviation for the elastomer thickness 3[cm].
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Elast 1 Elast 3 Elast 5
EV Conform New % di� Conform New % di� Conform New %di�

Method Method Method Method Method Method
1 46.100 46.001 0.215 39.931 40.471 1.354 26.683 27.634 3.562
2 50.780 51.115 0.661 46.091 47.664 3.413 32.869 35.531 8.098
3 59.252 59.736 0.817 47.753 48.835 2.266 35.046 36.449 4.004
4 75.331 76.804 1.956 61.409 65.291 6.323 45.903 48.787 6.283
5 100.661 102.266 1.594 85.356 86.606 1.464 73.943 73.419 0.707
6 132.275 134.570 1.735 93.278 96.202 3.135 78.124 78.372 0.317
7 145.499 148.266 1.902 108.759 115.437 6.140 80.538 84.663 5.122
8 148.833 153.236 2.959 113.584 119.391 5.113 101.426 100.758 0.658

Table 4.6: Eigenfrequencies given in [Hz] for the conform and the new method with
the corresponding deviation in [%] for the elastomer thickness 4[cm].

elastomer layer.

While it can be observed that the thicker the elastomer, the bigger the error, the

error does not rise above engineering accuracy for practical applications. Table 4.7

and Table 4.8 show the modal assurance criterion matrices for the eigenmodes for

the corresponding 3[cm] and 4[cm] elastomer simulations.

MACE53cm=

u1 u2 u3 u4 u5 u6 u7 u8

u1 1.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
u2 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
u3 0.000 0.000 0.996 0.000 0.000 0.000 0.003 0.000
u4 0.000 0.000 0.000 0.999 0.000 0.000 0.000 0.000
u5 0.001 0.000 0.000 0.000 0.998 0.000 0.006 0.000
u6 0.002 0.000 0.000 0.000 0.002 0.999 0.001 0.000
u7 0.000 0.000 0.004 0.000 0.000 0.000 0.994 0.000
u8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Table 4.7: Modal assurance criterion for the modeling of elastomer 5 with thickness
3[cm], split in x, y and z direction.

MACE54cm=

u1 u2 u3 u4 u5 u6 u7 u8

u1 1.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
u2 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
u3 0.000 0.000 0.994 0.000 0.000 0.000 0.003 0.000
u4 0.000 0.000 0.000 0.999 0.000 0.000 0.000 0.000
u5 0.002 0.000 0.000 0.000 0.998 0.000 0.008 0.000
u6 0.002 0.000 0.000 0.000 0.002 0.999 0.001 0.000
u7 0.000 0.000 0.008 0.000 0.000 0.000 0.990 0.000
u8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Table 4.8: Modal assurance criterion for the modeling of elastomer 5 with thickness
4[cm], split in x, y and z direction.
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Figure 4.7: Detail of the ground �oor plan considered for acoustical analysis.

The good performance of the new mortar method carries over to larger examples of

engineering relevance, where an orthotropic material law is used for the elastically

connected building parts. Figure 4.7 depicts a �oor plan of the model timber

building along with a 21
2
D submodel consisting of three rooms.

This model forms the basis of the three-dimensional computational solid model

comprising all conforming hexahedral elements depicted in Figure 4.8.

Figure 4.8: Conforming hexahedral discretization.

Note that walls and slabs consist of several layers of wood, as depicted in Fi-

gure 4.9. The thickness of the layers is given in Table 4.9. In this example, each

layer is explicitly modeled with the characteristic orthotropic material parameters
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Figure 4.9: Wall types from left to right: Wall type 61, 85, 95 and slab 125.

type layering [mm]
61 17*�27�17*
85 17*�17�17*�17�17*
95 17*�17�27*�17�17*
125 27*�27�17*�27�27*

Table 4.9: Layer thicknesses of walls and slab 125.

of timber. We set the Young's moduli in �ber direction to Ex = 137× 106[N/m2],

in-plane orthogonal Ey = 1424 × 106[N/m2], and perpendicular to the plane

Ez = 10211 × 106[N/m2]. The Poisson's ratios are νxz = 0.035, νyz = 0.045

and νxy = 0.037. In addition, we apply the shear moduli Gxz = 459× 106[N/m2],

Gyz = 102× 106[N/m2] and Gxy = 171× 106[N/m2]. The density is assumed to be

ρ = 450[kg/m3] for all layers.

Although the individual layers have the same material properties, their �ber orien-

tation in plane is orthogonal in adjacent layers in such a way that the orientation is

equal on every other layer only. This situation is accurately resolved by the �nite

element mesh. The elastomer is situated only at the interface, where the slab rests

on the walls and possesses the isotropic material properties of elastomer 5, as given

in Table 4.1. The conforming model is depicted in Figure 4.8. In total, the mesh

consists of 7578 hexahedral elements.

In contrast, the computational mesh for the mortar method is depicted in Fi-

gure 4.10, consisting of only 2475 hexahedral elements. It is evident how the

components wall and slab were meshed independently of one another and are non-

conforming at their interface.
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Figure 4.10: Non-conforming hexahedral discretization.

Not only does this greatly simplify the mesh generation process itself, it also avoids

the generation of hexahedral elements due to continuity constraints at the inter-

faces of walls and slabs. A further reduction of hexahedral elements is possible

by choosing mesh densities individually for all involved components. Also note

that local re�nements do not branch out to other walls. The elastomer where the

slab rests on the walls is now modeled using the new mortar method derived above.

Figure 4.11: Comparison between eigenmodes 1, 2, 3 and 4. Top row: Resulting
from the conforming discretization corresponding to Figure 4.8.
Bottom row: Non-conforming discretization corresponding to Fi-
gure 4.10.

Table 4.10 summarizes the comparison for the �rst eight eigenvalues and then se-

lected higher eigenvalues up to one hundred.
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EV Conform Mortar % di� Conform New coupling % di�
No Elast No Elast Elast Elast

1 11.357 11.471 1.007 9.883 9.960 0.779
2 13.738 13.861 0.899 12.439 12.496 0.459
3 14.347 14.425 0.547 13.302 13.346 0.330
4 15.807 15.947 0.884 13.938 14.067 0.926
5 16.988 17.133 0.856 14.980 15.134 1.030
6 21.070 21.329 1.227 19.256 19.398 0.737
7 21.832 21.988 0.715 20.765 20.833 0.325
8 24.038 24.265 0.947 21.072 21.165 0.437
... ... ... ... ... ... ...
20 36.868 37.071 0.552 34.033 34.437 1.189
... ... ... ... ... ... ...
30 48.414 48.769 0.732 43.329 43.850 1.202
... ... ... ... ... ... ...
40 61.815 62.479 1.073 53.238 53.574 0.631
... ... ... ... ... ... ...
50 69.224 70.028 1.162 60.897 61.468 0.938
... ... ... ... ... ... ...
60 77.711 78.402 0.889 66.702 67.982 1.919
... ... ... ... ... ... ...
70 86.225 86.443 0.253 76.123 76.488 0.479
... ... ... ... ... ... ...
80 93.425 93.893 0.501 83.881 84.382 0.597
... ... ... ... ... ... ...
90 101.063 101.673 0.603 88.875 89.558 0.769
... ... ... ... ... ... ...
100 108.871 109.382 0.469 94.814 95.145 0.349

Table 4.10: Computed eigenfrequencies given in [Hz] for the building example.

Note that the modeling error introduced by the new mortar approach remains be-

low two percent for all investigated eigenvalues. In comparison to the conforming

method, the error obtained when using the mortar method with the new coupling

condition is comparable to the error obtained when using the standard mortar

method. The upper row of Figure 4.11 depicts selected eigenvectors resulting from

the conforming discretization given in Figure 4.8, while the lower half depicts the

corresponding eigenvectors of the mortar discretization of Figure 4.10. All eigen-

vectors match within an accuracy which is considered su�cient for engineering

applications.
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Chapter III.

Reduced basis methods for

eigenvalue problems

The vibro-acoustical analysis of cross-laminated timber structures constitutes a

parameter dependent eigenvalue problem in linear elasticity, where the input para-

meters are the material properties of di�erent structural components. This problem

has to be solved many times during a design and optimization phase and thus our

aim in this chapter is to develop a model reduction framework for the corresponding

elliptic parameter dependent eigenvalue problems (µEVP).

5. Eigenvalue reduced basis methods for elliptic

eigenvalue problems

Since the main part of a vibro-acoustical analysis is the modal analysis, which not

only takes the �rst eigenvalue into account, but all eigenvalues lower than a certain

frequency, depending on the problem under investigation, the outputs of interest

are the K smallest eigenvalues with corresponding eigenfunctions. A characteristic

feature of the considered µEVP is the possible appearance of multiple eigenvalues.

In particular, the multiplicities depend on the parameters. Furthermore another

characteristic of the considered µEVP is the rather large number of outputs of in-

terest K, which in our exemplary case ranges from two to twenty.

The Sections 5.2�5.5 contain results published by the author with B. Wohlmuth

and T. Dickopf in the paper entitled "Simultaneous reduced basis approximation of

parameterized elliptic eigenvalue problems" in the journal ESAIM: Mathematical

Modelling and Numerical Analysis in 2016, [80].

5.1. Introduction to reduced basis methods

In the following, we introduce the principal ideas on which the reduced basis met-

hod for right-hand side problems is founded. Reduction methods are of crucial im-

portance whenever a calculation becomes complex or has to be performed several

times. The large computation times required for this can be reduced signi�cantly
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by performing once a very general calculation and then deducting the particular

solutions from it.

To this end, reduced basis methods have been developed over the last decade; see,

e. g., [128, Chapter 19] or [129, 141] for comprehensive reviews, with the �rst redu-

ced basis problem being investigated in the 1980's [117]. Reduced basis methods

have been successfully applied to many di�erent problem classes both in the real-

time and the many-query context. Among those are �nite element discretizations

of elliptic equations [141], parabolic equations [66, 139, 165] and hyperbolic equa-

tions [42, 68]. Furthermore the reduced basis method has been extended to Stokes

problems [87, 102, 140, 142] and variational inequalities [65, 69]. In addition the

reduced basis method was used in the context of stochastic processes in [54, 167]

and in the context of a �nite volume scheme of a parameterized and highly nonli-

near convection-di�usion problem with discontinuous solutions in [51].

Let us assume that an input-output relation for a parameterized partial di�erential

equation (µPDE) has an input parameter vector µ belonging to the input-parameter

domain P , i.e., µ ∈ P ⊂ RP . Then the solution u of a general elliptic problem

depends on the parameter vector and the general problem formulation reads:

Given µ ∈ P , �nd u(µ) ∈ V such that

a(u(µ), v;µ) = l(v;µ), v ∈ V,

where V denotes a suitably chosen Hilbert space and a(·, ·;µ) and l(·;µ) are the

bilinear form and the linear functional, where the new argument µ indicates the

parameter-dependence. Then the basic idea of the reduced basis method comes

into play as we assume that the solutions u(µ) do not cover the entire space V , but

rather lie on a curve or surface in V , which is assumed to be low-dimensional and

smooth and which is called the parametrically induced manifold

M = {u(µ) ∈ V : µ ∈ P}.

We will approximate this manifold numerically and the best �nite element approx-

imation which can be achieved numerically is

MN = {uh(µ) ∈ V k
h : µ ∈ P},

where V k
h ⊂ V is a subspace of dimension N < ∞. The larger N , the bet-
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ter the approximation, but also the more computation time is needed to perform

the approximation. The reduced basis approach now allows us to build a lower-

dimensional approximation ured(µ) ∈ VN of uh(µ) of dimension N � N . This is

achieved by selecting several parameters from P and computing the corresponding

solutions, which are called snapshots of the manifoldMN , then approximating the

space V k
h by its subspace VN , composed of the linear combinations of the snaps-

hots, and looking for ured in VN . The numerically built Lagrange reduced basis

spaces corresponding to the Lagrange parameter samples SN = {µ1, . . . , µN} for
N = 1, . . . , Nmax are denoted by

VN = span{uh(µn), 1 ≤ n ≤ N}

and are nested. This property is crucial for the memory e�ciency of the reduced

basis method. The reduced approximation ured(µ) is computed using a Galerkin

projection which, since the bilinear form is coercive and symmetric for any given

µ, automatically selects the best snapshot combination. Then the use of a Gram-

Schmidt orthogonalization allows us to achieve orthonormal basis functions ζn,

1 ≤ n ≤ N , such that the reduced basis solution can be written as

ured(µ) =
N∑
i=1

uredi(µ)ζi

and the reduced basis problem now consists of �nding the solution ured(µ) ∈ VN ⊂
V k
h to the set of equations

N∑
j=1

a(ζj, ζi;µ)uredj(µ) = l(ζi;µ), i ∈ {1, . . . , N}.

A very important step in the reduced basis method is the sampling of the initial set

of parameters from P . There are two main procedures used for the sampling from

P , namely greedy algorithm strategies and the proper orthogonal decomposition

(POD) method. The greedy algorithm gradually selects N possible parameter

values µ1, . . . , µN from the train sample Ξtrain. While doing this, in each iteration

the parameter is added for which the solution uh(µ) is worst approximated by the

space VN−1 of the already retained snapshots. Thus an appropriate error estimator

is required. In contrast, the proper orthogonal decomposition [90, 128, 129] aims

at achieving the best possible reduced space in the sense that, for a given series

of snapshots, the projection error w. r. t. the L2-norm is minimized. Thus a set of
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parameters is chosen into the su�ciently large train set Ξtrain and the snapshots

are generated by solving the µPDE, which yields the set S ⊂ V k
h of all snapshots.

Then the orthonormal functions {ζ1, . . . , ζN} ⊂ span(S) are chosen such that∑
v∈S

‖v − ΠNv‖2
L2(Ω)

is minimal, where ΠN denotes the L2-orthogonal projection to span {ζ1, . . . , ζN}.

The online-o�ine procedure is what enables the reduced basis method to be sepa-

rated into two phases: The more costly o�ine computation of the space VN and

the very cheap online phase, in which the result to an imminent problem is derived

from the o�ine phase results. This is made possible by the a�ne parameter de-

pendence of the bilinear form a(·, ·;µ) and the linear functional l(·;µ), which can

be expressed as

a(u, v;µ) =
∑Qa

q=1 θ
q
a(µ)aq(u, v), u, v ∈ V, µ ∈ P

l(v;µ) =
∑Ql

q=1 θ
q
l (µ)lq(v), v ∈ V, µ ∈ P

for �nite Qa and Ql and the µ-dependent functions θqa : P → R for 1 ≤ q ≤ Qa,

θql : P → R for 1 ≤ q ≤ Ql as well as the µ-independent terms aq and lq. Inserting

these forms into the set of linear algebraic equations obtained above yields

N∑
j=1

(

Qa∑
q=1

θqa(µ)aq(ζj, ζi))uredj(µ) =

Ql∑
q=1

θql (µ)lq(ζi), i ∈ {1, . . . , N},

and thus a problem which can be separated into its parameter dependent and its

parameter independent parts.

In several stages we want to assess the loss of accuracy in comparison to classi-

cal methods. Thus we employ a posteriori error estimators to facilitate the con-

struction of reduced basis spaces by greedy algorithms as well as the certi�cation

of the outputs of the reduced models. Di�erent greedy methods for reduced basis

and error estimators are introduced in [106, 107, 166] and also a greedy method

for eigenvalues is introduced in [34]. The convergence of greedy methods has been

analyzed in [20, 32, 47]. Adequate a posteriori error estimators have to be rigorous,

sharp as well as e�cient and depend on N but not on N as will be seen in the

following for parameterized elliptic eigenvalue problems.
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5.2. Reduced basis for eigenvalue problems

In the following we consider the problem class of parameterized elliptic eigenvalue

problems (µEVP), which is highly important but up to now only marginally in-

vestigated in the context of reduced basis methods. The �rst approach [104] from

the year 2000, which is based on [105] among others, is restricted to the special

case of an estimator for the �rst eigenvalue. In the publications [122, 123, 124], the

method from [104] is developed further to include several eigenvalues.

However, both the analysis and the algorithms do not cover the case of multiple

eigenvalues. Quite often, the �vectorial approach�, i. e., the treatment of the eigen-

vectors (ui(µ))1≤i≤K as a (FE dimension ·K)-dimensional object and building the

approximation space accordingly, see [123, Section 2.3.5], results in poor accuracy.

This is due to the fact that the possible savings from reduced problems of smaller

size seem marginal if achievable at all. In addition high-frequency information can

and should be exploited for the approximation of low-frequency information, an

e�ect that is expected to become more and more important with increasing num-

ber of desired eigenvalues. In [181], an elastic buckling problem is studied. While

the model reduction is carried out primarily for a linear problem, the eigenvalue

problem appears only in a second step. In [170] a non-rigorous a posteriori bound

is computed by comparison with a reduced space approximation of double size.

Furthermore a component based reduced basis method is studied for eigenvalue

problems in [169]. Very recently a reduced basis method for the approximation

of single eigenvalues in the context of parameterized elliptic eigenvalue problems

has been investigated in [60]. The authors derive a bound for the error in the �rst

eigenvalue which is assumed to be single.

We will now start by introducing reduced basis methods in a general eigenvalue

context. Let the computational domain Ω ⊂ Rd, with d ∈ {2, 3}, be bounded

and polygonal. As an elliptic eigenvalue model problem, we consider the linear

elasticity case. We recall the eigenvalue problem in linear elasticity, which is given

by

−div σ(u) = λρu in Ω,

with boundary conditions prescribed as Dirichlet conditions on a closed non-trivial

subset ΓD of ∂Ω and homogeneous Neumann conditions on ∂Ω \ ΓD. In addition,

the linearized stress and strain tensors are de�ned as in Section 2.3. We set the
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density ρ to 1 for simplicity. As above, the set of admissible parameters is denoted

by P ⊂ RP and µ ∈ P stands for a vector of parameters. Then C(µ) denotes the

parameter dependent Hooke's tensor, which we assume to be uniformly positive

de�nite. To this end let Ω be decomposed into non-overlapping subdomains such

that Ω =
⋃
s Ωs. We assume that the material parameters are piecewise constant

w. r. t. this decomposition. In the isotropic case, the parameters may be chosen as

Young's modulus E and Poisson's ratio ν such that P equals two times the number

of structural components, i. e., subdomains. More precisely, we set µ2s−1 = E|Ωs
and µ2s = ν|Ωs in this case. The anisotropic case is treated analogously.

Let the parameter dependent bilinear forms a(·, ·;µ) : (H1(Ω))d × (H1(Ω))d → R
and m(·, ·) : (L2(Ω))d × (L2(Ω))d → R be given by

(u, v) 7→ a(u, v;µ) :=

∫
Ω

C(µ)ε(u) : ε(v) dx

and

(u, v) 7→ m(u, v) := (u, v)L2(Ω) :=

∫
Ω

u · v dx,

where a(·, ·;µ) depends on the parameter vector µ, whereas m(·, ·) and Ω do not.

Remark 5.1. The equations of linear elasticity are used as a model problem as we

are interested in the applications of vibro-acoustics. However this does not pose any

restriction to the theoretical results shown in the following. Thus we could replace

a(·, ·, µ) by any H1-elliptic bilinear form.

Let now V k
h ⊂

{
v ∈ (H1(Ω))d : v|ΓD = 0

}
be a �xed conforming �nite element

space of order k with dimension N . For the ease of notation, in this section we

de�ne Vh := V k
h . Then, the discrete variational formulation of (3) reads: Find the

eigenvalues λ(µ) ∈ R and the eigenfunctions u(µ) ∈ Vh such that

a(u(µ), v;µ) = λ(µ)m(u(µ), v), v ∈ Vh (11)

for given µ ∈ P . We assume that the eigenvalues are positive and numbered as

0 < λ1(µ) ≤ . . . ≤ λN (µ).

The corresponding eigenfunctions are denoted by ui(µ) ∈ Vh for i = 1, . . . ,N with

the normalization

m(ui(µ), uj(µ)) = δij for 1 ≤ i, j ≤ N .
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In the present context, the error of the �nite element solution is assumed to be

very small. This is achieved by a �ne mesh size leading to a large dimension N .

The discretization error analysis can be found, e. g., in [8, 9, 10].

Let L ≥ 1 be the number of distinct eigenvalues of (11). For multiple eigenva-

lues, we use the standard notation from [10] and denote the lowest index of the

i-th distinct eigenvalue by ki and its multiplicity by qi, i = 1, . . . , L. We write

Ki := {ki, . . . , ki + qi − 1}. Here and in the following, the dependency of the index

notations on µ is suppressed as it is always clear from the context. The correspon-

ding eigenspaces are denoted by

Ui(µ) := span {uki(µ), . . . , uki+qi−1(µ)} .

Now, the goal is to �nd a computationally inexpensive but accurate surrogate mo-

del that can be used in the many-query or real-time context.

We consider a variational approximation of the µEVP in an N -dimensional reduced

space

VN := span {ζn : n = 1, . . . , N} ⊂ Vh, (12)

with N � N . As a matter of fact, the choice of VN highly depends on the

algorithmic methodology. Several (snapshot-based) possibilities are investigated in

Section 5.4. Now, the reduced eigenvalue problem reads as

(ured(µ), λred(µ)) ∈ VN × R,

a(ured(µ), v;µ) = λred(µ)m(ured(µ), v), v ∈ VN (13)

for given µ ∈ P . Let us emphasize that all eigenpairs of interest are approximated

in the same space VN . As before, we assume a numbering λred, i(µ), i = 1, . . . , N

of the �reduced eigenvalues�. The minimum-maximum principles guarantee that

λi(µ) ≤ λred, i(µ) for i = 1, . . . , N ; see [10, Sect. 8]. Note that the multiplicity

of the �nite element eigenvalues is not necessarily re�ected in the reduced basis

eigenvalues. The corresponding eigenfunctions are denoted by ured, i(µ) ∈ VN for

i = 1, . . . , N , again with the normalization

m(ured, i(µ), ured, j(µ)) = δij, 1 ≤ i, j ≤ N.

In practice, as mentioned before, one is only interested in the �rst K eigenvalues for
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any chosen parameter. We expect that the dimension N required to achieve a cer-

tain accuracy will depend not only on the smoothness of the parameter-dependency

of the µPDE but also on the number of outputs K.

As above, a(·, ·;µ) is a�ne w. r. t. the parameter µ, i. e.,

a(u, v;µ) =

Qa∑
q=1

θqa(µ)aq(u, v) (14)

for suitable parameter independent bilinear forms aq : (H1(Ω))d × (H1(Ω))d → R
and coe�cients θqa : P → R, which are readily derived from the constitutive equa-

tions. For instance, we have two terms per subdomain in the isotropic case. This

leads to a fast online evaluation as the cost of the assembly of the parameter depen-

dent reduced systems, i. e., matrices in RN×N associated with (13), is independent

of N . Note that the expansion (14) will also be exploited for an online-o�ine de-

composition of the error estimators.

Apart from greedy methods, as already mentioned, POD techniques which yield the

best reduced space, can be used in the context of parameter dependent eigenvalue

problems with multiple output values. A detailed description of the usage of POD

methods in the present context, can be found e. g. in [90, 128, 129].
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Figure 5.1: Convergence of POD methods (0 < N ≤ 200) for the described µEVP
with di�erent numbers of outputs of interest: Average relative errors in
the eigenvalues λ1, . . . , λK for K = 4 (left) and K = 7 (right).

Figure 5.1 illustrates the convergence of the POD method for K = 4 and K = 7.

The details of the underlying numerical experiment are elaborated in Section 5.4,

where the numerical results are presented. On the one hand, the results show that it
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is in principle possible to construct one single reduced space that e�ectively captu-

res the parameter dependent behavior of the �rst K eigenfunctions simultaneously.

On the other hand, it is evident that the reduced basis dimension N required for

a certain accuracy increases with K. More precisely, the asymptotic decay of the

error is approximately C4 e−0.0513·N for K = 4 and C7 e−0.0477·N for K = 7 for some

constants C4 and C7. From the cost point of view the POD is quite expensive, and

thus we focus on computationally e�cient greedy strategies in combination with a

posteriori error bounds.

In the following we will establish the analysis of an asymptotically reliable error

estimator including the case of multiple eigenvalues and a series of algorithmic ad-

vancements. This constitutes a signi�cant di�erence to the approach introduced

in [60] as our goal is a reduced basis approximation not only of one eigenvalue,

but of a series of eigenvalues, including eigenvalues with multiplicity greater than

one. Furthermore our numerical results demonstrate that tailored greedy strate-

gies yield very e�cient reduced basis spaces for the simultaneous approximation of

many eigenvalues for the considered problem class. In this context, the parameter

dependence of the multiplicity of the eigenvalues constitutes a major challenge and

is included into both our analysis and our algorithms.

Our experiments show that, in a greedy algorithm, it is usually not optimal to

include the �rst K eigenfunctions for a particular parameter, neither is it advisable

to choose the same number of eigenfunctions for di�erent eigenvalues. This may

be attributed to the fact that the smoothness of the input-output relation can vary

strongly with the di�erent outputs of interest, i. e., the eigenvalues. We rather sug-

gest to choose maximizing parameters forK di�erent error estimators. The reduced

approximation should be of comparable quality for a broad range of frequencies,

although in structural acoustics the accuracy requirements might decrease with in-

creasing frequency. Note that, for the application scenario at hand, the number of

desired eigenpairs is typically in the order of ten for simple components and even

larger for geometrically more complex structures. We are interested in approxima-

ting the smallest eigenvalues �simultaneously� in the sense that a single reduced

space is constructed for the variational approximation of the eigenvalue problem

and that the individual a posteriori error estimators for the eigenvalues use the

online components provided o�ine. This allows us to generate an e�cient and

accurate simultaneous reduced basis approximation. The large number of outputs

of interest K justi�es an increased computational e�ort by an increased dimension
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N as compared to the standard single output case. In particular, any decent, i. e.,

su�ciently accurate, approximation needs N � K.

5.3. Error estimators

We will now establish a posteriori error estimators for our output quantities, in

this case the eigenvalues. As mentioned above, it is important to determine such

estimators in order to �nd out which basis functions should be selected by the

greedy method. In particular, their computational evaluation must only depend

on the basis size N but not on the dimension of the �nite element space N . To

this end, we �rst derive error bounds that still depend on the �nite element eigen-

values, and in particular on their multiplicities. Then, we focus on a computable

approximation yielding the desired error estimators.

We will now introduce a generalized error bound. To this end let the parameter

dependent energy norm be de�ned as ‖·‖µ;Vh
:= a(·, ·;µ)

1
2 . In addition to a pa-

rameter dependent norm we are using a parameter independent norm de�ned as

‖·‖µ̂;Vh
:= â(·, ·) 1

2 := a(·, ·; µ̂)
1
2 . For a linear functional r : Vh → R, we de�ne the

corresponding dual norms by

‖r‖µ;V ′h
:= sup

06=v∈Vh

r(v)

‖v‖µ;Vh

and ‖r‖µ̂;V ′h
:= sup

06=v∈Vh

r(v)

‖v‖µ̂;Vh

,

respectively. The analysis and the practical implementation employ di�erent error

representations, namely the so-called reconstructed errors w. r. t. the bilinear forms

a(·, ·;µ) and â(·, ·). Using the residual

v 7→ ri(v;µ) := a(ured, i(µ), v;µ)− λred, i(µ)m(ured, i(µ), v)

for i = 1, . . . , N , we de�ne ei(µ) ∈ Vh and êi(µ) ∈ Vh by

a(ei(µ), v;µ) = ri(v;µ), v ∈ Vh (15)

and

â(êi(µ), v) = ri(v;µ), v ∈ Vh. (16)

In particular, ‖ri(·;µ)‖µ;V ′h
= ‖ei(µ)‖µ;Vh

and ‖ri(·;µ)‖µ̂;V ′h
= ‖êi(µ)‖µ̂;Vh

. For any

µ ∈ P , assume that g(µ) > 0 is a generalized coercivity constant such that

g(µ)â(v, v) ≤ a(v, v;µ) for all v ∈ Vh. Technically speaking, g(µ) is the parameter
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dependent coercivity constant of a(·, ·;µ) w. r. t. ‖·‖µ̂;Vh
. This implies

‖r‖µ;V ′h
≤ g(µ)−

1
2 ‖r‖µ̂;V ′h

(17)

for any r ∈ V ′h and
‖v‖µ̂;Vh

≤ g(µ)−
1
2 ‖v‖µ;Vh

for any v ∈ Vh.

We are now ready to prove the error bounds. The following theorem, combined

with the computational/algorithmic aspects in Section 5.4, generalizes the results

of [104, 122, 123, 124] for the case of multiple eigenvalues.

Theorem 3. Let 1 ≤ i ≤ L such that ki + qi − 1 ≤ N . For j = 1, . . . , qi, set

d̃ki+j−1(µ) := min
N≥l>ki+qi−1

∣∣∣∣λl(µ)− λred, ki+j−1(µ)

λl(µ)

∣∣∣∣ . (18)

Then,

0 ≤ λred, ki+j−1(µ)− λki(µ) ≤
‖rki+j−1(·;µ)‖2

µ;V ′h

d̃ki+j−1(µ)
(1 +

‖rki+j−1(·;µ)‖µ;V ′h

d̃ki+j−1(µ)2
√
λki

). (19)

Proof. Fix µ ∈ P , 1 ≤ i ≤ L and 1 ≤ j ≤ qi. Let ured, ki+j−1(µ) =
N∑
l=1

αlul(µ) and

eki+j−1(µ) =
N∑
l=1

βlul(µ). By (15), we �nd

βl = αl
λl(µ)− λred, ki+j−1(µ)

λl(µ)
.

Therefore, we get

‖rki+j−1(·;µ)‖2
µ;V ′h

=
N∑
l=1

α2
l

(
λl(µ)− λred, ki+j−1(µ)

λl(µ)

)2

λl(µ)

≥
∑

l>ki+qi−1

α2
l

(
λl(µ)− λred, ki+j−1(µ)

λl(µ)

)2

λl(µ)

≥ d̃ki+j−1(µ)2
∑

l>ki+qi−1

α2
l λl(µ). (20)

Using the fact that
∑
l

α2
l = 1, λl(µ) ≤ λki(µ) for l ≤ ki + qi − 1 , we �nd for the
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di�erence between approximated and detailed eigenvalue

∆λki := λred, ki+j−1(µ)− λki(µ) = a(ured, ki+j−1(µ), ured, ki+j−1(µ);µ)− λki(µ)

=
N∑
l=1

α2
l λl(µ)− λki(µ)

=
∑

l≤ki+qi−1

α2
l (λl(µ)− λki(µ))

+
∑

l>ki+qi−1

α2
l (λl(µ)− λki(µ))

≤
∑

l>ki+qi−1

α2
l (λl(µ)− λki(µ)). (21)

From this we obtain two upper bounds for ∆λki . The �rst one follows trivially

from the fact that λki(µ) > 0 and (20)

∆λki ≤
∑

l>ki+qi−1

α2
l λl(µ) ≤

‖rki+j−1(·;µ)‖2
µ;V ′h

d̃ki+j−1(µ)2
.

The second bound is based on the Cauchy-Schwarz inequality and on Young's

inequality. In terms of

(λl(µ)− λki(µ))2 ≤ (1 + ε)(λl(µ)− λred, ki+j−1(µ))2 + (1 +
1

ε
)(∆λki)

2

for ε > 0, we get from (20) and (21)

∆λki =
∑

l>ki+qi−1

αl
λl(µ)− λki(µ)

λl(µ)

√
λl(µ)αl

√
λl(µ)

≤

( ∑
l>ki+qi−1

α2
l (
λl(µ)− λki(µ)

λl(µ)
)2λl(µ)

) 1
2
( ∑
l>ki+qi−1

α2
l λl(µ)

) 1
2

≤ 1

d̃ki+j−1(µ)
‖rki+j−1(·;µ)‖µ;V ′h

·√
(1 + ε) ‖rki+j−1(·;µ)‖2

µ;V ′h
+ (1 +

1

ε
)∆λ2

ki

∑
l>ki+qi−1

α2
l

1

λl(µ)

≤ 1

d̃ki+j−1(µ)
‖rki+j−1(·;µ)‖µ;V ′h

√
(1 + ε) ‖rki+j−1(·;µ)‖2

µ;V ′h
+ (1 +

1

ε
)

∆λ2
ki

λki(µ)

≤ 1

d̃ki+j−1(µ)
‖rki+j−1(·;µ)‖2

µ;V ′h

√√√√1 + ε+ (1 +
1

ε
)
‖rki+j−1(·;µ)‖2

µ;V ′h

d̃ki+j−1(µ)4λki(µ)
.
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Setting ε =
‖rki+j−1(·;µ)‖

µ;V ′
h

d̃ki+j−1(µ)2
√
λki (µ)

gives the upper bound in (19). The lower bound

follows directly from [10, Sect. 8].

Besides the generalization to multiple eigenvalues, let us point out that our bounds

are sharper than the ones, e. g., in [124, Prop. 1], as the lowest order term in (19)

is of the form
‖rki+j−1(·;µ)‖2

µ;V ′
h

d̃ki+j−1(µ)
rather than

‖rki+j−1(·;µ)‖2
µ;V ′

h

d̃ki+j−1(µ)2
. Note that the error

bounds in Theorem 3 still depend on the �nite element solution via the eigenvalues

λl(µ) in (18).

Remark 5.2. It is also possible to give an upper bound for the eigenvectors by

replacing d̃ki+j−1(µ) by d̂ki+j−1(µ) de�ned as

d̂ki+j−1(µ) := min
N≥l>ki+qi−1 ∨ l<ki

∣∣∣∣λl(µ)− λred, ki+j−1(µ)

λl(µ)

∣∣∣∣ .
Using now Πi : Vh → Ui(µ) as the orthogonal projection w. r. t. the L2-inner pro-

duct, we de�ne v̄ := Πi(ured, ki+j−1(µ)) =
∑
N≥l>ki+qi−1 ∨ l<ki αlul(µ) and give the

upper bound as

‖ured, ki+j−1(µ)− v̄‖2
µ;Vh

=

∥∥∥∥∥ ∑
N≥l>ki+qi−1 ∨ l<ki

αlul(µ)

∥∥∥∥∥
2

µ;Vh

=
∑

N≥l>ki+qi−1 ∨ l<ki

α2
l λl(µ) ≤

‖rki+j−1(·;µ)‖2
µ;V ′h

d̂ki+j−1(µ)2
.

We now derive approximate error bounds that are computable in the sense that

they do not depend on the �nite element solution. To achieve this, it remains to

approximate d̃i, which may be interpreted as a measure for the relative distance

between neighboring eigenvalues, particularly to decide which of the indices to

exclude from the minimum. We point out that the dimension of the (detailed)

eigenspace is not accessible. The application scenario we have in mind features

multiple eigenvalues with their multiplicities depending on the parameter. It is

therefore impossible to determine the structure of the spectrum, i. e., the indices

ki or the index sets Ki, a priori.

Recall that the �rst K eigenvalues are the output quantities of interest. Assume

that the reduced basis method converges in the following sense: For µ ∈ P and

1 ≤ i ≤ K,

λred, i(µ)→ λi(µ) for N → N .
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In particular, λred, j(µ) → λki(µ) for N → N for j ∈ Ki. Given the eigenvalues

λred, i(µ), i = 1, . . . , K, of (13), we replace λl(µ) in (18) by λred, l(µ) and approximate

Ki by

Kred, i :=

{
1 ≤ j ≤ K + r;

∣∣∣∣λred, j(µ)− λred, i(µ)

λred, j(µ)

∣∣∣∣ < ελ

}
for a chosen tolerance ελ > 0 and with r as the di�erence between the index of

the �rst eigenvalue after the multiplicity of the K-th eigenvalue and the K-th

eigenvalue itself. In the case that we know a priori the maximal multiplicity of

all relevant eigenvalues for all parameters, we set r equal to this value. Otherwise

we select it adaptively during the initialization phase of the greedy method. More

precisely, we start with r = 1 and increase it by one as long as K + r ∈ Kred, i.

Thus #Kred, i will be our best guess for the multiplicity of the eigenvalue to which

λred, i(µ) converges. Then for 1 ≤ i ≤ K,

di(µ) := min
l 6∈Kred, i

K+r≥l>i

∣∣∣∣λred, l(µ)− λred, i(µ)

λred, l(µ)

∣∣∣∣ (22)

is the relative distance of λred, i(µ) to the reduced eigenvalues that are further away

than the chosen tolerance ελ. The adaptive selection of r guarantees that, even for

i = K and multiple eigenvalues, di(µ) is easily computable and does not severely

underestimate d̃i(µ).

Finally, since we are looking for an asymptotic estimator for the relative error in

the eigenvalues which is cheaply computable in the online-phase, we neglect the

higher order term in (19). In addition, the parameter dependent norm ‖·‖µ;V ′h
is

replaced by the parameter independent norm ‖·‖µ̂;V ′h
by (17), which introduces an

additional factor g(µ)−1.

To summarize we can state the following corollary:

Corollary 5.3. Let i = 1, . . . , K and λred, i(µ)→ λi(µ) for N → N . Furthermore

let Kred, i be de�ned as above and the distance between neighboring eigenvalues di(µ)

be given as in (22). Then the error estimator given by

µ 7→ ηi(µ) :=
‖ri(·;µ)‖2

µ̂;V ′h

g(µ) · di(µ) · λred, i(µ)
(23)
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is asymptotically reliable in the sense that

0 ≤ λred, ki+j−1(µ)− λki(µ)

λki
≤ Cηi(µ),

with C tending to one as N tends to N .

Note that the approximation in (22) is, in general, less accurate for i = K. This

is because the space VN is built to approximate well the K outputs, but for the

K-th estimator we need the (K+r)-th outputs with r ≥ 1, which are approximated

only roughly. The tolerance ελ has to be selected such that it re�ects the desired

accuracy of the reduced basis approximation.

All error estimator contributions may be decomposed as already outlined in [104].

Let (ζn)1≤n≤N be the orthonormal basis (w. r. t. m(·, ·)) of VN . For 0 ≤ q, p ≤ Q

let Âq,p ∈ RN×N with Âq,pn,m := â(ξqn, ξ
p
m) for 1 ≤ n,m ≤ N where

â(ξqn, v) = aq(ζn, v), v ∈ Vh, 1 ≤ n ≤ N, 1 ≤ q ≤ Q, (24)

and

â(ξ0
n, v) = m(ζn, v), v ∈ Vh, 1 ≤ n ≤ N. (25)

In the following, we identify the function ured, i(µ) ∈ VN and its vector representa-

tion w. r. t. the basis (ζn)1≤n≤N such that (ured, i(µ))n denotes the n-th coe�cient.

Then, given a reduced eigenpair (ured, i(µ), λred, i(µ)), we have the error representa-

tion

êi(µ) =
N∑
n=1

Qa∑
q=1

θqa(µ) (ured, i(µ))n ξ
q
n − λred, i(µ)

N∑
n=1

(ured, i(µ))n ξ
0
n

by (16). Consequently, the main contribution of ηi(µ) decomposes into

‖ri(·;µ)‖2
µ̂;V ′h

=
N∑
n=1

N∑
m=1

Qa∑
q=1

Qa∑
p=1

(ured, i(µ))n (ured, i(µ))m θ
q
a(µ)θpa(µ) Âq,pn,m

+ λ2
red, i(µ)

N∑
n=1

N∑
m=1

(ured, i(µ))n (ured, i(µ))m Â0,0
n,m

− 2λred, i(µ)
N∑
n=1

N∑
m=1

Qa∑
q=1

(ured, i(µ))n (ured, i(µ))m θ
q
a(µ) Âq,0n,m.

We recall that only a single reduced space is built for the approximation of all

eigenvectors simultaneously. Thus the above decomposition uses the same o�ine
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ingredients for all 1 ≤ i ≤ K. In particular, the number K of desired eigenpairs

does not directly in�uence the complexity (only via the reduced space dimension

N).

5.4. Algorithms

In this section, we present di�erent greedy strategies that employ the error estima-

tors of Section 5.3 to build the reduced space in (12). The advantage compared to

the POD method is that only relatively few �nite element solutions of the µEVP

need to be computed. Since we use a single space for the approximation of mul-

tiple outputs, we have several natural possibilities which are investigated in the

following. Furthermore an extension that takes into account multiple eigenvalues

is presented and a remedy for the potential unreliability of the error estimators for

small N is discussed.

Recall that the K smallest eigenvalues are the quantities of interest, where K is

typically 2 − 20 for our application scenario. In principle, given a reduced space,

one could try to identify a suitable µ ∈ P and then include the �rst K eigenfuncti-

ons for this parameter value. In each greedy step, this would require the detailed

�nite element solution of (11) for one parameter only. However, numerical studies

clearly show that this naive choice is far from optimal as the generated reduced

spaces tend to be much too large. This is because the errors in the individual

eigenvalues and eigenfunctions are only very weakly correlated, if at all. There

are at least the following two much more natural options: Let a su�ciently rich

training set Ξtrain ⊂ P be given. Then, in Algorithm 1, the individual argmax

for each 1 ≤ i ≤ K is chosen separately. In contrast, Algorithm 2 chooses only

one single argmax. Note that both Algorithm 1 (line 7) and Algorithm 2 (line 6)

require the evaluation of all error estimators at all parameters in Ξtrain to determine

the choice of µ. This does not lead to large computations since the calculations

are only performed with the reduced space of size N , such that we obtain K re-

duced eigenpairs for any µ ∈ Ξtrain, see also Section 5.3. However, Algorithm 1

(line 10) and Algorithm 2 (line 8) require also �nite element solutions which then

determine the reduced basis space. The multi-choice variant rests on the intuition

that the individual eigenfunctions can and should be approximated separately. In

contrast, the single choice variant takes into account that the approximation power

of eigenfunctions to large eigenvalues can be exploited also for eigenfunctions to

smaller eigenvalues. During the greedy procedure, we orthonormalize the selected
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Algorithm 1 Multi-choice greedy

1: for i = 1, . . . , K do

2: ζi ← ui(µ̂)
3: end for

4: N ← K
5: while N < Nmax do

6: for i = 1, . . . , K do

7: µmax,i ← arg maxµ∈Ξtrain
ηi(µ)

8: if ηi(µmax,i) > εtol then

9: N ← N + 1
10: ζN ← ui(µmax,i) (orthonormalized)
11: end if

12: end for

13: if maxµ∈Ξtrain,1≤i≤K ηi(µ) < εtol then

14: break

15: end if

16: end while

Algorithm 2 Single-choice greedy

1: for i = 1, . . . , K do

2: ζi ← ui(µ̂)
3: end for

4: N ← K
5: while N < Nmax do

6: (µmax, imax)← arg maxµ∈Ξtrain,1≤i≤K ηi(µ)
7: N ← N + 1
8: ζN ← uimax(µmax) (orthonormalized)
9: if maxµ∈Ξtrain,1≤i≤K ηi(µ) < εtol then

10: break

11: end if

12: end while

basis functions. Not only does this yield small condition numbers of the reduced

systems, it is also bene�cial for the special treatment of multiple eigenvalues des-

cribed in the next section.

In Algorithm 1 (line 10) and Algorithm 2 (line 8), an orthonormalization is per-

formed. For this purpose, let ΠN : Vh → VN be the L2-orthogonal projection to

the current reduced space. For a snapshot candidate ζ ∈ Vh, i. e., one of the ei-

genfunctions chosen as described above, we compute ζ̃ := ζ − ΠNζ. Then, if ‖ζ̃‖0

is su�ciently large (≥ εproj), the new contribution ζ̃

‖ζ̃‖0
is included in the reduced

basis. In case of multiple eigenvalues, the greedy method needs to be modi�ed as

follows: Assume an index 1 ≤ ı̃ ≤ K and a parameter µ∗ have been selected by
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means of the eigenvalue-based estimators (ηi)i=1,...,K , in Algorithm 2 (line 6), or

several parameters µ∗ have been selected in Algorithm 1 (line 7), such that the

span of uı̃(µ∗) is to be included in the reduced space. However, a large value of

ηı̃(µ
∗) merely indicates that the corresponding (�ne) eigenspace Uı̃(µ∗) contains

functions that are badly approximated by the current reduced space. Nevertheless

the eigenspace might also contain other functions that are already well approxima-

ted. Consequently, if the detailed eigenvalue associated with a chosen snapshot has

multiplicity greater than one, we aim to add all the eigenfunctions for the multiple

eigenvalue, except the ones which are already approximated well enough. A moti-

vation for exploring the whole eigenspace for multiple eigenvalues is to guarantee

that we take the correct eigenvalue/eigenfunction, since we cannot ensure that the

indexed eigenvalue/eigenfunction in the reduced space is the same as in the de-

tailed calculation. This is due to the fact that there is no prescribed ordering for

the eigenfunctions corresponding to a multiple eigenvalue.

As for the de�nition of di(µ), one has to compute a su�cient number K ′ > K of

eigenfunctions of the �nite element problem µEVP (11) such that

λK′(µ
∗)/λK(µ∗) > 1 + ελ.

Then, lines 9�10 in Algorithm 1 are replaced by:

for all j ≥ 1 with |λj(µmax,i)− λi(µmax,i)|/λi(µmax,i) ≤ ελ do

if ‖uj(µmax,i)− ΠNuj(µmax,i)‖L2(Ω) ≥ εproj then

N ← N + 1

ζN ← uj(µmax,i) (orthonormalized)

end if

end for

Analogously, lines 7�8 in Algorithm 2 now read as:

for all j ≥ 1 with |λj(µmax)− λimax(µmax)|/λimax(µmax) ≤ ελ do

if ‖uj(µmax)− ΠNuj(µmax)‖L2(Ω) ≥ εproj then

N ← N + 1

ζN ← uj(µmax) (orthonormalized)

end if

end for

Here, ΠN : Vh → VN denotes the L2-orthogonal projection. The parameter εproj is

a small tolerance that prevents the selection of functions that are already approx-

imated su�ciently well.
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In our calculations, we need as already mentioned an error estimator for the K-th

eigenvalue. For the computation of this estimator, we need a rough approximation

of the (K + r)-th eigenvalue. In order to ensure that our reduced space has the

ability to roughly approximate this (K+ r)-th eigenvalue, we use an initial approx-

imation space in which we include the corresponding components. We suggest to

include components using the proper orthogonal decomposition method described

in Section 5.1 (with N = Ninit) applied to a small number of snapshots. Here, the

snapshots S ⊂ Vh are associated with a training set ΞPOD
train typically of size 2P , ta-

king into account the extension described above. This initial approximation space

of dimension Ninit, which is constructed as an initialization step for the greedy algo-

rithm, should be su�ciently large as the reliability of the error estimators analyzed

in Section 5.3 can depend on the dimension of the reduced space. To make sure

that we are able to calculate and to approximate the (K + r)-th eigenvalues, we

choose our Ninit to be at least (K + r) times a factor ≥ 1.5.

In the following, the performance of the proposed algorithms is illustrated by nu-

merical examples, in two and in three dimensions. For the two-dimensional calcu-

lations we use plane strain elasticity while for the three-dimensional simulations we

use linear elasticity. The implementation is performed in MATLAB based on the

RBmatlab library [50]. We investigate the individual components and highlight

their bene�ts in several steps. All following examples contain multiple eigenvalues.

First we choose Ω as a rectangle of size 3.0×1.0 with Dirichlet boundary on the left

and on the right. Let Ω be split into three subdomains of size 1.0×1.0. The material

parameters E and ν used for these subdomains are in the range of 10 − 100 and

0.1 − 0.4, respectively; we have P = 6 and Q = 6. We choose a uniform random

sample of size 10000 as set of training parameters Ξtrain ⊂ P . To evaluate the

errors, another su�ciently rich set of parameters Ξtest ⊂ P is used of size 1000.

For our initial space we choose Ninit ≤ 40, depending on the desired number of

eigenvalues K. We always report the average errors of the reduced approximations

given by
1

#Ξtest

∑
µ∈Ξtest

λred, i(µ)− λi(µ)

λi(µ)

and comment on the standard deviation in Remark 5.4.

For the generalized coercivity estimate, we exploit the a�ne decomposition of the
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bilinear form and set

g(µ) := min
q=1,...,Qa

θqa(µ)

θqa(µ̂)
. (26)

We emphasize that g(µ) merely relates the bilinear forms a(·, ·;µ) and â(·, ·); a
coercivity estimate for a(·, ·;µ) itself is not required in the present context. Note

that (26) indeed yields an admissible parameter dependent constant provided the

bilinear forms aq(·, ·) in (14) are positive semi-de�nite and the coe�cient functions

θq(·) in (14) are positive; see, e. g., [121, Sect. 4.2.2]. This is true for our application.
Better results, i. e., a larger lower bound, could be obtained by the more expensive

successive constraint method [86]. In the present setting, the estimate (26) is ty-

pically smaller than the exact solution of the corresponding generalized eigenvalue

problem by a factor ranging from 0.7 to 0.98.

We �rst illustrate the necessity of the extended selection for multiple eigenvalues.

Figure 5.2 shows the behavior of a POD method with (left) and without (right)

the extended selection for the �rst two eigenvalues (K = 2). Figure 5.3 shows the

same comparison for the greedy method (Algorithm 2). For both the POD method

and the greedy method, we observe that in the variants without extension the con-

vergence for the second eigenvalue becomes slower after a certain number of basis

functions has been included. In contrast, the extended selection yields convergence

curves that approximately coincide. The shortcomings of the non-extended met-

hods may be explained by the fact that the second eigenvalue has multiplicity two

for certain parameters and in these cases, for the multiple eigenvalue, the correct

eigenfunction is not necessarily chosen. Note that the e�ect is more signi�cant for

a smaller POD training size (Figure 5.2, second row) as it is less likely that all

directions of an eigenspace are present in the snapshot set. The convergence of the

second reduced eigenvalue possibly improves drastically if, incidentally, the missing

component is added during the greedy method.

Next, we illustrate the bene�t of Algorithm 2 in comparison to Algorithm 1. In

Figure 5.4, for K = 4, one can see that with Algorithm 1 (left) the convergence be-

havior varies over the course of the greedy method while with Algorithm 2 (right)

all desired eigenvalues exhibit similar convergence. This also holds true for the

errors in the eigenfunctions not shown here. The poor convergence of the third ei-

genvalue only improves rapidly at N ≈ 170, after the other three eigenvalues have

reached an accuracy in the order of the target tolerance, and thus the algorithm

only chooses eigenvalue 3. This e�ect, namely an imbalanced resolution of the rele-
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Figure 5.2: Error decay for the eigenvalues with the POD method: Extended (left)
vs. non-extended (right). First row: Training size 10000. Second row:
Training size 1000.

vant eigenspaces during the greedy method, is directly related to the inappropriate

a priori assumption of Algorithm 1 that roughly the same number of snapshots

corresponding to the �rst K eigenvalues should be included in the reduced space.

At this point it should also be noted that in general Algorithm 1 creates a larger

reduced basis space than Algorithm 2 as soon as more eigenvalues have a poor

convergence.

To further illustrate the behavior of the single-choice greedy method, in Figure 5.5,

we report the accumulated numbers of chosen eigenfunctions corresponding to

λ1, . . . , λK over the course of Algorithm 2 for K = 4 and K = 7 (�rst row), as

selected by the error estimators in line 6. The reason for the greedy algorithm not

selecting any eigenfunctions before a basis size of 40 is that this is the size of our

initial space. The respective error decay for K = 7 is depicted in Figure 5.5 (second

row). Note that the good convergence (in particular, similar rates for all outputs of

interest simultaneously) is achieved by a rather uneven distribution. The diagrams

indicate that, for both values of K, larger eigenvalues as well as possibly double
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Figure 5.3: Error decay for eigenvalues with the greedy method. Extended (left)
vs. non-extended (right): Training size 1000.
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Figure 5.4: RB error decay: Comparison of Algorithm 1 (left) and Algorithm 2
(right) for K = 4.

eigenvalues are preferred by the algorithm. This and the fact that, although fewer

eigenfunctions are included for the smaller eigenvalues than for the larger ones, but

nevertheless the error decay is equal, mean that the eigenfunctions corresponding

to larger eigenvalues are e�ectively used to approximate the ones corresponding to

smaller eigenvalues.

We now investigate the performance of the greedy method in more detail. For

this purpose, we also consider the e�ectivity numbers γi, 1 ≤ i ≤ K, of the error

estimators and its maximal ratio R de�ned by

γi :=
1

#Ξtest

∑
µ∈Ξtest

ηi(µ) · λi(µ)

λred, i(µ)− λi(µ)
, R :=

maxi=1,...,K γi
mini=1,...,K γi

.

As already mentioned, the estimators derived in Section 5.3 are of asymptotic cha-

racter and therefore generally not reliable for small N . To prevent a misleading
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Figure 5.5: First row: Accumulated numbers of chosen eigenfunctions over the
course of Algorithm 2 for K = 4 and K = 7. Second row: Error
decay for K = 7.

selection of basis functions in the �rst few greedy steps, the initialization is used

to generate an initial basis.

Figure 5.6 shows the error decay (left), the e�ectivity numbers of the a posteriori

estimators (center) and the accumulated index counts (right) for K = 5 with and

without the initialization. In this case, a similar convergence is achieved for both

algorithms, and the index count plots also show a similar behavior. In the pre-

asymptotic range, we observe a di�erence in the e�ectivity numbers. Without

initialization these numbers possibly depend sensitively on the selected snapshots.

While this does not in�uence the overall performance for K = 5, for K = 7 we do

get extremely poor results if we start directly with the greedy algorithm. This is

caused by the fact that the approximation of d̃i(µ) by di(µ) is then not reliable.

Thus we always include the initialization step in our adaptive algorithms. In our

experiments, the described initialization always prevents the e�ectivity numbers

from having jumps and leads to good convergence of the greedy methods. For

instance, Figure 5.7 shows the e�ectivity measures corresponding to the error curves
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Figure 5.6: Comparison of Algorithm 2 without (top) and with (bottom) the ini-
tialization described above for K = 5 for a selected case in which
the greedy algorithm without initialization does not fail. RB error de-
cay (left), e�ectivity numbers (center) and accumulated index counts
(right).

from Figure 5.4 (right) and Figure 5.5 (second row). The e�ectivities are virtually

constant and close together, which is re�ected in a small value of R. This is of

crucial importance for the performance of our Algorithm 2. In all our settings R

is below �ve, e. g., R = 3.41 for K = 4. Note that for K = 4 and K = 7, the same

eigenvalues show similar e�ectivities. A high e�ectivity ratio R possibly leads to an

oversampling of the eigenfunctions associated with the indices of a high e�ectivity

and thus a loss in the performance. At this point, although our error estimators

are for eigenvalues, we want to show that also the e�ectivities for the eigenvectors

are constant and close together. To do so we depict the results in Figure 5.8.

After having demonstrated the performance of the single components of our algo-

rithm, let us compare the results of our greedy method using the error estimator

and the best components with the convergence of the POD method. Comparing

the error plots in Figure 5.1 with the ones in Figure 5.4 (right) and Figure 5.5

(right), we see that we achieve very similar convergence behavior. In particular,

the error curves of our simultaneous reduced basis approximation for the individual

eigenvalues are similarly close to each other. Moreover, the accuracy reached at

N ≈ 200 di�ers only by a factor of roughly ten. We recall that the POD method

uses the full training set (namely 10000 �nite element solutions in this case which

leads to a computation time of over 10 h) to reach this accuracy while the greedy
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Figure 5.7: E�ectivity numbers of the estimators for K = 4 (left) and K = 7
(right).
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Figure 5.8: E�ectivity numbers for the eigenfunctions for K = 4.

method only needs a couple of hundred detailed simulations and the evaluation of

the estimator, which leads in this case to a computation time of 6-7 h. It should

be noted that this gap in computation time between POD and greedy increases

further with the complexity of the detailed solution. Let us emphasize that the

bounds from [124], i. e., di(µ)2 in the denominator of (23) instead of di(µ), lead

to a large ratio of the maximal and minimal e�ectivity value and thus to poorer

results in the multiple output case. Highly di�erent e�ectivity numbers result in

an over-selection of eigenfunctions associated with the largest e�ectivity numbers

and thus in a performance loss, hence, to a much less attractive greedy algorithm.

Remark 5.4 (Error evaluation). For completeness, Figure 5.9 shows a convergence

plot including the standard deviation for K = 6. In the semilogarithmic plots,

one can see that the standard deviation is always in the order of the (relative)

discretization error itself.
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Figure 5.9: RB discretization error for K = 6 with standard deviation (as unidi-
rectional error bar) for EV2 to EV5.

In the following, we show the speed-up, which is calculated serially using MATLAB

on a Macbook laptop; the standard routine eigs, which is based on ARPACK [99],

was used for solving the eigenvalue problems. We used linear �nite elements for the

discretization space Vh. With our greedy method as introduced above, a signi�cant

speed-up in the computation of eigenvalues can be achieved, as is shown for the

settings of K = 2 to K = 7 eigenvalues in Table 5.1. Here, the calculation of the

detailed solutions takes in the range of 3.5 to 3.6 seconds, while the calculation of

the reduced solution is possible in 0.021 to 0.078 seconds, resulting in a speed-up

of 140 to 43. The higher the value of N , the longer the reconstruction time, but in

this case the increase is approximately linear in N . Moreover, it should be noted

that the more accurately the detailed solution is calculated, the more expensive

the detailed calculation becomes while the cost for the calculation of the reduced

basis solution will stay in the same range, such that we would achieve even higher

speed-ups. In computations of practical relevance, the detailed and the reduced

accuracies have to be adjusted as it is described in [180]. Here we are mostly inte-

rested in the performance of the reduced basis algorithm, and thus we work with

a �xed moderate �nite element resolution of 15402 DoFs.

As can be seen in Table 5.2, the computation times for the error estimators (η) as

well as for the required o�ine components for the error estimators, i. e., solutions

of (24) and (25) (�assembly�) and computation of Â, increase for increasing values

of N . In the case of Â, the increase is approximately linear. Note that these longer

computations will only have to be performed in the o�ine phase and will not have

any impact on the computation times for the online phase. The computation of

g(µ) as de�ned in (26) is necessary for the error estimator and takes 0.0042 seconds.
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K 2 4 7
N 50 100 150 200 50 100 150 200 50 100 150 200

Detailed solution 3.5 3.5 3.6
Reduced solution 0.025 0.028 - - 0.037 0.043 0.050 0.055 0.057 0.067 0.075 0.082
Reconstruction 0.009 0.011 - - 0.009 0.012 0.016 0.019 0.010 0.013 0.018 0.021

Speed-up 140 125 - - 94 81 70 63 63 53 48 43

Table 5.1: Timings for the detailed solution and the online calculations (reduced
solution including error estimation; reconstruction of the �nite element
solution from the reduced solution) in seconds and speed-up numbers.

N η Â Assembly
50 0.0028 1.3672 6.076
100 0.0037 2.7640 6.156
150 0.0040 4.1144 6.272
200 0.0046 5.5995 6.312

Table 5.2: Timings for single components of the o�ine phase in seconds.

5.5. Application to complex geometries

Furthermore we show the ability of the newly developed reduced basis method

to approximate multiple eigenvalues in a two-dimensional wall-slab con�guration

with a thin elastomer layer in between. The �rst domain shape is an L-shape

with three non-overlapping subdomains representing the wall, the elastomer and

the slab, denoted by Ω1, Ω2 and Ω3, respectively. The corresponding domains are

chosen as Ω1 = [0, 1] × [0, 2.8], Ω2 = [0, 1] × [2.8, 3] and Ω3 = [0, 3] × [3, 4]. We

again used standard linear �nite elements with 30702 DoFs for these calculations.

The material parameters E and ν are chosen as E ∈ [10, 100] and ν ∈ [0.1, 0.4].

Since we aim for large numbers of eigenvalues, we perform our simulations for

K = 20. Figure 5.10 shows that we do not only obtain very good convergence for

the eigenvalues (left) but also for the corresponding eigenfunctions (right). The

error curves chosen to be represented in Figure 5.10 are representative examples

for the eigenvalue and eigenfunction errors in the wall-slab con�guration, while the

black lines denote the minimum and the maximum of the averaged errors over the

µ ∈ Ξtest, respectively. The speed-up is similar to the one analyzed in detail above.

For the wall-slab con�guration, we show in Table 5.3 the computation times in

the case of K = 20 eigenvalues. As can be seen, the computation of the detailed

solution takes 14.03 seconds, while the computations of the reduced solutions take

between 0.14 and 0.24 seconds, depending on the basis size N . This results in a

speed-up of 100 for N = 50 to 58 if we take N = 300 for an accuracy of 10−7.
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Figure 5.10: Wall-slab con�guration with thin elastomer: Reduced basis error of
eigenvalues (left) and eigenfunctions (right).

K 20
N 50 100 150 200 250 300

Detailed solution 14.03
Reduced solution 0.14 0.16 0.18 0.19 0.22 0.24
Reconstruction 0.027 0.035 0.041 0.049 0.054 0.065

Speed-up 100 87 78 73 63 58

Table 5.3: Timings for the detailed solution and the online calculations (reduced
solution including error estimation; reconstruction of the �nite element
solution from the reduced solution) for a slab-wall con�guration in se-
conds.

As the second domain we consider now a more complex one, targeted towards our

modeling application. Since we aim to apply our results to the modal analysis for

vibro-acoustics of laminated timber structures, as they occur in modern timber

buildings, we test the performance of our method on a three-dimensional geometry

representing the �rst �oor of a building. Although wooden structures consist of

orthotropic materials, we will use isotropic material parameters for the ease of com-

putation. Usually di�erent materials are used in the construction of a building. In

this case, we have three di�erent materials for the walls. More precisely, we assume

that the outer walls are subdomain one, which consists of one material and that

the interior walls can be divided into two more subdomains, namely ordinary walls

and load-bearing walls. Figure 5.11 depicts our geometry and the corresponding

domains. The material parameters E and ν range from 100− 1000 and 0.1− 0.4.

We perform our simulations for K = 10 and use standard �nite elements with

20994 degrees of freedom.

The �rst row in Figure 5.12 represents the �rst eigenfunctions for three di�erent
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Figure 5.11: Geometry and subdomains: Outer walls in red, inner load-bearing
walls in green, inner ordinary walls in blue.

parameter sets, while the second row represents the corresponding fourth eigen-

functions. We used the parameter sets

µ1 = (200, 0.1, 800, 0.3, 400, 0.2),

µ2 = (650, 0.36, 150, 0.25, 900, 0.11),

µ3 = (800, 0.3, 500, 0.1, 200, 0.4).

It can be observed that the eigenfunctions change signi�cantly depending on the

parameters while still being approximated very well by our method. Figure 5.13

shows the error decay for selected eigenvalues (left) and the corresponding eigen-

functions (right), as well as the minimum and maximum averaged errors. We again

obtain very good convergence.

Figure 5.12: Behavior of the eigenfunctions depending on parameter variations.
Top row depicts the �rst eigenfunction and bottom row the fourth
eigenfunction.

The speed-up in the three-dimensional setting is even more signi�cant. For the

�rst �oor of the building, we show in Table 5.4 the computation times for K = 10
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Figure 5.13: First �oor con�guration: Reduced basis error of eigenvalues (left) and
eigenfunctions (right).

eigenvalues. We observe that the computation of the detailed solution takes 31.59

seconds, while the computations of the reduced solutions take between 0.084 and

0.142 seconds, depending on the basis size N . This results in a speed-up of 376 for

N = 50 to 222 if we take N = 300 for an accuracy of 10−5.

K 10
N 50 100 150 200 250 300

Detailed solution 31.59
Reduced solution 0.084 0.096 0.102 0.111 0.125 0.142
Reconstruction 0.021 0.027 0.031 0.035 0.040 0.046

Speed-up 376 329 309 284 252 222

Table 5.4: Timings for the detailed solution and the online calculations for the �rst
�oor in seconds.

6. Isogeometric mortar reduced basis method for

elliptic eigenvalue problems

This section contains results from the publication "Reduced basis isogeometric

mortar approximations for eigenvalue problems in vibroacoustics", which is sub-

mitted by the author, B. Wohlmuth and L. Wunderlich, 2016, [81].

In vibro-acoustical applications, often complicated curved domains are of special

interest. Besides large constructions, such as bridges and buildings, also music

instruments are investigated. An important part of a violin is the wooden violin

bridge, depicted in Figure 6.1. The eigenvalues of a violin bridge play a crucial
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role in transmitting the vibration of the strings to the violin body and hence in-

�uence the sound of the instrument, see [59, 178]. Not only the material but also

the thickness plays an important role. Therefore we include the thickness as an

additional tenth parameter.

6.1. Isogeometric mortar method with geometry parameter

Due to the complicated curved domain and improved eigenvalue approximations

compared to �nite element methods, see [83], we consider an isogeometric discreti-

zation. Flexibility for the tensor product spline spaces is gained by a weak domain

decomposition of the non-convex domain. Isogeometric analysis, introduced in 2005

by Hughes et al. in [82], is a family of methods that uses B-splines and non-uniform

rational B-splines (NURBS) as basis functions to construct numerical approxima-

tions of partial di�erential equations, see also [15, 38]. We have seen above that

mortar methods are a popular tool for the weak coupling of non-matching meshes,

originally introduced for spectral and �nite element methods [16, 17, 19]. An early

contribution to isogeometric elements in combination with domain decomposition

techniques can be found in [48, 73]. A rigorous mathematical analysis of the a

priori error in combination with uniform stability results for di�erent Lagrange

multiplier spaces is given in [31] and applications of isogeometric mortar methods

can be found in [49, 151].

As mentioned before, we �nd mortar formulations as an inde�nite saddle point-

problem. The additional degrees of freedom for the Lagrange multiplier as well as

the need for a uniform inf-sup condition to achieve stability make mortar methods,

in general, more challenging than simple conforming approaches. Theoretically, the

Lagrange multiplier can be eliminated. However this often results in a global pro-

cess and is not carried out directly. While this concerns the detailed solution, the

reduced basis can be purely based on a primal space and results in a non-conforming

but positive de�nite approach. Then the saddle point structure becomes redundant

and we gain the e�ciency of a positive de�nite reduced system. In the following we

start by describing the geometric setup and the isogeometric mortar discretization

for the violin bridge.

We recall the eigenvalue problem of elasticity

− div σ(u) = λρu,
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Figure 6.1: Example of a violin bridge.
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Figure 6.2: Illustration of the orthotropic
structure of wood.

where ρ > 0 is the mass density and σ(u) depends on the material law of the struc-

ture under consideration. In our case, linear orthotropic materials are appropriate

since, as depicted in Figure 6.2, wood consists of three di�erent axes and only small

deformations are considered. Note that besides the cylindrical structure of a tree

trunk, we consider Cartesian coordinates due to the comparably small size of the

bridge. In the following let thus y denote the �ber direction, z the plane orthogonal

direction and x the radial direction. The curved domain of the violin bridge can

be very precisely described by a spline curve. Since it is not suitable for a single-

patch description, we decompose it into 16 three-dimensional spline patches shown

in Figure 6.3. While the description of the geometry could also be done with fewer

patches, the number of 16 patches Ωi gives us regular geometry mappings and a

reasonable �exibility of the individual meshes.

The decomposed geometry is solved using an equal order isogeometric mortar met-

hod as described in [31]. A trivariate B-spline space Vi is considered on each patch

Ωi. The broken ansatz space Vh =
∏
i

Vi is weakly coupled on each of the 16 interfa-

ces. For each interface Γs,m the two adjacent domains are labeled as one slave and

one master domain (i.e. Γs,m = ∂Ωs ∩ ∂Ωm) and the coupling space M(s,m) is set

as the trace space of the spline spaces on the slave domain and Mh =
∏

(s,m)

M(s,m).

Several crosspoints are present in the decomposition, where an appropriate local

degree reduction is performed as described in [31, Section 4.3] to guarantee stability.
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Figure 6.3: Decomposition of the three-dimensional geometry into 16 patches and
16 interfaces.

We use the standard bilinear forms for mortar techniques in linear elasticity

a(u, v) =
∑
i

∫
Ωi

σ(u) : ε(v) dx, m(u, v) =
∑
i

∫
Ωi

ρuv dx,

b(v, τ̂) =
∑
(s,m)

∫
Γs,m

[v](s,m)τ̂ dx,

where [v](s,m) = vs|Γs,m − vm|Γs,m denotes the jump across the interface Γs,m. We

note that no additional variational crime by di�erent non-matching geometrical

resolutions of Γs,m enters. The detailed eigenvalue problem is de�ned as (u, τ) ∈
Vh ×Mh, λ ∈ R, such that

a(u, v) + b(v, τ) = λm(u, v), v ∈ Vh,
b(u, τ̂) = 0, τ̂ ∈Mh.

As already mentioned, in addition to the nine material parameters Ei, Gij, νij, we

consider a geometry parameter µ10, describing the thickness of the violin bridge.

Transforming the geometry to a reference domain, we can interpret the thickness

parameter as one more material parameter.

We now execute the transformation of the geometrical parameters to the correspon-

ding material parameter. For this purpose let the parameter dependent geometry

Ω(µ) be a unidirectional scaling of a reference domain Ω̂, i.e., a transformation by

F (·;µ) : Ω̂ → Ω(µ), x = F (x̂;µ) = (x̂, ŷ, µ10ẑ), with x̂ = (x̂, ŷ, ẑ) ∈ Ω̂. Transfor-
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ming the unknown displacement and rescaling it as û(x̂) = DF (x̂;µ)T u(F (x̂;µ))

allows us to de�ne a symmetric strain variable on the reference domain as

ε̂(û(x̂)) = DF (x̂;µ)T ε(u(F (x̂;µ)))DF (x̂;µ).

The orthotropic sti�ness tensor is then transformed to

Ĉ(µ) =



A11 A12 µ−2
10 A13

A21 A22 µ−2
10 A23

µ−2
10 A31 µ−2

10 A32 µ−4
10 A33

µ−2
10 Gyz

µ−2
10 Gzx

Gxy


.

In terms of this coordinate transformation, the eigenvalue problem in the continu-

ous H1-setting reads, since detDF (x̂;µ) = µ−1
10 is constant, as

∫
Ω̂

ε̂(û) Ĉ(µ) ε̂(v̂) dx̂ = λ

∫
Ω

ρ û>

1

1

µ−2
10

 v̂ dx̂.

In our mortar case, the coupling conditions across the interfaces have to be trans-

formed as well. However due the a�ne mapping with respect to x, y and z, the

parameter dependence on b(·, ·) can be removed. Another material parameter of

interest for applications is the constant mass density ρ. However any change in

the constant ρ does not in�uence the eigenvectors. Only the eigenvalue is resca-

led, yielding a trivial parameter dependence. For this reason, the density is kept

constant in the reduced basis computations and can be varied as a postprocess by

rescaling the eigenvalues. The described material parameters allow for an a�ne

parameter dependence of the mass and the sti�ness, with Qa = 10, Qm = 2,

a(·, ·;µ) =

Qa∑
q=1

θqa(µ)aq(·, ·), m(·, ·;µ) =

Qm∑
q=1

θqm(µ)mq(·, ·).

6.2. Reduced basis for the saddle point problem

Reduced basis methods for the simultaneous approximation of eigenvalues and

eigenvectors have been analyzed in the previous section. Here, we apply these met-

hods to the previously described setting. An important di�erence to the previous
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example is that we wish to approximate a saddle point problem instead of a posi-

tive de�nite matrix. Previous works on saddle point problems construct a reduced

basis for both the primal and the dual space. This is necessary for example for

variational inequalities or when the coupling i.e. b(·, ·), is parameter dependent,

see [63, 69, 116]. To ensure the inf-sup stability of the discrete saddle point pro-

blem, supremizers should be added to the primal space, additionally increasing the

size of the reduced system.

In order to perform the reduction of the saddle point problem, we note that due

to the parameter independence of b(·, ·), which is an important but restrictive

assumption, we can reformulate the detailed saddle point problem (6.1) in a purely

primal form posed on the constraint space

Xh = {v ∈ Vh, b(v, τ̂) = 0, τ̂ ∈Mh}.

Also note that this formulation is not suitable for solving the detailed solution,

since, in general, it is costly to construct a basis of Xh and severely disturbs the

sparsity of the detailed matrices. Only in the case of so-called dual Lagrange mul-

tiplier spaces, a local static condensation can be carried out and the constrained

basis functions do have local support. However, in the reduced basis context the

constructed basis functions do automatically satisfy the weak coupling properties

and thus the saddle-point problem is automatically reduced to a positive de�nite

one.

Our reduced space is de�ned by XN := {ζn ∈ XN , n = 1, . . . , N}, where the redu-
ced basis functions ζn are selected using the greedy method presented before. Then

the reduced eigenvalue problem for the �rst K eigenpairs is given by:

Find the eigenvalues λred, i(µ) ∈ R and the eigenfunctions ured, i(µ) ∈ XN for

i = 1, . . . , K, such that

a(ured, i(µ), v;µ) = λred, i(µ) m(ured, i(µ), v;µ), v ∈ XN .

Nevertheless, adaptations for the online-o�ine decomposition of the error estimator

will have to be performed in the following. The main contribution of the estimator

is the residual

ri(·;µ) = a(ured, i(µ), ·;µ)− λred, i(µ)m(ured, i(µ), ·;µ).
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Figure 6.4: Non-matching isogeometric mesh of the violin bridge.

To adapt the online-o�ine decomposition from Section 5.3, we add additional terms

corresponding to the mass componentsmq. Let (ζn)1≤n≤N be the orthonormal basis

(w. r. t. m(·, ·; µ̂)) of XN and let us de�ne ξqn ∈ XN and ξm,qn ∈ XN by

â(ξqn, v) = aq(ζn, v), v ∈ Xh, 1 ≤ n ≤ N, 1 ≤ q ≤ Qa,

â(ξm,qn , v) = mq(ζn, v), v ∈ Xh, 1 ≤ n ≤ N, 1 ≤ q ≤ Qm.

In the following, we identify the function ured, i(µ) ∈ VN and its vector representa-

tion w. r. t. the basis (ζn)1≤n≤N such that (ured, i(µ))n denotes the n-th coe�cient.

Then, given a reduced eigenpair (ured, i(µ), λred, i(µ)), we have the error representa-

tion

êi(µ) =
N∑
n=1

Qa∑
q=1

θqa(µ) (ured, i(µ))n ξ
q
n − λred, i(µ)

N∑
n=1

Qm∑
q=1

θqm(µ) (ured, i(µ))n ξ
m,q
n .

Consequently, the main contribution of ηi(µ) can be decomposed using that we

have ‖ri(·;µ)‖2
µ̂;X′h

= â(êi(µ), êi(µ)) as before.

Now in the numerical simulations, the performance of the proposed algorithm is il-

lustrated by numerical examples. The detailed computations were performed using

geoPDEs [44], a Matlab toolbox for isogeometric analysis, the reduced computati-

ons are based on RBmatlab [50]. For the detailed problem, we use an anisotropic

discretization. In plane, we use splines of degree three on the non-matching mesh

shown in Figure 6.4. The mesh has been adapted locally to better resolve corner

singularities of the solution. In the z-direction a single element of degree four is

used. The resulting equation system has 45960 degrees of freedom for the displa-

cement, whereas the surface traction on the interfaces is approximated by 2025

degrees of freedom. We consider the ten parameters described in the problem set-
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Figure 6.5: Illustration of non-admissible parameter values in a lower-dimensional
excerpt of P2, varying νzx ∈ (0.01, 0.1), νxy ∈ (0.3, 0.5), Ey ∈ (100, 5000)
and �xing Ex = 1000, Ez = 2000 and νyz = 0.5.

ting, µ = (µ1, . . . , µ10) with the elastic moduli µ1 = Ex, µ2 = Ey, µ3 = Ez, the

shear moduli µ4 = Gyz, µ5 = Gxz, µ6 = Gxy, Poisson's ratios µ7 = νyz, µ8 = νxz,

µ9 = νyz and the scaling of the thickness µ10. The considered parameter values were

chosen according to real parameter data given in [136, Table 7-1]. We consider two

di�erent scenarios. In the �rst setting, we �x the wood type and take into account

only the natural variations, see [136, Section 7.10]. To capture the sensitivity of

the violin bridge, one can choose a rather small parameter range around a reference

parameter. We choose the reference data of fagus sylvatica, the common beech, as

given in Table 6.1, as well as the parameter range P1. The mass density is �xed in

all cases as 720kg/m3.

In our second test setting, we also consider di�erent wood types. Hence we also

consider a larger parameter set, including the parameters for several types of wood.

Based on a selection of some wood types, we choose the parameter range P2, see

Table 6.1. We note that not all parameters in this large range are admissible

for the orthotropic elasticity as they do not ful�ll the conditions for the positive

de�niteness of the elastic tensor. Thus, we constrain the tensorial parameter space

by

1− ν2
yzEz/Ey + ν2

xyEy/Ex + 2νxyνyzνzxEz/Ex + ν2
zxEz/Ex ≥ c0,

as well as Ex/Ey − ν2
xy ≥ c1, where the tolerances c0 and c1 are chosen according

to several wood types. For example, in Figure 6.5 we depict a lower-dimensional

excerpt of P2 which includes non-admissible parameter values.
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Figure 6.6: Convergence of the eigenvalues (top) and eigenfunctions (bottom). Pa-
rameter range P1 with a �xed thickness (left), with varying thickness
(middle) and parameter range P2 with varying thickness (right).

Ex [MPa] Ey [MPa] Ez [MPa] Gyz [MPa] Gzx [MPa] Gxy [MPa] νyz νzx νxy

µ̂ 14, 000 2, 280 1, 160 465 1, 080 1, 640 0.36 0.0429 0.448

P1 13, 000
� 15, 000

1, 500
� 3, 000

750
� 1, 500

100
� 1, 000

500
� 1, 500

1, 000
� 2, 000

0.3
� 0.4

0.03
� 0.06

0.4
� 0.5

P2 1, 000
� 20, 000

100
� 5, 000

100
� 2, 000

10
� 5, 000

100
� 2, 500

100
� 5, 000

0.1
� 0.5

0.01
� 0.1

0.3
� 0.5

Table 6.1: Reference parameter and considered parameter ranges.

First, we consider the e�ect of the varying thickness parameter on the solution of

our model problem. In Table 6.2 the �rst eigenvalues are listed for di�erent values

of the thickness, where we observe a notable and nonlinear parameter dependence.

A selection of the corresponding eigenfunctions is depicted in Figure 6.10, where the

strong in�uence becomes even more evident, since in some cases the shape of the

eigenfunction changes when varying the thickness. In the following reduced basis

tests, the relative error values are computed as the mean value over a large amount

of random parameters. The L2-error of the normed eigenfunctions is evaluated as

the residual of the L2-projection onto the corresponding detailed eigenspace. This

takes into account possible multiple eigenvalues and the invariance with respect to

a scaling by (−1).

The �rst reduced basis test is the simultaneous approximation of �ve eigenpairs
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EV µ10 = 0.5 µ10 = 1.0 µ10 = 2.0 ratio 0.5/1.0 ratio 1.0/2.0

1 0.4057 1.3238 3.6954 0.3065 0.3582
2 1.1613 3.8870 10.8071 0.2988 0.3597
3 4.4096 12.9562 26.5621 0.3403 0.4878
4 6.1371 19.3254 30.0050 0.3176 0.6441
5 13.5564 27.3642 53.2657 0.4954 0.5137
6 19.2229 46.2521 93.9939 0.4156 0.4921
7 27.6118 65.0940 111.6075 0.4242 0.5832
8 39.3674 96.8069 129.3406 0.4067 0.7485
9 57.8266 107.6749 189.6090 0.5370 0.5679
10 68.0131 130.8876 241.7695 0.5196 0.5414

Table 6.2: Smallest eigenvalues for di�erent thickness parameters.

on both parameter-sets P1 and P2 with the thickness parameter µ10 ∈ [0.5, 2]. We

use an initial basis of the size 25 computed by a POD, which is enriched by the

greedy algorithm up to a basis size of 250. In Figure 6.6, the error decay for the
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Figure 6.7: Convergence of the eigenvalues (left) and eigenfunctions (right). Para-
meter range P1 with varying thickness, simultaneously approximating
15 eigenpairs.

eigenvalue and the eigenfunction is presented. We observe very good convergence,

with a similar rate in all cases. As expected the magnitude of the error grows with

the complexity of the parameter range. Also an approximation of a larger num-

ber of eigenpairs does not pose any unexpected di�culties. Error values for the

eigenvalue and eigenfunction are shown in Figure 6.7 for an approximation of the

�rst 15 eigenpairs in the parameter-set P1, showing a good convergence behavior.

The reduced basis size necessary for a given accuracy increases compared to the

previous cases of �ve eigenpairs, due to the higher amount of eigenfunctions which

are, for a �xed parameter, orthogonal to each other. When considering the relative

error for the eigenvalues, see Figure 6.6 and Figure 6.7, we note that for a �xed ba-
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ting 15 eigenpairs.
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Figure 6.9: Sampling of the �rst and
15th eigenvalue within the
parameter set P1 as used
in the test set. Extre-
mal values: minλ1 = 0.29,
maxλ1 = 4.24, minλ15 =
100.19, maxλ15 = 593.65.

sis size, the higher eigenvalues have a better relative approximation than the lower

ones. In contrast, considering the eigenfunctions, the errors of the ones associated

with the lower eigenvalues are smaller compared to the ones associated with the

higher eigenvalues. In Figure 6.8, we see the same e�ect, when considering absolute

error values for the eigenvalue compared to the relative values. The error in the

eigenfunctions has the same ordering as the absolute error in the eigenvalue. For

the parameters under consideration, the lower and higher ones of the considered ei-

genvalues di�er by magnitudes as illustrated in Figure 6.9. Hence when computing

the relative error from the absolute ones, the error values of the high eigenvalues

are divided by a large number and become small compared to the lower eigenvalues.

Thus our eigenvalue reduced basis approximation of a violin bridge yields a good

approximation quality as well as a signi�cant complexity reduction to a positive-

de�nite system of less than 300 degrees of freedom. Furthermore, the geometry

parameter representing the thickness of the violin bridge has a signi�cant in�uence

on the eigenvalues and eigenfunctions, without posing further di�culties to the

reduced basis approximation.
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�rst eigenvalue: 0.4057 �rst eigenvalue: 1.1613 �rst eigenvalue: 3.6954

third eigenvalue: 4.4096 third eigenvalue: 12.9562 third eigenvalue: 26.5621

fourth eigenvalue: 6.1371 fourth eigenvalue: 19.3254 fourth eigenvalue: 30.005

Figure 6.10: In�uence of the thickness of the bridge on several eigenmodes.
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7. Reduced basis component mode synthesis for

elliptic eigenvalue problems

In this chapter, we have so far discussed reduced basis methods for eigenvalue

problems and derived the corresponding error estimators, showing that we can

approximate several, even multiple, eigenvalues simultaneously. Nevertheless the

considered approaches present possible remaining challenges. It is possible that

the required detailed solutions for the greedy algorithm cannot be computed due

to hardware or time restrictions. If the calculation is feasible, it can become very

costly in the o�ine phase since for a certain required accuracy the basis becomes

very large. Another possibility is that when, e.g. in the context of a building

construction, each component is assigned its own orthotropic material parameters,

the reduced basis space has to be built in a way that allows to accomodate the nine

orthotropic material parameters per component for all K eigenvalues.

7.1. Introduction to component mode synthesis

The component mode synthesis method [39, 40, 84] represents an alternative to

overcome these challenges for eigenvalue problems. A similar method used in

general for linear problems is the static condensation reduced basis method, see

e.g. [52, 85, 154]. It was also applied to eigenvalue problems in [169]. The compo-

nent mode synthesis allows to approximate eigenmodes and eigenvalues of a vibro-

acoustical problem, while dissecting the structure under consideration into its single

components, even when the generalized eigenvalue problem of the whole system is

not available. After the frequency and modal analysis of the single components, the

entire structure is considered as an assembly of the components. A review of compo-

nent mode synthesis methods and their origins as well as appropriate error measures

can be found in [45]. An important procedure in this context is the Craig-Bampton

method [41]. The origin of component mode synthesis methods lies in applicati-

ons in aerospace engineering [161]. Nevertheless the numerous �elds of interest for

these methods include �uid-structure interactions [114] and buckling [168]. Furt-

hermore hybrid methods have been presented in [46, 88, 103, 160, 162]. Recent

methods involve coupling modes, which correspond to the eigenfunctions of the

Poincaré-Steklov operator [25, 26, 27].

For the component mode synthesis we again consider the parameter µ-dependent

eigenvalue problem given by:
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Find the eigenvalue λ ∈ R and the eigenfunctions u ∈ Vh such that

a(u(µ), v;µ) = λ(µ)m(u(µ), v), v ∈ Vh,

which can be written in matrix notation as

Ax = λMx.

Then the idea is to split the global domain Ω into p non-overlapping subdomains,

i.e. Ω̄ =
⋃
j Ω̄j, and calculate bubble modes as well as static modes on the respective

subdomains, and �nally to set up the reduced eigenvalue problem. An example of

such a domain decomposition is shown in Figure 7.1 with the corresponding notati-

ons, where a three-dimensional L-shape domain is decomposed into 3 subdomains.

For ease of notation we denote the interfaces Γk := Γs,m = ∂Ωs ∩ ∂Ωm in the follo-

wing with k as a global numbering.

Figure 7.1: L-shape domain for component mode synthesis with domain split into
three subdomains.

The sti�ness matrix A ∈ Rn×n and the mass matrix M ∈ Rn×n of a component are

partitioned as follows with the indices I related to the internal and the indices Γ

related to the interface degrees of freedom

A =

(
AII AIΓ

AΓI AΓΓ

)
and M =

(
MII MIΓ

MΓI MΓΓ

)
.
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We �nd the coordinate transformation with the matrix

Ψ =

(
ΦII ΨIΓ

0 IΓΓ

)
,

where ΦII contains the bubble modes and ΨIΓ contains the static modes. Note

that the static and bubble modes do not necessarily span the whole Vh. Then the

mass and sti�ness matrices transform to the reduced ones given by

Ã = ΨTAΨ, M̃ = ΨTMΨ

and the reduced eigenvalue problem to be solved can be written as

Ãx = λM̃x,

where the matrices are given according to [14, 25, 119] with the static modes sΓk
i

and the bubble modes bΩj
i as

Ã =





λΩ1,1 0

. . .

λΩ1,K

. . .

λΩp,1

. . .

0 λΩp,K


0

0 [a(sΓk
i , s

Γl
j )]


,

and

M̃ =





1 0

. . .

1

. . .

1

. . .

0 1


[m(bΩk

i , sΓl
j )]

[m(bΩl
j , s

Γk
i )] [m(sΓk

i , s
Γl
j )]


.

These matrices are not diagonal, but since the sti�ness matrix Ã exhibits a clearer

sparsity than the mass matrix M̃ , this method is said to act through mass coupling.
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Now since we know how the reduced system looks like it remains open how the

respective bubble and static modes are built. For each subdomain Ωj, let us de�ne

the approximate bubble modes bΩj
i ∈ V̊h(Ωj), where V̊h(Ωj) is the space of functions

on Ωj, such that the trival extension on Ω is in Vh. The bubble modes bΩj
i are

obtained as the �rst K eigenfunctions of the variational eigenvalue problem:

Find (λΩj ,i, b
Ωj
i ) ∈ R× V̊h such that

aΩj(b
Ωj
i , v) = λΩj ,imΩj(b

Ωj
i , v), v ∈ V̊h(Ωj). (27)

The eigenfunctions bΩj
i are extended by zero outside Ωj and thus de�ned on the

whole domain Ω.

As the next step we have to de�ne the static modes on each subdomain by

s
Ωj ,Γk
i ∈ Vh(Ωj,Γk),

where

Vh(Ωj,Γk) := {vj,k = v|Ωj , v ∈ Vh, with v|Γl = 0, l 6= k},

for Γk being an interface of Ωj. We choose the static modes to be discrete harmonic,

hence we can de�ne it by the value on the interface Γk. The values on Γk are called

port modes pki ∈ Vh(Γk) with

Vh(Γk) := {vk = v|Γk , v ∈ Vh}.

The port modes are then lifted harmonically into the neighboring domain Ωj by

a(s
Ωj ,Γk
i , v) = 0, v ∈ Vh(Ωj,Γk), (28)

s
Ωj ,Γk
i = pΓk

i , on Γk,

which then yield according to [84] our static modes on each domain Ωj. We now

associate the static modes on the neighboring subdomains Ωl and Ωr belonging to

the same port mode, i.e.

sΓk
i :=

s
Ωl,Γk
i , on Ωl

sΩr,Γk
i , on Ωr

.

There are several ways to de�ne the port modes. Some of them are discussed in the

following. At this point we only give a short description of two possible methods to
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compute port modes, for more detailed reviews we refer to [28] and the references

therein.

The �rst method described here is the Craig-Bampton method [41]. This method

takes all interface DoFs into account. It �xes all DoFs to zero, except the i-th

boundary degree of freedom, which is set to unity and then, as already described

above, harmonically lifted into the domain to obtain the static modes.

The next method is based on the Poincaré-Steklov operator method [25, 28], which

solves an adapted eigenvalue problem on the interface. Given the mesh dependent

Poincaré-Steklov operator SΓ
h , we solve the eigenvalue problem

SΓk
h pΓk = λpΓk .

A realization of this eigenvalue problem is given by solving the following eigenvalue

problem:

Find the eigenvalue λ ∈ R and the eigenfunctions ũ ∈ Vh(Ωl ∪ Ωr) such that

aΩl(ũ, v) + aΩr(ũ, v) = λ

∫
Γk

ũv dx, v ∈ Vh(Ωl ∪ Ωr)

and restrict ũ to the interface Γk: p
Γk
i := ũ|Γk .

As already mentioned, the Craig-Bampton method generates a port mode for each

degree of freedom on the interface Γk, and therefore leads to many static modes

on each component when using a �ne mesh of the domain Ωj. In comparison,

methods like the Poincaré-Steklov method use only few port modes, which thus

allows to build and use only few static modes as well, while nevertheless obtaining

a certain accuracy. The lower amount of static mode constructions bene�ts our

reduced basis approach, as we will see later.

7.2. Application to complex geometries

In the following we present an L-shape domain decomposed into three subdomains

with two interfaces as depicted in Figure 7.1. The problem under investigation is

again the linear elasticity eigenvalue problem (5). For simplicity we again choose

the material to be isotropic. The parameters for this simulation and the next two

examples are E = 1000 and ν = 0.25 for the whole domain. In this setting we

calculate the �rst 20 eigenvalues. Figure 7.3 shows the results for the �rst, third,
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Figure 7.2: Comparison of the Craig-Bampton and Poincaré-Steklov methods for
20 and 40 static modes.

Figure 7.3: Comparison of the �rst, third, �fth and seventh (from top to bottom)
eigenmodes of the detailed solution and Craig-Bampton and Poincaré-
Steklov methods (from left to right) on the L-shape domain.

�fth and seventh eigenfunctions, where we compare the exact solutions calculated
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Figure 7.4: Relative error in the eigenvalues for the reduced basis component mode
synthesis for the L-shape domain.

Figure 7.5: Eigenfunctions 1, 3, 5 and 7 on the L-shape domain calculated with the
reduced basis component mode synthesis.

on the global domain at once, the Craig-Bampton method and then the Poincaré-

Steklov method with 40 static modes. In both cases good agreement of the modes

is observed.

In Figure 7.2 we depict the results for the eigenvalues. This time we show the accu-

racy of the Craig-Bampton and Poincaré-Steklov methods with 20 and 40 static

modes compared to the detailed solution solved on a global domain. Thereby we

see that the Craig-Bampton method is the more accurate method but also, as des-

Figure 7.6: First �oor domain decomposed into 33 subdomains. Full domain on
the left and example subdomains in the middle and on the right.
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EV λ λcms % EV λ λcms %

1 15.75 15.71 0.25 11 36.66 36.60 0.16
2 18.46 18.47 0.05 12 40.95 40.81 0.34
3 24.69 24.56 0.53 13 41.25 41.16 0.22
4 27.71 27.64 0.25 14 42.12 42.02 0.24
5 28.41 28.19 0.77 15 44.09 43.87 0.50
6 29.23 29.17 0.21 16 44.27 44.08 0.43
7 30.73 30.63 0.33 17 49.38 49.33 0.10
8 32.57 32.46 0.34 18 51.13 51.08 0.10
9 33.75 33.53 0.65 19 52.18 52.20 0.04
10 35.45 35.20 0.71 20 59.15 59.09 0.10

Table 7.1: Comparison of the eigenvalues obtained using the Poincaré-Steklov met-
hod with 40 static modes to the detailed solution.

Figure 7.7: Comparison of the �rst, third, �fth and seventh (from left to right)
eigenmodes on the �rst �oor domain. The detailed solution is depicted
in the �rst row and the component mode solution in the second row.

cribed above, uses many static modes per component, while the Poincaré-Steklov

method only uses 20 or 40 static modes in this case. We further observe the in�u-

ence of the number of used static modes for the Poincaré-Steklov method, where

the accuracy is improved for 40 static modes but nevertheless in all cases we obtain

relative errors of less than 2%. Furthermore it should be noted that when using

the Poincaré-Steklov method with 40 static modes, we have a complexity reduction

from 6705 DoFs to 140 DoFs.

Even though the global problem is split into several small local ones it is still very

costly to solve the detailed solutions on a subdomain when they are resolved with

a �ne mesh size. Since we have a parameter µ-dependent problem, with µ = (E, ν)

where E ∈ [500, 1500] and ν ∈ [0.2, 0.3], the problem has to be solved several times.

Therefore at this point it is adequate to couple the already well-known component
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Figure 7.8: Eight story building decomposed into 16 subdomains. Full domain on
the left and the subdomains in the middle and on the right.
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Figure 7.9: Relative error of the component mode synthesis method for the eight
story building example.

mode synthesis described above with the reduced basis methods. To solve the ei-

genvalue problem given by (27) for the bubble modes and for the calculation of the

eigenfunctions on the interface Γk, it is possible to use the newly derived reduced

basis eigenvalue problem from Section 6. Furthermore for the harmonic lifting (29),

which is a simple right-hand-side problem, well-known reduced basis methods can

be employed, where the basis is either built with a greedy method or with a POD

as for example in [129, 141] and in the references therein.

Now we couple the component mode synthesis with our reduced basis eigenvalue

method to generate the bubble functions. The reduced basis size for these simu-

lations is 40 for 20 eigenvalues and we use the Poincaré-Steklov method with 40

static modes. As seen in the sections before, for obtaining an accurate approxi-

mation for such a large number of eigenvalues, usually larger reduced spaces are

employed. Nevertheless with this rough approximation, we obtain the results for

the eigenvalues depicted in Figure 7.4 and the results in Figure 7.5 for the eigen-
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EV λcms EV λcms EV λcms EV λcms

1 0.16 6 3.12 11 11.01 16 16.04
2 0.26 7 5.16 12 12.61 17 16.64
3 0.72 8 6.68 13 14.39 18 16.85
4 1.86 9 7.56 14 14.79 19 17.08
5 2.71 10 8.58 15 15.13 20 17.13

Table 7.2: First 20 eigenvalues of the eight story building.

Figure 7.10: Exemplary resulting eigenfunctions 1, 3 and 5 (from left to right) of
the eight story building.

functions. Except for the outlier case corresponding to eigenvalue 16, we lie in

the engineering tolerance of less than 10%. Furthermore the eigenfunctions are in

very good accordance with the ones depicted above in Figure 7.3. Increasing the

reduced basis size will lead to a decrease of the error and �nally results similar to

the ones depicted in Figure 7.2 are obtained.

Finally we want to show the potential of the proposed method for an example with

more engineering relevance and perform calculations on a �rst �oor domain. It

is decomposed into 33 subdomains with 28 interfaces as depicted in Figure 7.6.

The resulting di�erences between the eigenvalues obtained by the Poincaré-Steklov

method with 40 static modes and the ones from the detailed solution are found in

Table 7.1. There we observe a very good accordance between the component mode

synthesis and the detailed solution. In all cases, we see a very good accuracy with

a relative error of less than 1%.

In Figure 7.7 the �rst, third, �fth and seventh eigenmodes for the �rst �oor domain

are depicted. We observe very good accordance of the eigenfunctions, while the

number of degrees of freedom is reduced from 33912 DoFs in the full model to 1700

DoFs in the component mode model.

To demonstrate the bene�ts of this component mode method, we consider an even
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more complex geometry, namely an eight story building as depicted in Figure 7.8.

For the component mode synthesis, we only use the two subdomains which are

depicted in the middle and on the right of the �gure to build the entire model.

These subdomains are then used several times each. For this simulation 300 static

modes are used per component, since the interface is now the entire ground plan of

the �rst �oor example, which is larger and much more complex than in the previous

cases, where the interface consisted of simple rectangles. In Figure 7.9 we depict

the relative error of the component mode synthesis in the example of the eight

story building. It can be seen that even though we are using large components

with complex interfaces, a very good accuracy is achieved, with relative errors

under 3.5%. The resulting �rst 20 eigenvalues are shown in Table 7.2 and several

representative eigenfunctions in particular associated with the �rst, third and �fth

eigenvalues are depicted in Figure 7.10.
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Chapter IV.

Energy correction methods for

corner domains

In this chapter we deal with domains with reentrant corners and possible methods

to obtain optimal convergence rates despite the pollution e�ect caused by the corner

singularities.

8. Domains with reentrant corners

The building structures under investigation in this thesis constitute a special chal-

lenge since in several places non-smooth structures arise, for example when building

components such as walls and ceilings or door frames meet. In these cases corner

singularities are found which have to be treated accordingly in our numerical set-

ting. The equation of main interest for our vibro-acoustic analysis is the linear

elasticity equation, which is an elliptic problem. We will thus in the following

consider elliptic problems in non-smooth domains.

8.1. Introduction to corner singularities and the pollution

e�ect

As demonstrated in Section 2.2, in order to prove optimal convergence in the L2-

norm, one usually uses the full elliptic regularity of the dual problem. The drawback

of this procedure is that if the H2-regularity does not hold, such as in the case of

polygonal domains with reentrant corners, the optimal convergence is lost.

In the following chapter, if not stated otherwise, we will consider as a model problem

the Poisson equation with homogeneous boundary conditions

−∆u = f in Ω, u = 0 on ∂Ω (29)

on the domain Ω ⊂ R2 de�ned as above, which has a single reentrant corner. Its

solution consists of a regular and a singular part, where the singularity is only due

to the reentrant corner with interior angle π < ω < 2π, as depicted in Figure 8.1.

The arguments in the following chapters will be local ones, thus allowing us to
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Figure 8.1: Domains with reentrant corners.

easily extend our considerations to the case of several reentrant corners.

As mentioned above and according to [96], it is possible to expand the solution of

the Poisson equation into its regular and singular parts by the following lemma.

Lemma 8.1 (Expansion of the solution). Let Ω be a polygonal with a single reen-

trant corner of an angle ω ∈ (π, 2π), m ∈ N0, and f ∈ Hm
−γ(Ω) for γ > 1 +m− π

ω
.

Also, let Nω ∈ N be such that

i = 1, ..., Nω :
iπ

ω
< 1 +m+ γ, and

(Nw + 1)π

ω
> 1 +m+ γ.

Then the unique solution u ∈ H1
0 (Ω) of (29) belongs also to Hm+2

γ (Ω) and it can

be decomposed into

u =
Nw∑
i=1

kisi +W, (30)

where W ∈ Hm+2
−γ (Ω) ∩ H1

0 (Ω) and kn ∈ R. Moreover, it satis�es the following

a priori estimates:

‖u‖m+2,γ . ‖f‖m,−γ,
Nω∑
n=1

|ki|+ ‖W‖m+2,−γ . ‖f‖m,−γ.

In Lemma 8.1, the singular parts consist of the singular functions for i ∈ N given

in polar coordinates (r, ϕ) as

si(r, ϕ) = η(r)r
iπ
ω sin(

iπ

ω
ϕ),

where the smooth cut-o� function η(r) is one in a neighborhood Ω′ ⊂ Ω of the

singularity and the coe�cients ki are called the stress intensity factors, as detailed

in [21]. For further details we refer to the works of Kondratiev [96] and Maz�ja,

Plamenevskii [109] as well as to the works of Grisvard [67] and Blum, Dobrowol-
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ski [21]. Since the �rst singular function s1 is not in H2(Ω) or higher, also the

solution of the Poisson equation (29) is in general not in H2(Ω). Thus in the pre-

sence of reentrant corners, optimal convergence in the L2-norm can in general not

be achieved by standard methods with quasi-uniform re�nement since the solution

does not lie in H2(Ω).

The results in Table 8.1 show this behavior in case of the exact solution given by

u = s1(r, φ) + s2(r, φ) and f = 0 on the L-shape domain depicted in Figure 8.1.

It can also be observed that the change to higher order ansatz functions does not

in�uence the convergence rate.

k = 1 k = 2

level ‖u− uh‖0 rate ‖u− uh‖0 rate
1 1.1606e-01 - 1.7134e-02 -
2 4.1410e-02 1.49 7.0661e-03 1.28
3 1.5316e-02 1.44 2.7236e-03 1.38
4 5.8013e-03 1.40 1.0453e-03 1.38
5 2.2296e-03 1.38 4.0414e-04 1.37
6 8.6488e-04 1.37 1.5751e-04 1.36
7 3.3764e-04 1.36 6.1766e-05 1.35
8 1.3242e-04 1.35 2.4323e-05 1.34

Table 8.1: Convergence rates on an L-shape domain for order one and two ansatz
functions.

The following result will show that even employing a weighted Sobolev norm, which

reduces the in�uence of the neighborhood of the singularity, does not help to over-

come the pollution e�ect [11, 21, 22, 155].

Lemma 8.2 (Pollution e�ect). Let u be the solution of (29) with f ∈ H0
−α(Ω) for

some α > −1. If k1 6= 0 in (30), then

‖u− uh‖0,α & ‖∇(u− uh)‖2
0 & h

2π
ω .

Proof. The �rst inequality is given by

‖∇(u− uh)‖2
0 = |a(u, u)− a(uh, uh)|

= |f(u)− f(uh)| ≤ ‖f‖0,−α‖u− uh‖0,α,

where we use that f is in H0
−α(Ω). For the second inequality we refer to [53].

When performing the calculations from Table 8.1 again, but this time with the
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weighted Sobolev norm, we still observe suboptimal convergence rates for the solu-

tion on the whole domain in Table 8.2. This is independent of the particular choice

of the weight α. Thus only changing the norm does not improve our convergence

rates.

k = 1 k = 1 k = 2 k = 2

level ‖u− uh‖0,α rate ‖u− uh‖0,α rate ‖u− uh‖0,α rate ‖u− uh‖0,α rate
1 9.5228e-02 - 5.8391e-02 - 8.6233e-03 - 6.0284e-03 -
2 2.9239e-02 1.70 1.4086e-02 2.05 1.9374e-03 2.15 1.0526e-03 2.52
3 9.6829e-03 1.59 4.2196e-03 1.74 6.1894e-04 1.65 3.7698e-04 1.48
4 3.4360e-03 1.49 1.4528e-03 1.54 2.3724e-04 1.38 1.4885e-04 1.34
5 1.2798e-03 1.42 5.3821e-04 1.43 9.3743e-05 1.34 5.9031e-05 1.33
6 4.9065e-04 1.38 2.0664e-04 1.38 3.7180e-05 1.33 2.3422e-05 1.33
7 1.9108e-04 1.36 8.0687e-05 1.36 1.4753e-05 1.33 9.2944e-06 1.33
8 7.5045e-05 1.35 3.1757e-05 1.35 5.8546e-06 1.33 3.6884e-06 1.33

Table 8.2: Rates in weighted norms of the Poisson equation with α = 0.3333 and
α = 1.3333 for the �rst two columns with linear ansatz functions and
α = 1.3333 and α = 2.3333 for the last two columns with second order
ansatz functions.

The above results do not only hold for the "simple" case of the Poisson equation,

but are also valid for all other elliptic equations, such as the elasticity equation

given by Equation (3) with u composed of singular functions as stated in [138] and

f = 0. This is shown by the results depicted in Table 8.3 for ansatz functions of

order k = 1 and k = 2.

k = 1 k = 2

level ‖u− uh‖0 rate ‖u− uh‖0 rate
2 2.0194e-01 - 4.1246e-02 -
3 8.0865e-02 1.32 1.6494e-02 1.32
4 3.3635e-02 1.27 6.9601e-03 1.24
5 1.4310e-02 1.23 3.0019e-03 1.21
6 6.1613e-03 1.22 1.3046e-03 1.20
7 2.6693e-03 1.21 5.6847e-04 1.20

Table 8.3: Convergence rates for the isotropic elasticity equation on an L-shape
domain with ansatz functions of order one and two.

Also in the case of eigenvalue problems the pollution e�ect can be observed, and the

results also enlight that the eigensolutions can have di�erent regularities. This can

be seen in Table 8.4 and Table 8.5, where the eigenvalues show di�erent convergence

rates for ansatz functions of order one and two, respectively. The non-optimal rates

are written in bold.
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1.EV 2.EV 3.EV 4.EV 5.EV
level |λ− λh| rate |λ− λh| rate |λ− λh| rate |λ− λh| rate |λ− λh| rate
1 0.4798 - 0.4392 - 1.6788 - 2.1304 - 4.4007 -
2 0.1449 1.73 0.1555 1.50 1.0362 0.70 1.1693 0.87 1.6094 1.45
3 0.0493 1.55 0.0439 1.82 0.2984 1.80 0.3161 1.89 0.4384 1.88
4 0.0178 1.47 0.0116 1.92 0.0787 1.92 0.0804 1.97 0.1133 1.95
5 0.0067 1.42 0.0030 1.96 0.0201 1.97 0.0202 1.99 0.0287 1.98

Table 8.4: Convergence rates for the Laplace eigenvalue problem on an L-shape
domain for ansatz functions of order one.

1.EV 2.EV 3.EV 4.EV 5.EV
level |λ− λh| rate |λ− λh| rate |λ− λh| rate |λ− λh| rate |λ− λh| rate
1 0.0414 - 0.0547 - 0.7611 - 0.9702 - 0.7921 -

2 0.0173 1.26 0.0046 3.56 0.0457 4.06 0.0498 4.28 0.0658 3.59

3 0.0070 1.30 0.0005 3.26 0.0031 3.89 0.0033 3.93 0.0048 3.78

4 0.0028 1.32 6.08e-05 2.99 0.0002 3.96 0.0002 3.97 0.0004 3.76

5 0.0011 1.33 8.61e-06 2.82 1.23e-05 4.00 1.31e-05 4.00 2.90e-05 3.60

Table 8.5: Convergence rates for the Laplace eigenvalue problem on an L-shape
domain for ansatz functions of order two.

8.2. Basic methods for singularities: graded mesh technique

Corner singularities, as introduced before, pollute the solution, destroy the optimal

convergence behavior and therefore require special numerical treatment. As also

seen before in Section 8.1, quasi-uniform mesh re�nements or weighted spaces are

not su�cient to overcome the pollution e�ect. Several methods have been deve-

loped to improve the energy approximation in the neighborhood of a singularity.

Among them are graded meshes as described in [2, 3, 4] and adaptive meshes such

as in [3, 6, 148]. For adaptive meshes error estimators play an important role,

which leads to an increased computational cost. It is also possible to add suitable

singular functions to the �nite element space [7, 21, 155].

In the following section we introduce graded meshes, following [2]. As mentioned

above, singularities in the geometry of a domain constitute an important challenge

on the accuracy of our numerical approximations. In this context, local mesh

grading allows for mesh re�nement where it is required while, in contrast to uniform

mesh re�nement, keeping the computation cost at a reasonable level. We consider

local mesh grading in two dimensions, where the singular part si of the solution is
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written in a polar coordinate representation as described in Section 8.1

si = kiη(r)r
iπ
ω sin(

iπ

ω
ϕ),

with the stress intensity factor ki and the smooth cut-o� function η(r). We need

to �nd a coordinate transformation, such that the points x with distance to the

corner C, which is for simplicity reasons assumed to lie in (0, 0), less than R0 will

be transformed onto themselves. We use the transformation from r, ϕ to ρ, ϕ(
r

R0

)G
=

ρ

R0

, G ∈ (0, 1], (31)

as introduced in [2]. We can now express si in terms of ρ and ϕ as

si = si(ρ, ϕ) = k̄iη̄(ρ)ρ
iπ
ωG sin(

iπ

ω
ϕ),

obtaining the derivatives ∂k+1si
∂ρk+1 ∈ L2 for k ≥ 1 and

G < π

kω
. (32)

Figure 8.2: Graded meshes with di�erent mesh sizes and grading parameter 1/2.

The smooth solution of the transformed problem still requires several calculations

to be performed, for example an adequate transformation of input data. Thus

we would like to reduce the computational cost and instead of transforming the

problem, we rather transform the mesh by an inverse mapping.In order to do that,

the mesh around the corner is created in the coordinates transformed by (31),

then the coordinates are transformed back on the domain of computation and all

calculations are performed in the original coordinate system. The transformed

element diameter diam(e) depends on the distance of an element e to the corner
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coordinate point C. We distinguish between elements which have a vertex at the

corner and those who do not. For the elements that have a vertex in the corner

the derivation of the relationship yields

diam(e) ∼ h
1
G

since in the transformed domain these are contained in the circle with radius ρ = h.

For the other elements ρo−ρi ∼ h, with ρo and ρi the outer and inner radius of the

elements, respectively. Thus with rGo = ρo, rGi = ρi and ro − ri ∼ diam(e) we have

h

diam(e)
∼ rGo − rGi

ro − ri
= GrG−1

∗

for r∗ ∈ (ri, ro) and r∗ ∼ dist(e, C). All in all we obtain for the grid width h and

the re�nement parameter G that

diam(e) ∼

h
1
G , C ∈ ē

hdist(e, C)1−G, C /∈ ē
.

For the error estimates in the H1 and L2 norms we �nd according to [2] that for G
as in (32) it holds that

‖u− uh‖1 . h, and ‖u− uh‖0 . h2.

An easy way to construct these meshes is to use the transformation given by

r := [(x1 −X1)2 + (x2 −X2)2]1/2,

x1 := X1 + (x1 −X1)(r/R0)−1+1/G,

x2 := X2 + (x2 −X2)(r/R0)−1+1/G.

In the following we want to show the in�uence of graded meshes with di�erent

grading parameters in Table 8.6 and Table 8.7. We highlight the importance of

the grading parameter and condition (32). For the simulation we again use the

model problem of the Poisson equation and the setting as in the simulations of

Section 8.1, where we obtain the suboptimal convergence rates. The only di�erence

in the underlying setting is the graded mesh depicted in Figure 8.2. We depict the

in�uence of the grading parameter in Table 8.6. It is obvious that if condition (32)

for the grading factor is valid, we obtain optimal rates as expected from the theory.

Otherwise we obtain slightly improved (in comparison to the untreated meshes)
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G = 1/4 G = 2/4 G = 3/4

level DoFs ‖u− uh‖0 rate ‖u− uh‖0 rate ‖u− uh‖0 rate
1 11 1.1606e-01 - 1.1606e-01 - 1.1606e-01 -
2 33 8.3587e-02 0.47 4.2787e-02 1.44 3.5589e-02 1.71
3 113 3.5642e-02 1.23 1.2558e-02 1.77 1.0954e-02 1.70
4 417 1.1566e-02 1.62 3.3742e-03 1.90 3.3690e-03 1.70
5 1601 3.2601e-03 1.83 8.7588e-04 1.95 1.0337e-03 1.70
6 6273 8.5712e-04 1.93 2.2377e-04 1.97 3.1582e-04 1.71
7 24833 2.1886e-04 1.97 5.6678e-05 1.98 9.5988e-05 1.72
8 98817 5.5263e-05 1.99 1.4284e-05 1.99 2.9024e-05 1.73

Table 8.6: L2-error for the simulations performed using the graded mesh with gra-
ding parameters 1/4, 2/4 and 3/4.

but still suboptimal convergence rates. In Table 8.7 we obtain the same results

using weighted norms, which means again that the weighted norm does not help to

obtain better rates. Furthermore it should be noted that the numbers of elements

G = 1/4 G = 2/4 G = 3/4

level DoFs ‖u− uh‖0,α rate ‖u− uh‖0,α rate ‖u− uh‖0,α rate
1 11 9.5228e-02 - 9.5228e-02 - 9.522803e-02 -
2 33 6.7712e-02 0.49 3.5065e-02 1.44 2.6564e-02 1.84
3 113 2.9564e-02 1.20 1.0202e-02 1.78 7.6703e-03 1.79
4 417 9.8350e-03 1.59 2.7176e-03 1.91 2.2542e-03 1.77
5 1601 2.8243e-03 1.80 7.0119e-04 1.95 6.6930e-04 1.75
6 6273 7.5094e-04 1.91 1.7841e-04 1.97 1.9953e-04 1.75
7 24833 1.9295e-04 1.96 4.5065e-05 1.99 5.9526e-05 1.75
8 98817 4.8891e-05 1.98 1.1337e-05 1.99 1.7741e-05 1.75

Table 8.7: Weighted L2-error for the simulations performed using the graded mesh
with grading parameters 1/4, 2/4 and 3/4.

and nodes are not increased. Only the positions of the already existing nodes have

been changed. Thus we do not observe an increase in the degrees of freedom, there

is only an increased cost for the generation of the graded mesh. It should also be

noted that the graded mesh also modi�es the shape of the elements.

9. Energy correction methods

Several numerical schemes have been developed to overcome the pollution, such as

graded meshes as depicted above or adaptive meshes. A drawback of these met-

hods is that they employ a deep change in the meshes, such as grading the mesh

towards the singular point or evaluating an error estimator for the adaptive mesh

generation in order to set up the mesh re�nement. Furthermore, all these proce-
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dures are costly and either require good expertise in mesh generation or increase

the implementation cost when adaptive procedures are used.

A further possible scheme to obtain optimal convergence rates is the energy cor-

rection method, which will be presented in the following.

9.1. Introduction to the energy correction method

The energy correction method was �rst used in the context of the �nite di�erence

scheme [182], where a local modi�cation with a scalar value was used to correct the

energy defect. This was then developed further by [144, 146] and then extended to

�nite elements in the papers [53, 145] on the Laplace equation with linear ansatz

functions. Using this procedure only requires a small change, namely a small local

modi�cation of the bilinear form in the vicinity of the singular point, which can be

interpreted as a relaxation of the sti�ness in the area. The local modi�cation will

be denoted by ch(u, v) and the neighborhood of the singularity is de�ned as

Sh :=
⋃

T̄ for T ∈ Th with dist(T, 0) ≤ κh,

using the constant parameter κ > 0 which determines the amount of element rings

in the chosen neighborhood. The modi�cation term ch(·, ·) is de�ned only on a

Figure 9.1: Graphical illustration of the local uniformness of the initial mesh
and two sequent re�nements. By the green area we depict the Sh-
surrounding whose support shrinks with h→ 0+.

h-surrounding of the reentrant corner Sh, see Figure 9.1, i.e., its support shrinks

with decreasing h.

The modi�ed bilinear form can be stated as

ah(u, v) = a(u, v)− ch(u, v)

and recovers optimal convergence in the weighted norm while only using a uniform

mesh re�nement. Furthermore using post-processing, it is also possible to achieve
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optimal convergence in the L2-norm [53].

Using the modi�ed bilinear form with linear order, we now obtain a modi�ed Ga-

lerkin approximation of the form:

Find um
h ∈ V 1

h such that

ah(u
m
h , vh) = (f, vh), vh ∈ V 1

h .

The standard Galerkin approximation uh is included as the special case ch(·, ·) ≡ 0

in the bilinear form.

A standard modi�cation ch(·, ·) has to satisfy the properties coercivity, continuity

and symmetry:

(C1) a(u, u)− ch(u, u) & ‖u‖2
1 for all u ∈ H1

0 (Ω).

(C2) ch(u, v) . ‖∇u‖L2(Sh)‖∇v‖L2(Sh) for all u, v ∈ H1
0 (Ω).

(C3) ch(u, v) = ch(v, u) for all u, v ∈ H1
0 (Ω).

We also need the mesh to be symmetric around the corner singularity if ω > 3/2π,

see e.g. Figure 9.3, which is expressed in the condition

(G2) The set of elements T ⊂ TH for which 0 ∈ T̄ constitutes a symmetric parti-

tion, i.e. the coarse mesh TH is locally symmetric around the singular point.

The following theorem on the convergence is stated in [53] and shows that full

convergence in weighted Sobolev norms can be recovered using a modi�ed bilinear

form as introduced above:

Theorem 4. Let f : H0
−α(Ω) for some 1− π

ω
< α < 1, and assume that (C1)�(C3)

are valid and that (G2) holds if 3
2
π < ω < 2π. If, in addition, the modi�cation

satis�es

a(s1 − sm
1,h, s1 − sm

1,h)− ch(sm
1,h, s

m
1,h) = O(h2), (33)

then convergence rates of optimal order hold i.e.

‖∇(u− um
h )‖0,α . h‖f‖0,−α and ‖u− um

h ‖0,α . h2‖f‖0,−α.

A possible choice of the modi�cation of the bilinear form is also introduced in [53]

as

ch(u, v) = γ

∫
Sh
∇u · ∇v dx,
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where the correction parameter γ has to ful�ll 0 ≤ γ ≤ 1
2
such that the ellipticity

of ah(·, ·) is preserved. This allows us to de�ne the pollution function gh,1(γ) for

the linear case as

gh,1(γ) := a(s1 −Rm
h (γ)s1, s1 −Rm

h (γ)s1)− ch(Rm
h (γ)s1, R

m
h (γ)s1) (34)

where Rm
h (γ)s1 ∈ V 1

h denotes the modi�ed Galerkin approximation of s1, which is

taken to be

a(Rm
h (γ)s1, vh)− ch(Rm

h (γ)s1, vh) = a(s1, vh), vh ∈ V 1
h .

There are now two possibilities to obtain the correction parameter γ from the pol-

lution function, namely computing γ as the root of an implicitely given function

and using a nested-Newton method as described in [145]. For every mesh Th, an
optimal γh can be found using the condition gh,1(γh) = 0. Furthermore it is shown

in [53] that there is an asymptotic γ? such that (33) is ful�lled on all levels.

Let us now recall the L-shape domain Ω := (−1, 1)2 \ ([0, 1] × [−1, 0]) with the

singularity in (0, 0) and the interior angle ω = 3/2π, which has been simulated

without correction in Section 8.1 and with graded mesh in Section 8.2. We again

consider numerically the Poisson problem with Dirichlet boundary conditions on

Ω given as

−∆u = 0 in Ω, u = s on ∂Ω, (35)

where s := s1(r, φ) + s2(r, φ) := r
2
3 sin(2φ

3
) + r

4
3 sin(4φ

3
).

γ? = 0.1194 γ? = 0.1194 γ = 0.1 γ = 0.1

level DoFs ‖u− um
h ‖0 rate ‖u− um

h ‖0,α rate ‖u− um
h ‖0 rate ‖u− um

h ‖0,α rate
1 11 1.1336e-01 - 8.8439e-02 - 1.1317e-01 - 8.8240e-02 -
2 33 3.6735e-02 1.63 2.5048e-02 1.82 3.6684e-02 1.63 2.4827e-02 1.83
3 113 1.0880e-02 1.76 6.2414e-03 2.00 1.1127e-02 1.72 6.3627e-03 1.96
4 417 3.2021e-03 1.76 1.5050e-03 2.05 3.3915e-03 1.71 1.6308e-03 1.96
5 1601 9.6287e-04 1.73 3.6594e-04 2.04 1.0617e-03 1.68 4.4065e-04 1.89
6 6273 2.9529e-04 1.71 9.0338e-05 2.02 3.4122e-04 1.64 1.2919e-04 1.77
7 24833 9.1684e-05 1.69 2.2566e-05 2.00 1.1228e-04 1.60 4.1572e-05 1.64
8 98817 2.8661e-05 1.68 5.6770e-06 1.99 3.7814e-05 1.57 1.4523e-05 1.52

Table 9.1: Energy-corrected L-shaped domain with linear order ansatz functions,
errors in the L2- and weighted L2-norm.

Table 9.1 depicts the results obtained with the energy correction method. In

the �rst two columns a �xed optimal correction parameter is used, such that
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gh,1(γ?) = O(h2) holds on all the re�nement levels. In the last two columns a too

rough correction parameter approximation was chosen, such that gh,1(γ) = O(h2)

is not ful�lled. As it can be seen, optimal convergence rates are achieved with an

adequate parameter given by γ?, and without such a parameter the rates collapse

on the �ner levels.

Let us at this point shortly compare the presented method to the graded mesh

method. Both do not change the amount of degrees of freedom, see Tables 8.6

and 9.1, and both are very sensible to the correction and grading parameter. An

advantage of the energy correction method is the trivial change in the sti�ness

matrix, while the mesh grading is more complex and changes the element shapes. In

contrast, the estimation of the correction parameter is more complex for the energy

correction and it demands knowledge of the singular functions of the problem.

Nevertheless it should be noted that the energy correction method has a smaller

error on the same re�nement level with the same amount of degrees of freedom and

it does not change the shape of the elements.

Remark 9.1. The results from above can be extended to three-dimensional dom-

ains, as long as these are obtained from the two-dimensional ones by an extension

in z-direction. Such geometries can be L- or T-shape domains. In these cases

the correction is performed on a cylinder-shaped domain around the reentrant edge

and the correction parameters from the two-dimensional case can be used. For

the three-dimensional L-shape domain we depict our results in Table 9.2 for the

Poisson equation (35). In contrast to the two dimensional case, where we use a

triangular mesh, we use a hexahedral mesh, which results in the di�erent correction

parameter.

γ = 0.0 γ? = 0.065710

level DoFs ‖u− uh‖0,α rate ‖u− um
h ‖0,α rate

1 160 0.0016164 - 0.0011503 -
2 1408 0.00056148 1.46 0.00027464 1.98
3 11776 0.0002111 1.38 6.7132e-05 1.99
4 96256 8.1853e-05 1.35 1.6674e-05 1.99
5 778240 3.2139e-05 1.34 4.1739e-06 1.99
6 6258688 1.269e-05 1.34 1.0488e-06 1.99

Table 9.2: L2-errors and convergence rates for the energy-corrected three-
dimensional L-shape domain.

Remark 9.2. Energy correction methods are not only adequate for the Laplace pro-

blem, but also a good tool for other equations such as the linear elasticity equation,
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which is used in our timber building application. The method presented above would

have to be adapted to the speci�c singular functions of the linear elasticity [138].

Thus in Table 9.3 we only depict that optimal convergence rates can be obtained

after the successful application of the energy correction method for the isotropic

case. For comparison the uncorrected results can be found in Table 8.3.

level ‖u− um
h ‖0,α rate

2 1.8270e-01 -
3 4.7118e-02 1.96
4 1.1721e-02 2.01
5 2.9297e-03 2.00
6 7.3294e-04 2.00
7 1.8308e-04 2.00

Table 9.3: L2-errors and convergence rates after application of the energy correction
method on the isotropic linear elasticity equation.

9.2. Energy correction method with high order ansatz

functions

The considerations presented in this section can be found in "Higher order energy-

corrected �nite element methods" by the author together with P. Pustejovska and

B. Wohlmuth, in preparation, 2016, [79].

In this section, an extension of the results for linear ansatz functions above to hig-

her order ansatz functions will be presented. We expect the order of convergence to

increase. To be precise the full hk+1 convergence order of the approximation can be

reproduced in certain weighted norms (see Theorem 9.3) or by a post-processing in

the standard L2-norm (see Corollary 9.4). One can show that the pollution e�ect

is contained in the scheme if and only if the defect function given by (34) converges

suboptimally. More on the pollution e�ect and its relation to the pollution function

can be found in all previous energy correction method literature, e.g. [53, 145].

If we set

g̃h(w1, w2) := a(w1 − w1
m
h , w2 − w2

m
h )− ch(w1

m
h , w2

m
h ),

we can de�ne our pollution function as gh(w) := g̃h(w,w). Nevertheless, not all

parts of the pollution function of gh(u) are of a decreased order. To see this, we

refer to the expansion Lemma 8.1, which is also an important ingredient of the
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Figure 9.2: Graphical illustration of the total number of essential pollutions gh(si).
Namely, the value K is determined by the number of thick lines below
the horizontal approximation line. For example, in the case of the
approximation order k = 4, we have: K = 2 for ω ∈ (π, 6

5
π], K = 3 for

ω ∈ (6
5
π, 8

5
π], and K = 4 for ω ∈ (8

5
π, 2π]. The colored lines represent

k + 1 bounds.

proof of our main Theorem 9.3.

Assuming the expansion of the solution u and the approximative solution um
h with

the limit Nu, we de�ne a correction order K for the approximative order k and

angle ω as:

K := max
i∈N, i<(k+1) ω

2π

i 6 k. (36)

Now we can decompose the pollution function gh(u) as:

gh(u) =
K∑
i=1

(kui )2gh(si) +
Nu∑

i 6=j=1

kui k
u
j g̃h(si, sj) + regular terms. (37)

Here gh(si) are called the essential pollutions due to their unconditionally reduced

convergence order. The possible pollution of g̃h(si, sj) is non-essential in the sense

that it can be balanced by some local symmetry properties of the mesh. Either

way, we aim to construct the modi�cation ch(·, ·) in such a way that the pollution

in the error of approximation of all terms in (37) will diminish. The number K
introduced above gives the number of correction parameters needed for the energy

correction and it can be easily determined from Figure 9.2.

Furthermore for the correction we need additional assumptions on the mesh. Where

in the linear case we only needed the (G2) mirror symmetry of the mesh, here we

need further assumptions. In the following, we distinguish between several cases

of combinations between ω and the approximation order k and assign to them
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(G1) (G2) (G3)

T

T ∗

T

T ′

T ′

T ′ T ′

AAA

Figure 9.3: Symmetry conditions of the local mesh at the reentrant corner. For
simplicity, we depict only a �rst layer of elements. The dashed line A
represents the bisectional axis of the angle ω, element T ∗ represents the
mirror image across A of T , and T ′ represent the rotation of T around
the reentrant corner.

three di�erent mesh properties (G1)�(G3), which are schematically represented in

Figure 9.3 for a typical example ω = 3/2π. Note that (G1)�(G3) are assumed on

the local neighborhood Sh of the coarsest re�nement level and thus, by uniform

re�nement, they will automatically hold on each Sh. More precisely, (G1) represents

a general mesh without any speci�c symmetry properties, (G2) stands for a mesh

with a local mirror-symmetry, i.e., to each element T ∈ Sh exists another T ∗ ∈ Sh
which is a mirror image of T across the bisectional axis A. The last property

(G3) represents a full local symmetry at the singular corner in the sense that Sh is
composed of one base element which is then rotated around the reentrant corner.

We say that an initial mesh has the (U)-property which depends on k and ω if
k = 1 and ω < 3

2
π : (G1),

k = 1 and ω > 3
2
π, or k = 2 and ω < 4

3
π : (G2),

k = 2 and ω > 4
3
π, or k > 3 : (G3).

(U)

Associated with the (U)-property of a mesh, we make here an assumption on the

interpolation property. If the mesh satis�es the (U)-property, we assume that for

iπ/ω + jπ/ω < k + 1 we �nd∫
Υ

∇sj · ∇Ikhsi dx =

∫
Υ

∇sj · ∇si dx = 0, i 6= j, (38)

where Υ is the domain Sh of the coarsest re�nement level. We call this assump-

tion (U)-assumption. We point out that Equation (38) does not hold for arbitrary

shaped meshes at the re-entrant corner. However, all our numerical study tests

have shown that the (U)-property is su�cient for Equation (38) to hold, see Ta-

ble 9.8. Later we will show numerically that under the (U)-assumption the mixed
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terms g̃h(si, sj), i 6= j = 1, ..., Nu, converge optimally, and thus, the global pollu-

tion in the error originates strictly from gh(si) terms, i 6 K. Hence, we call K
the correction order, since it represents the number of conditions we lay on the

modi�cation. As it was already mentioned its value can be simply read out from

Figure 9.2. Now, we are ready to formulate the main theorem on the order of

convergence.

Theorem 9.3 (Main theorem). Let k ∈ N denote the polynomial degree of the

modi�ed scheme, f ∈ Hk−1
−α̃ (Ω) for some α̃ > 1 − π

ω
, and let ω be the angle of the

reentrant corner. Also, let us assume that (C1)�(C3) and the (U)-assumption hold

and moreover that the modi�cation ch(·, ·) satis�es:

gh(si) = O(hk+1) for all i 6 K. (39)

Then, we have the following optimal convergence results of the modi�ed approxi-

mation in the weighted norms with α = α̃ + k − 1:

‖u− um
h ‖0,α . hk+1‖f‖k−1,−α̃ and ‖∇(u− um

h )‖0,α . hk‖f‖k−1,−α̃.

Proof. For the proof of these properties, we use techniques introduced for example

in [53] concerning energy corrections. For the detailed proof we again refer to the

�nal version of [79].

Furthermore it is possible to obtain by a post-processing step full order of conver-

gence in the standard L2-norm. This is stated by the following corollary from [79],

where we de�ne by

ku,mh,i :=
1

iπ

∫
Ω

(fsi + um
h ∆s−i) dx

the stress intensity factor.

Corollary 9.4. Let us assume that the assumptions of Theorem 9.3 hold. Then,

the post-processed solution de�ned as

uposh := um
h +

K∑
i=1

ku,mh,i (si − sm
i,h)

converges in standard L2-norm as

‖u− uposh ‖0 . hk+1.
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In the following we will illustrate how the correction term ch(·, ·) could be con-

structed. The main assumption of Theorem 9.3 was (39), namely gh(si) = O(hk+1),

i < (k+1) ω
2π
. This means choosing a correction term ch(·, ·) in such a way that (39)

is satis�ed guarantees the optimal convergence rates of the modi�ed scheme. We

recall that K from (36) refers to the total number of essential pollutions gh(si)

contributing to the total pollution. Also, we de�ne the radial element layers S ih
with respect to the reentrant corner placed at 0 as:

S1
h := {T ∈ Th : 0 ∈ ∂T}, S ih := {T ∈ Th : ∂T ∩ ∂S i−1

h 6= ∅}, i = 2, ...,K.

Following the basic concept from previous studies on energy correction methods,

we can simply adapt the construction of ch(·, ·) to our higher order case and de�ne

cRh (u, v) :=
K∑
i=1

∫
Sih

γRi ∇u · ∇v dx, SRh := int
(
∪Ki=1S ih

)
, (40)

where the constants γRi are called correction parameters. We also call the scheme

with cRh a method with (radial) layer correction, since K-layers of elements S ih
are involved in the de�nition of the modi�cation. It is clear that with higher k

the support of cRh (·, ·) is signi�cantly larger, which can cause some di�culties by

the initial mesh generation with the U -property. We also present an alternative

approach of a function correction for which, in contrast to the layer-modi�cation,

we need only a single layer-support, independent of k or ω. Namely, we de�ne:

cFh (u, v) :=
K∑
i=1

∫
S1h

γFi r̂
i−1∇u · ∇v dx, SFh = S1

h, (41)

where r̂ ∈ [0, 1] is the h-scaled distance from the origin, i.e., r̂ = r/h.

We shortly denote the correction parameters by a vector valued

γ# = (γ#
1 , . . . , γ

#
K)> ∈ RK, # ∈ {R,F}.

For example, in the case of the layer correction, a su�cient condition is that

γR ∈ B∞R (0) = {y ∈ RK : ‖y‖l∞ < R} with a �xed R < 1. Furthermore we

show in our numerics that both types of modi�cation are good choices, if optimal

parameters γR, γF are known. Then the basic question which remains is how to

obtain the optimal correction parameters. Let us describe this topic brie�y for the

layer correction cRh (·, ·) and, for the better readability, skip the index R. For the
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function correction, we use the same strategy.

We follow the same technique as proposed in [53] and proven in [145] for the

linear elements for the Poisson problem. This means, we construct a sequence

{γh}h>0 ⊂ B∞R (0) satisfying certain conditions, such that it converges to a unique

asymptotic value γ? ∈ B∞R (0), being the optimal correction parameter. Namely, for

each admissible γ = (γ1, . . . , γK)>, we de�ne the vector valued pollution function

for i = 1, ...,K as gh : B∞R (0)→ RK by its components:

gh,i(γ) = a(si −Rm
h(γ)si, si −Rm

h(γ)si)− ch(Rm
h(γ)si, R

m
h(γ)si), (42)

where Rm
h(γ)si represents the modi�ed-approximative solution to si, this time ex-

plicitly dependent on the choice of γ. If we construct {γh}h>0 such that

gh(γh) = 0, h > 0,

we can possibly generalize the proof of [145] and show the convergence γh to γ?

for k → ∞ with a certain rate. Under the assumption on the convergence of γh,

we can show that for the asymptotic vector γ?, the necessary condition (39) on the

modi�cation ch(·, ·) on each level is satis�ed. For this we also refer to [79].

After having introduced how the modi�cation ch(·, ·) can be constructed, we show

in the following the numerical results for problem (35) using higher order �nite

elements with and without energy correction. We illustrate our theoretical results

for schemes up to order four, and we always assume an exact solution given by:

u := s1 + s2 + s3 + s4 =
4∑
i=1

rλi sin(λiθ).

We note that each term contributes to the total energy with the same magnitude.

The convergence rates and the γ-convergence studies for the second, third and

fourth order scheme are performed on the geometries as depicted in Figure 9.4.

In the following, for a better readability, we skip the index R and F in the notation

of the asymptotic values γ? and their components γ?i , i 6 K. Also, the speci�c

values of γ? are stated in the following only up to a certain precision.

Before we start with the numerical tests, we show that our local modi�cation of

the �nite element method does not increase the condition number of the sti�ness
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Figure 9.4: Initial meshes, level= 1 for ω = 3/2π, 7/4π, 2π used for k = 2, 3, 4
approximations.

matrix. Namely, in Table 9.4 we give the ratios (λmin)mh
(λmin)h

and (λmax)mh
(λmax)h

between eigen-

values of the sti�ness matrix which belong to the modi�ed scheme (·)m
h and the

standard scheme (·)h, for both correction methods cRh (·, ·) and cFh (·, ·).

layer correction cRh (·, ·) function correction cFh (·, ·)
level 2 3 4 2 3 4

(λmin)mh
(λmin)h

0.9886 0.9891 0.9952 0.9806 0.9901 0.9954

(λmax)mh
(λmax)h

1.0007 1.0000 1.0000 1.0000 1.0000 1.0000

Table 9.4: Comparison of the condition numbers of the sti�ness matrices belonging
to corrected and standard scheme; ω = 7/4π, k = 2.

We now present the results for the energy correction with the layer-modi�cation (40).

After this a more detailed study is performed for the second order case, sho-

wing convergence results for the modi�ed scheme. An important part of the

energy correction method is an accurate approximation of the correction parame-

ter γ? = (γ?1 , . . . , γ
?
K), as an asymptotic value of the series {γh}h>0. In our study,

we use two di�erent possibilities to estimate γh. The �rst one is purely based on

existing FEniCS routines and uses fsolve to compute an approximation of γh as the

root of an implicitely given function. The second one uses the nested-Newton met-

hod of [145] adapted to the higher order case. The implementation of this method

in FEniCS is, in comparison to the fsolve routine, cheaper in terms of computation

time.

With the obtained γh, a �t is performed in MATLAB [108] for the approximation

of γ? as the limit value of γh, h→ 0, by exploiting the asymptotic

γ? + c h2(k−λK),

where c is a constant, di�ering for the �ts to data obtained by fsolve (cf ) or by
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2 4 6 8 10
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Figure 9.5: Best �ts of γi,h obtained by fsolve and the nested-Newton scheme, with
respect to the theoretical expected rates. First column: Fits of γ?1 .
Second column: Fits of γ?2 . Di�erent reentrant corners are shown from
left to right.

the nested Newton (cN). At this point it should be noted that the calculated γ?

slightly di�ers depending on the underlying �t data.

Figure 9.5 depicts the resulting �ts of γ?i for both fsolve and nested Newton met-

hod. We also show the results for all three basic scenarios of reentrant corners:

ω = 3/2π, 7/4π and 2π. In the �rst column of the �gure, we present �ts for the

�rst component of γ?, in the second column, the �ts for the second one. For both
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methods we obtain the same convergence rate for the correction parameters. Both

methods tend, as it is expected from our theory, to the same γ?. In our case the

above mentioned di�erence between the approximated γ? is less than 10−6. For

our further calculations we use the γ? obtained with the fsolve routine. To obtain

the same convergence results, it would also be possible to use γ? obtained with the

nested-Newton method, or alternatively also the �rst six digits of γ?.

With the asymptotic values γ?, we illustrate in Table 9.5 and Table 9.6 the con-

vergence rates with and without energy correction. Our numerical results are in

excellent agreement with the theory, see Theorem 9.3. The errors are measured for

both, the L2- and the L2
α- norms. In this part, we focus on the cases of ω = 3/2π

and ω = 7/4π. In comparison to the linear approximations, as studied in [53],

the error in gradients for the second order also has a reduced convergence order.

Therefore, we present also the convergence rates for the gradient, see Table 9.5

and Table 9.6. As one can see, standard �nite elements exhibit 2π/ω and π/ω

convergence rates for the L2-error in the solution and the gradient, respectively.

Furthermore, optimal rates three and two in the weighted L2
α-norm can be achieved

using energy-correction.

γ = (0, 0)> γ? = (0.031521,−0.005534)>

level ‖u− uh‖0 rate ‖u− uh‖0,α rate ‖u− um
h ‖0 rate ‖u− um

h ‖0,α rate
2 7.0709e�03 - 1.9465e�03 - 5.6222e�03 - 1.8330e�03 -
3 2.7238e�03 1.38 6.1921e�04 1.65 1.5194e�03 1.89 1.8777e�04 3.29
4 1.0452e�03 1.38 2.3725e�04 1.38 4.4752e�04 1.76 1.8210e�05 3.37
5 4.0414e�04 1.37 9.3743e�05 1.34 1.3749e�04 1.70 1.9942e�06 3.19
6 1.5751e�04 1.36 3.7180e�05 1.33 4.2897e�05 1.68 2.3592e�07 3.08
7 6.1766e�05 1.35 1.4753e�05 1.33 1.3461e�05 1.67 2.8883e�08 3.03
8 2.4323e�05 1.34 5.8546e�06 1.33 4.2339e�06 1.67 3.5837e�09 3.01

level ‖∇(u− uh)‖0 rate ‖∇(u− uh)‖0,α rate ‖∇(u− um
h )‖0 rate ‖∇(u− um

h )‖0,α rate
2 3.8901e�02 - 1.2469e�02 - 4.3263e�02 - 1.6682e�02 -
3 2.4482e�02 0.67 3.6263e�03 1.78 2.4334e�02 0.83 3.2480e�03 2.36
4 1.5461e�02 0.66 1.2070e�03 1.59 1.4871e�02 0.71 7.3695e�04 2.14
5 9.7522e�03 0.66 4.4090e�04 1.45 9.2795e�03 0.68 1.7799e�04 2.05
6 6.1468e�03 0.67 1.6891e�04 1.38 5.8257e�03 0.67 4.3872e�05 2.02
7 3.8731e�03 0.67 6.6080e�05 1.35 3.6651e�03 0.67 1.0900e�05 2.01
8 2.4401e�03 0.67 2.6074e�05 1.34 2.3077e�03 0.67 2.7175e�06 2.00

Table 9.5: ω = 3/2π: Errors and convergence rates of the solution and the gradients
with (um

h ) and without energy correction (uh), k = 2, and α = 1.3333.
Layer-modi�cation cRh with correction parameter γ?.

In the proof of our main Theorem 9.3, see [79], we assume (U)-property of the mesh
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γ = (0, 0)> γ? = (0.073696,−0.019675)>

level ‖u− uh‖0 rate ‖u− uh‖0,α rate ‖u− um
h ‖0 rate ‖u− um

h ‖0,α rate
2 1.4688e�02 - 4.0231e�03 - 1.4058e�02 - 5.5315e�03 -
3 6.5058e�03 1.17 1.5652e�03 1.36 3.5969e�03 1.97 6.4029e�04 3.11
4 2.8727e�03 1.18 6.9520e�04 1.17 1.0173e�03 1.82 6.0880e�05 3.39
5 1.2781e�03 1.17 3.1399e�04 1.15 3.1468e�04 1.69 6.0667e�06 3.33
6 5.7257e�04 1.16 1.4210e�04 1.14 1.0189e�04 1.63 6.4267e�07 3.24
7 2.5768e�04 1.15 6.4335e�05 1.14 3.3693e�05 1.60 7.1739e�08 3.16
8 1.1628e�04 1.15 2.9132e�05 1.14 1.1248e�05 1.58 8.3485e�09 3.10

level ‖∇(u− uh)‖0 rate ‖∇(u− uh)‖0,α rate ‖∇(u− um
h )‖0 rate ‖∇(u− um

h )‖0,α rate
2 7.2533e-02 - 2.1898e-02 - 9.7586e-02 - 4.2072e-02 -
3 4.9699e-02 0.55 7.7725e-03 1.49 5.3057e-02 0.88 7.3131e-03 2.52
4 3.3713e-02 0.56 3.1786e-03 1.29 3.3087e-02 0.68 1.4913e-03 2.29
5 2.2769e-02 0.57 1.3896e-03 1.19 2.1653e-02 0.61 3.4514e-04 2.11
6 1.5347e-02 0.57 6.2221e-04 1.16 1.4407e-02 0.59 8.3736e-05 2.04
7 1.0335e-02 0.57 2.8078e-04 1.15 9.6473e-03 0.58 2.0675e-05 2.02
8 6.9573e-03 0.57 1.2701e-04 1.14 6.4780e-03 0.57 5.1410e-06 2.01

Table 9.6: ω = 7/4π: Errors and convergence rates of the solution and the gradients
with (um

h ) and without energy correction (uh), k = 2, and α = 1.4286.
Layer-modi�cation cRh with correction parameter γ?.

to derive a priori convergence rates for

g̃h(si, sj) = a(si − smi,h, sj − smj,h)− ch(smi,h, smj,h) . hk+1, i 6= j. (43)

We now demonstrate that these conditions are necessary. Hence, we perform two

types of computations, �rst, using a fully non-symmetric mesh, and a mesh which

is locally mirror-symmetric, but not satisfying the (G3)-property, see the meshes

on the left side of Table 9.7, for the case of k = 2 and ω = 7/4π > 4/3π. Thus for

this combination of k and ω, the (U)-property of the mesh is not satis�ed. Again,

since we consider the second order approximations, we require for the optimal con-

vergence rates of the solution, i.e., ‖u − um
h ‖0,α = O(h3), the convergence rate in

(43) to be also O(h3) for both pairings (s1, s2) and (s1, s3), see Figure 9.2.

In Table 9.7, we present the numerical results computed on the above mentioned

meshes demonstrating that (G1)- or (G2)-properties of the local mesh are not su�-

cient. As one can see in the case of a locally mirror-symmetric mesh, the necessary

condition (43) is violated only for the (s1, s3) pairing, while the (s1, s2) pairing has

even higher convergence order than we require. This comes from the fact that s1 is

symmetric and s2 is anti-symmetric in the θ-direction, and thus the integral of the

product of their gradients on a mirror-symmetric mesh vanishes. The violation of

the local symmetry of the mesh then results in the fact that also this pairing does
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(G1) non-symmetric
level g̃h(s1, s2) rate g̃h(s1, s3) rate
2 1.7836e�04 � 1.9118e�04 �
3 5.3969e�05 1.72 3.8239e�05 2.32
4 1.6437e�05 1.72 7.8252e�06 2.29
5 5.0081e�06 1.71 1.6040e�06 2.29
6 1.5260e�06 1.71 3.2887e�07 2.29
7 4.6503e�07 1.71 6.7436e�08 2.29
8 1.4172e�07 1.71 1.3829e�08 2.29

(G2) mirror-symmetric
level g̃h(s1, s2) rate g̃h(s1, s3) rate
2 3.4985e�06 � 1.3550e�04 �
3 3.6461e�07 3.26 2.8173e�05 2.27
4 2.3000e�08 3.99 5.7796e�06 2.29
5 1.4154e�09 4.02 1.1833e�06 2.29
6 8.7613e�11 4.01 2.4236e�07 2.29
7 5.4420e�12 4.01 4.9666e�08 2.29
8 3.5838e�13 3.92 1.0181e�08 2.29

Table 9.7: Two examples of ω = 7/4π meshes which do not satisfy (G3), but the
property (G1) for the �rst row and the property (G2) for the second
row.

not exhibit the required convergence rate.

We would also like to remark that the full symmetry (G3) is a too strong assump-

tion and it can be relaxed to more general cases. For example, classical criss-cross

meshes, see the case for ω = 2π in Figure 9.4, would be enough. To demonstrate

the plausibility of this assumption, we include Table 9.8, where
∫

Υ
∇s1 · ∇I2

hs3 dx

is evaluated on di�erent re�nement levels, with Υ-domains as depicted on the left

of the tables.

level (G3) mesh
1 -2.636780e�15
2 -3.774758e�15
3 -3.734860e�15
4 -3.631210e�15
5 -3.642052e�15

level criss-cross
1 -2.636780e�15
2 -3.774758e�15
3 -3.734860e�15
4 -3.631210e�15
5 -3.642052e�15

Table 9.8: Values of
∫

Υ
∇s1 · ∇I2

hs3 dx for the depicted meshes for di�erent re�ne-
ment levels.

We now turn our attention to the results for the third and fourth order approx-

imations, again for the layer correction, and concentrate on two reentrant corner

cases: 3/2π (Table 9.9) and 2π (Table 9.10). In all cases, the optimal rates are

obtained in the L2
α-norm if a su�cient number of correction parameters is used.
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They can be read out from Figure 9.2. Note also, that the weight α increases with

the approximation order k, namely α = k − λ1.

k = 3 k = 4

level ‖u− uh‖0,α rate ‖u− um
h ‖0,α rate ‖u− uh‖0,α rate ‖u− um

h ‖0,α rate
2 3.6458e�04 - 4.7531e�04 - 1.4972e�04 - 4.3849e�04 -
3 1.4914e�04 1.29 3.5013e�05 3.76 5.6715e�05 1.40 1.4127e�05 4.96
4 5.9232e�05 1.33 1.9895e�06 4.14 2.2495e�05 1.33 2.9706e�07 5.57
5 2.3504e�05 1.33 1.1977e�07 4.05 8.9263e�06 1.33 7.2456e�09 5.36
6 9.3270e�06 1.33 7.4012e�09 4.02 3.5423e�06 1.33 1.9010e�10 5.25
7 3.7013e�06 1.33 4.5990e�10 4.01

Table 9.9: ω = 3/2π: Errors and convergence rates with (um
h ) and wit-

hout energy correction (uh), for k = 3, 4, and α3 = 2.3333,
α4 = 3.3333. Layer-modi�cation cRh with correction parameters for
third (γ3) and fourth (γ4) order. γ3 = (0.012891,−0.002367)>,
γ4 = (0.007703,−0.002478, 0.000452)>.

k = 3 k = 4

level ‖u− uh‖0,α3 rate ‖u− um
h ‖0,α3 rate ‖u− uh‖0,α4 rate ‖u− um

h ‖0,α4 rate
2 1.6938e�03 - 7.3218e�03 - 7.8234e�04 - 8.2906e�03 -
3 8.4536e�04 1.00 4.0724e�04 4.17 3.8899e�04 1.01 5.0596e�04 4.03
4 4.2165e�04 1.00 1.9310e�05 4.40 1.9423e�04 1.00 9.1646e�06 5.79
5 2.1059e�04 1.00 1.0565e�06 4.19 9.7052e�05 1.00 2.0680e�07 5.47
6 1.0524e�04 1.00 6.2341e�08 4.08 4.8510e�05 1.00 6.2929e�09 5.04
7 5.2604e�05 1.00 3.7994e�09 4.04

Table 9.10: ω = 2π: Errors and convergence rates with (um
h ) and without

energy correction (uh), for k = 3, k = 4 and α3 = 2.5, α4 =
3.5. Layer-modi�cation cRh with correction parameters for third
(γ3) and fourth (γ4) order. γ3 = (0.083770,−0.057179, 0.015783)>,
γ4 = (0.059374,−0.060325, 0.033989,−0.008364)>.

We �nally also compare the qualitative behavior of the layer and function cor-

rection, namely, the in�uence of the choice of the modi�cation ch(·, ·) on the quanti-
tative error. As described before, higher order approximations require an increased

number of correction parameters γi, i = 1, . . . ,K 6 k. This means that a priori,

the correction by rings cRh (·, ·) needs a larger support, constructed by K-layers of
elements around the singular point. To have a possibility to avoid this fact, we

have suggested a correction by a function, cFh (·, ·), see (41). Its support is always

restricted to a single element layer at the singular points.

In Figure 9.6, we graphically illustrate the comparison of the convergence rates of

the standard scheme and the two corrections, for all studied scenarios, i.e., approxi-

mation orders k = 2, 3, 4 and ω = 3/2π, 7/4π, 2π. The �rst three plots demonstrate
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the recovered optimal rates k + 1 of the error ‖u − um
h ‖0,α, α = k − π

ω
, where the

y-label of the plots represents the error, i.e., ‖u−um
h ‖0,α and ‖u− uh‖0,α, respecti-

vely. As one can see, both corrections are qualitatively comparable, nevertheless,

the function correction cFh (·, ·) is quantitatively signi�cantly better for higher k.

This observation is depicted in the last plot of Figure 9.6, showing the ratio bet-

ween the errors caused by the approximations computed with cRh (·, ·) and cFh (·, ·).
Note the clustering of the ratios by the number of the correction parameters K.
We present the asymptotic correction function

∑K
i=1 γ

F ?

i r̂i−1 for all the considered

mesh and approximation order settings, see Figure 9.7. Note here the bound of the

maximum of the correction function, guaranteeing the ellipticity of ah(·, ·).
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Figure 9.6: Comparison of the standard and modi�ed �nite elements with energy
corrections cRh and cFh for approximation orders k = 2, 3, 4. The last plot
represents the ratio between the errors produced by the layer correction
and function correction.
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Figure 9.7: Asymptotic correction functions
∑K

i=1 γ
F
i r̂

i−1 for three di�erent ap-
proximation orders and three di�erent angles. These function correcti-
ons were used for the computations presented in Figure 9.6.

9.3. Energy correction method for the Poisson eigenvalue

problem

This section contains results which were previously published by the author with

M. Huber, U. Rüde, C. Waluga and B. Wohlmuth in the year 2014 in Numerical

Mathematics and Advanced Applications - ENUMATH 2013 proceedings, Volume

103 of the series Lecture Notes in Computational Science and Engineering, under

the title "Energy-corrected �nite element methods for scalar elliptic problems", [74].

Reasoned by our interest in the vibro-acoustic analysis of domains with reeantrant

corners, in this section we extend the linear energy correction method to eigenvalue

problems. In the following we consider the eigenvalue problem with homogeneous

Neumann boundary conditions

∆ul = λlul in Ω

on the L-shaped domain Ω := (−1, 1)2\([0, 1]× [−1, 0]) and the slit-domain

Ω := (−1, 1)2\([0, 1]×{0}). We construct our meshes such that we obtain perfectly

symmetric isosceles triangles around the singular points, see Figure 9.8. Further-

more we use di�erent meshes for the comparison with reference values given in

the literature [23, 43] and present results for a domain with multiple reentrant

corners, in which case we compute a �ne mesh reference solution. It is well-

known [8, 9, 10, 23, 101] that the pollution e�ect occurs only for eigenfunctions

and eigenvalues with a non-smooth singular component. For su�ciently smooth

eigenfunctions, a quadratic convergence rate for the eigenvalues can be observed in

case of linear �nite elements, i.e. k = 1.
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Our modi�ed �nite element formulation reads:

Find the discrete eigenvalues λm
h,l ∈ R and the eigenfunctions um

h,l(γ) ∈ V 1
h such

that

ah(u
m
h,l, v) = λm

h,l (um
h,l, v), v ∈ V 1

h ,

where 0 ≤ λm
h,1 ≤ λm

h,2 ≤ . . ..

In the convergence analysis of the discrete eigenvalues λm
h,l we follow the lines of [137]

in the conforming setting and introduce the eigenvalue problem:

Find λ ∈ R and w ∈ H1(Ω) such that a(w, z) = λ (w, z) for all z ∈ H1(Ω).

The non-negative eigenvalues are ordered such that 0 ≤ λ1 ≤ λ2 ≤ . . ., and the

associated eigenfunctions are denoted by wi with the normalization (wi, wj) = δi,j.

We now de�ne the l-dimensional space Vl by Vl := span{wi, i ≤ l}. Further for

each v ∈ Vl let the modi�ed Galerkin projection Rm
h := Rm

h (γ) onto V 1
h be de�ned

by

ah(R
m
h v, vh) = a(v, vh)

for all vh ∈ V 1
h . We recall that Rm

h depends on the speci�c choice of γ. In terms of

Rm
h , we de�ne El,h := Rm

h Vl and note that dimEl,h = l for h ≤ h0 small enough.

For the sake of presentation, let us �rst state the main result and subsequently

develop the ingredients needed for its proof.

Theorem 5. Let 1− π
ω
< α < 1. If the energy correction for linear �nite elements

is used with γ?, the following upper and lower bound for λm
h,l hold,

λl(1− Ch2λ1+α
l ) ≤ λm

h,l ≤ λl(1 + Ch2λα+1
l ).

Our proof is based on the following two technical results which are provided without

a detailed proof.

Lemma 9.5. Let 1− π
ω
< α̃ < α < 1. Then it holds that

‖r−α̃v‖0 ≤ C‖v‖1−α
0 ‖v‖α1 , v ∈ H1(Ω).

The upper bound in Lemma 9.5 can be obtained by using the Hölder inequality

in combination with interpolation arguments and standard Sobolev embedding

results. Combining Lemma 9.5 with [137, Lemma 6.4-2], [53, Theorem 2.4] and

some straightforward computations yields the following bounds:
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Lemma 9.6. Let v ∈ Vl with (v, v) = 1. Then v =
∑l

i=1 βiwi with
∑l

i=1 β
2
i =

1, and it satis�es a(v, z) = (fv, z) for all z ∈ H1(Ω) with fv :=
∑l

i=1 βiλiwi.

Moreover, we have r−αfv ∈ L2(Ω) for 1 − π
ω
< α < 1, and the following bounds

hold with constants independent of the mesh-size

|a(v, v)− ah(Rm
h v,R

m
h v)| ≤ Ch2λ2+α

l ,

(Rm
h v,R

m
h v) ≥ 1− Ch2λα+1

l .

Now we are prepared to provide the proof of the main result.

Proof. The proof of Theorem 5 is based on the characterization of the eigenvalues

by the Rayleigh quotient. We start with the upper bound. Using El,h as de�ned

above together with Lemma 9.6, we get the following upper bound:

λm
h,l ≤ max

v∈El,h

ah(v, v)

(v, v)
= max

v∈Vl

ah(R
m
h v,R

m
h v)

(Rm
h v,R

m
h v)

= max
v∈Vl

a(v, v) + ah(R
m
h v,R

m
h v)− a(v, v)

(Rm
h v,R

m
h v)

= max
v∈Vl

a(v, v)

(v, v)
max
v∈Vl

(v, v)

(Rm
h v,R

m
h v)

+ max
v∈Vl

ah(R
m
h v,R

m
h v)− a(v, v)

(Rm
h v,R

m
h v)

≤ λl
1 + Ch2λ2+α

l

1− Ch2λα+1
l

. λl(1 + Ch2λα+1
l ) + Ch2λ2+α

l (1 + Ch2λα+1
l ).

In the next step, it remains to show the lower bound. In contrast to the uncorrected

scheme, we do not have the trivial bound λl ≤ λm
h,l. The proof of the lower bound

follows basically the lines of the upper bound but requires the use of a di�erent

l-dimensional space. Firstly we de�ne a new space given by El := span{w̃i, i ≤ l}
where w̃i ∈ H1(Ω) is de�ned by a(w̃i, z) = (wi,h, z) for all z ∈ H1(Ω). Secondly,

we note that Rm
h El = El,h and thus for h small enough we have dimEl = l. Now,

similar arguments as before yield

λl ≤ max
v∈El

a(v, v)

(v, v)
= max

v∈El

ah(R
m
h v,R

m
h v) + a(v, v)− ah(Rm

h v,R
m
h v)

(v, v)

= max
v∈El

ah(R
m
h v,R

m
h v)

(Rm
h v,R

m
h v)

max
v∈El

(Rm
h v,R

m
h v)

(v, v)
+ max

v∈El

a(v, v)− ah(Rm
h v,R

m
h v)

(v, v)

≤ λm
h,l(1 + Ch2(λm

h,l)
1+α).

Combining the upper bounds for λl and λm
h,l yields the lower bound for λm

h,l.

The steps outlined in this section show the �exibility and potential of the ideas

of [53, 145] to eigenvalue problems. We conduct convergence studies for the eigen-
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Figure 9.8: L-shape, slit and domain with multiple reentrant corners.

No Correction γ = 0:

1.EV 2.EV 3.EV 4.EV 5.EV
exact: 1.47562 exact: 3.53403 exact: 9.86960 exact: 9.86960 exact: 11.38948

level value rate value rate value rate value rate value rate
1 1.55008 - 3.63939 - 10.79641 - 10.90447 - 12.67323 -
2 1.50014 1.60 3.56116 1.96 10.10623 1.97 10.12814 2.00 11.71975 1.96
3 1.48402 1.55 3.54091 1.98 9.92994 1.97 9.93496 1.98 11.47442 1.96
4 1.47861 1.49 3.53576 1.99 9.88483 1.99 9.88604 1.99 11.41101 1.98
5 1.47672 1.44 3.53447 2.00 9.87342 2.00 9.87372 2.00 11.39489 1.99

Correction γ? = 0.147850426060652:

1.EV 2.EV 3.EV 4.EV 5.EV
exact: 1.47562 exact: 3.53403 exact: 9.86960 exact: 9.86960 exact: 11.38948

level value rate value rate value rate value rate value rate
1 1.51075 - 3.62603 - 10.78432 - 10.89390 - 12.64990 -
2 1.48457 1.97 3.55913 1.87 10.10560 1.95 10.12758 1.99 11.71674 1.95
3 1.47785 2.00 3.54060 1.93 9.92990 1.97 9.93493 1.98 11.47396 1.95
4 1.47617 2.03 3.53571 1.96 9.88482 1.99 9.88604 1.99 11.41094 1.98
5 1.47575 2.06 3.53446 1.98 9.87342 2.00 9.87372 2.00 11.39488 1.99

Table 9.11: Convergence rates for eigenvalues in the L-shaped domain with and
without energy correction.

value problem de�ned on the geometries depicted in Figure 9.8. First the numerical

results obtained without correction are compared to those obtained with a suitable

modi�cation parameter. In this we make use of the Neumann �t tabulated in [145,

Table 5.3], which provides a simple heuristic approach to determine modi�cation

parameters in case of meshes consisting of isosceles triangles around the singula-

rity. The purely geometric assumption is satis�ed for our meshes by construction,

see Figure 9.8. The correction parameter γ? for the L-shape and the multiple

reentrant corners domain is given by γ? ≈ 0.1478. We note that in each case four

isosceles triangles are attached to the singularity, and thus the correction parame-

ter is the same for all reentrant corners. For the slit domain we count six adjacent

elements at the singular vertex, and hence we determine our correction parame-

ter to be γ? ≈ 0.2716. In Tables 9.11, 9.12 and 9.13 we list the results for our

convergence study for the L-shape, the slit domain and the domain with multiple

reentrant corners, respectively. Without correction, we observe suboptimal rates

138



No Correction γ = 0:

1.EV 2.EV 5.EV 7.EV 8.EV
exact: 1.03407 exact: 2.46740 exact: 9.86960 exact: 12.26490 exact: 12.33701

level value rate value rate value rate value rate value rate
1 1.14032 - 2.52918 - 10.78301 - 13.97705 - 14.17015 -
2 1.07951 1.23 2.48307 1.98 10.10730 1.94 12.75729 1.80 12.81216 1.95
3 1.05478 1.13 2.47135 1.99 9.93045 1.97 12.43849 1.50 12.44434 2.15
4 1.04392 1.07 2.46839 2.00 9.88497 1.99 12.32633 1.50 12.36411 1.99
5 1.03887 1.04 2.46765 2.00 9.87346 1.99 12.28924 1.34 12.34381 1.99

Correction γ = 0.271607294328175:

1.EV 2.EV 5.EV 7.EV 8.EV
exact: 1.03407 exact: 2.46740 exact: 9.86960 exact: 12.26490 exact: 12.33701

level value rate value rate value rate value rate value rate
1 1.06167 - 2.49235 - 10.76626 - 13.85168 - 13.88581 -
2 1.04116 1.96 2.47377 1.97 10.10651 1.92 12.66340 1.99 12.73749 1.95
3 1.03583 2.01 2.46902 1.97 9.93041 1.96 12.36581 1.98 12.43961 1.96
4 1.03449 2.06 2.46781 1.99 9.88497 1.98 12.29021 1.99 12.36294 1.98
5 1.03417 2.14 2.46750 1.99 9.87346 1.99 12.27120 2.01 12.34352 1.99

Table 9.12: Convergence rates for eigenvalues in the slit domain with and without
energy correction.

No Correction γ = 0:

1.EV 2.EV 3.EV 4.EV 5.EV
exact: 0.11422 exact: 0.11422 exact: 0.23460 exact: 0.31626 exact: 0.31626

level value rate value rate value rate value rate value rate
1 0.11609 - 0.11609 - 0.23841 - 0.32303 - 0.32323 -
2 0.11489 1.48 0.11489 1.48 0.23595 1.51 0.31861 1.53 0.31867 1.53

3 0.11446 1.46 0.11446 1.46 0.23509 1.47 0.31709 1.49 0.31711 1.50

4 0.11431 1.42 0.11431 1.42 0.23478 1.44 0.31656 1.45 0.31657 1.45

5 0.11425 1.39 0.11425 1.39 0.23467 1.40 0.31637 1.41 0.31637 1.42

Correction γ = 0.147850426060652:

1.EV 2.EV 3.EV 4.EV 5.EV
exact: 0.11422 exact: 0.11422 exact: 0.23460 exact: 0.31626 exact: 0.31626

level value rate value rate value rate value rate value rate
1 0.11472 - 0.11473 - 0.23574 - 0.31869 - 0.31887 -
2 0.11435 1.85 0.11436 1.85 0.23492 1.85 0.31690 1.92 0.31695 1.92

3 0.11425 1.97 0.11425 1.96 0.23469 1.96 0.31642 1.99 0.31643 1.99

4 0.11422 2.04 0.11422 2.03 0.23462 2.02 0.31630 2.04 0.31630 2.03

5 0.11422 2.11 0.11422 2.10 0.23461 2.09 0.31627 2.09 0.31627 2.08

Table 9.13: Convergence rates for eigenvalues in the domain with multiple reen-
trant corners with and without correction.

for some eigenvalues in each of the three cases. However, using the modi�ed met-

hod, the asymptotically optimal convergence of O(h2) for all given eigenvalues is

obtained in the three cases. Note that we excluded the results for some eigenvalues

for the slit domain in Table 9.12. This is because the corresponding eigenfunctions

do not include singular components strong enough to a�ect the optimal rate for

linear elements. Hence, for these eigenvalues, a convergence rate of O(h2) can be

reached already by using the non-corrected method.
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10. Duality techniques for smooth solutions in

non-smooth domains

In this section we present some results which were already published in the paper

"On optimal L2- and surface �ux convergence in FEM." by the author together

with M. Melenk and B. Wohlmuth in Computing and Visualization in Science, Vo-

lume 16, 2015, [77].

In the last sections we have considered modi�cation techniques to obtain optimal

convergence rates in the presence of reentrant corners. In the following we show

theoretically that under additional regularity of the solution, optimal convergence

rates in L2 are obtained, even if the dual problem lacks full regularity. Numerical

examples in a variety of settings con�rm the results.

10.1. Finite element method L2-error analysis

Of importance will be the distance function δΓ and the regularized distance function

δ̃Γ with Γ = ∂Ω given by

δΓ(x) := dist(x,Γ), δ̃Γ(x) := h+ dist(x,Γ).

Later on, the parameter h > 0 will be the mesh size of the quasi-uniform trian-

gulation. Also of importance will be neighborhoods SD of the boundary ∂Ω given

by

SD := {x ∈ Ω | δΓ(x) < D},

with particular emphasis on the case D = O(h).

For this section our model problem is as stated in Section 2.2, Equation (1) with

the weak form given by

a(u, v) :=

∫
Ω

A∇u · ∇v = 〈f, v〉, v ∈ H1
0 (Ω). (44)

We denote by T : (H1
0 (Ω))′ → H1

0 (Ω) the solution operator. We emphasize that

the choice of homogeneous Dirichlet boundary conditions is not essential for our

purposes. Essential, however, is the following assumption:

Assumption 6. There exists s0 ∈ (1/2, 1] such that the solution operator f 7→ Tf
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for (44) satis�es

‖Tf‖H1+s0 (Ω) ≤ C‖f‖
(H

1−s0
0 (Ω))′

≤ C‖f‖L2(Ω).

Here and in the following 0 < c, C < ∞ denote generic constants that do not de-

pend on the mesh-size but possibly depend on s0. Since our problem is symmetric,

certain dual problems that will be needed below coincide with the primal problem,

thus simplifying the presentation. Inspection of the procedure below shows that

we need Assumption 6 for the dual problem and the bidual problem with weighted

right-hand side. Let now T be an a�ne simplicial quasi-uniform triangulation of

Ω with mesh size h and V k
h := V k

h (Ω) ⊂ H1
0 (Ω) the continuous space of piecewise

polynomials of degree k.

We restrict ourselves to simplicial triangulations since then the space V k
h has the

approximation properties, the inverse estimates, and moreover it has the �superap-

proximation property� that underlies the local error analysis as presented in [172,

Sec. 5.4]. This restriction is however not essential. In the space V k
h the Scott-

Zhang operator Ikh : H1(Ω) → V k
h (Ω) of [150] constitutes a quasi-local and stable

approximation operator, such that

‖∇Ikhu‖L2(K) . ‖∇u‖L2(ωK),

where ωK is the patch of elements sharing a node withK. Furthermore if u ∈ H1
0 (Ω)

then Ikhu ∈ V k
h and Ikh satis�es the approximation properties

‖∇j(u− Ikhu)‖L2(K) . hl+1−j‖∇l+1u‖L2(ωK), j ∈ {0, 1}, 0 ≤ l ≤ k.

With an interpolation argument using the K-method, it follows from above that

for every v ∈ B3/2
2,∞(Ω) ∩H1

0 (Ω) it holds that

inf
z∈V kh
‖v − z‖H1(Ω) ≤ h1/2‖v‖

B
3/2
2,∞(Ω)

.

Furthermore for integer 0 ≤ j ≤ m ≤ k the space V k
h satis�es the standard

elementwise inverse estimates

|v|Hm(K) ≤ Ch−(m−j)|v|Hj(K), v ∈ V k
h .

The Galerkin method for (44) is then:
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Find uh ∈ V k
h such that

a(uh, v) = 〈f, v〉, v ∈ V k
h .

The following embedding theorem is a key mechanism in our arguments that will

allow us to exploit additional regularity of a function.

Lemma 10.1. The following estimates hold, if Ω ⊂ Rd is a bounded Lipschitz

domain and z su�ciently regular.

‖δ̃−1/2+ε
Γ z‖L2(Ω) ≤ ‖δ−1/2+ε

Γ z‖L2(Ω) ≤ Cε‖z‖H1/2−ε(Ω), ε ∈ (0, 1/2], (45)

‖δ̃−1/2
Γ z‖L2(Ω) ≤ C| lnh|1/2‖z‖

B
1/2
2,1 (Ω)

, (46)

‖δ̃−1/2−ε
Γ z‖L2(Ω) ≤ Cεh

−ε‖z‖
B

1/2
2,1 (Ω)

, ε > 0, (47)

‖z‖L2(Sh) ≤ Ch1/2‖z‖
B

1/2
2,1 (Ω)

, h > 0, (48)

‖z‖L2(Γ) ≤ C‖z‖
B

1/2
2,1 (Ω)

. (49)

Proof. The estimate involving δΓ in (45) can be found, e.g., in [67, Thm. 1.4.4.3]

and (48) is shown in [100, Lemma 2.1]. The estimates (46), (47), (49) follow

from one-dimensional Sobolev embedding theorems for L∞ and locally �attening

the boundary Γ in the same way as it is done in the proof of [100, Lemma 2.1].

For example, for (49) we note that a local �attening of the boundary Γ and the

1D embedding ‖v‖2
L∞(0,1) . ‖v‖L2(0,1)‖v‖H1(0,1) imply ‖z‖2

L2(Γ) . ‖z‖L2(Ω)‖z‖H1(Ω).

This implies the estimate ‖z‖L2(Γ) . ‖z‖B1/2
2,1 (Ω)

by [159, Lemma 25.3].

One of several applications of Lemma 10.1 is that it allows us to transform negative

norms into weighted L2-estimates as shown in the following lemma.

Lemma 10.2. For ε ∈ (0, 1/2] and su�ciently regular z there holds

‖δβΓz‖(H1/2−ε(Ω))′ ≤ Cε‖δβ+1/2−ε
Γ z‖L2(Ω), −1 + 2ε ≤ β ≤ 0, (50)

‖δ̃−1
Γ z‖

(B
1/2
2,1 (Ω))′

≤ C| lnh|1/2‖δ̃−1/2
Γ z‖L2(Ω). (51)

Proof. We show the �rst inequality (50) using in the �rst step a standard duality

argument and in the last step (45) of Lemma 10.1 to obtain

‖δβΓz‖(H1/2−ε(Ω))′ = sup
v∈H1/2−ε(Ω)

〈δβΓz, v〉
‖v‖H1/2−ε(Ω)

= sup
v∈H1/2−ε(Ω)

〈δβ+1/2−ε
Γ z, δ

−1/2+ε
Γ v〉

‖v‖H1/2−ε(Ω)

(45)

≤ Cε‖δβ+1/2−ε
Γ z‖L2(Ω).
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Secondly, (51) follows by the same type of arguments, where the application of (45)

is replaced with that of (46).

‖δ̃−1
Γ z‖

(B
1/2
2,1 (Ω))′

= sup
v∈B1/2

2,1 (Ω)

〈δ̃−1
Γ z, v〉

‖v‖
B

1/2
2,1 (Ω)

= sup
v∈B1/2

2,1 (Ω)

〈δ̃−1+1/2
Γ z, δ̃

−1/2
Γ v〉

‖v‖
B

1/2
2,1 (Ω)

≤ ‖δ̃−1/2
Γ z‖L2(Ω) sup

v∈B1/2
2,1 (Ω)

‖δ̃−1/2
Γ v‖L2(Ω)

‖v‖
B

1/2
2,1 (Ω)

(46)

≤ ‖δ̃−1/2
Γ z‖L2(Ω) sup

v∈B1/2
2,1 (Ω)

C| lnh|1/2‖v‖
B

1/2
2,1 (Ω)

‖v‖
B

1/2
2,1 (Ω)

= C| lnh|1/2‖δ̃−1/2
Γ z‖L2(Ω)

The following lemma is a variant of interior regularity of elliptic problems and will

be required for the proof of Theorem 9.

Lemma 10.3. Let Ω be a bounded Lipschitz domain and z ∈ H1+β(Ω), β ∈ (0, 1],

solve

−∇ · (A∇z) = f in Ω.

Then, for a constant C > 0 depending only on ‖A‖C0,1(Ω), α0, β, and Ω

‖δ1−β
Γ ∇2z‖L2(Ω) ≤ C

(
‖δ1−β

Γ f‖L2(Ω) + ‖z‖H1+β(Ω)

)
.

Proof. The upper bound follows from local interior regularity for elliptic pro-

blems (see [115, Lemma 5.7.2] or [64, Thm. 8.8]) and a Besicovitch covering ar-

gument, see, e.g., [55, Section 1.5.2] and [110, Chapter 5]. We refer also to [94,

Lemma A.3], where a closely related result is worked out in detail. We use the Be-

sicovitch covering theorem to construct a covering of Ω by the countable collection

B = {Bi|i ∈ N} of closed balls Bi where Bi = Bri(xi) with the following properties:

1. We have ri = c′dist(xi, ∂Ω) for a �xed c′ ∈ (0, 1).

2. There is an N ∈ N such that for all x ∈ Ω |{i ∈ N|x ∈ Bi}| ≤ N .

3. There exists a c ∈ (0, 1) such that Ω ⊂ ∪i∈NBcri(xi).

We set

C2
i = ‖f‖2

BδE (x)
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and use the Besicovitch covering and [94, Lemma A.3] with p = 0 to obtain

‖δ1−β
E ∇

2z‖2
L2(Ω) ≤ C

∑
i

δ
2(1−β)
E ‖∇2z‖2

L2(BδE (x))

[94,Lemma A.3]

≤ C
∑
i

‖δ(1−β)
E f‖2

L2(BδE (x)) + ‖z‖2
H1(BδE (x))

+|∇z|2Hβ(BδE (x))

≤ C
(
‖δ1−β
E f‖2

L2(Ω) + ‖z‖2
H1+β(Ω)

)
with a suitable constant C.

It is worth pointing out that neither the structure of the boundary Γ nor the

kind of boundary conditions play a role in Lemma 10.3. One possible interpreta-

tion of Lemma 10.3 is that z could lose the H2-regularity anywhere near Γ. For

certain boundary conditions such as homogeneous Dirichlet conditions and piece-

wise smooth geometries Γ the solution fails to be in H2 only near the points of

non-smoothness of the geometry. With methods similar to those of Lemma 10.3

one can show the following, stronger result:

For the proof of Lemma 10.3 we had to employ a standard Besicovitch covering

argument. For the stronger result, which will be stated in Lemma 10.8, we have to

employ the following coverings, introduced by Theorems 7 and 8. In order to be

able to prove these theorems, we introduce several concepts in the following. Note

that for the distance dist(x,M) to some set M , we set dist(x, ∅) = 1 to include the

degenerate case M = ∅. We quote from [113, Lemma A.1]:

Lemma 10.4. Let Ω ⊂ Rd be bounded open and M = M be a closed set. Fix

c ∈ (0, 1) and ε ∈ (0, 1) such that

1− c(1 + ε) =: c0 > 0.

For each x ∈ Ω, let Bx := Bcdist(x,M)(x) be the closed ball of radius c dist(x,M)

centered at x, and let B̂x := B(1+ε)cdist(x,M)(x) denote the stretched (closed) ball of

radius (1 + ε)c dist(x,M) also centered at x.

Then there exists a countable set xi ∈ Ω, i ∈ N, and a constant N ∈ N depending

solely on the spatial dimension d with the following properties:

1. (covering property) ∪i∈NBxi ⊃ Ω;

2. (�nite overlap on Ω) for each x ∈ Ω, there holds card{i |x ∈ B̂xi} ≤ N .

Proof. See [77].
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Before we proceed with variants of the covering result of Lemma 10.4, we can now

state the notation of sectorial neighborhoods relative to a singular set M :

De�nition 10.5 (Sectorial neighborhood). Let e, M ⊂ Rd and c̃ > 0. Then

Se,M,c̃ := ∪x∈eBc̃dist(x,M)(x)

is a sectorial neighborhood of the set e relative to the singular set M .

We are interested in coverings of lower dimensional manifolds by balls whose centers

are located on these manifolds:

Lemma 10.6. Let d ∈ N and 1 ≤ d′ < d. Let ω ⊂ Rd′ and let Ω ⊂ Rd be the

canonical embedding of ω into Rd, i.e., Ω := ω × {0} × · · · × {0} ⊂ Rd. Assume

the hypotheses and notation of Lemma 10.4. Then there are c̃ > 0, N > 0, and a

collection of balls Bxi, i ∈ N, as described in Lemma 10.4 such that

(i) (covering property for Ω) ∪i∈NBxi ⊃ Ω.

(ii) (covering property for a sectorial neighborhood of Ω) ∪i∈NBxi ⊃ SΩ,M,c̃.

(iii) (�nite overlap property on Rd) for each x ∈ Rd, there holds

card{i |x ∈ B̃xi} ≤ N.

Proof. We employ the result of Lemma 10.4 for the lower-dimensional manifold ω

noting that Bx ∩ ω is a ball in Rd′ . In order to be able to ensure the covering

condition for the sectorial neighborhood of Ω stated in (iii), we introduce the auxi-

liary balls B′x := Bc/2 dist(x,M)(x) of half the radius. Applying Lemma 10.4 with

these balls B′x and the stretched balls B̂x therefore produces a collection of centers

xi ∈ Ω, i ∈ N, such that

1. B′xi ∩ Ω covers Ω;

2. for the stretched balls B̂xi , we have a �nite overlap property on Ω:

x ∈ Ω : card{i |x ∈ B̂xi} ≤ N. (52)

We next see that the balls B̂xi even have the following, stronger �nite overlap

property:

x ∈ Rd : card{i |x ∈ B̂xi} ≤ N.
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To see this, de�ne the in�nite cylinders Ĉxi := {x | πd′(x) ∈ B̂xi ∩ Ω}, where πd′ is
the canonical projection onto the hyperplane {x = (x1, . . . , xd) ∈ Rd |xd′+1 = · · · =
xd = 0}. Clearly, B̂xi ⊂ Ĉxi . These in�nite cylinders have a �nite overlap property

by (52) as can be seen by writing any x ∈ Rd in the form x = (πd′(x), x′) for some

x′ ∈ Rd−d′ and then noting that x ∈ Ĉxi implies πd′(x) ∈ B̂xi ∩ Ω.

It remains to see that the balls Bxi cover a sectorial neighborhood of Ω. To that

end, we note that the balls B′xi cover Ω. Furthermore, for each x ∈ Ω, we pick xi
such that x ∈ B′xi ⊂ Bxi . Since the radius of Bxi is twice that of B

′
xi
, we even have

Bc/2 dist(xi,M)(x) ⊂ Bxi . Furthermore, by c ∈ (0, 1), we have

0 < (1− c/2) dist(xi,M) ≤ dist(x,M) ≤ (1 + c/2) dist(xi,M).

Therefore, there is c̃ > 0 such that Bc̃dist(x,M)(x) ⊂ Bxi and thus

∪x∈ΩBc̃dist(x,M)(x) ⊂ ∪iBxi .

We next show covering theorems for polygons and polyhedra. In the interest of

clarity of presentation, we formulate two separate results. Before doing so, we

point out that the intersection of balls with center located on the boundary of

the polygon/polyhedron Ω with the domain Ω will be of interest. We therefore

introduce the following notions:

De�nition 10.7 (Solid angles and dihedral angles). 1. Let Ω ⊂ R2 be a Lip-

schitz polygon. Let A be a vertex where the edges e1, e2 meet. We say that

the set Bε(A) ∩ Ω is a solid angle, if ∂(Bε(A) ∩ Ω) ∩ ∂Ω is contained in

{A} ∪ e1 ∪ e2.

2. Let Ω ⊂ R3 be a Lipschitz polyhedron. Let A be a vertex of Ω. We say that

the set Bε(A) ∩ Ω is a solid angle, if ∂(Bε(A) ∩ Ω) ∩ ∂Ω is contained in the

union of {A} and the edges and faces meeting at A.

3. Let Ω ⊂ R3 be a Lipschitz polyhedron. Let e be an edge of Ω, which is shared

by the faces f1, f2. Let x ∈ e. We say that the set Bε(x) ∩ Ω is a dihedral

angle, if ∂(Bε(x) ∩ Ω) ∩ ∂Ω is contained in e ∪ f1 ∪ f2.

We are now ready to introduce a two-dimensional covering theorem for polygons.

Theorem 7. Let Ω ⊂ R2 be a bounded Lipschitz polygon with vertices Aj,

j = 1, . . . , J , and edges E. Let M ⊂ {A1, . . . , AJ}. Set A′ := {A1, . . . , AJ} \M
and �x ε ∈ (0, 1).
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(i) There is a sectorial neighborhood SA′,M,c̃ of the vertices A′ and a constant

c ∈ (0, 1) such that SA′,M,c̃ is covered by balls Bi := Bcdist(xi,M)(xi) with

centers xi ∈ A′. Furthermore, the stretched balls B̂i := B(1+ε)cdist(xi,M)(xi)

are solid angles and satisfy a �nite overlap property on R2.

(ii) Fix a sectorial neighborhood U := SA′,M,c′ of the vertices A′. For each edge

e ∈ E, there is a sectorial neighborhood Se,M,c̃ and a constant c ∈ (0, 1) such

that Se,M,c̃ \ U is covered by balls Bi = Bcdist(xi,M)(xi) whose centers xi are

located on e. Furthermore, the stretched balls B̂i = B(1+ε)cdist(xi,M)(xi) satisfy

a �nite overlap property on R2 and are such that each B̂i ∩ Ω is a half-disk.

(iii) Fix a sectorial neighbood U := SE,M,c′ of the edges E. There is c ∈ (0, 1) such

that Ω\U is covered by balls Bi = Bcdist(xi,M)(xi) such that the stretched balls

B̂i = B(1+ε)cdist(xi,M)(xi) are completely contained in Ω and satisfy a �nite

overlap property on R2.

Proof. The assertion (i) is almost trivial and only included to emphasize the struc-

ture of the arguments. Assertions (ii), (iii) follow from suitable applications of

Lemmas 10.6 and 10.4.

The three-dimensional version of Theorem 7 is formulated in Theorem 8. We

emphasize that the �singular� set M does not need to be the union of all edges

and vertices but can be just a subset. We also emphasize that it is not necessarily

related to the notion of �singular set� in De�nition 10.9, although it is used in this

way. The key property of the covering balls is again such that the centers are either

a) in Ω (in which case the stretched ball is contained in Ω); or b) on a face (in

which case the stretched ball B̂i is such that B̂i∩Ω is a half-ball); or c) on an edge

in which case B̂i ∩ Ω is a dihedral angle (see De�nition 10.7); or d) in a vertex in

which case B̂i ∩ Ω is a solid angle (see De�nition 10.7).

Theorem 8. Let Ω ⊂ R3 be a Lipschitz polyhedron with faces F , edges E, and
vertices A. Let MA ⊂ A and ME ⊂ E. Let M = M = MA ∪ME and �x ε ∈ (0, 1).

Let A′ := {A ∈ A |A 6∈M} be the vertices not in M and E ′ := {e ∈ E | e∩M = ∅}
be the edges not abutting M . Then:

(i) (non-singular vertices) There is a sectorial neighborhood SA′,M,c̃ of the ver-

tices in A′ and a constant c ∈ (0, 1) such that SA′,M,c̃ is covered by balls

Bi := Bcdist(xi,M)(xi) with centers xi ∈ A′. Furthermore, the stretched balls

B̂i := B(1+ε)cdist(xi,M)(xi) are solid angles and satisfy a �nite overlap property

on R3.
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(ii) (non-singular edges) Fix a sectorial neighborhood U := SA′,M,c′ of A′. For each
edge e ∈ E ′, there is a sectorial neighborhood Se,M,c̃ and a constant c ∈ (0, 1)

such that Se,M,c̃ \ U is covered by balls Bi = Bcdist(xi,M)(xi) whose centers xi
are located on e. Furthermore, the stretched balls B̂i = B(1+ε)cdist(xi,M)(xi)

satisfy a �nite overlap property on R3 and B̂i ∩ Ω is a dihedral angle.

(iii) (faces) Fix a sectorial neighbood U := SE,M,c′ of E. There is a sectorial neig-

hborhood SF ,M,c̃ and a constant c ∈ (0, 1) such that SF ,M,c̃ \ U is covered

by balls Bi = Bcdist(xi,M)(xi) with centers xi ∈ ∂Ω. Furthermore, the stret-

ched balls B̂i = B(1+ε)cdist(xi,M)(xi) satisfy a �nite overlap property on R3 and

B̂i ∩ Ω is a half-ball.

(iv) (interior) Fix a sectorial neighbood U := SF ,M,c′ of F , where F is the set

of faces. Then there is c ∈ (0, 1) such that Ω \ U is covered by balls Bi =

Bcdist(xi,M)(xi) with centers xi ∈ Ω. Furthermore, the stretched balls B̂i =

B(1+ε)cdist(xi,M)(xi) satisfy a �nite overlap property on R3 and B̂i ⊂ Ω.

Proof. Follows from Lemmas 10.6 and 10.4.

Now �nally we have the adequate tools to state and to prove the stronger result of

Lemma 10.3.

Lemma 10.8. Let Ω be a (curvilinear) polygon in 2D or a (curvilinear) polyhedron

in 3D. Denote by E the set of all vertices of Ω in 2D and the set of all edges of Ω

in 3D. Let δE be the distance from E. Let z ∈ H1+β(Ω), β ∈ (0, 1], solve (1). Then,

for a constant C depending on α0, ‖A‖C0,1(Ω), β, and Ω,

‖δ1−β
E ∇

2z‖L2(Ω) ≤ Cβ

(
‖δ1−β
E f‖L2(Ω) + ‖z‖H1+β(Ω)

)
.

Proof. Follows from local considerations as in Lemma 10.3. The novel aspect is the

behavior near the boundary away from the vertices (in two dimensions) and the

edges (in three dimensions). This is achieved with an adapted covering theorem

of the type described in Theorems 7, 8. The key feature of these coverings is that

they allow us to reduce the considerations to balls B = Br(x) and stretched balls

B̂ = B(1+ε)r(x) (with �xed ε > 0) with r ∼ dist(x, E) and the following properties:

either x ∈ Ω with B̂r(x) ⊂ Ω or x ∈ Γ and B̂ ∩ Ω is a half-ball. Local elliptic

regularity assertions can then be employed for each ball B.

Lemma 10.8 assumes that a loss of H2-regularity occurs at any point of non-

smoothness of Γ. However, the set of �singular� vertices or edges can be further
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reduced. For example, in two dimensions for A = Id, it is well-known that only the

vertices of Ω with interior angle greater than π lead to a loss of full H2-regularity.

It will therefore be useful to introduce the closed set Ms of boundary points asso-

ciated with a loss of H2-regularity. Before introducing this set, we point out that

this set is a subset of the vertices and edges:

De�nition 10.9 (H2-regular part and singular part of the boundary). Let Ω be a

polygon (in 2D) or a polyhedron (in 3D) with vertices A and edges E.

1. A vertex A ∈ A of Ω is said to be H2-regular, if there is a ball Bε(A) of radius

ε > 0 such that the solution u of (1) satis�es u|Bε(A)∩Ω ∈ H2(Ω) whenever

f ∈ L2(Ω) together with the a priori estimate ‖u‖H2(Bε(A)∩Ω) ≤ C‖f‖L2(Ω).

2. In three dimensions, an edge e ∈ E of Ω with endpoints A1, A2 is said to be

H2-regular if the following condition is satis�ed: There is c > 0 such that

for the neighborhood S = ∪x∈eBcdist(x,{A1,A2})(x) of the edge e we have the

regularity assertion u|S∩Ω ∈ H2 for the solution u of (1) whenever f ∈ L2(Ω)

together with the a priori estimate ‖u‖H2(S∩Ω) ≤ C‖f‖L2(Ω).

Denote by Ar ⊂ A the set of H2-regular vertices and by Er ⊂ E the set of H2-

regular edges. Correspondingly, let As := A \ Ar and Es := E \ Er be the set of

vertices and edges, respectively, associated with a loss of H2-regularity. De�ne the

singular set Ms as

Ms := As
⋃
Es ⊂ Γ.

With the notion of the singular set in hand, we can formulate the following regu-

larity result:

Lemma 10.10. Let Ω be a polygon or a polyhedron. Let Ms be the singular set as

de�ned in De�nition 10.9. Then the following is true for any solution z ∈ H1
0 (Ω)

of (1): If z ∈ H1+β(Ω) for some β ∈ (0, 1], then with δMs := dist(·,Ms), there holds

for some C > 0 depending only on α0, ‖A‖C0,1(Ω), β, and Ω,

‖δ1−β
Ms
∇2z‖L2(Ω) ≤ Cβ

(
‖δ1−β

Ms
f‖L2(Ω) + ‖z‖H1+β(Ω)

)
.

Proof. The proof is based on local considerations as in Lemma 10.8. We recall

that not all vertices and edges (in 3D) are included in the singular set Ms. This is

accounted for by a further re�nement of the covering employed. We restrict our-

selves to the 3D situation. Using �nite coverings provided by Theorem 8, one may

restrict the attention to balls Br = Br(x) and stretched balls B̂ = B(1+ε)r(x) (with
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�xed ε > 0) with r ∼ dist(x, E) where one of the following additional properties

is satis�ed: a) x ∈ Ω with B̂r(x) ⊂ Ω; b) x ∈ Ar and B̂ ∩ Ω is a solid angle; c)

x ∈ ∪Er and B̂∩Ω is a dihedral angle; d) x lies in the interior of a face and B̂∩Ω is

a half-ball. We emphasize that we do not need to consider balls Br(x) with x ∈ As
or x ∈ Es since the covering provided by Theorem 8 is such that for every such x

there is a neighborhood Ux of x that is covered by (countably many) balls whose

radii tend to 0 as their centers approach x.

We have the following continuity results for the solution operator T for our model

problem (1) with locally supported right-hand sides:

Lemma 10.11. Let Assumption 6 be valid. Then T : (H1
0 (Ω))′ → H1

0 (Ω) satis�es

‖Tf‖
B

3/2
2,∞(Ω)

≤ C‖f‖
(B

1/2
2,1 (Ω))′

, (53)

‖Tf‖H3/2+ε(Ω) ≤ Cε‖δ1/2−ε
Γ f‖L2(Ω), 0 < ε ≤ s0 − 1/2. (54)

In particular, if f ∈ L2(Ω) with supp f ⊂ Sh, then

‖Tf‖
B

3/2
2,∞(Ω)

≤ Ch1/2‖f‖L2(Ω), (55)

‖Tf‖H3/2+ε(Ω) ≤ Cεh
1/2−ε‖f‖L2(Ω), 0 < ε ≤ s0 − 1/2. (56)

Proof. We follow the arguments of [113, Lemma 5.2]. The starting point for the

proof of (53) is that interpolation and Assumption 6 yield with θ ∈ (0, 1)

T : ((H1−s0
0 (Ω))′, (H1

0 (Ω))′)θ,∞ → (H1+s0(Ω), H1(Ω))θ,∞ = B
1+s0(1−θ)
2,∞ (Ω).

Next, we recognize as in [113, Lemma 5.2] (cf. [163, Thm. 1.11.2] or [159, Lemma 41.3])

((H1−s0
0 (Ω))′, (H1

0 (Ω))′)θ,∞ = ((H1−s0
0 (Ω), H1

0 (Ω))θ,1)′

⊃ ((H1−s0(Ω), H1(Ω))θ,1)′ = (B
1−s0(1−θ)
2,1 (Ω))′.

Setting θ = 1 − 1/(2s0) ∈ (0, 1/2], we get (B
1−s0(1−θ)
2,1 (Ω))′ = (B

1/2
2,1 (Ω))′ and

B
1+s0(1−θ)
2,∞ (Ω) = B

3/2
2,∞(Ω).

The assertion (54) follows from the Assumption 6 and (50) with β = 0.

‖Tf‖H1+(1/2+ε)(Ω) ≤ C‖f‖
(H

1−(1/2+ε)
0 (Ω))′

(50)

≤ Cε‖δ1/2−ε
Γ f‖L2(Ω),
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For the bound (55), we argue as in the proof of Lemma 10.2 and use (48), see also

[113, Lemma 5.2].

‖Tf‖
B

3/2
2,∞(Ω)

≤ C‖f‖
B

1/2
2,1 (Ω)′

= C sup
z∈B1/2

2,1 (Ω)

(f, z)L2(Sh)

‖z‖
B

1/2
2,1 (Ω)

≤ C‖f‖L2(Ω) sup
z∈B1/2

2,1 (Ω)

‖z‖L2(Sh)

‖z‖
B

1/2
2,1 (Ω)

(48)

≤ C
√
h‖f‖L2(Ω)

Finally, the proof of (56) follows from (54) and the assumed support properties of

f as

‖Tf‖H3/2+ε(Ω) ≤ Cε‖δ1/2−ε
Γ f‖L2(Ω) ≤ Cεh

1/2−ε‖f‖L2(Ω).

We will also require mapping properties of the solution operator T in weighted

spaces:

Lemma 10.12. Let Assumption 6 be valid. Then for v ∈ L2(Ω)

‖T (δ̃−1
Γ v)‖

B
3/2
2,∞(Ω)

≤ C| lnh|1/2‖δ̃−1/2
Γ v‖L2(Ω), (57)

‖T (δ̃−1
Γ v)‖H3/2+ε(Ω) ≤ Cεh

−ε‖δ̃−1/2
Γ v‖L2(Ω), ε ∈ (0, s0 − 1/2], (58)

‖T (δ−1+2ε
Γ v)‖H3/2+ε(Ω) ≤ Cε‖δ−1/2+ε

Γ v‖L2(Ω), ε ∈ (0, s0 − 1/2]. (59)

Proof. The results follow by combining Lemmas 10.2 and 10.11. To prove the �rst

inequality, we employ the Equations (53) and (51) to obtain

‖T (δ̃−1
Γ v)‖

B
3/2
2,∞(Ω)

(53)

≤ C‖δ̃−1
Γ v‖

(B
1/2
2,1 (Ω))′

(51)

≤ C| lnh|1/2‖δ̃−1/2
Γ v‖L2(Ω).
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Then with Equation (54) we can state that

‖T (δ̃−1
Γ v)‖H3/2+ε(Ω)

(54)

≤ Cε‖δ1/2−ε
Γ δ̃−1

Γ v‖L2(Ω)

≤ Cε‖δ̃1/2−ε
Γ δ̃−1

Γ v‖L2(Ω)

≤ Cεh
−ε‖δ̃−1/2

Γ v‖L2(Ω).

For the last inequality we can show using (54) that

‖T (δ−1+2ε
Γ v)‖H3/2+ε(Ω)

(54)

≤ Cε‖δ1/2−εδ−1+2ε
Γ v‖L2(Ω)

= Cε‖δ−1/2+εv‖L2(Ω).

The standard workhorse for L2-error analysis of the FEM approximation uh with

the error e = u− uh is the Galerkin orthogonality given by

a(e, v) = a(u− uh, v) = 0, v ∈ V k
h .

We start with a weighted L2-error:

Lemma 10.13. Let Assumption 6 be valid. Assume that a function z ∈ H1
0 (Ω)

satis�es the Galerkin orthogonality

a(z, v) = 0, v ∈ V k
h .

Then

‖δ−1/2+ε
Γ z‖L2(Ω) ≤ Cεh

1/2+ε‖z‖H1(Ω), ε ∈ (0, s0 − 1/2], (60)

‖δ̃−1/2
Γ z‖L2(Ω) ≤ Ch1/2| lnh|1/2‖z‖H1(Ω). (61)

Proof. The proof follows standard lines. De�ne ψ = T (δ−1+2ε
Γ z), which solves

〈v, δ−1+2ε
Γ z〉 = a(v, ψ), v ∈ H1

0 (Ω).

Then we have by Galerkin orthogonality for arbitrary Iψ ∈ V k
h

‖δ−1/2+ε
Γ z‖2

L2(Ω) = a(z, ψ) = a(z, ψ − Iψ) ≤ C‖z‖H1(Ω)‖ψ − Iψ‖H1(Ω).

From (59) in Lemma 10.12, we have ‖ψ‖H3/2+ε(Ω) ≤ Cε‖δ−1/2+ε
Γ z‖L2(Ω) so that with
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the approximation properties of V k
h we get

inf
Iψ∈V kh

‖ψ − Iψ‖H1(Ω) ≤ Cεh
1/2+ε‖δ−1/2+ε

Γ z‖L2(Ω).

This shows (60). For (61), we proceed similarly using the regularity assertion (57)

and the approximation property of V k
h . De�ne ψ = T (δ̃−1

Γ z) as the solution of

〈v, δ̃−1
Γ z〉 = a(v, ψ), v ∈ H1

0 (Ω).

Then using the Galerkin orthogonality for arbitrary Iψ ∈ V k
h it follows that

‖δ̃−1/2
Γ z‖L2(Ω) = a(δ̃

−1/2
Γ z, δ̃

−1/2
Γ z) = a(z, δ̃−1

Γ z) = a(z, ψ) = a(z, ψ − Iψ)

≤ C‖z‖H1(Ω)‖ψ − Iψ‖H1(Ω).

Using (57) in Lemma 10.12, we obtain

‖ψ‖
B

3/2
2∞ (Ω)

≤ Cε| lnh|1/2‖δ̃−1/2
Γ z‖L2(Ω),

and thus it follows with the approximation properties of V k
h that

inf
Iψ∈V kh

‖ψ − Iψ‖H1(Ω) ≤ h1/2‖ψ‖
B

3/2
2,∞(Ω)

≤ Cεh
1/2| lnh|1/2‖δ̃−1/2

Γ z‖L2(Ω).

Corollary 10.14. Let Assumption 6 be valid and the solution u be in Hs(Ω), s ≥ 1.

Then the FEM error e = u− uh satis�es for ε ∈ (0, s0 − 1/2]

‖δ−1/2+ε
Γ e‖L2(Ω) ≤ Cεh

µ−1/2+ε‖u‖Hµ(Ω), µ := min{s, k + 1}.

If we can ensure that the solution has some additional regularity, L2-convergence

of the FEM can also be achieved on non-convex geometries, as will be seen in the

following Theorem 9, which shows the optimal rate.

Theorem 9. Let Assumption 6 be valid. Let the exact solution u satisfy the extra

regularity u ∈ Hk+2−s0(Ω). Then the FEM error u− uh satis�es

‖u− uh‖L2(Ω) . hk+1‖u‖Hk+2−s0 (Ω). (62)
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More generally, if u ∈ Hs(Ω), s ∈ [1, k + 2− s0], then

‖u− uh‖L2(Ω) . hs−1+s0‖u‖Hs(Ω), 1 ≤ s ≤ k + 2− s0. (63)

Proof. of (62): We proceed along a standard duality argument. To begin with, we

note that the case s0 = 1 is classical so that we may assume s0 < 1 for the remainder

of the proof. Set ε := s0 − 1/2 ∈ (0, 1/2) by our assumption 1/2 < s0 < 1. Let

w = Te and let wh ∈ V k
h be its Galerkin approximation. Quasi-optimality and the

use of (50) give us the following energy error estimate:

‖w − wh‖H1(Ω) . inf
v∈V kh
‖w − v‖H1(Ω) . h1/2+ε‖w‖H3/2+ε(Ω)

. h1/2+ε‖e‖(H1/2−ε(Ω))′ . h1/2+ε‖e‖L2(Ω). (64)

The Galerkin orthogonalities satis�ed by e and w − wh and a weighted Cauchy-

Schwarz inequality yield for the Scott-Zhang interpolant Ikhu

‖e‖2
L2(Ω) = a(e, w) = a(e, w − wh) = a(u− Ikhu,w − wh) (65)

≤ C‖δ̃−1/2+ε
Γ ∇(u− Iu)‖L2(Ω)‖δ̃1/2−ε

Γ ∇(w − wh)‖L2(Ω). (66)

We get by a covering argument and (50) of Lemma 10.1

‖δ̃−1/2+ε
Γ ∇(u− Ikhu)‖L2(Ω) . hk‖δ̃−1/2+ε

Γ ∇k+1u‖L2(Ω)

. hk‖∇k+1u‖H1/2−ε(Ω). (67)

It should also be noted at this point that in (67), the weight δ̃−1/2+ε
Γ can be consi-

dered as constant in each element K. For the contribution ‖δ̃1/2−ε
Γ ∇(w−wh)‖L2(Ω)

in (66), we have to analyze the Galerkin error w − wh in more detail, which will

be done with the techniques from the local error analysis of the FEM. We split Ω

into Sch ∪ (Ω \ Sch) where c > 0 will be selected su�ciently large below. For �xed

c > 0, the L2-norm on Sch can easily be bounded with (64) by

‖δ̃1/2−ε
Γ ∇(w − wh)‖L2(Sch) . h1/2−ε‖∇(w − wh)‖L2(Ω) . h‖e‖L2(Ω). (68)

The term ‖δ̃1/2−ε
Γ ∇(w−wh)‖L2(Ω\Sch) requires more care. Obviously, δ̃1/2−ε

Γ . δ
1/2−ε
Γ

on Ω \Sch. We have to employ the tools from the local error analysis in FEM. The

Galerkin orthogonality satis�ed by w−wh allows us to use techniques as described
in [172, Sec. 5.3], which yields the following estimate for arbitrary balls Br ⊂ Br′
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with the same center (implicitly, r′ > r +O(h) is assumed in (69))

‖∇(w − wh)‖L2(Br) . ‖∇(w − Ikhw)‖L2(Br′ )
+

1

r′ − r
‖w − wh‖L2(Br′ )

. (69)

By a covering argument (which requires r′ − r ∼ cδΓ(x), where x is the center of

the ball Br, and c is su�ciently small) these local estimates can be combined into a

global estimate of the following form, where for su�ciently small c1 > 0 (c1 depends

only on Ω and the shape regularity of the triangulation but is independent of h):

‖δ1/2−ε
Γ ∇(w − wh)‖L2(Ω\Sch) . (70)

‖δ1/2−ε
Γ ∇(w − Ikhw)‖L2(Ω\Scc1h) + ‖δ−1/2−ε

Γ (w − wh)‖L2(Ω\Scc1h).

This estimate implicitly assumed c1ch > 2h, i.e., at least two layers of elements

separate Γ from Ω \ Sc1ch. We now �x c > 2/c1. The �rst term in (70) can

easily be bounded by standard approximation properties of Ikh , Lemma 10.3, and

Assumption 6:

‖δ1/2−ε
Γ ∇(w − Ikhw)‖L2(Ω\Scc1h) . h‖δ1/2−ε

Γ ∇2w‖L2(Ω)

.h
[
‖δ1/2−ε

Γ e‖L2(Ω) + ‖w‖H3/2+ε(Ω)

]
. h‖e‖L2(Ω).

In the last step, we have to deal with the term ‖δ−1/2−ε
Γ (w−wh)‖L2(Ω\Scc1h) of (70).

Lemma 10.13 and (64) imply

‖δ−1/2−ε
Γ (w − wh)‖L2(Ω\Scc1h) . h−2ε‖δ−1/2+ε

Γ (w − wh)‖L2(Ω)

. h−2εh1/2+ε‖w − wh‖H1(Ω) . h‖e‖L2(Ω). (71)

Here we have used the quasi-optimality of the Galerkin approximation with respect

to the H1-norm.

Proof of (63): The above arguments show that the regularity of u enters in the

bound (67). For u ∈ H1(Ω), the stability properties of the Scott-Zhang operator

Ikh show

‖δ̃−1/2+ε
Γ ∇(u− Ikhu)‖L2(Ω) . h−1/2+ε‖u‖H1(Ω). (72)

Hence, a standard interpolation argument that combines (67) and (72) yields

‖δ̃−1/2+ε
Γ ∇(u − Ikhu)‖L2(Ω) . h−1/2+ε+s−1‖u‖Hs(Ω) for s ∈ [1, k + 2 − s0]. Combi-

ning this estimate with the above control of ‖δ̃1/2−ε
Γ ∇(w − wh)‖L2(Ω) yields the

desired bound in the range s ∈ [1, k + 2− s0].
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The convergence analysis of Theorem 9 did not make explicit use of the fact that a

piecewise smooth geometry is considered; the essential ingredient was Assumption 6

(which, of course, is related to the geometry of the problem). This is re�ected in our

use of δ̃Γ, which measures the distance from the boundary Γ. One interpretation of

this procedure is that one assumes of the dual solution w (and, in fact, also of the

solution of the �bidual� problem employed to estimate ‖δ̃−1/2+ε
Γ (w − wh)‖L2(Ω) in

Theorem 9) that it may lose H2-regularity anywhere near Γ. However, for piecewise

smooth geometries in conjunction with certain homogeneous boundary conditions

(here: homogeneous Dirichlet conditions), this loss of H2-regularity is restricted

to a much smaller set, namely, a subset of vertices in 2D and a subset of the

skeleton (i.e., the union of vertices and edges) in 3D. This set is given by Ms in

De�nition 10.9. For this set Ms, we introduce the distance function

δMs := dist(·,Ms), δ̃Ms := h+ δMs .

Theorem 10. Let Ω be a polygon (in 2D) or a polyhedron (in 3D). Let Ms be

the set of vertices (in 2D) or edges and vertices (in 3D) associated with a loss of

H2-regularity for (1) as given in De�nition 10.9. Let Assumption 6 be valid. Let

Iu ∈ V k
h be arbitrary. Then we have

‖u− uh‖L2(Ω) ≤ h‖δ̃s0−1
Ms
∇(u− Iu)‖L2(Ω).

Proof. We may assume s0 < 1 since the case s0 = 1 corresponds to the standard

duality argument with full elliptic regularity and set ε := s0 − 1/2 ∈ (0, 1/2). The

key observation is that, starting from the duality argument (65), one can replace

the weight function δ̃−1/2+ε
Γ in (66) with any positive weight function. Taking as

the weight function δ̃−1/2+ε
Ms

, we get

‖e‖2
L2(Ω) ≤ ‖δ̃

−1/2+ε
Ms

∇(u− Iu)‖L2(Ω)‖δ̃1/2−ε
Ms

∇(w − wh)‖L2(Ω). (73)

The estimate of w − wh in the weighted norm is done similarly as in the proof of

Theorem 9, taking into account the improved knowledge of the regularity of w.

With SMs,ch := {x ∈ Ω | δMs(x) < ch} we have the trivial bound

‖δ̃1/2−ε
Ms

∇(w − wh)‖L2(Ω) (74)

. ‖δ̃1/2−ε
Ms

∇(w − wh)‖L2(SMs,ch) + ‖δ̃1/2−ε
Ms

∇(w − wh)‖L2(Ω\SMs,ch),

where the parameter c will be selected su�ciently large below. The �rst term in
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(74) is estimated in exactly the same way as in (68) and produces

‖δ̃1/2−ε
Ms

∇(w − wh)‖L2(SMs,ch) . h1/2−ε‖∇(w − wh)‖L2(Ω)

= h1/2−ε‖∇(w − wh)‖H1(Ω)

. h1/2−εh1/2+ε‖e‖L2(Ω)

≤ Ch‖e‖L2(Ω).

The second term in (73) again requires the techniques from the local error analysis

of the �nite elements, this time with the appropriate modi�cations to account for

the boundary conditions. Inspection of the arguments in [172, Sec. 5.3] shows that

the key estimate (69) extends up to the boundary in the following sense:

‖∇(w − wh)‖L2(Br∩Ω) . ‖∇(w − Ikhw)‖L2(Br′∩Ω) +
1

r′ − r
‖w − wh‖L2(Br′∩Ω).

Besides the implicit assumption r′ > r + O(h), the balls Br and Br′ are assumed

to have the same center x and satisfy one of the following conditions:

1. Br′ = Br′(x) ⊂ Ω;

2. x ∈ ∂Ω and Br′(x) ∩ Ω is a half-disk;

3. x is a vertex of Ω;

4. (only for d = 3) x lies on an edge e and Br′(x) ∩ Ω is a dihedral angle (i.e.,

the intersection of ∂(Br′(x) ∩ Ω) with ∂Ω is contained in the two faces that

share the edge e.

The reason for the restriction of the location of the centers of the balls is that the

procedure presented in [172, Sec. 5.3] relies on Poincaré inequalities so that the

number of possible shapes for the intersections Br′ ∩Ω should be �nite. A covering

argument (see Theorem 7 for the 2D case and Theorem 8 for the 3D situation) then

leads to the following bound with an appropriate c1 > 0 (here, c > 0 is implicitly

assumed su�ciently large):

‖δ̃1/2−ε
Ms

∇(w − wh)‖L2(Ω\SMs,ch) . (75)

‖δ̃1/2−ε
Ms

∇(w − Ikhw)‖L2(Ω\SMs,cc1h) + ‖δ̃−1/2−ε
Ms

(w − wh)‖L2(Ω\SMs,cc1h).

The �rst term in (75) can be estimated with the improved regularity assertion of

Lemma 10.10 to produce (with appropriate c2 > 0 and the implicit assumption on

157



c that cc1c2 > 2)

‖δ̃1/2−ε
Ms

∇(w − Ikhw)‖L2(Ω\SMs,cc1h) . h‖δ̃1/2−ε
Ms

∇2w‖L2(Ω\SMs,cc1c2h)

.h
[
‖δ̃1/2−ε

Ms
e‖L2(Ω) + ‖w‖H3/2+ε(Ω)

]
. h‖e‖L2(Ω).

For the second term in (75) we note that −1/2− ε < 0 so that δ̃−1/2−ε
Ms

≤ δ̃
−1/2−ε
Γ .

This leads to

‖δ̃−1/2−ε
Ms

(w − wh)‖L2(Ω\SMs,cc1h) . ‖δ̃−1/2−ε
Ms

(w − wh)‖L2(Ω)

. ‖δ̃−1/2−ε
Γ (w − wh)‖L2(Ω) . h−2ε‖δ̃−1/2+ε

Γ (w − wh)‖L2(Ω);

the term h−2ε‖δ̃−1/2+ε
Γ (w − wh)‖L2(Ω) has already been estimated in (71) in the

desired form.

The regularity requirements on the solution u can still be slightly weakened. As

written, the exponent s0 − 1 is related to the global regularity of the dual solution

w. However, the developments above show that a local lack of full regularity of

the dual solution w (and the bidual solution) needs to be o�set by additional local

regularity of the solution. To be more speci�c, we restrict our attention now to

the 2D Laplacian, i.e., A = Id. In this case, the situation can be expressed as

follows with the aid of the singular exponents αj := π/ωj, where ωj ∈ (π, 2π) is

the interior angle at the reentrant vertices Aj, j = 1, . . . , J .

Corollary 10.15. Let Ω ⊂ R2 be a polygon and let A = Id. Let δj := dist(·, Aj),
j = 1, . . . , J , for the J reentrant corners. Set δ̃j := h + δj. Let ωj be the interior

angle at Aj and αj = π/ωj. Fix βj > 1− αj arbitrary. Then for any Iu ∈ V k
h

‖u− uh‖L2(Ω) . h
J∑
j=1

‖δ̃−βjj ∇(u− Iu)‖L2(Ω).

Proof. The proof follows by an inspection of how the regularity of the solution

w = Te of the dual problem enters the proof of Theorem 10. By, e.g., [67] the

solution w = Te is in a weighted H2-space with

‖
J∏
j=1

δ
βj
j ∇2w‖L2(Ω) . ‖e‖L2(Ω), (76)

and Assumption 6 holds with any s0 < minj αj. The regularity assertion (76)

suggests to choose
∏J

i=1 δ̃
βi
i as the weight in the proof of Theorem 9. Inspection of
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the procedure in the proof of Theorem 10 then leads to the result.

We extract from this result another corollary that we will prove useful in the

numerical results. We formulate it in terms of (standard, unweighted) Sobolev

regularity in order to emphasize the di�erence in regularity requirements of the

solution near the reentrant corners and away from them:

Corollary 10.16. Assume the hypotheses of Corollary 10.15. Let s > 1 and si > 1,

i = 1, . . . , J . Let U := Ω \ ∪U i, for some neighborhoods Ui of the reentrant vertices
Ai. Let u ∈ Hsi(Ui), i = 1, . . . , J and u ∈ Hs(U). Then for arbitrary ε > 0

‖u− uh‖L2(Ω) ≤ Cεh
τ , τ := min(1 + k, s, min

j=1,...,J
(−1 + αj + sj − ε)).

Proof. The approximant Iu in Corollary 10.15 may be taken as any standard nodal

interpolant or the Scott-Zhang projection. Then standard estimates and Corol-

lary 10.15 produce with the choice βj := 1 − αj + ε for arbitrary small but �xed

ε > 0:

‖u− uh‖L2(Ω) . h min
j=1,...,J

{hmin{k,s−1}, h−βj+sj−1}

. min
j=1,...,J

{hmin{k+1,s}, hαj+sj−1−ε}.

10.2. Numerical L2-error investigation

In order to numerically demonstrate the derived theoretical results, we again consi-

der the simple model equation −∆u = f in Ω ⊂ Rd, d ∈ {2, 3} with inhomogeneous

Dirichlet boundary conditions, �rst in a two-dimensional setting. These are rea-

lized numerically by nodal interpolation of the prescribed exact solution u, and

the data f is also computed from u. In the case of a non-smooth solution, we use

a suitable quadrature formula on �ner meshes to guarantee that the L2-error is

accurately evaluated. We use a sequence of uniformly re�ned triangular meshes,

where each element is split into four triangles. We consider two typical domains

for reentrant corners and start with the L-shaped domain (−1, 1)2 \ [0, 1]× [−1, 0]

and then consider a slit domain (−1, 1)2 \ ((0, 1)× {0}) using lowest order discre-

tization. In both cases, the prescribed solution is given in polar coordinates by

u(r, φ) = rα sin(aφ) where α, a are given parameters. For non-integer α, we have

u ∈ B1+α
2,∞ (Ω) by [10, Thm. 2.1]. Moreover, we test the in�uence of the position

(x0, y0) of the weak singularity at r = 0 by de�ning r2 := (x−x0)2 + (y− y0)2. We
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(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DoFs ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate
81 6.1585e-03 - 6.8141e-03 - 6.2506e-03 -
289 2.6986e-03 1.19 2.5648e-03 1.41 2.1211e-03 1.56

1.089 1.1123e-03 1.28 8.8428e-04 1.54 6.7413e-04 1.65
4.225 4.4037e-04 1.34 2.9202e-04 1.60 2.0903e-04 1.69
16.641 1.7107e-04 1.36 9.4164e-05 1.63 6.4027e-05 1.71
66.049 6.5689e-05 1.38 2.9909e-05 1.65 1.9471e-05 1.72
263.169 2.5030e-05 1.39 9.4012e-06 1.67 5.8930e-06 1.72

1.050.625 9.4877e-06 1.40 2.9328e-06 1.68 1.7774e-06 1.73
4.198.401 3.5834e-06 1.40 9.0968e-07 1.69 5.3475e-07 1.73

Table 10.1: L�domain, k = 1: In�uence of the position of singularity for α = 0.75.

α = 10/9 α = 4/3 α = 3/2

DoFs ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate
81 6.5660e-03 - 8.6776e-03 - 8.9932e-03 -
289 2.3309e-03 1.49 2.8523e-03 1.61 2.8151e-03 1.68

1.089 7.3413e-04 1.67 8.2870e-04 1.78 7.8034e-04 1.85
4.225 2.2257e-04 1.72 2.3073e-04 1.84 2.0751e-04 1.91
16.641 6.5650e-05 1.76 6.2539e-05 1.88 5.3910e-05 1.94
66.049 1.9056e-05 1.78 1.6688e-05 1.91 1.3835e-05 1.96
263.169 5.4810e-06 1.80 4.4099e-06 1.92 3.5256e-06 1.97

1.050.625 1.5690e-06 1.80 1.1580e-06 1.93 8.9467e-07 1.98
4.198.401 4.4822e-07 1.81 3.0279e-07 1.94 2.2641e-07 1.98

Table 10.2: L-domain, k = 1: In�uence of exponent α for a = 2/3π and (x0, y0) =
(0, 0).

note that irrespective of the location (x0, y0) of the singularity on the boundary Γ,

we have u ∈ B1+α
2,∞ (Ω) ⊂ H1+α−ε(Ω) for any ε > 0.

For the L-shaped domain, the shift parameter s0 can be taken to be any s0 < 2/3.

From the theoretical results in this section, we therefore expect the error decay to

have a rate of at least min(2, 1 + α− 1/3) uniformly in the position (x0, y0) of the

singularity. Table 10.1 shows the numerical results for α = 0.75 and a = π/2, for

which min(2, 1+α−1/3) = 1.417. As it can be seen for (x0, y0) = (0, 0), we observe

a good agreement with Theorem 9. However for the locations (x0, y0) = (0.5, 0) and

(x0, y0) = (0, 1), the rates are substantially better. This can be explained by the

more re�ned analysis of Corollary 10.16, where we expect an improved convergence

rate of 1.75 for these cases. Table 10.2 shows the results for (x0, y0) = (0, 0) and

α ∈ {10/9, 4/3, 3/2}. From Theorem 9, we expect convergence rates of 1.78, 2, and

2, respectively. The observed numerical rates of 1.81, 1.94, and 1.98 are quite close.
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(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DoFs ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate
81 4.6216e-03 - 1.8387e-04 - 1.6841e-04 -
289 1.6860e-03 1.45 6.0370e-05 1.61 5.0364e-05 1.74

1.089 5.4867e-04 1.62 1.8034e-05 1.74 1.3883e-05 1.86
4.225 1.7284e-04 1.67 5.1378e-06 1.81 3.6942e-06 1.91
16.641 5.2963e-05 1.71 1.4253e-06 1.85 9.6399e-07 1.94
66.049 1.5970e-05 1.73 3.8870e-07 1.87 2.4842e-07 1.96
263.169 4.7758e-06 1.74 1.0474e-07 1.89 6.3437e-08 1.97

1.050.625 1.4238e-06 1.75 2.7971e-08 1.90 1.6086e-08 1.98
4.198.401 4.2471e-07 1.75 7.4181e-09 1.91 4.0561e-09 1.99

Table 10.3: L�domain, k = 1: In�uence of the position of singularity for α = 1.01.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DoFs ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate
81 8.6776e-03 - 3.8962e-03 - 3.6446e-03 -
289 2.8523e-03 1.61 1.1374e-03 1.78 1.0008e-03 1.86

1.089 8.2870e-04 1.78 3.0272e-04 1.91 2.5331e-04 1.98
4.225 2.3073e-04 1.84 7.7239e-05 1.97 6.2153e-05 2.03
16.641 6.2539e-05 1.88 1.9331e-05 2.00 1.5073e-05 2.04
66.049 1.6688e-05 1.91 4.7956e-06 2.01 3.6440e-06 2.05
263.169 4.4099e-06 1.92 1.1852e-06 2.02 8.8167e-07 2.05

1.050.625 1.1580e-06 1.93 2.9260e-07 2.02 2.1389e-07 2.04
4.198.401 3.0279e-07 1.94 7.2263e-08 2.02 5.2069e-08 2.04

Table 10.4: L�domain, k = 1: In�uence of the position of singularity for α = 4/3.

The situation for the next simulation is structurally similar to the one before. From

Corollary 10.16, we expect the following convergence rates:

x0 = (0, 0) =⇒ τ = min{2, 1 + α,−1 + 2/3 + (1 + α)} = min{2, 2/3 + α},

x0 6= (0, 0) =⇒ τ = min{2, 1 + α,−1 + 2/3 +∞} = min{2, 1 + α}.

Also in this case the numerical rates depicted in Tables 10.3�10.4, where we show

the results for α ∈ {2/3, 1.01, 4/3}, are very close to the rates expected by our the-

ory. The situation is similar for the slit domain, where the regularity of the dual

problem is even further reduced. It corresponds to a limiting case of our theory,

which, strictly speaking, we did not cover, since the parameter s0 of Assumption 6

may be taken to be any s0 < 1/2. Nevertheless, one expects from Theorem 9 a

convergence rate close to min{2, 1 + α − 1/2}. For α = 0.75 this is 1.25, which is

visible in Table 10.5 for the case (x0, y0) = (0, 0). Again, the better convergence

behavior for (x0, y0) = (0.5, 0) and (x0, y0) = (0, 1) can be explained by the theory
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(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DoFs ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate
97 6.1391e-03 - 1.1088e-02 - 1.0692e-02 -
348 2.8187e-03 1.12 4.1329e-03 1.42 3.8553e-03 1.47

1.315 1.2351e-03 1.19 1.4164e-03 1.54 1.3388e-03 1.53
5.109 5.3338e-04 1.21 4.7830e-04 1.57 4.4562e-04 1.59
20.137 2.2846e-04 1.22 1.4725e-04 1.70 1.4420e-04 1.63
79.953 9.7267e-05 1.23 4.6683e-05 1.66 4.5843e-05 1.65
318.625 4.1233e-05 1.24 1.4761e-05 1.66 1.4401e-05 1.67

1.272.129 1.7428e-05 1.24 4.3773e-06 1.75 4.4861e-06 1.68
5.083.777 7.3524e-06 1.25 1.3285e-06 1.72 1.3889e-06 1.69

Table 10.5: Slit domain, k = 1: In�uence of the position of singularity for α = 0.75.

α = 10/9 α = 4/3 α = 3/2

DoFs ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate
97 5.7534e-03 - 7.3549e-03 - 7.5901e-03 -
348 1.9412e-03 1.57 2.2414e-03 1.71 2.1664e-03 1.81

1.315 6.2583e-04 1.63 6.4849e-04 1.79 5.8638e-04 1.89
5.109 1.9689e-04 1.67 1.8251e-04 1.83 1.5450e-04 1.92
20.137 6.1446e-05 1.68 5.0718e-05 1.85 4.0197e-05 1.94
79.953 1.9191e-05 1.68 1.4021e-05 1.85 1.0396e-05 1.95
318.625 6.0229e-06 1.67 3.8699e-06 1.86 2.6803e-06 1.96

1.272.129 1.9023e-06 1.66 1.0682e-06 1.86 6.8978e-07 1.96
5.083.777 6.0474e-07 1.65 2.9514e-07 1.86 1.7730e-07 1.96

Table 10.6: Slit domain, k = 1: In�uence of exponent α for a = 1/2π and
(x0, y0) = (0, 0).

of Corollary 10.16, which predicts 1 + α = 1.75. Table 10.6 shows the results for

(x0, y0) = (0, 0) and α ∈ {10/9, 4/3, 3/2}. From Theorem 9, we expect convergence

rates of 1.61, 1.83 and 2, respectively. The observed numerical rates of 1.65, 1.86,

and 1.96 are reasonably close to these predictions.

Furthermore for the following results we expect the convergence behavior detailed

in Corollary 10.16 to be a good description of the actual convergence behavior.

We assume that the global regularity of the solution u is described by s = 1 + α

(actually, it is 1 + α − ε for all ε > 0). Corollary 10.16 then lets us expect for the

two cases x0 = (0, 0) and x0 6= (0, 0) the following convergence rates:

x0 = (0, 0) =⇒ τ = min{2, 1 + α,−1 + 1/2 + (1 + α)} = min{2, 1/2 + α},

x0 6= (0, 0) =⇒ τ = min{2, 1 + α,−1 + 1/2 +∞} = min{2, 1 + α}.

In the following Tables 10.7�10.9, we vary the parameter α. In each table separa-
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(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DoFs ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate
97 2.9124e-02 - 3.8405e-02 - 3.0468e-02 -
348 1.5745e-02 0.89 1.0451e-02 1.88 1.2883e-02 1.24

1.315 8.1422e-03 0.95 4.8926e-03 1.10 5.2831e-03 1.29
5.109 4.1322e-03 0.98 2.1508e-03 1.19 2.0814e-03 1.34
20.137 2.0799e-03 0.99 8.1046e-04 1.41 7.9896e-04 1.38
79.953 1.0430e-03 1.00 3.0969e-04 1.39 3.0187e-04 1.40
318.625 5.2221e-04 1.00 1.1780e-04 1.39 1.1288e-04 1.42

1.272.129 2.6125e-04 1.00 4.1750e-05 1.50 4.1903e-05 1.43
5.083.777 1.3066e-04 1.00 1.4985e-05 1.48 1.5472e-05 1.44

Table 10.7: Slit domain, k = 1: In�uence of the position of singularity for α = 0.5.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DoFs ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate
97 4.1949e-03 - 3.0111e-04 - 2.9784e-04 -
348 1.4605e-03 1.52 9.9257e-05 1.60 9.3618e-05 1.67

1.315 4.8756e-04 1.58 2.9679e-05 1.74 2.8033e-05 1.74
5.109 1.5909e-04 1.62 8.6201e-06 1.78 8.0205e-06 1.81
20.137 5.1667e-05 1.62 2.2994e-06 1.91 2.2266e-06 1.85
79.953 1.6874e-05 1.61 6.2533e-07 1.88 6.0606e-07 1.88
318.625 5.5687e-06 1.60 1.6832e-07 1.89 1.6270e-07 1.90

1.272.129 1.8596e-06 1.58 4.3035e-08 1.97 4.3240e-08 1.91
5.083.777 6.2798e-07 1.57 1.1235e-08 1.94 1.1403e-08 1.92

Table 10.8: Slit domain, k = 1: In�uence of the position of singularity for α = 1.01.

tely we vary the location. The locations under investigation are (x0, y0) = (0, 0),

(x0, y0) = (0.5, 0) and (x0, y0) = (0, 1). We observe that the theoretical convergence

rates are mostly achieved in our numerical simulations.

In the following we investigate the performance of quadratic �nite elements for

the L-shaped domain. We use the same type of solution as before and vary the

parameter α for (x0, y0) = (0, 0), i.e., the reentrant corner. Here we expect from

our theory a convergence rate of min(3, α+ 1− 1/3). For α ∈ {2.175, 2.275, 2.375},
the observed numerical rates, which are visible in Table 10.10, are very close to the

theoretically predicted ones. Here, we expect the convergence rate

τ = min{3,−1 + 2/3 + (1 + α)} = min{3, 2/3 + α}.

In the three-dimensional setting, we consider a Fichera corner Ω := (−1, 1)3 \ [0, 1]3

and prescribe the smooth solution u(x, y, z) := sin((x+y)π) cos(2πz). The inhomo-
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(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DoFs ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate
97 7.3549e-03 - 6.3401e-03 - 6.3849e-03 -
348 2.2414e-03 1.71 1.8792e-03 1.75 1.7790e-03 1.84

1.315 6.4849e-04 1.79 5.0365e-04 1.90 4.6905e-04 1.92
5.109 1.8251e-04 1.83 1.3007e-04 1.95 1.1878e-04 1.98
20.137 5.0718e-05 1.85 3.1798e-05 2.03 2.9443e-05 2.01
79.953 1.4021e-05 1.85 7.8665e-06 2.02 7.2227e-06 2.03
318.625 3.8699e-06 1.86 1.9356e-06 2.02 1.7642e-06 2.03

1.272.129 1.0682e-06 1.86 4.6924e-07 2.04 4.3055e-07 2.03
5.083.777 2.9514e-07 1.86 1.1524e-07 2.03 1.0519e-07 2.03

Table 10.9: Slit domain, k = 1: In�uence of the position of singularity for α = 4/3.

α = 2/3 α = 3/4 α = 1.01 α = 10/9

DoFs ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate
289 3.1686e-03 - 1.6898e-03 - 4.8115e-04 - 5.9011e-04 -

1.089 1.2099e-03 1.39 6.0844e-04 1.47 1.4003e-04 1.78 1.5596e-04 1.92
4.225 4.6505e-04 1.38 2.1881e-04 1.48 3.7277e-05 1.91 3.8312e-05 2.03
16.641 1.8057e-04 1.36 8.0073e-05 1.45 9.9546e-06 1.90 9.3965e-06 2.03
66.049 7.0635e-05 1.35 2.9545e-05 1.44 2.6951e-06 1.89 2.3314e-06 2.01
263.169 2.7771e-05 1.35 1.0960e-05 1.43 7.4481e-07 1.86 5.8950e-07 1.98

1.050.625 1.0955e-05 1.34 4.0799e-06 1.43 2.1075e-07 1.82 1.5257e-07 1.95

α = 4/3 α = 3/2 α = 2.175 α = 2.275

DoFs ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate
289 6.1433e-04 - 5.5363e-04 - 2.7565e-04 - 2.4570e-04 -

1.089 1.5136e-04 2.02 1.3540e-04 2.03 5.1121e-05 2.43 4.1696e-05 2.56
4.225 3.3604e-05 2.17 2.8521e-05 2.25 7.5320e-06 2.76 5.7319e-06 2.86
16.641 7.7002e-06 2.13 6.2123e-06 2.20 1.1051e-06 2.77 7.8407e-07 2.87
66.049 1.8014e-06 2.10 1.3642e-06 2.19 1.5938e-07 2.79 1.0553e-07 2.89
263.169 4.2916e-07 2.07 3.0106e-07 2.18 2.2723e-08 2.81 1.4044e-08 2.91

1.050.625 1.0374e-07 2.05 6.6649e-08 2.18 3.2138e-09 2.82 1.8538e-09 2.92

α = 2.375

DoFs ‖u− uh‖L2(Ω) rate
289 2.2177e-04 -

1.089 3.3912e-05 2.71
4.225 4.3221e-06 2.97
16.641 5.4888e-07 2.98
66.049 6.8762e-08 3.00
263.169 8.5292e-09 3.01

1.050.625 1.0497e-09 3.02

Table 10.10: L-shaped domain, k = 2: In�uence of α for a = 2/3π and (x0, y0) =
(0, 0).

geneous Dirichlet conditions are realized by nodal interpolation. The discretization

is based on trilinear �nite elements on hexahedra and uniform re�nements. Alt-
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DoFs ‖u− uh‖L2(Ω) rate
316 0.0754 -

3.032 0.0172 1.96
26.416 0.0039 2.04
220.256 0.0009 2.02

1.798.336 0.0002 2.01
14.532.992 5.7491e-05 2.00

Table 10.11: Fichera corner, k = 1: L2-error for a smooth solution.

x0 = (−1,−1,−1), α = 0.55 x0 = (0, 0.5, 0), α = 0.55 x0 = (0, 0.5, 0), α = 2/3

DoFs ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate
316 0.0007 � 0.0007 � 0.0007 �

3.032 0.0002 2.00 0.0002 1.43 0.0002 1.55
26.416 3.9176e-05 1.98 6.8242e-05 1.72 6.2591e-05 1.80
22.0256 9.6835e-06 1.98 1.9077e-05 1.80 1.6589e-05 1.88

1.798.336 2.4305e-06 1.97 5.2412e-06 1.85 4.3418e-06 1.92
14.532.992 6.1407e-07 1.98 1.4423e-06 1.87 1.1264e-06 1.94

Table 10.12: Fichera corner: L2-error.

hough the dual problem lacks full regularity, Theorem 9 asserts that this can be

compensated by extra s0-regularity of the primal solution to maintain full second

order convergence in L2.

Table 10.11 shows that we observe numerically already for coarse discretizations

the predicted convergence order two, and the theoretical results are con�rmed. For

the last calculations of this section, the exact solution is given by

u = rα,

where r = dist(x, x0) measures the distance from the point x0, which is varied as

depicted in Table 10.12. The L2-error is computed with a tensor product Gauss

rule (�ve points in each coordinate direction).

Remark 10.17. Note that in the paper [77] we also consider the L2-convergence of

the normal derivative on the boundary. We show that the optimal rate O(hk) (up to

a logarithmic factor in the lowest order case) can be achieved, if the solution is su�-

ciently smooth. The proof is based on a local error analysis of the FEM as discussed,

e.g., in [171, 172]. In the paper we extract error bounds for the �ux on the boundary

from an optimal FEM estimate on a strip of width O(h) near the boundary. Alt-

hough we present the convergence of the �ux for an H1-conforming discretization,

the techniques are applicable to mixed methods [112], FEM-BEM coupling [111],
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and mortar and DG methods [113, 173]. In fact, the results presented in [77] lead

to a sharpening of [113], where convexity of the domain was assumed to avoid the

analysis of a suitable additional dual problem.
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Conclusion

In this thesis we have considered and developed complexity reduction techniques

for �nite element methods, which we have applied to eigenvalue problems for the

vibro-acoustic analysis in the context of distinct problem settings as large as an

eight story building and as small as a violin bridge.

We have started by demonstrating the bene�ts of the mortar method, which allows

to mesh the single structures such as walls, �oors and ceilings of a large building

structure separately. This method is thus especially useful for our purpose of vibro-

acoustic simulation of timber buildings using modular conception. Furthermore we

have introduced a novel model reduction technique for elastomer modeling, which

allows to replace the explicitely discretized elastomer by a coupling condition that

�ts into the implementational framework of mortar methods. We have demonstra-

ted that it reduces the amount of degrees of freedom and the complexity of the

mesh generation signi�cantly while having a very good accuracy.

Then, in order to handle the extent of the numerical calculations performed when

dealing with parameter-dependent calculations as they occur in our vibro-acoustic

analysis, we have introduced an eigenvalue reduced basis method. We have pre-

sented a new error estimator and several greedy algorithms in order to construct

a reduced basis space, which allows us to simultaneously approximate several ei-

genvalues of interest. Furthermore this error estimator is able to take into account

multiple eigenvalues. These methods and the corresponding error estimators have

�rst been considered in the context of conforming problems and then further ex-

tended to isogeometric mortar saddle point problems, where we have considered

simulations on the curved domain of a violin bridge. Furthermore we have been

able to eliminate the Lagrange multipliers from our detailed mortar solution in the

reduced basis context and therefore to obtain a symmetric positive de�nite matrix.

As an additional complexity reduction method we have considered the component

mode synthesis in order to couple it with our reduced basis eigenvalue problem

method. This has enabled us to approximate large complex geometries, such as an

eight story building, adequately using modular conception in a fast and e�cient

way.

Due to the geometries under investigation, we have attended to elliptic problems

in domains with reentrant corners. There we have presented several modi�cation
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techniques to overcome the resulting corner singularities and to obtain optimal

L2- convergence rates. First we have recalled the energy correction method, which

constitutes a numerical tool to overcome the pollution e�ect with a trivial change

in the sti�ness matrix. For the �rst time we have extended and applied this met-

hod to higher order ansatz functions as well as to eigenvalue problems. Finally,

we have shown by duality considerations that, under some additional regularity

assumptions on the exact solution, it is possible to recover optimal L2-convergence

of the numerical approximation for right-hand side problems.
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