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ABSTRACT: Characteristic features of damage accumulation under arbitrary stochastic
conditions are studied in terms of continuum damage mechanics (CDM). A uniaxial tension
case is chosen for a simplicity of discussion and clearness of results’ interpretations. Modifi-
cation for a kinetic equation of damage evolution for stochastic conditions is proposed. Nu-
merical algorithms for three types of stochasticity—(a) additional noise (fluctuations in
external load), (b) inner noise (as result of the non-uniform evolution of ensembles of micro-
defects) and (c) combination of previous two factors—are obtained. Introduction of a local
failure criterion via a threshold damage concentration allows the time-to-fracture distribu-
tions and their change with the noise intensity to be analyzed.

KEY WORDS: damage accumulation, stochastic differential equations, failure criterion,
noise, time-to-failure distribution.

INTRODUCTION

ROCESS OF DAMAGE accumulation in real brittle and quasi-brittle materials is
Pcharacterised by the high level of randomness. Such stochastic behaviour is
caused not only by the commonly present stochastic component in external load,
but is mainly stipulated by the non-uniformity of material itself. The latter is linked
with the spatial randomness of material’s properties; various types of heterogene-
ity, texture, distribution of the second phase, presence of initial defects at various
scale levels, etc. Action of external loading, no matter how uniform it can be, results
in the complicated development of existing and/or in the generation of new defects.
These defects are nucleated (or preferentially grow from their initial state), gener-
ally speaking, in the so-called “weak points”—regions in material, where its struc-
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ture results in the stress concentration. As far as such regions are randomly distrib-
uted, this process vividly exhibits stochastic dynamics. Such a scenario becomes
even more complicated at the next stages of loading, when the inter-defect distance
decreases—linked with defects’ dimensions and/or density growth—and a respec-
tive interaction via stress field perturbations arises. Generation of discontinuities
results in diminished load-bearing capacity of different regions of material and in a
consequent load redistribution around such discontinuities, that, in its turn, acti-
vates damage accumulation in adjoining areas.

Thus, there are two—interacting in a common case—types of stochasticity in
damage accumulation: spatial and temporal. The effect of spatial stochasticity was
analysed by this author with co-authors elsewhere on the basis of lattice model and
fractal approach (Silberschmidt, 1993; Silberschmidt and Chaboche, 1994a; Sil-
berschmidt and Silberschmidt, 1994). Lattice approximation of stochastic media
was performed by means of discretization of the region under study into ele-
ments—within which the macroscopic mechanic properties of the media were con-
sidered to be constant. Each unit cell was equivalent to a “physical point” with its
own damage accumulation dynamics. The failure of such a cell results in a cascade
of load redistributions on neighbouring elements within the radius of stress field’s
perturbation. Thus, the spatial material’s randomness superimposed upon the deter-
minate dynamics of damage accumulation generates the temporal stochasticity un-
der the non-uniform failure of lattice elements. General aspects of such type of tem-
poral randomness—though without introduction of damage parameters in the sense
of CDM—were analysed by Hansen et al. (1990; see also respective references
therein) for two classes of lattice models: (1) initially uniform medium with disorder
caused by random (fracture) pattern formation, (2) pattern formation in disordered
media.

This paper is dedicated to another type of temporal stochasticity. We want to
study the macroscopic effect of both fluctuating external load and of stress fluctua-
tions linked with processes of defects evolution on microscopic level. Both types
are united by the necessity of transition from a traditional form of kinetic equation
of damage accumulation to their stochastic analogues.

MODELS OF STOCHASTIC DAMAGE ACCUMULATION
Damage Parameter and Stochastic Kinetic Equations

Since the very beginning of CDM (Kachanov, 1958), researchers continue their
attempts to introduce new or to modify old damage parameters and/or to relate them
to some physical characteristics of failure process. Two main groups of approaches,
based on linkage of damage parameter either to characteristics of imperfections (di-
mensions and/or density of defects, etc.) or to the extent of the depletion of struc-
ture’s reliability, utilize different modeling techniques. The second group is usually
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related to the well-developed methods of fracture probability approaches (Eggwertz
and Lind, 1985), but is more suitable for description of the structures’ failure, as far as
damage is treated as the general (universal) characteristic of the specimen, con-
struction, etc., and thus, it is not considered in this paper. The first group of
approaches regards the damage parameter as an additional inner variable, making
possible the use of thermodynamic formalism for obtaining of constitutive equa-
tions (Chaboche, 1988; Lemaitre and Chaboche, 1991; Hansen and Schreyer,
1994; and references therein). Complicated cases of damage generation and de-
velopment, caused by the material’s heterogeneity, texture and/or non-uniform
loading, necessitate the introduction of respective parameters of more complex
structure (mainly by increasing its tensoral rank) (Krajcinovic, 1989; Lubarda and
Krajcinovic, 1993; Lesne and Saanouni, 1993; see also references in these papers).
Another opportunity is an introduction of various parameters for description of dif-
ferent damage modes (Silberschmidt and Chaboche, 1994b) with respective accu-
mulation laws. This allows to distinguish and analyse the pure effect, though, of
course, for the concrete narrow class of loading and leaving the question of modes’
interaction for further research.

Traditional CDM approaches utilize, as a rule, deterministic form of damage ac-
cumulation equations, thus dealing with averaged parameters. Understanding of
the sufficiently random character of real damage processes resulted in introduc-
tion of respective stochastic schemes of description. Woo and Li (1992) suggested
the method of “stochastic dynamic probabilistic modeling” based on the presenta-
tion of the disturbance process in the system by small fluctuations (white Gaussian
noise). The additional constitutive equation was presented in the form

dD, = f(¢t,D,)dt + G(¢,D,)dW, )

where D, is randomized damage parameter, W, is a Wiener process, a function fis
the same as for deterministic equation and is determined from a dissipation func-
tion, G is obtained in an assumption that the intensity of fluctuations is directly
proportional to the deterministic mean rate of damage evolution (Woo and Li,
1992). Still, the authors preferred to discuss the general mathematical aspects of
stochastic processes’ modeling [which were thoroughly analysed before by
Gardiner (1983), Risken (1989)]; and did not demonstrate any solved problem,
mentioning the applicability of approach to mainly ductile type of damage.

Diao (1995) tried to combine the traditional Kachanov’s form of the kinetic
equation for damage variable w with the stochastic relation for the growth rate of
the defect of size a

da

7 - M@+ Bla)f(1) (0))
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using also the weakest link theory of Weibull for the fracture probability F(o,?) of
materials. Function M(a) in Equation (2) is the migration growth rate of the defect,
f(®)is a white noise, B(f) is a magnifying factor. The w-a relation is derived by means
of introduction of direct linkage w(o,?) = F(0, ), though Kachanov’s parameter is
usually connected to the decrease of the bearing capacity of a cross section.

In our papers (Silberschmidt, 1993a; Silberschmidt and Chaboche, 1994b) two
various modes of damage—I and II in terms of fracture mechanics—were intro-
duced with respective constitutive equations. Introduction of the stochastic com-
ponent transforms these kinetic equations to stochastic differential equations
(SDE), stationary solutions of which were analysed (Silberschmidt and Chaboche,
1994b). The non-linearity of the right-hand parts of these relations excludes their
analytical solutions, so, the recently developed methods of numerical solution of
SDE (Kloeden and Platen, 1992) were used (Silberschmidt, 1995). This paper is
dedicated to the analysis of stochastic damage evolution under uniform tension
(I-mode damage), as far as the respective study for shear (II-mode) damage is dis-
cussed elsewhere (Silberschmidt and Silberschmidt, 1996).

Stochastic Differential Equation of Damage Accumulation
and Its Analogues

A scalar damage parameter p can be used for a case under study—uniaxial ten-
sile loading. More complicated stress-states can be analysed either with an intro-
duction of the second-order damage tensor (Naimark and Silberschmidt, 1991) or
utilizing a set of scalar damage parameters and relations for their interaction. A
general form of the kinetic equation for a stochastic I-mode damage evolution is a
nonlinear Langevin equation in a form:

d
;5 = f(p)+ g(p)L(t) 3)

where f(p) is a right side of deterministic equation for I-mode damage (Silber-
schmidt, 1993b; Silberschmidt and Chaboche, 1994b), which is as follows:

f(p)= Ap* + Bp* +Cp— Do 4

A, B, C, and D are the material’s parameters, o is a macroscopic tensile stress; L(#)

is a stochastic (Langevin) term with following properties:

(@ <L@>=0

(b)  We consider stochastic term to change very rapidly, thus its autocorrelation
function is a delta-function <L(f)L(¢')>=T0(t— '), I is a constant

(¢©)  L(¢) is a Gaussian (all odd moments vanish)
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Experimental data (Galyarov, 1994) approve the possibility to use such an ap-
proximation for initial stage of failure process. Equation (3) is related to the fol-
lowing Fokker-Planck equation (Gardiner, 1983; Van Kampen, 1992) in approxi-
mation of o = const

dP(p,t) ] 1 ag a2

—_— = - + =T = P+ — P 5
o P [f(p) 5 g(p)ap o [g(p)] ®

where P(p, f) is the probability density of the solution of the original Equation (3).

The corresponding It6 equation has the form (Risken, 1989; Kloeden and Platen,
1992)

dp(t) = flp(t).t)dt + g[p(t),t]dW (1) (6

where W(f) is a Wiener process. Integral form of Equation (6) is

Pt = Do +f f(pu)du+fg(p,,)dW,, @)

As far as for the given type of non-linearity of f(p) [Equation (4)] analytical solu-
tion of Equation (3) is impossible, the integral form of It process can be used for
the elaboration of numerical schemes.

Numerical Schemes

The simplest time-discrete approximation is a stochastic generalization of Euler
approximation, proposed by Maruyama (1955) [which is also called the Euler ap-
proximation (Kloeden and Platen, 1992)]:

p»H = pn + f(pn)An + g(pn)AWn (8)

Here (and below) the time discretization0 = ¢, < ¢, <...< ¢, <...ty = Tof
the interval [0,7] with a constant time step 0 = 7/N is used; A, = 0; AW, = Wy,,, —
W.,. The new random variables AW, are normally distributed, that is, have the
means <AW,> = 0 and variances <(AW,)*> = A, (Kloeden and Platen, 1992).
Equation (8) can be utilized for slowly changing f(s) and g(s), but for more general
cases a stochastic analogue of Taylor scheme with additional terms should be used
(Milstein, 1995; Kloeden and Platen, 1992). This scheme is an expansion of the
function around p; in terms of multiple stochastic integrals weighted by coeffi-
cients at this point:
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' 1
P = Po +f(Po)fd9+g(Po)des
1) 1)

t 52
+ g(po)g'(po )f des,dWsz +... )
to [

The Euler-Maruyama Equation (8) then can be referred to as a strong Taylor ap-
proximation of order 0.5. Milstein (1995) proposed the approximation of order 1.0
by adding the next term to stochastic Taylor scheme:

1
ot = Put f(p2)B0 + 8(p)AW, + = 2(pa)g (P X@aw, - A} (10)

Note, that for a case g(p) = const the Milstein scheme reduces to the Euler-
Maruyama one. In our simulations we shall exploit the strong Taylor approxima-
tion of order 1.5, proposed by Platen and Wagner (1982):

Pra = pat ()AL + 8(pIAW, +38(p)g (P XA - A}
+ £ (p)E(PAZ, + %[f(pn ) (pa)+ 383"y )]A,%
+ [f(pn e (pn)+ —;gz(pn 08" (p» )]{WnAn -AZ}
+ %g(p., g(pn)g"(pa)+ (g'(pn ))2]{§(A W,y - A,,}AW" an

Additional random variable AZ, is necessary to represent the double stochastic in-
tegral, used in the stochastic Taylor approximation

In+1 52
AZ, = f f AW, ds, (12)
In n

This variable has the following properties (Kloeden and Platen, 1992): (a) mean
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<AZ,> = 0; (b) variance <(A Z,)> = (1/3)(A.)%; (c) covariance <AW, AZ> =
(172)(A)

NUMERICAL SIMULATION AND DISCUSSION OF RESULTS

Even the case of a uniaxial load with a constant deterministic component presup-
poses various levels for description of stochastic damage accumulation. The first ap-
proximation is a simulation of stochastic action in terms of a fluctuating external
load, using an assumption of an additive white noise for it, as far as this action does
not depend on the level of damage. So, in this case, function g( p) is equal to unity.
The choice of the level for the constant I' in Equations (3) and (5) should provide a
correct value of the fluctuations’ mean square for the stationary solution of kinetic
equation.

For an additive white noise action the application of the strong Taylor 1.5
scheme (11) gives:

A,
Dw1 = pu+ A, (4Ap} + Bp? +Cp, — Do){1+ 5 F,,}

+ —;—A,Z,QZ(Z%Ap,, +B)Y+Q{AW, + F,AZ,} (13)

Here F,, = 34p2 +2Bp, +C, Q = ﬁ . Four various statistical realizations (for
different levels of noise intensity) are presented in Figure 1 together with the case of
the pure deterministic loading (solid line). The values of the coefficients in the
right-hand part of kinetic equation used in numerical simulations here and below
are: A=-1;B=1.5;C=-0.6;, D=-0.05. The estimation of these coefficients for a
given material can be obtained by the treatment of experimental data on creep.
Still, the evolution of defects’ ensembles and respective dynamics of damage accu-
mulation depends not only on the external fluctuating load. Even under the determi-
nistic loading the evolution of defects at various scale levels is not uniform. It is linked
with the complicated structure of real materials, stochastic distribution of defects and
defects’ nuclei. Generation of new microscopic discontinuities is a sufficiently more
rapid process, if compared to a characteristic time of macroscopic damage evolution,
and results in the load redistribution in their neighbourhood. As far as such events oc-
cur randomly, they can be described by a stochastic component which depends on the
damage parameter p itself. Such self-action can be described in terms of inner (multi-
plicative) noise. As the first approximation an intensity of this noise can be considered
as directly proportional to the achieved level of damage, i.e., g(s) = . So, this stochas-
tic action is stipulated only by inner sources; in the absence of damage its intensity
equals zero. With damage, growing under load, more microscopic discontinuities
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time

Figure 1. Effectofadditive noise of various intensity on damage accumulation (stress o = 4).

are being generated, decreasing the inter-defect distance and causing multiple load
redistributions in their neighbourhood. These load redistributions mean—on the
macroscopic level—the increase of noise intensity, as far as the latter is the result
of the superposition of these microevents. The strong Taylor 1.5 scheme for the in-
ner noise has the following form:

A,
Pont = Pn + A, (Ap} + Bp? + Cp, — Da){1+ > F,,}

1 o3

+ =A20%*(34p, + B)p, — (AW,A, — AZ,)
2 8P,

+ 0Jp, W, + FAZY+ (AW, - A, (14)

The character of the inner noise effect (for the same statistical realization), nu-
merically calculated with the use of Equation (14), are shown in Figure 2 for the
same level of load. Results for a coupled action of deterministic load component of
various levels and multiplicative noise of the same intensity are presented in Fig-
ure 3. The principal difference of the inner noise action from the one of an additive
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fluctuations of damage

Figure 2. Pure effect of inner noise of various intensity (o = 4).
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Figure 3. Effectof stress of various levels on damage accumulation under inner noise action (Q =
0.02).
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noise is that averaged curves do not coincide with the graphs for a deterministic ac-
tion (absence of fluctuations). This is known as the noise-induced shift (Van
Kampen, 1992) and is vividly seen also in our case (Figure 4 presents damage accu-
mulation curves, averaged for 10,000 statistical realizations). In order to more care-
fully analyse such a behaviour, both the deviation from the deterministic curve (with
zero level of fluctuations) (Figure 5) and a standard deviation for distributions of
10,000 solutions (Figure 6) were calculated. The noise of relatively low intensity re-
sults in a nearly constant (after some initial period) level of damage fluctuations,
while the increase in intensity causes a linear and even more rapid growth of fluctua-
tions in time.

In order to complete the description, the numerical algorithm for a coupled ac-
tion of both external and internal noise is proposed. In such a case g(p) =1+ Rp and
stochastic Taylor scheme gives

An
Prer = D + A"(AI’?I +BP'% +Cpn - DO){1+7R'

OR
+ —=—o (AW, A, — AZ)}+OJ1+ Rp, {AW, + F,AZ,
5 '__1+an( )} 0y D }

+ %A£Q2(3Ap,, + B)(1+ Rp,) — (Aw,A, - AZ,)

Q3R2
&/1 + Rp,
x %’5[<A W) = A, (15)

The results of calculations for this case are not presented in this paper. It is
caused by the difficulty of interpretation linked with the multi-parameter character
of phenomena (effects of stress, noise intensity and ratio of noises contribution—
coefficient R—are to be analysed).

Time-to-Fracture Distribution

Damage accumulation, caused even by a constant load of the sub-critical mag-
nitude, can result in generation of macroscopic failures and their propagation till
the total rupture of specimen (if only the saturation—quasi-equilibrium—Ievel of
damage with relatively low concentration of defects is not reached). Thus, the lo-
cal failure criterion can be introduced not in the traditional form, as a threshold
value for component(s) and invariant(s) of stress tensor or for any combinations of
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Figure 4. Averaged curves of damage accumulation under inner noise of various intensity
(o =2).
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Figure 5. Deviation of averaged curves of damage accumulation under inner noise of various
intensity from the deterministic case (o = 2).
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Figure 6. Change of standard deviation with time for action of inner noise of various intensity
(10,000 realizations, o = 2).

these parameters, but in terms of a limiting value for the damage level. Such an ap-
proach is supported by the experimental evidence of the invariant character of the
local prefracture concentration of defects in material for a vast interval of loading
conditions (Betekhtin et al., 1989; Silberschmidt, 1993b). The same idea is used,
for instance, by Pineau (1995; see also references therein), where the overcoming
of critical volume fraction of cavities results in an acceleration of damage accumu-
lation. So, the local failure criterion is introduced in the following form:

p=p* (16)

It is noted, that overcoming the threshold value p* results in a sharp acceleration of
damage growth and rapid (with respect to a characteristic time of quasi-stable
damage accumulation) failure of specimen/structure. The combination of the local
failure criterion (16) with numerical computation of damage dynamics naturally
introduces a time-to-fracture parameter in consideration. Action of stochastic fac-
tors, either external or internal, causes the randomness of this parameter, when a
set of statistical realizations is analysed. This situation is an analogue for an ex-
perimental treatment of twin specimens under given conditions. Thus, a descrip-
tion of the system’s evolution in terms of “physical point” transforms to a study of
effective characteristics of failure.

Figure 7 presents the effect of load fluctuations (in approximation of an additive
noise) of different intensity on time to fracture (dashed straight line corresponds to
the absence of the stochastic component—only deterministic load of the same
magnitude) for a set of 10,000 simulations. It is vividly seen, that an increase in
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time to fracture

Figure 7. Effect of additive noise of various intensity on time-to-fracture distribution (p* = 0.3
ando = 2).

noise intensity results in a sufficient widening of distributions, with possible local
failure occurring at times, up to 50% less than predicted for a deterministic case.
Such a decrease in life expectancy cannot be, of course, neglected in reliability es-
timations for real constructions. Inner noise, as can be expected from the previous
results, causes not only the expansion of the intervals of possible time-to-fracture,
but also a shift of the distribution’s median to the left—the region of diminished re-
liability (Figure 8).
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4 6 8 10 12 14 16 18

time to fracture

Figure 8. Effectof inner noise of various intensity on time-to-fracture distribution (p* = 0.3 and
o=2).
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CONCLUSIONS

Direct introduction of the stochasticity in CDM-model (though at this stage for
a relatively simple case of uniaxial tension) provides additional possibilities
for analysis, not only of the damage accumulation itself, but also for more un-
derstanding of the reliability problem. Even the absence of a fluctuating com-
ponent in an external load (more correctly, its negligibility) does not result in
pure deterministic case of damage accumulation and failure evolution in real
brittle and quasi-brittle solids. The non-uniformly distributed microscopic de-
fects and/or their nuclei randomly develop even under macroscopically uniform
force field. The consequence of such a behaviour is well-known from the experi-
mental practice: temporal fracture characteristics demonstrate a sufficient scat-
ter for twin-specimens under the same load level. The proposed model descrip-
tion provides quantitative tools for simulation and analysis of this phenomenon,
and thus can serve as a base for reliability estimations. Numerical results dis-
tinctly show that a noise action of relatively small intensity can cause nearly
100% scatter of effective failure characteristic—time-to-fracture. The more
important factor is the noise-induced (in the case of inner and combined noises)
shift in the general, i.e., averaged, response of material to external load; and
this trend, unfortunately, leads to the decrease of reliability. Therefore, it
should be adequately accounted for in estimates. The effect of noise-intensity
level on the extent of the reliability decrease can be a base for an assessment of
the necessity of accomplishment of traditional computations (in deterministic
approximation) by stochastic ones. As noted in the introduction, this type of
randomness is only a part of the whole process; which was reduced to the
physical-point analysis in order to investigate the characteristic features of sto-
chastic dynamics of damage in detail. The unified approach, accounting also
for the effect of spatial randomness (linked with material properties’ non-
uniformity), can be the next approximation in simulation of the general picture of
the damage/failure process.
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