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Abstract: In couplings of machines and mechanisms, backlash and friction phenomena are always occurring.
Whether stick-slip phenomena take place depends on the structure of such couplings. These processes
can be modeled as multibody systems with a time-varying topology. Making use of Lagrange multiplier
methods with a mathematical formulation of the contact problem is very efficient for large systems with many
constraints. The differential-algebraic equations of a system are transformed into a resolvable mathematical
form by means of contact laws. In the following, rigid multibody systems with dependent constraints and
planar friction will be considered. For the evaluation of such problems, an iterative algorithm is presented.
This method is based on transformations of the kinematic secondary conditions in the form of inequalities to
equations. In mathematical sense, these transformations are projections of the constraint forces on convex
sets. Ultimately, we have a solvable nonlinear system of equations consisting of the differential equations of
motion, the constraint equations and the projections of the constraint forces.

Key Words: Multibody systems, unilateral constraints, Coulomb friction, stick-slip phenomena, convex analysis, Lagrange
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1. INTRODUCTION 
’

The course of motion in multibody systems with three-dimensional unilateral constraints
and dry friction is influenced by kinematic (geometric) restrictions. The state of every
constraint is variable. During the phase of contact, a unilateral normal constraint is active
while there is acting a passive constraint force. On the other hand, this constraint is

passive during separation. Separation means that no constraint force acts in the normal
and tangential direction.

The tangential constraint belonging to an active normal constraint can be active or
passive if rigid body friction is considered in the contact area. Strictly speaking, the
tangential constraint in the three-dimensional contact case consists of two simultaneously
arising constraints, one for each direction of the tangential plane as long as the direction
of friction is unknown. During the phase of stiction, a passive stiction force acts in the
active tangential constraint. On the other hand, the constraint is passive during the phase
of sliding. In this case, the sliding force is an active tangential force.

During a change in the structure of a constrained system, each activated constraint
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results in the loss of one degree of freedom, whereas each cancelled constraint increases
the number of degrees of freedom by one. With these properties, the number of degrees
of freedom is not constant during the evolution of the mechanical system. Therefore,
the description of the system’s dynamics is structure-varying. This is shown in the time-
varying structure of the kinematic and kinetic basic equations, which are used for the
mathematical description of multibody systems.

The numerical procedures for the solution of discrete or discretized contact problems
can be divided into methods with Lagrange multipliers and methods with penalty func-
tions. This division has its origin in the field of frictionless contact problems. Here,
stable equilibrium displacement states can be found by minimizing the potential energy
of a mechanical system, and the inequalities of unilateral constraints can be handled by
the two mentioned methods.

Making use of Lagrange multipliers, the additional variables of the contact problem
have the physical meaning of constraint forces. The inequality conditions are exactly
satisfied by this method. When using the penalty method, a large value of the poten-
tial energy has the meaning of violating the constraint conditions, which will only be
approximately satisfied.

When using Lagrange multipliers, two basically different procedures are applicable.
In the first procedure, the solution of the contact problem is found by lining up the
piecewise steady solutions at points of discontinuity (switch points) with appropriate
transition conditions (contact laws). Usually the solution is not well-defined. At each
switch point, the physically correct solution must be selected from a large number of
possible states of the constraints. The combinatorial tests are computationally intense.
One unilateral constraint with friction can have three different states: separation (no
contact), contact without tangential relative velocity (stiction), and contact with tangential
relative velocity (sliding). For a mechanical system with n unilateral constraints, the
number of possible states is 3’t. We see that the number of combinatorial tests at each
switch point is increasing rapidly with rz. For mechanical systems with several constraints,
the trial and error method is not feasible to determine the dynamics by checking the states of
all constraints. In the second procedure, the contact problem is formulated as a resolvable
mathematical problem, such as complementarity problems, quadratic programs, nonlinear
programming problems, or variational inequalities.

In the literature, we find several algorithms for these mathematical problems often
with proven convergence properties. For quasi-static contact problems, Klarbring (1986)
gives a formulation of a parametric linear complementarity problem if the contact surface
is constant during the loading history. In Kaneko (1978, 1980), we find an algorithm
and a proof of the existence of a unique solution. Klarbring and Bibrkman (1988) have
extended this algorithm for contact problems with varying contact surfaces. In Holmberg
(1990) and Klarbring and Bjorkman (1988) an efficient algorithm for the solution of a
quasi-static, linear elastic contact problem with planar friction is described. For this

purpose, the so-called friction cone is linearized piecewise and a linear complementarity
problem is solved.

Panagiotopoulos ( 1993) contains the mathematical and mechanical foundations for the
formulation of hemivariational inequalities. The numerical treatment of such inequalities
is shown in many not trivially solvable examples.
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The unsteady dynamics of mechanical systems being composed of many rigid bodies
and unilateral constraints with dry friction is the subject of Jean and Moreau (1992). The
contact laws and differential equations of motion are formulated on the velocity level
or impulse level, respectively. When multiple impacts with friction occur, the impact
impulses act during finite time intervals, so that the dynamics are compatible with the
actual states of all constraints. Because of the finite time intervals, the solution is found
by means of time discretization and not by means of numerical integration.

Brach (1989, 1991 ) considers single collisions and formulates the impact equations on
the impulse level by using Newton’s law. Conditions for sticking or reversed sliding after
the impact are derived from the kinetic energy by demanding an always dissipative impact
law. This method is restricted for single impacts, because for multiple collisions such
conditions cannot be derived from one scalar equation without additional assumptions.
Haug, Wu, and Yang (1986) deal with multibody systems with friction contacts and
collisions. The contact forces and active constraints are taken into consideration by
Lagrange multipliers and secondary conditions, respectively. Keller (1986) classifies
possible impact configurations and analytically solves the impact problem with friction
for a single collision on the force level by using Poisson’s and Coulomb’s laws. In Smith
( 1991 ), an alternative contact law is used for single collisions. A more realistic estimate
of the rebound is given, when the directions of the tangential relative velocity before and
after the contact differ. For collisions of solid elastic spheres, for which a fairly detailed
study of the mechanics of local deformation and sliding has been made, the proposed
assumption appears to lead to an improvement in the prediction. Pereira and Nikravesh
(1993) present a methodology in computational dynamics for the analysis of mechanical
systems that undergo intermittent motion. A canonical form of the equations of motion
is derived with a minimal set of coordinates; and these equations are used in a procedure
for balancing the momenta of the system over the period of impact, calculating the jump
in the body momenta, velocity discontinuities, and rebounds. The effect of dry friction
is discussed, and a contact law is proposed. The application of this methodology is

illustrated with the study of impacts of open loop and closed loop examples.
During the last eleven years, at the Lehrstuhl B fiir Mechnnik, the theory for the

treatment of multibody systems containing unilateral contacts was continuously advanced
and applied to practical problems. At the beginning, Pfeiffer (1984) treats multiple fric-
tionless impacts on the impulse level using Newton’s law and assumes that impulses are
transferred at each of the contacts. This replaces the unilateral character of the constraints
in the normal direction by a bilateral formulation and leads to a set of linear equations
for the relative velocities after the impact. Wapenhans (1989) and Braun (1989) investi-
gate the dynamics of a landing aeroplane. They develop a nonlinear model to take into
account the external landing impact and the impacts and stick-slip phenomena within the
shock absorbers of the landing gear. The constraint forces are considered by means of
constraint matrices in the equations of motion. Hajek (1990) investigates the reduction
of blade vibration amplitudes in airborne gas turbines with special damper devices in
which stick-slip phenomena are occurring. The simulation is based on combinatorial tests
at the switch points, and each possible system state is described with different sets of

minimal coordinates. A percussion drilling machine is examined in Glocker and Pfeiffer
(1992). To avoid a description of each possible system state using different sets of min-
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imal coordinates, the constrained motion is taken into account by algebraic relations. In

Seyfferth (1993), Glocker and Pfeiffer (1994), as well as Seyfferth and Pfeiffer (1994),
the derivation and solution of linear complementarity problems is given for dynamical
two-dimensional contact problems with dependent unilateral constraints and impacts with
friction. In addition, the practicability of complementarity methods is demonstrated by
relevant practical applications, such as assembly processes with manipulators, turbine
blade dampers and electropneumatic drilling machines. Glocker (1995) develops an im-
pact model for two-dimensional contact situations with multiple impacts, which contains
the main physical effects of a compliance element in the normal direction and a series of
a compliance and a Coulomb friction elements in the tangential direction. The theory is
applied to some basic examples that demonstrate the difference between Newton’s and
Poisson’s hypotheses. In this work, we also find minimization principles that are equiv-
alent to complementary conditions and theorems for the existence and uniqueness of the
solution of linear complementarity problems.

Klarbring (1994) shows that the trial and error method yields no satisfactory results
for three-dimensional contact problems with Coulomb friction. Even though a quasi-
minimization principle is given for such problems by Kalker ( 1971 ) and Klarbring (1987),
it is impracticable for numerical calculations because the objective function is no potential
or complementary energy in a mechanical sense. Duvaut and Lions (1976) present basic
mechanical energy principles by making simplifying assumptions. Based on these energy
principles, Panagiotopoulos (1975) contains discrete minimization problems and a two-
step iterative algorithm where a normal contact problem and a simplified friction problem
are alternately solved until convergence occurs. Another method without using the quasi-
minimization principle is seen for quasi-static, linear elastic contact problems in Alart
and Cumier ( 1991 ), Klarbring (1992), as well as Simo and Laursen (1992). The theory
of the so-called augmented Lagrange multiplier method is described in the following and
applied to dynamical contact problems without impacts. The theory is verified by means
of a basic example. In the appendix, the most important definitions and theorems of
convex analysis are given, which are necessary for the derivation of the theory.

2. CONTACT KINEMATICS

A set of generalized coordinates

is used for the mathematical description of the dynamics of a bilaterally constrained
system of f degrees of freedom. To take into account additional unilateral constraints
like contact or friction constraints, we have to derive some kinematic contact conditions.
The possible motion of each body in a multibody system, which is compatible to the
kinematic conditions, is restricted by conditions for normal distances, relative velocities,
and relative accelerations in the potential contact points (active unilateral constraints).
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We now consider a system with n,~ contact points and introduce the four index sets

which describe the kinematic state of each contact point. The set IA consists of the nA
indices of all contact points. The elements of the set Ic are the nc indices of the unilateral
constraints with vanishing normal distance, but arbitrary relative velocity in the normal
direction. In the index set IN are the nN indices of the potentially active normal con-
straints, which fulfill the necessary conditions for continuous contact (vanishing normal
distance and no relative velocity in the normal direction). The TIT elements of the set IT
are the indices of the potentially active tangential constraints. The corresponding normal
constraints are closed, and the relative velocities in the tangential direction are zero. The
numbers of elements of the index sets Ic, IN, and Ir are not constant because there are
variable states of constraints due to separation and stick-slip phenomena.

The normal distances and the relative velocities in the tangential direction are deter-
mined by means of relative kinematics. In general, the normal distances of all contact
points

are functions of the generalized coordinate q and the time variable t. The normal distance
gNi shows positive values for separation and negative values for penetration. Therefore,
a changing sign of 9 Ni indicates a transition from separation to contact. The relative

velocities in the tangential direction

are additionally dependent on the generalized velocities q. The relative velocities in the
normal direction

are the first derivatives with respect to time of equation (2). The relative velocities in

equations (4) and (3) can be written in the form

with

A negative value of the relative velocity 9Ni corresponds to an approaching process of
the bodies. In the case of continual normal contact with 9Ni = 9Ni = 0, we can use the
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relative velocity gTi to indicate a transition from sliding ( gTi ~ 0) to stiction or rolling
( ~9z-,Z ~ = 0). The relative accelerations of the contact points

with

are determined by differentiation of equation (5) with respect to time. Continual contact
demands gNi = 9Ni = 9Ni = 0, while separation is only possible if the relative accelera-
tion 9Ni > 0. Transition from stiction to sliding occurs for a closed contact if the amount
of the relative acceleration 19Ti > 0.

3. DYNAMICS OF RIGID BODIES WITH SUPERIMPOSED

UNILATERAL CONSTRAINTS

The kinetic basic equations (equations of motion) specify the connection between the
forces acting on the system and the changes in the motion. Describing the motion of a
structure-varying system starts from the differential equations of motion of the bilaterally
constrained system.

with f degrees of freedom. The equations of motion can always be written in this

form. The mass matrix M (q, t) E Rf,f is symmetric and positive definite. The vector
h(q, q, t,) C Rf contains the gyroscopical accelerations together with the sum of all active
forces and moments.

In a system with additional unilateral constraints, the number of degrees of freedom
is variable. To avoid difficulties with many different sets of minimal coordinates, we
take one set of generalized coordinates and consider the active unilateral constraints as
secondary conditions. The occurring contact forces are taken into account in the equations
of motion. Now we consider the unilateral constraints, which are closed contacts (elements
of the index set hr). The contact forces are included in equation (9) using the Lagrange
multiplier method.

The constraint vectors z.vNi and the constraint matrices WTi in equation (6) are
arranged as columns in the constraint matrices

for all active constraints. The constraint matrices are transformation matrices from the

space of constraints to the configuration space. The transposed matrices are used for the
transition from the configuration space to the space of constraints.
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The contact forces have the amounts ANi (normal forces) and the components ATzi
and aT22 (tangential forces). These elements are combined in the vectors of constraint
forces

/ B

with ÀTi(t) = (~TZ1 (t), ÀTi2(t)]T. In general, the contact forces are time-varying quan-
tities. By the constraint vectors and matrices in equation (6), the contact forces can be
expressed in the configuration space. These forces are then added to equation (9),

The contact forces ÀTi, in equation ( 11 ) can be passive forces of sticking contacts or
active forces of sliding contacts. We express the tangential forces of the nN - nT sliding
contacts by the corresponding normal forces using Coulomb’s friction law by

where the coefficients Pi (1~T,’I) of sliding friction may depend on time. The negative
sign relates to the opposite direction of relative velocity and friction force. The sliding
forces of equation (12) in the configuration space are then

A substitution of these forces into equation ( 11 ) yields the equations of motion

with the additional contact forces as Lagrange multipliers. The matrices W N and WT
are the constraint matrices of equation (10). The matrix HR E IRf’n’v of the sliding
contacts has the same dimension as the constraint matrix WN. For nT < nN, HR
consists of the nN - nr columns

whereas the other nT columns contain only zero-elements.
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The relative accelerations of the active normal and tangential constraints in equation
(7)

can be combined by means of the constraint matrices (10) in the matrix notation. Together
with equation (14), we get the system of equations

The unknown quantities are the generalized accelerations 4 E Rf, the contact forces in
the normal direction X N E IR’~N and in the tangential direction AT E R 2’T , as well as the
corresponding relative accelerations gN E IR’~&dquo;’ and Yr 6 IR2n’’. For the determination
of the f + 2(nN + 2nT) quantities, we now have up to f + nN + 2nT equations. In

the next section, the system of equations (16) will be completed by including the missing
nN + 2nT contact laws.

In general, the kinematic equations are dependent on each other if there is more than
one contact point per rigid body. The situation is shown in linearly dependent columns
of the constraint matrices W N, WT in equation (10). Such constraints are designated as
dependent constraints.

. ~ 
’

4. DETACHMENT AND STICK-SLIP TRANSITION

The conditions of transitions from contact to separation and sticking to sliding are for-
mulated for coupled multibody systems. The main difficulty results from instantaneous
changes in the contact forces at transitions from sliding to sticking or reversed sliding.
Summarizing these considerations, we note that a vanishing tangential relative velocity
does not necessarily lead to sticking, and each new active friction constraint generally
produces an unsteady changing contact force. We look at systems with more than one
contact point. If the contacts are coupled kinematically, the contact forces influence each
other. Thus each new active friction constraint generally affects all of the other active
contact constraints and produces jumps in the contact forces. Due to these jumps, induced
transitions in the states of contacts may occur, which are either transitions to sliding or
to take off. Therefore, we must answer the question of how many and which constraints
change their state of contact, which are influenced by the new active tangential constraints.
In this section, the conditions of transition are stated, which allows the evaluation of the
transition problem avoiding the combinatorial problem of testing all possible contact state
combinations for the solution without contradiction to the contact laws. These nN + 2nT

 at Technical University of Munich University Library on November 3, 2016jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com/


169

conditions are valid during continual contact and sticking, as well as for the transitions to
sliding or separation.

4.1. Contact Law for Normal Constraints .~’:, ’ . .g&dquo;

Each of the closed contact constraints i E IN is characterized by a vanishing distance
9Ni = 0 and normal relative velocity 9Ni = 0. Under the assumption of impenetrability
(9Ni 2: 0), only two situations may occur: contact is either maintained or a transition to
separation takes place. In the first case, we know that the normal relative acceleration is
vanishing and the normal contact forces must act with a compressive magnitude (due to
the unilaterality of the normal constraint),

The second case must describe the separation of the bodies. Separation is only achieved
by nonnegative values of the normal relative acceleration and vanishing normal forces,

With both cases in equations (17) and (18), we see that the normal contact law shows a
complementary behavior. The product of the quantities ANi and 9Ni is always equal to
zero,

Thus the normal contact problem with all potential normal constraints is unambiguously
determined by the nN complementary conditions

The variational inequality

is equivalent to the complementary conditions (20). Proof of this relation is given in
Glocker ( 1995). The convex set ,

contains all admissible contact forces A*i in the normal direction. The meaning of the
vector inequality in (22) is explained by theorem (47) in Appendix A. The definition (48)
of convex sets is given in Appendix B.

4.2. Coulomb’s Friction Law

The friction law of Coulomb states that the sliding friction force is proportional to the
normal force of a contact. The amount of the static friction force is less than or equal
to the maximum static friction force, which is also proportional to the normal force. For
sliding friction, the friction force has the opposite direction of the relative velocity of the
friction contact. For most material pairs of practical interest, the coefficients of static and
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Figure 1. Friction characteristic.

sliding friction are different (po > p). In general, the coefficient of sliding friction is a
function of the relative velocity. In the following, we consider friction characteristics, as
shown in Figure 1 for multiple contact problems with the property

With this property, Coulomb’s friction law distinguishes between the two cases

For the frictional contact problem, we need a representation of the friction law (24) on
the acceleration level to determine the tangential relative accelerations YT in equation
(16). The friction forces of the sliding contacts are already taken into account in the
first equation of (16) by H~~~r, so we have only to transform Coulomb’s friction law
on acceleration level for the nT potential sticking contacts. This is possible because the
tangential relative velocity and acceleration have the same direction for a transition from
~9Ti ~ = 0 to l~Ti > 0 . Thus we get from (24) the cases

In the first case, the state of stiction continues. In the second case, we have a transition
from stiction to sliding, while the friction force comes up to its maximum value. The
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inequality

follows from equation (25) and describes the dissipative behavior of Coulomb friction.
The variational inequality .. 

’

is equivalent to equation (25). Proof of this relation is given in Glocker (1995). The

convex set (see also definition [48] in Appendix B)

contains all friction forces aTi, which fulfill Coulomb’s friction law. 

a 

~ . ; 
,

. 
. 1

5. CONTACT PROBLEM IN MATHEMATICAL FORM .

The mathematical system consisting of the equations of motion and the constraint equa-
tions in equation ( 16), as well as the variational inequalities (21 ) and (27)

with the convex sets (22) and (28) completely describes the contact problem. But the

system (29) is not solvable in this form. Therefore, the variational inequalities are
transformed into equalities. From this, we get a nonlinear system of equations that can be
solved with iterative standard algorithms. This method is shown in Klarbring (1992).

5.1. Transformation for Normal Constraints

The variational inequality (21)

with the convex set of admissible normal contact forces CN = ~~N ~ ~N > 0} can be
written in the form
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Figure 2. Projection for the normal force h Nj (normal direction 7ti).

by premultiplication with an arbitrary factor

and by expansion with the identity XN - XN = 0. Corresponding to the definition of
projection (59) in Appendix B, the variational inequality (30) is equivalent to the equation

By means of the definition of the convex set CN (22), equation (32) can be simplified to

where the abbreviation TN = AN - rgN has been used. We demonstrate the result of
equation (33) by the two possible states of normal constraint i [see also equation (17) and
(18)]. Together with the definition of positive vector parts (44) in Appendix A, we have
the two cases

In a mathematical sense, the contact forces are projections of the vectorial difference
between contact forces and weighted relative accelerations onto the convex set CN . For
both states of normal constraint i the projection is shown in Figure 2.

5.2. Transformation for Tangential Constraints

The variational inequality (27)
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with the convex set of admissible tangential contact forces CTI (A Ni ) = (X)j : ) ~~Ti~ <
I-~Oi ~Ni ~ can be written in the form

by premultiplication with (31) and by expansion with the identity ATZ’ - ATI = 0.

Corresponding to the definition of projection (59) in Appendix B, the variational inequality
(35) is equivalent to the equation

where r > 0 and the abbreviations Tj§j = A N.j and TTi = ATI - r9Ti have been used.
Equation (36) can be written in a simpler form,

with the convex set CTi(TNi) - {r~ : ~TTi~ < poiTN+i I. We demonstrate the result by
the two different states of tangential constraint i [see also equation (25)]. The two cases
are

With these two cases, we get the interdependence of aTi and TTi :

In a mathematical sense, the contact force is a projection of the vectorial difference
between contact force and weighted relative acceleration onto the convex set CTi. For
both states of tangential constraint%’, the projection is shown in Figure 3.
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Figure 3. Projection for the tangential force ~r2 (tangential directions til and t.2).

6. SOLUTION OF THE CONTACT PROBLEM

By means of the projected constraint forces in equations (33) and (37), we have the
non-linear system of equations

The convex sets of the admissible constraint forces in the system of equations (40) are

The projections in equation (40) show that the constraint forces AN and AT are functionals
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of ÀN, 9 N or AN, ÀT, 9 N, 9T, respectively. These functionals can be written in the form

- -..L --, B. - J T J . - -1 I ~ I

if the constraint equations of (40) are considered by eliminating the relative accelerations
in the functionals. Now we are able to replace the constraint forces in the equation of
motion in (14) by the functionals (41 ) and we get an implicit equation for the generalized
accelerations,

The nonlinear system of equations (41) and (42) are resolvable by means of an iterative
Newton algorithm. . 

,

6.1. Solution of the System of Nonlinear Equations 
’

The generalized accelerations q are determined with Newton’s method. In a first step,
the constraint forces are kept constant during the solution of equation (42). After each

determination of the accelerations, the constraint forces are updated according to the
functionals (41). The two following steps are repeated with l = I + 1 until convergence
occurs:

1. Determination of ql according to the nonlinear equation

A’ N and AT remain constant.

2. Update of the constraint forces according to the functionals

In the following application of the algorithm, we use the subroutine NEWT, which
is described in Press, Teukolsky, Vetterling, and Flannery (1992). This is a globally
convergent method for the solution of nonlinear systems of equations.

6.2. Numerical Integration ’ .. &dquo; ..... ’ I 
.. , , .,.. ’ 

’

When the generalized accelerations and constraint forces are known, we get the gener-
alized velocities and positions by means of numerical integration. For this purpose, the
equations of motion will be extended to the double dimension of the state space. The state
equation has the form
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with the abbreviation

In the following application of the algorithm, we use the method of Runge-Kutta-Fehlberg
with automatical control of the integration interval for the numerical integration of state
equation (43).

7. APPLICATION .

We consider an oscillator with one mass and three contact points on an oblique plane. The
rigid body is excited by a periodically rotating unbalanced mass. The angle of inclination
and the speed of the unbalanced mass are adjusted in the way that stick-slip phenomena
occur during the motion of the body. The experimental set-up is shown in Figure 4. By
means of two light-emitting diodes, which are fixed on the top of the body, we observe
and photograph the motion in the plane and the rotation around the vertical axis of the
body.

7.1. Mechanical Model

The body without constraints has three translational degrees of freedom-~(t), y(t),
z(t)-and three rotating degrees of freedom-a(t), ~3(t), -y(t). The translational degrees
of freedom represent the positions of the center of mass, which moves due to the rotating
unbalanced mass. All six degrees of freedom are combined in the vector of generalized
coordinates

...... - - . , . .

Because of the selected test conditions (parameters in Appendix C) no take off occurs. All
contacts are permanently closed and no impacts occur during the simulation. So the results
for the coordinate z(t) in the vertical direction will not be considered in the following.
The twistings a(t) and 0(t) around the longitudinal and lateral axis, respectively, are
always zero.

Due to the rotating unbalance mass, the rotating time-varying force vector

acts as an external force on the body. The magnitude of F(t) is the centrifugal force
Fo = mETEÜ,2. On the center of mass ,S’1 the two components of the gravity force

 at Technical University of Munich University Library on November 3, 2016jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com/


177

 at Technical University of Munich University Library on November 3, 2016jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com/


178

. Figure 5. Friction characteristic.

FI-I = rrag sins

are acting. For the consideration of friction, we use a friction characteristic as shown
in Figure 5. The coefficient of sliding friction p is independent on the relative velocity
and has the same value as the coefficient of static friction /~o. The values of the model

parameters and the initial conditions for the numerical integration are given in Appendix
C.

7.2. Contact Kinematics

In principle, separation of any closed contact is possible. Then the angular positions a(t)
and /3(t) are very small compared with the position -y(t). Therefore, the sine of an angle
can be replaced by the angle itself, and the cosine of an angle has approximately the value
1. If separation is occurring, the translational position is also very small. Moreover, the
terms of second order

are negligible. With these simplifications, we determine the contact kinematics. Because
of the rotating unbalanced mass the distances al, a2, and h periodically change with the
amplitude Aa. The distances hs and l3 change with the amplitude Ah. These distances
are shown in Figure 4. All changes happen with the angular frequency Q.
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The normal distances between the potential contact points are

with the components .

The relative velocities in the tangential plane of the contact points are

The normal distance will be twice and the tangential relative velocity once differentiated
with respect to time. In the deviations, we find the constraint matrix of the normal
constraints

with the constraint vectors
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and the constraint matrix of the tangential constraints

with the constraint vectors
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The remaining terms of relative kinematics are contained in the vectors
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7.3. Equations of Motion

The differential equations of motion for the system with four degrees of freedom has the
form

The mass matrix is
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which has block-diagonal form. A, B, and C are the diagonal elements of the inertia
tensor relating to the center of mass. The mass moments of inertia are approximately
constant because of the small displacements of the center of mass due to the rotating
unbalanced mass.

The vector of all external forces is

with the abbreviation Fo = mEr E0,2. For the simplification of the matrix M and the
vector h, we used the assumptions in Subsection 7.2.

7.4. Results and Comparison with Measurement

The above theory has been applied to the stick-slip process of the oscillating mass shown
in Figure 4. Some numerical results for the model parameters and initial conditions of
Appendix C are shown in Figures 6, 7, and 8. Along the oblique plane, we have the
x-direction; the lateral direction in the plane is called y-direction. The angle I describes
the position of the mass around the vertical z-axis. In Figure 6, the time courses of the
positions are shown in a small time interval of 1 s. All positions of the mass simultaneously
remain constant during time intervals that are periodically occurring phases of stiction.
By means of the photographed traces of both light-emitting diodes under stroboscopic
exposure, the position of the mass has been reconstructed for discrete times. With regard
to the moving center of mass due to the rotating unbalanced mass, these measured points
are also shown in Figure 7. The correspondence between simulation and measurement is
good. The diagrams of Figures 8 show the computed accelerations ~, , i as a function of
their velocities ~, y, -’y. The unsteady changes in the accelerations arise due to stick-slip
transitions. 

8. CONCLUSIONS

Stick-slip phenomena in rigid multibody systems with many frictional contacts imply some
fundamental problems, especially when the contacts are coupled and three-dimensional.
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The behavior of one contact can influence the state of all others. This situation leads to a

compatibility problem with respect to constraint dynamics. Considering all possibilities
of motion in one contact and combining them with all possibilities in all the other contacts
leads to a huge number of formal combinations of possible constraints of which only
one is physically meaningful. For three-dimensional problems, this selection cannot be
evaluated by a linear complementarity problem, as the friction direction of an active
tangential constraint in the first moment after the transition from stiction to sliding is
unknown. This situation leads to a nonlinear complementarity problem, which is solvable
by means of several algorithms. If the contacts are additionally dependent, no formulation
of the contact problem as a nonlinear complementarity problem is available up to now.
The projection method described in this paper is a way to deal with such contact problems.
The constraint forces are considered by means of constraint matrices in the equations of
motion and have the mathematical meaning of Lagrange multipliers. By transforming
the kinematic secondary conditions, we get equations for determination of the constraint
forces. These are projections of the vectorial differences between contact forces and
weighted relative accelerations onto the convex sets of the admissible contact forces. The
method has been successfully applied to the example given in this paper.

APPENDIX 
.’

A. VECTOR ALGEBRA

Here we find the most important definitions and theorems for calculating with vectors.

. Definition of the positive vector part:
x = (zi ) is a vector of R~ . The positive part of vector x is .

o Definition of the negative vector part:
The negative part of vector x is

o Theorem for the connection of both parts:
The difference of both parts of vector according to

is the vector ac itself.
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o Theorem for vector inequalities:
~ _ ~ ~i ~ and y = ~ y2 ~ are two vectors of lR’~ . The inequalities between ac and y
have the meaning

B. CONVEX ANALYSIS

Here we find important definitions, theorems, and calculation rules for convex sets and
functions (see also Rockafellar [ 1972]).

B.1. Convex Sets .

o Definition of the convex set:

A set C C 1Rn is called convex if

for an arbitrary A with 0 < A < 1 .

9 Definition of the normal cone:
Let ~c E C, where C is a convex set. The set of all vectors y which are perpendicular
to vector x

is called the normal cone of C in ~. The equivalent relation

has the same value.

B.2. Convex Functions

9 Definition of the epigraph:
Let f (a~) be a real-valued function on the domain ,S C lRn. The set

is called the epigraph of f .
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o Definition of the convex function:
The function f (x) is called a convex function on S C 1Rn if epi f C R’+’ is a

convex set.

o Definition of the indicator function:
Let C C R’ be a convex set. The function

is called the indicator function of the set C. we (x) is a convex function.

B.3. Subgradient and Subdifferential

o Definition of the subgradient:
. Let f (~t ) be a convex function. A vector y is called the subgradient of f in ac if

o Definition of the subdifferential:
Let f (x*) be convex function. The set of all subgradients y of f in x

is called the subdifferential of f in x. The equivalent relation

has the same value.

o Subdifferential of the indicator function:

With the definition of the subdifferential (54), the subdifferential of the indicator
function (52) is

The comparison with the definition of the normal cone (49) shows the equality

B.4. Minimization of Convex Functions

. Definition of the minimization problem:
A convex function fo(~) over the convex set C has to be minimized.
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Figure 9. Projection onto convex sets.

o Definition of the objective function:
The convex function

is called the objective function of the convex minimization problem. The infimum
inf~ f (x) is called the optimal value and the points Y at which f reaches its infimum
are called the optimal solutions of the minimization problem.

o Definition of the projection:
Let y E IR’~ be an arbitrary point and C C IRn a convex set. The projection of y
onto C is that point x E C which has the smallest distance to y. With definition
(58) the objective function of the minimization problem is

A necessary and sufficient condition for an infimum of f (x) is

With definition (50) the equivalent relation for the projection is

Figure 9 shows the projections of two different points y.
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C. DATA SET FOR THE EXAMPLE

C.1. Model Parameters

mass

moment of inertia

moment of inertia

moment of inertia

acceleration due to gravity
coefficient of sliding friction
coefficient of static friction

distance

distance

amplitude of distance change
distance

distance
’ 

distance

distance

amplitude of distance change
distance

distance

distance

angle of inclination
unbalanced mass

eccentricity
angular frequency of unbalanced mass

m = 663.0 g
A = 0.85. 10 3 ~;gm2
B = 1.6. 10 3 k;gm2
C = 1.75. 10 3k;gm2 2

9 = 9.81 m/s2
/-I = 0.098

/-10 = 0.098

al = 42.4 mm

a2 = 49.6 mm

Da - 3.5 mm

b1 = 1.0,mm

b2 = 25.0 mm

b3 = 31.0 mm

hs = 37.4 mm

Oh - 4.5 mm

11 l = 10.4 mm

l2 = 43.0 mm

l3 = 16.5 mm

6 = 0.115 rad

7nE = 55.0 g
r~ = 1 1.0 7nm

S2 = 19.6 rad/s

C.2. Initial Conditions

The numerical integration is started with the initial values of the generalized coordinates
and velocities 

.

Acknowledgement. The research work presented in this paper is supported by a contract with tlte DFG
(Deutsche Forschungsgenteinschaft, P/’766/23-7,).

REFERENCES

Alart, P. and Curnier, A., 1991, "A mixed formulation for frictional contact problems prone to Newton like solution
methods," Computer Methods in Applied Mechanics and Engineering 92, 352-375.

Brach, R. M., 1989, "Rigid body collisions," Journal of Applied Mechanics 56, 133-138.

 at Technical University of Munich University Library on November 3, 2016jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com/


192

Brach, R. M., 1991, Mechanical Impact Dynamics, John Wiley, New York.
Braun, J., 1989, "Dynamik und Regelung elastischer Flugzeugfahrwerke," Thesis, Lehrstuhl B f&uuml;r Mechanik, TU M&uuml;nchen.
Duvaut, G. and Lions, J. L., 1976, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin.
Glocker, Ch. and Pfeiffer, F., 1992, "Dynamical systems with unilateral contacts," Nonlinear Dynamics 9(3), 245-259.
Glocker, Ch. and Pfeiffer, F., 1994, "Stick-slip phenomena and application," in Nonlinearity and Chaos in Engineering

Dynamics, IUTAM Symposium, UCL, July 1993. John Wiley, New York, 103-113.
Glocker, Ch., 1995, Dynamik von Starrk&ouml;rpersystemen mit Reibung and St&ouml;&szlig;en, Fortschrittberichte VDI, Reihe 18:

Mechanik/Bruchmechanik, Nr. 182, VDI-Verlag, D&uuml;sseldorf.
Hajek, M., 1990, Reibungsd&auml;mpfer f&uuml;r Turbinenschaufeln, Fortschrittberichte VDI, Reihe 11: Schwingungstechnik, Nr.

128, VDI-Verlag, D&uuml;sseldorf.
Haug, E. J., Wu, S. C., and Yang, S. M., 1986, "Dynamic mechanical systems with Coulomb friction, stiction, impact and

constraint addition &mdash; deletion &mdash; I, II, III," Mechanism and Machine Theory 21(5), 401-425.

Holmberg, G., 1990, "A solution scheme for three-dimensional multi-body contact problems using mathematical program-
ming," Computers & Structures 37(4), 503-514.

Jean, M. and Moreau, J. J., 1992, "Unilaterality and dry friction in the dynamics of rigid body collections," in Proceedings
Contact Mechanics International Symposium, A. Curnier, ed., PPUR, Lausanne, Switzerland, October 7-9, 31-48.

Kalker, J. J., 1971, "A minimum principle for the law of dry friction with application to elastic cylinders in rolling contact,"
Journal of Applied Mechanics 38, 875-887.

Kaneko, I., 1978, "A parametric linear complementarity problem involving derivatives," Mathematical Programming 15,
146-154.

Kaneko, I., 1980, "Complete solutions for a class of elastic-plastic structures," Computer Methods in Applied Mechanical
Engineering 21, 193-209.

Keller, J. B., 1986, "Impact with friction," Journal of Applied Mechanics 53, 1-4.

Klarbring, A., 1986, "A mathematical programming approach to three-dimensional contact problems with friction," Com-
puter Methods in Applied Mechanical Engineering 58, 175-200.

Klarbring, A., 1987, "Contact problems with friction by linear programming," in Unilateral Problems in Structural

Analysis-2, G. Del Piero and F. Maceri, eds., Springer-Verlag, Wien, 197-219.
Klarbring, A., 1992, "Mathematical programming and augmented Lagrangian methods for frictional contact problems," in

Proceedings Contact Mechanics International Symposium, A. Curnier, ed., PPUR, Lausanne, Switzerland, October
7-9, 409-422.

Klarbring, A., 1994, "Mathematical programming in contact problems," in Computational Methods for Contact Problems,
M. H. Aliabadi, ed., Elsevier, New York.

Klarbring, A. and Bj&ouml;rkman, G., 1988, "A mathematical programming approach to contact problems with friction and
varying contact surface," Computers & Structures 30(5), 1185-1198.

Panagiotopoulos, P. D., 1975, "A nonlinear programming approach to the unilateral contact and friction-boundary value
problem in the theory of elasticity," Ing. Arch. 44, 421-432.

Panagiotopoulos, P. D., 1993, "Hemivariational Inequalities," in Applications in Mechanics and Engineering, Springer-
Verlag, Berlin, Heidelberg.

Pereira, M. S. and Nikravesh, P., 1993, "Impact dynamics of multibody mechanical systems with frictional contact using
joint coordinates and canonical equations of motion," in Proceedings of the NATO-ASI Conference on Computer
Aided Analysis of Rigid and Flexible Mechanical Systems, Troia, Portugal, 505-526.

Pfeiffer, F., 1984, "Mechanische systeme mit unstetigen &uuml;berg&auml;ngen," Ing. Arch. 54, 232-240.
Rockafellar, R. T., 1972, Convex Analysis, Princeton University Press, Princeton, NJ.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipies in Fortran, Second Edition,

Cambridge University Press, New York.
Seyfferth, W., 1993, Modellierung unstetiger Montageprozesse mit Robotern, Fortschrittberichte VDI, Reihe 11: Schwin-

gungstechnik, Nr. 199, VDI &mdash; Verlag, D&uuml;sseldorf.
Seyfferth, W. and Pfeiffer, F., 1994, "Modelling of time-variant contact problems in multibody stytems," in Proceedings of

12th Symposium on Engineering Applications of Mechanics, Montreal, Canada, June 27-29, 579-588.
Simo, J. C. and Laursen, R. A., 1992, "An augmented Lagrangian treatment of contact problems involving friction,"

Computers & Structures 42(1), 97-116.
Smith, C. E., 1991, "Predicting rebounds using rigid body dynamics," Transactions of the ASME 58(3), 754-758.
Wapenhans, H., 1989, "Dynamik und Regelung von Flugzeugfahrwerken," Thesis, Lehrstuhl B f&uuml;r Mechanik, TU M&uuml;nchen.

 at Technical University of Munich University Library on November 3, 2016jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com/

