

Advanced Aspects on Model-driven Engineering and implementation of field level agents

1. Introduction of TUM and AIS

- 2. Field level agents in automation
- 3. Agents@PLC for CPPS and Industrie 4.0 my joghurt demonstrator
- 4. Use case: Sensor reconfiguration modeled with SysML and code generation from SysML Model to PLC's
- 5. Agents' knowledge of valid combinations or sequences modeled with OCL
- 6. Metrics for adaptivity
- 7. Conclusion and future work

Univ.-Prof. Dr.-Ing. Birgit Vogel-Heuser

Head of Chair and Director of Institute Automation and Information Systems (AIS) Technical University of Munich

www.ais.mw.tum.de/ vogel-heuser@tum.de

1

Technische Universität München

- 39,081 students
- 13 faculties
- 3 Integrative Research Centers
- 6 Corporate Research Centers
- 13,248 female students
- 9,846 staff members
- 411 buildings
- ~ €1.1 billion invested in construction since 2001

Students by Department	Total	No. of female students	No. of international students
Mechanical Engineering	5,216	762	1,247

Institute of Automation and Information Systems (AIS)

Technical University of Munich

• The leading university in mechanical and electrical engineering in Germany

Rankings 2015

- Technical University of Munich:
 - 51st at the Academic Ranking of World Universities (Shanghai-Ranking)
 - 60th at the QS World University Ranking
- Faculty of Maschinenwesen:
 - 19th at the QS World University Ranking by Subject (1st in Germany)

Memberships Head of Chair

- Chair of VDI/VDE (Association of German Engineers) TC 5.15 "Multi-Agent Systems in Automation"
- Coordinator of CRC (Collaborative Research Center) 768 "Managing cycles in innovation processes"
- Co-Initiator of PP (Priority Programme) 1593 "Design for Future – Managed Software Evolution"

Scientific staff

- ca. 20 PhD students
- 9 technicians, trainees (software engineering)

Model-Driven Development

Intelligent Distributed Systems

My Joghurt – accepted Industrie 4.0 demonstrator

Source: B. Vogel-Heuser, G. Bayrak, U. Frank: Forschungsfragen in "Produktautomatisierung der Zukunft". acatech Materialien. 2012.

© AIS, 2016

Advanced Aspects on Model-driven Engineering and implementation of field level agents

- 1. Introduction of TUM and AIS
- 2. Field level agents in automation
- 3. Agents@PLC for CPPS and Industrie 4.0 my joghurt demonstrator
- 4. Use case: Sensor reconfiguration modeled with SysML and code generation from SysML Model to PLC's
- 5. Agents' knowledge of valid combinations or sequences modeled with OCL
- 6. Metrics for adaptivity
- 7. Conclusion and future work

Trends in automation technology

- Global competition
- High customer requirements regarding individualisation of products
- Short life-cycles
- "Long-Living" production platforms

Challenges in automation technology

- Process improvements, greater efficiency
- Stability
- Flexibility
- Responsiveness
- Greater reusability

Disadvantages of today's way of thinking for software development

Today's software development for
automation systemsSystem structure and behavior
predetermined by designFunction-oriented, process-oriented,
state-oriented, object-orientedFunctionality of the system elements,
relationships between elementsStatistic software model
All relevant circumstances must be
considered in the designHigh dependency of elements
Failure of an element ightarrow Alternative
defined in the design or failure

Aim: Software systems that can react to situations that are not specifically provided during design phase

© AIS, 2016

Definition of an agent

CPPS Platform (Library)

A technical agent is an encapsulated (hardware/software) entity with specified objectives. An agent endeavours to reach these objectives through its autonomous behaviour, in interacting with its environment and with other agents. Source: VDI-Standard 2653 Sheet 1, 2010

Guideline VDI/VDE 2653 – Part 1

VEREIN	Accentency atoms in day	Automotioiosus soto starila		
DEUTSCHER	Agentensysteme in der / Grund	Blatt 1 / Part 1		
VERBAND DER ELEKTROTECHNIK	Multi-agent systems in	industrial automation		
ELEKTRONIK	Fundar	nentals	Ausg. deutsch/englisc Issue German/English	
Die deutsche Version dies	er Richtlinie ist verbindlich.	The German version of this guid tative. No guarantee can be give translation.	sline shall be taken as autho n with respect to the Englist	
Inhalt	Seite	Contents	Page	
Vorbemerkung		Preliminary note		
Einleitung	2	Introduction	2	
1 Anwendungsberei	ch3	1 Scope		
2 Begriffe		2 Terms and definitions		
3 Eigenschaften age	ntenorientierter 5	3 Properties of agent-orier	nted industrial	
4 Ausgewählte Anwe Agentensysteme in	endungsfälle für n der Auto-	4 Selected application cas multi-agent systems in industrial automation	es for	
4.1 Produktionssy	steme	 4.1 Production systems. 		
4.2 Energiemanag	ement	4.2 Energy management		
4.3 Modulare Proc 4.4 Transportlogis	fuktionsanlage	4.3 Modular production 4.4 Transport logistics	plant	
Glossar	11	Glossary	11	
Schrifttum	12	Bibliography	12	
,	/DI/VDE-Gesellschaft Mess- un Fachbereich Industrie	d Automatisierungstechnik (GM	A)	
VDI-Hand	Ibuch Informationstechnik, Ba	and 1: Angewandte Informatio	nstechnik	

Multi-agent systems in

industrial automation

Part 1: Fundamentals

- Terminology for agents used in automation, basic concepts and properties of agent systems
- User groups: Operators and developers

Part 2: Development

- Criteria for the selection and for the comparison of agent-oriented development methods and platforms
- Analysis of existing agent-oriented development methods
- User groups: Those who are concerned with the development of multi-agent systems

Part 3: Application

- Reports (industry and universities) using multiagent systems in different application fields
- Definition of the problem and the problem solution with agents as well as the advantage of using agents
- User groups: Those who are concerned with the development of multi-agent systems

- New chapter "Learning":
 - Integration of rule-based learning approaches, e.g. learning classifier systems, for critial but comprehensible control tasks
 - Classifier System reviews the applicated rules. → Good rules are kept in rule set. Unusable rules are deleted in rule set.
 - Initial learning process can be reduced through a priori rules
 - Using rules based on fuzzy logic improves the adaptation of the rules
- New chapter "Energy":
 - New sub-chapters "Approach for controlling small distributed energy systems", "Multimodal energy systems", "Home automation", "Microgrids", "Virtual power plants", "Energy management in vehicles"
 - Switch to renewable energies requires small and distributed energy conversion systems
 - Realisation through multi-agent system
- New chapter "Mobile transport robots"
 - Using multi-agent systems for the control and communication of mobile transport robots
 - Collaboration between MAS to accomplish joint tasks
- New chapter "Data analysis "
 - Use the resulting data from different systems to generate more information and knowledge for the expansion of business areas and models from the collected data
 - Horizontal and vertical coupling of heterogeneous systems
 - If damage was recorded, compensation strategies are applicable
- New chapter "Smart Environment"
 - Complexes and hierarchical control structures are implemented by decentralized intelligent algorithms
 - Information about the building and the current situation are stored in a knowledge-based, semantic building model

What are the possible problems and benefits of the control of the production by software agents?

Issues:

- Violation of real-time requirements of the production process
- No determinism of the software by the autonomy of the agents
- For simple "linear" processes and systems the overhead in the software may be too high

Advantages:

- Reconfiguration of processes in case of failure
- Compensation of failures of plant components
 - Adjustment of throughput / use of buffers in simple systems
- Optimization of plant processes under changing environmental conditions

Morphological box for classifying agents-Which agent types are most appropriate for field level agents?

Property	characteristic						
autonomy	autonomous				pas	passive	
	reactive				proa	active	
architecture	memoryless	memoryless stored			BDI InteRRaP		•••
communication	sync	hronous		asynchronous			
language	jointly de	jointly defined			inter	pretive	
protocol definition	Petri nets		auton	nata	a text		
world model	togeth	ner		Individually with intersection			
o do activity	Not adaptively imitative			learning mechanism			
adaptivity			tive self-crit		tically rule-based		ised
mobility	mobile			stationary			
competition	cooperative			competitive			
method of cooperation	negotiating			dominant			
Knowledge of their own abilities	Non	resources skills			skills		
Perception of the environment	through cor	communication through observation					

Source: See Lüder, A. Möglichkeiten und Grenzen Agentenbasierter Steuerungssysteme; 2006

Advanced Aspects on Model-driven Engineering and implementation of field level agents

- 1. Introduction of TUM and AIS
- 2. Field level agents in automation
- 3. Agents@PLC for CPPS and Industrie 4.0 my joghurt demonstrator
- 4. Use case: Sensor reconfiguration modeled with SysML and code generation from SysML Model to PLC's
- 5. Agents' knowledge of valid combinations or sequences modeled with OCL
- 6. Metrics for adaptivity
- 7. Conclusion and future work

Changes in the requirements of automation architecture

Intelligent field devices: Integration of functions based on I/Os from the control level to the field level

Decentralized control system: Integration of automation functions in filed devices of production systems

Results

Increasing flexibility based on the interconnection of modularized field devices with production systems \rightarrow Limitation of individual production systems

Source (right): B. Vogel-Heuser, G. Kegel, K. Bender und K. Wucherer: Global Information Architecture for Industrial Automation. In: Automatisierungstechnische Praxis (atp), Jahrgang 51 (2009), Heft 1, S. 108-115.

Characteristics of Cyber-Physical Production Systems (CPPS) – Industrie 4.0

Source: B. Vogel-Heuser, G. Bayrak, U. Frank: Forschungsfragen in "Produktautomatisierung der Zukunft". acatech Materialien. 2012.

© AIS, 2016

Four stages of industrial revolution

6/17/2016

Prof. Dr.-Ing. Birgit Vogel-Heuser

Source: VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik: Statusbericht; Industrie 4.0; Wertschöpfungsketten. Düsseldorf: VDI e.V., April 2014.

Prof. Dr.-Ing. Birgit Vogel-Heuser

Characteristics of Industrie 4.0 component based on RAMI 4.0

Identifiability

- Unique identifier in network
- Physical objects are referenced by an ID
- Security
- Timely Behavior
- Different address types for I4.0 components and (application) objects

Virtual Description

Virtual representation (including dynamic behavior)

I4.0-conform Semantics

Support semantics standardized for I4.0

State

State can be obtained at any time

Combinability

I4.0 components can be composed to form a bigger component

Quality of Service

Satisfaction of required characteristics as e.g. **realtime properties**, **dependability** etc.

I4.0-compliant services and states

- Distinction between shop floor/office floor
- Protocols and application functions can be updated/ extended
- Application layers with different protocols

I4.0-conform communication

Self-identification (SOA-Service model)

© AIS, 2016

Security and Safety

- Protection for functionality and data (Security)
- Machine safety (Safety)
- Mindset-infrastructure security by Design (SbD)

Source: VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik: Statusbericht; Industrie 4.0; Wertschöpfungsketten. Düsseldorf: VDI e.V., April 2014.

Example: servohydraulic axis RAMI 4.0

		Energy management as a business process
Business		Position control linked with machine-head control on functional layer
Function		Position control with position assignment, collecting and evaluating of all energy data
Information	Data: Position, Energy	Ethernet with OPCUA
Communication		Controls: moment, velocity, additionally loadable functions: safety, condition monitoring, control technology, energy save mode,
Integration		Booster: webserver, compilation of all sensor information
Asset		System: cylinder, block with pump, servomotor, valves,

Source: open automation "ZVEI: RAMI 4.0 – next steps und das Referenzarchitekturmodell des IIC im Vergleich", open automation, VDE Verlag, 15.09.2015, http://www.openautomation.de/detailseite/zvei-rami-40-next-steps-und-das-iira-im-vergleich.html.

My Joghurt – accepted Industrie 4.0 demonstrator

Prof. Dr.-Ing. Birgit Vogel-Heuser

Modeling of **Ressource** for pellet dispenser based on **Automation ML**

 Input Air Extend {Class: PortConnector} Input Air Retract {Class: PortConnector}

 Behaviour {Class: PLCopenXMLInterface} IE Case {Class: Role:} -Interfaces Geometry {Class: COLLADAInterface}

SUC Filling station {Class:}

IE Tank {Class: Role: }

Interfaces

IE Pellet dispenser {Class: Role:}

IE Pneumatic cylinder {Class: Role:}

<AutomationML/>

- CAEX for structural desciption
- PLCOpenXML for behavioral description
- Collada for geometric description

•

Product description

- Name: White chocolate balls
- Viscosity: 2.5 Pa*s
- Yield strength: 20 Pa
- Diameter: 0.5 cm
- Aggregation state: solid

Ressource description

- Name: Filler
- Acceptable viscosity: 1..3 Pa*s
- Acceptable yield strength: 10..30 Pa
- Acceptable diameter: 0.2..1 cm
- Functionality: separate single solid

Ontology

- Formal knowledge representation
- Provides the means to flexibly process knowledge
- → Basis to identify whether filler can manufacture yoghurts with white chocolate balls

Mapping of **technical system**'s characteristics with **requirements from product** and **production process** by means of ontologies

United Nations Standard Products and Services Code (UNSPSC)

Hierarchical open convention for classifying products and services (Segment, Family, Class, Commodity)

Specification

- UNSPSC-Code: 8 numbers
- Titel: Text with max. 120 letters
- Definition: Description text
- Business function (optional): 2 numbers (meaning e.g.: maintenance, charge, leasing, installation)

Specification of properties through standard characteristics:

What lacks exist in product description for CPPS?

Source: cf. ABB AG / Plattform I4.0

6/17/2016

Prof. Dr.-Ing. Birgit Vogel-Heuser

Self-adapatation of an CPPS

Source: B. Vogel-Heuser: Herausforderungen und Anforderungen aus Sicht der IT und der Automatisierungstechnik. In: Industrie 4.0 in Produktion, Automatisierung und Logistik, Springer, 2014.

6/17/2016

Workshop on Industry 4.0 & Next Generation Manufacturing in Japan 2016

Advanced Aspects on Model-driven Engineering and implementation of field level agents

- 1. Introduction of TUM and AIS
- 2. Field level agents in automation
- 3. Agents@PLC for CPPS and Industrie 4.0 my joghurt demonstrator
- 4. Use case: Sensor reconfiguration modeled with SysML and code generation from SysML Model to PLC's
- 5. Agents' knowledge of valid combinations or sequences modeled with OCL
- 6. Metrics for adaptivity
- 7. Conclusion and future work

UML-based implementation of IEC 61131-3 code with SysML expansion for software agents

- Real-time requirements of automated production systems
 → hard real-time for the platform (PLC)
- Cyclic behavior of the platform (1µs – 1s)
- Classical PLC as well as Soft-PLC (PC-based) programmed in IEC 61131-3 Languages
- Increasing amount of IPC and C, C-derivatives
- Online change is mandatory

IEC 61131-3 Languages

Sequential	Ladder	Function Block
Function Chart	Diagram	Diagram
Step1 Transition 1 Step2 Transition 2 Step3 Transition 3	Var1 Var2 Var3 OUT Var5 Var4 Structured Text OUT:= (Var1 & Var2 & Var3) OR (Var4 & Var5)	Var1 Var2 Var3 Var4 Var5 Un Var4 Var5 Un Var1 ANDN Var 2 ANDN Var3 ST OUT

IEC 61131-3 Programming Languages

- Proprietary programming languages: Structured Text (ST), Ladder Diagram (LD), Instruction List (IL), Sequential Function Chart (SFC), Function Block Diagram (FBD)
- Upcoming: C

KREAagentuse: SysML-based automation software development

Source: Frank et al. 2011, Schütz et al. 2012, DFG funded project KREAagentuse

© AIS, 2016

Introduction of the small lab scale production system pick-and-place-unit (PPU)

Requirement in text form: The workpiece must be stamped for at least 10 s with a force of at least 10 N.

Chart name in the tool

table [Requirement] Stempelprozess				
	id	name	text	
	1	stamping process	"The workpiece must be stamped for 10 s with a force of at least 10N"	
	2	stamping force	"The stamping force must be greater than 10 N"	
	3	stamping time	"The stamping process must take more than 10s"	

Requirement diagram – Relationships between requirements

«**refine**» : Refine relationship describes that a model element describes the properties of a requirement in more detail.

«satisfy» : Satisfy relationship describes design elements that fulfills a requirement.

«verify» : Verify relationship combines a test case with the requirement that is checked by the test case.

Relationship between block definition diagram (BDD) and internal block diagram (IBD)

Structure model – Internal block diagram (IBD) Example: Sorting plant: Block stamp

43

© AIS, 2016

State-based behavior-Important boundary conditions to model the crane

crane

extended positions

Crane is able to move to retracted and

A pneumatic cylinder is used to extend the

Down/retracted

17.06.2016

Univ.-Prof. Dr.-Ing. Birgit Vogel-Heuser

Behavior model: Activity diagram Application example: Sorting process

UML-based Implementation of IEC 61131-3 Code with SysML expansion for software agents

© AIS, 2016

How can knowledge of software agents be modelled? Which kinds of knowledge have to be modelled?

Which kinds of knowledge can be modelled with SysML?

- Use cases (use case diagram)
- Parametric relations
- Interdisciplinary relations, especially internal structures of (mechatronic) systems

How can this knowledge be used during runtime?

Automatic model transformation/ Code generation/ "Model is code"

What is missing?

Automatic processing Rules of consistency of the model (keyword "boundary conditions")

C © AIS, 2016

Source: P. Hehenberger, B. Vogel-Heuser, D. Bradley, B. Eynard, T. Tomiyama, S. Achiche: "Design, Modelling, Simulation and Integration of Cyber Physical Systems: Methods and Applications", 2016

Redundancy Model of Tank according to [SWL+13] and mapping to PAR

Source: P. Hehenberger, B. Vogel-Heuser, D. Bradley, B. Eynard, T. Tomiyama, S. Achiche: "Design, Modelling, Simulation and[®] Integration of Cyber Physical Systems: Methods and Applications", 2016

Source: P. Hehenberger, B. Vogel-Heuser, D. Bradley, B. Eynard, T. Tomiyama, S. Achiche: "Design, Modelling, Simulation and[®] Integration of Cyber Physical Systems: Methods and Applications", 2016

AIS, 2016

block definition diagram

- Describes a system's structure in code conforming to IEC61131-3
- Visualization and structuring of the system, standard building blocks are stored centrally

Example: energy calculation for the vertical fall

SysML

«block» EnergyCalculation

values Acceleration: REAL StartHigh : REAL Velocity: REAL Mass : REAL High : REAL PotentialEnergy: REAL KineticEnergy: REAL

operations

IEC 61131-3 (Block \rightarrow Function Block)

FUNCTION_BLOCK EnergyCalculation
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
Acceleration: REAL;
StartHigh : REAL;
Velocity: REAL;
Mass : REAL;
High : REAL;
PotentialEnergy: REAL;
KineticEnergy: REAL;

Parametric diagram

- Calling of IEC 61131-3 functions and function blocks
- Visualization and structuring of parametric relationships

SysML

Parametric diagram

- Calling of IEC 61131-3 functions and function blocks
- Visualization and structuring of parametric relationships

Parametric diagram

- Calling of IEC 61131-3 functions and function blocks
- Visualization and structuring of parametric relationships

Advanced Aspects on Model-driven Engineering and implementation of field level agents

- 1. Introduction of TUM and AIS
- 2. Field level agents in automation
- 3. Agents@PLC for CPPS and Industrie 4.0 my joghurt demonstrator
- 4. Use case: Sensor reconfiguration modeled with SysML and code generation from SysML Model to PLC's
- 5. Agents' knowledge of valid combinations or sequences modeled with OCL
- 6. Metrics for adaptivity
- 7. Conclusion and future work

Self-adapatation of an CPPS

Source: B. Vogel-Heuser: Herausforderungen und Anforderungen aus Sicht der IT und der Automatisierungstechnik. In: Industrie 4.0 in Produktion, Automatisierung und Logistik, Springer, 2014.

6/17/2016

Workshop on Industry 4.0 & Next Generation Manufacturing in Japan 2016

OCL as a formal language

- Software language to specify conditions for UML
- Easy to read
- Pure expression language, no change in the original model
- No programming language, i.e. aspecially
 - No formulation og program logic or control flow
- Typed language
 - Each expression in OCL has a particular type
 - Each OCL expression must use the correct type (e.g. no comparisson of strings and integers)
 - Status of the object is not changed during the validation

Application of OCL: Specification of

- Invariants in class diagrams
- Pre- and postcondotion for
- Conditions in sequence and state diagrams
- Condition of the UML metamodel

Introduction of the small lab scale production system pick-and-place-unit (PPU)

Formulate the following conditions for the crane:

- Because of construction conditions the crane is only allowed to move in a rotation angle of $0^{\circ} < \varphi \le 360^{\circ}$.
- The pre- and postconditions at the bearing for the collection of material by the crane (Kran::MaterialAufnehmen()) are:
 - **Precondition**: Crane unloaded, lowered, at horizontal bearing position ($\varphi = 90^{\circ}$)
 - **Postcondition**: Crane unloaded, lowered, at horizontal bearing position ($\varphi = 90^{\circ}$)
- The pre- and postconditions for the rotation of an angle X (Kran::Drehen(x)) of the crane are:
 - **Precondition:** Crane isn't allowed to leave the angle range
 - **Postcondition:** Crane is at a new position

Sensor	ensor Beschreibung	
B3	Lift cylinder at top position	Boolean
B4	Lift cylinder at bottom position	Boolean
B5	Vacuum gripper loaded	Boolean
B6	Rotation angle of the rotary base	Integer

Formulate the following conditions for the crane:

• Because of construction conditions the crane is only allowed to move in a rotation angle of $0^{\circ} < \varphi \le 360^{\circ}$.

context Kran

```
inv: B6 > 0 and B6 <= 360
```


- **Precondition**: Crane unloaded, lowered, at horizontal bearing position ($\varphi = 90^{\circ}$)
- **Postcondition**: Crane unloaded, lowered, at horizontal bearing position ($\varphi = 90^{\circ}$) **context** Kran::MaterialAufnehmen()

```
pre: not B5 and not B3 and B4 and B6 = 90
post: B5 and not B3 and B4 and B6 = 90
```

- The pre- and postconditions for the rotation of an angle X (Kran::Drehen(x)) of the crane are:
 - **Precondition:** Crane isn't allowed to leave the angle range
 - Postcondition: Crane is at a new position

context Kran::Drehen(x)

pre: B6 + x > 0 and B6 + x <= 360

post: B6 = B6@pre + x

Sensor	nsor Beschreibung	
B3	Hebezylinder an oberer Position	Boolean
B4	Hebezylinder an unterer Position	Boolean
B5	Vakuumgreifer beladen	Boolean
B6	Drehwinkel der Drehbasis	Integer

How can assumptions in a system model be considered related to its implementation?

- Model refining with additional assurances
- Invariants limit the allowable state space of implementations
- Assurances (pre- and postconditions) limit possible state transitions of implementations

In this context, what is the OCL?

- OCL is a specified language to formulate logical formulas
- Necessary assurances can be integrated by OCL
- UML in combination with OCL enables detailed system models

What information does a model inspector need to test the requirements on an automated model?

- A system model describes structur and behaviour of a system (e.g. UML/OCL)
- A formal description of the requirements

In this context, what is the temporal logic for?

- Temporale logic enables the formulation of qualitative and temporal properties, e.g. "always" or "sometimes"
- Temporal logic can be used to describe the requirements for system behaviour

Characteristics of Cyber-Physical Production Systems (CPPS) – Industrie 4.0

Source: B. Vogel-Heuser, G. Bayrak, U. Frank: Forschungsfragen in "Produktautomatisierung der Zukunft". acatech Materialien. 2012.

© AIS, 2016

Advanced Aspects on Model-driven Engineering and implementation of field level agents

- 1. Introduction of TUM and AIS
- 2. Field level agents in automation
- 3. Agents@PLC for CPPS and Industrie 4.0 my joghurt demonstrator
- 4. Use case: Sensor reconfiguration modeled with SysML and code generation from SysML Model to PLC's
- 5. Agents' knowledge of valid combinations or sequences modeled with OCL
- 6. Metrics for adaptivity
- 7. Conclusion and future work

Sc12f: Additional Sensor for Fault Detection, Isolation and Handling

Source: Birgit Vogel-Heuser, Susanne Rösch, Juliane Fischer, Thomas Simon, Sebastian Ulewicz and Jens Folmer: "Fault handling in PLC-based Industry 4.0 automated production systems as a basis for restart and self-configuration and its evaluation", 2015

© AIS, 2016

Metrics of a FCA regarding tank's level control error

Metrics for real-time capabilities:

For sensore failure (plcDFAI) only cycle time is needed. For the calculated value compared to reacting to the actual sensor value (plcIFAI + plcSTAI) no additional time is needed: plcFCLAI = plcDFAI + plcIFAI + plcSTAI plcFCLAI = plcDFAI = t_{cycles}

Metrics for the programming effort needed to increase fault coverage:

FHAIx = software elements

$$FHAI = \frac{FHAI_{new} + FHAI_{adapted} + FHAI_{removed}}{FHAI_{new} + FHAI_{adapted} + FHAI_{removed} + FHAI_{old}}$$
$$= \frac{15 + 1 + 0}{15 + 1 + 0 + 35} = \frac{16}{51} = 0.31$$

Therefore to detect and cover a failure of the upper tank filling sensor, 31% of the software code had to be modified or added

Source: Birgit Vogel-Heuser, Susanne Rösch, Juliane Fischer, Thomas Simon, Sebastian Ulewicz and Jens Folmer: "Fault handling in PLC-based Industry 4.0 automated production systems as a basis for restart and self-configuration and its evaluation", 2015

Metrics have to be adapted / further developed for benchmarking aPS designs and operation behavior regarding Industry 4.0 © AIS, 2016

Source: Vogel-Heuser, B.; Rösch, S.; Fischer, J.; Simon, T.; Ulewicz, S.; Folmer, J.: *Fault handling in PLC-based Industry 4.0 automated production systems as a basis for restart and self-configuration and its evaluation*. In: Journal of Software Engineering and Applications, Vol. 9, No. 1, 2016, PP. 1-43.

6/17/2016

Program of the agent expert forum

	27 th September 2016		28th Sej
	Welcome and introduction		S
13:00	Prof. DrIng. Birgit Vogel-Heuser,		Design of Cl
	Technical University of Munich	00.00	PHM in Fut
	Session 1	09:00	Prof. Dr. Jay
	A modeling approach for ad hoc		University of
	reconfiguration of industrial agents		Engineering
13:15	Prof. DrIng. Birgit Vogel-Heuser		and method
	Technical University of Munich	09:30	manufactur
	Concept for an agent-based industry		Dr. Bilal Ah
	4.0 component		University of
12.45	DiplIng. Daria Ryashentseva and Ambra		A multi age
13:45	Calá, M.Sc.		reconfigura
	Otto-von-Guericke University	10:00	flow module
	Magdeburg		Daniel Regu
	Dezentrale Produktionssysteme in der		Technical Ur
14.15	Pharmabranche - ein Fallbeispiel		Real-time so
14:15	DrIng. Michael Rausch		implementi
	Harro Höfliger	10:30	production
	Komponenten-orientiertes Engineering		DiplInf. Se
14:45	DiplIng (FH) Georg Scharf		Dresden Uni
	Bachmann electronic	11:00	Guided tour
15:15	Coffee break	11:30	Coffee break
	Session 2		S
	Agents everywhere! Utilizing agent-		Engineering
	based approaches from the supply	11.45	energy grid
15:45	chain down to machinery and	11.45	DiplIng. To
	components		Helmut Schr
	Prof. Dring. Bernd Hellingrath		Engineering
	Challenges in the desired and server t		Simulate M
	Challenges in the design, deployment	12:15	Parallel
16.15	and assessment of intelligent cyber-		Desirée Vög
10:15	I via Ribairo PhD		University of
	Luis Ribeito, Fill		Industrial a
	A next based Madelling and Simulation		when they w
16.45	Agent-based Modelling and Simulation	12:45	over factori
10:45	Polytechnical Institute of Programs		Dr. Andrei L
	A next based excistence sustain in		Tampere Un
	Agent-based assistance system in	10.15	Farewell
17.15	and Outlook	13:15	Trof. DrIng
17.15	Prof Dr Ing Michael Wevrich		Technical Ut
	University of Stuttgart	13:30	Lunch
17:50	Bus ride to Oktoberfest (Munich)		
18:30	Evening event		

	28th September 2016
	Session 3
09:00	Design of CPS-based Digital-Twin PHM in Future Industrial Systems Prof. Dr. Jay Lee University of Cincinnati
09:30	Engineering environment (i.e. tools and methods) for component-based manufacturing systems Dr. Bilal Ahmad University of Warwick
10:00	A multi agent system approach for reconfiguration of automated material flow modules during runtime Daniel Regulin, M.Sc Technical University of Munich
10:30	Real-time software agents for implementing cyber-physical production systems DiplInf. Sebastian Theiss, Dresden University of Technology
11:00	Guided tour of the institute AIS
11:30	Coffee break
	Session 4
11:45	Engineering agent based multimodal energy grid control solutions Dip1Ing. Tobias Linnenberg Helmut Schmidt University Hamburg
12:15	Engineering with Software Agents to Simulate Multiphysics Problems in Parallel Desirée Vögeli, M.Sc. University of Stuttgart
12:45	Industrial agents: their potentials and when they will actually take control over factories? Dr. Andrei Lobov Tampere University of Technology
13:15	Farewell Prof. DrIng. Birgit Vogel-Heuser Technical University of Munich
13.30	Lunch

Anwendung · Technologien · Migration

D Springer Industrie 4.0 in Produktion Automatisierung und logistik 智能エ厂的生产・自动化・物流 及其关键技术、应用迁移和实战案例 工业和信息化部电子 科学技术情报研究所 布里吉特·福格尔-霍尔泽

Print to appear Oct. 2016

Authors: Birgit Vogel-Heuser, Thomas Bauernhansl, Michael ten Hompel Handbuch available online:

http://link.springer.com/referencework/10.1007%2F978-3-662-45537-1

http://i40d.ais.mw.tum.de

Thank you for your attention.

Birgit-Vogel-Heuser

Institute of Automation and Information Systems (AIS) Faculty of Mechanical Engineering, Technische Universität München Munich, Germany