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A Channel Under Simultaneous Jamming
and Eavesdropping Attack—Correlated

Random Coding Capacities Under
Strong Secrecy Criteria

Moritz Wiese, Member, IEEE, Janis Nötzel, and Holger Boche, Fellow, IEEE

Abstract— We give a complete characterization of the
correlated random coding secrecy capacity of arbitrarily varying
wiretap channels (AVWCs). We apply two alternative strong
secrecy criteria, which both lead to the same multi-letter formula.
The difference of these criteria lies in the treatment of correlated
randomness; they coincide in the case of uncorrelated codes.
On the basis of the derived formula, we show that the correlated
random coding secrecy capacity is continuous as a function of
the AVWC, in contrast to the discontinuous uncorrelated coding
secrecy capacity. In the proof of the secrecy capacity formula
for correlated random codes, we apply an auxiliary channel,
which is compound from the sender to the intended receiver and
arbitrarily varying from the sender to the eavesdropper.

Index Terms— Arbitrarily varying channel, compound
channel, correlated randomness, jamming, wiretap channel.

I. INTRODUCTION

THIS paper brings together two areas of information
theory: the arbitrarily varying channel (AVC) and the

wiretap channel. This leads to the arbitrarily varying wiretap
channel (AVWC): A sender would like to send information
to a receiver through a noisy channel. Communication over
this channel is subject to two difficulties. First, there is a
second receiver, called an eavesdropper, which obtains its own
noisy version of the channel inputs and should not be able to
decode any information. Second, the state of the channels both
to the intended receiver as well as to the eavesdropper can
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vary arbitrarily over time. Neither the sender nor the intended
receiver know the true channel state. For a blocklength n, this
means that the probability of the intended receiver obtaining
the output sequence yn = (y1, . . . , yn) and the eavesdropper
receiving zn = (z1, . . . , zn) given that xn = (x1, . . . , xn) was
input to the channel is contained in the family

{
Un

sn (yn, zn |xn) =
n∏

i=1

Usi (yi , zi |xi ) :

sn = (s1, . . . , sn) ∈ Sn
}
. (1)

Here, S is the finite state set and {Us(·, ·|·) : s ∈ S} a family
of stochastic matrices, which thus determines the AVWC.

One could regard the varying channel states as determined
by nature. However, we will interpret them as the result of
jamming from an intruder. So henceforth, we shall view the
AVWC as a channel under two attacks at the same time:
one passive (eavesdropping), one active (jamming).

The study of correlated random coding capacities in their
own right instead of as mathematical tools applied in the
proofs of uncorrelated coding capacity theorems is motivated
by arbitarily varying channels (AVCs), which are AVWCs
without the eavesdropper. By uncorrelated codes, we mean
that sender and receiver have agreed on a procedure ( f, φ) of
data manipulation prior to transmission. Here, f is a possibly
stochastic mapping from the messages to the channel inputs of
a fixed blocklength, φ reverts channel outputs into messages.
For transmission, each node separately executes its part of
this procedure without relying on any further resources, in
particular no common resources. What we call correlated
random coding is usually called random coding and has
been used as a mathematical tool ever since Shannon’s 1948
paper [23]. Operationally, it means that sender and receiver
agree on a family of deterministic codes {( f γ , φγ ) : γ ∈ �}.
Before communication, a random experiment following the
distribution μ on � is performed. The outcome, say γ , is
revealed to sender and intended receiver which then apply the
deterministic code ( f γ , φγ ).

It was already observed by Blackwell et al. [7] that whether
correlated randomness is available to sender and receiver
can be crucial when it comes to the AVC capacity. In fact,
AVCs exhibit a dichotomy [1]: Their capacity for deterministic
coding either equals their capacity for correlated random
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coding or it equals zero. Csiszár and Narayan have identified
the distinguishing property [12], called symmetrizability
(a concept originally introduced by Ericson [15]). Without
the use of correlated random coding, a symmetrizable AVC is
useless; no message transmission is possible.

Thus one is led to regarding correlated randomness as
an additional resource for communication. This resource can
make communication possible where it is impossible without.
Of course, it is important that the jammer has no access to
this resource, i.e. that it does not know the outcome of the
random experiment common to sender and receiver. In this
paper, we will apply two strong secrecy criteria and show
that the corresponding capacities for correlated random coding
coincide. The first of these criteria is that

max
sn

∑
γ

I (M ∧ Zγ
sn)μ(γ ) (2)

be small, where M is the message chosen uniformly at random
and Zγ

sn is the eavesdropper’s output if the state sequence is sn

and the deterministic code ( f γ , φγ ) has been selected. This
criterion was applied in [4] and [21]. The second, stronger one
requires

max
sn

max
γ

I (M ∧ Zγ
sn ) (3)

to be small. Both secrecy criteria assume that the eavesdropper
knows the realization of the correlated randomness. This
means that we have to assume the active and passive attacks
to be uncoordinated in the sense that the eavesdropper does
not inform the jammer about its knowledge of the correlated
randomness.

We are not the first to study the capacity of the AVWC.
A study of the Gaussian MIMO wiretap channel where the
channel to the eavesdropper is arbitrarily varying has been
done in [19] and [20]. Earlier approaches to the discrete
AVWC as defined in (1) can be found in [4] and [21], which
studied the secrecy capacity achieved by correlated random
coding and used (2) as secrecy criterion. In both papers,
closed-form secrecy capacity results could only be given after
imposing additional conditions. In a recent preprint [17],
single-letter lower and upper bounds for the AVWC with state
constraints are derived which coincide in the case that the state
is constrained to be typical with respect to a given probability
distribution on the state alphabet.

The main result of this paper will be a complete charac-
terization of the correlated random coding secrecy capacity
under both criteria (2) and (3). The capacity formula we find
is multi-letter. It was found in [4] for special AVWCs where
there is a “best channel to the eavesdropper” and reduces to a
single-letter formula under certain degradedness conditions as
required in [21]. It is not clear whether a generally applicable
single-letter formula exists at all. Still, the multi-letter formula
allows for the approximate computation of the secrecy capacity
up to a given complexity. However, this is not our main
concern, so we do not provide any relation between complexity
and approximation goodness.

With the help of the multi-letter formula, it can also be
shown that the correlated random coding secrecy capacity is
continuous in the channel. Thus small errors in the descrip-
tion of the family (1) do not have severe consequences for

the capacity. If the capacity formula were not continuous, the
channel would in general have to be estimated with infinite
precision in order to meaningfully apply the capacity formula.
The continuity of the correlated random coding secrecy capac-
ity becomes even more remarkable as very simple examples
with |S| = 2 have been given in [9] which show that
the uncorrelated coding secrecy capacity is a discontinuous
function of the AVWC.

For the achievability part of the capacity theorem, we follow
Ahlswede’s strategy of deriving correlated random coding
achievability results for AVCs from uncorrelated coding capac-
ity results for compound channels. (In contrast to an AVC,
a compound channel does not change its state during the
transmission of a codeword.) This technique is known as
the “robustification technique”. Sender and receiver of an
AVC randomly permute an uncorrelated code for a certain
compound channel induced by the AVC and thus obtain a
correlated random code with negligibly larger average error.

When applying the robustification technique to AVWCs,
one has to take the secrecy criterion into account. As seen
in [4], this requires a “best channel to the eavesdropper” if
one assumes the channel to the eavesdropper to be compound
as well. The central idea of our proof is to introduce the
compound-arbitrarily varying wiretap channel (CAVWC). This
channel is compound from sender to intended receiver and
arbitrarily varying from sender to eavesdropper. We derive the
uncorrelated coding secrecy capacity of this channel. After
robustification, this also turns out to be the correlated random
coding secrecy capacity of the AVWC.

We prove the achievability result for the CAVWC by
random coding following Devetak [13]. This technique takes
a resolvability approach to proving secrecy, cf. the discus-
sion of resolvability and “capacity-based” approaches by
Bloch and Laneman [8]. However, it does not follow an
information spectrum approach like the techniques presented
in [8]. To our knowledge, those techniques have not yet
been shown to be able to handle arbitrarily varying channels.
As the number of AVWC channel states grows exponentially
with blocklength, very tight probability estimates have to
be obtained from random coding. Devetak’s method [13],
originally in the language of quantum information theory,
provides such estimates and was already applied in [4], [5],
and [24] in a classical information theory setting.

In [10], an a priori upper bound on the amount of correlated
randomness required to achieve the correlated random coding
secrecy capacity was found. Such a bound is necessary for
the converse of the correlated random coding secrecy capacity
theorem for the AVWC. The reason for this is that the use of
correlated randomness prohibits a straightforward application
of the data processing inequality.

In a follow-up work [22] to this paper, we extend our
analysis of the AVWC. We study the case when the eaves-
dropper has no knowledge of the correlated randomness and
the case when there is no correlated randomness at all, i.e. the
uncorrelated coding secrecy capacity.

Paper Outline: In Section II, we set the notation and give
basic definitions. In Section III we define the AVWC and
state the coding problem and the main result. Section IV
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discusses the main result of Section III. Section V introduces
the CAVWC mentioned in the introduction, states the CAVWC
coding problem and the corresponding secrecy capacity the-
orem. Section VI contains the proof of the achievability part
of the coding theorem for the CAVWC. The achievability part
of the correlated random coding theorem for the AVWC is
derived from the achievability part of the coding theorem
for the CAVWC in Section VII. Section VIII contains the
converses. In Section IX, a short discussion concludes the
paper. Several proofs are collected in the appendices.

II. NOTATION AND BASIC DEFINITIONS

Logarithms denoted by log are taken to the base 2; corre-
spondingly, we set exp(x) = 2x . The cardinality of a finite set
A is written |A|. For a subset E of A, we write Ec := A \ E .
The indicator function �E assumes the value 1 for arguments
contained in E and 0 else. For n-tuples contained in An , we
write xn := (x1, . . . , xn) ∈ An .

The set of probability measures on the finite set A is
denoted by P(A). For P ∈ P(A), we define the n-fold
product measure Pn ∈ P(An) by Pn(xn) := ∏

i P(xi ).
We write stochastic matrices {W (b|a) : a ∈ A, b ∈ B}
with input alphabet A and output alphabet B as mappings
W : A −→ P(B). A nonnegative measure on A is a vector
(μ(a))a∈A with μ(a) ≥ 0 for all a ∈ A. Every probability
measure is a nonnegative measure. The total variation dis-
tance of two nonnegative measures μ, ν on A is defined by
‖μ − ν‖ := ∑

a∈A|μ(a) − ν(a)|.
If X̄ , Ȳ are random variables, then we write the distribution

of X̄ as PX̄ , the joint distribution of X̄ and Ȳ as PX̄Ȳ and the
conditional distribution of X̄ given Ȳ as PX̄ |Ȳ .

For a sequence xn = (x1, . . . , xn) ∈ An and a ∈ A, the
number N(a|xn) indicates the number of coordinates xi of
xn with xi = a. The type of xn is the probability measure
q ∈ P(A) defined by q(a) := N(a|xn)/n. The set of all
possible types of sequences of length n is denoted by Pn

0 (A).
For δ > 0 and an A-valued random variable X̄ , we define the
typical set T n

X̄ ,δ
⊂ An as the set of those xn ∈ An satisfying

the two conditions∣∣∣∣
1

n
N(a|xn) − PX̄ (a)

∣∣∣∣ < δ,

N(a|xn) = 0 if PX̄ (a) = 0

for every a ∈ A. For δ > 0, an A×B-valued random variable
(X̄ , Ȳ ) with joint distribution PX̄Ȳ and an element xn of An ,
we define the conditionally typical set T n

Ȳ |X̄ ,δ
(xn) as the set of

those yn ∈ Bn satisfying the two conditions
∣∣∣∣
1

n
N(a, b|xn, yn) − PȲ |X̄ (b|a)

1

n
N(a|xn)

∣∣∣∣ < δ,

N(a, b|xn, yn) = 0 if PȲ |X̄ (b|a) = 0

for all a ∈ A, b ∈ B.

III. ARBITRARILY VARYING WIRETAP CHANNELS

Let A,B, C,S be finite sets. For every s ∈ S, let a stochastic
matrix Ws : A → P(B) and another stochastic matrix

Vs : A → P(C) be given. For a number n and xn ∈ An,
yn ∈ Bn, sn ∈ Sn , define

W n
sn (yn|xn) :=

n∏
i=1

Wsi (yi |xi).

We denote the family {W n
sn : sn ∈ Sn, n = 1, 2, . . .} by W.

In analogy to W n
sn (yn|xn), we define V n

sn (zn|xn) for zn ∈ Cn

and denote the corresponding family {V n
sn : sn ∈ Sn, n =

1, 2, . . .} by V. We sometimes prefer to write V n(zn|xn, sn)
instead of V n

sn(zn |xn). We call the pair (W,V) an Arbitrarily
Varying Wiretap Channel (AVWC). S is called the state set
of (W,V).

Remark 1: One checks easily that the representation of an
AVWC as a pair (W,V) is possible without losing generality.
In general, any state s ∈ S together with an input a ∈ A
will lead to a joint output distribution Us(·, ·|a). But the
performance of any of the codes defined below is measured
with respect to the marginal output distributions Ws(·|a) and
Vs(·|a). Thus for the purpose of this paper, all AVWCs with
the same marginals W and V are equivalent.

An uncorrelated (n, Jn)-code Kn for the AVWC (W,V)
consists of a stochastic encoder E : {1, . . . , Jn} → P(An) and
a collection of mutually disjoint sets {D j ⊂ Bn : 1 ≤ j ≤ Jn}.
We abbreviate Jn := {1, . . . , Jn}. Together with an AVWC
(W,V), any uncorrelated (n, Jn)-code Kn defines a canonical
family

F(Kn,W,V) := {Mn, Xn, Y n
sn , Zn

sn , M̂n
sn : sn ∈ Sn} (4)

of random variables, with Mn and M̂n
sn assuming values in Jn ,

the values of Xn in An , those of Y n
sn in Bn, those of Zn

sn

in Cn , and such that for every sn ∈ Sn the distribution of
(Mn, Xn , Y n

sn , Zn
sn , M̂n

sn ) equals

PMn XnY n
sn Zn

sn M̂n
sn

( j, xn, yn, zn, ĵ )

= 1

Jn
E(xn| j)W n

sn(yn|xn)V n
sn(zn |xn)�Dĵ

(yn).

Recall that we incur no loss of generality by defining Y n
sn and

Zn
sn to be independent conditional on Xn , as the joint distrib-

ution of Y n
sn and Zn

sn will never play any role (cf. Remark 1).
The average error of Kn is given by

e(Kn) := max
sn∈Sn

P[Mn 	= M̂n
sn ].

Definition 2: A non-negative number RS is an achievable
uncorrelated coding secrecy rate for the AVWC (W,V) if
there exists a sequence (Kn)

∞
n=1 of uncorrelated (n, Jn)-codes

such that

lim inf
n→∞

1

n
log Jn ≥ RS, (5)

lim
n→∞ e(Kn) = 0, (6)

lim
n→∞ max

sn∈Sn
I (Mn ∧ Zn

sn) = 0. (7)

The uncorrelated coding secrecy capacity of (W,V) is the
supremum of all achievable secrecy rates RS and is denoted
by CS(W,V).

We state this definition for reference. In this paper, we do
not study CS(W,V). This is done in [22]. Note the different
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roles the families W and V play. W is an Arbitrarily Varying
Channel (AVC) from a sender with alphabet A to a receiver
with alphabet B. Messages are supposed to be sent over this
AVC in such a way that only a small, asymptotically negligible
average error is incurred. This is reflected in condition (6).
This communication is subject to an additional secrecy condi-
tion. An eavesdropper obtains a noisy version of the sender’s
channel inputs via the AVC V. Condition (7) guarantees
secrecy no matter what the channel state is.

For given (n, Jn), we assume that the set of uncorrelated
(n, Jn)-codes is indexed by the set �n . That means that the set
of all uncorrelated (n, Jn)-codes (with given channel input and
output alphabets A and B) has the form {Kn(γ ) : γ ∈ �n}.
For the uncorrelated (n, Jn)-code Kn(γ ), with γ ∈ �n , we
write for the canonical family of random variables

F(Kn(γ ),W,V)

= {Mn, Xn(γ ), Y n
sn (γ ), Zn

sn (γ ), M̂n
sn (γ ) : sn ∈ Sn, γ ∈ �n}.

A correlated random (n, Jn)-code Kran
n for the AVWC (W,V)

then is given by a finitely supported1 random variable Gn on
�n independent of all canonical families of random variables
F(Kn(γ ),W,V). In other words, Gn randomly chooses an
uncorrelated (n, Jn)-code out of all possible ones and is
independent of the message random variable, the randomness
in the chosen stochastic encoder and the channel noise. The
average error e(Kran

n ) is defined as

e(Kran
n ) : = max

sn∈Sn
P[Mn 	= M̂n

sn (Gn)]
= max

sn∈Sn

∑
γ∈�n

P[Mn 	= M̂n
sn (γ )]PGn (γ ),

where
∑

γ∈�n
a(γ )PGn (γ ) is short for the finite sum∑

γ∈supp(Gn) a(γ ) PGn (γ ).

In the case of correlated random codes, we consider two
secrecy criteria, leading to two different notions of achievable
rate.

Definition 3: A non-negative number RS is called an
achievable correlated random coding mean secrecy rate for
the AVWC (W,V) if there exists a sequence (Kran

n )∞n=1 of
correlated random (n, Jn)-codes such that

lim inf
n→∞

1

n
log Jn ≥ RS, (8)

lim
n→∞ e(Kran

n ) = 0, (9)

lim
n→∞ max

sn∈Sn
I (Mn ∧ Zn

sn(Gn)|Gn) = 0. (10)

The supremum of all achievable secrecy rates for correlated
random codes is called the correlated random coding mean
secrecy capacity of (W,V) and denoted by Cmean

S,ran(W,V).
Definition 4: A non-negative number RS is called an

achievable correlated random coding maximum secrecy rate
for the AVWC (W,V) if there exists a sequence (Kran

n )∞n=1
of correlated random (n, Jn)-codes such that (8) and (9) hold
and

lim
n→∞ max

sn∈Sn
max

γ∈supp(Gn)
I (Mn ∧ Zn

sn(γ )) = 0. (11)

1“Finitely supported” means that the set supp(Gn) := {γ ∈ �n :
PGn (γ ) > 0} called the support of Gn is finite.

The supremum of all achievable correlated random coding
maximum secrecy rates is called the correlated random
coding maximum secrecy capacity of (W,V) and denoted
by Cmax

S,ran(W,V).
Remark 5: It is immediately clear that Cmean

S,ran(W,V) ≥
Cmax

S,ran(W,V). Note that if Gn is deterministic, i.e., there is
no correlated randomness, then both criteria (10) and (11)
coincide with (7).

The secrecy capacities for correlated random codes are
characterized by a multi-letter formula, extending the results
of [4]. We set

R∗
S(W,V)

:= lim
k→∞

1

k
sup
Qk

(
min

q∈P(S)
I (Ū ∧ Ȳ k

q ) − max
sk∈Sk

I (Ū ∧ Z̄ k
sk )

)

(12)

where the set Qk over which the supremum is taken contains
those families of random variables

{Ū , X̄ k , Ȳ k
q , Z̄ k

sk : q ∈ P(S), sk ∈ Sk}
which satisfy that Ū assumes values in some finite subset of
the integers, the values of X̄ k lie in Ak , those of Ȳ k

q in Bk ,
those of Z̄ k

sk in Ck , and such that for every q ∈ P(S) and
sk ∈ Sk ,

PŪ X̄k Ȳ k
q Z̄ k

sk
(u, xk, yk, zk) = PŪ (u)PX̄k |Ū (xk |u)

×
(

k∏
i=1

[∑
s∈S

q(s)Ws(yi |xi )

])
V k

sk (z
k |xk). (13)

PŪ and PX̄k |Ū may be arbitrary probability distributions and
stochastic matrices, respectively.

Theorem 6: For the AVWC (W,V), we have

Cmean
S,ran(W,V) = Cmax

S,ran(W,V) = R∗
S(W,V).

The achievability part of Theorem 6 is proved in
Section VII, its converse is proved in Section VIII.

Remark 7:

1) It is shown exactly as in [5], using Fekete’s lemma [16]
(a proof of which can be found in [11, Lemma 11.2]),
that the limit on the right-hand side of (12) indeed exists
and can in fact be replaced by a supremum.

2) For given k, the cardinality of U can be restricted
to |A|k . This can be proved almost exactly as in the
proof of [11, Th. 17.11]. The supremum in (12) then
becomes a maximum.

3) If for q ∈ P(S) we define Wq (b|a) := ∑
s q(s)Ws(b|a),

the conditional probability of Ȳ k
q given X̄ k in (13)

satisfies

PȲ k
q |X̄ k (yk|xk) =

k∏
k=1

Wq (yi |xi ) =: W k
q (yk |xk).

The family {W n
q : q ∈ P(S), n = 1, 2, . . .}

is a memoryless channel which does not change
its state during the transmission of a codeword.
Such channels will appear later under the name of
compound channel.
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4) In the proof of [22, Th. 1], it is exploited that
R∗

S(W,V) does not change if the sets over which
the minimum and maximum are taken in (12) are
replaced by different, but related ones. Note the equal-
ity maxsk∈Sk I (Ū ∧ Z̄ k

sk ) = maxq̃∈P(Sk) I (Ū ∧ Z̄ k
q̃),

where PZ̄k
q̃ |X̄ k (zk |xk) = ∑

sk∈Sk q̃(sk)V k
sk (z

k |xk). This

equality is due to the convexity of mutual information
in the channel. On the other hand, if one analogously
defines PȲ k

q̃ |X̄ k (yk |xk) = ∑
sk∈Sk q̃(sk)V k

sk (yk|xk)

for q̃ ∈ P(Sk) and replaces the minimum over
q ∈ P(S) by a minimum over q̃ ∈ P(Sk), then
at first it is only clear that minq̃∈P(Sk) I (Ū ∧ Ȳ k

q̃ ) ≤
minq∈P(S) I (Ū ∧ Ȳ k

q ). But one can actually prove that
R∗

S(W,V) equals

lim
k→∞

1

k
sup
Q̃k

(
min

q̃∈P(Sk)
I (Ū ∧ Ȳ k

q̃ ) − max
q̃∈P(Sk)

I (Ū ∧ Z̄ k
q̃)

)
,

(14)

where Qk is naturally extended to the set Q̃k which
also contains the output random variables generated
by the “states” q̃ as defined above. The equality is a
consequence of the converse proof of Theorem 6, see
Remark 17 in Section VIII.

5) Comparison of the right-hand side of (12) with
the capacity expressions derived in [8] suggests that
the terms minq∈P(S) I (Ū ∧ Ȳ k

q ) are related to an
inf-information rate for the AVC W and maxsk∈Sk

I (Ū ∧ Z̄ k
sk ) to a sup-information rate for the AVC V, see

also [18]. However, as AVCs have not yet been treated
in the framework of information spectrum theory, this
remains speculation for the time being.

IV. DISCUSSION OF THEOREM 6

A. Multi-Letter vs. Single-Letter

The bound from Remark 7-2) on the size of U for fixed k
does not give a general upper bound on the cardinality of the
auxiliary alphabet U . It could still be helpful in calculations
of R∗

S(W,V) if one knows from other arguments that there
exists a k0 such that, for k ≥ k0,

1

k
sup
Qk

(
min

q∈P(S)
I (Ū ∧ Ȳ k

q ) − max
sk∈Sk

I (Ū ∧ Z̄ k
sk )

)

is sufficiently close to R∗
S(W,V). From Remark 7-1) it follows

that this approach would give a lower bound on the secrecy
capacity. Note that it is not at all clear whether a single-
letter characterization of R∗

S(W,V) is available. In the case of
the unavailability of a single-letter capacity expression, only
approximate calculations of capacity are possible.

That the above multi-letter characterization can lead to
further insights into the nature of AVWCs can be seen in Sub-
section IV-C, where the continuity of R∗

S(W,V) in (W,V)
is shown. To show this a priori, i.e. without having the multi-
letter expression for capacity, seems to be very hard. With the
formula at hand, however, it can be done. For the uncorrelated
coding secrecy capacity CS(W,V) (see Definition 2), a similar

study of continuity is performed in [22], also on the basis of
the multi-letter formula.

A single-letter formula for Cmean
S,ran(W,V) has been given

in [21] for AVWCs which satisfy certain conditions. We now
present these conditions and show that if they are satisfied, the
formula found in [21] coincides with R∗

S(W,V), which then
becomes single-letter.

The first condition of [21] is that (W,V) be strongly
degraded with independent states. This means

• that S = S1×S2 and that the families {W(s1,s2) : (s1, s2) ∈
S1 × S2} and {V(s1,s2) : (s1, s2) ∈ S1 × S2} of stochastic
matrices determining W and V satisfy W(s1,s2) = Ws1

and V(s1,s2) = Vs2 for all (s1, s2); and
• that for every q1 ∈ P(S1) and q2 ∈ P(S2), the matrix

Vq2 should be a degraded version of Wq1 , where

Wq1(y|x) =
∑

s1∈S1

Ws1(y|x)q1(s1),

Vq2(z|x) =
∑

s2∈S2

Vs2(z|x)q2(s2),

and Vq2 is a degraded version of Wq1 if there exists a
stochastic matrix Tq1q2 : B → C such that

Vq2(z|x) =
∑

y

Tq1q2(z|y)Wq1(y|x). (15)

(Observe: It is sufficient to require (15) to hold only
for s2 ∈ S2 and q1 ∈ P(S1). The validity of (15) for
all q1 ∈ P(S1) and q2 ∈ P(S2) then follows upon
setting Tq1q2(z|y) := ∑

s2
q2(s2)Tq1s2(z|y) for all y ∈ B,

z ∈ C. Thus the function (q1, q2) �→ Tq1q2 can without
loss of generality be assumed to be linear in q2. This
is not possible for q1, as can be seen from analyzing
Example 3 in [21].)

The second condition of [21] is essentially the best channel
to the eavesdropper condition from [4], so we will henceforth
call it this way. It requires that there exists an s∗ ∈ S2 such
that for all s2 ∈ S2, the channel Vs2 is a degraded version
of Vs∗ , with degradedness here defined analogously to (15).
(The general definition of “best channel to the eavesdropper”
in [4] and [21] does not require independent states.)

Corollary 1: If the AVWC (W,V) is strongly degraded
with independent states and has a best channel to the eaves-
dropper, then

R∗
S(W,V)

= max
Q∗

1

(
min

q1∈P(S1)
I (X̄ ∧ Ȳq1) − max

s2∈S2

I (X̄ ∧ Z̄s2)

)
(16)

where the set Q∗
1 over which the supremum is taken contains

those families of random variables {X̄ , Ȳq1 , Z̄s2} which for
every q1 ∈ P(S1) and s2 ∈ S2 satisfy

PX̄Ȳq1 Z̄s2
(x, y, z) = PX̄ (x)Wq1(y|x)Vs2(z|x)

and where X̄ is an arbitrary A-valued random variable.
Proof: See Appendix A.

A single-letter capacity expression is given by [17] in the
case that the state sequences are constrained to be typical with
respect to a single fixed probability distribution on P(S).
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B. The Amount of Correlated Randomness

Next we ask how many values the correlated randomness
variable should attain with positive probability in order for
Cmean

S,ran(W,V) and Cmax
S,ran(W,V) to be achievable. Note that

the definitions allow every kind of correlated randomness as
long as it is finitely supported. In the achievability proof of
Theorem 6, we shall see that the uniform distribution on a set
of cardinality n! is sufficient, where n is the blocklength of the
code. But even without referring to any achievability proof, it
is possible to show a priori that the size of this set can still
be reduced considerably.

The lemma which provides this reduction was proved in [4].
We slightly reformulate it here for our purposes. Its essence
is that every secrecy rate RS < Cmean

S,ran(W,V) is achievable
using an amount of correlated randomness which grows on the
order of n log n, given arbitrary upper bounds on the average
error and the mutual information between message random
variable and eavesdropper output. As its proof is based on
nothing but the definition of achievable correlated random
mean secrecy rate, this is an a priori result on the structure of
optimal correlated random codes independent of Theorem 6
or any characterization of Cmean

S,ran(W,V). In particular, it can
be applied in the converse of Theorem 6.

Lemma 8 ([4], Lemma 6): Let RS < Cmean
S,ran(W,V). For

every ε > 0 there exists a sequence Kran
n of correlated random

(n, Jn)-codes which for n ≥ n(RS, ε) satisfies

1

n
log Jn ≥ RS − ε, (17)

e(Kran
n ) ≤ ε, (18)

max
sn∈Sn

I (Mn ∧ Zn
sn (Gn)|Gn) ≤ ε, (19)

and

|supp(Gn)| ≤ 2n log|A|
ε

(1 + n log|S|) + 1. (20)

For completeness, we give the proof of this lemma in
Appendix B. As every achievable correlated random maximum
secrecy rate also is an achievable correlated random mean
secrecy rate, the lemma carries over to the case of rates
RS < Cmax

S,ran(W,V).
For AVCs, the first correlated randomness reduction result

was presented by Ahlswede in [1]. A similar result has been
found recently [10] for AVWCs where secrecy is measured in
terms of the weak secrecy criterion or in terms of variation
distance. However, the results in [1] and [10] both assume
that the average error (and in [10] also the respective secrecy
measures) decrease to zero at exponential speed, which is not
required in Definitions 3 and 4.

C. Model Robustness and Continuity

Here we study the continuity of the correlated random
coding secrecy capacity function in the channel. Continuity
is an important property of a capacity function, a fact which
is sometimes overlooked because it is usually simple to
prove the continuity of single-letter formulas using the uni-
form continuity of mutual information. The question becomes
non-trivial in the case of a multi-letter capacity formula
like R∗

S(W,V).

Suppose the capacity function were not continuous and
assume that one estimates a channel which is close to a point
of discontinuity. Then this channel has to be estimated to
a precision which might be higher than achievable in the
estimation process, or even higher than a computer can handle
with reasonable effort. Otherwise, the capacity expression
obtained from the formula is next to useless for this particular
channel, as all of its values in the neighborhood of the
estimated channel could be the correct one, and this range
of possible values could take on arbitrary form. From this
point of view, the lack of continuity of a capacity function is
more dramatic than a lacking single-letter expression, because
a multi-letter formula still allows an approximate calculation,
whereas approximation is not possible if the capacity function
is discontinuous.

We shall show that the capacity functions Cmean
S,ran(W,V)

and Cmax
S,ran(W,V) are continuous. The argumentation relies

on the fact that we have an explicit formula for these, as
Cmean

S,ran(W,V) = Cmax
S,ran(W,V) = R∗

S(W,V). It is thus an
example of the usefulness of a multi-letter formula.

Of course, the set of AVWCs with given in- and output
alphabets has to be equipped with a metric in order to be
able to talk about the continuity of capacity in the channel.
Let (W,V) and (W̃, Ṽ) be two AVWCs with input alphabet
A and output alphabets B, C for the legitimate receiver and
the eavesdropper, respectively. Denote the finite state space
of (W,V) by S and the finite state space of (W̃, Ṽ) by S̃.
We measure the distance of (W,V) and (W̃, Ṽ) by what is
called the Hausdorff distance of two sets.

For two stochastic matrices W, W̃ : A → B, we define

‖W − W̃‖o := max
a∈A

‖W ( · |a) − W̃ ( · |a)‖.
We define four asymmetric distances

dB,1(W, W̃) := max
s̃∈S̃

min
s∈S

‖Ws − W̃s̃‖o,

dB,2(W, W̃) := max
s∈S

min
s̃∈S̃

‖Ws − W̃s̃‖o,

and analogously define dE,1(V, Ṽ), dE,2(V, Ṽ) by replacing
Ws , W̃s̃ in the above definitions by Vs, Ṽs̃ . Then the Hausdorff
distance between (W,V) and (W̃, Ṽ) is defined by

d((W,V), (W̃, Ṽ)) := max
{
dB,1(W, W̃), dE,1(V, Ṽ),

dB,2(W, W̃), dE,2(V, Ṽ)
}
.

One checks easily that this is an actual metric on the set of
finite-state AVWCs with the corresponding alphabets A,B, C.

Building on Theorem 6, we now state the central result
concerning the continuity of the correlated random capacities.

Theorem 9: R∗
S(W,V) is continuous in (W,V) with

respect to the metric d . Thus, Cmean
S,ran(W,V) and Cmax

S,ran(W,V)
are continuous functions of the channel.

The proof of this theorem only requires minor changes
compared to that of [9, Th. 2] where the continuity of the
capacity of the corresponding compound wiretap channel is
shown.

In contrast to the correlated random coding secrecy capac-
ity, the uncorrelated coding secrecy capacity of AVWCs
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(see Definition 2) is known to be discontinuous. This was
shown in [9] with a very simple example on small alphabets
and a state set of no more than two elements. Hence the
continuity of the correlated random coding secrecy capacity
becomes even more remarkable, especially as the previous
subsection IV-B has shown that only very little correlated
randomness is required to cause such a qualitative change of
capacity functions. The exact characterization of the discon-
tinuity points of the uncorrelated coding secrecy capacity is
more intricate. It is discussed in depth in [22].

V. THE COMPOUND-ARBITRARILY

VARYING WIRETAP CHANNEL

To establish Theorem 6, we use Ahlswede’s robustification
technique [2]. It was developed to turn deterministic codes for
compound channels into correlated random codes for AVCs.
It has already been applied in [4] to compound and arbitrar-
ily varying wiretap channels. The difference of this paper’s
approach is that the channel from sender to eavesdropper
will always be arbitrarily varying. Therefore it is no longer
necessary to assume the existence of a best channel to the
eavesdropper.

We now formalize the idea of having a compound channel
from A to B and an arbitrarily varying channel from A to C.
Let R be any set. For every r ∈ R, let Wr : X −→ Y be a
stochastic matrix. Set W n

r (yn|xn) = ∏n
i=1 Wr (yi |xi ). Note that

here, in contrast to the AVC, the channel state remains constant
over time. This defines a compound channel W := {W n

r : r ∈
R, n = 1, 2, . . .}. Together with the AVC V from the previous
section, we obtain the compound-arbitrarily varying wiretap
channel (CAVWC) (W,V).

We apply uncorrelated (n, Jn)-codes for message transmis-
sion over (W,V). Together with (W,V), every (n, Jn)-code
defines a canonical family of random variables

F(Kn,W,V)

:= {(Mn, Xn , Y n
r , Zn

sn , M̂n
r ) : r ∈ R, sn ∈ Sn}, (21)

where Mn and M̂n
r assume values in Jn , the values of Xn lie

in An , those of Y n
r in Bn and those of Zn

sn in Cn and where
for any r ∈ R and sn ∈ Sn

PMn XnY n
r Zn

sn M̂n
r
( j, xn, yn, zn, ĵ )

= 1

Jn
E(xn| j)W n

r (yn|xn)V n
sn(zn |xn)�Dĵ

(yn).

For the uncorrelated (n, Jn)-code Kn , the average error is
defined as

ē(Kn) := max
r∈R

P[Mn 	= M̂n
r ].

Definition 10: A nonnegative number RS is called an
achievable secrecy rate for the CAVWC (W,V) if there exists
a sequence (Kn)∞n=1 of uncorrelated (n, Jn)-codes such that

lim inf
n→∞

1

n
log Jn ≥ RS,

lim
n→∞ ē(Kn) = 0,

lim
n→∞ max

sn∈Sn
I (Mn ∧ Zn

sn) = 0. (22)

The supremum of all achievable secrecy rates is called the
secrecy capacity of (W,V) and denoted by CS(W,V).

We are actually interested in a stronger, permutation invari-
ant form of secrecy. This is because we mainly consider
CAVWCs as an auxiliary channel model. We would like to
exploit the achievability part of a coding theorem for CAVWCs
to find rates that are achievable for the AVWC by correlated
random codes. This can be done using Ahlswede’s robustifi-
cation technique, which requires an exponential decrease of
the average error and “permutation invariance” of secrecy to
be defined below.

For a permutation π contained in the symmetric group 
n

of permutations of {1, . . . , n}, denote by Eπ the stochastic
encoder obtained from a stochastic encoder E via

Eπ(xn| j) := E(π−1(xn)| j). (23)

Here, π(xn) = (xπ(1), . . . , xπ(n)) for any xn ∈ An . The
corresponding decoding sets are Dπ

j := {π(yn) : yn ∈ D j }.
This family of codes together with (W,V) induces a canon-
ical permutation invariant family of random variables

F(Kn,W,V,
n)

:= {(Mn, Xn(π), Y n
r (π), Zn

sn (π), M̂n
r (π)) :

r ∈ R, sn ∈ Sn, π ∈ 
n}, (24)

where Mn and M̂n
r (π) assume values in Jn , the values of

Xn(π) lie in An , those of Y n
r (π) in Bn and those of Zn

sn (π)
in Cn and where for any r ∈ R and sn ∈ Sn and π ∈ 
n

PMn Xn(π)Y n
r (π)Zn

sn (π)M̂n
r (π)( j, xn, yn, zn, ĵ )

= 1

Jn
Eπ(xn| j)W n

r (yn|xn)V n
sn(zn |xn)�Dπ

ĵ
(yn).

For every permutation, we have P[Mn 	= M̂n(π)] = P[Mn 	=
M̂n(id)], where id denotes the identity permutation. Thus also
in the permutation-invariant setting, we can still just write
ē(Kn) for the average error of Kn .

Definition 11: A nonnegative number RS is called an
achievable permutation invariant secrecy rate for the CAVWC
(W,V) if there exists a sequence (Kn)∞n=1 of uncorrelated
(n, Jn)-codes and a β > 0 such that

lim inf
n→∞

1

n
log Jn ≥ RS, (25)

lim inf
n→∞ − 1

n
log ē(Kn) ≥ β, (26)

lim
n→∞ max

sn∈Sn
max
π∈
n

I (Mn ∧ Zn
sn(π)) = 0. (27)

The supremum of all achievable permutation invariant secrecy
rates is called the permutation invariant secrecy capacity
of (W,V) and denoted by Cπ-inv

S (W,V).
Theorem 12: The permutation invariant secrecy capacity

Cπ-inv
S (W,V) and the secrecy capacity CS(W,V) of the

CAVWC (W,V) both equal

R∗
S(W,V)

:= lim
k→∞

1

k
sup
Q̄k

(
min
r∈R

I (Ū ∧ Ȳ k
r ) − max

sk∈Sk
I (Ū ∧ Z̄ k

sk )

)
,



WIESE et al.: CHANNEL UNDER SIMULTANEOUS JAMMING AND EAVESDROPPING ATTACK 3851

where the set Q̄k contains those families of random
variables

{Ū, X̄ k , Ȳ k
r , Z̄ k

sk : r ∈ R, sk ∈ Sk}
which satisfy that Ū assumes values in a finite subset of the
integers, the values of X̄ k lie in Ak , those of Ȳ k

r in Bk ,
those of Z̄ k

sk in Ck , and such that for every r ∈ R and
sk ∈ Sk ,

PŪ X̄k Ȳ k
r Z̄ k

sk
(u, xk, yk, zk)

= PŪ (u)PX̄k |Ū (xk|u)W k
r (yk|xk)V k

sk (z
k|xk).

PŪ and PX̄ |Ū may be arbitrary probability distributions and
stochastic matrices, respectively.

The achievability part of the proof of Theorem 12 can be
found in the next section. The converse is similar to, but
simpler than that for Theorem 6, so we will not write it
down explicitly. The converse for Theorem 6 can be found
in Section VIII.

Remarks 7-1) and 7-2) apply for Theorem 12 as well.
As in Remark 7-4), one could replace maxsk∈Sk I (Ū ∧ Z̄ k

sk )

by maxq̃∈P(Sk) I (Ū ∧ Z̄ k
sk ).

VI. ACHIEVABILITY PART OF THE PROOF OF THEOREM 12

A. Reduction

We first reduce the claim of the achievability of R∗
S(W,V)

to a simpler achievability claim. This is done in three reduction
steps. Each of these steps is relatively simple.

Reduction Step 1: As Cπ-inv
S (W,V) ≤ CS(W,V), it is

sufficient to show that R∗
S(W,V) is an achievable permutation

invariant secrecy rate for (W,V).
Reduction Step 2: Call RS ≥ 0 an achievable secrecy rate

with exponentially decreasing error for the CAVWC (W,V) if
there exists a sequence (Kn)

∞
n=1 of uncorrelated (n, Jn)-codes

and a β > 0 such that (25) and (26) hold and (27) is replaced
by the simpler condition

lim
n→∞ max

sn∈Sn
I (Mn ∧ Zn

sn) = 0, (28)

where Mn and the Zn
sn are the corresponding elements of

F(Kn,W,V). To prove that R∗
S(W,V) is an achievable

permutation invariant secrecy rate for (W,V), it is sufficient
to prove that R∗

S(W,V) is an achievable secrecy rate with
exponentially decreasing error for (W,V). This is due to the
following lemma.

Lemma 13: Let Kn be an uncorrelated (n, Jn)-code with
stochastic encoder E . Let Mn be the canonical message
random variable and {Zn

sn (π) : sn ∈ Sn , π ∈ 
n} the
family of canonical eavesdropper output random variables
from F(Kn,W,V,
n). Let id be the identity permutation
mapping each element of {1, . . . , n} to itself. If there exists
an ε > 0 such that

max
sn

I (Mn ∧ Zn
sn(id)) ≤ ε, (29)

then

max
π∈
n

max
sn

I (Mn ∧ Zn
sn(π)) ≤ ε. (30)

Lemma 13 is proved in Appendix C and is based on the
fact that PMnπ(Zn

sn (id)) = PMn Zn
π(sn )

(π).

Reduction Step 3: R∗
S(W,V) is an achievable secrecy

rate with exponentially decreasing error if, for every
CAVWC (W,V), the rate

R†
S(W,V) := max

Q̄†
1

(
min
r∈R

I (X̄ ∧ Ȳr ) − max
q∈P(S)

I (X̄ ∧ Z̄q)

)

(31)

is an achievable secrecy rate with exponentially decreasing
error for (W,V), where the set Q̄†

1 contains those families of
random variables {X̄ , Ȳr , Z̄q : r ∈ R, q ∈ P(S)} such that
X̄ is an arbitrary random variable assuming values in A, the
values of Ȳr lie in B, those of Z̄q in C, and

PX̄Ȳr Z̄q
(x, y, z) = PX̄ (x)Wr (y|x)

(∑
s∈S

q(s)Vs(z|x)

)
.

This is proved using a standard channel prefixing argument,
see Appendix D.

Having done these three reduction steps, it now remains
to prove that R†

S(W,V) is an achievable secrecy rate with
exponentially decreasing error.

B. R†
S(W,V) Is an Achievable Secrecy Rate With

Exponentially Decreasing Error

Let (W,V) be an AVWC. The proof that R†
S(W,V) is

an achievable secrecy rate with exponentially decreasing error
for (W,V) follows a random coding strategy. The random
codewords are chosen as follows. Fix a blocklength n and
a family {X̄ , Ȳr , Z̄q : r ∈ R, q ∈ P(S)} ∈ Q̄†

1 as in the
definition of R†

S(W,V). For arbitrary τ > 0, set2

Jn :=
⌊

exp

{
n

(
min
r∈R

I (X̄ ∧ Ȳr ) − max
q∈P(S)

I (X̄ ∧ Z̄q) −τ

)}⌋
,

(32)

and

Ln :=
⌊

exp

{
n

(
max

q∈P(S)
I (X̄ ∧ Z̄q) + τ

4

)}⌋
(33)

and define Jn = {1, . . . , Jn} and Ln := {1, . . . , Ln}. Further,
for some δ > 0 to be chosen later, we define a family X :=
{X jl : j ∈ Jn, l ∈ Ln} of random codewords in X n with
distribution

P[X jl = xn] := P ′(xn) := Pn
X̄
(xn)

Pn
X̄
(T n

X̄ ,δ
)
�T n

X̄,δ
(xn).

Via X , we obtain a randomly selected stochastic encoder

EX (xn| j) := 1

Ln

Ln∑
l=1

�{X jl }(xn). (34)

2Recall that we use the convention exp(x) = 2x .
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1) Reliability: With high probability, a realization of EX

determines an uncorrelated (n, Jn)-code denoted by KX
n for

the compound channel W with exponentially small average
error.

Lemma 14: For sufficiently small δ > 0 there exists a
τ6 > 0 such that, if n is sufficiently large, there exist decoding
sets {DX

j : j ∈ Jn} depending on X with the property that
the (random) average error ē(KX

n ) of the random uncorrelated
(n, Jn)-code KX

n with the stochastic encoder EX and the
decoding sets {DX

j : j ∈ Jn} satisfies

P

{
ē(KX

n ) ≤ 2−nτ6
}

≥ 1 − 2−nτ6 .

As the probability distribution of X is not completely
standard, we include a proof of this lemma in Appendix F,
although it does not differ much from the proof in [6]. The
proof shows that the receiver can even decode the randomiza-
tion index l in addition to the messages.

2) Secrecy: The uncorrelated (n, Jn)-code KX
n from

Lemma 14 also satisfies the secrecy condition (28) with
high probability. For the statement of the next lemma, recall
that every realization of X together with the decoding sets
{DX

j : j ∈ Jn} from Lemma 14 gives rise to a canonical

family of random variables F(KX
n ,W,V) = {Mn , Xn, Y n

r ,

Zn
sn , M̂n

r : r ∈ R, sn ∈ Sn} as in (4). The dependence of these
random variables on X is suppressed in the notation.

Lemma 15: For δ > 0 sufficiently small, there exist
τ1, τ2 > 0 such that if n is large enough, there exists a
family {
sn : sn ∈ Sn} of finite measures on Cn such that
the probability of the event

ι0 :=
{

max
j∈Jn

max
sn∈Sn

‖PZn
sn |Mn ( · | j) − 
sn (·)‖≤ 2−τ1n

}

is at least 1 − 2−τ2n . (Note that PZn
sn |Mn ( · | j) is a random

variable depending on X .)
This lemma is proved in Appendix G.
Corollary 2: For δ > 0 small enough and for the τ1, τ2

from Lemma 15, if n is large enough, the probability of the
event

ι′0 :=
{

max
sn∈Sn

I (Mn ∧ Zn
sn) ≤ 2− τ1

2 n
}

is at least 1 − 2−τ2n . (Note again that the joint distribution of
Zn

sn and Mn is a random variable depending on X .)
Corollary 2 immediately follows from Lemma 15 and the

uniform continuity of mutual information in total variation
distance [11, Lemma 2.7].

3) Synthesis of Reliability and Secrecy: Lemma 14 and
Corollary 2 show that the probability that KX

n satisfies (25),
(26) and (28) is positive if δ is sufficiently small and n
sufficiently large, so a realization satisfying (25), (26) and
(28) for β = τ6 > 0 and RS = R†

S(W,V) − τ must exist.
Since τ > 0 was arbitrary, this proves that R†

S(W,V) is an
achievable secrecy rate with exponentially decreasing error.
As shown in Subsection VI-A, this implies that R∗

S(W,V) is
an achievable (permutation invariant) secrecy rate for (W,V).

VII. PROOF OF THE ACHIEVABILITY PART OF THEOREM 6

The proof that R∗
S(W,V) is a lower bound to Cmax

S,ran(W,V)
and Cmean

S,ran(W,V) is based on the achievability part of
Theorem 12 proved in the previous section. We start by
defining a special family W. For the family {Ws : s ∈ S}
determining W and every q ∈ P(S), set Wq := ∑

s∈S Wsq(s).
We then define W := {W n

q : q ∈ P(S), n = 1, 2, . . .}. This
family together with V defines the CAVWC (W,V). Observe
that for R∗

S(W,V) defined in (12), we have

R∗
S(W,V) = R∗

S(W,V).

By Theorem 12 applied to the CAVWC (W,V) defined
above, there exists a β > 0 such that for every 0 < ε < β and
sufficiently large n, there exists an uncorrelated (n, Jn)-code
Kn satisfying

1

n
log Jn ≥ R∗

S(W,V) − ε = R∗
S(W,V) − ε,

ē(Kn) = max
q∈P(S)

1

Jn

Jn∑
j=1

∑
xn∈An

E(xn| j)W n
q (Dc

j |xn)

≤ 2−n(β−ε), (35)

and

max
sn∈Sn

max
π∈Sn

I (Mn ∧ Zn
sn(π)) ≤ ε. (36)

The idea is to transform this uncorrelated (n, Jn)-code
Kn into a correlated random (n, Jn)-code which has good
reliability and secrecy properties for the AVWC (W,V).
Central to this transformation is Ahlswede’s robustification
technique:

Lemma 16 [2]: If a function f : Sn → [0, 1] satisfies
∑

sn∈Sn

f (sn)q(s1) · · · q(sn) ≥ 1 − ε′ (37)

for all q ∈ Pn
0 (S) and some ε′ ∈ [0, 1], then

1

n!
∑

π∈
n

f (π(sn)) ≥ 1 − 3 (n + 1)|S|ε′. (38)

Define the function f by

f (sn) := 1

Jn

∑
j∈Jn

∑
xn∈An

E(xn| j)W n
sn(D j |xn).

It was already noted in Remark 7-3) that for any q ∈ Pn
0 (S)

and xn ∈ An and yn ∈ Bn

∑
sn

W n
sn (yn|xn)q(s1) · · · q(sn) = W n

q (yn|xn).

Thus by (35)
∑

sn∈Sn

f (sn)q(s1) · · · q(sn)

= 1

Jn

∑
j∈Jn

∑
sn∈Sn

∑
xn∈An

E(xn| j)W n
sn(D j |xn)q(s1) · · · q(sn)

= 1

Jn

∑
j∈Jn

∑
xn∈An

E(xn| j)W n
q (D j |xn)

≥ 1 − 2−n(β−ε).
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Now we derive a correlated random (n, Jn)-code Kran
n for

message transmission over the AVWC (W,V) from Kn . Let
Eπ be given by Eπ(xn| j) := E(π−1(xn)| j) and let Dπ

j :=
{π(yn) : yn ∈ D j }. Further let Gn be uniformly distributed on
this family indexed by 
n . One has

1 − e(Kran
n )

= 1

n!
∑

π∈
n

1

Jn

∑
j∈Jn

∑
xn

Eπ−1
(xn| j)W n

sn(Dπ−1

j |xn)

= 1

n!
∑

π∈
n

1

Jn

∑
j∈Jn

∑
xn

E(π(xn)| j)W n
sn(Dπ−1

j |xn)

= 1

n!
∑

π∈
n

1

Jn

∑
j∈Jn

∑
xn

E(xn| j)W n
sn(Dπ−1

j |π−1(xn))

= 1

n!
∑

π∈
n

1

Jn

∑
j∈Jn

∑
xn

E(xn| j)W n
π(sn)(D j |xn).

With ε′ = 2−n(β−ε), Lemma 16 implies that the last term is
lower-bounded by 1 − (n + 1)|S|2−n(β−ε) ≥ 1 − 2−n(β−2ε) for
sufficiently large n. Thus e(Kran

n ) decreases exponentially in n,
which settles the reliability properties of Kran

n for (W,V).
The secrecy properties (10) and (11) of Kran

n are immediate,
as (36) implies

1

n!
∑

π∈
n

I (Mn ∧ Zn
sn(π)) ≤ max

π∈
n
I (Mn ∧ Zn

sn (π)) ≤ ε

for every sn ∈ Sn . Hence R∗
S(W,V) = R∗

S(W,V) is an
achievable correlated random coding mean and maximum
secrecy rate for the AVWC (W,V).

VIII. THE CONVERSES

We first prove the converse of Theorem 6. The converse of
Theorem 12 is analogous with the simplifying exception that
one does not have to deal with common randomness, so we
will not write it down explicitly.

One unusual difficulty arises in the proof of the converse
of Theorem 6. This difficulty consists in the fact that the
common randomness prohibits a “naive” application of
the data processing inequality. It is thus necessary to limit
the amount of common randomness of an arbitrary correlated
random code in order to overcome this difficulty. Recall
that Lemma 8 is independent of Theorem 6, so it can be
applied here to exactly this purpose of reducing correlated
randomness.

Let RS < Cmean
S,ran(W,V). From Lemma 8 we know that for

every ε > 0 there is an n(RS, ε) such that for n ≥ n(RS, ε)
there is a correlated random (n, Jn)-code Kran

n satisfying

1

n
log Jn ≥ RS − ε, (39)

e(Kran
n ) ≤ ε, (40)

max
sn∈Sn

I (Mn ∧ Zn
sn |Gn) ≤ ε, (41)

and

|supp(Gn)| ≤ 2n log|A|
ε

(1 + n log|S|) + 1. (42)

Since the average error of Kran
n is affine in the channel, it

does not change if one passes to the generalized channel state
space P(Sn). More precisely, for q̃ ∈ P(Sn) define

W n
q̃ (yn|xn) :=

∑
sn∈Sn

q̃(sn)W n
sn (yn|xn).

Then

max
q̃∈P(Sn)

1

Jn

Jn∑
j=1

∑
γ∈�n

∑
xn∈An

(
Eγ (xn| j)

× W n
q̃

(
(Dγ

j )
c|xn)PGn (γ )

)

= max
sn∈Sn

1

Jn

Jn∑
j=1

∑
γ∈�n

∑
xn∈An

(
Eγ (xn| j)

× W n
sn

(
(Dγ

j )
c|xn)PGn (γ )

)

(i)≤ ε, (43)

where (i) holds because the term on the left-hand side of the
inequality sign equals e(Kran

n ) and due to (40). From (43), one
infers that the average error of Kran

n for transmission over the
compound channel W defined at the beginning of Section VII
(cf. Remark 7) is upper-bounded by ε as well, i.e.

max
q∈P(S)

1

Jn

Jn∑
j=1

∑
γ∈�n

∑
xn∈An

Eγ (xn| j)W n
q

(
(Dγ

j )
c|xn)PGn (γ )

≤ ε. (44)

Due to Fano’s inequality [11, Lemma 3.8], (44) implies for
every q ∈ P(S)

H (Mn|M̂n
q , Gn)

=
∑

γ∈supp(Gn)

H (Mn|M̂n
q , Gn = γ )PGn (γ )

≤ 1 +
∑

γ∈supp(Gn)

P[Mn 	= M̂n
q |Gn = γ ]PGn (γ ) log Jn

≤ 1 + ε log Jn .

Here the M̂n
q are the random variables from the canonical fam-

ily F(Kran
n ,W,V) defined in (21). Hence the independence

of Mn and Gn yields

log Jn = H (Mn)

= H (Mn|Gn)

= I (Mn ∧ M̂n
q |Gn) + H (Mn|M̂n

q , Gn)

≤ I (Mn ∧ M̂n
q |Gn) + 1 + ε log Jn,

so by rearranging and taking (41) into account, we have for
every q ∈ P(S) and sn ∈ Sn

(1 − ε) log Jn

≤ I (Mn ∧ M̂n
q |Gn) − I (Mn ∧ Zn

sn |Gn) + 1 + ε. (45)

We have to get rid of Gn in some way. The only reasonable
way to achieve this seems to be through the use of the
convexity of the mutual information in the channel argument.
But while this is a valid choice for the “secrecy term”,
it is certainly invalid for the “legal” term. This is due to the
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fact that Gn is independent of Mn , but not of M̂n
q or Y n

q .
An application of the data processing inequality is thus only
possible conditioned on Gn . Using the properties of entropy
and conditional entropy and writing Kn(RS, ε) := |supp(Gn)|,
we obtain

I (Mn ∧ M̂n
q |Gn)

= H (Mn) − H (Mn|Y n
q , Gn)

= H (Mn) − H (Mn, Gn|Y n
q ) + H (Gn|Y n

q )

≤ H (Mn) − H (Mn|Y n
q ) + H (Gn)

≤ I (Mn ∧ Y n
q ) + log Kn(RS, ε). (46)

Thus if n is sufficiently large, we obtain

1

n
log Jn

(i)≤ 1

n(1 − ε)

(
min

q∈P(S)
I (Mn ∧ M̂n

q |Gn)

− max
sn∈Sn

I (Mn ∧ Zn
sn |Gn) + 1 + ε

)

(ii)≤ 1

n(1 − ε)

(
min

q∈P(S)
I (Mn ∧ Y n

q ) − max
sn∈Sn

I (Mn ∧ Zn
sn)

)

+ log Kn(RS, ε) + 1 + ε

n(1 − ε)
(47)

(iii)≤ 1

n(1 − ε)

(
min

q∈P(S)
I (Mn ∧ Y n

q ) − max
sn∈Sn

I (Mn ∧ Zn
sn)

)

+ ε. (48)

Here, (i) is (45) and (i i) follows from (46). In (i i i), the
importance of Lemma 8 becomes evident: Kn(RS, ε) grows
sub-exponentially in n, so for n sufficiently large, the second
term of (47) is upper-bounded by ε.

If we set Ū := Mn and X̄n := Xn and Ȳ n
q := Y n

q and
Z̄ n

sn := Zn
sn , we obtain the joint distributions

PŪ X̄nȲ n
q
( j, xn, yn) = 1

Jn

∑
γ∈�n

PGn (γ )Eγ (xn| j)W n
q (yn|xn),

PŪ X̄n Z̄n
sn

( j, xn, zn) = 1

Jn

∑
γ∈�n

PGn (γ )Eγ (xn| j)V n
sn(zn|xn).

Making the additional assumption that Ȳ n
q and Z̄ n

sn are
conditionally independent given X̄n for all pairs (q, sn),
which is possible without loss of generality, the family
{Ū , X̄n, Ȳ n

q , Z̄ n
sn : q ∈ P(S), sn ∈ Sn} is contained in Qn

and thus has the form required in the definition of R∗
S(W,V).

Hence by (48), we obtain the inequality

1

n
log Jn ≤ 1

1 − ε
R∗

S(W,V) + ε.

By (39) and as ε was arbitrary, we have RS ≤ R∗
S(W,V),

hence Cmean
S,ran(W,V) ≤ R∗

S(W,V), and therefore also
Cmax

S,ran(W,V) ≤ R∗
S(W,V). This completes the proof of the

converse of Theorem 6.
Remark 17: If one applies Fano’s inequality immediately

after (43) and skips passing to (44), all steps of the converse go
through in the same way, with the exception that the random
variables Y n

q have to be replaced by more general random

variables Y n
q̃ = Ȳ n

q̃ with conditional distribution PȲ n
q̃ |X̃n as

defined in Remark 7-4). Therefore

R∗
S(W,V) = Cmean

S,ran(W,V) ≤ (14).

Together with the simple fact R∗
S(W,V) ≥ (14) already

noticed in Remark 7-4), this proves the equality of R∗
S(W,V)

and 7-4) claimed in Remark 17.
The converse for Theorem 12 follows the same lines as that

for Theorem 6. It is simpler as no common randomness has
to be considered.

IX. DISCUSSION

The main result of this paper is the correlated random
coding secrecy capacity of the AVWC for the case where the
eavesdropper is allowed access to the correlated randomness
shared by sender and intended receiver. Applying Ahlswede’s
robustification technique, the main problem was solved via
reduction to the secrecy capacity problem of the CAVWC,
which is compound between the sender and the intended
receiver and arbitrarily varying between the sender and the
eavesdropper.

The secrecy capacity formula obtained in the main theorem
is a multi-letter formula. Of course, this makes a direct
computation impossible. On the other hand, it is not known
whether a general, computable, single-letter formula exists at
all. For a given AVWC, the value of the multi-letter formula
can be approximated by restricting computation to a finite
number of letters. An open problem not addressed in this paper
is the goodness of finite-letter approximation.

However, the use of a capacity formula is much larger
than just to calculate the capacity. It can be applied in the
in-depth analysis of the channels in question. For example,
using nothing but the capacity formula, it can be shown for
discrete memoryless channels that the capacity of parallel
channels is the sum of their capacities. For the AVWC, an
analysis of the capacity formula shows that the correlated
random coding secrecy capacity is continuous in the AVWC,
which is impossible to derive a priori. This result is of
great engineering importance because it ensures that small
variations in the channel data cannot lead to completely
different secrecy capacities. This is very reassuring, as lots
of resources would otherwise have to be spent on channel
estimation. In fact, the necessary precision of the channel
estimate would grow without limits the closer the
channel would be to a point of discontinuity of the
secrecy capacity function.

Follow-up work on the AVWC correlated random cod-
ing secrecy capacity for the case that the eavesdropper has
no knowledge of the correlated randomness as well as the
AVWC uncorrelated coding secrecy capacity is presented
in [22].

APPENDIX A
PROOF OF COROLLARY 1

It is obvious that the right-hand side of (16) is upper-
bounded by R∗

S(W,V), see Remark 7-1). Thus it remains to
show the converse relation. Let k be a positive integer and let
{Ū , X̄ , Ȳ k

q1
, Z̄ k

sk } ∈ Qk be a family of random variables as in
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the definition of R∗
S(W,V). The existence of a best channel

to the eavesdropper guarantees that I (Ū ∧ Z̄ k
sk

2
) ≤ I (Ū ∧ Z̄ k

s∗)

for every sk
2 ∈ Sk

2 , where PZ̄k
s∗ |X̄ (zk |xk) = ∏k

i=1 Vs∗(zi |xi).

In particular, I (Ū ∧ Z̄ k
s∗) = maxs2∈S2 I (Ū ∧ Z̄ k

sk
2
). Therefore

1

k

(
min

q1∈P(S1)
I (Ū ∧ Ȳ k

q1
) − max

sk
2∈Sk

2

I (Ū ∧ Z̄ k
sk )

)
(49)

= 1

k
min

q1∈P(S1)

(
I (Ū ∧ Ȳ k

q1
) − I (Ū ∧ Z̄ k

s∗)
)

(i)≤ 1

k
min

q1∈P(S1)
I (Ū ∧ Ȳ k

q1
|Z̄ k

s∗), (50)

where strong degradedness was applied in (i). In a similar
fashion as in the derivation of (23)-(26) in [21], one can rewrite
(50) as I (X̄∗ ∧ Ȳ ∗

q1
|Z̄∗

s∗), where X̄∗ is a random variable on A
and the random variables Ȳ ∗

q1
and Z̄∗

s∗ satisfy PȲ ∗
q1

|X̄∗ = Wq1

and PZ̄∗
s∗ |X̄∗ = Vs∗ . Again using the strong degradedness of

(W,V) and the existence of a best channel to the eavesdropper
and defining Z̄∗

s2
by its conditional distribution PZ̄∗

s2
|X̄∗ = Vs2

for every s2 ∈ S2, one obtains

min
q1∈P(S1)

I (X̄∗ ∧ Ȳ ∗
q1

|Z̄∗
s∗)

≤ min
q1∈P(S1)

(
I (X̄∗ ∧ Ȳ ∗

q1
) − I (X̄∗ ∧ Z̄∗

s∗)
)

= min
q1∈P(S1)

I (X̄∗ ∧ Ȳ ∗
q1

) − max
s2∈S2

I (X̄∗ ∧ Z̄∗
s2

). (51)

The family {X̄∗, Ȳ ∗
q1

, Z̄∗
s2

: q1 ∈ P(S1), s2 ∈ S2} is contained
in Q∗

1, so (51) is upper-bounded by the right-hand side
of (16). Therefore (49) is also upper-bounded by the right-
hand side of (16). This holds for every {Ū , X̄ , Ȳ k

q1
, Z̄ k

sk } ∈ Qk ,
thus proving that (16) indeed is an equality. This proves
Corollary 1.

APPENDIX B
PROOF OF LEMMA 8

Let RS < Cmean
S,ran(W,V) and let ε > 0. By Definition 3,

there exists a sequence of correlated random (n, Jn)-codes
K̃ran

n satisfying (8)-(10). In particular, for ε̃ := ε/4, there exists
an n(RS , ε̃) such that for n ≥ n(RS, ε̃)

1

n
log Jn ≥ RS − ε̃,

e(K̃ran
n ) ≤ ε̃, (52)

max
sn∈Sn

I (Mn ∧ Zn
sn(G̃n)|G̃n) ≤ ε̃. (53)

Here G̃n denotes the random variable on �n according to
which the realizations of K̃ran

n are chosen. For γ ∈ �n , denote
the average error incurred by the uncorrelated code Kn(γ )
under channel state sequence sn ∈ Sn by esn (Kran

n ). Let now

K =
⌊

4n log|A|
ε

(1 + n log|S|) + 1

⌋

(as n remains fixed throughout the proof, we suppress the
dependence of K on n). Further let G̃n(1), . . . , G̃n(K ) be i.i.d.
copies of G̃n . For any sn ∈ Sn , one obtains (54)-(56) at the
bottom of the page, where the union bound is applied in the
inequality. Using the Markov inequality, (55) can be upper-
bounded by

exp

(
− K ε

n log|A|
)

E

[
exp

(
K∑

k=1

esn(Kn(G̃n(k))

n log|A|

)]

(i)≤ exp

(
− K ε

n log|A|
)(

1 + E

[
esn (Kn(G̃n))

n log|A|

])K

(ii)≤ exp

(
− K ε

n log|A|
)(

1 + ε̃

n log|A|
)K

,

where (i) follows from the simple bound et ≤ 1 + t for 0 ≤
t ≤ 1 and (i i) is due to (52). The same sequence of arguments
together with (53) gives the following upper bound for (56):

exp

(
− K ε

n log|A|
)

E

[
exp

(
K∑

k=1

I
(
Mn ∧ Zn

sn (G̃n)|G̃n
)

n log|A|

)]

≤ exp

(
− K ε

n log|A|
)(

1 + E

[
I
(
Mn ∧ Zn

sn (G̃n)|G̃n
)

n log|A|

])K

≤ exp

(
− K ε

n log|A|
)(

1 + ε̃

n log|A|
)K

.

Thus (54) is upper-bounded by

2 exp

(
−K

(
ε

n log|A| − log

(
1 + ε̃

n log|A|
)))

≤ 2 exp

(
− K ε

2n log|A|
)

,

where the inequality comes from the simple bound
log(1 + t) ≤ 2t . Therefore, again due to the union
bound, (57) at the top of the next page holds. Due to the
choice of K , the right-hand side of (57) is strictly smaller
than 1. Thus there is a realization Kn(γ1), . . . ,Kn(γK ) of

P

{
1

K

K∑
k=1

esn
(
Kn(G̃n(k)

) ≥ ε or
1

K

K∑
k=1

I
(
Mn ∧ Zn

sn (G̃n(k))|G̃n(k)
) ≥ ε

}
(54)

≤ P

{
exp

(
K∑

k=1

esn
(
Kn(G̃n(k)

)

n log|A|

)
≥ exp

(
K ε

n log|A|
)}

(55)

+ P

{
exp

(
K∑

k=1

I
(
Mn ∧ Zn

sn(G̃n(k))|G̃n(k)
)

n log|A|

)
≥ exp

(
K ε

n log|A|
)}

. (56)
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P

{
1

K

K∑
k=1

esn
(
Kn(G̃n(k)

) ≥ ε or
1

K

K∑
k=1

I
(
Mn ∧ Zn

sn(G̃n(k))|G̃n(k)
) ≥ ε for some sn ∈ Sn

}

≤ exp

(
− K ε

2n log|A| + n log|S| + 1

)
. (57)

Kn(G̃n(1)), . . . ,Kn(G̃n(K )) such that if we define Gn to have
the probability distribution

PGn (γ ) = 1

K

K∑
k=1

δ{γk}(γ ),

the correlated random code Kran
n induced by Gn

satisfies (17)-(20). The complicated form of PGn is necessary
to account for the possibility that γk = γk′ for k 	= k ′. If the
indices are pairwise different, Gn is uniformly distributed
on {γ1, . . . , γK }.

The above construction can be done for all n ≥ n(RS, ε).
Thus the proof of Lemma 8 is complete.

APPENDIX C
PROOF OF LEMMA 13

Assume Kn satisfies (29) and has stochastic encoder E .
Recall that Eπ is defined by Eπ(xn| j) := E(π−1(xn)| j). The
random variables below are from the canonical permutation
invariant family F(Kn,W,V,
n).

Lemma 18: For every π ∈ 
n , we have

PMnπ(Zn
sn (id)) = PMn Zn

π(sn )
(π).

Proof: Let j ∈ Jn and zn ∈ Cn . Then

P[Mn = j, π(Zn
sn(id)) = zn]

= P[Mn = j, Zn
sn(id) = π−1(zn)]

= 1

Jn

∑
xn

E(xn| j)V n
sn(π−1(zn)|xn)

= 1

Jn

∑
xn

E(π−1(xn)| j)V n
sn(π−1(zn)|π−1(xn))

= 1

Jn

∑
xn

Eπ(xn| j)V n
π(sn)(z

n|xn)

= P[Mn = j, Zn
π(sn)(π) = zn].

Now assume that (29) holds. Then

max
π∈
n

max
sn

I (Mn ∧ Zn
sn (π))

= max
π∈
n

max
sn

I (Mn ∧ Zn
π(sn)(π))

(i)= max
π∈
n

max
sn

I (Mn ∧ π(Zn
sn(id)))

(ii)≤ max
sn

I (Mn ∧ Zn
sn (id))

≤ ε

where Lemma 18 was applied in (i) and the data processing
inequality in (ii). Thus (29) implies (30).

APPENDIX D
CHANNEL PREFIXING

Assume that R†
S(W̃, Ṽ ) is achievable with exponentially

decreasing error for (W̃, Ṽ ) for every CAVWC (W̃, Ṽ).
We have to show that then for a given CAVWC (W,V),
R∗

S(W,V) also is an achievable rate with exponentially
decreasing error for (W,V). Choose a positive integer k,
a finite subset U of the integers, and a stochastic matrix
T : U → P(Ak). For every r ∈ R and sk ∈ Sk , this induces
stochastic matrices W̃r : U → P(Bk) and Ṽsk : U → P(Ck)
defined by

W̃r (yk |u) :=
∑

xk

T (xk |u)W k
r (yk |xk),

Ṽsk (yk |u) :=
∑

xk

T (xk |u)V k
sk (z

k |xk).

This induces families

W̃ := {W̃ n
r : r ∈ R, n = 1, 2, . . .},

Ṽ := {Ṽ n
skn : skn ∈ (Sk)n, n = 1, 2, . . .},

and hence a CAVWC which we denote by (W̃, Ṽ). The

compound part W̃ of this channel also has R as its state
set, the state set of the eavesdropper channel Ṽ equals Sk .

By assumption, R†
S(W̃, Ṽ) is an achievable rate with expo-

nentially decreasing error for (W̃, Ṽ). Thus there exists a
β > 0 such that for every ε > 0 and sufficiently large n,

one obtains an (n, Jn)-code K̃n for (W̃, Ṽ) with canonical

random family F(K̃n, W̃, Ṽ) = {M̃n, Ũn, Ỹ kn
r , Z̃ kn

skn ,
˜̂Mn

r : r ∈
R, skn ∈ (Sk)n} satisfying

1

n
log Jn ≥ R†

S(W̃, Ṽ) − ε, (58)

− 1

n
log ē(K̃n) ≥ β − ε, (59)

max
skn∈(Sk)n

I (M̃n ∧ Z̃ kn
skn ) ≤ ε. (60)

Now define the stochastic encoder E : Jn → P(Akn) through

E(xkn| j) :=
∑

un∈Un

E∗(un | j)T n(xkn |un).

Together with the decoding sets D∗
j considered as sets

D j ⊂ Bkn , this defines an uncorrelated (kn, Jn)-code Kkn

for the CAVWC (W,V). Observe that, if F(Kkn ,W,V) =
{Mn, Xn, Y kn

r , Zkn
skn , M̂n

r : r ∈ R, skn ∈ Skn} is the canonical
random family of Kkn , then for every r ∈ Rn and skn regarded
either as an element of Skn or (Sk)n , the joint probability of

(Mn, Y kn
r , Zkn

skn , M̂kn
r ) equals that of (M̃n, Ỹ kn

r , Z̃ kn
skn ,

˜̂Mn
r ).
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It immediately follows that

1

kn
log Jn ≥ 1

k
R†

S(W̃, Ṽ) − ε

k
,

− 1

kn
log ē(Kkn) ≥ β − ε

k
,

max
skn∈Skn

I (Mn ∧ Zkn
skn ) ≤ ε.

Thus after optimization over T and k, it follows that
R∗

S(W,V) is an achievable secrecy rate with exponentially
decreasing error for (W,V).

APPENDIX E
TYPES AND TYPICAL SEQUENCES

The proofs of Lemmas 14 and 15 require some facts about
types and typical sequences. For reference, we include them
here. A,B and W, W̃ are generic sets/stochastic matrices.

Lemma 19: Let X̄ be an A-valued random variable and
let xn ∈ T n

X̄ ,δ
. Further let W : A −→ P(S). Then for

any B-valued random variable Ȳ with PȲ |X̄ = W and all
yn ∈ T n

Ȳ |X̄,δ
(xn),

|T n
Ȳ ,δ

| ≤ exp{n(H (Ȳ ) + f1(δ))},
W n(yn|xn) ≤ exp{−n(H (Ȳ |X̄) − f2(δ))}

with universal f1(δ), f2(δ) > 0 satisfying limδ→0 f1(δ) =
limδ→0 f2(δ) = 0.

Lemma 20: Let δ > 0. Let (X̄ , Ȳ ) assume values in
A × B such that PȲ |X̄ = W , for some W : A −→ P(B),
and let xn ∈ An . There exist a universal c′ > 0 and an
n0 = n0(|A|, |B|, δ) ≥ 1 such that for n ≥ n0

Pn
X̄
(T n

X̄ ,δ
) ≥ 1 − 2−nc′δ2

,

W n(T n
Ȳ |X̄ ,δ

(xn)|xn) ≥ 1 − 2−nc′δ2
.

Lemma 21: The cardinality of Pn
0 (S) is upper-bounded by

(n + 1)|S|.
The proofs of Lemmas 19-21 can be found in e.g. [11].

A proof of the next lemma can be found in [5].
Lemma 22: Let (X̄ , Ȳ ) and (X̄ ′, Ȳ ′) two pairs of

A × B-valued random variables. Then for sufficiently
small δ > 0 and any positive integer n,

Pn
Ȳ
(T n

Ȳ ′|X̄ ′,δ(xn))

≤ (n + 1)|A||B| exp{−n(I (X̄ ′ ∧ Ȳ ′) − f3(δ))} (61)

for all x̃ n ∈ T n
X̄ ′,δ holds for a universal f3(δ) > 0 with

limn→∞ f3(δ) = 0.
Note that the right-hand side of (61) does not depend

on (X̄ , Ȳ ), so one might wonder how sharp this bound is.
But we will apply the lemma in a case where X̄ = X̄ ′ and
where PȲ |X̄ and PȲ ′|X̄ ′ may be close (see Appendix F). Thus
it turns out to give the correct upper bound.

APPENDIX F
PROOF OF LEMMA 14

The fact that the probability of ē(KX
n ) being small is

large is well-known in principle, cf. [11]. As our choice of
codewords does not quite follow the standard approach and

we use stochastic encoders, we present the proof nonetheless.
We start with a lemma which assumes a finite state set for W
and actually shows that the sender can also reliably decode
the randomization index with high probability. Recall our
definitions of Jn in (32), of Ln in (33) and of X at the
beginning of Subsection VI-B. Also recall the positive δ, τ
from those definitions.

Now we define for every finite R′ ⊂ R a random uncor-

related (n, Jn Ln)-code KX ,R′
n as follows: We take Jn × Ln

as its message set. The encoder f X ,R′
of KX ,R′

n maps every
pair ( j, l) ∈ Jn × Ln into the codeword X jl . With

D̃X ,R′
j l :=

⋃
r∈R

T n
Ȳr |X̄,δ

(X jl),

the decoding sets are defined as

DX ,R′
j l := D̃X ,R′

j l ∩
( ⋃

( j ′,l′)∈Jn×Ln\{( j,l)}
D̃X ,R′

j ′l′
)c

.

Obviously, the DX ,R′
j l are pairwise disjoint (( j, l) ∈ Jn ×Ln ).

When applied for transmission over the complete com-
pound channel W, the average error of KX ,R′

n is denoted by
ē(KX ,R′

n ) as usual. However, if the channel states are restricted
to the set R′, we denote the corresponding error by

ēR′(KX ,R′
n ) := max

r∈R′ P[Mn 	= M̂r ],

where Mn and M̂n
r are the canonical random variables induced

by KX ,R′
n and W. The dependence of M̂n

r on X is suppressed
in the notation. The next lemma deals with this restricted
average error ēR′(KX ,R′

n ).
Lemma 23: Let R′ ⊂ R be finite. For sufficiently small

δ > 0, there exists an a(R′) = a(R′, τ, δ) > 0 such that

P

{
ēR′(KX ,R′

n ) ≤ 2−na(R′)
}

≥ 1 − 2−na(R′).

Proof: First, we bound the expectation of the average error
under a fixed channel state r ∈ R′, which is given by

ēr (KX ,R′
n ) := 1

Jn Ln

Jn∑
j=1

Ln∑
l=1

W n
r ((DX ,R′

j l )c|X jl).

We have

E

[
ēr (KX ,R′

n )
]

= E

[
W n

r ((DX ,R′
11 )c|X11)

]

≤ E

[
W n

r ((D̃X ,R′
11 )c|X11)

]
(62)

+
∑

( j,l)∈Jn×Ln :
( j,l) 	=(1,1)

E

[
W n

r (D̃X ,R′
j l |X11)

]
. (63)

For (62), we have

E

[
W n

r ((D̃X ,R′
11 )c|X11)

]
≤ E

[
W n

r ((T n
Ȳr |X̄ ,δ

(X11))
c|X11)

]
,

which by Lemma 20 is upper-bounded by 2−nc′δ2
for n

sufficiently large. Thus (62) is upper-bounded by the same
number. For each of the terms in (63), we obtain

E

[
W n

r (D̃X ,R′
j l |X11)

]
≤

∑
r ′∈R′

E

[
W n

r (T n
Ȳr′ |X̄ ,δ

(X jl)|X11)
]
.
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For sufficiently large n, the terms on the right-hand side can
be written (recall that ( j, l) 	= (1, 1))

E

[
W n

r (T n
Ȳr′ |X̄ ,δ

(X jl)|X11)
]

=
∑

xn,x̃ n∈T n
X̄,δ

W n
r (T n

Ȳr′ |X̄ ,δ
(x̃ n)|xn)P ′(xn)P ′(x̃ n)

(i)≤ (1 − 2−nc′δ)−2
∑

x̃ n∈T n
X̄ ,δ

Pn
Ȳr

(T n
Ȳr′ |X̄ ,δ

(x̃ n))Pn
X̄
(x̃ n), (64)

where we used the definition of P ′ and Lemma 20 in (i).
By Lemma 22,

Pn
Ȳr

(T n
Ȳr′ |X̄ ,δ

(x̃ n)) ≤ (n + 1)|A||B|2−n(I (X̄∧Ȳr′ )− f3(δ))

with f3(δ) → 0 as δ → 0. This immediately gives

(64) ≤ (1 − 2−nc′δ)−2(n + 1)|A||B|2−n(I (X̄∧Ȳr′ )− f3(δ)),

and we can upper-bound (63) by

|R′|Jn Ln exp

{
−n

(
min

r ′∈R′ I (X̄ ∧ Ȳr ′ ) − 2 f3(δ)

)}
.

If one chooses δ so small that τ ≥ 4 f3(δ) > 0 and since R′
is finite, this tends to 0 exponentially. Combining the bounds
on (62) and (63), we thus obtain

E

[
ēr (KX ,R′

n )
]

≤ 2−na′
(65)

for some appropriate a′(R′) = a′(R′, τ, δ) > 0.
Now we can complete the proof of the lemma. Using the

Markov inequality and setting a(R′) := a′(R′)/3, we obtain
from (65)

P

{
ēR′(KX ,R′

n ) ≤ 2−na(R′)
}

= P

{
max
r∈R′ ēr (KX ,R′

n ) ≤ 2−na(R′)
}

= P

[⋂
r∈R′

{
ēr (KX ,R′

n ) ≤ 2−na(R′)
}]

≥ 1 −
∑

r∈R′
P[ēr (KX ,R′

n ) > 2−na(R′)]

≥ 1 − 2na(R′) ∑
r∈R′

E[ēr (KX ,R′
n )]

≥ 1 − |R′|2na(R′)2−3na(R′)

≥ 1 − 2−na(R′)

for sufficiently large n. Thus the probability that
ēR′(KX ,R′

n ) ≤ 2−na(R′) is lower-bounded by 1 − 2−na(R′).
This completes the proof.

We now invoke the approximation argument of
[6, Lemma 4], from which we conclude that there exists a
finite R′ ⊂ R such that

P

{
ē(KX ,R′

n ) ≤ 2−na(R′)/2
}

≥ 1 − 2−na(R′)/2. (66)

Thus even though the code is designed for a finite state
subset R′, it also works well for transmission over the com-
plete channel set W. In particular, note that the index l ∈ Ln

can still be decoded when a good realization of KX ,R′
n is

applied.

We choose any R′ satisfying (66). Now recall the definition
of EX . Together with the decoding sets

DX
j :=

⋃
l∈Ln

DX ,R′
j l ( j ∈ Jn)

this defines a randomly chosen uncorrelated (n, Jn)-code KX
n .

Note that

ē(KX
n ) = 1

Jn

∑
j∈Jn

∑
xn

EX (xn| j)W n((DX
j )c|xn)

= 1

Jn Ln

∑
j∈Jn

∑
l∈Ln

W n((DX
j )c|X jl)

≤ 1

Jn Ln

∑
j∈Jn

∑
l∈Ln

W n((DX ,R′
j l )c|X jl)

= ē(KX ,R′
n ).

This last term is exponentially small with high probability
by (66), which proves Lemma 14 with τ6 = a(R′)/2.

APPENDIX G
PROOF OF LEMMA 15

Recall the definitions of Jn, Ln,X from Subsection VI-B.
Also recall the τ from the definitions of Jn and Ln and
the δ from the definition of X . Both τ and δ are arbitrary
real numbers. These definitions will be valid throughout this
appendix and for all lemmas stated here.

In the next two sections of this appendix, we will define
events ι1( j, zn, sn) and ι2( j, sn), for j ∈ Jn , zn ∈ Zn and
sn ∈ Sn . By Lemma 24 stated in the third section of this
appendix, the ι0 defined in Lemma 15 satisfies

ι0 ⊃
⋂

j,zn,sn

ι1( j, zn, sn) ∩
⋂
j,sn

ι2( j, sn). (67)

Further, Lemmas 25 and 26, also stated in the third section,
will show that with an appropriate choice of δ, the probability
of each of the events of the right-hand side of (67) is very
close to 1. This is sufficient to show that P[ι0] > 1 − 2−τ2n ,
as claimed in Lemma 15, which is done in the last section of
this appendix.

A. Definition of ι1( j, zn, sn)

For some positive α to be chosen later, let εn := 2−nα . Fix
sn ∈ Sn , and denote its type by q ∈ Pn

0 (S). For xn ∈ An ,
define

E1(xn, sn) :=
{

zn ∈ T n
Z̄q ,4|A||S|δ :

V n
sn (zn|xn) ≤ exp

(−n(H (Z̄q|X̄) − f2(3|S|δ)))
}
,

where f2 is the function from Lemma 19, and set


̃sn(zn) := E[V n
sn (zn|X11)�E1(X11,sn)(z

n)]. (68)

Further define

E2(s
n) := {

zn ∈ T n
Z̄q ,4|A||S|δ : 
̃sn(zn) ≥ εn|T n

Z̄q ,4|A||S|δ|−1}

and set


sn(zn) := 
̃sn(zn)�E2(sn)(z
n).
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Note that by definition,


sn (zn) ≥ εn exp{−n(H (Z̄q) + f1(4|A||S|δ))} (69)

for the function f1 from Lemma 19 if zn ∈ T n
Z̄q ,4|A||S|δ and

that 
sn(zn) = 0 otherwise.
With the sets just defined, we obtain a modification of V n

sn

by defining

Qsn,zn (xn) := V n
sn (zn|xn)�E1(xn,sn)(z

n)�E2(sn)(z
n).

Note that this is not an actual “channel” as in general∑
zn Qsn,zn (xn) < 1. Finally, we define

ι1( j, zn, sn) :=
{

1

Ln

Ln∑
l=1

Qsn,zn (X jl) ∈ [(1 ± εn)
sn(zn)]
}

where [(1 ± εn)
sn(zn)] is short for [(1 − εn)
sn(zn),
(1 + εn)
sn (zn)].

B. Definition of ι2( j, sn)

Let q ∈ Pn
0 (S) be the type of sn and let S̄q be an S-valued

random variable with PS̄q
= q and independent of the family

{X̄ , Ȳr , Z̄q : r ∈ R, q ∈ P(S)} which defines Jn, Ln,X . Then
we define

ι2( j, sn) :=
{∣∣{l ∈ Ln : sn ∈ T n

S̄q |X̄ ,2δ
(X jl)}

∣∣

≥ (1 − εn − 2−nc′δ2
)Ln

}
.

C. Statement of Lemmas 24-26

Lemmas 24-26 will be proved in Appendix H.
Lemma 24: Assume a realization x := {x jl : j ∈ Jn, l ∈

Ln} of X has the following properties: For all j ∈ Jn and
zn ∈ Cn and q ∈ Pn

0 (S) and sn ∈ Sn ,

1

Ln

Ln∑
l=1

Qsn ,zn (x jl) ∈ [(1 ± εn)
sn(zn)], (70)

|{l ∈ Ln : sn ∈ T n
S̄q ,2δ

(x jl)}|
Ln

≥ (1 − εn − 2−nc′δ2
). (71)

Then

max
j∈Jn

max
sn∈Sn

‖PZn
sn |Mn ( · | j) − 
sn (·)‖≤ 4(εn + 2−nc′δ2

).

In particular, (67) is true if the τ1 in the definition of ι0 is set
to τ1 =: min{α, c′δ2}/2.

Lemma 25: For sufficiently small α > 0 and δ > 0 there
exists a τ3 > 0 such that for n large and every j ∈ Jn, zn ∈ Cn

and sn ∈ Sn

P
[
ι1( j, zn, sn)c] ≤ 2 exp

(
− exp

{
nτ3

})
.

Lemma 26: For sufficiently small α > 0 there exists a
τ5 > 0 such that for n large and every j ∈ Jn and sn ∈ Sn ,

P[ι2( j, sn)] ≤ 2 exp

(
− exp

{
n

(
max

q∈P(S)
I (X̄ ∧ Z̄q) + τ5

)})

where the random variables X̄ , Z̄q are those from the definition
of ι2( j, sn).

D. Proof of Lemma 15

We choose α and δ so small that Lemmas 24-26 hold.
Lemmas 25 and 26 show that the probability of the
complement of each of the events ι1( j, zn, sn) and ι2( j, sn)
is upper-bounded by a term which tends to zero doubly-
exponentially as the blocklength increases. Then

P[ι0]
= 1 − P[ιc0]
(i)≥ 1 − P

⎡
⎣ ⋃

j,zn,sn

ι1( j, zn, sn)c ∪
⋃
j,sn

ι2( j, sn)c

⎤
⎦

(ii)≥ 1 − 2Jn |C|n|S|n exp
(
− exp

{
nτ3

})

− 2Jn|S|n exp

(
− exp

{
n

(
max

q∈P(S)
I (X̄ ∧ Z̄q) + τ5

)})

(iii)≥ 1 − 2−nτ2 ,

where (i) is due to (67), which holds due to Lemma 24, (i i) is
due to the union bound and (i i i) holds because an appropriate
τ2 > 0 can be found due to the doubly exponential decrease of
the probabilities in Lemmas 25 and 26. Altogether, this proves
Lemma 15.

APPENDIX H
PROOFS OF LEMMAS 24-26

E. Proof of Lemma 24

We first show two auxiliary results. Recall the convention
that we sometimes write V (c|a, s) instead of Vs(c|a). We also
use the same family of random variables {(X̄ , Ȳr , Z̄q , S̄q ) : r ∈
R, q ∈ P(S)} as in the definition of ι2( j, sn), i.e., the family
{(X̄ , Ȳr , Z̄q) : r ∈ R, q ∈ P(S)} is the family which defines
Jn, Ln and X , and every S̄q is independent of this family,
attains values in S and satisfies PS̄q

= q .
Lemma 27: Let xn ∈ T n

X̄ ,δ
and let sn have type q ∈ Pn

0 (S).

Let the random variable Zq satisfy PZq |X̄ S̄q
(·|·, ·) = V (·|·, ·).

If sn ∈ T n
S̄q ,2δ

(xn), then T n
Zq |X̄ S̄q,δ

(xn, sn) ⊂ E1(xn, sn).

Proof: For xn ∈ T n
X̄ ,δ

, we have T n
Z̄q |X̄ ,3|S|δ(xn) ⊂

T n
Z̄q ,4|A||S|δ . Thus due to Lemma 19, it suffices to show that

if sn has type q , then T n
Zq |X̄ S̄q ,δ

(xn, sn) ⊂ T n
Z̄q |X̄ ,3|S|δ(xn). For

a ∈ A and c ∈ C, we calculate∣∣∣∣∣
1

n
N(c, a|zn, xn) −

∑
s∈S

q(s)V (c|a, s)
1

n
N(a|xn)

∣∣∣∣∣

≤
∑
s∈S

∣∣∣∣
1

n
N(c, a, s|zn , xn, sn) − q(s)V (c|a, s)

1

n
N(a|xn)

∣∣∣∣

≤
∑
s∈S

∣∣∣∣
1

n
N(c, a, s|zn , xn, sn) − V (c|a, s)

1

n
N(a, s|xn, sn)

∣∣∣∣

+
∑
s∈S

V (c|a, s)

∣∣∣∣
1

n
N(a, s|xn , sn) − q(s)

1

n
N(a|xn)

∣∣∣∣
≤ |S|(δ + 2δ) = 3|S|δ.
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Corollary 3: If n is sufficiently large, then every sn ∈ Sn

satisfies


sn(Cn) ≥ 1 − 2 · 2−nc′δ2 − εn

Proof: Let sn have type q ∈ Pn
0 (S). By the definition

of 
sn , we have 
sn(Cn) = 
sn (E2(sn)). As the support
of 
̃sn is contained in T n

Z̄q ,4|A||S|δ, we have 
sn(E2(sn)) ≥

̃sn(T n

Z̄q ,4|A||S|δ) − εn = 
̃sn(Cn) − εn . By definition,


̃sn (Cn) = E[V n
sn (E1(X11, sn)|X11)]

≥ E[V n
sn (E1(X11, sn)|X11)|sn ∈ T n

S̄q |X̄ ,2δ
(X11)]

× P[sn ∈ T n
S̄q |X̄ ,2δ

(X11)].
For sufficiently large n

E[V n
sn(E1(X11, sn)|X11)|sn ∈ T n

S̄q |X̄,2δ
(X11)]

(i)≥ E[V n(T n
Zq |X̄ S̄q,δ

(X11, sn)|X11, sn)|sn ∈ T n
S̄q |X̄ ,2δ

(X11)]
(ii)≥ 1 − 2−nc′δ2

,

where we used Lemma 27 in (i) and Lemma 20 in (i i).
Lemma 29 provides a lower bound on P[sn ∈ T n

S̄q |X̄ ,2δ
(X11)],

so altogether,


sn (Cn) ≥ 
̃sn(Cn) − εn

≥ (1 − 2−nc′δ2
)2 − εn

≥ 1 − 2 · 2−nc′δ2 − εn. (72)

Let x = {x jl : j ∈ Jn, l ∈ Ln} be a realization of X satis-
fying (70) and (71). Let Kn be the corresponding uncorrelated
(n, Jn)-code and F(Kn,W,V) = {Mn, Xn , Y n

r , Zn
sn , M̂r :

r ∈ R, sn ∈ Sn} the canonical family of random variables
associated with Kn . For any j ∈ Jn and any sn with type
q ∈ P0(S), we decompose the total variation distance as
follows:

‖PZn
sn |Mn ( · | j) − 
sn(·)‖

≤
∥∥∥∥∥

1

Ln

Ln∑
l=1

Qsn, · (x jl) − 
sn (·)
∥∥∥∥∥ (73)

+
∥∥∥∥∥

1

Ln

Ln∑
l=1

V n
sn ( · |x jl)�E1(x jl,sn)(·)(�Cn (·) − �E2(sn)(·))

∥∥∥∥∥
(74)

+
∥∥∥∥∥

1

Ln

Ln∑
l=1

V n
sn ( · |x jl)(�Cn (·) − �E1(x jl,sn)(·))

∥∥∥∥∥. (75)

The term in (73) is upper-bounded by εn , because
due to (70)∥∥∥∥∥

1

Ln

Ln∑
l=1

Qsn, · (x jl) − 
sn (·)
∥∥∥∥∥

=
∑
zn

∣∣∣∣∣
1

Ln

Ln∑
l=1

Qsn,zn (x jl) − 
sn (zn)

∣∣∣∣∣
≤ εn

∑
zn


sn (zn)

≤ εn.

Next, applying (70) in (i), we upper-bound (74) as

1

Ln

Ln∑
l=1

∑
zn

Vsn(zn |x jl)�E1(x jl ,sn)(z
n)

− 1

Ln

Ln∑
l=1

∑
zn

Vsn(zn |x jl)�E1(x jl ,sn)(z
n)�E2(sn)(z

n)

≤ 1 −
∑
zn

1

Ln

Ln∑
l=1

Qsn,zn (x jl)

(i)≤ 1 − (1 − εn)
sn (Cn).

Upon application of Corollary 3, we obtain that (74) can be
upper-bounded by

1 − (1 − εn)(1 − 2 · 2−nc′δ2 − εn) ≤ 2(2−nc′δ + εn).

It remains to upper-bound (75). Recall the definition of Zq .
We have
∥∥∥∥∥

1

Ln

Ln∑
l=1

V n
sn( · |x jl)(�Cn (·) − �E1(x jl,sn)(·))

∥∥∥∥∥

= 1

Ln

Ln∑
l=1

V n
sn(E1(x jl, sn)c|x jl)

= 1

Ln

∑
l∈Ln :

T n
Zq |X̄ S̄q ,δ

(x jl,sn)⊂E1(x jl,sn)

V n
sn(E1(x jl, sn)c|x jl)

+ 1

Ln

∑
l∈Ln :

T n
Zq |X̄ S̄q ,δ

(x jl ,sn)�E1(x jl,sn)

V n
sn (E1(x jl, sn)c|x jl).

(76)

If T n
Zq |X̄ S̄q ,δ

(x jl, sn) ⊂ E1(x jl, sn), then by Lemma 20, we

have

V n
sn(E1(x jl, sn)c|x jl) ≤ V n(T n

Zq |X̄ S̄q ,δ
(x jl, sn)c|x jl, sn)

≤ 2−nc′δ2
.

By Lemma 27 and (71), the proportion of those l ∈ Ln for
which T n

Zq |X̄ S̄q ,δ
(x jl, sn) � E1(x jl, sn) holds is upper-bounded

by εn + 2−nc′δ2
. We can thus bound (76) by

2−nc′δ2 + εn + 2−nc′δ = εn + 2 · 2−nc′δ2
.

Collecting the bounds on (73), (74) and (75) completes the
proof of Lemma 24.

F. Proof of Lemma 25

Let j ∈ Jn, zn ∈ Cn, sn ∈ Sn . We want to upper-bound
the probability of the complement of ι1( j, zn, sn), i.e., of the
event that

{
1

Ln

Ln∑
l=1

Qsn,zn (X jl) /∈ [(1 ± εn)
sn(zn)]
}

.
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The form of this event already suggests that a Chernoff bound
may be the right method for the proof. Indeed, we will apply
the following lemma.

Lemma 28: Let b be a positive number. Let Z1, . . . , Z L be
i.i.d. random variables with values in [0, b] and expectation
EZl = ν, and let 0 < ε < 1

2 . Then

P

{
1

L

L∑
l=1

Zi /∈ [(1 ± ε)ν]
}

≤ 2 exp

(
−L · ε2ν

3b

)
.

Proof: The proof can be found in [14, Th. 1.1] and
in [3].

The claim of Lemma 25 follows from an application of
Lemma 28. Due to the definition of E1(xn, sn), the inde-
pendent random variables Qsn,zn (X jl) are upper-bounded
by bn := exp{−n(H (Z̄q|X̄) − f2(3|S|δ))} and have mean

sn(zn). Applying Lemma 28 gives

P[ι1( j, zn, sn)c]

= P

{
1

Ln

Ln∑
l=1

Qsn,zn (X jl) /∈ [(1 ± εn)
sn(zn)]
}

≤ 2 exp

(
−Ln · ε2

n
sn(zn)

3bn

)
. (77)

For the exponent on the right-hand side of (77), we obtain

−Ln · ε2
n
sn(zn)

3bn

(i)= −
⌊

exp

{
n

(
max

q∈P(S)
I (X̄ ∧ Z̄q) + τ

4

)}⌋

× 2−2αn
sn (zn)

3
exp

{
n
(
H (Z̄q|X̄) − f2(3|S|δ))

}

(ii)≤ − exp

{
n

(
max

q∈P(S)
I (X̄ ∧ Z̄q) + τ

5

)}
· 2−3αn

3

× exp
{
−n

(
I (X̄ ∧ Z̄q) + f1(4|A||S|δ) + f2(3|S|δ))

}

(iii)≤ − exp

{
n

(
τ

5
− 3α − log 3

n
− f4(|A||S|δ)

)}
, (78)

where in (i) we inserted the definitions of Ln, εn, bn , in (i i) we
used the bound 
sn(zn) ≥ εn exp{−n(H (Z̄q)+ f1(4|A||S|δ))}
from (69) and in (i i i) we set f4(|A||S|δ) := f1(4|A||S|δ) +
f2(3|S|δ). If we choose α, δ so small that

τ3 := τ

6
− 3α − f1(4|A||S|δ) − f2(3|S|δ) > 0,

then (78) decreases to −∞ at exponential speed. Hence (77)
gives a bound on P[ι1( j, zn, sn)] which decreases to zero
at doubly-exponential speed. This completes the proof of
Lemma 25.

G. Proof of Lemma 26

The proof of Lemma 26 also applies the Chernoff bound of
Lemma 28. For the application of the Chernoff bound, we first
need a lower bound on E[�T n

S̄q ,2δ
(X11)] = P[sn ∈ T n

S̄q ,2δ
(X11)].

Lemma 29: For sufficiently large n and every sn of type q ,

P[sn ∈ T n
S̄q,2δ

(X11)] ≥ 1 − 2−nc′δ2
.

Proof: We first show

T n
X̄ |S̄q,δ/|S|(s

n) ⊂ {xn ∈ T n
X̄ ,δ

: sn ∈ T n
S̄q,2δ

(xn)}. (79)

Let xn ∈ T n
X̄ |S̄q ,δ/|S|(s

n). Clearly T n
X̄ |S̄q,δ/|S|(s

n) ⊂ T n
X̄ ,δ

. Then
∣∣∣∣
1

n
N(s, a|sn , xn) − PS̄q |X̄ (s|a)

1

n
N(a|xn)

∣∣∣∣
=

∣∣∣∣
1

n
N(s, a|sn , xn) − 1

n
N(s|sn)

1

n
N(a|xn)

∣∣∣∣
≤

∣∣∣∣
1

n
N(s, a|sn , xn) − PX̄ |S̄q

(a|s)1

n
N(s|sn)

∣∣∣∣
+ 1

n
N(s|sn)

∣∣∣∣PX̄ (a) − 1

n
N(a|xn)

∣∣∣∣

≤ δ

|S| + δ ≤ 2δ.

This proves (79). For n large, we can use this to continue with

P[sn ∈ T n
S̄q |X̄ ,2δ

(X11)]
(i)≥ P[T n

X̄ |S̄q,δ/|S|(s
n)]

=
∑

xn∈T n
X̄ |S̄q ,δ/|S|(s

n)

p′(xn)

(ii)≥
∑

xn∈T n
X̄ |S̄q ,δ/|S|(s

n)

Pn
X̄
(xn)

= Pn
X̄ |S̄q

(T n
X̄ |S̄q ,δ/|S|(s

n)|sn)

(iii)≥ 1 − 2−nc′δ2
,

where we used (79) in (i), T n
X̄ |S̄q ,δ/|S|(s

n) ⊂ T n
X̄ ,δ

in (i i) and

Lemma 20 in (i i i).
Moving to the proof of Lemma 26, let j ∈ Jn . The i.i.d.

random variables �T n
S̄q |X̄ ,2δ

(X jl )(s
n) (l ∈ Ln) are upper-bounded

by 1. Their expectation ν was lower-bounded in Lemma 29
by 1−2−nc′δ2

. This and 1−εn −2−nc′δ ≤ (1−εn)(1−2−nc′δ)
imply that ι2( j, sn)c is contained in the event{

1

Ln
|{l ∈ Ln : sn ∈ T n

S̄q |X̄ ,2δ
(X jl)}| ≤ (1 − εn)ν

}
.

By Lemma 28,

P

{
1

Ln
|{l ∈ Ln : sn ∈ T n

S̄q |X̄ ,2δ
(X jl)}| ≤ (1 − εn)ν

}

≤ 2 exp

(
−Ln · ε2

nν

3

)
. (80)

For the exponent on the right-hand side of (80), one obtains

−Ln · ε2
nν

3
(i)= −

⌊
exp

{
n

(
max

q∈P(S)
I (X̄ ∧ Z̄q) + τ

4

)}⌋
2−2αnν

3
(ii)≤ − exp

{
n

(
max

q∈P(S)
I (X̄ ∧ Z̄q) + τ

5

)}

×2−2αn(1 − 2−nc′δ2
)

3

≤ − exp

{
n

(
max

q∈P(S)
I (X̄ ∧ Z̄q) + τ

5
− 3α

)}
. (81)
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Here, (i) follows from the definitions of Ln and εn . In (i i),
the bound ν ≥ 1 − 2−nc′δ2

from Lemma 29 was used again.
If α is so small that τ5 := τ/5 − 3α > 0, the right-hand side
of (81) tends to −∞ at exponential speed. Thus the right-hand
side of (80) tends to 0 at doubly-exponential speed, and thus
also P[ι2( j, sn)c]. This completes the proof of Lemma 26.
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