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Abstract: Human cognition is unique in the way in which it relies on combinatorial (or compositional) structures. Language provides
ample evidence for the existence of combinatorial structures, but they can also be found in visual cognition. To understand the neural
basis of human cognition, it is therefore essential to understand how combinatorial structures can be instantiated in neural terms. In his
recent book on the foundations of language, Jackendoff described four fundamental problems for a neural instantiation of combinatorial
structures: the massiveness of the binding problem, the problem of 2, the problem of variables, and the transformation of combinatorial
structures from working memory to long-term memory. This paper aims to show that these problems can be solved by means of
neural “blackboard” architectures. For this purpose, a neural blackboard architecture for sentence structure is presented. In this
architecture, neural structures that encode for words are temporarily bound in a manner that preserves the structure of the
sentence. It is shown that the architecture solves the four problems presented by Jackendoff. The ability of the architecture to
instantiate sentence structures is illustrated with examples of sentence complexity observed in human language performance.
Similarities exist between the architecture for sentence structure and blackboard architectures for combinatorial structures in visual
cognition, derived from the structure of the visual cortex. These architectures are briefly discussed, together with an example of a
combinatorial structure in which the blackboard architectures for language and vision are combined. In this way, the architecture
for language is grounded in perception. Perspectives and potential developments of the architectures are discussed.
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1. Introduction

Human cognition is unique in the manner in which it
processes and produces complex combinatorial (or com-
positional) structures (e.g., Anderson 1983; Newell
1990/1994; Pinker 1998). Therefore, to understand the
neural basis of human cognition, it is essential to under-
stand how combinatorial structures can be instantiated
in neural terms. However, combinatorial structures
present particular challenges to theories of neurocognition
(Marcus 2001) that are not always recognized in the
cognitive neuroscience community (Jackendoff 2002).

A prominent example of these challenges is given by the
neural instantiation (in theoretical terms) of linguistic
structures. In his recent book on the foundations of
language, Jackendoff (2002; see also Jackendoff, 2003)
analyzed the most important theoretical problems that
the combinatorial and rule-based nature of language
presents to theories of neurocognition. He summarized
the analysis of these problems under the heading of
“four challenges for cognitive neuroscience” (pp. 58–67).
As recognized by Jackendoff, these problems arise not
only with linguistic structures but with combinatorial
cognitive structures in general.

This paper aims to show that neural “blackboard” archi-
tectures can provide an adequate theoretical basis for a
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neural instantiation of combinatorial cognitive structures.
In particular, we discuss how the problems presented by
Jackendoff (2002) can be solved in terms of a neural
blackboard architecture of sentence structure. We also
discuss the similarities between the neural blackboard
architecture of sentence structure and neural blackboard
architectures of combinatorial structures in visual
cognition and visual working memory (van der Velde
1997; van der Velde & de Kamps 2001; 2003).

To begin with, we first outline the problems described
by Jackendoff (2002) in more detail. This presentation is
followed by a discussion of the most important solutions
that have been offered so far to meet some of these chal-
lenges. These solutions are based on either synchrony of
activation or recurrent neural networks.1

2. Four challenges for cognitive neuroscience

The four challenges for cognitive neuroscience presented
by Jackendoff (2002; see also Marcus 2001) consist of the
massiveness of the binding problem that occurs in
language, the problem of multiple instances (or the
“problem of 2”), the problem of variables, and the relation
between binding in working memory and binding in long-
term memory. We discuss the four problems in turn.

2.1. The massiveness of the binding problem

In neuroscience, the binding problem concerns the way in
which neural instantiations of parts (constituents) can be
related (bound) temporarily in a manner that preserves
the structural relations between the constituents.
Examples of this problem can be found in visual percep-
tion. Colors and shapes of objects are partly processed in
different brain areas, but we perceive objects as a unity
of color and shape. Hence, in a visual scene with a green
apple and a red orange, the neurons that code for green
have to be related (temporarily) to the neurons that code
for apple, so that the confusion with a red apple (and a
green orange) can be avoided.

In the case of language, the problem is illustrated in
Figure 1. Assume that words like cat, chases, and mouse
each activate specific neural structures, such as the
“word assemblies” discussed by Pulvermüller (1999).
The problem is how the neural structures or word
assemblies for cat and mouse can be bound to the neural
structure or word assembly of the verb chases in line
with the thematic roles (or argument structure) of
the verb. That is, how can cat and mouse be bound to
the role of agent and theme of chases in the sentence
The cat chases the mouse and to the role of theme and
agent of chases in the sentence The mouse chases the cat?

A potential solution for this problem is illustrated in
Figure 1. It consists of specialized neurons (or populations
of neurons) that are activated when the strings cat chases
mouse (Fig. 1b) or mouse chases cat (Fig. 1c) are heard or
seen. Each neuron has the word assemblies for cat, mouse,
and chases in its “receptive field” (illustrated with the cones
in Figs. 1b and 1c). Specialized neural circuits could acti-
vate one neuron in the case of cat chases mouse, and
another neuron in the case of mouse chases cat, by using
the difference in temporal word order in both strings.
Circuits of this kind can be found in the case of motion

detection in visual perception (e.g., Hubel 1995). For
example, the movement of a vertical bar that sweeps
across the retina in the direction from A to B can be
detected by using the difference in activation time (onset
latency) between the ganglion cells in A and B.

A fundamental problem with this solution in the case of
language is its lack of productivity. Only specific and
familiar sentences can be detected in this way. But any
novel sentence of the type Noun chases Noun or, more
generally, Noun Verb Noun will not be detected because
the specific circuit (and neuron) for that sentence will be
missing. Yet when we learn that Dumbledore is headmas-
ter of Hogwarts, we immediately understand the meaning
of Dumbledore chases the mouse, even though we have
never encountered that sentence before.

The difference between language and motion detection
in this respect illustrates that the nature of these two
cognitive processes is fundamentally different. In the case
of motion detection, there is a limited set of possibilities,
so that it is possible (and it pays off) to have specialized
neurons and neural circuits for each of these possibilities.
But this solution is not feasible in the case of language.
Linguists typically describe language in terms of its unlim-
ited combinatorial productivity. Words can be combined
into phrases, which in turn can be combined into sen-
tences, so that arbitrary sentence structures can be filled
with arbitrary arguments (e.g., Chomsky 2000; Jackendoff
2002; Piattelli-Palmarini 2002; Pullum & Scholz 2001; Sag
& Wasow 1999; Webelhuth 1995). In theory, an unlimited
amount of sentences can be produced in this way, which
excludes the possibility of having specialized neurons
and circuits for each of these sentences.

However, unlimited (recursive) productivity is not
necessary to make a case for the combinatorial nature of
language, given the number of sentences that can be pro-
duced or understood. For example, the average English-
speaking 17-year-old knows more than 60,000 words
(Bloom 2000). With this lexicon and with a limited

Figure 1. a. Two illustrations of neural structures (“neural word
assemblies”) activated by the words cat, chases, and mouse.
Bottom: An attempt to encode sentence structures with
specialized “sentence” neurons. b. A “sentence” neuron has the
assemblies for the words cat, chases, and mouse in its
“receptive field” (as indicated by the cone). The neuron is
activated by a specialized neural circuit when the assemblies in
its receptive field are active in the order cat chases mouse. c. A
similar “sentence” neuron for the sentence mouse chases cat.
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sentence length of 20 words or less, one can produce a set
of sentences in natural language in the order of 1020 or
more (Miller 1967; Pinker 1998). A set of this kind can
be characterized as a “performance set” of natural
language in the sense that (barring a few selected
examples) any sentence from this set can be produced or
understood by a normal language user. Such a perform-
ance set is not unlimited but it is of “astronomical” magni-
tude (e.g., 1020 exceeds the estimated lifetime of the
universe expressed in seconds). By consequence, most
sentences in this set are sentences that we have never
heard or seen before. Yet because of the combinatorial
nature of language, we have the ability to produce and
understand arbitrary sentences from a set of this kind.

Hence the set of possibilities that we can encounter in
the case of language is unlimited in any practical sense.
This precludes a solution of the binding problem in
language in terms of specialized neurons and circuits.
Instead a solution is needed that depends on the ability
to bind arbitrary arguments to the thematic roles of arbi-
trary verbs in agreement with the structural relations
expressed in the sentence. Moreover, the solution has to
satisfy the massiveness of the binding problem as it
occurs in language, which is due to the often complex
and hierarchical nature of linguistic structures. For
example, in the sentence The cat that the dog bites
chases the mouse, the noun cat is bound to the role of
theme of the verb bites, but it is bound to the role of
agent of the verb chases. In fact, the whole phrase The
cat that the dog bites is bound to the role of agent of the
verb chases (with cat as the head of the phrase). Each of
these specific bindings has to be satisfied in an encoding
of this sentence.

2.2. The problem of 2

The second problem presented by Jackendoff (2002) is the
problem of multiple instances, or the “problem of 2.” Jack-
endoff illustrates this problem with the sentence The little
star is beside a big star.2 The word star occurs twice in this
sentence, the first time related to the word little and the
second time related to the word big. The problem is how
in neural terms the two occurrences of the word star can
be distinguished, so that star is first bound to little and
then with big, without creating the erroneous binding of
little big star. The problem of 2 results from the assump-
tion that any occurrence of a given word will result in
the activation of the same neural structure (e.g., its word
assembly, as illustrated in Fig. 1). But if the second occur-
rence of a word results in only the reactivation of a neural
structure that was already activated by the first occurrence
of that word, the two occurrences of the same word are
indistinguishable (van der Velde 1999).

Perhaps the problem could be solved by assuming that
there are multiple neural structures that encode for a
single word. The word star could then activate one neural
structure in little star and a different one in big star, so
that the bindings little star and big star can be encoded
without creating little big star. However, this solution
would entail that there are multiple neural structures for
all words in the lexicon, perhaps even for all potential
positions a word could have in a sentence (Jackendoff 2002).

More important, this solution disrupts the unity of word
encoding as the basis for the meaning of a word. For

example, the relation between the neural structures for
cat and mouse in cat chases mouse could develop into
the neural basis for the long-term knowledge (“fact”)
that cats chase mice. Similarly, the relation between the
neural structures for cat and dog in dog bites cat could
form the basis of the fact that dogs fight with cats. But if
the neural structure for cat (say, cat1) in cat1 chases
mouse is different from the neural structure for cat (say,
cat2) in dog bites cat2, then these two facts are about differ-
ent kinds of animals.

2.2.1. The problem of 2 and the symbol-grounding
problem. It is interesting to look at the problem of 2
from the perspective of the symbol-grounding problem
that occurs in cognitive symbol systems. Duplicating
symbols is easy in a symbol system. However, in a
symbol system, one is faced with the problem that
symbols are arbitrary entities (e.g., strings of bits in a
computer), which therefore have to be interpreted to
provide meaning to the system. That is, symbols have to
be “grounded” in perception and action if symbol
systems are to be viable models of cognition (Barsalou
1999; Harnad 1991).

Grounding in perception and action can be achieved
with neural structures such as the word assemblies
illustrated in Figure 1. In line with the idea of neural
assemblies proposed by Hebb (1949), Pulvermüller
(1999) argued that words activate neural assemblies distri-
buted over the brain (as illustrated with the assemblies for
the words cat, mouse, and chases in Fig. 1). One could
imagine that these word assemblies have developed over
time by means of a process of association. Each time a
word was heard or seen, certain neural circuits would
have been activated in the cortex. Over time, these circuits
will be associated, which results in an overall cell assembly
that reflects the meaning of that word.

But, as argued above, word assemblies are faced with
the problem of 2. Hence it seems that the problem of 2
and the symbol-grounding problem are complementary
problems. To provide grounding, the neural structure
that encodes for a word is embedded in the overall
network structure of the brain. But this makes it difficult
to instantiate a duplication of the word and hence to
instantiate even relatively simple combinatorial structures
such as The little star is beside a big star. Conversely, dupli-
cation is easy in symbol systems (e.g., if 1101 ¼ star, then
one would have The little 1101 is beside a big 1101, with
little and big each related to an individual copy of 1101).
But symbols can be duplicated easily because they are
not embedded in an overall structure that provides the
grounding of the symbol.3

2.3. The problem of variables

The knowledge of specific facts can be instantiated on the
basis of specialized neural circuits, in line with those illus-
trated in Figure 1. But knowledge of systematic facts, such
as the fact that own(y, z) follows from give(x, y, z), cannot
be instantiated in this way, that is, in terms of a listing of all
specific instances of the relation between the predicates
own and give [e.g., from give(John, Mary, book) it
follows that own(Mary, book); from give(Mary, John, pen)
it follows that own(John, pen); etc.].
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Instead, the derivation that own(Mary, book) follows
from give(John, Mary, book) is based on the rule that
own(y, z) follows from give(x, y, z), combined with the
binding of Mary to the variable y and book to the variable z.
Marcus (2001) analyzed a wide range of relationships
that can be described in this way. They are all character-
ized by the fact that an abstract rule-based relationship
expressed in terms of variables is used to determine
relations between specific entities (e.g., numbers, words,
objects, individuals).

The use of rule-based relationships with variable
binding provides the basis for the systematic nature of cog-
nition (Fodor & Pylyshyn 1988). Cognition is systematic in
the sense that one can learn from specific examples and
apply that knowledge to all examples of the same kind. A
child will indeed encounter only specific examples (e.g.,
that when John gives Mary a book, it follows that Mary
owns the book) and yet it will learn that own(y, z)
follows from all instances of the kind give(x, y, z). In this
way, the child is able to handle novel situations, such as
the derivation that own(Harry, broom) follows from give
(Dumbledore, Harry, broom).

The importance of rule-based relationships for human
cognition raises the question of how relationships with
variable binding can be instantiated in the brain.

2.4. Binding in working memory versus long-term
memory

Working memory in the brain is generally assumed to
consist of a sustained form of activation (e.g., Amit 1989;
Fuster 1995). That is, information is stored in working
memory as long as the neurons that encode the infor-
mation remain active. In contrast, long-term memory
results from synaptic modification, such as long-term
potentiation (LTP). In this way, the connections between
neurons are modified (e.g., enhanced). When some of
the neurons are then reactivated, they will reactivate the
others neurons as well. The neural word assemblies
illustrated in Figure 1 are formed by this process.

Both forms of memory are related in the sense that
information in one form of memory can be transformed
into information in the other form of memory. Information
could be stored in a working memory (which could be
specific for a given form of information, such as sentence
structures) before it is stored in long-term memory.
Conversely, information in long-term memory can be
reactivated and stored in working memory. This raises
the question of how the same combinatorial structure
can be instantiated both in terms of neural activation (as
found in working memory or in stimulus-dependent
activation) and in terms of synaptic modification, and
how these different forms of instantiation can be trans-
formed into one another.

2.5. Overview

It is clear that the four problems presented by Jackendoff
(2002) are interrelated. For example, the problem of 2 also
occurs in rule-based derivation with variable binding; the
massiveness of the binding problem is found in combina-
torial structures stored in working memory and in combi-
natorial structures stored in long-term memory. Therefore
a solution to these problems has to be an integrated one

that solves all four problems simultaneously. In this
paper, we discuss how all four problems can be solved in
terms of neural blackboard architectures in which combi-
natorial structures can be instantiated.

First, however, we discuss two alternatives for a neural
instantiation of combinatorial structures: the use of
synchrony of activation (e.g., von der Malsburg 1987) as
a mechanism for binding constituents in combinatorial
structures, and the use of recurrent neural networks to
process combinatorial structures, in particular sentence
structures.

3. Combinatorial structures with synchrony of
activation

An elaborate example of a neural instantiation of combina-
torial structures in which synchrony of activation is used as
a binding mechanism is found in the model of reflexive
reasoning presented by Shastri and Ajjanagadde (1993b).
In their model, synchrony of activation is used to show
how a known fact such as John gives Mary a book can
result in an inference such as Mary owns a book.

The proposition John gives Mary a book is encoded by
a “fact node” that detects the respective synchrony of
activation between the nodes for John, Mary, and book
and the nodes for giver, recipient, and give-object, which
encode for the thematic roles of the predicate give
(x, y, z). In a simplified manner, the reasoning process
begins with the query own(Mary, book)? (i.e., does Mary
own a book?). The query results in the respective synchro-
nous activation of the nodes for owner and own-object of
the predicate own(y, z) with the nodes for Mary and
book. In turn, the nodes for recipient and give-object of
the predicate give(x, y, z) are activated by the nodes for
owner and own-object, such that owner is in synchrony
with recipient and own-object is in synchrony with give-
object. As a result, the node for Mary is in synchrony
with the node for recipient, and the node for book is in
synchrony with the node for give-object. This allows the
fact node for John gives Mary a book to become active,
which produces the affirmative answer to the query.

A first problem with a model of this kind is found in a
proposition such as John gives Mary a book and Mary
gives John a pen. With synchrony of activation as a
binding mechanism, a confusion arises between John
and Mary in their respective roles of giver and recipient
in this proposition. In effect, the same pattern of activation
will be found in the proposition John gives Mary a pen and
Mary gives John a book. Hence, with synchrony of acti-
vation as a binding mechanism, both propositions are
indistinguishable. It is not difficult to see the problem of
2 here. John and Mary occur twice in the proposition
but in different thematic roles. The simultaneous but
distinguishable binding of John and Mary with different
thematic roles cannot be achieved with synchrony of
activation.

To solve this problem, Shastri and Ajjanagadde allowed
for a duplication (or multiplication) of the nodes for the
predicates. In this way, the whole proposition John gives
Mary a book and Mary gives John a pen is partitioned
into the two elementary propositions John gives Mary a
book and Mary gives John a pen. To distinguish between
the propositions, the nodes for the predicate give(x, y, z)
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are duplicated. Hence there are specific nodes for, say,
give1(x, y, z) and give2(x, y, z), with give1(x, y, z) related
to John gives Mary a book and give2(x, y, z) related to
Mary gives John a pen. Furthermore, for the reasoning
process to work, the associations between predicates
have to be duplicated as well. Hence the node for
give1(x, y, z) has to be associated with a node for, say,
own1(y, z), and the node for give2(x, y, z) has to be associ-
ated with a node for own2(y, z).

This raises the question of how these associations can be
formed simultaneously during learning. During its devel-
opment, a child will learn from specific examples; hence
it will learn that when John gives Mary a book, it follows
that Mary owns the book. In this way, the child will form
an association between the nodes for give1(x, y, z) and
own1(y, z). But the association between the node for
give2(x, y, z) and own2(y, z) would not be formed in this
case, because these nodes are not activated with John
gives Mary a book and Mary owns the book. Hence,
when the predicate give(x, y, z) is duplicated into
give1(x, y, z) and give2(x, y, z), the systematicity between
John gives Mary a book and Mary gives John a pen is lost.

3.1. Nested structures with synchrony of activation

The duplication solution discussed above fails with nested
(or hierarchical) propositions. For example, the prop-
osition Mary knows that John knows Mary cannot be
partitioned into two propositions, Mary knows and John
knows Mary, because the entire second proposition is
the y argument of knows(Mary, y). Hence the fact node
for John knows Mary has to be in synchrony with the
node for know-object of the predicate know(x, y). The
fact node for John knows Mary will be activated because
John is in synchrony with the node for knower and Mary
is in synchrony with the node for know-object. However,
the fact node for Mary knows Mary, for example, will
also be activated in this case, because Mary is in synchrony
with both knower and know-object in the proposition
Mary knows that John knows Mary. Hence the proposition
Mary knows that John knows Mary cannot be distin-
guished from the proposition Mary knows that Mary
knows Mary.

As this example shows, synchrony as a binding mech-
anism is faced with the “one-level” restriction (Hummel &
Holyoak 1993), that is, synchrony can encode bindings at
only one level of abstraction or hierarchy at a time.

3.2. Productivity with synchrony of activation

A fundamental problem with the use of synchrony of acti-
vation as a binding mechanism in combinatorial structures
is its lack of productivity. Synchrony of activation has to be
detected to process the information that it encodes
(Dennett 1991). In Shastri and Ajjanagadde’s model, fact
nodes (e.g., the fact node for John gives Mary a book)
detect the synchrony of activation between arguments
and thematic roles. But fact nodes and the circuits that
activate them are similar to the specialized neurons and
circuits illustrated in Figure 1. Having such nodes and
circuits for all possible verb-argument bindings that can
occur in language, in particular for novel instances of
verb-argument binding, is excluded. As a result, synchrony

of activation as a binding mechanism fails to provide the
productivity given by combinatorial structures.

The binding problems as analyzed here – the inability
to solve the problem of 2, the inability to deal with
nested structures (the “one-level restriction”), and the
lack of systematicity and productivity – are typical for the
use of synchrony of activation as a binding mechanism
(van der Velde & de Kamps 2002b). The lack of pro-
ductivity given by the need for “synchrony detectors” is
perhaps the most fundamental problem for synchrony as
a mechanism for binding constituents in combinatorial
structures. True combinatorial structures provide the
possibility of answering binding questions about novel
combinations (e.g., novel sentences) never seen or heard
before. Synchrony detectors (or conjunctive forms of
encoding in general) will be missing for novel combinator-
ial structures, which precludes the use of synchrony as a
binding mechanism for these structures. Synchrony as a
binding mechanism would seem to be restricted to struc-
tures for which conjunctive forms of encoding exist and
that satisfy the “one-level restriction” (van der Velde &
de Kamps 2002b).

4. Processing linguistic structures with “simple”
recurrent neural networks

The argument that combinatorial structures are needed to
obtain productivity in cognition has been questioned
(Churchland 1995; Elman 1991; Port & van Gelder
1995). In this view, productivity in cognition can be
obtained in a “functional” manner (“functional composi-
tionality”; van Gelder 1990) without relying on combi-
natorial structures. The most explicit models of this kind
deal with sentence structures.

A first example is the neural model of thematic role
assignment in sentence processing presented by
McClelland and Kawamoto (1986). However, the model
was restricted to one particular sentence structure and it
could not represent different tokens of the same type,
for example, dogagent and dogtheme in dog chases dog.
St. John and McClelland (1990) presented a more flexible
model based on a recurrent network. The model learned
presegmented single-clause sentences and assigned
thematic roles to the words in the sentence, but it could
not handle more complex sentences, such as sentences
with embedded clauses.

A model that processed embedded clauses was pre-
sented by Miikkulainen (1996). It consisted of three
parts: a parser, a segmenter, and a stack. The segmenter
(a feed-forward network) divided the input sentence into
clauses (by detecting clause boundaries). The stack mem-
orized the beginning of a matrix clause, for example, girl in
The girl, who liked the boy, saw the boy. The parser
assigned thematic roles (agent, act, patient) to the words
in a clause. All clauses, however, were two- or three-
word clauses, because the output layer of the parser had
three nodes.

The “simple” recurrent neural networks (RNNs) play an
important role in the attempt to process sentence struc-
tures without relying on combinatorial structures (Elman
1991; Miikkulainen 1996; Palmer-Brown et al. 2002).
They consist of a multilayer feed-forward network, in
which the activation pattern in the hidden (middle) layer
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is copied back to the input layer, as part of the input
to the network in the next learning step. In this way,
RNNs are capable of processing sequential structures.
Elman (1991) used RNNs in a word-prediction task. For
example, with Boys who chase boy feed cats, the network
had to predict that after Boys who chase, a noun would
follow, and that after Boys who chase boy, a plural verb
would occur. The network was trained with sentences
from a language generated with a small lexicon and a
basic phrase grammar. The network succeeded in this
task with both the sentences that were used in the training
session and other sentences from the same language.

The RNNs used by Elman (1991) could not answer
specific binding questions such as Who feed cats? Hence
the network did not bind specific words to their specific
roles in the sentence structure. Nevertheless, RNNs
seem capable of processing aspects of sentence structures
in a noncombinatorial manner. But RNNs model lan-
guages derived from small vocabularies (in the order of
10 to 100 words). In contrast, the vocabulary of natural
language is huge, which results in an “astronomical”
productivity, even with limited sentence structures (e.g.,
sentences with 20 words or less; see sect. 2.1). We
discuss “combinatorial” productivity with RNNs in more
detail below.

4.1. Combinatorial productivity with RNNs used in
sentence processing

Elman (1991) used a language in the order of 105 sen-
tences based on a lexicon of about 20 words. In contrast,
the combinatorial productivity of natural language is in
the order of 1020 sentences or more, based on a lexicon
of 105 words. A basic aspect of such a combinatorial pro-
ductivity is the ability to insert words from one familiar
sentence context into another. For example, if one learns
that Dumbledore is headmaster of Hogwarts, one can
also understand Dumbledore chases the mouse, even
though this specific sentence has not been encountered
before. To approach the combinatorial productivity of
natural language, RNNs should have this capability as well.

We investigated this question by testing the ability of
RNNs to recognize a sentence consisting of a new combi-
nation of familiar words in familiar syntactic roles (van der
Velde et al. 2004b). In one instance, we used sentences
such as dog hears cat, boy sees girl, dog loves girl, and
boy follows cat to train the network on the word-prediction
task. The purpose of the training sentences was to familiar-
ize the RNNs with dog, cat, boy, and girl as arguments of
verbs. Then a verb such as hears from dog hears cat was
inserted into another trained sentence, such as boy sees
girl, to form the test sentence boy hears girl, and the net-
works were tested on the prediction task for this sentence.

To strengthen the relations between boy, hears, and
girl, we also included training sentences such as boy
who cat hears obeys John and girl who dog hears likes
Mary. These sentences introduce boy and hears and girl
and hears in the same sentence context (without using
boy hears and hears girl).4 In fact, girl is the object of
hears in girl who dog hears likes Mary, as in the test
sentence boy hears girl.

However, although the RNNs learned the training
sentences to perfection, they failed with the test sentences.
Despite the ability to process boy sees girl and dog hears

cat, and even girl who dog hears likes Mary, they could
not process boy hears girl. The behavior of the RNNs
with the test sentence boy hears girl was similar to the
behavior in a “word salad” condition consisting of
random word strings based on the words used in the train-
ing session. In this “word salad” condition, the RNNs pre-
dicted the next word on the basis of direct word-to-word
associations, determined by all two-word combinations
found in the training sentences. The similarity between
“word salads” and the test sentence boy hears girl suggests
that RNNs resort to word-to-word associations when they
have to process novel sentences composed of familiar
words in familiar grammatical structures.

The results of these simulations indicate that RNNs
of Elman (1991) do not possess a minimal form of the
combinatorial productivity underlying human language
processing. It is important to note that this lack of combi-
natorial productivity is not just a negative result of the
learning algorithm used; the training sentences were
learned to perfection. With another algorithm these sen-
tences could, at best, be learned to the same level of
perfection. Furthermore, the crucial issue here is not
learning but the contrast in behavior exhibited by the
RNNs in these simulations. The RNNs were able to
process (“understand”) boy sees girl and dog hears cat,
and even girl who dog hears likes Mary, but not boy
hears girl. This contrast in behavior is not found in
humans, regardless of the learning procedure used. The
reason is the systematicity of the human language
system. If you understand boy sees girl, dog hears cat,
and girl who dog hears likes Mary, you cannot but under-
stand boy hears girl. Any failure to do so would be
regarded as pathological.5

4.2. Combinatorial productivity versus recursive
productivity

The issue of combinatorial productivity is a crucial aspect
of natural-language processing, which is sometimes
confused with the issue of recursive productivity. Combi-
natorial productivity concerns the productivity that results
from combining a large lexicon with even limited syntacti-
cal structures. Recursive productivity deals with the issue
of processing more complex syntactic structures, such as
(deeper) center-embeddings.

The difference can be illustrated with the “long short-
term memory recurrent networks” (LSTMs). LSTMs out-
perform standard RNNs on recursive productivity (Gers &
Schmidhuber 2001). Like humans, RNNs have limited
recursive productivity, but LSTMs do not. They can, for
example, handle context-free languages such as anbmBmAn

for arbitrary (n, m). However, the way in which they do
this excludes their ability to handle combinatorial
productivity.

An LSTM is an RNN in which hidden units are replaced
with “memory blocks” of units, which develop into
counters during learning. With anbmBmAn, the network
develops two counters, one for the ns and one for the
ms. Hence the network counts whether an matches An

and bm matches Bm. This makes sense because all sen-
tences have the same words, that is, they are all of the
form anbmBmAn. Sentences differ only in the value of n
and/or m. So the network can learn that it has to count
the ns and ms.
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But this procedure makes no sense in a natural
language. The sentence mouse chases cat is fundamentally
different from the sentence cat chases mouse, even
though they are both Noun-Verb-Noun sentences. How
could an LSTM capture this difference? Should the
model, for example, count the number of times that
mouse and cat appear in any given sentence? Consider
the number of possibilities that would have to be dealt
with, given a lexicon of 60,000 words, instead of
four words as in anbmBmAn. Furthermore, how would it
deal with novel sentences, like Dumbledore chases
mouse? Could it develop counters to match Dumbledore
and mouse if it has never seen these words in one sentence
before?

This example illustrates that combinatorial productivity
is an essential feature of natural-language processing but is
virtually nonexistent in artificial languages. The ability to
process complex artificial languages does not guarantee
the ability to process combinatorial productivity as found
in natural language.

4.3. RNNs and the massiveness of the binding problem

Yet RNNs are capable of processing learned sentences
like girl who dog hears obeys Mary and other complex
sentence structures. Perhaps RNNs could be used to
process sentence structures in abstract terms, that is, in
terms of Nouns (N) and Verbs (V). Hence N-who-N-V-V-N
instead of girl who dog hears obeys Mary.

However, sentences such as cat chases mouse and
mouse chases cat are N-V-N sentences and hence indistin-
guishable for these RNNs. But these sentences convey
very different messages that humans can understand. In
particular, humans can answer “who does what to
whom” questions for these sentences, which cannot be
answered using the N-V-N structure processed by these
RNNs.

This raises two important questions for these RNNs.
First, how is the difference between cat chases mouse
and mouse chases cat instantiated in neural terms, given
that this cannot be achieved with RNNs? Second, how
can the structural N-V information processed by these
RNNs be related to the specific content of each sentence?
This is a “binding” problem, because it requires that, for
example, the first N in N-V-N is bound to cat in the first
sentence and to mouse in the second sentence.

However, even if these problems are solved, sentence
processing in terms of N-V strings is still faced with
serious difficulties, as illustrated by the following
sentences:

The cat that the dog that the boy likes bites chases the mouse
(1)

The fact that the mouse that the cat chases roars surprises the
boy (2)

The abstract (N-V) structure of both sentences is the same:
N-that-N-that-N-V-V-V-N. Yet there is a clear difference in
complexity between these sentences (Gibson 1998). Sen-
tences with complement clauses, such as (2), are much
easier to process than sentences with center-embeddings,
such as (1). This difference can be explained in terms of
the dependencies within the sentence structures. In (1)
the first noun is related to the second verb as its object
(theme) and to the third verb as its subject (agent).

In (2), the first noun is related to only the third verb
(as its subject). This difference in structural dependency
is not captured in the sequence N-that-N-that-N-V-V-V-N.

The difference between sentences (1) and (2) again
illustrate the massiveness of the binding problem that
occurs in linguistic structures. Words and clauses have to
be bound correctly to other words and clauses in different
parts of the sentence in line with the hierarchical structure
of a sentence. These forms of binding are beyond the
capacity of language processing with RNNs. Similar limit-
ations of RNNs are found with the problem of variables
(Marcus 2001).

5. Blackboard architectures of combinatorial
structures

A combinatorial structure consists of parts (constituents)
and their relations. The lack of combinatorial productivity
with RNNs illustrates a failure to encode the individual
parts (words) of a combinatorial structure (sentence) in a
productive manner. In contrast, synchrony of activation
fails to instantiate even moderately complex relations in
the case of variable binding. These examples show that
neural models of combinatorial structures can succeed
only if they provide a neural instantiation of both the
parts and the relations of combinatorial structures.

A blackboard architecture provides a way to instantiate
the parts and the relations of combinatorial structures
(e.g., Newman et al. 1997). A blackboard architecture con-
sists of a set of specialized processors (“demons”; Selfridge
1959) that interact with each other using a blackboard
(“workbench,” “bulletin board”). Each processor can
process and modify the information stored on the black-
board. In this way, the architecture exceeds the ability of
each individual processor. For language, one could have
processors for the recognition of words and for the
recognition of specific grammatical relations. These pro-
cessors could then interact by using a blackboard to
process a sentence. With the sentence The little star is
beside a big star, the word processors could store the
symbol for star on the blackboard, first in combination
with the symbol for little and then in combination with
the symbol for big. Other processors could determine
the relation (beside) between these two copies of the
symbol for star. Jackendoff (2002) discusses blackboard
architectures for phonological, syntactic, and semantic
structures.

Here we propose and discuss a neural blackboard archi-
tecture for sentence structure based on neural assemblies.
To address Jackendoff’s (2002) problems, neural word
assemblies are not copied in this architecture. Instead,
they are temporarily bound to the neural blackboard in a
manner that distinguishes between different occurrences
of the same word and that preserves the relations
between the words in the sentence. For example, with
the sentence The cat chases the mouse, the neural assem-
blies for cat and mouse are bound to the blackboard as the
subject (agent) and object (theme) of chases.

With the neural structure of The cat chases the mouse,
the architecture can produce correct answers to questions
like “Who chases the mouse?” or “Whom does the cat
chase?” These questions can be referred to as “binding
questions” because they test the ability of an architecture
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to “bind” familiar parts in a (potentially novel) combinator-
ial structure. A neural instantiation of a combinatorial
structure like The cat chases the mouse fails if it cannot
produce the correct answers to such questions. In
language, binding questions typically query “who does
what to whom” information, which is characteristic of
information provided by a sentence (Calvin & Bickerton
2000; Pinker 1994). Aphasic patients, for example, are
tested on their language abilities using nonverbal “who
does what to whom” questions (Caplan 1992). In
general, the ability to answer binding questions is of funda-
mental importance for cognition because it is related to
the ability to select information needed for purposive
action (van der Heijden & van der Velde 1999).

6. A neural blackboard architecture of sentence
structure

In the architecture, words are encoded in terms of neural
“word” assemblies, in line with Pulvermüller (1999), as
illustrated in Figure 1. It is clear that the relations
between the words in a sentence cannot be encoded by
direct associations between word assemblies. For
example, the association cat-chases-mouse does not
distinguish between The cat chases the mouse and The
mouse chases the cat.

However, relations between words can be encoded –
and Jackendoff’s problems can be solved – if word assem-
blies are embedded in a neural architecture in which
structural relations can be formed between these assem-
blies. Such an architecture can be formed by combining
word assemblies with “structure” assemblies.

A word assembly is a neural structure that is potentially
distributed over a large part of the brain, depending on the
nature of the word (e.g., see Pulvermüller 1999). A part of
that structure could be embedded in a “phonological”
architecture that controls the auditory perception and
speech production related to that word. Other parts
could be embedded in other architectures that control
other forms of neural processing related to other aspects
of that word (e.g., visual perception, semantics).

Here we propose that a part of a word assembly is
embedded in a neural architecture for sentence structure
given by “structure” assemblies and their relations. A word
assembly can be associated (“bound”) temporarily to a
given structure assembly so that it is (temporarily)
“tagged” by the structure assembly to which it is bound.
A word assembly can be bound simultaneously to two or
more structure assemblies. The different structure assem-
blies provide different “tags” for the word assembly that
distinguish between different “copies” of the word
encoded with the word assembly. However, the word
assembly itself is not “copied” or disrupted in this
process, and its associations and relations remain intact
when a word assembly is tagged by a given structure
assembly. Hence any “copy” of a word is always
“grounded” (as discussed in sect. 2.2.1).

Structure assemblies are selective. For example, nouns
and verbs bind to different kinds of structure assemblies.
Furthermore, the internal structure of structure assem-
blies allows selective activation of specific parts within
each structure assembly. Structure assemblies of a given
kind can selectively bind temporarily to specific other

structure assemblies so that a (temporal) neural structure
of a given sentence is created. Hence structure assemblies
can encode different instantiations of the same word
assembly (solving the “problem of 2”) and they can bind
word assemblies in line with the syntactic structure of
the sentence.

Binding in the architecture occurs between word
assemblies and structure assemblies and between struc-
ture assemblies. Binding between two assemblies derives
from sustained (“delay”) activity in a connection structure
that links the two assemblies. This activity is initiated when
the two assemblies are concurrently active. The delay
activity is similar to the sustained activation found in the
“delay period” in working-memory experiments (e.g.,
Durstewitz et al. 2000). Two assemblies are bound
together as long as this delay activity continues.

Figure 2 illustrates the basic neural structure in the
architecture of cat chases mouse. The structure consists
of the word assemblies of cat, mouse, and chases and struc-
ture assemblies for noun phrases (NPs) and verb phrases
(VPs), together with “gating circuits” and “memory
circuits.” Gating circuits are used to activate selectively
specific parts within structure assemblies. Memory circuits
are used to bind two assemblies together temporarily.

The assemblies for cat and mouse are bound to two
different NP assemblies (N1 and N2), and the assembly
for chases is bound to a VP assembly (V1). The structure
assemblies are bound to each other to encode the verb-
argument structure of the sentence. For this purpose,
each structure assembly is composed of a main assembly
(Ni for NP assemblies and Vi for VP assemblies) and one

Figure 2. Illustration of the neural sentence structure of cat
chases mouse in the neural blackboard architecture presented
here. The words are encoded with the word assemblies
illustrated in Figure 1 (sect. 2.1). Sentence structure is
encoded with “structure assemblies” for noun-phrases (NP
assemblies) and verb-phrases (VP assemblies). A structure
assembly consists of a main assembly and a number of
subassemblies connected to the main assembly by means of
gating circuits. The labeled subassemblies represent the
thematic roles of agent (a) and theme (t). Binding between
assemblies is achieved with active memory circuits. Here the
assembly for cat is bound to the NP assembly N1, the assembly
for chases is bound to the VP assembly V1, and the assembly
for mouse is bound to the NP assembly N2. N1 and V1 are
bound by means of their agent subassemblies, and V1 and N2

are bound by means of their theme subassemblies.
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or more subassemblies. In Figure 2, the NP and VP assem-
blies have subassemblies for agent (a) and theme (t).6 To
encode cat as the agent of chases, N1 is bound to V1

with their agent subassemblies. In turn, N2 is bound to
V1 with their theme subassemblies, encoding mouse as
the theme of chases.

Main assemblies and subassemblies also have the ability
of reverberating (“delay”) activity so that they remain
active for a while after they have been activated.
Subassemblies are connected to main assemblies with
gating circuits, which control the flow of activation
within structure assemblies. For example, a main assembly
can be active but its subassemblies not. Control of
activation in structure assemblies is of crucial importance
in the architecture. Before illustrating this in more detail,
we discuss the gating and memory circuits in the
architecture.

6.1. Gating and memory circuits

A gating circuit consists of a disinhibition circuit (e.g.,
Gonchar and Burkhalter 1999). Figure 3 (left) illustrates
a gating circuit in the direction from assembly X to assem-
bly Y. The circuit controls the flow of activation by means
of an external control signal. If X is active, it activates an
inhibition neuron ix, which inhibits the flow of activation
from X to Xout. When ix is inhibited by another inhibition
neuron (Ix) activated by an external control signal, X acti-
vates Xout, and Xout activates Y. A gating circuit from Y to X
operates in the same way. Control of activation can be
direction-specific. With a control signal in the direction
from X to Y, activation will flow in this direction (if X
is active) but not in the direction from Y to X. The

symbol in Figure 3 (left) will be used to represent the com-
bination of gating circuits in both directions (as in
Figure 2).

A memory circuit consists of a gating circuit in which the
control signal results from a “delay” assembly. Figure 3
(right) illustrates a memory circuit in the direction of X
to Y. However, each memory circuit in the architecture
consists of two such circuits in both directions (X to Y
and Y to X). The delay assembly (which controls the flow
of activation in both directions) is activated when X and
Y are active simultaneously (see below) and it remains
active for a while (even when X and Y are no longer
active) because of the reverberating nature of the acti-
vation in this assembly.

A memory circuit has two possible states: active and
inactive. Each state will be represented with the symbol
in Figure 3 (right). If the memory circuit is inactive,
activation cannot flow between the assemblies the circuit
connects. If the memory circuit is active, activation will
flow between the assemblies the circuit connects if one
of these assemblies is active. In this way, an active
memory circuit binds the two assemblies it connects.
This binding lasts as long as the activation of the delay
assembly in the memory circuit. The memory circuits in
Figure 2 are active, binding word assemblies and structure
assemblies (temporarily) in line with the sentence
structure.

6.2. Overview of the blackboard architecture

Figure 4 illustrates the part of the architecture in which
nouns can bind as arguments to verbs (Fig. 2). This part
is illustrative of the overall architecture.

Figure 3. Left: A gating circuit in the direction from assembly X
to assembly Y, based on a disinhibition circuit. The circles depict
neural assemblies, except for the circles labeled with Ix or ix.
These circles depict (groups of) inhibitory neurons. A
combination of two gating circuits in the directions X to Y and
Y to X is depicted in other figures with the symbol illustrated at
the bottom. Right: A memory (gating) circuit in the direction
from assembly X to assembly Y, based on a gating circuit with a
delay assembly for control. A combination of two memory
circuits in the directions X to Y and Y to X is depicted in other
figures with the symbols illustrated at the bottom, one for the
inactive state and one for the active state of this combined
memory circuit.

Figure 4. A neural blackboard architecture for verb-argument
binding. Word assemblies for verbs are connected to the main
assemblies of VP structure assemblies by means of (initially)
inactive memory circuits. Word assemblies for nouns are
connected to the main assemblies of NP structure assemblies
by means of (initially) inactive memory circuits. The agent (a)
and theme (t) subassemblies of the VP and NP structure
assemblies are connected by means of (initially) inactive
memory circuits. Only subassemblies of the same kind are
connected to each other. VP main assemblies are connected to
a population of inhibitory neurons that can initiate competition
between the VP main assemblies; the same applies to NP main
assemblies.
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Each noun (word) assembly is connected to the main
assembly of each NP assembly with a memory circuit
(initially inactive). Likewise, each verb (word) assembly
is connected to the main assembly of each VP assembly
with a memory circuit (initially inactive). Main assemblies
of the same kind are mutually inhibitory. Each NP and VP
main assembly is connected to a number of subassemblies
with gating circuits. The gating circuits can be selectively
activated by neural control circuits (not shown). For
example, the gating circuits between the main assemblies
and the agent subassemblies can be activated without
activating the gating circuits for the theme subassemblies.
Finally, all subassemblies of the same kind are connected
through memory circuits. For example, each agent subas-
sembly of the NP assemblies is connected to each agent
subassembly of the VP assemblies with a memory circuit
(initially inactive).

A new NP assembly will be activated when a new noun
in a sentence is processed. The NP assembly is arbitrary
but “free,” that is, not already bound to a sentence struc-
ture (i.e., all its memory circuits are inactive).7 The
active NP assembly will remain active until a new NP
assembly is activated by the occurrence of a new noun in
the sentence.8 The selection of a VP assembly is similar.

When several structure assemblies have been activated,
the ones activated first will return to the inactive state
because of the decay of delay activity in their memory
circuits. In this way, only a subset of the structure assem-
blies will be concurrently active and “free” structure
assemblies will always be available. As a result, a limited
set of VP assemblies and NP assemblies is needed in this
architecture.

6.2.1. Connection structure for binding in the
architecture. Figure 5 (right) illustrates that the connec-
tion structure between the agent subassemblies in
Figure 4 consists of a matrix-like array of “columns.”
Each column contains a memory circuit (in both direc-
tions) and the delay assembly that can activate the
memory circuit. Each column also contains a circuit to
activate the delay assembly (Fig. 5, left). This circuit is a
disinhibition circuit that activates the delay assembly if
the neurons Nin and Vin are active at the same time.
These neurons are activated by the respective agent subas-
semblies of an NP assembly and a VP assembly.

In the structure of cat chases mouse (Fig. 2), the NP
assembly for cat (N1) is bound to the VP assembly for
chases (V1) with their agent subassemblies. This binding
process is illustrated in Figure 5. The activated agent
subassembly of the (arbitrary) NP assembly Nx activates
the Nin neurons in a horizontal row of columns. Likewise,
the activated agent subassembly of the (arbitrary) VP
assembly Vi activates the Vin neurons in a vertical row of
columns. The delay assembly in the column on the
intersection of both rows will be activated if the agent
subassemblies of Nx and Vi are active simultaneously,
which results in the binding of these agent subassemblies.

The columns within each horizontal and vertical row
(Fig. 5, right) are mutually inhibitory. Inhibition is
initiated by the active delay assemblies (Fig. 5, left).9

Hence, when the agent subassemblies of Nx and Vi are
bound by an active memory circuit, the active delay assem-
bly in their mutual column inhibits all columns in the same
horizontal and vertical row. This prevents a second

binding of Nx with another VP assembly or of Vi with
another NP assembly, with agent subassemblies.

The connection structure in Figure 5 is illustrative of
every connection structure in the architecture in which
assemblies are (temporarily) bound, including the
binding of V1 and N2 (Fig. 2) with their theme
subassemblies.

In the binding process of the sentence in Figure 2, the
assembly for cat is bound to an arbitrary (“free”) NP
assembly by the activated memory circuit that connects
the two assemblies. Likewise, the assembly for chases is
bound to a VP assembly. The binding of cat as the agent
of chases results from activating the gating circuits
between the NP and VP main assemblies and their agent
subassemblies. The active NP and VP main assemblies
(N1 for cat and V1 for chases) will then activate their
agent subassemblies, which results in the binding together
of these two agent subassemblies (as illustrated in Fig. 5).

Gating circuits will be activated by neural control
circuits. These circuits instantiate syntactic (parsing) oper-
ations based on the active word assemblies and the acti-
vation state of the blackboard. In the case of cat chases
mouse, these circuits will detect that in cat chases (or
N-V), cat is the agent of the verb chases. In response,
they will activate the gating circuits for the agent subas-
semblies of all NPs and VPs. The binding of mouse as
the theme of chases proceeds in a similar manner. We
present an example of a control circuit in section 6.8.4
below.

Figure 5. Connection structure for the agent subassemblies in
Figure 4. Left: a delay assembly in a memory circuit (Fig. 3,
right) is activated when the subassemblies connected by the
memory circuit are concurrently active (using a disinhibition
circuit). Right: Each agent subassembly of all NP assemblies is
connected to each agent subassembly of all VP assemblies with a
specific “column” in an array of columns. Each column consists
of the memory circuits that connect both subassemblies,
together with the circuit in on the left. The active subassembly
of Nx will activate all Nin neurons in its horizontal row of
columns. In the same way, the active subassembly of Vi will
activate all Vin neurons in its vertical row of columns. This
results in the activation of the delay assembly in the memory
circuit in the corresponding column of Nx and Vi. In this way,
the connection structure instantiates a logical AND operation.
Columns in horizontal and vertical rows are mutually inhibitory.
Inhibition is initiated by active delay assemblies in the memory
circuits.
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6.2.2. The effect of gating and memory circuits in the
architecture. When a memory circuit is active, activation
can flow between the two assemblies it connects (Fig. 3,
right). The two connected assemblies are then temporarily
associated, or “merged,” into a single assembly. Figure 6a
illustrates the merging of assemblies for the structure of
The cat chases the mouse (Fig. 2). In Figure 6a, the
word assemblies are directly connected (merged) with
the main assemblies of their structure assemblies. Like-
wise, the agent subassemblies and theme subassemblies
are merged into single assemblies (one for agent and one
for theme). The resulting structure shows that the back-
bone of a neural sentence structure in this architecture
is given by the gating circuits.

Figure 6b illustrates what happens if the gating circuits
are removed. Subassemblies (agent, theme) are now also
directly merged with their main assemblies, and structure
assemblies of a different kind are directly connected
through associative links. As illustrated in Figure 6c, the
neural sentence structure in Figures 2 and 6a is hence
reduced to a single merged assembly that results from
directly associating each of the assemblies involved in
the original sentence structure of Figures 2 and 6a. In par-
ticular, Figure 6c shows that the word assemblies for cat,
chases, and mouse are now directly associated, so that
the distinction between the sentences The cat chases the
mouse and The mouse chases the cat is lost.

With the use of gating circuits, the neural blackboard
architecture for sentence structure can solve the “four
challenges for cognitive neuroscience” presented by
Jackendoff (2002) (see sect. 2), as discussed below.

6.3. Multiple instantiation and binding in the architecture

Figure 7a (left, right) illustrates the neural structures of
the sentences The cat chases the mouse, The mouse
chases the cat, and The cat bites the dog in the neural
blackboard architecture (in the manner of Fig. 6a). The
words cat, mouse, and chases occur in more than one

Figure 6. a. The structure of The cat chases the mouse in
Figure 2, represented by merging the assemblies that are
connected through active memory circuits. b. The structure of
The cat chases the mouse in Figure 2 that results when the
gating circuits are removed. c. The structure in Figure 6b with
the merging of the assemblies involved.

Figure 7. a. Left: Combined instantiation of the sentences cat
chases mouse, mouse chases cat, and cat bites dog in the
architecture illustrated in Figure 4. The multiple instantiations
of cat, chases, and mouse in different sentences (and in different
thematic roles) are distinguished by the different NP or VP
structure assemblies to which they are bound. Right: The
activation of the word assembly for cat and the word assembly
for chases due to the question “Whom does the cat chase?”
b. Network of the sentence structures in Figure 7a. Neurons in
gating and memory circuits are represented by black boxes
(inhibitory neurons) and white boxes (excitatory neurons). Main
assemblies (noun or verb) are represented as inverted triangles.
Subassemblies (agent, theme) are represented as upright
triangles. The circles represent the input (control) for the gating
circuits, which activate a gating circuit. These include the delay
assemblies in the memory circuits. Their activity is constant
during simulation. The network also contains inhibitory
populations that initiate winner-takes-all competition between
verb (noun) assemblies. The labels V1 to V3 and N1 to N6 refer
to the VP and NP assemblies in Figure 3. V4 and V5 are two
“free” VP assemblies. W refers to word assemblies. CPG refers
to the central pattern generator.
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sentence, which creates the problem of multiple instantia-
tion (the problem of 2) for their word assemblies.

Figure 7a shows that this problem is solved by the use
of structure assemblies. For example, the word assembly
for cat is bound to the NP assemblies N1, N4, and N5.
Similarly, different VP assemblies (V1 and V2) encode
the verb chases in different sentences. In this way, cat
can be the agent of chases in one sentence (binding N1

and V1 with their agent subassemblies) and the theme of
chases in another sentence (binding N4 and V2 with their
theme subassemblies). Furthermore, cat can also be the
agent of another verb (bites) in a third sentence, using N5.

The internal structure of the NP and VP assemblies
given by the gating circuits is of crucial importance.
Without this internal structure, the neural structures in
Figure 7a would collapse into direct associations
between neural assemblies, which would result in a
failure to distinguish between, for example, The cat
chases the mouse and The mouse chases the cat (as
illustrated in Fig. 6b and c). Using the gating circuits,
the neural structures of these two sentences can be
selectively (re)activated.

6.3.1. Answering binding questions. Selective reacti-
vation of a sentence structure in Figure 7a is necessary
to retrieve information from the blackboard architecture,
that is, to answer specific binding questions such as
“Whom does the cat chase?” This question provides the
information that cat is the agent of chases, which activates
the assemblies for cat and chases (Fig. 7a, right) and the
gating circuit for agent. Furthermore, the question asks
for the theme of chases (i.e., x in cat chases x).

The answer is produced by a competition process
between the VP assemblies in which V1 emerges as
the winner. Figure 7a (right) shows that V1 is activated
by chases and N1 (through cat), whereas V2 is activated
only by chases and V3 is activated only by N5 (through
cat). This results in V1 as the winner of the VP competition.
The activation of the gating circuits for theme will then
result in the activation of N2 by V1, and hence in the acti-
vation of mouse as the answer to the question.

In contrast, the question “Who chases the cat?” will
result in a VP competition in which V2 is the winner.
The difference results from the selective activation of
the gating circuits. Both questions activate the assemblies
for cat and chases, but they activate different gating
circuits. The first question defines cat as the agent of
chases, which produces the activation of the gating circuits
for agent. The second question defines cat as the theme of
chases, which activates the theme-gating circuits so that
N4 (activated by cat) can activate V2. This route of acti-
vation was blocked in case of the first question. With the
second question, V2 emerges as the winner because it
receives the most activation. Then mouse can be produced
as the answer, because the question asks for the agent of
chases (i.e., x in x chases cat).

6.3.2. Simulation of the blackboard architecture. We
have simulated the answer of “Whom does the cat
chase?” with the sentences in Figure 7a stored simul-
taneously in the architecture. The simulation was based
on the dynamics of spiking neuron populations (i.e.,
average neuron activity). In all, 641 interconnected popu-
lations were simulated, representing the word assemblies,

main assemblies, subassemblies, gating circuits, and
memory circuits used to encode the sentences in
Figure 7a. The 641 populations evolved simultaneously
during the simulation. Appendix A1 provides further
details of the simulation.

An overview of the network as simulated is presented in
Figure 7b. We used a visual tool (dot by Gansner et al.
1993) to represent the network. The program dot aims
to place nodes (neurons) at a reasonable distance from
each other and to minimize the number of edge (connec-
tion) crossings. The network presented in Figure 7b is the
same as the network presented in Figure 7a (i.e., the three
sentence structures). Both networks can be converted into
each other by successively inserting the structures
presented in Figures 3, 4, and 5 into the structures
presented in Figure 7a.

Figure 8 (left, middle) illustrates the simulation of the
network with activation of the VP and NP assemblies
labeled in Figure 7b. The Figure also shows (middle)
two “free” VP main assemblies (V4, V5), not used in the
sentence encoding of Figure 7a, to illustrate the activation
of free assemblies in this process. The simulation starts at
t ¼ 0 ms. Before that time, the only active assemblies are
the delay assemblies in the memory circuits (as in Fig. 2).

The question “Whom does the cat chase?” provides
information that cat is the agent of chases and it asks for
the theme of the sentence cat chases x. The production
of the answer consists of the selective activation of the
word assembly for mouse. Backtracking (see Fig. 7a),
this requires the selective activation of the NP main
assembly N2, the theme subassemblies for N2 and V1,
and the VP main assembly V1 (in reversed order).

This process proceeds in a sequence of steps. We used a
central pattern generator (CPG) to control the sequence.
Basically, a CPG consists of a sequence of neurons in
which a neuron is active for a while before activation is
passed on to the next neuron in the sequence. CPGs can
be used in motion control (e.g., Kling and Szekély 1968).
Forms of sequential motion control could provide a

Figure 8. Activation of the neural assemblies in Figure 7a and
7b (in Hz/ms). Left panel: The NP main assemblies N1 to N6.
Middle panel: The VP main assemblies V1 to V5. Right panel:
The word assemblies for cat, chases, and mouse and the
subassemblies for N1 agent and V1 theme. The asterisks
indicate the onset of the control sequence that initiates the
competition process.
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basis for analogous functions in language as well (e.g.,
Dominey 1997). We assume that a question of the type
cat chases x? activates a specific (type-related) CPG. That
is, the same CPG will be initiated with any question of
the form noun verb x?. The CPG used consisted of 15
neurons, each one active for 25 ms. This provides 15 time
steps of 25 ms. The CPG was activated at t ¼ 300 ms
(indicated with the asterisks in Fig. 8). It initiated the
following sequence: activate VP competition (step 1–5),
activate agent-gating circuits (step 1–4), inhibit word assem-
blies (step 5), activate NP competition (step 6), activate
theme-gating circuits for VP assemblies (step 8–11),
and activate theme-gating circuits for NP assemblies
(step 13–15).

Figure 8 shows the activation of the assemblies for cat
and chases (beginning at t ¼ 0 ms). To produce the selec-
tive activation of the word assembly for mouse, other word
assemblies cannot be active at that moment. Therefore
word assemblies are inhibited after a certain time (step
5). The activation of cat results in the activation of the
NP main assemblies N1, N4, and N5 (Fig. 8, left), and
the activation of chases results in the activation of the VP
main assemblies V1 and V2 (Fig. 8, middle). As long as
V1 and V2 are both active, the question “Whom does the
cat chase?” cannot be answered. To produce the answer,
the gating circuits for the theme subassemblies of the VP
assemblies have to be activated, because the question
asks for the theme of cat chases x. However, when both
V1 and V2 are active, this will result in the activation of
the theme subassemblies for V1 and V2 and, in turn, of
mouse and cat (via N2 and N4) as the answer to the ques-
tion. Therefore, to produce mouse as the only answer to
the question, a winner-takes-all (WTA) competition
between V1 and V2 has to occur, with V1 as the winner.

The competition process between the VP assemblies
proceeds as follows. VP main assemblies are connected
to a population of inhibitory neurons. The competition
between the VP assemblies is initiated by activating this
population. The competition between the VP assemblies
is decided by activating the gating circuits for the agent
subassemblies. This results in the activation of the agent
subassemblies of N1, N4, and N5 because they are the
active NP assemblies (Fig. 8, left). The activation of the
N1-agent subassembly is illustrated in Figure 8 (right).

The active agent subassemblies of N1 and N5 are bound
to the VP assemblies V1 and V3 respectively (see Fig. 7a).
Hence the VP assemblies V1 and V3 receive activation
from these NP assemblies when the “agent”-gating circuits
are activated. (The agent subassembly of N4 is not bound
to a VP assembly, because N4 is bound to a VP assembly
with its theme subassembly; see Fig. 7a). As a result, V1

wins the competition between the VP assemblies,
because V1 receives activation from chases and N1,
whereas V2 receives activation only from chases, and V3

receives activation only from N5. (The initial drop in acti-
vation of V1 results from the fact that verb competition and
activation of the agent-gating circuits start at the same
moment, but the activity from N1 has to pass through
the gating circuit to reach V1). Figure 8 (middle) shows
that V1 is the only active VP assembly after this compe-
tition process. After a transient period, the activation of
V1 is given by its delay (reverberating) activation. The
activation of V2 and V3 is reduced to the level of the
“free” assemblies V4 and V5.

When V1 remains as the only active VP assembly, the
answer mouse can be produced by activating the theme-
gating circuits. This will produce the selective activation
of N2, which is the NP assembly bound to mouse in
Figure 7a, provided that the active NP main assemblies
(N1, N4, and N5 in Fig. 8) are inhibited first (step 6 of the
CPG). After the inhibition of the active NP assemblies,
the theme-gating circuits can be activated. As a result,
the theme subassembly of V1 and the main assembly
N2 are now selectively activated as well. Finally, the word
assembly for mouse will be activated (Fig. 8, right).

The dynamics of the network is straightforward, despite
its apparent complexity. The simulation of the network in
Figure 7b covers all aspects of the dynamic interaction in
the blackboard that is needed to answer binding questions.
This results from the modular nature of the architecture
and the chainlike nature of sentences structures. Only
assemblies of the same kind interact in the architecture,
for example, VP assemblies with VP assemblies and NP
assemblies with NP assemblies. The same is true for
other types of structure assemblies that will be introduced.
Furthermore, different kinds of assemblies interact only
through the specific subassemblies with which they are
connected (i.e., temporarily bound) and which are
selectively activated in the interaction process. Each of
these bindings in the architecture is of the same kind.
That is, with a specific subassembly (e.g., theme), a
structure assembly of a given kind (e.g., VP) can bind
(and hence interact) with only one other structure assem-
bly, which has to be of a different kind (e.g., NP). These
interactions have also been simulated with the network
in Figure 7b.

Figures 7 and 8 illustrate that the neural blackboard
architecture can solve the binding problem in language
on the level of verb-argument binding. However, exten-
sions of the neural blackboard architecture presented so
far are needed to handle the more massive form of
binding found in linguistic structures (Jackendoff 2002).
For the remainder of the paper we use structures like
those in Figure 7a to discuss the encoding of sentence
structures in the architecture. However, each of the struc-
tures we present can be transformed into a network as
illustrated in Figure 7b.10

6.4. Extending the blackboard architecture

A first extension of the architecture is introduced in
Figure 9. As Bickerton argued (Calvin & Bickerton
2000), an important step in the evolution of language
consisted of the transformation illustrated in the top half
of Figure 9. The left diagram represents a sentence struc-
ture in protolanguage. The diagram on the right represents
a basic sentence structure in modern language. One
argument of the verb is placed outside the verb’s direct
influence (i.e., the verb phrase), in a controlling position
of its own (as the subject).

The bottom half of Figure 9 shows a similar transition in
terms of our neural architecture. The left structure is the
structure of cat chases mouse of Figure 2. For conven-
ience, we have introduced a (further) shorthand presen-
tation of this structure in Figure 9. As in Figures 6a and
7, memory circuits are not shown, and bounded subassem-
blies are presented as one. Here the gating circuits are not
shown as well, and words are simply written close to their
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structure assemblies.11 However, the full structure of
Figure 2 is still implied. The shorthand version does not
result in ambiguities: subassemblies are always connected
to their main assemblies with gating circuits, subassem-
blies are always bound to other subassemblies with
active memory circuits, and word assemblies are always
bound to structure assemblies of the corresponding type
(e.g., nouns to NP assemblies).

The left sentence structure in the bottom half of
Figure 9 resembles the left diagram in the top half of
the Figure. In turn, the sentence structure on the right
in the bottom half of the Figure (also in shorthand presen-
tation) resembles the diagram on the right in the top half
of the Figure. In this sentence structure, the NP of cat is
not directly bound to the VP of chases. Instead, it is
bound to a new “sentence” structure assembly (S).
Binding is achieved through the noun subassembly (n) of
the NP assembly (not shown in Fig. 4) and the correspond-
ing noun subassembly of the S assembly. Likewise, the VP
assembly is bound to S with verb subassemblies (v).

The connection structures of the noun subassemblies
and the verb subassemblies are similar to the connection
structure illustrated in Figure 5. Furthermore, the S
main assemblies can inhibit each other as the NP and
VP main assemblies can (Fig. 4). This does not mean
that only one sentence at a time could be stored in the
blackboard. As illustrated in Figure 2, information is
stored in the blackboard by means of active delay assem-
blies, which are not mutually inhibitory (except in the
manner illustrated in Fig. 5). The inhibitory interaction
between main assemblies of the same kind is needed
when information is stored or retrieved, as in answering
binding questions (Fig. 8).

The dotted line between the noun and verb subassem-
blies in Figure 9 indicates that these subassemblies can
be used to encode agreement between the subject cat
and the verb chases (as in cat chases versus cats chase).

For example, S assemblies could have different noun
and verb subassemblies for single and plural, which can
be activated selectively. Once a noun is bound to the
noun subassembly for single, this subassembly will
enforce a binding of the verb to a verb subassembly for
single as well.

Further extensions of the architecture proceed along
similar lines. They consist of the introduction of new struc-
ture assemblies and new subassemblies needed for appro-
priate binding. New assemblies can be added because of
the modular structure of the architecture.

6.4.1. The modular nature of the blackboard
architecture. The modular nature of the blackboard archi-
tecture is illustrated in Figure 10 with the structure for
Jackendoff’s (2002) sentence The little star is beside a
big star. The new structure assemblies here are deter-
miner assemblies (D1 and D2), adjective phrase assemblies
(Adj1 and Adj2), and prepositional phrase assemblies (P1).
The Di assemblies are bound to NP assemblies with deter-
miner subassemblies (d), the Adji assemblies are bound to
NP assemblies with adjective subassemblies (adj), and the
Pi assemblies are bound to VP assemblies with preposi-
tion-verb subassemblies (pv) and to NP assemblies with
preposition-noun subassemblies (pn). The connection
structure of each of these new kinds of subassemblies is
again similar to the connection structure in Figure 5.
Main assemblies of the same kind are again mutually
inhibitory.

This sentence structure again illustrates the solution of
the problem of 2 provided by the architecture, and it illus-
trates the solution of the massiveness of the binding
problem in linguistic structures. The word assembly for
star can participate in two different constituents of the sen-
tence because it is bound to two different NP assemblies.
Bound to N1, star has the determiner the and the adjective
little, and it constitutes the subject of the sentence, bound
directly to S. Bound to N2, star has the determiner a and
the adjective big, and it is bound to the preposition
beside, which is bound to the verb of the sentence.

Questions can be again be answered by selectively
activating structure assemblies and gating circuits. For
example, the question “Which star is beside a big star?”
can be answered if S1 is activated together with the
gating circuits for the noun subassemblies (the question
asks for the adjective of the subject). When N1 is activated,
D1 and Adj1 can also be activated, which produces
the answer the little star. S1 will be activated because of
the information is beside a big star provided by the
question. The phrase a big star activates N2, which hence
initially wins the competition over N1. However, after
the selection of S1, N1 will be activated because of the
activation of the “subject”-gating circuits. Conversely,
the question “Where is the little star?” produces the
activation of S1 and V1, and it asks for the prepositional
phrase of the sentence. The answer will result from
activating the gating circuits for the preposition-verb
subassemblies.

The sentence structure in Figure 10 raises the question
of how many different kinds of structure assemblies would
be needed in the neural blackboard architecture. A
preliminary answer is that the architecture would have a
particular kind of structure assembly for each kind of con-
stituent that can occur in a linguistic structure. In section

Figure 9. Top: Transformation of sentence structure in
protolanguage (left) to sentence structure in modern language
(right), after Calvin & Bickerton (2000). Bottom: similar
transformation in terms of neural sentence structures. The
neural sentence structure of cat chases mouse on the left is the
same as in Figure 2, but in a shorthand presentation. The
neural sentence structure of cat chases mouse on the right (also
in shorthand presentation) consists of a new structure assembly
for sentence (S), with subassemblies for noun (n) and verb (v).
The dotted line between the noun and verb subassemblies
represents the possibility of encoding agreement between
subject and verb by means of these subassemblies.
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6.8.1 below, we illustrate this point with the encoding of
embedded clauses. First, however, the two remaining pro-
blems presented by Jackendoff (2002) have to be solved:
the problem of variables and the problem of how a combi-
natorial structure encoded in neural activity can be stored
in long-term memory (i.e., constituent binding with
activation versus constituent binding with synaptic
modification). We begin with the latter problem.

6.5. Constituent binding in long-term memory

An important role in the process of storing information in
long-term memory is played by the hippocampus and
surrounding areas (hippocampal complex; Nadel &
Moscovitch 2001). The hippocampal complex (HC) has
the ability for rapid storage of information by means of
synaptic modifications (Rolls & Treves 1998), depending
on, for example, long-term potentiation (LTP).

In the view of the “Hebb-Marr” model (McNaughton &
Nadel 1990), HC neurons form a conjunctive encoding of
neurons that are concurrently active in the cortex (e.g.,
O’Reilly & Rudy 2001; Rolls & Treves 1998). The encod-
ing results from the modification of the synapses between
the active neurons in the cortex and the active neurons in
the HC. Combined, the neurons form an autoassociator
(Marr) or a cell assembly (Hebb) that can be reactivated
as a whole after activating a part of it. In this way, the
HC forms a “snapshot-like” memory of an event with a
duration of about a second (Rolls & Treves 1998). Given
the “sparse connectivity” structure of the HC, different
events or episodes can be separated in memory because
they can be encoded with different and nonoverlapping
groups of neurons in the HC (O’Reilly & Rudy 2001).

A crucial aspect of encoding with HC neurons is the
unstructured nature of the information stored (Roll &
Treves 1998); that is, the HC acts as a simple binding
device forming a conjunctive encoding of the input that
is concurrently available. The HC does not, by itself,

encode systematic relations within the input (O’Reilly &
Rudy 2001). Therefore, as described by O’Reilly & Rudy
(2001, p. 320): “all relationship information must be
present in the inputs to the hippocampus, which can
then bind together the relational information with other
information about the related items in a conjunction.”

Figure 11 (left) illustrates what this means in terms of
the word assemblies activated (within a second or so) by
the sentence The cat chases the mouse. The HC will
form a conjunctive encoding of the word assemblies but
not of their relations.12 The same conjunctive encoding
of the word assemblies will be formed with the sentence
The mouse chases the cat. Hence HC conjunctive encod-
ing of word assemblies creates the familiar binding
problem. Reactivation by the HC will reactivate the
word assemblies for cat, mouse, and chases but not the
structure of either sentence.

The problem can be solved by including relationship
information in the input to the HC, as described by
O’Reilly & Rudy (2001). This will occur if the activity in
the neural blackboard architecture is included in the
input to the HC (Fig. 11, right). In this way, the HC can
reactivate a neural sentence structure by reactivating the
neural blackboard. Figure 11 (right) illustrates that a
neural blackboard architecture plays a crucial role in the
process of storing combinatorial structures in long-term
memory (i.e., in terms of synaptic modification). Even a
conjunctive encoding as provided by the HC is sufficient
if the activity in the blackboard is included in the
encoding.

With longer sentences, the HC will encode the sentence
structure in terms of a sequence of events, each consisting
of a conjunctive encoding of a part of the sentence struc-
ture. Figure 12 illustrates this process for the structure
of The little star is beside a big star presented in
Figure 10. Figure 12 also illustrates that encoding in the
HC will be a form of distributed encoding. Here two
partly overlapping sets of HC neurons encode two differ-
ent parts of the sentence, which could also be partly over-
lapping. The whole sentence structure can be reactivated
if some of the HC neurons reactivate the part of the
sentence structure they encode. The overlap between
the HC encoding and the two sentence structures can
then result in the activation of the remaining part of the
sentence structure.

Figure 11. Left: Conjunctive encoding of the assemblies for
cat, chases, and mouse with a neuron (or group of neurons) in
the hippocampal complex (HC). Right: Conjunctive encoding
of the neural sentence structure of cat chases mouse with a
neuron (or group of neurons) in the HC.

Figure 10. Neural sentence structure for The little star is beside
a big star. The structure assemblies are similar to those in
Figure 9 (bottom right), with new structure assemblies for
determiner (Di), adjective phrase (Adji) and prepositional
phrase (Pi), and new subassemblies for determiner (d),
adjective (adj), preposition-verb (pv) and preposition-noun (pn).
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6.5.1. One-trial learning. In particular, the activity of the
delay assemblies in the memory circuits has to be included
in the input to the HC, because the structure of a sentence
is completely determined by the set of active delay assem-
blies. In fact, as hinted at in Figure 11 (right), the HC
encoding would not have to include all (or even any) of
the word assemblies of the sentence. The overall structure
can be retrieved (i.e., binding questions can be answered)
as long as the delay assemblies can be reactivated by
the HC.

The fact that HC encoding of the active delay assemblies
is sufficient to store the sentence structure in memory
constitutes an important aspect of the use of delay activity
as a binding mechanism. The delay assemblies in the black-
board can remain active concurrently without causing
interference, unlike the word and structure assemblies.
The reverberating activity of delay assemblies will then
provide sufficient time for the process of synaptic
modification to proceed (e.g., long-term potentiation
takes in the order of 1–4 seconds, and spoken sentences
are processed in the order of 3–4 words per second).

In particular, this solves the problem of one-trial learn-
ing, as described by Jackendoff (2002, p. 66):

It is usually argued that transient connections have the effect of
gradually adjusting synaptic weights (so-called Hebbian learn-
ing). But what about cases in which one trial is sufficient for
learning? For example, you say to me, I’ll meet you for lunch
at noon. I reply, OK, and indeed we do show up as agreed.
My long-term memory has been laid in on the basis of one
trial; there hasn’t been any opportunity to adjust synaptic
weights gradually.

Figure 11 (right) illustrates how one-trial learning can
proceed by means of the blackboard architecture. The
word assemblies in The cat chases the mouse are indeed
activated briefly, to prevent the interference effects that
would otherwise occur. But the delay assemblies can
remain active for a longer period because they do not
interfere with each other. This provides the opportunity
to adjust the synaptic weights between the HC and the
delay assemblies gradually, in line with Hebbian learning.
In this way, a long-term memory of a sentence structure
can be formed on the basis of one trial.

6.5.2. Explicit encoding of sentence structure with
synaptic modification. Although the conjunctive encod-
ing of the blackboard by the HC provides an encoding
of sentence structure in terms of synaptic weights, retrie-
val of information from long-term memory would require
that the blackboard activation of the sentence structure is
reactivated by the neurons in HC, probably in a sequence
as illustrated in Figure 12. One could imagine that a more
explicit encoding of a sentence structure in terms of synap-
tic weights would be possible, which on its own could be
used to retrieve information. An important function of
the HC is indeed to provide a quick but temporal
storage of information, so that the interaction between
the HC and the cortex can result in a (slower) transference
of that information to the cortex, where it can be incorpor-
ated in the existing knowledge base (O’Reilly & Rudy
2001). After such a process, a sentence structure could
be encoded explicitly in the cortex in terms of synaptic
modification.

Figure 13 presents a neural structure of The cat chases
the mouse in terms of synaptic modification (the structure
in the brackets represents the shorthand version). As in
Figure 2, the structure consists of word assemblies, struc-
ture assemblies, and the appropriate bindings between the
assemblies. The word assemblies in Figure 13 are the same
as those in Figure 2. The structure assemblies in Figure 13
are of the same kind as those in Figure 2 (NP and VP).
Structure assemblies in Figure 13 also consist of main
assemblies and subassemblies connected to gating circuits.
However, binding in Figure 13 is not achieved by memory
circuits (as in Fig. 2) but instead consists of synaptic
modification. In this way, the word assemblies are directly
connected to the main assemblies. Subassemblies of the
same kind are also directly connected to each other,
effectively forming a single assembly.

The structure assemblies in Figure 13 do not belong to
the blackboard architecture illustrated in Figure 4.
Binding in the architecture of Figure 4 is always tempor-
ary, lasting only as long as the activity of the delay assem-
blies in the memory circuits. When the delay assemblies
in the memory circuits connected to a structure assembly
are no longer active, the structure assembly can be

Figure 12. Encoding of the neural sentence structure of The little star is beside a big star (Fig. 10) with partly overlapping sets of
neurons in the hippocampal complex (HC). Each set of neuron encodes a part (“episode”) of the sentence structure. Both parts can
be overlapping.
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reused in the encoding of a different sentence structure
(again temporarily). This characteristic is the basis of
the productivity of the architecture in Figure 4. With the
ability to reuse the structure assemblies again and again,
the architecture can encode arbitrary and novel sentence
structures on the fly.

In contrast, the structure assemblies in Figure 13
cannot be reused in this way. Because of binding with
synaptic modification, the structure in Figure 13 is of a
more permanent nature created specifically for this
particular sentence structure. A knowledge base of this
kind can only consist of a collection of sentence structures
(“facts”) that have actually been encountered. Further-
more, each structure will be created after a (prolonged)
learning process in line with the transference of infor-
mation between the HC and the cortex discussed above.
Hence it is possible that the sentence The cat chases the
mouse belongs to this knowledge base but the sentence
The mouse chases the cat does not.

6.6. Variable binding

The knowledge base illustrated with the sentence struc-
ture in Figure 13 can be used in a rule-based derivation
with variable binding, such as the derivation that
own(Mary, book) follows from give(John, Mary, book).
Here we discuss how the binding question “What does
Mary own?” can be answered on the basis of the fact
(proposition) John gives Mary a book and Mary gives
John a pen. In section 3, we argued that the model of
Shastri and Ajjanagadde (1993b), based on synchrony
of activation, is faced with serious difficulties in the case
of such a proposition because of the multiplication of
the arguments John and Mary in different roles in the
proposition (i.e., the problem of 2).

Figure 14 shows how the combination of the facts John
gives Mary a book and Mary gives John a pen will be
encoded in terms of the neural structure introduced in
Figure 13 (using the shorthand presentation). The verb
give(x, y, z) has three arguments (agent, recipient, and
theme); hence the VP and NP assemblies have an
additional subassembly for recipient (r). The word
assembly for give is connected to two VP main assemblies
(V1 and V2), which are mutually inhibitory. V1 is bound to
the NP assemblies for John (N1), Mary (N2), and book (N3)
in such a manner that it encodes the fact give(John, Mary,
book). Similarly, V2 is bound to the NP assemblies for
Mary (N4), John (N5), and pen (N6) in such a manner
that it encodes the fact give(Mary, John, pen).

Even though the fact Mary owns a book does not belong
to the knowledge base, the question “What does Mary
own?” can be answered on the basis of the fact John gives
Mary a book by transforming the information provided
by the question into information related to give(x, y, z).
The question “What does Mary own?” provides the infor-
mation that Mary is the agent of own, and it asks for the
theme in the proposition. In short, the question provides
information of the form own(Mary,?). In terms of
give(x, y, z), the question provides the information that
Mary is the recipient of give, and it asks for the theme in
the proposition. In short, the question provides information
of the form give(-, Mary, ?). In general, information of the
form own(X, ?) can be transformed into information of the
form give(-, X, ?) on the basis of a long-term association
between own-agent and give-recipient (as in the model of
Shastri and Ajjanagadde 1993b).

In line with the process of answering binding questions
(sects. 6.3.1. and 6.3.2.), the information of the form
own(X, ?) will produce the activation of the assembly for
own and the gating circuits for agent. In contrast, the
information of the form give(2, X, ?) will produce the
activation of the assembly for give and the gating circuits
for recipient. Therefore the activation produced by
own(X, ?) cannot be concurrently active with the acti-
vation produced by give(2, X, ?). In Figure 14, this
would result in the activation of give and the combined

Figure 13. Explicit encoding of neural sentence structure in
long-term memory, illustrated with the sentence cat chases
mouse. Word assemblies are bound to main assemblies of
structure assemblies with synaptic modification, with nouns to
noun-phrase (NP) assemblies and verbs to verb-phrase (VP)
assemblies. Subassemblies of the same kind are bound with
synaptic modification. This effectively results in a single
subassembly, as illustrated with the agent (a) and theme (t)
subassemblies of NP and VP assemblies. A shorthand
presentation of the sentence structure is given in brackets.

Figure 14. The explicit encoding of the (combined) neural
structures of John gives Mary a book and Mary gives John a
pen in long-term memory, in the manner of the structure
presented in Figure 13 (with shorthand presentation). The
subassemblies include a new subassembly for recipient (r). VP
main assemblies are mutually inhibitory.
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activation of the gating circuits for agent and recipient.
The VP assemblies V1 and V2 would then receive an
equal amount of activation when the assembly for X
(Mary) is active, so that book and pen would have an
equal probability of being produced as the answer to the
question.

Concurrent activation produced by own(X, ?) and
give(2, X, ?) would be prevented if the activation pro-
duced by own(X, ?) consists of an “attractor” state (Amit
1989) of a control network, which is associated with the
attractor state in the control network produced by
give(2, X, ?). First, the control network will be in the
attractor state related to own(X, ?). But when an answer
is not produced in this way (because own(Mary, book)
does not belong to the knowledge base), the attractor
state in the control network would change into the associ-
ated attractor state that corresponds with give(2, X, ?).13

When the information related to give(2,Mary,?) is
singled out, the answer can be produced by activating
Mary and give and the gating circuit for recipient. As
illustrated in Figure 14, this will result in V1 as the
winner of the competition between the VP assemblies
(as in Fig. 8). After that, the answer can be produced by
activating the gating circuits for theme.

The transformation of the information related to own(X, ?)
into information related to give(2, X, ?) does not depend on
Mary or on any of the other word assemblies in Figure 14
(i.e., book, pen, or John). It depends only on the association
between own-agent and give-recipient. Hence the derivation
of own(Mary, book) from give(John, Mary, book) is a rule-
based derivation with variable binding. The same process
can operate on the blackboard architecture in Figure 4, so
that a novel structure like give(Dumbledore, Harry, broom)
can result in the answer to the question “What does Harry
own?”

6.6.1. Neural structure versus spreading of activation. In
the neural structure illustrated in Figure 14, the fact
give(John, Mary, book) can be used to answer the question
“What does Mary own?” even though the fact give(Mary,
John, pen) is also instantiated in the architecture. The
two facts do not interfere with each other because
the gating circuits control the flow of activation in the
structure assemblies.

Figure 15 shows the collapse of the structure presented
in Figure 14 when the gating circuits are removed, to illus-
trate again the importance of activation control provided
by the gating circuits in the neural structures presented
here (see also Fig. 6b and c). Without the gating circuits,
a main assembly and its subassemblies merge into a
single assembly. In fact, the NP assemblies can be
omitted altogether, because the word assemblies for
the nouns are now directly connected to the VP main
assemblies V1 and V2. Because all assemblies are now
directly connected through excitatory or inhibitory con-
nections, processing depends only on spreading of acti-
vation. The information related to give(2,Mary,?)
results in the activation of the assemblies for give and
Mary. Because of the uncontrolled spreading of activation,
the activation of give and Mary results in an equal
activation of V1 and V2, so that a correct answer to the
question cannot be given without ambiguity or error.

In fact, any question will result in ambiguities or error in
this uncontrolled spreading of activation network. For

example, a question like “Who gives a book?” will result
in the activation of both John and Mary as potential
answers, even though V1 will win the competition over
V2. In contrast, in the structure in Figure 14, the question
“Who gives a book?” will result in John as the answer,
because the question will result in the activation of the
gating circuits for agent after V1 has won the VP
competition.

6.7. Summary of the basic architecture

The ability of the architecture to encode arbitrary sen-
tence structures is based on the fact that binding
between a word assembly and a structure assembly and
between two structure assemblies is only temporal. The
duration of the binding between two assemblies is given
by the duration of the reverberating activity of the delay
assembly in the memory circuit that connects the two
assemblies. When the reverberating activity in the delay
assemblies disappears, the structure assemblies are
“free” again, which means that they can be used to
encode another sentence structure. Furthermore, only a
small set of structure assemblies is needed in the architec-
ture (enough to account for the memory span of language
users and the duration of reverberating activity). As a
result, an arbitrary number of sentence structures can be
encoded without an explosion of structure assemblies.

Binding in this architecture is not a state of the system
that needs to be observed for read-out purposes (as in
the case of binding with synchrony of activation).
Instead, it is a process in which binding relations can be
retrieved by posing “binding questions.” A system can
only answer a binding question on the basis of information
that is available to the system itself. Hence the answer to a
binding question shows that the system has solved the
binding problem implicated in the question. For
example, mouse is bound to chases as its theme when it
emerges as the answer to the question “Whom does the
cat chase?” as illustrated in Figures 7 and 8. The process
of answering binding questions affects (manipulates) the
activity of the structure and word assemblies, as illustrated
in Figure 8. But the activity of the delay assemblies is not
disrupted by the process of answering binding questions.
This is crucial for retrieving the binding information in
the architecture, because that information is based on

Figure 15. Illustration of the collapse of the neural structures
presented in Figure 14 when the gating circuits are removed.
The result is a network of assemblies based on spreading of
activation.
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the activity of the delay assemblies (and not on the activity
of the word and structure assemblies). Hence read-out is
always possible as long as the delay assemblies remain
active. Subsequent processing stages can retrieve infor-
mation in this way from the architecture and use that,
for example, to produce a long-term memory structure
of the binding relations in the sentence, as illustrated in
Figures 13 and 14.

The process of encoding a sentence structure is con-
trolled by neural circuits that can selectively activate a
specific type of gating circuits, such as the gating circuits
for the VP agent subassemblies. An example of a control
circuit will be given below. The type of gating circuit
that is activated at a given moment is determined by
syntactic structure of the sentence. Hence the neural
circuits that control the encoding of a sentence structure
instantiate basic parsing operations. Activated gating
circuits will activate subassemblies, which can then
bind in the manner illustrated in Figure 5. Binding
between subassemblies depends on the concurrent acti-
vation of these assemblies at a given moment. In that
case, they activate a specific delay assembly by means
of a circuit that instantiates an AND operation, as illus-
trated in Figure 5. Other circuits that instantiate AND
operations (e.g., see Koch 1999) could also be used for
this purpose.

The process of retrieving information (answering
binding questions) in the architecture requires a form of
dynamic control. As noted, this form of control does not
depend on the information stored in the blackboard.
Instead, the sequence depends on the type of the question
asked. This form of control is not unlike that found in
motor behavior, which also depends on a precise sequence
of excitation and inhibition of muscle innervations.

The activation in the architecture is a form of working
memory that is specific for encoding language structure.
To show how information encoded in this way can be
transferred to long-term memory, we introduced the hip-
pocampus (and surrounding areas) as a “simple” binding
device, in line with the literature on that subject. This
does not mean that the hippocampus would be necessary
for encoding sentence structure in the architecture itself.
Sentence encoding in the blackboard architecture can
occur independently of the hippocampus. In fact, the
activity of the delay assemblies that encodes a sentence
structure in the blackboard is needed for the use of the
hippocampus as a simple binding device, as illustrated in
Figures 11 and 12.

6.8. Structural dependencies in the blackboard
architecture

As Jackendoff (2002) noted, a solution of the “four
challenges for cognitive neuroscience,” as presented
above, would allow a more productive interaction
between neural network modeling and linguistic theory
to begin. To illustrate the possibility of such an interaction,
we will discuss the neural blackboard structures of the
sentences (1) and (2), discussed in section 4.2. They are
repeated here for convenience:

The cat that the dog that the boy likes bites chases the mouse
(1)

The fact that the mouse that the cat chases roars surprises the
boy (2)

In section 4.3, we argued that these two sentences pose a
problem for models that process sentences in terms of
strings of word category labels (N-V strings). Both sen-
tences have the same word category structure (N-that-N-
that-N-V-V-V-N) but they are different in terms of
complexity (Gibson 1998), with (1) rated as far more
complex than (2). The difference in complexity between
the sentences is related to the different bindings
between the constituents in both sentences. In (1), the
subject of the main clause (cat) is also an argument
(theme) of a verb in an embedded clause (bites),
whereas in (2), the subject of the main clause ( fact) is
not an argument of any of the verbs in the embedded
clauses (chases and roars). The contrast between (1) and
(2) forms an interesting example of the massiveness of
the binding problem that occurs in language.

A neural instantiation of sentence structure has to
account for the differences in constituent binding illus-
trated with sentences (1) and (2), as any linguistic theory
of sentence structure would have to do. But a neural
instantiation of sentence structure should also provide an
explanation of the observed differences in complexity
between these sentences (and other performance effects;
van der Velde 1995).

As noted, the structural difference between sentences
(1) and (2) is related to the nature of the embedded
clauses they contain. Therefore we first have to discuss
how embedded clauses can be instantiated in the neural
architecture presented here.

6.8.1. Embedded clauses in the blackboard architecture.
Figure 16a presents the structure of the sentence The cat
that bites the dog chases the mouse (without the deter-
miners the). This sentence contains the subject-relative
clause that bites the dog. To encode and bind this
clause, a new clause structure assembly (C) is introduced,
with a new clause subassembly (c). C assemblies play a role
in the encoding of a clause that is similar to the role played
by S assemblies in the encoding of the main sentence (cat
chases mouse in Fig. 16a). However, there are a few differ-
ences between the roles played by S and C assemblies,
which motivate their distinction.14 C assemblies have to
be bound to one of the structure assemblies in the sen-
tence, as illustrated with the binding between C1 and N1

in Figure 16a, which requires a new kind of subassembly
(c). Furthermore, the word assemblies of complementi-
zers can bind to C assemblies, as illustrated by that in
Figure 16a.

A verb (verb-phrase) can only have a single argument
for each of its thematic roles, but a noun (noun-phrase)
can be the argument of two verbs. That is, a noun can
bind to the verb on the same level as the noun in the
sentence structure (the “sister” of the noun) and it can
bind to a verb in a subordinate clause. Because binding
is achieved with subassemblies in this architecture, differ-
ent subassemblies will be needed for binding a noun to its
“sister” verb and to a subordinate verb. In Figure 16a, to
encode that cat is the subject of the verb in its subordinate
clause (bites the dog), N1 binds through a nc (noun-clause)
subassembly to the n subassembly of C1. The nc subassem-
bly of N1 is similar to its n subassembly, except that it is
activated under the influence of the (subordinate) clause
C1, introduced with that.
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Like S assemblies, C assemblies can be used to encode
agreement between subject and verb. In the case of a
subject-relative clause, agreement exists between subject
of the main sentence (cat) and the verb of the relative
clause (bites), as indicated with the dotted line between
the noun and verb subassemblies of the C assembly in
Figure 16a.

Figure 16b presents the structure of the sentence The
cat that the dog bites chases the mouse. This sentence con-
tains the object-relative clause that the dog bites. In this
case, dog is the subject of bites, so it is bound to the
noun subassembly of C1 by its n subassembly (because
bites is a sister of dog in the clause). As before, agreement
between dog and bites is encoded by agreement between
the noun and verb subassemblies of C1, as indicated
with the dotted line. In an object-relative sentence such
as The cat that the dog bites chases the mouse, the
subject of the main sentence is the theme of the verb in
the relative (subordinate) clause. To this end, the tc

(theme-clause) subassembly of N1 (cat) is used to bind
to the t subassembly of V2 (bites). The tc subassembly of
N1 is similar to its t subassembly, except that it is activated
under the influence of the subordinate clause, as in the
case of the nc subassembly of N1.

The activation of the tc subassembly of N1 poses a
problem for the control of binding in this sentence.
When V2 is active, N2 is the active NP assembly, not N1.
Therefore the tc subassembly of N1 has to be activated
before the activation of N2 (a subassembly can remain
active even if its main assembly is deactivated). Hence
the gating circuits for theme clause have to be activated
before the activation of the main assembly of N2. With
the object-relative sentence in Figure 16b, the control cir-
cuits could conclude from the sequence cat that dog (or N
that N) that cat is the theme of a verb in the clause, so the
gating circuits for tc have to be activated before the
activation of N2. This control of activation is not needed
for the subject-relative sentence in Figure 16a. Further-
more, the theme of bites (V2) in Figure 16a presents
itself directly with the occurrence of dog (N2), resulting
in a direct binding between V2 and N2. In Figure 16b,

the theme of bites (cat-N1) can bind only to V2 because
of the prolonged activation of tc. These activation
differences between the structures in Figure 16b and
Figure 16a could be the basis for the fact that object-
relative sentences are more difficult to process than
subject-relative sentences (Gibson 1998).

Because a verb can have only one argument, the distinc-
tion between t and tc subassemblies needed for NP assem-
blies does not occur with VP assemblies. For the same
reason, the distinction between n and nc subassemblies
needed for NP assemblies does not occur with C assem-
blies. In this way, the verb bites can have only one
subject (either cat-N1 in Fig. 16a or dog-N2 in Fig. 16b)
and only one theme (either dog-N2 in Fig. 16a or cat-N1

in Fig. 16b).
In the case of a sentence The cat that the dog bites

chases the mouse (Fig. 16b), the question “Who bites the
cat that chases the mouse?” can be answered by activating
the word assemblies and the gating circuits in the direction
from mouse (theme) to chases (subject) to cat (theme) to
bites. This will result in bites (V2) winning the competition
(in particular, because it receives more activation from cat
(N1) than chases (V3) receives from mouse (N4).

An interesting comparison can be made with answering
the question “Whom does the cat that chases the mouse
bite?” with the sentence The cat that bites the dog
chases the mouse (Fig. 16a). The difficulty here is that
cat is the subject (agent) of both chases and bites. So it
has to be figured out that cat bites dog is an embedded
clause, that is, that activating the gating circuits in the
direction from mouse to chases to cat results in the
activation of the S assembly instead of the C assembly.
In other words, the architecture predicts that answering
this question will be more complex than answering “Who
bites the cat that chases the mouse?” with the sentence
The cat that the dog bites chases the mouse. Notice
that this difference in complexity is the reverse of that
of the sentences involved. That is, the object-relative
sentence The cat that the dog bites chases the mouse is
more complex than the subject-relative sentence The cat
that bites the dog chases the mouse (Gibson 1998).

Figure 16. a. Illustration of the neural sentence structure of The cat that bites the dog chases the mouse (without the determiners). The
structure is based on the sentence structure presented in Figure 9 (bottom right) with the addition of a clause structure assembly (C)
and a clause subassembly (c). The dotted lines represent agreement between subject and verb. b. Illustration of the sentence structure
of The cat that the dog bites chases the mouse, using the same kind of structure assemblies as in a.
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6.8.2. Multiple embedded clauses. Figure 17 illustrates
the structure of The boy sees the mouse that likes the
dog that chases the cat.

The right-branching nature of this sentence structure is
a straightforward extension of the structure in Figure 16a.
In this case, each embedded clause is attached to the
theme of its superordinate clause. The structure can
easily be constructed in an incremental manner by
binding each new C assembly to the last active NP
assembly. This is in agreement with the fact that strictly
right-branching sentences are easy to process in English
(Gibson 1998).

Figure 17 illustrates (again) how the constituent
structure of a sentence can be instantiated in the neural
architecture presented here. The phrase (mouse) that
likes the dog that chases the cat is a constituent because
it is “dominated” by N2. This results from the fact that,
for example, N2 is bound to C1 with c subassemblies,
whereas N3 is (indirectly) bound to C1 with v subassem-
blies. The nature of binding, that is, the subassemblies
used, determines the dominance relations in the structure:
N2 dominates C1, whereas C1 dominates N3 (which, in
turn, dominates C2).

Figure 18a presents the structure of sentence (1), The
cat that the dog that the boy likes bites chases the mouse.
Sentence (1) contains the double center-embedded
object-relative clause that the dog that the boy likes
bites. Sentences of this type are notoriously hard to
process, to the point that they can be classified as unpro-
cessable (Gibson 1998). The encoding of the phrase The
cat that the dog proceeds in the same way as in
Figure 16b, so the tc subassembly of N1 (cat) will be acti-
vated to bind to the theme subassembly of the next verb.
However, another embedded clause is introduced
instead of a verb. The phrase the dog that the boy is struc-
turally similar to the phrase the cat that the dog, so the tc

subassembly of N2 (dog) will be activated to bind to the
theme subassembly of the next verb. Hence, when the
first verb (likes) appears, there are two subassemblies
that can bind to the theme subassembly of this verb,
whereas the verb should bind to dog (N2) as its theme
argument. The situation is similar with the second verb
(bites), which should bind to cat (N1) as its theme

argument. The two problematic bindings are indicated
with the dashed lines in Figure 18a.

Figure 18b shows the structure of sentence (2), The fact
that the mouse that the cat chases roars surprises the boy.
The structure of (2) is very similar to the structure of (1),
except for the fact that roars (V2) does not have a theme
argument. A phrase beginning with The fact that will be
interpreted as a complementary clause, so the tc subas-
sembly of N1 ( fact) will not be activated. When the
object-relative clause in the mouse that the cat chases
appears, the tc subassembly of N2 (mouse) will be activated
to bind mouse as the theme of the verb in its subordinate
clause (chases), as in Figure 16b. However, in contrast to
the structure of (1) in Figure 18a, the binding of mouse
(N2) to the first verb (chases) as its theme can succeed
because the theme subassembly of N2 is the only active
theme subassembly at that moment.

Hence the difference in complexity between (1) and (2)
results from a difference in structural dependency
between both sentences. In (1), the subject of the main sen-
tence (cat) is also the theme of a verb in an object-relative
clause. In combination with the second object-relative
clause, this results in an ambiguity of the binding of cat
(N1) or dog (N2) as the theme of likes (V1) or bites (V2). In
contrast, in (2) the subject of the main clause ( fact) is not
bound to any of the verbs in the embedded clauses, so the
ambiguities in (1) do not arise in (2). Hence sentence com-
plexity in (1) results from binding problems that arise when
a number of structure assemblies of the same kind have to
bind in sequence with the overall sentence structure (in
line with the notion of similarity-based interference as the
basis of sentence complexity; Lewis 1999).

At face value, the binding problem that arises with the
theme subassemblies of the sentence structure in
Figure 18a would also have to arise with the verb subas-
semblies in both sentence structures in Figure 18, in
particular for the verb subassemblies connected to the C
assemblies (the verb subassembly of the S assembly
could be activated after the binding of C assemblies has
been completed). The activation of C2 will inhibit the

Figure 17. Illustration of the neural sentence structure of The
boy sees the mouse that likes the dog that chases the cat
(ignoring the), with the same kind of structure assemblies as in
Figure 16a.

Figure 18. a. Illustration of the neural sentence structure of
The cat that the dog that the boy likes bites chases the mouse,
with the same kind of structure assemblies as used in
Figure 16b. b. In the same way, the neural structure of the
sentence The fact that the mouse that the cat chases roars
surprises the boy.
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activation of C1 in both sentence structures; hence the
verb subassembly of C1 has to be activated before C2 is
activated. But the first verb in the sentence (likes or
chases) has to be bound to C2, which requires the
activation of the verb subassembly of C2 as well.
However, the binding problem with the verb subassem-
blies can be solved in terms of the dynamics of the
binding process, as discussed below.

6.8.3. Dynamics of binding in the blackboard
architecture. The binding of subassemblies occurs in a
connection structure as illustrated in Figure 5. Figure 19
illustrates the process of subassembly binding between
two arbitrary structure assemblies A and B.

In Figure 19a, the subassembly of Ai-1 has activated its
horizontal row of columns in the connection structure. If
the Bj subassembly would activate its vertical row of
columns in the connection structure, a binding would
result between Ai-1 and Bj, in the manner as discussed in
section 6.2.1. However, the subassembly of Ai is activated
first, which results in the activation of a second horizontal
row of columns.

In Figure 19b, the subassembly of Bj activates its verti-
cal row of columns in the connection structure. At this
moment, a conflict arises between the binding of Ai-1 to
Bj and the binding of Ai to Bj. Because of the inhibitory
interaction between the columns in the vertical row of Bj

(initiated by activated delay assemblies), only the stronger
of these two bindings will survive (as in the VP competition
illustrated in Fig. 8). Figure 19c illustrates that Ai will bind
to Bj if the activation in the horizontal row of Ai is stronger
than the activation in the horizontal row of Ai-1.

When the binding process of Ai and Bj has been com-
pleted, the columns in the horizontal row of Ai (and the

vertical row of Bj) will be inhibited because of the active
delay assembly in the column that binds Ai to Bj.
However, as illustrated in Figure 19d, the columns in
the horizontal row of Ai-1 are still active (with the exception
of the column in the vertical row of Bj). Hence the subas-
sembly of Ai-1 can bind to another B subassembly if that is
activated.

The process illustrated in Figure 19 shows that two A
subassemblies can bind in sequence to B subassemblies if
there is a clear difference in activation strength between
the two A subassemblies. In that case, the stronger activated
A subassembly will bind to the first activated B subassembly
and the other A subassembly will bind to the second
activated B subassembly. In theory, one could have a
whole series of A subassemblies that can bind in sequence
with B subassemblies if the A subassemblies have
distinguishable differences in their activation strengths.

Pulvermüller (1999) suggested that a gradual decay of
activation in reverberating assemblies (such as the delay
assemblies in the memory circuits) could form the basis
of a neural pushdown stack. Figure 19 illustrates this possi-
bility. If the subassemblies of Ai-n to Ai have been activated
that order, and if the activation strength of the subassem-
blies decays over time, then the subassembly of Ai would
have the strongest activation and it would bind to the
first B subassembly, as illustrated in Figure 19. Then the
subassembly of Ai-1 would bind to the next B subassembly,
as illustrated in Figure 19d. In the same manner, all the
subassemblies of Ai-n to Ai would bind to B subassemblies
in the reverse order of their activation, in line with the
notion of a pushdown stack.15

It is not clear whether such a distinctive and reliable
decay of reverberating activity will be found in the brain
because of the fluctuations that can occur in this kind of
activity (Amit 1989). However, in one circumstance one
can find a clear difference in activation strength between
reverberating assemblies. Fuster and colleagues (1985)
investigated the relation between reverberating activity
in the prefrontal cortex and in the visual cortex. First
they identified neurons in both areas of the cortex that
responded to the same objects and that maintained their
activation in a delay period. Then they applied a technique
of reversible cooling of one of the areas involved. In this
way, the activity of the neurons in that area can be
blocked temporarily, but the activity will reappear when
the temperature is increased to a normal level. Fuster
and colleagues observed that blocking the activity of
neurons in one area also reduced the activity of the
neurons in the other area. The activity in the second
area increased again when the activity in the first area
reappeared (by terminating the cooling in that area).

The results of the study by Fuster and colleagues (1985)
indicate that reverberating activity in a neural assembly is
stronger when the assembly also receives activation from
outside. In this way, the binding of the verb subassemblies
in the sentence structures in Figure 18 can be explained.
The main assembly of C2 is active when the first verb
(likes or chases) appears. Therefore the verb subassembly
of C2 is also activated by the main assembly, unlike the
verb subassembly of C1. As a result, the activity of the
verb subassembly of C2 is stronger than the activity of
the verb subassembly of C1. In line with the binding
process illustrated in Figure 19, the verb subassembly of
C2 will bind to the verb subassembly of V1 (likes or

Figure 19. Four stages in the process of subassembly binding
between arbitrary structure assemblies A and B, with the
connection structure as illustrated in Figure 5. a. The
subassemblies of Ai-1 (first) and Ai (second) have activated their
horizontal row of columns. b. The subassembly of Bj has
activated its vertical row of columns. c. Binding occurs
between Ai and Bj, because the activation in the row of Ai is
stronger than the activation in the row of Ai-1. d. After
completion of the binding process in c, Ai-1 can bind to another
B assembly. In this way, the connection structure can operate
as a pushdown stack.
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chases), and the verb subassembly of C1 will bind to the VP
assembly (V2) of the next verb (bites or roars).

In contrast, the main assembly of N2 in Figure 18a is not
active because of the activation of N3 (boy), which is
needed to bind boy with likes. Without a clear distinction
in activation strength between the theme subassemblies of
N1 and N2, the binding process illustrated in Figure 19 will
produce a conflict, which results in the complexity associ-
ated with sentence (1).

6.8.4. Control of binding and sentence structure.
Figure 20 illustrates the structure of the sentence The
boy says that the dog knows that the cat chases the
mouse, combined with a circuit that can be used to
control the binding of the constituents in the sentence
structure.

The control circuit is given in the form of a connection-
ist network consisting of I-nodes (input nodes), E-nodes
(“expectation” nodes), and C-nodes (“conjunction”
nodes). The I-nodes are activated by the words in the
sentence, based on their lexical type. It is assumed that
one I-node is active at a time (with the exception of the
I-node S). The I-node S is inhibited by the E-nodes (not
shown in Fig. 20). The E-nodes are activated by specific
I-nodes or C-nodes. They remain active until inhibited.
The C-nodes are activated by a specific conjunction of
an I-node and an E-node. They activate the gating circuits
that result in a specific binding of constituents in the sen-
tence structure, and they inhibit the E-node by which they
are activated.

When boy is presented, it binds to N1 and it activates
the I-node N. Furthermore, boy will be seen as the

beginning of a sentence, because there are no active E-
nodes that would force a binding of boy in an existing sen-
tence structure (see below). As a result, boy also activates
S1 and the I-node S, which in turn activates the E-nodes Sn
and Sv. The conjunction node NSn is then activated, which
results in the binding of S1 and N1 to their noun (n) sub-
assemblies. The activation of the E-node Sv reflects the
expectation of a verb for the main (matrix) sentence.

When the verb says is presented, it activates V1 and the
I-node Vc, which entails that says is interpreted as a verb
that requires a complement clause (given by the lexical
information related to says). In turn, Vc activates the E-
node Vc. The combined activation of the I-node Vc and
the E-node Sv results in the activation of the conjunction
node VSv. This node activates the gating circuits for the
binding of V assemblies and S assemblies with their verb
(v) subassembly, which results in the binding of V1 with
S1. The word that activates C1 and the I-node C, which
in combination with the E-node Vc activates the C-node
CVc. In turn, CVc produces the binding of C1 with V1,
and activates the E-nodes Cn and Cv (i.e., the expectation
of a clause subject and verb).

Continuing in this manner, dog (N2) and knows (V2) will
bind to C1. The verb knows again activates the I-node Vc,
which results in the binding of that (C2) to knows (V2).
Then cat (N3) and chases (V3) will bind to C2. The verb
chases is a verb that requires a theme. This lexical
information related to chases will activate the I-node Vt,
which in turn activates the E-node Vt. The word mouse
will bind to N4 and will activate the I-node N. In combi-
nation with the active E-node Vt, this results in the
binding of mouse (N4) as the theme of chases (V3).

Figure 20. Illustration of the neural sentence structure of The boy says that the dog knows that the cat chases the mouse, combined with a
control circuit for this sentence. I-nodes are the input nodes for the circuit, activated by the words in a sentence. E-nodes are expectation
nodes with sustained (delay) activation, and C-nodes are conjunction nodes that activate the gating circuits for a specific binding.
Connections with an arrowhead are excitatory. Connections with a dot are inhibitory. Connections with an arrowhead and a dot
represent two (bidirectional) connections. The binding symbol Sx-n-Ny represents the binding of an arbitrary active S assembly with
an arbitrary active N assembly by means of their noun (n) subassemblies. The other binding symbols represent similar forms of binding.
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Notice that the nouns dog, cat, and mouse are bound in an
existing sentence structure because of the active E-nodes
in the circuit.

The circuit in Figure 20 illustrates how the process of
binding could proceed in the architecture for sentence
structure presented here. However, it is clear that a
more detailed account of this process is a topic for
further research, as described below.

6.9. Further development of the architecture

The neural blackboard architecture for sentence structure
outlined here provides a solution to the “four challenges
for cognitive neuroscience” presented by Jackendoff
(2002). The discussion in section 6.8 also illustrates that
the architecture can potentially account for structural
and performance aspects of language processing.
However, further research is clearly needed to fulfill this
potential. A few directions of further research can be indi-
cated with the architecture presented so far.

One line of research would concern the development of
the architecture, both in terms of evolution and in terms of
growth and learning. As Figure 7b illustrates, the architec-
ture consists for the most part of gating circuits, which can
be seen as the first level of organization in the architecture.
The second level consists of gating circuits organized in
structure assemblies. The third level of organization con-
sists of the distinction between different kinds of structure
assemblies and the way they interact. Gating mechanisms
are found in the brain (e.g., Newman et al. 1997). So the
study of the development of the architecture would be
focused on the way in which the second and third level
of organization arise.

In terms of evolution, an important issue is the develop-
ment of the connection structure presented in Figures 5
and 19. A benefit of an explicit model such as the one in
Figure 5 is that the model can be used as a target in com-
puter simulations. Hence, starting with more elementary
structures, one could investigate whether such a connec-
tion structure could develop in an evolution-like process.
In terms of growth and learning, an important issue is
the question of how specific bindings with connection
structures like the one in Figure 5 could develop. That is,
assuming that an undifferentiated connection structure
exists for undifferentiated assemblies, one can investigate
whether a learning process could reorganize the undiffer-
entiated connection structure into a connection structure
in which distinctions are found between different kinds
of structure assemblies and subassemblies, as illustrated
above. Furthermore, one could investigate whether differ-
ent languages used in the learning process would result in a
different reorganization of the initial connection structure.

Another line of research concerns the issue of parsing in
this architecture. Parsing will result from the neural cir-
cuits that control the binding process in the architecture.
An example is presented in Figure 20. As noted earlier,
the control circuits instantiate basic parsing operations.
Hence they will be sensitive to the coding principles
used in languages to express structural information, such
as word order or case marking in languages with free
word order (van Valin 2001). However, the neural
control circuits will also be sensitive to the pattern of
activation that arises in the blackboard during sentence
processing. Figure 19 provides an illustration. An active

subassembly produces a significant amount of activation
in its connection structure (i.e., its row of columns),
which provides the information that a specific binding is
required. This information can be used by the control cir-
cuits to initiate the activation of a subassembly of the same
kind (e.g., a VP theme subassembly when an NP theme
subassembly is active).

One topic in the study of parsing will be the question of
how constraints are implemented in the control circuits
and how they relate to aspects of sentence ambiguity. An
example of a constraint is presented in the circuit in
Figure 20. It consists of the inhibitory connection from
the C-node VCv to the C-node VSv. This connection
implements the hierarchical constraint that verb-binding
in a clause precedes verb-binding in a main (matrix)
sentence (as in Fig. 18). This form of constraint is a
“hard” constraint in which one demand (verb-binding in
a clause) overrides another (verb-binding in a matrix
sentence). An important issue will be how “soft”
constraints can be implemented, including those given
by statistical regularities and semantic information.

It is clear that the study of parsing in the architecture
presented here is just beginning. However, the examples
illustrated so far suggest that the neural control circuits
that control the binding process in the architecture are
engaged in a form of pattern recognition and pattern
completion in which the current state of activation in the
blackboard, together with the active word assemblies,
constitutes the input pattern, and the new state of acti-
vation in the blackboard constitutes the output pattern.
Pattern recognition is a core capability of networks
(Bechtel & Abrahamsen 2002). The fact that a neural
blackboard architecture of sentence structure could trans-
form parsing operations into forms of pattern recognition
is an attractive prospect for further research.

In combination with parsing, the study of sentence com-
plexity and other psycholinguistic effects is also an import-
ant line of further research. Figures 16 and 18 illustrate
the potential of the architecture to account for complexity
effects, but there are number of other complexity issues
that should be accounted for as well (see, e.g., Gibson
1998). An interesting topic here will be the complexity
related to answering binding questions, as discussed in
section 6.8.1. The architecture we present suggests that
this can be a source of complexity of its own that needs
to be investigated further.

A fourth line of investigation consists of relating the
structure and dynamics of the architecture to observable
brain structure and activation. The connection structure
in Figure 5 is a prediction of how the brain could realize
combinatorial productivity. The activation in the architec-
ture during sentence retrieval, as illustrated in Figure 8, is
also a prediction of activation that would occur in the
brain. Dynamic causal modeling (Friston et al. 2003) can
be used to compare activation simulated in a model with
activation observed with neuroimaging. As an example,
this approach could be used to investigate the sustained
activation needed to handle long-distance dependencies.
Figure 16b illustrates a long-distance dependency with
object-relative clauses in the architecture, which can be
simulated in terms of the neural dynamics illustrated in
Figure 8. Ben-Sachar and colleagues (2003) observed acti-
vation in specific brain regions produced by sentences of
this type (as compared to sentences with complement
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clauses). With the approach of dynamic causal modeling,
we can begin to compare the activation in the architecture
produced by these sentence types to the activation
observed in the brain.

Likewise, the neural activity that occurs in a simulation,
as illustrated in Figure 8, can be transformed mathemat-
ically into an electroencephalogram (EEG) signal and com-
pared with observations. This is technically demanding, but
in conceptual terms it can be done. An important issue here
is the topology of the network, which will affect the EEG
signal. The model could be used to test and develop specific
topologies by deriving the imaging signal using a given
topology and comparing it with empirical results.

A fifth line of research is the relation between the archi-
tecture for sentence structure and other architectures for
combinatorial structures in language (Jackendoff 2002)
and cognition in general. For example, words can have an
internal structure of their own that does not seem to
agree with word encoding by means of (unstructured)
word assemblies (Bierwisch 1999). However, the word
assemblies used here can be seen as the interface
between word structure (e.g., phonological structure) and
sentence structure. That is, a word assembly is the part of
a neural word structure that connects (or “anchors”) that
structure within the sentence structure. An example is
given in Figures 2 and 13, in which the assemblies for
cat, chases, and mouse form the interface between
sentence structures in working memory (Figure 2) and
sentence structures in long-term memory (Figure 13).

The interaction between a neural architecture for
combinatorial (e.g., phonological) word structure and a
neural architecture for sentence structure could explain
how new words can be embedded easily in a sentence
structure. A new word is itself a novel combination of
familiar constituents (phonemes) instantiated in its own
(assumed) phonological neural blackboard. Hence a new
word would create a word structure in this word architec-
ture similar to the way in which a new sentence creates a
sentence structure in the neural sentence architecture. In
this way, a new word would be temporarily encoded with,
say, a Wx assembly, just as a sentence is temporarily
encoded with an Sx assembly. The Wx assemblies could
bind to the structure assemblies in the sentence architec-
ture, which would result in the embedding of the new
word in the sentence structure. Over time, the new word
would form a direct link with the kind of structure assem-
blies in the sentence architecture to which it belongs.

Word assemblies could also form the interface between
sentence structures and cognitive structures outside
language, such as structures in visual cognition. This
issue is addressed in more detail below.

7. Neural blackboard architectures of
combinatorial structures in vision

The aim of this paper is to show that combinatorial struc-
tures can be encoded in neural terms by means of neural
“blackboard” architectures. Although combinatorial struc-
tures are the “quintessential property” of language (Pinker
1998), they can also be found in visual cognition. There-
fore we briefly discuss neural blackboard architectures of
combinatorial structures in visual cognition, in particular
for binding visual object features such as shape, color,

and (relative) location. In this way we can investigate the
differences and similarities that exist between neural
architectures of combinatorial structures in two different
domains such as language and vision. Furthermore, we
discuss how the architectures for visual cognition and for
language can be combined in a combinatorial structure
like The little star is beside a big star.

As in the case of the architecture for sentence structure,
we discuss the issue of binding in the “vision” architecture,
such as the binding of color and shape, in terms of the
process that answers binding questions, such as “What is
the color of this shape?” The reason we discuss the
binding problem in this way is related to the coordinate
system or frame of reference in which the binding
problem should be solved. As outside observers, we
could see some form of related (e.g., concurrent) activity
in brain areas that are involved in processing information
in a given task, such as binding the color and shape of
visual objects. But it is not clear that the observed relation
in activity is used by these brain areas to solve the
binding problem at hand; that is, it is not clear that
these brain areas “know” that they are, say, concurrently
active with each other, so that they can use that infor-
mation effectively. What is needed is information that
is available within the system itself (instead of only
from an outside perspective). A binding question like
“What is the color of this shape?” probes for information
that is available within the system itself, because the
system generates behavior when it answers such a ques-
tion, which it can only do by using information that is
available within the system itself. Investigating the
process that results in answering binding questions is,
in our view, the best way to study (and solve) the issue
of binding in combinatorial structures, including the
binding of color and shape (and the binding of words
in a sentence structure).

In a blackboard architecture for visual cognition, one
would have processors for the recognition of shape, color,
location, and other visual-object features. Combined,
these processors would correctly process a visual display
of objects, such as a blue cross on the left and a yellow
diamond on the right, if they could communicate with
each other through a blackboard. In this way, the architec-
ture could answer binding questions like “What is the color
of the cross?” or “What is the shape of the yellow object?”

A neural blackboard architecture for combining visual
object features in this manner is illustrated in Figure 21.
The architecture is based on the pathways that determine
the structure of the visual cortex (e.g.,Farah et al. 1999;
Felleman & van Essen 1991; Livingstone & Hubel 1988;
Oram & Perrett 1994).

The ventral pathway in the visual cortex includes the
areas V2, V4, the posterior inferotemporal cortex (PIT)
and the anterior inferotemporal cortex (AIT). This
pathway is involved in the processing and selection of
“object features” (e.g., shape and color). Objects are ident-
ified through a feed-forward network of areas, going from
the primary visual cortex (V1) to the higher areas in the
temporal cortex (e.g., AIT). The network gradually trans-
forms retinotopic encoding in the lower areas (e.g., V2 to
PIT) into a location-invariant identity (e.g., shape, color)
encoding in the higher areas (e.g., AIT). The dorsal
pathway in the visual cortex leads to the posterior parietal
cortex (PP). This pathway is involved in the processing and

van der Velde & de Kamps: Neural blackboard architectures of combinatorial structures in cognition

BEHAVIORAL AND BRAIN SCIENCES (2006) 29:1 61
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0140525X06009022
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:22:49, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0140525X06009022
http:/www.cambridge.org/core


selection of spatial information (e.g., location of objects)
and spatial transformations (e.g., for making eye move-
ments). Both pathways start from the primary visual
cortex (V1), but they are also interconnected on the
levels of V2, V4, and PIT. Both pathways project to the
prefrontal cortex.

Figure 22 (left) illustrates how the shape and the color
of two objects, a blue cross and a yellow diamond, would
be processed in this architecture. After the primary
visual cortex V1 (not shown), the features are processed
initially in a feed-forward manner (Oram & Perrett
1994). Each object produces a pattern of distributed
activation in the areas V2 to PIT that corresponds to the
retinotopic location of the object. The activated neurons
could respond to one feature (e.g., shape) or to conjunc-
tions of features, such as conjunctions of elementary
shapes and color (Motter 1994).

The retinotopic object information in the lower layers is
gradually transformed into location invariant information
because of the increase in the receptive field size from
layer to layer (illustrated by cones in Fig. 22). Further-
more, feature encoding is separated in the higher levels
of the architecture, where distinctions are made
between, for example, color encoding (e.g., blue versus
yellow) and shape encoding (e.g., cross versus diamond).
The distinctions between object features at this level
form the basis for the constituents (parts) that are used
to identify combinatorial visual structures.

In human cognition, object features as illustrated in
Figures 21 and 22 form the basis for conceptual knowledge
(e.g., Barsalou 1999; Barsalou et al. 2003). Human language
provides ample evidence for the ability to encode object
features like shape and color separately, that is, independent
of any conjunction of these features. For example, we can use
a word (e.g., red) to instruct a viewer to select an object in a

visual display based on its color irrespective of its shape or
location (see, e.g., van der Heijden et al. 1996).

7.1. Feature binding

Figure 22 illustrates the binding of shape and color in the
blackboard architecture (binding of other features pro-
ceeds in a similar manner). The shape of the cross is
given as a cue, for example, by the binding question
“What is the color of the cross?” The binding process in
the architecture consists of an interaction between a
feed-forward network and a feedback network.

The feed-forward network (Fig. 22, left) processes the
visual display, which results in the identification of the fea-
tures of the cross and the diamond in the feature domains.
The activation pattern in the feed-forward network that pro-
duces object identification is object-selective; that is, when
an object is presented on a particular location in the
display, it produces a pattern of (distributed) activation in
the retinotopic areas in the feed-forward network. This
pattern of activation is sufficiently different from the
pattern of activation produced by another object presented
on the same location in the display (otherwise a selective
identification of the object could not succeed).

The feedback network in Figure 22 (middle) carries
information about the selected feature (cue) from the
feature domains back to the lower retinotopic areas in
the architecture. The feedback network should be seen
as lying “on top of” the feed-forward network; that is,

Figure 22. The process of answering the binding question
“What is the color of the cross?” in the neural blackboard
architecture of Figure 21. Left: The shapes, cross and diamond,
and the colors, blue (b) and yellow (y), of two objects are
processed in feed-forward pathways in the retinotopic areas.
The receptive field size of neurons increases in higher areas (as
indicated with the cones) until encoding is location-invariant in
the feature domains. Middle: The shape of the target object
(the cross) is selected as a cue in the shape feature domain. The
selected cue initiates feedback activation in the retinotopic
areas. Right: Interaction between feed-forward and feedback
activation in the retinotopic areas results in the selection
(enhancement) of the activation related to the target object in
these areas. In turn, this results in the selection of the other
features of the target object (its color, in this example) in the
feature domains. In this way, the features of the target object
(“cross” and “blue”) are bound by the interaction in the neural
blackboard architecture.

Figure 21. A neural blackboard architecture of combinatorial
structure in visual cognition. The “blackboard” consists of the
retinotopic areas in the visual cortex (e.g., V2 to PIT).
Information about visual features (color, form, motion, location)
is processed in feed-forward pathways leading to “feature
domains” in specialized areas in the visual cortex (e.g., AIT for
shape information, PP for location information). In turn, the
feature domains send information to the retinotopic areas by
means of feedback connections. (AIT, anterior inferotemporal
cortex; PIT, posterior inferotemporal cortex; PFC, prefrontal
cortex; PP, posterior parietal cortex; b, blue; y, yellow).
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neurons in the retinotopic areas of the feed-forward
network have corresponding neurons in the retinotopic
areas of the feedback network. The corresponding
neurons in both networks could belong to different
layers of the same cortical column. Feedback connections
are found between almost all areas in the visual cortex
(e.g., Felleman & van Essen 1991).

Through the feedback connections, information
processed at the level of object features (Fig. 21) can inter-
act with information processed in the lower retinotopic
areas. Hence the blackboard nature of the visual cortex,
as discussed here, results basically from the feedback con-
nections in the visual cortex (Bulier 2001; van der Velde
1997). The activation patterns in the feedback network
are also object-selective. This can be achieved by adapting
the connections in the feedback network with Hebbian
learning (see below) using the selective activation patterns
in the feed-forward network that occur in the process of
object identification (van der Velde & de Kamps 2001).

The cue-related information in the feedback network
(Fig. 22, middle) interacts with the processing of the
display in the feed-forward network (Fig. 22, left). The
interaction enhances (“selects”) the neural activation
related to the cue (cross) in the retinotopic areas. The
selection of cue-related activation results from the match
between the object-selective activation in the feed-
forward network and the object-selective activation in
the feedback network, as produced by the Hebbian learn-
ing procedure in the feedback network described above.
The enhanced (selected) cue-related activation in the
retinotopic areas can be used to select the color (and
the other object features) of the cued object (cross) in
the feature domains, as illustrated in Figure 22 (right).

The process presented in Figure 22 is an illustration of
the fact that the basis for the blackboard architecture in
Figure 21 is given by the interaction between the retinoto-
pic areas, in which elementary information about the
features of an object is combined, and the feature
domains, in which identity information of object features
is separated. In general terms, the visual features of an
object can be bound in a combinatorial manner by select-
ing a feature (e.g., its shape or color) in one of the feature
domains. Using an interaction process as described above,
the activation related to a selected object feature will be
enhanced in the retinotopic areas. In turn, this enhanced
activation can be used to produce the selection of the
other features of the object in the feature domains. In
particular, a novel combination of familiar visual features
(e.g., a purple cow)16 can be identified in this way.

7.1.1. A simulation of feature binding. A simulation of the
process of feature binding illustrated in Figure 22 is
presented in Figures 23 and 24. (The simulation is based
on van der Velde & de Kamps 2001 and de Kamps &
van der Velde 2001b.) The display in this case consists of
a red cross (at the location top left) and a green triangle
(at the location bottom right). The figure illustrates the
binding of the color (red) and the shape (cross) of an
object in the display when the shape is given as a cue
(i.e., the answer to the binding question “What is the
color of the cross?”).

The left panel in Figure 23 shows two layers in a feed-
forward network that can identify shapes and colors of
the objects in a display. The network also contains an

input layer (V1) and the layer V2 between V1 and V4 (not
shown here; see de Kamps & van der Velde 2001b). Each
small square within a layer represents the activation of one
neuron. The input layer (V1) consists of a 24-by-24 matrix
in which each element represents a V1 receptive field (RF).
For each RF in V1 there are four input neurons that each
encode one of four line orientations (vertical, horizontal,
left diagonal, or right diagonal) and three input neurons
that each encode one of three colors (red, green, or
blue). The area V2 (not shown) consists of 529 neurons,
arranged in a 23-by-23 matrix. Each of these neurons has
an RF that covers a (unique) 2-by-2 submatrix of V1 RFs
(529 in all). Hence each neuron in V2 is connected to the
4-by-7 V1 neurons in its RF. In turn, V4 consists of a
21-by-21 matrix of neurons (441 in all). Each V4 neuron
has an RF that covers a (unique) 4-by-4 submatrix of RFs
in V1 (441 in all). Hence a V4 neuron is connected to all
(9) V2 neurons that have RFs that are fully covered by
the RF of the V4 neuron. PIT consists of a 17-by-17
matrix of neurons (289 in all). Each neuron in PIT has an
RF that covers a (unique) 8-by-8 submatrix of RFs in V1
(289 in all). Hence a PIT neuron is connected to all (25)
V4 neurons that have RFs that are fully covered by the
RF of that PIT neuron. The RFs of the identity neurons
in the network (cross, triangle, red, and green in Fig. 23)
fully cover all RFs in V1. Hence each neuron in the top
layer is connected to all neurons in PIT.

The feed-forward network is trained (with back-propa-
gation; Rumelhart et al. 1986) to identify the shapes and
colors separately on all of the four potential locations in
the display (top left, top right, bottom left, bottom right).
The network used is an artificial network in which acti-
vation values of neurons range from 21 to 1. Networks
of this kind can be transformed into networks of

Figure 23. Left panel: Distributed retinotopic activation
produced in two layers (V4 and PIT) of a feed-forward network
that can identify shapes and colors (here, cross, triangle, R,
red; G, green). Middle panel: Distributed retinotopic activation
in the two layers of the corresponding feedback network when
the shape of one object (cross) is selected as a cue. Right
panel: Match between the retinotopic activation in the feed-
forward network and the retinotopic activation in the feedback
network. The match can be used to select (bind) the shape
(cross) and the color (red) of the same object (see Fig. 24).
Each small square within a layer represents the activation of
one neuron. The object display consists of a red cross at the
location top left and a green triangle at the location bottom right.
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populations of spiking neurons (see de Kamps & van der
Velde 2001a). The left panel in Figure 23 illustrates the
pattern of activation in the feed-forward network that
results when a display of a red cross (at the location top
left) and a green triangle (at the location bottom right) is
presented to the network. Each object produces distribu-
ted retinotopic activation in V4 and PIT (and V2, not
shown here) and it activates the identity neurons for
cross, triangle, red, and green.

The middle panel in Figure 23 shows the corresponding
layers in a feedback network that propagates (top down)
cue-related activation to the lower areas. The feedback
network has the same connection structure as the feed-
forward network, but with reciprocal connections.
The feedback network is trained with the activation
in the feed-forward network as input. In this procedure,
the feed-forward network identifies a shape or a color pre-
sented on a given location. The resulting distributed
activation pattern is then used to modify the connection
weights in the feedback network with Hebbian learning
(e.g., Brunel 1996). The procedure is repeated for
various shapes and colors on all potential locations (for
details, see de Kamps & van der Velde 2001b).

The rationale behind this procedure is that a feed-
forward network can identify a shape or a color only if
that shape or color produces a selective activation pattern
in that network (selective enough for correct identification
to occur). The selective activation pattern produced in the
feed-forward network is the result of learning in that
network. The actual learning procedure used is in fact irre-
levant, because any learning procedure will have to produce
a selective activation pattern in the feed-forward network

for identification to occur. By using the Hebbian learning
procedure, as described above, the shape or color selectivity
in a feed-forward network can be transferred to a corre-
sponding feedback network.

The middle panel in Figure 23 illustrates the distributed
retinotopic activation in the feedback network that is pro-
duced when the cross is selected as a cue. The retinotopic
activation in the feedback network is related to all four
potential object locations in the display. This “fan-out” of
activation results from the “fan-out” connection structure
of the feedback network. It also reflects the fact that top-
down selection of a cue is location-invariant.

The right panel in Figure 23 illustrates the match
between the retinotopic activation in the feed-forward
network and the retinotopic activation in the feedback
network. Local match in activity is given by the product
of the activation in both networks, and it varies from posi-
tive match (þ1) to negative match (21). Inspection of the
figure suggests that there is a higher match of retinotopic
activity between the feed-forward network and the
feedback network related to the cued object (red cross)
in the display, compared to the match of retinotopic
activity between the feed-forward network and the
feedback network related to the distractor object (green
triangle) in the display.

Figure 24 illustrates that there is indeed a higher match
of retinotopic activity between the feed-forward network
and the feedback network related to the cued object in
the display (the red cross at the location top left).
Figure 24 (left) illustrates the circuit that the feed-
forward network and the feedback network interact with
locally (i.e., for each retinotopic activation related to one

Figure 24. Left: Local circuit for the interaction between the feed-forward and feedback networks in Figure 23. The circuit consists of
populations of excitatory (A, B) and inhibitory (I) neurons. Each population receives a small background activation from outside the
circuit. Right: Retinotopic activation of population B produced by the circuit in the areas V4 and PIT. The activation is related to
the four potential object locations in the display. Feed-forward activation is present from the beginning (and causes inhibition of
the B population due to the increased activation of the I population in the circuit). The onset of feedback activation is indicated
with an asterisk.
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of the potential object locations in the display). The circuit
consists of interacting populations of excitatory neurons
(A, B) and inhibitory neurons (I). The (inhibitory) connec-
tion from I to I represents the existence of disinhibition
circuits in population I. The stimulus produces feed-
forward activation of stimulus- (shape, color) selective
neurons in population A. The cue produces feedback acti-
vation of cue-selective neurons in population I in a manner
that results in disinhibition of stimulus-selective neurons
in the circuit when the cue matches the stimulus, and inhi-
bition of stimulus-selective neurons in the circuit when the
cue does not match the stimulus. Further details of the
circuit are presented in Appendix A2.

Figure 24 (right) illustrates the retinotopic activation of
the B population produced by the circuit in the areas V4
and PIT. The retinotopic activation is related to the four
potential object locations in the display. The activation
related to the cued object (the red cross at the location
top left in Fig. 23) clearly stands out, which demonstrates
the selection of cue-related activation by means of the
interaction between the feed-forward network and
the feedback network. The role of the B population in
the circuit is comparable to the role of the neuron Xout

in the gating circuit presented in Figure 3. In this case,
the cue-related activation of the B population can be use
to produce (additional) activation within each (feed-
forward) network that processes cue-related information.
The (additional) activation will result in the selection
(binding) of the features of the cued object, such as the
color (and shape) of the cued object illustrated in
Figure 23.

As in the case of the architecture for sentence structure,
binding in the visual architecture illustrated in Figure 23 is
not a state of the system but the result of a process initiated
with a “binding question” (i.e., the selection of one of the
features of the object as a cue).

A similar interaction process as illustrated in Figures 23
and 24 was used by van der Velde and de Kamps (2001) in
a model of object-based location selection (e.g., for making
eye movements). The model integrated the results of a
number of experiments that investigated aspects of
object-based selection in the monkey visual cortex. In par-
ticular, the selection of a cue in the higher levels (AIT) of
the ventral pathway (e.g., Chelazzi et al. 1993), the inter-
action between cue and stimulus information in the retino-
topic areas of the ventral pathway (e.g., Motter 1994), and
the selection of the location of the cue-related object in the
dorsal pathway (e.g., Gottlieb et al. 1998).

7.2. A neural blackboard architecture of visual working
memory

Feature binding, as discussed above, could also occur
in visual working memory. Neuroimaging studies in
humans have shown overlapping areas of activation
in the prefrontal cortex (PFC) with spatial and object
memory tasks (e.g., D’Esposito 2001; Prabhakaran et al.
2000). Neurons that selectively respond to both identity
and location information have been found in monkey
PFC as well (Rainer et al. 1998; Rao et al. 1997). These
results indicate an integrative role for (lateral) PFC in
memory tasks (Fuster 2001; Duncan 2001).

A combined selectivity of spatial and object information
in PFC is in line with the notion of a blackboard

architecture for visual working memory. The neurons in
a blackboard of visual working memory will respond selec-
tively to combined (elementary) object and location infor-
mation in a similar way to the neurons in the retinotopic
areas of the visual cortex. Figure 25 (left) illustrates a puta-
tive connection between both blackboard architectures.
One or more areas in the blackboard of the visual cortex
(e.g., PIT) could be connected to a working memory
(WM) blackboard in lateral PFC. A display of objects
could then be encoded in both areas in a similar
manner. The difference between the two areas will be
found in the nature of the activation. Whereas the acti-
vation in the blackboard of the visual cortex results from
the processing of the visual display, the activation in the
WM blackboard is a form of self-sustained or reverberat-
ing activity in line with WM activity found in PFC (Durste-
witz et al. 2000; Fuster 1995).

7.2.1. Feature binding in visual working memory. The
reverberating activity in the WM blackboard can be used
to retrieve (select) and bind the features of the objects
in a visual working memory task. Figure 25 (right) illus-
trates that selection and binding of features (again)
results from interactions between a blackboard and
neurons that encode object features. These neurons
could be located in PFC as well (e.g., Wilson et al.
1993), but they could also consist of the neurons that
encode object features in the visual cortex. In the latter
case, visual working memory will consist of interactions
between neurons in PFC and neurons in posterior visual
areas (Ruchkin et al., 2003).

The nature of the WM blackboard produces the
behavioral effects reported by Luck and Vogel (1997),
who observed that the number of objects that can be main-
tained in working memory is limited, but the number of
their features is not. In terms of the WM blackboard,
too many objects in a display will cause an interference
between their distributed activations in the WM black-
board. This interference results in a limit to the number
of objects that can be maintained in working memory, as

Figure 25. Left: A putative relation between the neural
blackboard architecture in the visual cortex and a neural
blackboard architecture in visual working memory (WM) in the
prefrontal cortex (PFC). Right: An interaction between feature
domains and the WM blackboard in PFC can be used to bind
the features of an object (e.g., “cross,” “blue,” and “left”) in
working memory, similar to the binding process illustrated in
Figure 21. (b, blue; y, yellow).
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simulated by van der Voort van der Kleij et al. (2003).
However, the number of features for each object is not
limited. That is, all features of an object can be selected
by means of the interaction with the blackboard (Fig. 25,
right) as long as the object activations in the WM black-
board do not interfere.

7.3. Feature binding in long-term memory

Feature binding in visual working memory, as described
above, is instantiated in terms of the sustained activation
in the WM blackboard. As discussed in section 2.4, this
raises the question of how feature binding can be achieved
in terms of synaptic modification, which forms the basis of
long-term memory. In the case of linguistic structures, this
question was answered in terms of the process illustrated
in Figure 11. The answer proceeds along similar lines for
visual feature binding.

Figure 26 (left) illustrates the role of the HC in the case
of visual features. A neuron in the HC forms a conjunctive
encoding of the object features that are activated by a
display of two objects (a blue cross on the left and a
yellow diamond on the right). In this way, the neurons
that encode the object features can be reactivated when
the neuron in the HC is reactivated. However, it is clear
that the conjunctive encoding by the HC neuron results
in the familiar binding problem (von der Malsburg
1987), because the relations between the object features
are lost in this form of encoding. A display of, say, a
yellow cross and a blue diamond (at any of the two
locations) would activate the same object features and
would hence be encoded in the same way by the HC
neuron in Figure 26 (left).

However, as in Figure 11, the relations between the
object features can be encoded by the HC neurons if a
neural blackboard (e.g., the WM blackboard) is included
in the conjunctive encoding, as illustrated in Figure 26
(right). In this case, the relationship information is part
of the input to the HC (as described by O’Reilly & Rudy
2001), so the HC can encode the relationship information
(the blackboard) together with the object features. When

the HC neurons reactivate the blackboard and the object
features, the relations between the features of the
objects in the display can be retrieved in the manner
illustrated in Figure 25. The encoding of different events
(episodes) in this architecture can proceed in a manner
similar to the process illustrated in Figure 12.

Figure 26 illustrates again how a blackboard architecture
can play an important role in the storage of combinatorial
structures in long-term memory (i.e., in terms of synaptic
modification). Even a conjunctive encoding as provided
by the HC is sufficient if the blackboard activations
are included in the encoding. In fact, as in Figure 11, the
encoding of the blackboard alone would suffice.

Furthermore, Figure 26 again illustrates the importance
of using delay activity as a binding mechanism. The sus-
tained activity in the WM blackboard provides the time
for the synaptic modifications (e.g., LTP) to occur (e.g., in
the order of a second; Rolls & Treves 1998). In contrast, if
synchrony of activation is used to bind features in visual
working memory (e.g., Luck & Vogel 1997; Raffone &
Wolters 2001), it is not clear how the relations between
the features can be preserved in the transition from
working memory to long-term memory, that is, how infor-
mation encoded with synchrony of activation can be
stored in terms of synaptic modifications. If the HC forms
a conjunctive encoding of the neurons that are active in a
time window (event) of about 1 second (Rolls & Treves
1998), it will form a conjunctive encoding of the features
of all objects in a display, in the manner illustrated in
Figure 26 (left). In that case, the relations between the
features expressed with synchrony of activation are lost in
the transition from working memory to long-term memory.

7.4. Integrating combinatorial structures in language
and vision

A long-standing issue in cognition is the relation between
visual processing and language processing (e.g., Bloom
et al. 1996). We briefly touch upon that issue by discussing
the combinatorial structure of The little star is beside a big
star in terms of the architectures in Figures 21 and 25, as
illustrated in Figure 27. The visual structures in Figure 27
should be combined with the sentence structure in
Figure 10. In particular, the neural assemblies for words
will be connected to neurons that encode visual features
or visual operations (e.g., translations, visual selections).
Figure 27 illustrates in a schematic fashion how the ques-
tion “Where is the little star?” can be answered in this way.

In Figure 27a, the word star has selected the shape of
the star as a cue in the shape feature domain. As a
result, the cue-related activation in the feature domain is
enhanced (in line with Chelazzi et al. 1993). In terms of
the process illustrated in Figures 22, 23, and 24, the selec-
tion of the cue initiates an interaction in the visual black-
board (B), where the information of the visual display is
processed (or maintained, as in Fig. 25). The interaction
produces an enhancement of cue-related activation in
the blackboard, which results in the selection (enhance-
ment) of the neurons in the location domain (L) that
encode the locations of the stars (van der Velde & de
Kamps 2001). The neurons in this domain also encode
the spatial magnitude of the objects in a display. The
word little selects the location of the little star in L
(Fig. 27b).

Figure 26. Left: Conjunctive encoding of the object features
(e.g., shape, color, location) of two objects with a neuron (or
group of neurons) in the hippocampal complex (HC). Right:
Conjunctive encoding of the object features and a neural
blackboard with a neuron (or group of neurons) in the HC. (b,
blue; y, yellow).
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In Figure 27c, a shift of spatial attention is produced in
the location domain. As a result, the neural activity that
encodes the location of another object in the vicinity of
the attended location in Figure 27b is enhanced. If
spatial information is (initially) encoded in eye-centered
coordinates (Batista et al. 1999), a shift of spatial attention
will produce a spatial transformation in terms of
eye-centered coordinates. The spatial transformation
involved can be used to activate the associated word
assembly (beside).

In Figure 27d, the newly selected neural activity in the
location domain can be used to obtain a measure of the
spatial magnitude of the newly attended object (big, in
comparison with the previous object). It can also be
used to influence processing in the blackboard so that
the shape of the newly attended object can be selected
in the shape feature domain. Both selections can
produce the activation of their associated word assemblies
(big and star).

The process illustrated in Figure 27 would operate in a
similar manner with a structure like The little triangle is
beside a big triangle. The only difference would be the
selection of the shape of the triangle in the shape
feature domain. The processes in the other domains
are not affected by the change from star to triangle.
Hence, for example, the attention shift in Figure 27c
operates in the same manner for the shift from a little
star to a big star as for the shift from a little triangle to
a big triangle, because it is based on only the information
in the location domain. Likewise, in a structure like

The little diamond is above a big square, the process in
Figure 27a is affected by only the (initial) selection of
the shape of the diamond (instead of the star or the
triangle), and the process in Figure 27c is affected by
only the nature of the spatial transformation (above,
instead of beside).

The similarity between these examples emphasizes the
combinatorial nature of the process illustrated in
Figure 27. Each of the individual processes operates
only on information that is available in its own domain.
However, by using the blackboard, a process in one
domain can influence the processes in the other
domains. In this way, a combinatorial structure can be
produced by the architecture as a whole. For example,
with The little diamond is above a big square, the
attention shift in Figure 27c will produce the square as
the second object selected in the shape feature domain
(instead of the star or the triangle in the other examples)
by the interaction process in the blackboard illustrated
in Figure 27d.

7.5. Related issues

The architecture for combinatorial structures in vision
discussed here is related to a number of issues that we
can only briefly mention. The interactions between
object (feature) information and spatial information, illus-
trated in Figure 27, have a clear relation to attentional pro-
cesses in the cortex (e.g., as in the “bias competition”
model of attention; Desimone & Duncan 1995). The
blackboard architecture in the visual cortex (Fig. 21) and
the blackboard architecture of visual working memory
(Fig. 25) can be combined in a “closed-loop attention
model” (van der Velde et al. 2004a). Another issue is the
question of how and to what extent the architectures for
combinatorial structures discussed here are related to
processing of object identification (e.g., Biederman 1987;
Edelman & Intrator 2003). Finally, the interaction
between neural sentence structures (Fig. 10) and visual
blackboard structures, as illustrated in Figure 27, could
also form the basis of a model that combines pictorial
and propositional aspects of mental imagery (for a
discussion on that topic, see Pylyshyn 2002; van der
Velde and de Kamps 2002a).

8. Conclusion and perspective

The aim of our paper is to show that the problems
described by Jackendoff (2002) can be solved by means
of neural blackboard architectures. To this end, we
have discussed and illustrated how two kinds of combina-
torial structures (linguistic and visual) can be instantiated
in terms of neural blackboard architectures. As can be
expected, there are clear structural differences between
these architectures, which derive from the nature of the
information processing in which they are involved (in this
case, the spatial arrangement of visual features in a visual
display versus the sequential arrangement of words in a
sentence). However, there are also important similarities
between the different blackboard architectures.

One similarity concerns the solution to the binding
problem in each architecture. In both architectures, the

Figure 27. The structure of The little star is beside a big star in
the neural blackboard architectures of Figures 21 and 25.
a. Selection of the shape of the star (related to the word star)
in the shape feature domain, which results in an interaction in
the blackboard (B) and a selection of location and size
information in the location (L) domain. b. Selection within the
location domain of the smaller size (related to the word little),
which is now the focus of attention. c. Shift of attention
(related to the word beside) in the location domain to the
location beside the attended location in b. The newly selected
location is now the focus of attention. d. Feedback activation
from the location domain interacts with the activation in the
blackboard. This results in the selection of the feature in the
shape domain (star, related to the word star) that corresponds
with the location (and the size, related to the word big) of the
newly attended object in c.
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binding problem is solved in terms of a process that answers
specific “binding questions” related to the binding at
hand. This process consists of a selective flow of activation.
Hence the binding of features in the visual blackboard
architectures consists of a selective flow of activation from
one feature domain to another, determined by the inter-
action process in the blackboard. Likewise, the blackboard
architecture for sentence structure produces a selective
flow of activation in the process of answering a “binding”
question.

Another similarity between the architectures concerns
the transition from working memory to long-term
memory and the role of delay activity as a binding mech-
anism. Combinatorial structures can be stored in long-
term memory (using synaptic modification) when the
blackboard activity is included in a conjunctive form of
encoding as provided by the HC. The delay activity in
the blackboard provides the time for the synaptic modifi-
cations (Hebbian learning) to occur, even in the case of
one-trial learning.

We also discussed and illustrated the potential for
further development of the architectures we presented.
It is clear that a substantial amount of work is needed to
fulfill this potential. However, concerning the problems
he discussed, Jackendoff (2002, p. 64) noted that “some
further technical innovation is called for in neural
network models . . . upon the development of such an
innovation, the dialogue between linguistic theory and
neural network modelling will begin to be more
productive.” The examples of the neural sentence
structures we discussed illustrate how such a dialogue
could proceed.

We would argue that this technical innovation is also
needed for the development of cognitive neuroscience
models. In the preface to The Cognitive Neurosciences,
Gazzaniga (1995, p. xiii) described the aim of cognitive
neuroscience as follows:

At some point in the future, cognitive neuroscience will be able
to describe the algorithms that drive structural neural
elements into the physiological activity that results in percep-
tion, cognition, and perhaps even consciousness. To reach this
goal, the field has departed from the more limited aims of neu-
ropsychology and basic neuroscience. Simple descriptions of
clinical disorders are a beginning, as is understanding basic
mechanisms of neural action. The future of the field,
however, is in working toward a science that truly relates
brain and cognition in a mechanistic way.

If the ultimate aim of cognitive neuroscience is to deliver
detailed neural models of cognitive processes, the ques-
tion arises as to how such models can be developed and
tested.17 In some cases, such as visual processing, an
animal model exists that can be studied with the kind of
experiments described in section 7.1.1. But for language
and other aspects of high-level human cognition, an
animal model is missing, which excludes the kind of rigor-
ous investigation of neural activity on a cell level that is
possible with visual processing. In Figure 8, we presented
the neural activity of some of the assemblies presented in
Figure 7b. As the lines and labels in Figure 7b suggest, one
can see the activity presented in Figure 8 as the result of
virtual electrodes inserted in the model. In a similar way,
one could compare the model with observations made
with real electrodes, except for the considerations that
prevent such a testing. On the other hand, neuroimaging

methods such as EEG and functional magnetic resonance
imaging (fMRI) provide rather coarse observations of
neural activity, not (yet) on the level of the detailed
neural mechanisms needed to relate brain and cognition
in a mechanistic way.

If the aim of cognitive neuroscience is to relate brain
and cognition in a mechanistic way, then the gap that
seems to exist between detailed neural mechanisms and
the current methods of observation is a problem for both
modeling and neuroimaging.18 In our view, the best
way to close this gap is the integration of modeling
and neuroimaging that we described in section 6.9. In
short, on the basis of detailed models, activation processes
can be derived that can be compared with neuroimaging
observations. In turn, these observations can be used
to modify or change the existing models. This process is
technically demanding and can proceed only in a
step-by-step manner, but it may be the only way to fulfill
the aim of cognitive neuroscience as described by
Gazzaniga.

However, the success of this process depends on further
advances in both neuroimaging and modeling. In neuroi-
maging, further development of techniques such as
dynamic causal modeling (e.g., Friston et al. 2003) and
further integration of EEG and fMRI are needed. In mod-
eling, neural models are needed that can capture import-
ant aspects of human cognition, such as the productivity
and systematicity that derives from the ability to process
combinatorial structures.

Hence it is clear that a substantial amount of work,
both theoretically and empirically, is required to
develop an understanding of the neural basis of combina-
torial structures in human cognition. However, the
similarities between the potential neural instantiation of
combinatorial sentence structures and the (more fam-
iliar) neural instantiation of combinatorial structures in
visual cognition, as described here, provide the hope
that such a development can be successful in the near
future.

APPENDIX

A1. The architecture for sentence structure

The simulations presented in Figure 8 are based on excit-
atory (E) and inhibitory (I) neuron populations (e.g.,
Gerstner 2000; Wilson & Cowan 1972). The activation of
population i is modeled with the population rate Ai,
defined as the fraction of neurons that fire in the time
interval [t, t þ dt] divided by dt. Ai is given by:

ta
dAi

dt
¼ �Ai þ F(SjwijAj) (1)

tE (a ¼ E) ¼ 10 ms and tI (a ¼ I) ¼ 5 ms are the time
constants for the excitatory and inhibitory populations.
The wij (or wj!i) is the efficacy from population j onto
population i (wij is negative if j is an inhibitory population).
F(x) is given by:

F(x) ¼
fmax

(1 þ e�b(x�u))
(2)

with fmax ¼ 500 Hz, b ¼ 1 and u ¼ 5:
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The gating circuit in Figure 3 (in the direction X to Y) is
given by the following equations, derived from (1) and (2):

tE
dX
dt

¼ �X þ F(inputX þ wYout!XYout) (3)

tE
dXout

dt
¼ �Xout þ F(wX!Xout X � wix!Xout ix)

tI
dix
dt

¼ �ix þ F(wX!ix X � wIx!ix Ix)

tI
dIx

dt
¼ �Ix þ F(controlXtoY)

The efficacies used were wX!Xout ¼ wX!ix ¼ 0:20,
wix!Xout ¼ wIx!ix ¼ 1. wYout!X is variable; its value
depends on where the gating circuit is employed in the
network. It will be referred to as the efficacy of the
gating circuit. The gating circuit can be activated by the
input signal controlXtoY from an outside population, with
activation f ¼ 30 Hz and wcontrol ¼ 1. The memory
circuit in Figure 3 was simulated as a gating circuit, with
control signal 0 (“off”) or f (“on”), and wX!Xout ¼ 0:2.
The gating and memory circuit in the direction Y to X
follow from the above equations by changing the labels
X to Y, Y to X and x to y.

We did not explicitly model delay activity. Instead, we
assumed that a delay population will be activated if its
input is above threshold udelay. Time constant tdelay ¼ tE

in this case. With high input, activity will decay until it
reaches a default udefault. It will be deactivated if the
total input is below a negative threshold udeact (i.e., net
inhibition). Memory activity will decay within approxi-
mately tE ms. We took udeact ¼ 20.2, udelay ¼ 4,
udefault ¼ 2.0 and tdelay ¼ 10000 ms. We also used a para-
meterized version of the CPG, which reproduces observed
behavior of CPGs but which allows for a simple treatment
of them within our simulation.

A structure assembly consists of a central delay popu-
lation (main assembly) and three external populations:
an input population (word assembly), an agent population
(subassembly), and a theme population (subassembly), as
in Figure 2. The external populations are connected to
the main assembly by gating circuits, with efficacies
1input ¼ 0.05, and 1agent ¼ 1theme ¼ 0.01. Each assembly
consists of eleven populations, including eight constituents
of the gating circuits.

An assembly group consists of a number of assemblies
that belong together and that share a central inhibitory
population (Fig. 4). There are two assembly groups, one
for the nouns (six assemblies) and one for the verbs (five
assemblies). They are indicated by the Nx and Vi

symbols in Figure 8. The agent, theme, and input popu-
lation of each assembly feed the inhibitory population
with efficacycompetition ¼ 0.005. The inhibitory population
acts on all main assemblies with a “competition par-
ameter,” controlled by the CPG (“on” ¼ 0.2; “off” ¼ 0).

The six agent subassemblies of the noun assembly group
are each connected to (memory) gating circuits with efficacy
1agent ¼ 0.008 to each of the five agent subassemblies of the
verb assembly group as shown in Figures 4 and 5. Similarly
for the theme subassemblies, with 1theme ¼ 0.015.

In all, the simulated model consisted of 641 populations.
Integration of the system of equations (3) evolved simul-
taneously for the entire model, using fourth-order

Runge-Kutta integration with an integration time step
h ¼ 0.01 ms.

A2. The local interaction circuit

The equations for the populations A, B, and I in the local
interaction circuit in Figure 24 are:

ts
dIA

dt
¼ �IA þ JA!AF(IA) � JI!AF(II) þ I ff þ Ibg

ts
dIB

dt
¼ �IB þ JB!BF(IB) � JI!BF(II)

þ JA!BF(IA) þ Ibg

ts
dII

dt
¼ �II � JI!IF(II) þ JA!IF(IA)

þ ( � m þ nm)I fb þ Ibg

Here Ix is input current in population x, and ts is the synaptic
time constant (5 ms). The efficacies Jx are: JA!A ¼ 0.01,
JA!B ¼ 0.07, JA!I ¼ 0.3, JB!B ¼ 0.01, JI!I ¼ 0.01 and
JI!A ¼ 0.01, JI!B ¼ 0.1. The background activity to all
populations is 3.4 Hz (Ibg ¼ 0.01). The stimulus is given
by a feed-forward input activity Iff ¼ 25 Hz to population
A. Feedback is given by the cue-related activity
Ifb ¼ 25 Hz to population I, divided in the fractions match
n and nonmatch nm (with n þ nm ¼ 1) as determined on
the basis of Figure 23 (interaction).

NOTES
1. Tensor networks could perhaps be included here.

However, tensor networks fail to instantiate combinatorial
structures (Fodor & McLaughlin 1990). Basically, this results
from the fact that a tensor is just a list of constituents organized
in a particular fashion (i.e., as an n-dimensional list for a rank-n
tensor). Any operation on a tensor consists of selecting a
k-dimensional subset of the constituents in the tensor (with k
£ n). But all selected subsets have to be listed in the tensor
beforehand, which limits the instantiation of novel structures.
Furthermore, adding constituents to the tensor increases the
dimensions of the tensor, which requires adjustments to all
components in the cognitive system that can interact with the
tensor.
2. The sentence presented by Jackendoff (2002) is The little

star’s beside a big star, with the clitic z (’s) to emphasize the pho-
nological structure of the sentence. Phonological structure is not
discussed here; therefore the clitic z is omitted.
3. When a symbol is copied and moved elsewhere, it is

detached from its network of relations and associations. One
could try to reestablish these relations and associations from
time to time, but this requires an active process executed by a
control structure. Active control would be needed constantly to
decide how many of these relations and associations have to be
reestablished (and how often).
4. Pilot simulations showed that RNNs are very good at repro-

ducing learned word-to-word associations. Hence, with the test
sentence boy hears girl, we wanted to avoid combinations like
boy hears and hears girl in the training sentences. Other than
that, we wanted to train as many relations between these words
as possible. In the case of this test sentence, the RNNs learned
the relation boy Verb girl. Furthermore, they learned the relation
dog Verb girl with dog hears Noun, and the relation boy Verb cat
with Noun hears cat.
5. We are not aware of pathological behavior of this kind.

Broca’s aphasics, for example, often fail on sentences like girl
who dog hears obeys Mary, but they can still understand
sentences like boy hears girl (Grodzinsky 2000).
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6. Verbs can have one, two, or three arguments, or thematic
roles. Although in semantic terms many different kinds of argu-
ments can be distinguished, they can be grouped into “semantic
macroroles” (van Valin 2001). We will refer to these as “agent,”
“theme,” and (later on) “recipient.”
7. When an NP assembly is bound to a sentence structure, at

least one of its memory circuits is active. This activation can be
used as a signal that the NP assembly is not free, or one could
have an “inhibition of return” that prevents the reactivation of
a structure assembly activated recently.
8. The inhibition of the active NP assembly could result

from initiating a competition between the NP assemblies.
Because of its high transient activity, frequently found with a
new stimulus, the new NP assembly could win the competition,
or the occurrence of a new noun could result in the inhibition
of the active NP assembly before a new NP assembly is
generated.
9. The delay assemblies produce inhibition by activating

inhibitory interneurons.
10. If treelike structures capture important aspects of sen-

tence structures, neural instantiations of sentence structures
can always be transformed into treelike structures. This is a
direct consequence of having a neural instantiation of a sentence
structure. It can be compared with the gradual transformation of
one computer language into another. It is a matter of choice
which of the intermediary structures are used to illustrate the
transformation. A comparison of Figures 7a and 7b shows that
it is more useful to discuss the architecture in terms of the struc-
tures illustrated in Figure 7a than those in Figure 7b. Yet both
figures represent the same architecture and can be transformed
into one another.
11. In linguistics, words are the terminal notes placed at the

bottom of a sentence structure. Here they are placed close to
their structure assemblies.
12. The structures in Figures 11 (left) and 1 (b and c) are not

the same. Figure 11 (left) represents a conjunctive encoding that
results from direct associations between each of the word assem-
blies and the HC neuron. In Figure 1 (b and c), a specific neural
circuit will activate a “sentence” neuron when the word assem-
blies have been activated in the correct order. Circuits of this
kind are much harder to develop than the conjunctive encoding
in Figure 11.
13. Transitions from an attractor state into an associated

attractor state have been observed in the cortex (Yakovlev et al.
1998).
14. A difference could be found in clause-based closure prin-

ciples (see, e.g., Gibson 1998). For example, a relative clause can
be closed without closing a matrix clause, but a matrix clause
cannot be closed without closing a relative clause.
15. The connection structure illustrated in Figure 19 was not

specifically designed to operate as a pushdown stack. Instead, it
was designed to satisfy two constraints. First, the constraint of
combinatorial productivity, which entails that every A subassem-
bly should be able to bind with every B subassembly (and vice
versa). This constraint is satisfied with the matrix-like array of
columns in the connection structure. Second, the uniqueness
constraint, which entails that a given A subassembly can bind
to only one B subassembly (and vice versa). This constraint is sat-
isfied with the inhibition within the horizontal and vertical rows
of columns. The resulting connection structure operates as a
pushdown stack if the reverberating activity in the structure
decays over time.
16. The image of a purple cow is used in an advertisement

campaign of a brand of milk chocolate bars sold in a purple
wrap.
17. Perhaps we do not need to study the neural instantiation

of cognition. In the view of “classical” cognitive psychology
(e.g., Fodor & Pylyshyn 1988), implementation is irrelevant for
the nature of a computational model of a cognitive process. A
mathematical critique of this position can be found in van der

Velde (2001). Here we point out that Fodor (2000) has argued
that the computational theory of mind is incomplete – in fact,
only a fraction of the truth. If so, it makes even more sense to
study how computational processes can be implemented in the
brain. We know that the brain produces cognition (it is the
only example we are certain of). So if we had an idea of how com-
putational processes could be matched onto brain processes, we
could also get a clearer view of what could be missing in the com-
putational account.
18. An alternative would be to reformulate the aim of cogni-

tive neuroscience, or, which amounts to the same thing, to
abandon cognitive neuroscience as described by Gazzaniga. We
do not advocate such a position.

Open Peer Commentary

Conscious cognition and blackboard
architectures

Bernard J. Baars
The Neurosciences Institute, San Diego, CA. 92121 baars@nsi.edu

www.nsi.edu

Abstract: van der Velde &de Kamps make a case for neural blackboard
architectures to address four questions raised by human language.
Unfortunately, they neglect a sizable literature relating blackboard
architectures to other fundamental cognitive questions, specifically
consciousness and voluntary control. Called “global workspace theory,”
this literature integrates a large body of brain and behavioral evidence
to come to converging conclusions.

When Alan Newell and coworkers developed the first blackboard
architectures in the 1970s, they also called them “global work-
space architectures” (Newell 1990/1994). Global workspace
theory (GWT) applied Newell’s blackboard architecture to the
empirical evidence bearing on consciousness and related issues
in the 1980s and ’90s and has since gained dramatic support
from a wide range of brain imaging studies (Baars 1988; 1997;
2002; Baars et al. 2004). Recently, neural net models have
expanded the theory and made it more testable in cognitive
neuroscience experiments (Dehaene et al. 2003). Franklin and
colleagues have built the first large-scale GWT-based model
that is able to perform quite complex human tasks (Franklin
2003). Shanahan and Baars (in press) have applied GWT to the
frame and modularity problems, widely discussed in cognitive
science, and Baars and Franklin (2003) have shown how GWT
can account for cognitive working memory. Finally, GWT con-
verges well with neuroscience approaches to the problem of con-
scious cognition (e.g., Edelman & Tononi 2000).

The fact that two different terms are used for the same
cognitive architecture may cause confusion. Because the target
article is mainly concerned with language, this commentary will
focus on ways in which GWT has made testable claims about
other aspects of language as well. It should be noted in passing
that the first large-scale application of a blackboard architecture
in cognitive science, the Hearsay System by Newell and
colleagues, was specifically designed to deal with speech recog-
nition in noisy natural environments (Newell 1990/1994).
Hence language has been a concern of blackboard theorists for
thirty years.

The Hearsay blackboard architecture was chosen because in
the 1970s the speech signal was highly ambiguous. The solution
was to allow multiple autonomous knowledge sources – involving
acoustics, vocabulary, phonotactics, syllable structure syntax,
and so on – to cooperate and compete with each other in propos-
ing “hypotheses” about the acoustical signal on a shared memory
resource, the blackboard or global workspace. This approach was
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surprisingly successful. Even though today’s speech recognition
systems are more predictive of acoustical formant patterns,
language has a principled problem of ambiguity that would not
be solved even by perfect acoustical processing. The reason, of
course, is the massive ambiguity of the natural lexicon (as well
as many other aspects of language). Neither speech recognition
nor production is therefore fully determinate. “Expectation-
driven processing” involving a mixture of semantic, pragmatic,
discourse, lexical, world-knowledge, rhetorical, intonational,
interpersonal, syntactic and phonetic-acoustical knowledge
sources is required to solve this problem (Baars 1988).

Global workspace or blackboard architectures are especially
useful for resolving ambiguities at any level of language, which
may be addressed by knowledge at any other level, or what I
have called the “any-any” problem (Baars 1988). Furthermore,
it is easy to show that the problem of multiple ambiguities inter-
acts with conscious cognition. Essentially all the common words
of English are ambiguous, as one can see simply by consulting a
dictionary. The Oxford English Dictionary devotes some 75,000
words to the many meanings of the word “set,” for just one
example. Yet it is striking that skilled speakers of English are
rarely conscious of the sea of ambiguity in which they swim.
Most input ambiguities are resolved unconsciously, though
one can show both behavioral and brain correlates of the
degree of ambiguity that needs to be resolved. Ambiguities can
sometimes become conscious, as in the case of jokes, puns, and
language games as well as genuine difficulties in understanding
speech. But these are relatively rare events. More commonly,
unconscious expectation-driven processing selects the most
plausible interpretation, which is the one that becomes
conscious.

These basic facts can be handled naturally by GWT; because
competition between incompatible knowledge sources makes it
unlikely for ambiguous “hypotheses” to survive on the common
blackboard. The hypotheses that survive long enough to be
widely distributed (“broadcast”) are the ones that command at
least tacit acceptance form multiple knowledge sources. This is
precisely what Newell’s group found with the Hearsay system,
and it has recently been found to work as well with other pro-
blems of choice and ambiguity in Franklin’s large-scale Intelli-
gent Distribution Agent (IDA) architecture. Hence there is a
plausible functional fit between GWT and the question of con-
scious and unconscious language processing.

On the language output side there is a precisely analogous
problem, but here it is the problem of choosing between near-
synonyms in expressing a semantic proposition. Writers encoun-
ter this problem consciously, thinking about different ways of
expressing a thought or using thesauri to find just the right
word to fit the thought. But natural language universally allows
for expressions that differ in significant but relatively subtle
ways, including such considerations as politeness, active-passive
constructions, suitability for different listeners, rhetorical con-
ventions, and so on. The point is that there is principled indeter-
minacy on the output side of language, just as there is on the input
side. As Franklin and colleagues have shown, the problem of
action selection in autonomous agents, which is formally identical
to the speaker’s problem of choosing among near-synonyms, can
also be resolved by a blackboard/GW architecture. It is again
striking that humans cannot report on rapid expectation-driven
speech selection processes but can become quite conscious of
the final coherent speech plan, as shown by standard measures
such as reportability.

In sum, the authors’ arguments language could be strength-
ened by taking into account global workspace theory. Questions
such as conscious cognition and voluntary control are testable
and subject to theoretical analysis. They are central to language
as well as other brain functions. It is most encouraging that the
same fundamental architecture can account for aspects of
language as well as other fundamental human capacities, includ-
ing conscious cognition.

On the structural ambiguity in natural
language that the neural architecture cannot
deal with

Rens Bod,a,b Hartmut Fitz,c and Willem Zuidemaa

aInstitute for Logic, Language and Computation, University of Amsterdam,

Amsterdam, 1018TV, The Netherlands; bSchool of Computing, University of

Leeds, Leeds, LS2 9JT, UK; cInstitute for Logic, Language and Computation,

University of Amsterdam, Amsterdam, 1012CP, The Netherlands.

rens@science.uva.nl http://www.science.uva.nl/�rens

fitz@science.uva.nl http://amor.cms.hu-berlin.de/�h2784i25

jzuidema@science.uva.nl http://www.science.uva.nl/�jzuidema

Abstract: We argue that van der Velde’s & de Kamps’s model does not
solve the binding problem but merely shifts the burden of constructing
appropriate neural representations of sentence structure to unexplained
preprocessing of the linguistic input. As a consequence, their model is
not able to explain how various neural representations can be assigned
to sentences that are structurally ambiguous.

Any native speaker’s knowledge of language is productively com-
binatorial, in that from a finite set of building blocks (depending
on one’s linguistic theory, words, morphemes, rules, or construc-
tions), an unbounded set of possible sentences can be generated.
A major challenge for cognitive neuroscience is to explain how
this capacity can be implemented and acquired in neural
tissue. van der Velde’s and de Kamps’s (vdV&dK’s) target
article reinterprets this challenge as a question about represen-
tations: how single, unified neural representations of the building
blocks can function as symbols, such that they can be used in
many different structures, in multiple structures at the same
time, and in multiple instantiations within the same structure.

It is not easy to evaluate whether they have succeeded in
answering that question, not only because of a regrettable lack
of clarity in the article about technical details but also because
of an equally regrettable lack of clarity in the field about the
evaluation criteria. For instance, in connectionism, showing
how representations are learned is usually seen as an integral
part of cognitive modeling. In theoretical linguistics, formalisms
are judged on their ability to model syntactic phenomena such as
agreement, long-distance dependencies, and cross-serial depen-
dencies. The target article addresses neither of these problems
thoroughly, but we believe it should not be dismissed for those
reasons. Explanatory models do need to simplify – but without
relegating the core issues to unexplained processes.

Unfortunately this is exactly the situation with “binding” in the
vdV&dK model. The authors repeatedly point out that the
binding mechanisms in their model instantiate primitive parsing
operations and that their model is intended to be a process
model. We find, however, that the crucial decisions to arrive at
the appropriate binding are relegated to an unspecified prepro-
cessor. This is particularly clear when we consider the widespread
structural ambiguity of natural-language sentences – a property
that we see as a major challenge for any neural architecture of
natural-language processing. How do we construct the appropri-
ate neural representations of the multiple syntactic structures that
can be assigned to a single natural-language sentence?

vdV&dK demonstrate how sentences with the same sequence
of word categories can be distinguished on a representational
level. The authors fail to show, however, how such syntactic
parses are constructed procedurally. In their model, the rep-
resentations of all possible sentence structures are prewired in
a gridlike fashion. Connections between structure assemblies
(syntactic variables) are physically present but they are initially
inactive. The process of binding thus boils down to activating
the right gating and memory circuits.

Section 6.8.4 attempts to clarify this process, but how exactly
the activation of these circuits is controlled remains unclear.
Obviously, the juicy parts of this mechanism are the detection
of lexical categories and the assignment of thematic roles to sen-
tence constituents. This information is required to activate the
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right kind of input nodes of the neural control circuits in order to
bind word assemblies to structure assemblies and to bind differ-
ent structure assemblies via their subassemblies. For instance
“cat chases mouse” and “mouse chases cat” both have the same
surface N-V-N structure and are distinguishable by the black-
board model only if agent and theme are assigned inversely.
The underlying event structure, however, cannot simply be
read off the word order as the authors seem to suggest. This is
clear from notorious examples like “The man frightens the
child” versus “The child fears the man.” Both sentences describe
the same event, but neither the position in the sentence nor the
syntactic category signals the thematic role of “man” and “child.”

Moreover, concurrent activation of assemblies for “mouse” and
“chases” does not resolve whether “mouse” is the actor or the
theme of “chases.” Hence simultaneous activity as a binding
mechanism, that is, “and-binding,” works only if the assignment
of thematic roles is already accomplished by a preprocessor.
vdV&dK do not sufficiently comment on how this task is achieved.
The proposed model therefore does not solve the binding
problem but merely shifts the burden of constructing appropriate
neural representations of sentence structure to unexplained
preprocessing of the linguistic input. Consider, for instance, the
sentence “The fact that the boy comprehends surprises the
teacher.” Unlike the very similar examples in the target article,
this sentence does have two readings for the same N-that-N-V-
V-N sequence. How the model “parses” this sentence depends
entirely on the preprocessor’s choices on whether “the fact”
should be assigned the theme role of “comprehends” or not.

This shortcoming is particularly problematic for real-world
ambiguous sentences. If vdV&dK’s model already runs into
trouble for simple three-word sentences, what would it make of
real-world sentences for which there can be an interaction of
several types of ambiguities, such as attachment ambiguities (like
PP attachments and reduced clause attachments), functional
ambiguities (like subject, object and indirect object assignments),
and scope ambiguities (like different scope of adjectives). Any pro-
cessing or parsing model for natural language should be able to tell
us how various (neural) representations can be assigned to ambig-
uous sentences, and many parsing models even go further and also
tell us how to select the preferred representation (e.g., Bod 1998;
Charniak 1997);. vdV&dK’s model does neither; as a parsing
model for real-world sentences the approach is thus inadequate.

Should we, then, interpret the model as just a neurally inspired
model of representation? The problem with such an interpretation
is that without specifying the processes that do something with the
representations – learning, interpretation, production, infer-
ence – it is unclear what the requirements on representations
are. At the very least, representations should distinguish between
all sentences that have different phrase structure. Unfortunately,
the authors do not show that their formalism can make these
distinctions for more than a handful of simple examples, nor do
they analyze the expressive power of the formalism proposed and
compare it with established results in theoretical linguistics (e.g.,
Chomsky 1957; Joshi et al. 1991). The real question that we
believe remains unanswered is how networks of neurons, of the
type that are found in the human brain, can construct appropriate
representations and put them to use in actual language processing.
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How neural is the neural blackboard
architecture?

Yoonsuck Choe
Department of Computer Science, Texas A&M University, College Station, TX
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Abstract: The target article does not provide insight into how the
proposed neural blackboard architecture can be mapped to known
neural structures in the brain. There are theories suggesting that the
thalamus may be a good candidate. However, the experimental
evidence suggests that the cortex may be involved (if in fact the
blackboard is implemented in the brain). Issues arising from such a
mapping will be discussed.

In the target article, van der Velde &de Kamps (vdV&dK)
present a neural blackboard architecture for the representation
of combinatorial structures in cognition. However, they do not
provide much insight into how their proposed architecture
(Fig. 3 in target article) can be mapped onto known neuroanat-
omy and neurophysiology.

In this commentary, I will assess the idea that the thalamus is a
key structure to which the neural blackboard architecture can be
mapped. In fact, there are existing theories in this line: In
addition to the work of Newman and colleagues (1997), which
is cited in the target article, Harth and colleagues (1987) and
Mumford (1991; 1995) also propose that the thalamus may be
a good candidate for such an internal blackboard or a sketchpad.
The rational is that the thalamus receives dense feedback from all
parts of the cortex and hence is an ideal place for the results of
cortical processing to be written and combined. Hence the thala-
mus on its own may take on an integrative role under these the-
ories. (Also see Choe 2004 for a possible role of the
thalamocortical circuit in processing analogy.)

However, neuroscientists have argued that the thalamus does
not play such an integrative role in which signals from multiple
sources in the cortex converge to a small, local region of the thala-
mus (Sherman & Guillery 2001, p. 102). On the other hand, there
is also evidence that there may be intrathalamic interactions that
can allow some form of integration through the thalamic reticular
nucleus containing inhibitory neurons (Crabtree et al. 1998).
Hence it is unclear whether a blackboard, if it is in fact
implemented in the brain, can be found solely within the thala-
mus or if other parts of the brain such as the cortex can also
serve a role.

Here I will assess the compatibility of the gating circuit in
the target article’s Figure 3 with the thalamocortical circuit.
The basic finding is that the model of vdV&dK needs both the
cortex and the thalamus, as well as the thalamic reticular
nucleus (TRN) as a neural substrate. Figure 1(a) shows a
schematic diagram of the thalamocortical circuit based on
known experimental findings (see Sherman & Guillery 2001 for
a review). Figure 1(b) shows how the gating circuit in the
target article’s Figure 3 can be nicely mapped onto the thalamo-
cortical circuit, where the major representations, such as part-of-
speech and thematic role, and the control all come from the
cortex, and the disinhibitory gating happens at the thalamic
reticular nucleus (TRN) and the thalamic relays. A connection
new in (b) compared to (a) is the connection from Xout to Y,
which can be seen as an ascending branch of the axon from T2

to C2 (see, e.g., Macchi et al. 1984). The mapping in
Figure 1(b) suggests that the blackboard architecture may not
be confined to the thalamus as Newman and colleagues, Harth
and colleagues, and Mumford and colleagues suggest. Rather,
the cortex would serve as the major blackboard, and the thalamus
would only play the role of gating.

Several issues become apparent when the architecture is put
into a concrete context as shown in Figure 1(b). One key assump-
tion in the neural blackboard is that duplication of structure
assemblies is easy compared to that of word assemblies. But
what does it mean for an assembly to be duplicated? There are
two possibilities: (1) the anatomical structure is duplicated on
the fly, which seems highly unlikely (but Figure 7b in the
target article indicates this may be the case); or (2) the pattern
of activation that represents a structure assembly is duplicated,
which seems too biologically underconstrained and abstract
(i.e., how can various binding and control reach the dynamically
changing patterns?).
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Another issue is about how different word assemblies can be
bound to a particular structure assembly construct such as N1

in the target article’s Figure 2 (e.g., cat -x- N1). For this to
work, potentially all cortical areas representing a word assembly
(taking the place of X in Fig. 1[b]) need to have a physical
connection to the relevant gating circuit in the thalamus (ix and
Xout) that project to N1 (Y): a combinatoric explosion of connec-
tions. A related problem is about how control from the central
pattern generator (controlX to Y) gets attached to the gating
circuit (IX). For the central pattern generator precisely to
control the flow of activation in all the gating circuits, it needs
to project to a large number of participating TRN neurons,
which may, again, become too resource-intensive.

In sum, (1) it is possible that the gating circuit can be mapped
to a concrete neural circuit in the thalamocortical network; but
(2) with this concrete view of the gating circuit, the flexibility

or dynamic nature of the proposed architecture comes under
question, thus undermining the claimed productivity in the
blackboard architecture. The blackboard architecture may be
sufficient when it remains abstract, but once it becomes
grounded in neural terms, its combinatoric power may suffer.
Hence the question: How neural is the neural blackboard
architecture?

How anchors allow reusing categories in
neural composition of sentences

William J. Clancey
NASA Ames Research Center, Intelligent Systems Division, Moffett Field, CA

94035. William.J.Clancey@NASA.gov http://bill.clancey.name

Abstract: van der Velde’s &de Kamps’s neural blackboard architecture is
similar to “activation trace diagrams” (Clancey 1999), which represent
how categories are temporally related as neural activations in parallel-
hierarchical compositions. Examination of other comprehension
examples suggests that a given syntactic categorization (structure
assembly) can be incorporated in different ways within an open
composition by different kinds of anchoring relations (delay
assemblies). Anchors are categorizations, too, so they cannot be reused
until their containing construction is completed (bindings are resolved).

Conceptual Coordination (Clancey 1999, hereafter CC)
attempted to bridge connectionism and symbolic theories of
cognition by analyzing slips, autism (Clancey 2003), learning in
well-known architectures (e.g., MOPS, EPAM, SOAR), dream
phenomenology (Clancey 2000), and natural-language compre-
hension difficulties. The neural blackboard architecture of van
der Velde & de Kamps (vdV&dK) (pp. 15ff) has properties that
directly map to “activation trace diagrams” (CC, p. 6), including:
(1) representing a conceptualization of a sentence on a black-
board; (2) not copying structures (i.e., one physical instantiation
in a given sentence diagram); (3) preserving temporal relations of
neural activation; (4) composing word assemblies by structural
relations (e.g., a noun phrase, NP); (5) creating word structures
(e.g., “the cat - NP”) by temporary binding/tagging (CC,
p. 273); (6) binding words to multiple structures in different
roles (e.g., both agent and theme); and (7) holding a partially
completed structure active (a “delay” activity in vdV&dK;
“anchor” in CC, p. 246).

Figure 1 represents conceptualization of a double-centered
embedded sentence from vdV&dK using the notation from
CC. During the composition process, the first noun phrase
(NP1) is held active by an anchor, contained within subsequent
phrases, and then resolved in an agent role by a right branch.
A verb phrase is represented (in vdV&dK’s terms) as an agent
and verb on a line segment (e.g., “boy-likes”), with a theme
(e.g., object, “dog”) indicated by an arrow below. This sentence
is analogous to “The cat that the bird that the mouse chased
scared ran away” (CC, fig. 10.14, p. 256). vdV&dK (pp. 47ff)
indicate that these sentences are difficult to comprehend
because there are two NPs (NP2 and NP3) that could bind to
two different theme assemblies (e.g., “likes” and “bites”).

Based on analysis of other convoluted examples (provided by
Lewis 1996), the binding problems involved in sentence
comprehension can be restated and generalized. The following
principles postulate restrictions on how word (semantic) and
structural (syntactic) categorizations are employed in a given
construction (from CC, pp. 261–62):

(P1) A semantic categorization can play multiple syntactic roles
but not the same role twice in an active construction (e.g., “cat”
cannot be an agent in two verb phrases).

(P2) A syntactic categorization may “index” multiple semantic
categorizations but may be active only once at a given time
(e.g., only one active NP; the others are in “completed” verb
phrases).

Figure 1 (Choe). Thalamocortical circuit and the gating circuit
mapped onto it. (a) A schematic diagram of the thalamocortical
circuit is shown (adapted from Choe 2004). White discs are
excitatory neurons and black ones are inhibitory neurons,
whereas solid edges are excitatory connections and dashed ones
inhibitory. (b) The gating circuit in the neural blackboard
architecture is mapped onto the thalamocortical circuit. The
neurons and connections that may not participate in the gating
circuit are shaded out in dark gray. Besides that, the only
difference between the circuit here and that in (a) is the
ascending thalamocortical projection from T2 to C3, i.e., Xout to
Y (see text for a discussion).
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(P3) The use of an anchor allows a syntactic categorization to be
“open” as the head of a sequence twice at a given time (e.g., in
Fig. 1 the anchor holds the NP at the head, allowing subsequent
NP categorization activations). The anchor is itself a categoriz-
ation relating syntactic categories (i.e., this anchor represents
the relation “agent-NP”); the neural processes representing the
syntactic categorization NP are actually released.

(P4) Meaning construction (comprehension) is a sequential
behavior, not holding a parse tree or “moving” items in a data
structure.

(P5) Two general kinds of anchors are possible, one holding an
embedded sentence and another holding a relative pronoun or
NP within a relative phrase (see example below). Anchors
serve as “stacks” that allow one level of recursion, in the compu-
tational sense that the stack may be “popped” and compositional
processing returns to the previously anchored element. A higher-
order construction must be closed off before returning to an
anchor categorization.

(P6) Multiple anchors may appear in one utterance, but each
must categorize a different syntactic relation (e.g., embedded
proposition, relative pronoun object, noun object, noun subject).

(P7) Multiple conceptual dimensions are operating simul-
taneously, including different kinds of NP categorizations, and
conceptual organizers also include rhythm, stress, and visualiza-
tion. These dimensions allow and facilitate reactivation and
composition of multiple object and event references during the
comprehension construction process (consistent with vdV&dK’s
relation of visual and verbal processing, sec. 8, para 1).

These principles imply a refinement of vdV&dK’s neural
architecture. In particular, vdV&dK say that a set of structure
assemblies, whose number relates to memory span (sec. 6.7,
para 1), can be simultaneously active. My analysis suggests that
these are not multiple activations of a given structure assembly
but categorizations of different relations constituting different
kinds of anchors (delay assemblies connecting structure assem-
blies). For example, illustrating P5, the sentence in Figure 2 is
impossible to comprehend because the opening ambiguous
role of Fred (subject or indirect object?) requires two agent-
NP anchors (for Fred and “the woman”) to be active. Other
examples suggest that the anchors shown for NP2 and NP3 are
different syntactic relations so they are allowed (Principle 6) –
anchor1 is “relative pronoun-NP,” and anchor2 is agent-NP.
Accordingly, we can comprehend “The woman whom the man
who hired me married is tall.” But the sentence in Figure 1 is
confusing because it requires the agent-NP anchor to be active
in different ways at the same time (for “the boy” and “the dog”).

I believe the restriction on anchors follows naturally from
vdV&dK’s architecture (sec. 6.7, para 1). The generalization I
propose is that any kind of “assembly” (categorization) can be
active only once until, in the temporal process of comprehension,
the binding relations are resolved in its contained categorization
(e.g., a VP), allowing the constituent categorizations to be freed
for reuse. Hence, just as a word can play a role (e.g., agent) in
only one way in a sentence, an anchor (a delay connecting a
structure assembly) is a categorization, too, and it can be active

(incorporated in an open construction) in only one way at a
time. All this amounts to the rule: “no copying.”

vdV&dK provide a neural model that supports and refines the
postulates of CC. But the CC analysis provides many more
examples that can be used to refine a theory of neural mechan-
isms. The process of combining structures on a “neural black-
board” can be mapped to problems of autistics in conceiving
agent relations (Clancey 2003) as well as categorizing and
sequencing discoordinations in verbal slips (CC, fig. 6.7,
p. 161). Indeed, our dream of relating neural and “symbolic”
analyses of cognition is progressing nicely.

NOTE
The author of this commentary is employed by a government agency

and as such this commentary is considered a work of the U.S. government
and not subject to copyright within the United States.

The problem with using associations to carry
binding information

Leonidas A. A. Doumas, Keith J. Holyoak, and John
E. Hummel
Department of Psychology, University of California, Los Angeles, Los Angeles,

CA 90095-1563. adoumas@psych.ucla.edu

holyoak@lifesci.ucla.edu. jhummel@psych.ucla.edu

Abstract: van der Velde & de Kamps argue for the importance of
considering the binding problem in accounts of human mental
representation. However, their proposed solution fails as a complete
account because it represents the bindings between roles and their
fillers through associations (or connections). In addition, many
criticisms leveled by the authors towards synchrony-based bindings
models do not hold.

van der Velde & de Kamps (vdV&dK) argue forcefully for the
importance of addressing the binding problem in accounts of
human mental representation. One of the strengths of structured
representations is that they can support reasoning based on
relational (rather than simply featural) similarity. Although the
representations in the neural blackboard architecture
proposed by vdV&dK do allow specialized associations to
be formed between bound elements (via structure assemblies),
the resulting representations do not explicitly represent the
bindings between relational elements and their arguments. This
is because binding information is carried in connections between
assemblies of neurons, which, as noted by von der Malsburg
(1981/1994; 1986), are not sufficient to make bindings explicit

Figure 1 (Clancey). Activation trace diagram of “The cat that
the dog that the boy likes bites chases the mouse” (vdV&dK,
sect. 2.2, para. 7; cf. CC, fig. 17, p. 46).

Figure 2 (Clancey). Activation trace diagram of “Fred is easy
for the woman whom the man who hired me married to
please” (example from Lewis 1996; see CC, fig. 10.18, p. 264).
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because information about the associations between neurons
upstream are not available to neurons downstream.

For example, when the neural blackboard architecture
represents the proposition chase (cat, mouse), it (in essence)
connects the representation of cat to the chase relation via an
agent structure assembly and the representation of mouse to
the chase relation via a theme structure assembly. This is, as the
authors demonstrate, sufficient to answer questions of the form,
Who is the cat chasing? However, to neurons downstream, all
that is available is a pattern of active neurons (i.e., active
representations of cat, mouse, chase, and both agent and
theme structure assemblies), not the associations between these
upstream neurons and neuron assemblies. As a result, to these
downstream neurons, the proposition chase (cat, mouse) is indis-
tinguishable from the proposition chase (mouse, cat).

This limitation of binding by associative connections has
led Hummel and Holyoak and their colleagues (e.g., Doumas &
Hummel 2005; Holyoak & Hummel 2000; 2001; Hummel 2000;
Hummel & Biederman 1992; Hummel & Holyoak 1992; 1996;
1997; 2003; Hummel et al. 2004) to argue that neural systems
require a degree of freedom above and beyond activation and
association weight in order to model human reasoning based on
structured representations. vdV&dK argue that synchrony-
based systems are not sufficient to model binding because they
cannot solve the “problem of 2” or represent hierarchical rela-
tional propositions. However, the Learning and Inference with
Schemas and Analogies (LISA) model of Hummel and Holyoak
(1997; 2003) is a synchrony-based system that has no difficulty
representing multiple instantiations of the same object (or
relation) in a proposition (i.e., solving the problem of 2) or repre-
senting hierarchical propositions (see Hummel & Holyoak 1997;
2003). In addition, LISA makes bindings explicit (by means of the
synchrony relations between bound elements) and thus can
account for numerous phenomena from the literature on rela-
tional reasoning, relational generalization, schema induction,
and relational retrieval.

One way to modify the vdV&dK model to allow it to capture
structure might be to have the agent and theme nouns time-
share. For example, let the agent noun fire first, followed by
the theme for each represented relational proposition.
However, this modification would simply be a way to use time
to carry binding information (i.e., a form of binding by syn-
chrony), which the authors explicitly eschew. LISA provides a
more straightforward and detailed account of how time can be
used to carry binding information in an architecture that can
also account for numerous phenomena related to relational pro-
cessing in human cognition.

Has the brain evolved to answer “binding
questions” or to generate likely hypotheses
about complex and continuously changing
environments?

Birgitta Drespa and Jean Charles Barthaudb

aCNRS, 34293 Montpellier Cedex 5, France; bLaboratoire “Etudes des

Mécanismes Cognitifs (EMC),” Université de Lyon 2, Campus Porte des Alpes,

69676 Bron Cedex, France. Birgitta.Dresp@univ-lyon2.fr

jean-charles.barthaud@univ-lyon2.fr

Abstract: We question the ecological plausibility as a general model of
cognition of van der Velde’s & de Kamps’s combinatorial blackboard
architecture, where knowledge-binding in space and time relies on the
structural rules of language. Evidence against their view of the brain
and an ecologically plausible, alternative model of cognition are
brought forward.

The authors present a model that addresses the question of how a
brain could learn to process meaning conveyed by sentence

structures of a modern European language. Claiming that
language symbols are “grounded in perception,” they argue
further that sentence structures and visual object properties
are controlled by the same top-down process. The idea that con-
sistent “binding” of knowledge in space and time would, at some
stage of cognitive development, generate specific brain states is
readily dismissed. Binding, instead, is conceived as a compu-
tational operation designed to mimic a brain process that selec-
tively links words or object properties via combinatorial rules
imposed by the structure of the English language. Whether
this approach provides a plausible general model for cognition,
as claimed here, is questionable. It remains to be justified
whether the “binding problem” is solved on the implicit assump-
tion that the human brain has evolved to process information
according to rules imposed by language structures.

The authors claim that binding results from a process which is
initiated with a “binding question,” such as “Who does what to
whom?” or “Where is what?,” leading to temporary selective acti-
vation/inhibition of verb-noun or object-feature connections.
What is not explained is that “binding questions” in human cog-
nition cannot be reduced to simplistic “queries” like the examples
given. During cognitive development, the brain deals with far
more complex “interrogations,” such as “Who does what to
whom, where, when, why and with what consequences?” for
example. The authors touch on this by mentioning that with
increasingly longer sentences, their model would have to
encode entire sentence structures in terms of event sequences.
This inevitably implies that their system would ultimately bind
increasingly complex “event assemblies” rather than word-and-
noun or object-and-feature assemblies. How the relatively sim-
plistic combinatorial rules of language discussed in the frame-
work of their article handles such increasing complexity
remains an open question.

How plausible is it to assume that brains would use a process of
the kind suggested here to bind knowledge in space and time?
Brain learning is certainly aimed at generating behavioural
success. Intelligent systems like the human brain have evolved
to be able to generate the most likely hypotheses about
complex and continuously changing environments. To be suc-
cessful, that is, to enable fast behavioural adaptation to changes
occurring in the physical world, such hypotheses have to rely
on simple, fast, and foolproof mechanisms (i.e., “dumb mechan-
isms”; Anstis 2005). Visual recognition of complex cognitive
events such as natural scenes is essentially holistic and incredibly
fast in human and nonhuman primates (Delorme et al. 2004;
Mace et al. 2005). This strongly suggests that the binding of fam-
iliar visual input reflects a brain state where expectation signals
preset lower levels of visual pathways to the learned events,
objects, or features.

How such a brain state could be computed is suggested in
adaptive resonance theory (ART), an alternative theory of
cognition not mentioned in the target article. According to
ART (e.g., Grossberg 1999), binding would correspond to a res-
onant state resulting from positive versus negative matches
between incoming external information (bottom-up signals) and
the most likely hypothesis of what that information could be at
a given time (top-down expectation signals). Resonant states
would correspond to states of activation in the “what” and
“where” processing streams (Ungerleider & Mishkin 1982) of
the primate brain. Resonant states, as shown in ART, are gener-
ated by signal exchanges at the perceptual level and do not
require a language-based, combinatorial architecture.

van der Velde & de Kamps conceive the brain as a general-
purpose computer that can be programmed, unprogrammed,
and reprogrammed to do all sorts of tasks according to a
given number of limited rules. They state that language
symbols are “grounded in perception,” but what does that
mean in terms of brain mechanisms? Empirical findings point
toward functionally specialized, separate pathways for the pro-
cessing of language and visual information such as faces,
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shapes, or colours (Anstis 2005; Damasio 1983; Moscovitch et al.
1997; Stroop 1935). Moreover, the fact that human adults are
capable of visually representing event sequences described
by sentences and, conversely, are able to use sentences to
describe events represented in visual scenes does not imply
that language and vision produce unified knowledge controlled
by a single top-down process generating “binding questions.”
The authors, however, defend such a conception of the
human brain by arguing that observers can be cued verbally
to select visual objects on the basis of colour irrespective of
shape or location. This implies that language determines
which features of an object will be encoded by the brain.

Evidence from object-recognition experiments using visual
repetition priming (Barthaud et al. 2003) shows that such a con-
clusion cannot be sustained. We presented visual targets with
varying shapes and colours, preceded by visual primes with the
same colour as the target but different shape, the same shape
but different colour, the same shape and colour, and different
shape and colour. In the control condition, no prime preceded
the target. When observers are verbally cued to decide on the
shape of the target irrespective of colour, results unambiguously
show that they recognize the shape of the target significantly
faster when it is preceded by a prime with the same shape and
the same colour. This clearly demonstrates that although only
shape was cued for verbally, observers still used and therefore
processed colour to recognize the targets as quickly as possible.
Such findings add empirical support to models of cognition
such as ART (e.g., Grossberg 1999), where external contextual
events, not internalized cues or “binding questions,” determine
what is encoded by the brain. In conclusion, there is doubt
about the ecological plausibility of the approach presented here
as a general model of cognition.

Engineering the brain

Daniel Durstewitz
Centre for Theoretical and Computational Neuroscience, University of

Plymouth, Plymouth, PL4 8AA, United Kingdom.

daniel.durstewitz@plymouth.ac.uk

http://www.bio.psy.ruhr-uni-bochum.de/cnl/cnl.htm

Abstract: The target article presents a stimulating account for some of
the most challenging issues in cognitive neuroscience. The theory
solves in neural terms cognitive problems beyond the scope of previous
models. But in many aspects the neural implementation is a quite
literal translation of symbolic descriptions and therefore still lacks some
of the truly self-organizing properties characteristic of biological
networks.

In their innovative framework, van der Velde and de Kamps
(vdV&dK) exploit sustained activity for expressing temporary
bindings and gating circuits for controlling the flow of activation
in accordance with syntactical structures. Thereby they manage
to account for some of the most challenging problems of
human cognition using neurobiologically plausible components.
Yet in many aspects, their approach follows an engineering,
top-down-driven view on neural computation, where abstract lin-
guistic components are, more or less, directly mapped onto
neural components like labeled nodes (cell assemblies) and
“labeled” links. This is not a drawback per se, as many valuable
insights have been gained that way in the past. But although it
may suit the cognitive side, some questions arise regarding bio-
logical validity.

Certainly, as said above, the neural ingredients used by
dvV&dK, like gating circuits, are somewhere present in the
brain. But any cognitive machine could be designed by freely
combining elements from the rich repertoire of neurophysiologi-
cally established mechanisms (AND- and OR-like gates, for
example, come in many different variants, ranging from

molecular to network levels). For that same reason, the criticisms
by the authors of previous linguistic neural models such as the
ones based on synchronization or artificial recurrent networks
(RNN) are at best criticisms of these specific models rather
than of these neurocomputational approaches in general. For
example, using synchronization (in the sense of fixed phase
relations between spike times) as a mechanism, different bind-
ings may be established within different oscillatory subcycles,
and hierarchical structures might somehow be embedded in
nested oscillations (like theta- and gamma-oscillations in the hip-
pocampus). For read-out, as the authors point out for their own
mechanisms, all that is really required is a network dynamics
associated with a computational process (like answering a
binding question) that is sensitive to different subpopulations
of neurons being synchronously active. Devoting explicitly
semantically predefined coincidence detectors to specific con-
stellations of (phase-) synchronous neurons may not be
necessary.

Finally, more intricate relational codes than phase-lag zero
synchronization may be employed by the brain to encode hier-
archical structures (Ikegaya et al. 2004). Or, taking RNNs, flex-
ible encoding of relational structures could benefit from
allowing multiplicative inputs (e.g., Hanson & Negishi 2002).
Moreover, the fact that RNNs cannot properly learn the required
generative properties, given their specific learning rules, does not
imply that they cannot represent such knowledge. And self-orga-
nizing rules that build up the structures proposed by vdV&dK
have yet to be suggested.

Given that neural biophysics offers such a rich repertoire of
elementary mechanisms, and assuming that we are interested
in the “true” neural implementation of cognitive processes,
additional criteria may be used to compare vdV&dK’s theory to
other approaches:

1) Simplicity and compatibility with physiological, anatomical,
and behavioral data. To which degree is the model supported yet
by empirical data? The more that explicitly specialized mechan-
isms and elaborated anatomical arrangements are proposed, the
more the current lack of neurobiological data for higher-level
processes may become a problem. RNNs, for example, require
fewer assumptions here. Another potential problem could be
precise temporal coding. There is accumulating evidence that
the brain produces precise temporal codes (Fellous et al. 2004;
Ikegaya et al. 2004; Riehle et al. 1997; Wehr & Laurent 1996),
although their role is still debated. If the brain does so, it
would be surprising if they were not employed in the “highest”
of cognitive functions, like language. In this case, some assump-
tions about neural computation might unfortunately also not be
testable at the level of EEG and fMRI.

2) Self-organization. Could the proposed architecture emerge
naturally from physiological learning rules or anatomical givens?
How could it self-organize during online processing, and how are
new between-assembly connections and gating circuits set up in
the first place when novel words or syntactical components are
encountered? Although vdV&dK are aware of this problem
(sect. 6.9), solving it in the case of their model seems more chal-
lenging than, for example, with RNNs. For these, local learning
rules at least can be defined. Likewise, phase-locking states (syn-
chronization) often naturally appear as attractor states of the
network dynamics. In contrast, I have the feeling that there are
still many homunculi at work in the vdV&dK model. One such
homunculus, for example, is the “central pattern generator”
(CPG): Who “programs” the CPG for a given task?

3) Evolutionary emergence. How could the proposed carefully
designed structure, with many specialized syntactic components
wired through specific gating circuits, evolve? Evolution often
proceeds by reusing components or slightly modifying already
present machinery. The comparatively homogeneous structure
of the neocortex suggests that language capabilities are also
based on some more general principles of neural information
processing. For example, processing of motor sequences may
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rest on similar neurocomputational mechanisms. If so, animal
models and physiological properties in motor cortex may be
used as hints to the neural mechanisms of language processing.
Such potential continuity is not that obvious in the vdV&dK
theory – for example, although the proposed blackboard mech-
anisms for visual and sentence processing are conceptually
similar, their suggested implementations seem quite different.

4) Response speed and algorithmic efficiency. Time is a serious
constraint in biology, and evolutionary pressure should strongly
favor the faster one of two potential neural mechanisms, all
other things being equal. Phase coding may have an advantage
here over the firing rate–based mechanisms suggested. For
example, phase coding allows for fast, robust, and genuinely
scale-invariant pattern recognition (Brody & Hopfield 2003;
Hopfield 1995).

5) Noise- and fault-tolerance. Just for completeness, it should
be mentioned that any neuronally plausible mechanism should
tolerate considerable levels of noise in the input and possibly
also intrinsically generated, and should tolerate destruction of
its elements to some degree. These constraints are probably ful-
filled by the vdV&dK theory.

vdV&dK address a hard neuro-cognitive problem for which
neurobiological data are still scarce. They come up with a poten-
tial solution which appeals by the way it achieves the high flexi-
bility required for language through combining a few
neurobiological building blocks. Yet biological plausibility and
self-organization remain an issue, and vdV&dK’s achievement
might have come at the price that addressing the above-
mentioned challenges in their current framework seems more
difficult than in other, more bottom-up-driven approaches.
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Will the neural blackboard architecture scale
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Abstract: The neural blackboard architecture is a localist structured
connectionist model that employs a novel connection matrix to
implement dynamic bindings without requiring propagation of
temporal synchrony. Here I note the apparent need for many distinct
matrices and the effect this might have for scale-up to semantic
processing. I also comment on the authors’ initial foray into the symbol
grounding problem.

van der Velde’s and de Kamps’s (vdV&dK’s) neural blackboard
architecture (NBA) is a highly structured localist model. The
semantic processing portion of NBA is not well developed, but
the authors imply that semantic knowledge would be organized
in a manner similar to the SHRUTI model (Shastri 1999)
except that propagation of dynamic bindings via synchronous
firings (as done in SHRUTI) would not be needed; instead,
NBA would employ its “connection structure matrix” approach
(CSM). Unless I have misunderstood the CSM model, the fol-
lowing appears to be the case:

(1) Binding nodes from two categories, such as V-to-N,
require a different CSM from the CSM needed for binding
N-to-V.

(2) Hence for each different syntactic category binding pair,
such as D-to-N (determiner-to-noun), S-to-N (sentence to
noun), S-to-V, Det-to-N, N-to-Adj, etc., a different CSM is also
required.

(3) Dynamic bindings are actually formed between role-nodes
associated with a node of given syntactic category. (I will refer to
role-nodes in bold.) For example, if category V has two roles (let
aV ¼ agent-role of V and let tV ¼ theme-role of V) then one
CSM is required to bind two agent-roles (across two categories)
and a different CSM is needed to bind two theme-roles.

Consider how a CSM is implemented. To bind, say, the aN2

node to the aV3 node in the N-V CSM, a specific memory-
delay binding element, E2,3, must already exist with connections
to it from both aN2 and aV3. Hence the temporary binding
problem is “solved” by supplying a unique element E (itself a
structured assembly of connectionist units) for every possible
node in a role-category that might be bound to every other poss-
ible node in another category with the same role.

When a sentence, such as “The dog licks the cat near the dog,”
is input, some process must assign “dog” to the N-to-V CMS and
also to the P-to-N CMS. It is unclear how this assignment is
made. If it is done by activating all N-agent nodes in all CMSs
that take N-agent nodes as input, then it seems that massive
cross-talk would occur. If “dog” were assigned to the N-to-V
CMS by activating all aNi in that CMS, then it appears that
massive cross-talk again would arise. If these problems are
handled by the winner-take-all inhibitory connections in each
CSM, then two consequences would seem to be: (a) only one
binding pair could be active at a time; and (b) propagation of
bindings would be slow (because of the need for settling into a
single winner).

Will the CMS approach scale up for semantics? Unlike syntax
(which has a relatively small number of categories), semantic
systems tend to have a great many predicates. In addition to
the authors’ example of the roles of GIVE passing dynamic bind-
ings to the roles of OWN, there would be HUNGRY to EAT;
TELL to KNOW; HIT to HURT, and so on. For every pair of
related instances of GIVE and OWN (HIT and HURT, etc.)
there would have to exist already a binding element (in a distinct
CMS) connected to just those two instances.

The authors have arrived at their highly structured solution
partly as a result of rejecting an alternative approach, namely, dis-
tributed representations manipulated by recurrent neural net-
works (RNNs). One of their arguments against RNNs is that
new tokens (such as “Dumbledore”) cannot be handled in such
systems. In response, consider the DISCERN model (Miikkulai-
nen 1993). Through supervised training, DISCERN learns to do
the following: read script-based stories, generate paraphrases of
stories, and answer questions about story events. The distributed
patterns, which represent word-meanings, self-organize by a
process of extending back-propagation into the lexicon (Miikku-
lainen & Dyer 1991). DISCERN handles novel words by use of
an ID-content technique. Each word-meaning consists of an ID
portion and a content portion. The content portion self-organizes
during training (so that words with similar meanings in the
lexicon end up with similar distributed representations)
whereas the RNN modules that manipulate these represen-
tations learn to pass on the ID portions without alteration. A
new name, such as “Dumbledore,” would be represented as an
ID-content activity pattern, where the ID is a new pattern,
whereas the content portion remains as a distributed represen-
tation that was formed for all humans (because of reading
stories involving human characters during training). The
content portion enables statistically based generalizations to
occur in the various RNN modules, whereas the ID portion in
passed, unaltered, from RNN module to RNN module.

I am not arguing here that DISCERN handles all aspects of
dealing with novelty in multimodule RNN systems, but that
vdV&dKs rejection of RNN approaches on the grounds of
novelty-processing is premature (especially because multimodule
RNN systems can learn all of their tasks whereas NBA is mostly
hand-coded for its task).

With respect to the grounding problem, vdV&dK’s comments
are mostly speculative. In response I refer them to the DETE
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spiking neuron model (Nenov & Dyer 1993; 1994). DETE
learned to associate word sequences with simple image/motor
sequences. Given an image sequence of a red triangle moving
upward, hitting a blue circle, and bouncing downward, DETE
would generate the word sequence “red triangle moves up hits
blue circle and bounces.” DETE could learn words such as
“accelerate” by watching objects speed up in its visual field and
it could learn to push a virtual finger at a virtual object by associ-
ating a motor sequence with a word sequence like “push red
ball.” Once DETE learned individual color and object words
(by association with images of colored objects), DETE could
immediately handle novel color-object combinations. Word-
image-motor sequence associations were learned after just a
few training repetitions, and multiple objects with different
colors in the same visual field were handled by an attentional
subsystem using synchronous firing.

The authors’ argument against synchrony assumes simple
forms of synchrony. If synchrony can exhibit period doubling
(Sougne 2001) or be chaotic (Raffone & van Leeuwen 2001),
then several instances of the same predicate may be handled.
Synchrony can also be augmented by propagating activity pat-
terns that are distributed both temporally and spatially. Such
patterns have been referred to as “signatures” (Lange & Dyer
1989; Lange & Wharton 1995) and, when encoded as distributed
representations, they can be learned and can also control their
own propagation (Sumida & Dyer 1992).

Vector symbolic architectures are a viable
alternative for Jackendoff’s challenges

Ross W. Gayler
Camberwell, Victoria 3124, Australia. r.gayler@mbox.com.au

Abstract: The authors, on the basis of brief arguments, have dismissed
tensor networks as a viable response to Jackendoff’s challenges.
However, there are reasons to believe that connectionist approaches
descended from tensor networks are actually very well suited to
answering Jackendoff’s challenges. I rebut their arguments for
dismissing tensor networks and briefly compare the approaches.

van der Velde &de Kamps (vdV&dK) have proposed neural
blackboard architectures (NBAs) in response to Jackendoff’s
(2002) challenges. Their note 1 dismisses tensor networks
(Smolensky 1990) as a viable alternative. However, Gayler
(2003) argues that vector symbolic architectures (VSAs) –
connectionist approaches descended from tensor networks –
are very well suited to answering Jackendoff’s challenges.
There is not space here to repeat those arguments. Rather, I
will rebut vdV&dK’s arguments for dismissing tensor networks
and briefly compare the approaches. Regardless of the ultimate
relative success of NBAs and VSAs, the field of cognitive neuro-
science will benefit from having plausible alternatives that can be
compared and contrasted.

vdV&dK’s note 1 claims that “tensor networks fail to instanti-
ate combinatorial structures.” Tensor product binding was devel-
oped specifically to address the issue of combinatorial
representation. Although Smolensky’s (1990) presentation was
somewhat abstract and mathematical, he chose his primitive rep-
resentations and operations to be easily implemented in connec-
tionist systems. Items are represented by numerical vectors
(distributed representation) and the operators are simple
vector sums and products. Smolensky demonstrated tensor
network implementation of variables and binding and also, as
an example of the computational power of tensor networks,
demonstrated a connectionist implementation of the CONS,
CAR, and CDR operators of the LISP programming language.
Halford and colleagues (1998) discuss cognitive symbolic
operations that can be implemented in tensor networks.

vdV&dK’s note 1 cites Fodor and McLaughlin (1990) in
support of the claim that “tensor networks fail to instantiate
combinatorial structures,” but this is not the focus of their
paper. Their focus is Fodor’s and Pylyshyn’s (1988) claim that
connectionism either cannot account for cognition or, if it can,
is a mere implementation of a “classical” theory. Fodor and
McLaughlin (1990) is a response to attempts by Smolensky to
rebut Fodor and Pylyshyn (1988). In that context, Fodor and
McLaughlin concede that “It’s not . . . in doubt that tensor pro-
ducts can represent constituent structure” (p. 200).

Fodor and McLaughlin argue that although tensor networks
represent constituent structure, the constituents are not causally
effective in processing of the composite. They claim (correctly)
that “When a tensor product vector . . . is tokened, its com-
ponents are not” (1990, p. 198) and (incorrectly) that “Merely
counterfactual representations have no causal consequences;
only actually tokened representations do” (p. 199). Binding and
unbinding by a tensor network (Smolensky 1990) suffices as a
counterexample to demonstrate the falsity of the latter claim.

vdV&dK claim that “tensor networks fail to instantiate combi-
natorial structures. . . [because] a tensor is just a list of constitu-
ents organized in a particular fashion (i.e., as an n-dimensional
list for a rank-n tensor)” (note 1). However, exactly the same
claim could be made of the storage tape of a Turing machine
or the CONS cells of a LISP program, yet no one would
dispute the ability of a Turing machine to represent combinator-
ial structures.

The final argument in note 1 is the most significant; vdV&dK
point out that “adding constituents to the tensor increases the
dimensions of the tensor, which requires adjustments to all
components in the cognitive system that can interact with the
tensor.” This is the major problem with tensor networks as an
implementation rather than an abstract formalism. However,
there have been 15 years of further development since Smolensky
(1990), and this problem was soon solved (Plate 1991).

In a tensor network, two items are bound by forming the outer
product of the vectors representing the items. That is, if each
primitive item is represented by a vector of n elements, their
combination contains n2 elements. If this composite item were
bound with another primitive item, the result would contain n3

elements, and so on. This has major practical consequences for
resource requirements and the connections between processing
components of a tensor network. The number of elements
increases dramatically with the binding order, which means
that the resource requirements may be excessive and that bind-
ings of arbitrarily high order cannot be represented on a fixed
set of resources. Also, the connections between processing
components must be dimensioned to accommodate the highest
order representation chosen by the designer.

An abstract solution to this problem was proposed by Hinton
(1988; 1990) and a specific, practical implementation demon-
strated by Plate (1991; 1994; 2003). Hinton introduces the idea
of “reduced descriptions” as a means to represent compositional
structures in fixed size connectionist architectures. A reduced
description is a representation of a composite item that is the
same size as any of the component items and from which the
component items can be generated. Plate demonstrates holo-
graphic reduced representations (HRRs) as a specific implemen-
tation of reduced descriptions. HRRs can be conceptualised as a
compression of the tensor product to a vector the same size as
each of the components being bound.

HRRs use a specific, highly ordered compression of the tensor
product. However, Wilson and Halford (1994) show that the
majority of tensor product elements can be destroyed without
compromising performance, and Plate (2000; 2003) shows that
many alternative compressions of the tensor product, including
randomly disordered compressions, would suffice. Other com-
pressions were developed independently (Gayler 1998; Gayler
& Wales 1998; Kanerva 1994; 1997; Rachkovskij & Kussul
2001). Collectively, these are the vector symbolic architectures,
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and various members of this family are compared in Gayler
(1998) and Plate (1997).

Having responded to the arguments of note 1, I feel that a brief
comparison of NBAs and VSAs is worthwhile. NBAs use localist
representation, so effort is required to connect the represen-
tations that need to interact. VSAs use distributed represen-
tations, so many representations are simultaneously present
over the same connectionist units. This replaces the problem of
connecting the interacting representations with the problem of
keeping most superposed representations logically separated to
avoid unwanted interactions. Another difference is the treatment
of novel items. Localist representation requires the recruitment
of neural units to new assemblies, whereas distributed represen-
tation requires only a novel pattern which is implemented over
the same units as familiar patterns. VSAs do not require a pool
of unallocated units or a recruitment process. These two com-
parisons suggest the breadth of issues that can be explored in
the range of possible connectionist cognitive architectures
spanned by NBAs and VSAs.
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Abstract: The target article demonstrates how neurocognitive modellers
should not be intimidated by challenges such as Jackendoff’s and should
explore neurally plausible implementations of linguistic constructs. The
next step is to take seriously insights offered by neuroscience, including
the robustness allowed by analogue computation with distributed
representations and the power of attractor dynamics in turning
analogue into nearly discrete operations.

van der Velde and de Kamps (vdV&dK) add a new perspective to
the neural mechanisms underlying syntactic binding in human
sentence processing (and perhaps in visual processing). The
neural blackboard model implements binding as an active and
dynamic process and hence it dispenses in a satisfying and
elegant way with a homunculus observing synchronous network
activity, as posited by some previous approaches. We regard
this as an important first step that can lead to important break-
throughs if combined with an understanding and effective use
of cortical attractor dynamics.

vdV&dK commendably aim toward a nonsymbolic represen-
tation of words by distributed neural assemblies (Pulvermüller
1999). In their implementation of the blackboard, however,
they stop short of describing words or, in general, items in
semantic memory in terms of local network attractors (O’Kane
& Treves 1992), and therefore they cannot utilise either the par-
tially analogue nature of attractor states or the correlational struc-
ture of composite attractors, such as varying overlap with
competing assemblies, context-dependence of assembly activity,
or robustness to noise and partial disruption. Hence they use
word assemblies in a monolithic, symbolic way, much like
lexical word entries in a pure symbolic approach. The activation
of their “subassemblies” is all-or-nothing (gradual activation is,
however, used to control binding in recursive structures), and
it is hard to see how it could be modulated, for example by
contextual information, even though the activation of different
subassemblies could be interpreted, perhaps beyond the

authors’ wish, as a coarse model of composite attractors. The
symbolic nature of the proposed computations emerges also in
the dichotomy between the blackboard, which temporarily
stores a “parsing table,” and the central pattern generator
(CPG), which serves as a finite control. The CPG hides much
of the complexity required to operate the blackboard. What
would be a neurally plausible implementation of the CPG?

vdV&dK helpfully contrast combinatorial with recursive
productivity, an important distinction that is not so transparent
in the later Chomskyan view (Hauser et al. 2002). Their combi-
natorics, however, disappointingly appears to rely on an implau-
sibly vast number of specialised processors, although disguised
behind the thin veneer of “word assemblies.” Assuming, for
example, that a third of all the words the cited English
17-year-old knows are nouns, and that there are 10 main noun
assemblies, we are left with still 200,000 specialised gating
assemblies (just for nouns) that all do more or less the same
job. Although this number is certainly much smaller than
the total number of neurons or synapses in cortex, it appears to
reflect an unimaginative view of assemblies as equivalent
to local units – perhaps driven by an anxiety to respond to
Jackendoff’s challenges – that does not do justice to the idea of
distributed processing in the brain. Composite cortical attractors,
which allow for quantitative analyses of nondynamic, long-term
memory storage (Fulvi Mari & Treves 1998) also lead, with a
simple adaptive dynamics, to combinatorial productivity,
without any recourse to specialised units, as in the latching
model (Treves 2005).

It is highly praiseworthy that vdV&dK ground the blackboard
operations in the concrete domain of neural network operations.
A genuine challenge posed by neural mechanisms, however, is to
describe how they could possibly be generated without recourse
to innate knowledge or to explicit programming. Associative
synaptic plasticity is the dominant – although not the only –
concept emerging from neuroscience to account for learning pro-
cesses, and it is, for example, sufficient to generate combinatorial
productivity in the frontal latching networks model (Treves
2005). It would be exciting, and perhaps not far-fetched, to see
vdV&dK’s blackboards self-organise through an associative
learning paradigm.

vdV&dK also briefly address recursive productivity,
making use of decaying activity in reverberating assemblies
(Pulvermüller 1999). This fits naturally with the blackboard
architecture once there is a discrete set of structure assemblies.
However a more distributed mechanism of recursion would be
less ad hoc, for example the one discussed by Grüning (in
press) for trainable networks. Perhaps one can integrate
aspects of distributed network dynamics with composite attractor
models in order to allow for distributed and compositional
properties at the same time. Such a model combining a distribu-
ted blackboard for combinatorial structure and a distributed
push-down (or more powerful) storage for recursion would be
most interesting.

Last, we would invite a dynamic interaction in a wider sense.
Jackendoff (2002) invokes a conceptual innovation in cognitive
neuroscience that would allow for a more productive dialogue
between neural network models and linguistic theory, and
vdV&dK appear to respond to the call. While meeting the
challenge of the linguists, however, cognitive modellers should
not neglect to appreciate the conceptual advances in systems
and theoretical neuroscience, especially relating to assembly
and attractor dynamics. Without these advances, it seems difficult
to understand how linguistic and, in general, cognitive repre-
sentations can emerge from the underlying neural dynamics,
and what qualitative or quantitative changes in the properties
of the cortical ware, which had already been shaped by 200
million years of mammalian evolution, led to the distinctiveness
of human cognition.

In sum, we regard vdV&dK’s article as an important progress
in the direction of a fruitful interdisciplinary exchange; we
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suggest following this program through with the inclusion of
distributed and dynamical attractor representations, thus avoid-
ing some of the shortcomings and the neural implausibility of
the current model.
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Abstract: It is argued that van der Velde and de Kamps employ binding
circuitry that effectively constitutes a form of conjunctive binding.
Analogies with prior systems are discussed and hypothetical origins of
binding circuitry are examined for credibility.

van der Velde and de Kamps (vdV&dD) offer a daring solution to
Jackendoff’s fourfold challenge. Viewed in abstraction from the
neurological details of binding circuitry, their proposal may
well provide a promising direction for a convincing solution.
However, once the ramifications of their detailed architecture
are set forth, substantial doubts emerge regarding possible
origins of the numerous matrices of memory circuits required
(as I explain below). Arguably, such doubts would be reduced
were we to abstract away the neurological details of the
binding circuitry and regard their binding (memory) devices as
a variety of conjunctive coding. This suggestion may seem
puzzling in light of vdV&dK’s casual dismissal of conjunctive
binding, for they remark, merely in passing, that conjunctive
methods share fatal difficulties with synchronous binding
methods. Nevertheless, there are striking analogies between
the abstract functionality of vdV&dK’s binding circuits and the
functional roles of conjunctive nodes employed in prior connec-
tionist, language models. Moreover, consider vdV&dK’s own
description of the functionality of binding circuits. They
remark: “In this way, the connection structure instantiates a
logical AND operation.” (See their Fig. 5.)

vdV&dK employ competitive inhibition to ensure that within a
matrix, the most active assembly along the vertical dimension will
bind with the most active assembly along the horizontal dimen-
sion. This strategy is precisely analogous to the manner in
which conjunctive nodes create bindings in the connectionist
parsing model of Stevenson (1994) and the language acquisition
models of Hadley and Hayward (1997) and Hadley and Cardei
(1999). All three of these systems are capable of processing
deeply embedded sentence structures. The latter two also
exhibit strong forms of systematicity and, even in their present
form, solve two of Jackendoff’s binding problems.

One significance of these points of analogy is that if, as I antici-
pate, vdV&dK’s elaborate circuitry is seen to be dubious from an
evolutionary and/or learnability standpoint, one may yet find a
largely analogous solution to Jackendoff’s challenge by exploring
alternative implementations of conjunctive binding (e.g., by
using conjunctive neurons with looping self-feedback, subject
to suitable decay). Of course, a commendable aspect of
vdV&dK’s entire proposal is that their binding devices are
fleshed out in neurological detail, whereas the systems of Steven-
son and of Hadley and colleagues employ binding nodes whose
neurological implementations are left unspecified. Arguably,
though, the neurological detail of vdV&dK’s proposal is also its
Achilles’ heel. To appreciate this fully, we must consider not

only the complexity of each of vdV&dK’s binding circuits but
the number and arrayment of these devices.

To begin with, consider just the matrix of binding circuits
required to enable the binding of NP subassemblies to the
agent subassemblies of verbs, as displayed in vdV&dK’s
Figure 5. Between each NP subassembly and verb subassembly,
there must physically reside a “hardwired” memory circuit of the
kind displayed in Figure 3. This alone entails that the matrix of
Figure 5 must be vast, for within a language such as English,
there are thousands of verbs and thousands of NPs that could
fill the agent role of each of these verbs. Assuming a minimum
of just 5,000 nouns and 3,000 verbs, at least 15 million memory
circuits will be required for this “agent matrix” alone.

A separate huge matrix will be required to accommodate the
theme role of all verbs that accept NPs as themes. Similar
remarks apply to the indirect-object, instrumental, and location
thematic roles of verbs whose semantics permit this. Furthermore,
as vdV&dK later explain, NP subassemblies must be able to bind
not only with the thematic assemblies of top-level verbs but also
with clause assemblies, prep-nouns, and noun-clause, and
theme-clause subassemblies, among others. In addition, where
verbs are concerned, there must be separate matrices to accom-
modate both singular and plural nouns that relate to singular
and plural verbs, respectively. Thus, despite vdV&dK’s remark
that “an arbitrary number of sentence structures can be encoded
without an explosion of structure assemblies”, the numbers of dis-
tinct binding circuits, whose positions are fixed in space, appear to
be well over 60 million. Although this number may not be proble-
matic in itself, the fact that each circuit must be intricate, function-
ally correct, and situated between appropriate subassemblies does
raise serious worries about their genesis.

Concerning this genesis, three possibilities require comment
(others exist, but space wanes). The first is that each of the complete
matrices is innately endowed within the human brain. Yet, where
language is concerned, this possibility is excluded by the fact that
several of vdV&dK’s subassembly types are language-specific
(e.g., prep-noun, noun-clause, and theme-clause subassemblies
are language-dependent, and consequently, so must the placement
be of binding circuits that attach to those subassemblies).

A second possibility is that the combinatorial matrices are
created by learning, in which the connectivity of each binding
circuit is sculpted from “an undifferentiated connection structure”
(to use vdV&dK’s words). Such “sculpting” of dendritic and axonic
connectivity would arise, presumably, from competition and
Hebbian synaptic tuning, including the atrophy of connections
from inactivity. Yet, given an “undifferentiated connection struc-
ture,” the prospects of creating, via Hebbian tuning (together
with competitive inhibition), millions of functionally identical
structures as complex as the binding circuits at issue will seem
remote to those who have lengthy experience with these
methods. Moreover, without considerable initial, coherent struc-
ture to guide the flow of spreading activation, Hebbian/competitive
learning is extremely unlikely to yield distinct, regular matrices con-
taining only identically functioning circuits linked together in just
the prescribed fashion. Of course, one cannot exclude the possi-
bility that non-Hebbian (perhaps chemical) “sculpting methods”
will eventually be discovered that will satisfy vdV&dK’s needs. At
present, however, this seems a slender reed.

The third possibility would be to assume that there exist,
innately, a plethora of matrices, each containing appropriate
binding circuits, but that experience determines the roles played
by subassemblies within each matrix. Experience would, more-
over, need to determine the timing of activation of gating circuits
and other dynamics of parsing. Although it would be surprising
to discover that our cells are genetically programmed to create
the kinds of matrices vdV&dK have posited, this supposition is
not wildly implausible. I submit that credibility would be
increased, however, if vdV&dK were to replace their intricate
memory circuits with a simpler form of conjunctive binding
based upon conjunctive neurons having a suitable activation decay.
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CA 92120. amueller@sciences.sdsu.edu
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Abstract: Although van der Velde’s de Kamps’s (vdV&dK) attempt to put
syntactic processing into a broader context of combinatorial cognition is
promising, their coverage of neuroscientific evidence is disappointing.
Neither their case against binding by temporal coherence nor their
arguments against recurrent neural networks are compelling. As an
alternative, vdV&dK propose a blackboard model that is based on the
assumption of special processors (e.g., lexical versus grammatical), but
evidence from the cognitive neuroscience of language, which is, overall,
less than supportive of such special processors, is not considered. As a
consequence, vdV&dK’s may be a clever model of syntactic processing,
but it remains unclear how much we can learn from it with regard to
biologically based human language.

Although most linguists consider morphosyntax a core compo-
nent of language, progress on elucidating its brain bases has
been moderate. van der Velde’s & de Kamps’s (vdV&dK’s)
attempt to model combinatorial cognition as emerging from
more elementary perceptual principles is commendable in this
context. In principle, it has two major strengths. First, it
approaches morphosyntax from a broad angle of combinatorial
cognition, which may be found in domains outside language
(e.g., visual processing). Second, it is implemented on a “neur-
onal” level, with the implied ambition of mimicking some
known features of real neuronal circuits.

Construing the issue as a special case of the binding problem
opens up treasures of empirical evidence, because binding has
been more than just thought about—it has been studied in many
well-controlled neuroscientific experiments, with some surprising
success. For example, Singer and his colleagues (Nase et al. 2003;
Singer 2001) have made a very good case for perceptual binding in
the visual domain (e.g., perception of a gestalt) to be associated
with phase-locked oscillatory firing patterns of neurons, even
across distal brain regions. It is, therefore, disappointing that
vdV&dK leave this extensive work unmentioned and discard com-
putational models inspired by it (Shastri & Ajjanagadde 1993b)
because they cannot account for productivity and hierarchical
complexity of syntactic structures. vdV&dK’s criticism appears to
be related to their incomplete concept of “synchrony of activation.”
The potential representational complexity through synchronous
multineuronal spiking is much greater than assumed by vdV&dK
when parameters such as latency shifts (Fries et al. 2001) or coher-
ence in different frequency bands (e.g., Bastiaansen et al. 2002) are
considered. Such additional parameters may allow a neuron to
participate in multiple assemblies of coherent firing at the same
time. vdV&dK seem all too willing to discard a model that is at
least partially consistent with established functional principles of
neuronal assemblies, rather than to adapt it by enhancing its
neural plausibility.

I am similarly unimpressed by vdV&dK’s dismissal of recur-
rent neural networks (RNNs). Again, the argument that models
proposed by Elman and others that incorporate a single hidden
layer cannot account for the combinatorial productivity of
natural languages completely misses the point. No one denies
that the RNNs under scrutiny are simplistic caricatures com-
pared to the actual complexity of brains. How many “hidden
layers” do real neural networks have? The number is clearly
greater than one and, with regard to language processing, prob-
ably more on the order of hundreds. Do vdV&dK truly claim that
RNNs with hundreds of hidden layers cannot model combinator-
ial productivity? If not, as I suspect, their whole argument is
unconvincing. The conclusion should be to push the envelope
of more realistic RNNs rather than to discard the approach.

But following for now vdV&dK’s argument that temporal
coherence and RNNs are out and blackboards are in, the ques-
tion arises: What can we tell about the blackboards in the

brain? Blackboards are assumed to consist of specialized pro-
cessors. Specifically for language, vdV&dK propose that “one
could have” processors for words and for specific grammatical
relations. This quotation from the article reflects the surprising
nonchalance with which crucial assumptions are made. Cognitive
neuroscientists have for many years painstakingly attempted to
segregate lexical and grammatical processing, using mostly
ERP and hemodynamic imaging techniques. Although a few
authors have considered parts of the left inferior frontal gyrus
(LIFG) to be a special processor for morphosyntax (e.g.,
Caplan et al. 1998)—sometimes supported by unusual statistical
decisions (see Müller 2000)—the literature overwhelmingly
shows that LIFG (and other perisylvian “language areas”) show
differential modulation of activity (Just et al. 1996). For
example, there is enhanced activity in LIFG associated with syn-
tactic violations, but activity in the identical region is also present
for semantic violations (e.g., Embick et al. 2000). Such modu-
lation would probably suggest shared rather than special pro-
cessors, although it remains possible that special processors are
too small to be resolved in neuroimaging.

One way to go beyond these limits of spatial resolution is to
examine the cellular architecture in human LIFG. A few
cytoarchitectonic studies of LIFG have yielded intriguing devel-
opmental patterns in dendritic complexity (Simonds & Scheibel
1989) as well as neuronal density and its asymmetries (Amunts
et al. 2003). These studies speak against the idea of a unique
type of cortex in LIFG that might itself explain unique function-
ality—morphosyntactic, lexicosemantic, or other. Instead, the
area’s cytoarchitecture appears to be best characterized as
sharing some features with premotor cortex and some with poly-
modal association cortex (Amunts et al. 1999; Jacobs et al. 2001).

It remains possible that cellular or architectonic parameters yet
to be investigated will in the future yield evidence for special pro-
cessors. However, based on the current evidence, it appears much
more likely that a “language area” such as LIFG can assume a set of
specific functions, not based on specific architecture of modular
processors but because it has a unique pattern of connectivity
with other brain regions that permit the convergence of information
critical to linguistic processing (Müller & Basho 2004). It is hence
a unique profile of distributed neural connectivity rather than the
local architecture of special processors that makes language happen
in LIFG and other regions of left perisylvian cortex.

In summary, although vdV&dK’s blackboard model draws a
little bit from neuroscience regarding gating circuits, most of
their arguments make insufficient use of the relevant evidence.
This criticism does not imply that neural network modelers are
asked to derive their models directly from neuroscientific evi-
dence. However, those who believe that an ultimate understanding
of cognition lies in the biology of the brain can expect that neuros-
cientific evidence be accepted as a set of constraints in neural
network models. Otherwise, what are we to make of a model
that optimally describes a functional domain, such as combinator-
ial processing, making assumptions inconsistent with the workings
of the brain? Useful it may be, but could it be explanatory?

Constituent structure and the binding problem

Colin Phillips and Matthew Wagers
Department of Linguistics, University of Maryland, College Park, MD 20782.

colin@umd.edu mwagers@umd.edu

http://www.ling.umd.edu/colin http://www.ling.umd.edu/matt

Abstract: van der Velde’s & de Kamps’s model encodes complex word-
to-word relations in sentences but does not encode the hierarchical
constituent structure of sentences, a fundamental property of most
accounts of sentence structure. We summarize what is at stake and
suggest two ways of incorporating constituency into the model.
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We are impressed by the attempt by van der Velde & de Kamps
(vdV&dK) attempt to take seriously the challenge of capturing
the complexity of human language in a neurally plausible
model. Their model makes it possible to ask questions about
the encoding of the details of sentence structure that it was
difficult even to ask previously. This is no mean achievement.
Nevertheless, we are concerned that the authors’ model avoids
one of the most fundamental properties of sentence structure
and that this could seriously restrict the scope of the model.

Although many of the figures in the target article bear a super-
ficial resemblance to the phrase structure trees of linguistics, the
sentence structure representations in the neural model lack the
hierarchical constituent structure encoded in phrase structure
trees. Phrase structure trees encode bindings between primitive
elements (words) that create constituents and also bindings
between constituents that form larger constituents. In
vdV&dK’s model, in contrast, only bindings between the basic
word-level structural assemblies are encoded. A verb’s theme
subassembly may be temporarily bound to a noun’s theme
subassembly to form the equivalent of a simple verb phrase, but
the verb phrase does not itself combine with other subassemblies
to form larger constituents. The S and C structural assemblies that
are employed in the encoding of main clauses and embedded
clauses, respectively, do not delimit clause-sized constituents.
Rather, they are word-level structural assemblies whose subas-
semblies bind with the subassemblies of other word-level units.

The binding of words and phrases to form hierarchically organized
constituent structures is a property shared by a wide variety of
linguistic models that differ in many other respects (e.g., Bresnan
2001; Chomsky 1965; Frank 2002; Goldberg 1995; Pollard &
Sag 1994; Steedman 2000), and it plays a crucial role in explanations
of many linguistic phenomena. These include the following:

i. Coordination rules. In most cases, like categories can be
combined with the conjunction and to form a larger instance of
the same category: nouns coordinate with nouns, verbs with
verbs, verb phrases with verb phrases, and so on. In the
absence of a mechanism for encoding recursive constituent struc-
tures in vdV&dK’s model, it is difficult to capture the fact that
John and Mary is a noun phrase that governs plural verb agree-
ment, or the fact that The managers and the pilots who supported
the strike is a noun phrase in which the relative clause may
modify only pilots or both managers and pilots.

ii. Anaphoric relations. Languages make extensive use of
anaphoric expressions that are interpreted as taking the
meaning of another constituent in the sentence or discourse.
Pronouns such as he or them may corefer with another noun
phrase constituent, and forms like it or so may be anaphoric to
a clause-sized constituent, as in The sun was shining, but Sue
couldn’t believe it. The expression do so is anaphoric to a verb
phrase, which may be a larger constituent, as in Bill finished
his homework on Tuesday and Sally did so too, or a smaller
constituent, as in Bill finished his homework on Tuesday and
Sally did so on Thursday. It is difficult to capture such dependen-
cies in a model that lacks hierarchically organized constituents.

iii. Long-distance dependencies. The long-distance discre-
pancies found in wh-questions, topicalization, relativization,
passivization, raising, and scrambling structures consistently
involve the appearance of a constituent in a noncanonical
position. It is difficult to capture such rules without constituents.

iv. Scope relations. Recursive formation of constituents makes
it straightforward to capture the fact that the expression second-
longest American river refers not to the Amazon – the second
longest river and also an American river – but rather to the Missis-
sippi-Missouri, which is the second longest among American rivers.

v. Command relations. Many syntactic relations are
restricted to constituents that stand in a c-command relation,
the relation that holds between a constituent and its sister and
all subparts of its sister. For example, negative polarity items
such as ever and any must be c-commanded by a negative
expression. This constraint captures the acceptability of

Nobody thinks that Bill ever sleeps and the unacceptability of
�A man that nobody likes thinks that Bill ever sleeps. The
absence of constituents in vdV&dK’s model makes it more diffi-
cult to capture structural generalizations of this kind.

vi. Recursive modification. Modifier expressions such as
adjectives and relative clauses may be freely combined with the
categories that they modify, in any quantity, as in six big red
India rubber balls. In grammars with hierarchically organized
constituents, this can easily be captured using a recursive rule
such as N’ ! Adj N’. In vdV&dK’s model, however, modifier
expressions are bound to the categories that they modify by
means of dedicated subassemblies, and multiple modifiers
require multiple dedicated subassemblies. It strikes us as ineffi-
cient to require all noun structural assemblies to include a
special adjective subassembly that is exploited only in noun
phrases with six or more adjectives.

vdV&dK correctly note that combinatorial productivity and
recursive productivity are separable issues. Combinatorial
productivity can obtain in the absence of recursive productivity
so long as there is arbitrary binding between fillers and roles.
Recursive productivity, they note, “deals with the issue of proces-
sing more complex syntactic structures, such as (deeper) center-
embeddings” (sect. 4.2). The above discussion illustrates, we
hope, that, at least for natural language, recursive productivity –
that is, constituent depth – is at issue even for simple syntactic
structures.

We can imagine at least two ways in which the neural blackboard
architecture could be extended to encode hierarchical constituent
structure without sacrificing the main insights of the model. One
possibility would be to add new structural assemblies that corre-
spond to nonterminal nodes in a phrase structure tree. For
example, assemblies for the categories NP and VP would bind
with other categories and not with individual words. All NP assem-
blies would then need to have a number of subassemblies that
would allow them to bind with any potential mother or daughter
node of NP. An alternative possibility would be to directly
exploit the delay assemblies that are activated in a memory
circuit when a pair of subassemblies is bound together. If the
delay assembly could double as a structural assembly for a constitu-
ent node that could bind with other constituent nodes, then this
might allow encoding of hierarchical constituent structure.
Indeed, vdV&dK hint that a pair of bound structural subassemblies
can themselves be bound to another pair of bound subassemblies,
when they draw a dotted line between the n and v subassemblies in
Figure 10 as a means of capturing subject-verb agreement.
Crucially, the model must be able to encode not only the first-order
relationships between word-level primitives but the second-order
relationships between relationships that characterize constituency
in natural language.

Whether these or any other solutions turn out to be most
feasible, we suggest that the neural blackboard architecture
cannot properly address the challenge of the “massiveness of
the binding problem” (Jackendoff 2002) unless it is able to recur-
sively encode constituents and bindings among constituents.

On the unproductiveness of language and
linguistics

David M. W. Powers
School of Informatics and Engineering, Flinders University of South Australia,

Adelaide SA 5001, Australia. David.Powers@flinders.edu.au

http://www.infoeng.flinders.edu.au/people/pages/powers_david

Abstract: van der Velde & de Kamps (dvV&dK) present a response to
Jackendoff’s four challenges in terms of a computational model. This
commentary supports the position that neural assemblies mediated by
recurrence and delay indeed have sufficient theoretical power to deal
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with all four challenges. However, we question the specifics of the model
proposed, in terms of both neurophysiological plausibility and
computational complexity.

It is often assumed that language is vastly different from and
largely independent of other cognitive processing, and this mod-
ularity fallacy is apparent even in this target article, notwithstand-
ing its attempt to explain aspects of language in more general
cognitive and perceptual mechanisms exemplified in the examples
given. In particular, in introducing the massiveness of the binding
problem (sect. 2.1), it is suggested that cat, mouse, and chases
activate specialized populations of neurons and distinguish word
order in a manner similar to the operation of motion detectors
for a vertical bar. But then it is argued that language is fundamen-
tally different because motion detection is able to be specialized
for motion of a limited set of possibilities, but language has unlim-
ited combinatorial productivity. In fact, the productivity has
nothing to with language or linguistic theory. Rather the complex-
ity derives from our environment, and even without language, an
organism is continually faced with new situations, new entities,
and new interactions and interrelationships.

The fact that many things can chase a mouse has nothing to do
with language. In a book, Dumbledore would be introduced with
a sentence, whereas in real life he would be introduced verbally
and mutimodally by a person in a direct personal encounter or
might just be seen chasing the mouse without his name or pro-
fession being known.

The visual system detects the motion of Dumbledore, the cat, or
anything else irrespective of any linguistic bindings. The fact of
motion is detected at a very primitive level, and work such as
Hubel’s (1995) indicates that there are neural detectors for salient
features such as edges in motion. The mechanisms by which an
object is recognized, its motion is recognized, and its name is recog-
nized all seem to be similar and are often theorized to be associated
by neural synchrony on the basis of empirical evidence of synchro-
nous neural activity (Roelfsema et al. 1997; Sarnthein et al. 1999;
Shastri & Ajjanagadde 1993b; von Stein et al. 1999).

The problem of variables (sect. 2.3) is in essence an artefact of
the assumption of rule-based structures, and both are linguistic
constructs that probably have no concrete correlate in brain func-
tion. Rules and variables, moreover, do not necessarily occur in
modern statistical language learning approaches: rules are
implicit in supervised approaches involving tree-banks (Marcus
1991), probabilistic grammars (Charniak 1993), and/or data-
oriented parsing (Bod 1995) but are supplanted by a more
general concept of prosodic, phonological, morphological, syn-
tactic, and semantic patterns in unsupervised approaches
(Clark 2001; Hutchens 1995; Powers 1983). The underlying
phenomenon whereby variables get attached to values (in a
rule-based approach) or abstracted patterns get matched with
current sensory-motor or linguistic content is again a matter of
binding or association, which is commonly dealt with by theories
of synchrony (Weiss et al. 2001).

However, van der Velde & de Kamps (vdV&dK) do not see
synchrony or recurrence as a panacea for Jackendoff’s challenges
but rather show how various early models exhibit exactly these
problems. They point out that that the Shastri and Ajjanagadde
solution to the multiple binding problem is duplication and
that this then faces problems with nested structures and
implies a “one-level restriction.” This is technically incorrect,
but the argument does indeed imply a “finite levels restriction”
which is consistent with Miller’s (1956) Magical Number Seven
constraints, with the inability of humans to cope with arbitrarily
complex embedding, with phenomena such as subjacency, and
with the observation that there is insufficient space in our
heads for the infinite stack implied by linguistic theories that
see language as strictly more complex than context-free.

Synchrony involves a specific pattern that is present in each
neuron triggered as a result of a specific object or event, and
this pattern represents a temporal encoding that would seem to

encode low (,20 Hz) frequencies as well as information corre-
lated with spatiotemporal location that results in higher-fre-
quency components and evidently has a reverberatory or
recurrent origin. A Hebbian neural assembly is intrinsically a
spatiotemporal association, and the concept of synchrony adds
the potential for overloading in the sense that the same
neurons can synapse into multiple assemblies with different
characteristic signatures. The circles or triangles that represent
terminal or nonterminal symbols linguistically in vdV&dK are
in fact intended to represent assemblies neurologically, and
these are intrinsically dynamical structures that exhibit synchrony
and provide evidence of recurrent processes (Hebb 1949; Pulver-
müller 2002), although this is not made explicit in the target
article.

There are, moreover, alternatives to the duplication approach
as well as refinements such as a homunculus model built upon
evidence of a propensity for spatiotemporal reception fields and
projections that reflect information-distorted sensory-motor rep-
resentations of the opposite half of the body (Powers & Turk
1989). Plausible models should also take account of attention
and saccade and the evidence that we maintain a relatively
high-level spatiotemporal model of our environment that is
informed by attended events and peripheral change (e.g., in the
visual domain, motion or lightening; in the auditory domain,
modulation or softening). The spatiotemporal representations
have very much the function of the more abstract pretheoretic
blackboard metaphor. Powers (1997) envisions the spatiotem-
poral model as being like the columns of blackboards in a
lecture theatre – different columns for different sensory-motor
or cognitive modalities, different levels for different times and
levels of complexity. In the lecture theatre, a board is pushed
up after it has been written on, and a clean board emerges from
below. While working on the current layer of boards, one can
refer to any board on any higher layer that is still visible.

vdV&dK’s model is largely consistent with this kind of model
but is more reminiscent of sequential digital logic circuits and
in fact makes the analogy explicit through the use of gate termi-
nology. Synchrony, reverberation, and recurrence would seem to
be important mechanisms in realizing their model, although
there is an interacting pair of neural attributes that they
neglect: delay and decay. Delay is clearly implicit in reverbera-
tory and recurrent models, but delayed copies of a signal can
exist at different parts of the network even without recurrence.
These delayed copies create the temporal dimension of a black-
board-like spatiotemporal representation. Hence a neuron is as
much a short-term memory element as a processing element
and functions something like a dynamic memory cell that
maintains its memory while it is being refreshed as relevant. A
complementary effect is represented by the refractory period
and its role in habituation. Powers (1983) used this delay-decay
model (as well as a more abstract statistical model) for induction
of both grammatical and ontological structure.

Although presented in an unhelpful notation that is nonstan-
dard for both neurons and gates, the vdV&dK gating model is
similar to sequential digital logic circuits, and the resulting
model of memory acts like a static memory cell. Whilst the
model is sufficient to provide solutions for Jackendoff’s problems,
it is considerably more complex than the simple delay-decay
model, and there is no direct neurological support for this kind
of model except in terms of the ongoing synchronic recurrence
between features triggered for the same event that forms the
Hebbian assembly.

The elaboration of the vdV&dK model is intrinsically syntactic
in nature and this extends to their models of short-term (black-
board) and long-term (knowledge base) memory. There is no
ontology, no semantics, no meaning captured in distinguishing
The cat chases the mouse from The mouse chases the cat. There
is no discussion of how cat is recognized or the verb chases is
understood, and the representation of words with circles, suppo-
sedly representing neural assemblies, fails to capture the
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inherent overlap of the distributed representation of a Hebbian
assembly (Pulvermüller 2002). A more realistic model involves
abstraction of entire scenes and association of words with those
scenes in the same way as any other attributes of the objects or
events involved, these structures reflecting (Piaget 1954) the
multimodal multilevel spatiotemporal short-term delay-decay
representation of the current ontological context in the black-
board network. The hearing or reading of a sentence generates
a sequence of neural patterns that starts off being perceptual in
nature and becomes increasingly abstract and conceptual as
well-attested neural processes extract features and relationships.
The sentence and its context, both linguistic and ontological, are
thus represented in different layers of the network at different
complexity levels and time points – the spatiotemporal neural
blackboard. The function of recurrence and inhibition is not to
implement short-term memory but to allow the representation
of complex spatiotemporal relationships.

Linguists tend to get this backwards. It is not that language
determines who is the subject or the object in a sentence, but
rather that in the environment there is an actor and an undergoer
(Pike & Pike1977). The reality has primacy, and the underlying
representation is arguably there not to represent language but
to represent past, present, and potential experience. The issues
Jackendoff raises are not primarily problems of linguistics but
matters of ontogenesis. In dealing with problems that Jackendoff
poses from a linguistic perspective, vdV&dK tend to force their
cognitive model into a linguistic mould rather than producing a
proper ontological model and showing how linguistic relation-
ships, semantic, phonetic, morphological, and syntactic, can be
represented – or, indeed, can be emergent.

It is therefore highly appropriate that vdV&dK conclude by
looking at how their blackboard architecture maps onto vision,
which is arguably representative of the entire array of sensory-
motor and cognitive modalities. This would have been a better
starting point, as understanding this kind of feature-binding
model can potentially lead to a better understanding of syntactic
and semantic binding.

Comparing the neural blackboard and the
temporal synchrony-based SHRUTI
architectures

Lokendra Shastri
International Computer Science Institute, Berkeley, CA 94707.

shastri@icsi.berkeley.edu http://www.icsi.berkeley.edu/�shastri

Abstract: Contrary to the assertions made in the target article, temporal
synchrony, coupled with an appropriate choice of representational
primitives, leads to a functionally adequate and neurally plausible
architecture that addresses the massiveness of the binding problem, the
problem of 2, the problem of variables, and the transformation of
activity-based transient representations of events and situations into
structure-based persistent encodings of the same.

Table 1 compares two sets of solutions to the challenges posed by
Jackendoff (2002). One set of solutions is provided by the
SHRUTI architecture, which uses temporal synchrony for
encoding dynamic bindings (Mani & Shastri 1993; Shastri
1999; Shastri & Ajjanagadde 1993b; Shastri & Wendelken
2000), and the other by the target article. This comparison is
clearly at odds with what is stated in the target article. The follow-
ing discusses the bases of the comparison and point out some of
the factual errors and faulty analyses underlying the flawed evalu-
ation of the temporal synchrony approach proposed in the target
article.

The SHRUTI architecture represents relations (or predicates),
types, entities, and causal rules using focal-clusters. Figure 1
depicts focal-clusters for relations (e.g., give), types (e.g., Person),
entities (e.g., John), and the rule give(x, y, z) (own(y, z). Within a

focal-cluster, the activity of the þ node represents a degree of
belief, the activity of the ? node represents querying of information,
and the synchronous firing of a role node (e.g., giver) and an entity’s
(or type’s) þ node represents the dynamic binding of the role and
the entity (or type). Type þ nodes are further differentiated to
encode quantification (e for existential and v for universal). Thus
the sustained activity of þ: give together with the firing of þ :
John, þ : Mary, and þ e: Book in synchrony with giver, recipient,
and give-object, respectively, encodes the active belief : “John gave
Mary a book.” This activity immediately leads to the inference
“Mary owns a book” because of synchronous activity propagating
along connected nodes (e.g., owner synchronizes with recipient
and hence with þ:Mary).

Contrary to what is claimed in the target article (sect. 3, para 2;
sect. 3.2, para 1), no preexisting fact nodes or synchrony detectors
are required for the activity-based encoding of “John gave Mary a
book,” and no such nodes/detectors are required for drawing
inferences based on this fact. Furthermore, as long as SHRUTI
is told that Dumbledore is an entity or an instance of an existing
type, it will have no problem encoding the novel event “John
gave Dumbledore a book” and productively inferring that
Dumbledore owns the book.

This brings out the first major error in the authors’ understand-
ing of the temporal synchrony-based SHRUTI architecture.
Contrary to their claim, SHRUTI does not require prewired
fact nodes for all possible facts. SHRUTI requires fact nodes
(actually, fact circuits) only for encoding memorable facts in its
long-term memory.
Problem of 2. Although the simple network shown in Figure 1

permits an entity simultaneously to fill multiple roles in different
relations, it cannot simultaneously encode multiple instances of
the same event-type (e.g., “John gave Mary a book” and “Mary
gave John a pen”) without binding confusions. Shastri and
Ajjanagadde (1993b) present a solution to this problem within
the temporal synchrony framework. The solution requires
having a small number of copies of each relational focal-cluster
and encoding rules by interconnecting antecedent and
consequent focal-clusters via a switching circuit (Mani &
Shastri 1993; see Wendelken & Shastri 2004 for an alternate
solution).

The authors correctly point out that the use of multiple copies
of focal-clusters makes it difficult to learn regularities between
relations. Because an occurrence of a situation wherein a give
event leads to an own event would engage only one focal-
cluster each of give and own, respectively, only this pair of
focal-clusters will learn the causal link between give and own.

Table 1 (Shastri). An evaluation of two architectures that provide
solutions to Jackendoff’s four challenges to cognitive neuroscience

Jackendoff’s
Challenges to
Cognitive
Neuroscience

Temporal
Synchrony-based
SHRUTI
Architecture

Neural
Blackboard
(NBB)
Architecture

Massiveness of the
binding problem

A A

Problem of 2 (multiple
instantiation)

B B

Problem of variables
(reasoning with
abstract rules)

A D

Activity-based
(dynamic) bindings
and long-term
bindings

A I (incomplete)
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Learning the link between all pairs of give and own focal-clusters
would require either a mechanism to perform automatically the
requisite weight changes across all pairs of focal-clusters or a
large number of occurrences (sooner or later each pair of own
and give focal-clusters would participate in a relevant situation
and learn the link).

Unfortunately, the solution proposed by the authors suffers
from exactly the same drawback as that suffered by the solution
developed for SHRUTI. Instead of using multiple copies of
relational focal-clusters, the neural blackboard (NBB) archi-
tecture uses multiple copies of assemblies for each linguistic
constituent (e.g., S, NP, and VP). The use of multiple copies
renders the learning of structural dependencies and syntactic
constraints between constituents very difficult, because any
regularity learned from a sentence will be recorded only in the
copy of a constituent that was used to encode the sentence; it
will not generalize to all the other copies of the constituent.
Hence, although the noun subassembly of N1 (or S1 or C1) and
the verb subassembly of V1 (or S1 or C1) may learn the correct
constraints/rules about noun-verb agreement, the noun and
verb subassemblies of other copies of NP, S, and C assemblies
will not. The lack of generalization over multiple copies will
also manifest itself in the learning of (i) interactions between
constituents and control circuits governing sentence parsing;
and (ii) gating circuits for controlling the flow of activity
between subassemblies.
Problem of variables (reasoning with abstract rules). The

NBB architecture can look up and extract bindings from
compositional structures, but contrary to what is said in
Section 6.6, it cannot perform reasoning with such structures.
The authors’ state that “information of the form own(X, ?) can
be transformed into information of the form give(-, X, ?) on the
basis of a long-term association between own-agent and give-
recipient (as in the model by Shastri & Ajjanagadde 1993[b]).”
Indeed, SHRUTI can make such transformations rapidly. If the
state of the network shown in Figure 1, is initialized such that
?:own fires and owner and own-object fire in synchrony with
?:Tom and ?:e:Thing, respectively, the resulting network state
represents the active query: “Does Tom own some thing?”
Spreading activation within the type hierarchy and rules would

transform this query into a large number of queries, including
“Did a person give Tom something?”

But SHRUTI’s ability to make such transformations has no
bearing on the ability of the NBB architecture to perform reason-
ing. SHRUTI can make such transformations rapidly because it
explicitly encodes (i) each semantic role of relations such as
give and own (e.g., give-recipient and own-agent) and (ii) the sys-
tematic associations between these roles (see the encoding of
give(x, y, z) ) own(y, z) in Fig. 1). In contrast, NBB captures
the compositional structure of sentences involving give and
own by binding the role-fillers of give and own in a given
sentence to generic linguistic constituents and generic thematic
roles (fig. 14 of the target article). NBB, however, does not
explicitly encode semantic roles such as give-recipient and
own-agent – neither in its activity-based representation nor in
its long-term memory – and it does not have any representational
machinery for capturing the associations between such semantic
roles. Consequently, it cannot readily transform own(X,?) into
give(-, X, ?).
Interaction between activity-based (dynamic) bindings and

long-term bindings. The authors’ proposal about encoding
constituent binding in long-term memory suffers from two
problems. First, the authors entertain a variant of the long-
term learning problem that is of limited relevance from the
standpoint of cognition. Second, they present a solution that is
unlikely to work.

The idea of storing sentence structure in long-term memory
seems ill motivated. It is widely believed that we remember the
semantic content of what we hear and read and not the actual
linguistic input used to convey the content. At the sentence
level, this semantic content corresponds, typically, to events
and situations that can be viewed as instantiations of multi-
dimensional relations (e.g., semantic frames). Language, then,
is a means of conveying the bindings of roles and parameters in
a multidimensional relational instance using a one-dimensional
stream of words, and parsing is the process by which the
appropriate bindings of a semantic frame are extracted from a
stream of words. The sentence structure (or parse tree) is only
a means to this end. Hence what need to be memorized are
events and situations conveyed by sentences, not sentence
structures.

The authors’ solution to the problem of one-trial learning of
sentence structure using the hippocampal complex (HC) (sect.
6.5) rests on untested assumptions and is unlikely to work. The
solution requires HC to create a conjunctive encoding of the
activity of the delay assemblies of all the memory circuits
involved in representing the sentence structure (sect. 6.5.1).
The number of such assemblies – for even moderately complex
sentences – is likely to be large (.10), and it is not clear
whether the requisite conjunctive representations can be
recruited in the HC while keeping interference within reason-
able bounds. It is also not clear how many distinct sentence
structures can be memorized. The answers to these questions
depend on, among other things, the anatomy of the HC, the
number of cells in different subregions of the HC, the density
of projections between subregions, and the physiological
parameters governing LTP (e.g., how many concurrent inputs
are required to induce LTP). An analysis of some of the available
data about the human HC suggests that if one wants to maintain a
low level of cross-talk, the maximum number of bindings that
can be grouped together in a conjunct is likely to be small
(�7) (Shastri 2001b; in preparation). In view of this, it would
seem difficult to memorize any but the simplest of sentence
structures.

Fortunately, the problem of one-shot memorization of
events and situations described by sentences seems more amen-
able to a biologically plausible solution. A computational model
of cortico-hippocampal interactions (Shastri 2001a; 2001b;
2002; in preparation) demonstrates that a cortically expressed
transient pattern of activity representing any arbitrary event

Figure 1 (Shastri). A simplified depiction of how relations,
entities, types, and rules are represented in SHRUTI. Labels
such as þ, ?, and giver are nodes. Each node corresponds to a
small ensemble of cells. A bidirectional link is a shorthand
notation for two links, one in either direction. Only some of the
nodes and links are shown (e.g., like Person, Book and Car are
also subtypes of Things).
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can be transformed rapidly into a persistent and robust memory
trace in the HC as long as the number of distinct role-fillers
specified in the event remains less than approximately seven.

Nested structure. As discussed by Shastri and Ajjanagadde
(1993a), a possible way of increasing nesting levels is to use a
richer temporal structure whereby bindings at a deeper level
of nesting are represented by synchronization at faster
frequencies (e.g., gamma band) and bindings at a shallow
level of nesting by slower frequencies (e.g., theta band).
Moreover, as discussed by Shastri and Ajjanagadde
(1993a, sect. R2.5), many problems that seem to require
deeper levels of nesting can be reformulated so as to require
shallow nesting.

Parsing. The NBB architecture parses English sentences; it
encodes rules and constraints pertaining to grammatical
knowledge and performs inferences required for parsing
sentences (c.f. target article sect. 6.8.4). Given the focus of the
NBB architecture on parsing, it is odd that the authors did
not compare their approach to that of Henderson (1994), who
developed an online, incremental parser motivated by the
temporal synchrony framework. Henderson showed that
many limitations of human parsing can be explained by
constraints on working memory imposed by the use of temporal
synchrony to solve the binding problem. Henderson’s parser
can recover the structure of arbitrarily long sentences as long as
the dynamic state required to parse the sentence does not
exceed the bounds of working memory. In doing so the parser
explains a range of linguistic phenomena pertaining to long-
distance dependencies, local ambiguity, and center-embedding.

Can neural models of cognition benefit from
the advantages of connectionism?

Friedrich T. Sommera,b and Pentti Kanervaa

aRedwood Neuroscience Institute, Menlo Park, CA 94025; bRedwood Center of

Theoretical Neuroscience, University of California at Berkeley. Berkeley, CA

94720-3190 fsommer@berkeley.edu

http://www.rni.org/ftsommer/FS/FTSommer.html

pkanerva@rni.org http://www.rni.org/kanerva/homepg.html

Abstract: Cognitive function certainly poses the biggest challenge for
computational neuroscience. As we argue, past efforts to build neural
models of cognition (the target article included) had too narrow a focus
on implementing rule-based language processing. The problem with
these models is that they sacrifice the advantages of connectionism
rather than building on them. Recent and more promising approaches
for modeling cognition build on the mathematical properties of
distributed neural representations. These approaches truly exploit the
key advantages of connectionism, that is, the high representational
power of distributed neural codes and similarity-based pattern
recognition. The architectures for cognitive computing that emerge
from these approaches are neural associative memories endowed with
additional mapping operations to handle invariances and to form
reduced representations of combinatorial structures.

Introduction. There is an abundance of cognitive phenomena
that our existing models are unable to explain. Jackendoff
(2002) has singled out four from language, and the target
article proposes to solve them with a neural blackboard
architecture. How likely are we to come up with the right
cognitive architecture by starting with language? Although
language is a cognitive function without an equal, it is only a
fraction of what makes up human cognition. It is also
evolution’s latest invention. In keeping with the principles of
biological design, it rests fundamentally on earlier inventions
that are found in mammals and many other animals. These
include rich sensor integration, complex learned motor-action

sequences, memory for places and things, learned judgment,
memory for learned actions, mental imagery (imagination),
learning from example, and signaling. In other words, neural
mechanisms that predate language are capable of incredibly
rich adaptive behavior. It therefore seems prudent to seek
neural-based solutions to these more basic cognitive functions
first and then to model language by elaborating on the
mechanisms for the basic functions. However, that is not the
tradition in cognitive modeling (Feigenbaum & Feldman 1963;
Newell & Simon 1972).
Local versus distributed representation. Language is the part

of cognition that we are the most cognizant of. This has led us to
modeling the rest of cognition with language and language-like
systems such as logic, rather than the other way around. The
target article exhibits the typical hallmark of these approaches,
local representation, as van der Velde and de Kamps (vdV&dK)
represent words by nonoverlapping cell populations. In nature,
this single-neuron–single-function design is found only in
relatively primitive animals, in the most basic life-sustaining
functions of higher animals, and at the outer sensor and motor
periphery – that is, far from where cognition is assumed to take
place.

Local representations make rigid assignments of what part in a
connectionist architecture represents what entity. The more flex-
ible and more promising alternative of distributed coding goes
beyond simply replacing single cells by cell populations. A code
is distributed if the neurons truly collaborate. In other words,
not any single neuron in the network but only a distributed
pattern of neural activities can fully specify the meaning of a rep-
resentation. Cell assemblies, by Hebb’s (1949) definition, fulfill
this property. Experimental neuroscience offers ample evidence
for distributed codes. Braitenberg (1978) has pointed out that
results of single-cell physiology strongly suggest distributed rep-
resentations. Many neurons respond to generic features (such as
edges in visual input) that are shared by a large class of stimuli
rather than responding to one specific stimulus. Recent tech-
niques for recording the activity in many cells at the same time
prove direct evidence for distributed patterns (Harris et al.
2003; Ikegaya et al. 2004). Quite confusingly, vdV&dK use
local representations but describe their model in the language
of (distributed) cell assemblies and populations.

Advantages of distributed representation have been empha-
sized in early artificial neural-network models, such as neural
associative memories. Distributed representation yields drasti-
cally increased representational power: A network with n
neurons can represent n/k localist population codes with k
neurons, but (n choose k) � (n/k)k distributed representations.
This means that a connectionist architecture with distributed
representation can process more items than it has neurons,
which might be crucial for many brain regions. Second, distribu-
ted representations form metric spaces where the metric is given
by pattern similarity, such as pattern overlap or the inner
product. In high-dimensional representational spaces, these
metrics behave entirely differently from the Euclidean distance
in two- or three-dimensional space. For example, a pair of
random vectors is in general almost maximally dissimilar. The
properties of these metrics are the mathematical basis for the
pattern-recognition properties of artificial neural networks.
Neural architectures for processing distributed representations.

Neural associative memories (Hopfield 1982; Kohonen 1977; Palm
1982; Willshaw et al. 1969) are essentially the artificial neural-net
implementation of cell assemblies (Sommer & Wennekers 2003).
In these models, cell assemblies are distributed memory patterns
that can be formed by learning and can later be recalled. A cell
assembly is formed by incrementing the synaptic strengths
between all its active neurons and it can be recalled by stimula-
ting a large enough fraction of its cells. The recall is a pattern-
recognition process based on the previously described pattern
similarity: a noisy input pattern will evoke this most-similar cell
assembly. Associative memories also provide a form of short-term
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memory: once a cell assembly is active, the recurrent excitation
keeps it persistent (Amit 1989).

However, the above-described models of associative memory
cannot perform invariant pattern recognition nor can they rep-
resent composite or combinatorial structures. The main
problem is that memory recall hinges exclusively on overlaps
with stored patterns. Input patterns that do not have meaningful
overlaps with stored patterns cannot be recognized. Architectures
that overcome this limitation have been proposed (Anderson &
van Essen 1987; Arathorn 2002; Dotsenko 1988; Olshausen
et al. 1993), and we refer to them as feature-mapping memories.
In these models, the input is transformed by a parameterized
mapping before it enters the associative memory. By tuning the
mapping parameters while searching for a recognizable stored
pattern, these systems can cope with invariance that is not
reflected in the direct overlap-similarity of the input. The result
of memory retrieval is then not only a stored pattern but also
the appropriate mapping parameters for mapping the current
input to the memory. These architectures have also been
extended to more general graph-matching operations (Bienen-
stock & von der Malsburg 1987; Kree & Zippelius 1988).

The above feature-mapping memories can perform invariant
pattern recognition but they do not provide for a more sophisti-
cated working memory that would allow combinatorial structures
to be composed and decomposed on the fly. This requires the
introduction of an (invertible) mapping operation for binding
(and decomposition) of representations. Smolensky (1990)
proposes a map into higher-dimensional space, the tensor
product of the representational spaces of the constituents. Such
a dimension-expanding binding operation can keep the full
structure of the constituents. But this comes at a high price.
The problem is that the depth of nested structure is severely
limited by affordable dimension and that atoms cannot be substi-
tuted for nested structures. Because of the downsides of dimen-
sion-expanding binding, Hinton (1990) proposes reduced
representation of nested structures in the original space of the
constituents. Different binding operations have been proposed
for generating reduced representations, in particular, convolu-
tions (Plate 1994; 2003) elementwise multiplication (Gayler
1998; Kanerva 1994; 1997), and permutation-based thinning
(Rachkovskij & Kussul 2001).

Gayler (2003) details how the Jackendoff problems can be
solved with reduced representations. For example, he uses
binding of a representation with a permuted version of this rep-
resentation to generate frames (for keeping the little star and the
big star apart). It is important to note that systems of reduced
representations have to be embedded in networks of cell-assem-
bly memory, as we describe above. This is because the reduction
in the binding process produces a noisy result upon decompo-
sition. The patterns resulting from decomposition have to be
passed through a similarity-based filtering process, a clean-up
process. In this regard the cognitive operations with reduced
representations have close similarity to the recognition of a
pattern in feature-mapping memories that we describe above.
Conclusions. We believe that connectionist models for

cognitive processing should exploit the strengths of
connectionism, that is, high representational power and the
ability for pattern recognition. These strengths rely
fundamentally on distributed representation and, as we explain,
are not realized in the blackboard architecture proposed in the
target article. Neural associative memories in their original
form incorporated the described strengths of connectionism
but were too limited in function. Recently, however, memory-
based architectures have been developed that can perform
invariant pattern recognition in difficult perceptual problems
(Arathorn 2002). Hence it seems promising to realize neural
cognitive architectures by adding operations for processing
reduced representations in similar memory systems. In general,
we believe that serious progress in cognitive modeling will be
based on understanding the general mathematical properties of

high-dimensional representational spaces rather than on a
specific solution to a relatively narrow set of challenge problems.

An alternative model of sentence parsing
explains complexity phenomena more
comprehensively without problems of
localist encoding

Carol Whitney
Departmentof Linguistics, University ofMaryland,CollegePark,MD20742-7505.

cwhitney@cs.umd.edu http://www.cs.umd.edu/�shankar/cwhitney

Abstract: I discuss weaknesses of the proposed model related to
reinstantiation of encodings recorded by the hippocampal complex and to
the inability of the model to explain complexity phenomena. An alternative
model that also addresses the formation of hierarchical representations
of sentences in working memory is outlined, and the ability of this model
to account for complexity phenomena is briefly reviewed.

In this target article, the van der Velde & de Kamps (vdV&dK)
address the difficult question of how the hierarchical structure
of a sentence could be neurally represented in working
memory (WM). Their solution essentially assigns a unique
index to each instance of a word within a grammatical class by
activating one of the N instances of each word. There is an
N�N arrangement of gating nodes between any two grammatical
classes that can be associated with each other. Activation of
gating node ij encodes an association between items i and j
from those grammatical classes. In this commentary, I point
out some difficulties with their proposal and describe an alterna-
tive model (Whitney 2004).

One of the goals of the present model is to allow the represen-
tation of multiple sentences in WM, including reactivation of rep-
resentations recorded in the hippocampal complex (HC). When a
representation is constructed from the incoming input, each
index is dynamically assigned, and the uniqueness constraint
can be directly imposed. However, when a representation is reac-
tivated from the HC, the indices have already been chosen.
These indices might conflict with ones already active in WM.
For example, assume that N ¼ 100, and consider a sentence
with four nouns encoded in WM, which has triggered the
recall of another sentence with four nouns recorded by the
HC. Assuming random initial choice of indices (under the no-
duplication constraint), the probability that the two sentences
will share at least one noun index is quite high – approximately
15% (i.e., 1.0 - 96/100�95/99�94/98�93/97). Increasing N by a
factor of ten reduces the probability of a conflict to a more man-
ageable level, but at the cost of an exponential explosion in the
number of nodes – 1,000,000 gating nodes are then required
for every pair of associable grammatical classes. Hence the
model in its current form does not actually allow the reinstantia-
tion of HC encodings under reasonable parameters.

van der Velde & de Kamps also claim that the proposed mech-
anisms for activating mappings between grammatical classes can
explain complexity phenomena. They argue that the reason that a
relative clause within a relative clause (RC/RC) is more difficult
than a relative clause within a noun complement (NC/RC)
(Gibson 1998) is because of the availability of two potential
binders to the gap position in the innermost clause. However, a
noun complement within a relative clause (RC/NC) is as difficult
as an RC/RC (Gibson 1998), even when the NC’s verb is intransi-
tive. Because there is no ambiguity in this case, their account would
incorrectly predict that an RC/NC should be as easy as an NC/RC.
Of course, it would be logically possible to explain the RC/NC
difficulty via an entirely different mechanism, but such a lack of
parsimony is undesirable. There is a range of other complexity
issues that the model does not explain, such as effects of the
type of the innermost noun phrase (Gibson 1998; Kaan & Vasic
2004), the relative ease of cross-serial dependencies in Dutch
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(Bach et al. 1986), and the perceived grammaticality of an RC/RC in
which the second verb has been omitted (Gibson & Thomas 1999).

In contrast, the TPARRSE model of sentence parsing
addresses these same issues (Whitney 2004), but does not have
these shortcomings. Each word is represented by a vector, and
grammatical relationships are encoded by combinatory vector
operators. Because words and syntactic relationships are
represented as distributed patterns, multiple instances of words
are not required, and there is no need to choose indices. Such
a representation is also more robust than the localist encoding
proposed by the authors.

The construction of this distributed encoding is supported by a
temporal representation of the relationships between the phrases
of incomplete clauses. This temporal representation essentially
encodes a pushdown stack via firing order. However, unlike an
abstract stack, there is no direct way to remove (pop) the top item.
Rather, the syntactic features of an item are recorded, and when it
is time to pop that item, the “stack” is sequentially “searched” until
an item containing all the required syntactic features becomes
activated. That item and all successive items are then inhibited.
This mechanism provides the basis for a unified explanation of
sentence-complexity phenomena, which I briefly outline.

A noun phrase (NP) is indicated by the Np feature, and
additional features are activated to record restrictions on the
function of the NP. The Pr feature indicates that the NP is a
pronoun; Cl denotes the start of an embedded clause, and
GapR indicates that the embedded clause requires a gap (i.e.,
it must be a relative clause). For example, in a RC/RC in
which all subjects are full noun phrases, the first NP (NP1 –
subject of main clause) has the Np feature, and the second NP
(NP2 – subject of outer RC) has the Np, Cl, and GapR features,
as does the third NP (NP3 – subject of inner RC). During
processing of the inner RC, the representations of these three
subjects fire in order, repeating over time. When the inner RC
is complete, its encoding should be deleted from this temporal
list. As the list is sequentially read out, the NPs are checked for
the syntactic features recorded from the current subject (i.e.,
Np, Cl, GapR from NP3). NP1 does not contain these features,
but NP2 does, and inhibition is initiated. However, this was the
wrong NP at which to begin inhibition; the subject of the outer
RC is incorrectly deleted. Therefore, processing of the outer
RC cannot be reinitiated, and the main clause is reinstantiated
instead. Hence the sentence does not make sense, and an
ungrammatical version of the sentence in which the second
verb is omitted can seem preferable (Gibson & Thomas 1999).

If the sentence is an RC/NC, such an incorrect deletion will
also occur, as all of NP3’s features (Np, Cl) are also activated for
NP2 (Np, Cl, GapR). Incorrect deletion is prevented if NP2’s
features do not include all of NP3’s. This will be the case if NP3
is a pronoun or if the sentence is an NC/RC, explaining the
relative ease of such constructions (Gibson 1998). For a more in
depth discussion of these issues, including the processing of
cross-serial dependencies and the proposed neural underpinnings
of the distributed and temporal encodings, see Whitney (2004).

Authors’ Response

From neural dynamics to true combinatorial
structures

Frank van der Veldea and Marc de Kampsb

aCognitive Psychology, Leiden University, Wassenaarseweg 52, 2333 AK

Leiden, The Netherlands; bRobotics and Embedded Systems, Institut für

Informatik, Technische Universität München, Boltzmannstrasse 3, D-85748

Garching bei München, Germany. vdvelde@fsw.leidenuniv.nl
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Abstract: Various issues concerning the neural blackboard
architectures for combinatorial structures are discussed and
clarified. They range from issues related to neural dynamics,
the structure of the architectures for language and vision, and
alternative architectures, to linguistic issues concerning the
language architecture. Particular attention is given to the
nature of true combinatorial structures and the way in which
information can be retrieved from them in a productive and
systematic manner.

R1. Introduction

To begin, we would like to express our appreciation for the
work done by the commentators. They have presented us
with a wide array of comments on the target article,
ranging from dynamics and neural structure to intricate
linguistic issues. The topic of the target article was to
solve the four problems described by Jackendoff (2002)
and to illustrate that the solutions offered have the poten-
tial for further development. The problems described by
Jackendoff concern the neural instantiation of combinator-
ial structures. Although it is true that language provides
the most complex and hierarchical examples of combina-
torial structures, these structures are also found in other
domains of cognition, such as vision. Therefore we dis-
cussed sentence structure and visual binding as examples
of combinatorial structures. We argued and illustrated
that these structures can be instantiated in neural terms
by means of neural blackboard architectures. We aimed
to discuss as many topics as possible within the framework
of a target article. As a result, we had to ignore many
details and related issues. Our response to the commen-
taries offers us the opportunity to discuss some of these
in more detail and to rectify some of the misunderstand-
ings about the nature of the architectures that might
have resulted from this approach.

R2. Goal

The goal of our article as outlined above was perhaps
misunderstood by Bod, Fitz & Zuidema (Bod et al.),
because they complain that we have not solved “the
binding problem.” From the remainder of their commen-
tary we get the impression that “the binding problem,” in
the view of Bod et al., concerns the issue of how all the
potential representations can be derived from a single
sentence input. In the case of a multidisciplinary discus-
sion it is always important to clarify terms because they
could have a different meaning in different fields. For
this reason, we introduced the goal of our article with a
rather detailed discussion of the problems addressed by
Jackendoff. The binding problem in this context refers
to the notion of binding in neurocomputational terms.
Jackendoff introduces it as follows (2002, p. 59):

The need for combining independent bits into a single coher-
ent percept has been recognized in the theory of vision under
the name of the binding problem (not to be confused with lin-
guists’ Binding Theory . . .). In the discussions I have encoun-
tered, the binding problem is usually stated in this way: we
have found that the shape and the color of an object are
encoded in different regions of the brain, and they can be dif-
ferentially impaired by brain damage. How is it, then, that we
sense a particular shape and color as attributes of the same
object?

Response/van der Velde & de Kamps: Neural blackboard architectures of combinatorial structures in cognition

88 BEHAVIORAL AND BRAIN SCIENCES (2006) 29:1

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0140525X06009022
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:22:49, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0140525X06009022
http:/www.cambridge.org/core


Jackendoff goes on to explain that this binding problem
also occurs in language, and even more massively than in
vision. So the issue is how information encoded in
different regions in the brain can be combined (bound)
in a coherent representation, both in language and in
vision. We argued that this can be done with blackboard
architectures. Furthermore, we discussed the relation
between the blackboard architectures in language and
vision to emphasize the relation between the binding
problems in both domains.
Bod et al. also complain that we have concentrated on

the issue of representing combinatorial structures in
neural terms. This remark ignores the difference
between symbolic computation and neural computation.
Briefly, what is easy in symbolic computation is difficult
in neural computation, and vice versa. Representation of
symbolic structures is easy in symbolic computation. Basi-
cally, anything goes. Hence there are no restrictions on the
kind of structures and processes one can have in symbolic
computation. This is one of the reasons why we have so
many different theories in theoretical linguistics today.
(For example, Bod et al. urge us to take more note of
Chomsky 1957. But why this Chomsky? Why not the
Chomsky of Government and Binding or the Chomsky
of the Minimalist Program?)

The importance of the issue of representation can be
seen very clearly in the need to copy symbols in the
symbolic approach. Newell et al. (1989, p. 105) defend
copying symbols as follows: “The need for symbols arises
because it is not possible for all of the structure involved
in a computation to be assembled ahead of time at the
physical site of the computation. Thus it is necessary
to travel out to other (distal) parts of the memory to
obtain the additional structure.” Hence it is necessary to
copy the information over there and to bring it over
here. But nodes in a connectionist network seem to be
fixed in their web of connections. This was a main argu-
ment used by Fodor & Pylyshyn (1988) to dismiss connec-
tionism as a basis for human cognition. In the words of
Dennett (1991, p. 270): “This problem of fixed versus
movable semantic elements is one way of looking at a
fundamental unsolved problem of cognitive science.” In
our target article, we have provided a solution for this
problem. Of course, this solution does not directly result
in a complete theory of language and the brain. But,
with it “the dialogue between linguistic theory and
neural network modeling will begin to be more
productive” (Jackendoff 2002, p. 65).
Bod et al. dismiss the architecture we present because

it uses prewired connections. This remark again ignores
the specific nature of neural computation. For example,
to establish a relation between two words, there has to
be a connection path between the neural structures that
represent these words in the brain. Dramatic evidence
comes from split-brain patients. In these patients, both
hemispheres operate separately because the connection
between the two is missing. For example, when the word
hammer is presented in the left visual field, a split-brain
patient will perceive the word with the right hemisphere.
So the patient can use the left arm to point at an object
representing a hammer. But he cannot name the word,
because verbalization is (usually) produced by the left
hemisphere, and this hemisphere is oblivious to the
word perceived by the right hemisphere. Similarly, the

left hemisphere can name the word nail when it is pre-
sented in the right visual field, but the right hemisphere
is unaware of this word. So when both hammer and nail
are presented together in this way, the split-brain patient
is unaware of the relation between these two words, pre-
cisely because a connection path between their neural
instantiations in both hemispheres is missing. Therefore,
unless you want to assume that connections can grow on
the fly, a prewired connection path has to be available to
relate any two words with each other. The architecture
we present provides a very parsimonious solution for this
problem (see R4).
Bod et al. argue that we should have concentrated on

the issue of finding the appropriate neural representations
of all the syntactic structures that can be assigned to a given
sentence. This remark illustrates that they are out of touch
with the literature on human parsing. The human parser
does not operate like a theoretical linguist. That is, the
human parser does not wait until the sentence has been
presented and then tries to make as many
representations as possible. Instead, the parsing process
starts straightaway and operates in an incremental
manner, almost word by word. The circuit we illustrated
in Figure 20 operates in such an incremental manner.
Humans are quite often oblivious to the ambiguities
that can be found in a sentence (e.g., Pinker 1994).
Evidence comes from garden-path sentences (e.g., Meng
and Bader 2000) such as The man who hunts ducks out
on weekends (Pinker 1994). Typically, humans interpret
duck as a noun instead of a verb, which results in a
misrepresentation. Furthermore, recent research is
beginning to show that human sentence comprehension
can produce underspecified representations of a given sen-
tence (Sanford & Sturt 2002), which is quite the opposite of
analyzing all possible interpretations of a sentence.
Bod et al. also argue that connectionism should be

about learning. This idea is wrong for several reasons.
First, the notion of connectionism derives from Cajal,
who described the basic structure of the brain in terms
of neurons as the functional units, which are related with
connections. Nothing in this description associates con-
nectionism exclusively with learning. Second, even in the
Parallel Distributed Processing (PDP) tradition one can
find influential models that are not about learning. An
example is the interactive activation model of letter and
word recognition by McClelland & Rumelhart (1981).
Third, it is a hazardous idea. There is no guarantee that
connectionism, based on an initially unstructured archi-
tecture and learning principles, will eventually result in a
cognitive system comparable to that of humans (or even
primates). By far most species that developed a neural
system in the course of evolution did not develop a
neural system on the level of that of humans or primates.
The lesson from this is that simple architectures with
simple adaptive processes do not in general result in
human-like cognition. In this respect, we fully accept the
possibility that an architecture like ours will not develop
on the basis of simple learning principles and an initially
unstructured architecture. But that does not mean that it
is incorrect. Fourth, it does not agree with brain develop-
ment. A good example is given by the orientation maps in
the primary visual cortex. The basis structure of these
maps is available at birth, including individual cells that
respond to specific line orientations (e.g., Chapman et al.
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1996). So here one can already find an example that con-
tradicts the notion that connectionism should be only
about learning.

Other remarks of Bod et al. can be easily countered as
well. For example, they argue that the architecture cannot
detect the similarity between The man frightens the child
and The child fears the man. We were surprised to read
this statement, because we discussed this issue in section
6.6, where we examined how the architecture can relate
John gives Mary a book to Mary owns a book. We did
this in terms of the long-term memory structures of
these sentences, but the same mechanism works for
structures in the blackboard, because the relation
between these sentences depends on the associations
between the word assemblies for give and own. These
assemblies are the same for structures in the blackboard
and for structures in long-term memory. We discussed
this issue in terms of a single example because we
wanted to present as many different examples as possible,
trusting the reader to understand that if the architecture
can instantiate the relation between gives(John, Mary,
book) and own(Mary, book), the architecture can also
instantiate the relation between frighten(man, child) and
fear(child, man) or any other example of this kind.
Similar remarks can be made for issues like agreement
and long-distance binding. Examples of these are found
in the article as well.

R3. Related work

Baars argues that one can find many other examples of
blackboard architectures in cognition. We agree with
that observation. For example, Jackendoff (2002)
describes symbolic blackboard architectures for phonolo-
gical structures, sentence structures, and semantic struc-
tures. Each of these blackboards has its own specific
structure, dependent on the nature of the combinatorial
structures they are involved in. In fact, we took the import-
ance of blackboard architectures for cognition as granted
and concentrated on the issue of their neural instantiation.

We took language as our prime target because of the
obvious combinatorial structure of language. But we
decided to include vision as well, because combinatorial
structures are also found in vision, and because they
seem to be different from language. In this way, we
could investigate how neural blackboard architectures
can be described for different cognitive domains. Further-
more, we could investigate what makes them different,
what makes them similar, and how they can be related
(e.g., how they can provide grounding of language in the
visual domain). The differences between the neural archi-
tectures we discussed follow from the differences between
their cognitive domains (simply stated, sequential for
language and spatial for vision). Yet there are also simi-
larities. In particular, they both support the process view
of binding, that is, binding within the frame of reference
of the system itself. Furthermore, they are related in
terms of the grounding of language in perception, which
could be the basis for a further development of semantics.

Similar questions can be discussed in case of the black-
board architectures mentioned by Baars. A neural instan-
tiation of these architectures would have to be developed,
with an emphasis, in our view, on the ability to answer

“binding questions” in these architectures without
relying on conjunctive forms of representation. These
binding questions can be explicitly stated, but they could
also be implicit. In fact, it would be interesting to
explore whether conscious cognition and voluntary
control are related to the process of answering self-gener-
ated binding questions. For example, are we conscious of
the color of an object when (or because?) we (implicitly)
answer the question: “What is the color of this object?”

Clancey describes an interesting relation between our
blackboard architecture for language and his Conceptual
Coordination (CC). The relation between our blackboard
architecture and architectures such as CC indeed indi-
cates that the integration between neural and symbolic
analyses of cognition is progressing.

As Clancey notes, comprehension is a sequential
process and not some kind of state that is held or
“moved” in memory. This is what we have tried to illustrate
in terms of the process of answering binding questions,
both in the sentence blackboard and in the visual black-
board. It contrasts with the notion, as expressed by
Doumas, Holyoak & Hummel (Doumas et al.), that
“downstream” neurons should have an explicit represen-
tation of the binding structure instantiated with
“upstream” neurons.

Clancey discusses some refinements, related to binding
problems involved in sentence comprehension, that could
be introduced into the architecture. The examples given
are interesting and need to be investigated in more
detail. For the moment, we note that some of these refine-
ments are already implemented in the architecture. They
concern the structure assemblies that are simultaneously
active in memory. Their number is indeed related to
memory span. Clancey suggests that the memory span is
not given by the multiple activations that constitute the
structure assemblies themselves. Instead, the memory
span depends on the categorizations given by the different
delay assemblies that interconnect the structure assem-
blies. Indeed, this is what happens in the blackboard.
The activation of the structure assemblies guides the
binding process, but once binding has been achieved,
the memory is given by the active delay assemblies. The
idea that only one delay assembly can be active at a time
at a specific binding site is reflected in the connection
structure illustrated in Figure 5. The competition within
the “rows” of columns and within the “columns” of
columns also ensures that a delay assembly can only be
active in one way at a time.

R4. Structure of the architecture

Hadley argues that we have presented a conjunctive form
of binding, which would require in the order of 60 million
distinct binding circuits to succeed. If this were true, the
architecture we presented would hardly be worth a discus-
sion. But Hadley’s point and his calculation are based on a
misinterpretation of our architecture. It turns out that
Hadley confuses words (e.g., nouns and verbs) with struc-
ture assemblies (e.g., NP and VP assemblies). With 5,000
nouns and 3,000 verbs, Hadley calculates that the “agent
matrix” (Fig. 5) would consist of 15 million memory
circuits. However, the agent matrix does not represent
binding between nouns and verbs but between NP

Response/van der Velde & de Kamps: Neural blackboard architectures of combinatorial structures in cognition

90 BEHAVIORAL AND BRAIN SCIENCES (2006) 29:1

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0140525X06009022
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:22:49, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0140525X06009022
http:/www.cambridge.org/core


assemblies and VP assemblies. The binding of nouns and
verbs is indirect in the architecture. First nouns bind
with NP assemblies, and verbs bind with VP assemblies.
Then the NP and VP assemblies bind with each other.
This intermediary layer of binding makes all the differ-
ence. This is what makes the architecture a blackboard
architecture. NP and VP assemblies are needed only for
the temporal and online representation and processing
of a sentence structure.

We noted in the target article that in the order of 100
NP assemblies and 100 VP assemblies would suffice for
this purpose. In that case, one could have in the order of
100 nouns and 100 verbs involved in online representation
and processing, which is more than sufficient to account
for working-memory capacity in language comprehension
(e.g., Just & Carpenter 1992), that is, before transfer to the
hippocampus complex (HC). With 100 NP and 100 VP
assemblies, the agent matrix consists of 10,000 memory
circuits, a far cry from the 15 million memory circuits cal-
culated by Hadley. But, of course, we also have to count
the bindings between words and structure assemblies.
Using Hadley’s example, we would have 500,000
memory circuits to bind the nouns with the NP assemblies
and 300,000 memory circuits to bind the verbs with the VP
assemblies, that is, of the order of 106 bindings between
words and structure assemblies. Again, this is significantly
fewer than the number calculated by Hadley, but it is a
substantial number. Choe, Durstewitz, and Grüning
& Treves also raised doubts about this number and
about the fact that novel words could hardly bind with
structure assemblies in this way.

In section 6.9 we noted that in a future development, the
sentence blackboard architecture should be combined
with a phonological blackboard architecture (as in
Jackendoff 2002). We will illustrate here how such a
phonological blackboard architecture will significantly
reduce the number of bindings between words and struc-
ture assemblies and how it can account for the binding of
novel words. Figure R1 illustrates a quasi–“phonological
blackboard” that connects with the sentence blackboard
(e.g., to the NP and VP assemblies). The structures in
the “phonological blackboard” are not intended as
genuine phonological structures, but they do illustrate
the point that a word is also a combinatorial structure,
based on phonological constituents. These constituents
will bind with Wx assemblies similar to the way in which
words (structure assemblies) bind with the Si assemblies
in the sentence blackboard. The binding circuits will be
the same as in the sentence blackboard. The word assem-
blies, representing the long-term information related to
words, are located outside the phonological blackboard
but they are connected to it in an interactive way. The
word assemblies can be as distributed as they have to be,
but each word assembly will be connected to specific
phonological constituents in the phonological blackboard.
So the word assembly for cat is connected to the quasi-
phonological constituents /c/, /a/, and /t/ of the word cat.

So when a word is presented, it will activate its word
assembly and its phonological constituents in the phonolo-
gical blackboard. The phonological constituents, in turn,
will bind with an arbitrary (but “free”) Wx assembly.
Like the structure assemblies, the Wx assemblies are
involved only in online representation and processing. So
one can assume that the number of Wx assemblies will

be of the order of 100 as well. Because the Wx assemblies
are arbitrary, one needs a connection matrix to bind Wx

assemblies with structure (e.g., NP and VP) assemblies.
In turn, this means that the NP and VP assemblies have
to have subassemblies for this binding, as illustrated in
Figure R1 (which makes all bindings of structure assem-
blies of the same kind, i.e., via subassemblies). The Wx

assemblies have to have subassemblies as well. We
assume that they have specific subassemblies that allow
selective binding with NP assemblies (with wn subassem-
blies) and VP assemblies (with wv subassemblies). For
each of these, one needs a connection matrix of the
order of 10,000 memory circuits (like the agent matrix in
fig. 5). So the 106 bindings between words and structure
assemblies reduce to something of the order of 104

bindings between the phonological blackboard and the
sentence blackboard. Hence all bindings in the architec-
ture (i.e., between subassemblies) are of the order of
104. The number of different subassemblies, reflecting
different categories (e.g., “agent,” “theme,” “clause,” “pre-
position”) will be between 10 and 100. Therefore the
overall number of bindings (memory circuits) in the
architecture will be between 105 and 106. This number
is certainly more feasible than the 60 million calculated
by Hadley.

The use of a phonological blackboard also explains how
novel words can bind with the sentence structure. A novel
word is a new combination of familiar phonological con-
stituents, which can bind with a Wx assembly. The phono-
logical nature of the new word could be used to decide if
the word is a noun or verb, so that it can bind directly in
the available sentence structure.

A similar confusion between words (e.g., nouns, verbs)
and structure assemblies (e.g., NP and VP) seems to be
the basis of Dyer’s comment. The connection matrix in
Figure 5 refers to binding between the NP and VP struc-
ture assemblies, not to the binding between words. As we
argue above (sect. R2), some kind of connection path
between any pair of words (i.e., their neural instantiation)
is necessary to account for the fact that these words can be
related to one another. As we calculate here (sect. R4), the
binding structure in the blackboard is a very parsimonious
way to provide for all possible connection paths that
language would require.

Figure R1. Illustration of how a “phonological blackboard” would
bind words to structure assemblies in the sentence blackboard.
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The connection matrix between structure assemblies
also accounts for the binding process itself. Binding
occurs between active structure assemblies (i.e., their cor-
responding subassemblies). Usually only one NP subas-
sembly and one VP subassembly are simultaneously
active. So binding in the connection matrix will be
immediate, and no winner-take-all process is needed. In
fact, the conflicts in binding that do sometimes occur are
a major source of complexity in this architecture, as
illustrated in Figure 18 and Figure R2 (sect. R9.1).

The connection matrix also accounts for the way in
which the binding process is initiated. When sentence
information indicates that a noun should bind with a
verb as its “agent,” the gating circuits between the main
assemblies and the subassemblies are opened. Indeed,
this occurs for all NP and VP assemblies (but not for all
nouns and verbs). But only one NP (main) assembly and
only one VP (main) assembly are active at a given
moment. So only one subassembly for NP assemblies
and only one subassembly for VP assemblies will be acti-
vated, which will result in the binding process described
in the previous paragraph.

Dyer raises an interesting point about whether the
architecture would scale up for semantics. We used the
labels “agent” and “theme” to describe the binding struc-
ture in the architecture. In passing, we noted that we
took these labels as semantic macroroles (van Valin
2001, see note 6). We could also have used the notation
of Pinker (1989), who refers to the argument slots of
verbs in terms of X, Y, and Z. So X chases Y, X bites Y,
and X gives Y to Z.

A substantial number of different semantic roles can be
distinguished, but nevertheless verbs can have one, two, or
three arguments, and these argument positions seem to
have something in common. The connection matrices we
described would be used for these argument positions,
that is, for the X, Y, and Z arguments of verbs. The more
precise classification of the semantic roles will depend
on the (lexical) information associated with a particular
verb. There is no need to instantiate all these different
semantic roles directly within the architecture. Notice
that there is only one instance of any given predicate in
the architecture (e.g., give or own), that is, there is only
one word assembly for give or own. Long-term associ-
ations can be formed between these predicates, that is,
between their neural assemblies. In the same way, infor-
mation can be associated with a word assembly of a verb
to express the fact that, say, the X argument of that verb
has a particular semantic role (e.g., agent, experiencer,
cognizer, believer, etc.).

R4.1. Holistic representation

In their commentary, Dresp & Barthaud argue for holis-
tic representations instead of combinatorial ones that can
be implemented in a blackboard architecture. In particu-
lar, holistic representations would fit better with the
need for generating behavioral success. We agree that if
a problem can be handled with conjunctive or holistic
forms of representation, it pays to do so. Processes that
use these forms of representation typically operate very
fast, and speed of processing can increase behavioral
success. However, the success of this approach depends
on the size of the problem space. When the problem

space expands, the success of this approach declines
rapidly.

Furthermore, we do not accept the argument that every
process in human cognition must be understood in terms
of immediate behavioral success. For example, human
language provides the ability to go beyond the here and
now that is typical for behavioral adaptation. The argu-
ment that one does not find these processes in animals is
of little value. There is much in human cognition that
cannot be compared directly with animal cognition.
Human cognition has produced an environment that is
substantially different from the environments that
animals live in. Just think of all the aspects of cognition
that are involved in creating and sustaining a research insti-
tute or university or in organizing a discussion like this one.
One cannot explain that away by placing human cognition
on the procrustean bed of animal cognition and immediate
behavioral success. Something has to be different to
account for the uniqueness of human cognition.

So the need for behavioral success is primarily related to
the visual blackboard architecture we presented. We do
believe that our blackboard architecture for vision is
related to behavioral success and that the relation
between the language blackboard and the vision black-
board we proposed (the “grounding” of language) is
sound. Dresp & Barthaud argue that the adaptive
resonance theory (ART) theory of Grossberg (1999) is an
alternative theory that fits with their holistic view of
cognition. Binding between “what” and “where” would
correspond with resonant activation states in ART,
formed by the activation patterns in the “what” and
“where” processing steams. So binding could be achieved
without any language-like combinatorial process.

However, the binding process in the visual architecture
is combinatorial but not language-like. The reason we dis-
cussed the blackboards for language and vision is to show
that one can have different blackboard architectures that
are tailor-made for the modality in which they operate.
Contrary to the claim of Dresp & Barthaud, they are
not at all general-purpose machines. For example, the
purpose of discussing language complexity was to show
that the language architecture is selective to the kind of
sentence structures it can encode, contrary what one
finds in a general-purpose machine.

Furthermore, the idea that resonant activation states in
ART bind activation patterns in the “what” and “where”
processing steams is based on a misinterpretation of
Grossberg (1999). Grossberg argues that ART concerns
the process of learning and categorization in the “what”
(ventral) stream and that an entirely different (in fact,
complementary) model accounts for learning and proces-
sing in the “where” (dorsal) stream. The difference
between these two complementary models is a crucial
point in Grossberg (1999). In short, ART is related to
conscious memories, and the “dorsal” model is related to
procedural (unconscious) memory.

ART is about learning and categorization in the “what”
stream, whereas our vision architecture is related to the
interaction between the “what” and “where” stream.
There are a number of animal experiments that are in
agreement with the interaction in the vision blackboard
illustrated in Figures 22 to 24. A detailed description can
be found in van der Velde and de Kamps (2001). Further-
more, the blackboard architecture is in agreement with
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aspects of visual agnosia. Farah (1990) describes a dis-
sociation between dorsal simultanagnosia and ventral
simultanagnosia. The first results from damage to the
dorsal pathway. Object recognition is still possible with
these patients, but they cannot integrate that information
with spatial information. Ventral simultanagnosia results
from a damage to the ventral pathway and it consists of a
loss of identity information about objects. The double dis-
sociation between these two forms of agnosia (the first can
occur without the second, and vice versa) is a classical argu-
ment against a holistic form of representation. Damaged
holistic representations are always damaged holistically.
On the basis of these and other forms of visual agnosia,
Farah (1990, p. 151) presents a global model that is in
agreement with the visual architecture we presented.

The visual architecture we presented here is, in fact,
motivated by speed of processing. Initial processing in
the visual cortex proceeds with feed-forward networks
(e.g., Oram & Perrett 1994), because processing in feed-
forward networks is very fast. But feed-forward networks
are prone to catastrophic interference (e.g., McCloskey
& Cohen 1989). This occurs when the same feed-
forward network is used to learn different tasks. The
best way to avoid catastrophic interference with feed-
forward networks is to use different feed-forward networks
for different tasks. This solution seems to be the basis for
the structure of the visual cortex, which consists of differ-
ent pathways that initially operate in a feed-forward
manner. But with different feed-forward networks the
integration of the information they process becomes a
problem. The solution to that problem is the basis for
the visual blackboard we have presented here. So our
visual blackboard architecture directly derives from
issues related to speed of processing. Therefore the archi-
tecture provides the ability for fast behavioral adaptation
to changes occurring in the environment. Moreover,
these fast-occurring changes are often related to new com-
positions of familiar entities (trees in a forest, houses and
roads in a city). Handling novel compositions of familiar
entities is the prime target of the visual blackboard archi-
tecture. It can do it straightaway. No new learning, as in
forming new holistic representations for these new combi-
nations, is required. So even in this respect, the architec-
ture is faster than models based on holistic representation.

The grounding of language in the visual blackboard
concerns the interaction between these two different
types of blackboards. The fact that they interact is
obvious. Visual information can be transformed into lin-
guistic information, and linguistic information can be
used to guide the visual system. The latter is obvious,
given the ability to direct visual attention by means of
verbal instructions. This is not a form of priming, as
Dresp & Barthaud mistakenly assume. Instead, it con-
cerns the selection of visual information on the basis of
linguistic information. The interaction between the
vision and language blackboards derives from the fact
that word assemblies are not copied or moved around, as
in a symbolic architecture, but always remain “in situ.”
In this way, associations can develop between the word
assemblies and other representations in the brain, such
as representations in the visual cortex.
Powers also seems to argue that the cognitive abilities

provided by language are not very different from those
provided by vision. However, this discussion itself

illustrates the specific importance of language in cognition.
We can have a discussion on a topic such as the import-
ance of language without any direct (visual) contact.
Visual perception is always bound to the here and now,
but language can make us go beyond the here and now.
This is what makes language unique: People can exchange
information without direct visual contact, without living in
the same place, or even without living in the same time. In
this way, knowledge can accumulate in a manner that is
simply not possible if knowledge depended exclusively
on direct visual contact with the world. Language can
inform you about events that occurred thousands of
years ago or thousands of miles away. It can do so precisely
because it can capture the actor-patient situation of a given
event in the structure of a sentence. Readers can then
understand the actor-patient situation of that event
because they can understand the “Who does what to
whom” relation expressed in the sentence. In other
words, because they can answer (implicit or explicit)
binding questions in the manner we analyzed in our
target article.

R4.2. Architecture versus association

In their commentary, Doumas et al. argue that von der
Malsburg (1986) shows that connections between assem-
blies cannot carry information about binding relations.
This analysis of processing in cell assemblies does not
relate to the architecture we have presented. Cell assem-
blies are associative, but our architecture is not. Due to
the effect of the gating circuits in the architecture, the
flow of activation can be controlled in a manner that is
not possible in an associative structure like a cell assembly.
We illustrated this difference in Figures 6 and 15.

Furthermore, Doumas et al. note that the architecture
can answer a question like “Who is the cat chasing?” in the
case of the proposition chase(cat, mouse), but that down-
stream neurons “see” only the neural activation of the
assemblies involved, but not their binding relations. But
why would these binding relations have to be represented
explicitly by the downstream neurons, that is, why would
they have to be burdened with representing that infor-
mation themselves? There is a limit on the information
that can be stored at a given site. So when the need to
store more information arises, for example, when cognitive
capabilities increase, information has to be stored in differ-
ent sites. This could be the reason why the cortex of
humans is much larger than the cortex of apes and
monkeys (Calvin 1995). Distribution of information over
different sites is not a problem as long as relevant infor-
mation can be retrieved from distant sites. So if the down-
stream neurons of Doumas et al. want to “know” whether
chase(cat, mouse) or chase(mouse, cat) is stored by the
neurons upstream, they can initiate a sequence of
questions like “Who is chasing?” and “Who is being
chased?” If the sequence of answers is cat, mouse
(instead of mouse, cat), the downstream neurons “know”
that chase(cat, mouse) is stored by the neurons upstream,
instead of chase(mouse, cat). It is necessary that down-
stream and upstream neurons can interact with each
other. It is not necessary for each of them to do the task
of the other. It would, in fact, be highly detrimental for
the system as a whole if such a duplication of tasks were
always needed.
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For example, in the visual cortex, the neurons in the
“What” stream do not have to know where the object is
and the neurons in the “Where” stream do not have to
know what the object is. In this way, each stream can
restrict learning to the specific task it has to perform.
Learning would be much more difficult if each stream
had to learn all tasks simultaneously.

Yet, because the streams influence each other, the
system as a whole knows where the object is and what
the object is, as the interaction process in our visual archi-
tecture illustrates.

R5. Binding with synchrony

A number of commentators—Dyer, Doumas et al.,
Durstewitz, Müller, Shastri, and Powers—have argued
against our dismissal of synchrony of activation as a binding
mechanism in combinatorial structures. It is important
to understand the topic of this debate. The topic is not
so much whether one will find cross-talk in hierarchical
representations. We are willing to grant that this can be
avoided to a certain point (see van der Velde & de
Kamps 2002). The crucial issue concerns the “read-out”
(i.e., answering binding questions) in the case of true
forms of combinatorial structures, that is, structures for
which no conjunctive (coincidence) representations exist.
The commentaries that advocate synchrony as a binding
mechanism do not really address this issue. Two questions
need to be answered on synchrony as a binding mechanism
in combinatorial structures (e.g., as found in language).
How can binding questions be answered without relying
on conjunction (coincidence) detectors needed to detect
synchronous activation? And if this is not possible, how
can one have conjunction (coincidence) detectors for all
possible binding relations that could exist in language?
We are not aware of a model that has answered these
questions.

R5.1. SHRUTI

In his commentary, Shastri provides details of the reason-
ing process in SHRUTI. These details are much appreci-
ated, but they do not touch upon the topic of the
discussion we have with this model. The topic is this:
Human cognition, in particular on higher levels, is charac-
terized by productivity, compositionality, and systemati-
city. These characteristics are related in the sense that
one goes with the others (Fodor & Pylyshyn 1988). For
example, the productivity of language requires linguistic
structures to be compositional. If the “performance set”
of natural language (i.e., the set of sentences that human
language users can comprehend) is at least of the order
of 1020, it is difficult to see how one could have specific
conjunctive forms of representation for each of these sen-
tences. For example, the time to develop or learn these
representations seems not available. So neural models of
these forms of human cognition have to have the ability
to represent and process cognitive structures in a pro-
ductive, compositional, and systematic manner. This, in
short, is the topic of our argument with models like
SHRUTI.

SHRUTI is a model about reasoning in long-term
memory. For instance, it can relate the proposition John

gives Mary a book, stored in long-term memory, to the
proposition Mary owns a book. However, the systematicity
of reasoning entails that the relation between give(X, Y, Z)
and own(Y, Z) does not hold for just the specific tokens of
this relation stored in long-term memory but holds for all
possible tokens of this relation. Viewed in this way, it does
not make much sense to have a model that deals only with
reasoning in long-term memory. It should be a model that
can handle all tokens of the same kind, regardless of
whether these tokens are stored in long-term memory or
are represented on the fly (i.e., novel tokens of the same
relation).

With this in mind we can have a closer look at SHRUTI.
Figure 12 in Shastri & Ajjanagadde (1993b) illustrates how
SHRUTI can relate the proposition John gives Mary a
book to the proposition Mary owns a book. This figure
shows that the proposition John gives Mary a book is rep-
resented with a specific “fact node” (or, indeed, a “fact
circuit”). On its own, it is acceptable to represent a pro-
position in long-term memory with a designated form of
representation like a fact node or fact circuit. Long-term
memory consists only of those propositions that we have
actually memorized, so the problem of productivity that
one finds with the performance set of language does not
occur here. However, figure 12 in Shastri & Ajjanagadde
(1993b) shows that the fact node for John gives Mary a
book plays a crucial role in the inference process that
establishes the relation between John gives Mary a book
and the proposition Mary owns a book. For example, acti-
vation of the fact node is needed to activate the “collector
node” of the predicate give. In turn, the activation of a col-
lector node is needed to answer the queries in SHRUTI.
So, if John gives Mary a book is stored in long-term
memory, the collector node of give has to be activated to
answer the query “Does Mary own a book?” In turn, the
collector node of give is activated by the fact node for
John gives Mary a book, which shows that fact nodes
play a crucial role in the reasoning process itself instead
of just representing a specific proposition.

The role of fact nodes in the reasoning process in
SHRUTI raises the issue of the true systematicity of this
model. Consider a novel proposition John gives Dumble-
dore a broom and the query “Does Dumbledore own a
broom?” Shastri asserts that SHRUTI can handle a
novel event when it is told that “Dumbledore is an instance
of an existing type.” We do not quite understand what this
means and how it works, but we can argue that reasoning
on the basis of type information in the case of specific
propositions is a hazardous affair. Dumbledore is of the
type person or noun, so it would seem that this solution
entails that one can answer the query “Does Dumbledore
own a book?” on the basis of the representation John gives
noun/person a book. However, it is quite possible that
Dumbledore owns a book is not true, even though John
gives noun/person a book is true, for example, because
John gives Mary a book.

The reasoning process we discussed in section 6.6
does not depend on specific tokens of the kind John
gives Mary a book. Instead, it depends only on the
relations between the predicates give and own and
between the argument slots of these predicates. We
used a long-term memory encoding of John gives Mary
a book to illustrate how combinatorial structures can be
encoded in a more explicit form in long-term memory.
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But the reasoning process described in section 6.6 works
in the same way for a novel proposition like Dumbledore
gives Harry a broom that is temporarily stored in the
blackboard. The only difference between a long-term
memory encoding and a temporal encoding of a prop-
osition is the nature of binding of the arguments. In the
temporal encoding, binding results from the (temporal)
activity in the memory circuits, whereas, in long-term
memory, binding results from direct associations
between arguments and predicate slots. This difference
in binding does not affect the reasoning process,
because that depends only on the associations between
the predicates.

Furthermore, the reasoning process described in
section 6.6 can answer specific binding questions like
“Who owns the book?” instead of just yes/no queries
like “Does Mary own the book?” in SHRUTI. This is a
consequence of the fact that SHRUTI answers a query
on the basis of the activation of a collector node, which
is a yes or no event. In turn, the yes or no activation of a
collector node reflects the yes or no activation of a fact
node, needed to detect the respective synchrony
between arguments and predicate slots.

The lack of systematicity in SHRUTI is also reflected in
the problem of 2. Shastri acknowledges that the solution
in SHRUTI for this problem, that is, the duplication (mul-
tiplication) of predicate nodes, results in a loss of systema-
ticity. Instead of having one relation between the
predicates give and own, SHRUTI has distinct relations
between give1 and own1 and between give2 and own2.
Shastri asserts that our blackboard architecture is faced
with a similar problem, because different tokens of a prop-
osition are represented with different structure assem-
blies. This is correct, but that has no consequence for
learning the relations that produce systematic reasoning,
because these relations depend only on the associations
between predicates, for example, between the word
assemblies for give and own, and predicates (word assem-
blies) are not duplicated in the blackboard architecture.
The predicate give is always represented with one and
the same word assembly in any proposition in which give
occurs. Indeed, the very reason for the existence of struc-
ture assemblies next to word assemblies is that structure
assemblies can be used to handle binding problems and
the problem of 2, whereas the (single) word assemblies
can be used to account for relationships between predi-
cates and issues such as grounding, as illustrated in
figure 27.

Finally, Shastri notes that we should have discussed the
neural parsing model of Henderson (1994), based on
SHRUTI, as an alternative to our own. There is a simple
reason why we did not do this: There is no neural
parsing model to be found in Henderson (1994). Hender-
son introduces a parser in which computational constraints
derived from SHRUTI are used. But the parser itself oper-
ates in an entirely symbolic way. For example, Henderson
(1994, p. 367) describes how syntactic nodes can be closed
for further parsing: “Closed nodes can be removed from
the phrase structure representation, thereby reducing
the number of nodes [the parser] needs to store infor-
mation about.” Removing nodes from a structure is one
of those things that one can do easily in a symbolic
implementation, but it turns out to be very hard (if not
impossible) in a genuine neural implementation. None

of these issues about real neural implementation is dis-
cussed, let alone answered, in this parsing model. None
of the problems that derive from these implementation
issues, such as answering specific binding questions
without using conjunctive representations, is discussed,
let alone answered, in this parsing model.

R5.2. LISA

The fundamental problem with any model using synchrony
of activation, as we stated in section 3.2, is the dependence
on conjunctive forms of encoding to get things done.
Dependence on conjunctive encoding destroys the pro-
ductivity and systematicity of a model. We analyzed this
in case of SHRUTI, but we can give the same analysis in
the case of the model known as LISA, advocated by
Doumas et al. For example, LISA encodes Bill loves
Mary by having conjunctive (coincidence) nodes for the
entire proposition, for Bill-lover and for Mary-beloved
(see Hummel & Holyoak 2003, fig. 3). So the question is:
How can LISA represent and operate on a novel
proposition like Dumbledore loves Harry? How could
one have a conjunctive node for this proposition if one
has never seen or heard it before? By the same token,
how could one have a conjunctive representation of
Dumbledore-lover and Harry-beloved? Furthermore, it is
possible to have the conjunctive representations for one
relation but not for the reverse relation. So one could
have conjunctive nodes for Harry loves Dumbledore,
Harry-lover, and Dumbledore-beloved, but not for
Dumbledore loves Harry, Dumbledore-lover, and Harry-
beloved. Consequently, LISA could make inferences
about Harry loves Dumbledore but not about Dumbledore
loves Harry. This kind of behavior is characteristic of a
system that lacks systematicity.

The inference process in LISA critically depends on its
conjunctive form of representation. An example can be
found in figure 4 in Hummel and Holyoak (1997). The
figure illustrates a mapping from John loves Mary onto
Bill likes Susan versus Peter fears Beth (i.e., the inference
that John loves Mary is more related to Bill likes Susan than
to Peter fears Beth). The process starts with the activation
of the node for John loves Mary. This node in turn activates
conjunction nodes for John-lover and Mary-beloved, which
then activate a set of nodes for semantic primitives, which
in turn activate conjunction nodes for conjunctions such as
Bill-liker and Bill likes Susan. The need for synchrony is
obvious: There are so many conjunctive nodes, both for
entire propositions and for partial propositions, that
without synchrony, a superposition catastrophe would
easily occur. But this is not what systematic reasoning is
about. The purpose of systematic reasoning is not to
avoid a superposition catastrophe in a selected set of con-
junctive representations but to establish relations between
arbitrary tokens of familiar predicates.

This is where LISA fails. LISA cannot conclude that a
novel proposition like Dumbledore loves Harry is more
related to Bill likes Susan than to Peter fears Beth,
because the conjunctive representation of Dumbledore
loves Harry and its relations with representations for
Dumbledore-lover and Harry-beloved are missing in
LISA. Yet the resemblance between Dumbledore loves
Harry and Bill likes Susan is just as great as the resem-
blance between John loves Mary and Bill likes Susan.
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LISA, however, is completely blind to the systematicity
between these two tokens of the same resemblance. This
is why synchrony of activation in a model like LISA fails
to encode productive and systematic cognitive structures
and relations.

R5.3. Role of synchrony

In his commentary, Durstewitz argues that synchroniza-
tion could be mechanism for binding without the use of
specific coincidence detectors, because our architecture
also operates with assemblies and subassemblies that are
synchronously active. However, the word “synchronous”
is used with two different meanings here: simultaneous
and true synchrony. The members of a band can play in
the same period (simultaneous), even if they do not play
in (true) synchrony. The first meaning of “synchronous”
as used by Durstewitz refers to simultaneous activation
in our architecture. The populations in the architecture
are simultaneously active in a given time period in the
sense that they generate enough activity within that
period to influence each other (just as band members
can produce sound in the same period). The second
meaning of the word “synchronous” as used by Durstewitz
refers to phase coherence. This requires that populations
should not just be simultaneously active in a given
period, but that they also play in the same rhythm, so to
speak. It is not required that the activations of the popu-
lations in our architecture show any phase coherence. In
contrast, phase coherence is essential in models that use
synchrony as a binding mechanism, such as SHRUTI
and LISA. If one were to take away the phase coherence
in these models, the units/neurons in these models
would still be simultaneously active. But the ability for
binding is lost in these models, because that ability
depends critically on phase coherence, which is detected
by the coincidence detectors in these models.

It is important to note, however, that our rejection of
synchrony as a binding mechanism in combinatorial struc-
tures does not entail a rejection of any role of synchronous
activation in the brain. Synchrony of activation can play a
role in processes that depend on conjunctive forms of rep-
resentation. As we argue in section R4.1, if an organism
can solve a problem with conjunctive representations, it
should do so. As Durstewitz notes, time is a serious
constraint in biology, and conjunctive forms of processing
are much faster than combinatorial forms of processing.
However, for this solution to succeed, the problem space
at hand should not be too large. Otherwise, the conjunc-
tive representations that the organism can learn in its
lifetime will not sufficiently cover the problem space. In
that case, there is a reasonable chance that the organism
can be confronted with a problem for which it has not
(yet) developed a conjunctive representation.

The basis for combinatorial structures in human cogni-
tion is the observation that problem spaces arise in human
cognition that are too large to be covered in any reasonable
way with conjunctive forms of representation. Here,
the need for combinatorial processing arises. We used
the example of the performance set of natural language,
which consists of 1020 sentences or more. In any life-
time, one can form only a minute set of conjunctive rep-
resentations for this set (of the order of one sentence for
every 1010 sentences or more). In visual cognition, an

example would be the number of different patterns that
can be created on a chessboard.

But for problem spaces that are not too large, conjunc-
tive representation would be the preferred choice. Many
examples can be found in the visual cortex (e.g., the
orientation columns in the primary visual cortex). In the
case of conjunctive representation, synchrony can help
to avoid the superposition catastrophe that can easily
occur with conjunctive representations, as suggested by
von der Malsburg (1987). So, historically, the use of
synchrony arose out of a problem with conjunctive
representations. Synchrony solved the superposition
catastrophe with these representations by using coinci-
dence detectors as conjunctive units. It is important
to realize that this is a refinement of the use of conjunctive
representation, not an introduction of combinatorial
representation.

The empirical evidence for synchrony of activation is in
line with this interpretation. In a characteristic experiment
(e.g., Singer & Gray 1995), one or more light bars were
moved across the receptive fields of two groups of
neurons. A synchrony of activation was found between
both groups of neurons when a single light bar (i.e., a
coherent object) was moved across the receptive fields of
both groups of neurons. But when two light bars were
moved in opposite directions, each one across the
receptive field of one group of neurons, synchrony of acti-
vation did not occur. As we argued in section 2.1, problems
such as motion detection are most likely solved in conjunc-
tive manner in the visual cortex. The same could be true
for the detection of motion coherence of a moving
object, as in the experiment by Singer & Gray. Given
the occurrence of conjunctive coding in the visual
cortex, it is not a surprise that most of the empirical
evidence related to synchrony of activation has been
observed in the visual cortex.

Besides a mechanism for binding in these forms of
conjunctive processing, synchrony of activation as
observed in the brain could also be a “dynamical finger-
print” of an interaction that occurs between brain areas.
When brain areas exchange information in a functional
manner in the context of the cognitive process they
instantiate, they will also interact as coupled dynamical
systems. Coupled dynamical systems have a tendency to
synchronize their behavior because of the (oscillating)
force they exert on each other. In the same way, brain
areas that interact in a cognitive process could have a
tendency to synchronize their dynamics as well. This
form of synchronization does not have to play a functional
role in the cognitive process, as in answering binding
questions. Instead, it could just be a dynamical by-
product of the interaction between brain areas. But it
provides important information about which areas inter-
act (communicate) in a given cognitive process. That is,
it serves as a “dynamical fingerprint” of an interaction
between brain areas. The fact that these synchronization
effects are sometimes detected only with sophisticated
mathematical techniques, of the kind that intelligence
services use to eavesdrop through windows or thin
walls, corroborates this view. It is difficult to see how
such a faint effect could play a functional role in a cogni-
tive process. But the effect does not have to be strong to
be a dynamical fingerprint of an interaction between
brain areas.
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R6. Recurrent networks and language

Dyer, Durstewitz, and Müller argue that we have
discarded recurrent neural networks (RNNs) of the kind
used by Elman (1991) too easily as potential neural
models of language processing. For example, Durstewitz
notes that the fact that RNNs could not (in our simu-
lations) learn generative properties of language does not
entail that they could not represent these properties.
In a similar vein, Müller notes that RNNs with more
than one hidden layer (e.g., 100) could represent
much more than the RNNs we have tested. Indeed, it
would not be justified for us to criticize RNNs on their
learning (in)abilities, considering the fact that we have
not yet shown how learning could take place in our
architecture.

However, that is not the basis of our argument. Instead,
we do indeed seriously question the abilities of RNNs
(Elman-style) to represent the generative capabilities of
language, whether they have one or 100 hidden layers.
To understand why we make this claim, it is important
to realize that these models arose out of an attempt to
model language performance without using the distinction
between rules and a lexicon. Linguistics has (typically)
assumed that the distinction between rules and a lexicon
is necessary to account for the productivity of language.
For example, with the rules one could create a sentence
(syntactic) “skeleton,” which in combination with the
lexicon could generate a huge number of sentences. In
contrast with this approach, RNNs operate directly on
word strings and they learn the words and the sentence
structures at the same time. In other words, the aim is to
represent the generative capabilities of natural language
by deriving representations of all possible sentences on
the basis of a set of sentences actually learned by the
network.

The problem with this approach does not reside in the
number of hidden layers or in the specific learning algor-
ithm used. The problem resides in the contrast between
the number of sentences that can be learned by the
network (in any reasonable amount of time) and the
number of sentences that can be formed on the basis of
the combinatorial productivity of language. This per-
formance set is of the order of 1020 or more. In contrast,
even if a child learns a sentence every second for the
first 20 years of life, the set of learned sentences is only
in the order of 109. This is just one sentence for every
1011 sentences in the performance set. In other words,
between the sentences learned by the network there are
gaps of 1011 sentences (or more) about which the
network has had no direct information.

The significance of these gaps can be appreciated by
looking at the mathematical background of these RNNs
(van der Velde 2001). In performance and learning, the
RNNs operate as feed-forward networks (the feedback
connections are frozen in these moments). In fact, the
feedback connections determine only the input given to
the network in performance or learning (which consists
of a word in the sentence and the activation state in
the hidden layer produced with the previous input).
The reason it is possible to process a sequence of words
with RNNs results from the input presentation: The acti-
vation of the hidden layer with input n is part of the
input n þ 1. In this way (and only in this way) does the

previous processing in the network influence the current
processing.

In mathematical terms, a feed-forward network
implements a function between an input vector space and
an output vector space. Hornik et al. (1989) show that
feed-forward networks are “universal approximators” for a
wide class of functions. This means that for any function
in this class, one can find a feed-forward network that
approximates that function on a subset of the input space
within any desired level of accuracy. The proof by Hornik
et al. is based on the Stone-Weierstrass theorem, which is
itself a generalization of a theorem originally discovered
by Weierstrass (see, e.g., Rudin 1976). The Weierstrass
theorem states that a continuous function f(x) can be
approximated on a finite interval of its input domain by a
sequence of polynomials. This theorem is the mathematical
foundation of important approximation methods such
as Fourier series and Legendre polynomials (see, e.g.,
Byron & Fuller 1992).

The limitation of the approximation to a finite interval
is the basis for the fact that feed-forward networks
can approximate functions only on limited subsets of
the domain. Furthermore, the ability to approximate a
function derives from the use of a set of input
values and their corresponding function values
to determine the coefficients of the polynomial or the
weights of the feed-forward network (e.g., by using
the back-propagation algorithm). For this to succeed, the
Weierstrass theorem demands that the function is known
sufficiently (“globally”) over the entire interval on which
the function is approximated. That is, the gaps between
the input values used to set the coefficients or weights
cannot be too large (Byron & Fuller 1992).

As stated, RNNs are feed-forward networks during
learning, that is, when the weights of the network are set
to determine the approximation of the function that the
network computes. Thus, as demanded by the Weierstrass
theorem, the gaps between the input values used to set the
coefficients or weights cannot be too large. This restriction
is clearly violated in the case of language, because the set
of sentences that can be learned in a lifetime is minute
compared to the performance set of language. As we illus-
trate above, gaps of 1011 sentences or more inevitably
occur.

Furthermore, it should also be mentioned that the tasks
that RNNs perform are only remotely related to language
performance. All they can do is predict the lexical category
of a word that can follow after a given input string. They
cannot, however, answer specific binding questions
(“Who does what to whom”) for the sentences they
process. As Jackendoff (2002, p 163) noted about language
performance with RNNs: “virtually everything of linguistic
relevance has been bled out of the task the network is
designed to perform.”

The reference by Durstewitz to Hanson & Negishi
(2002) is not relevant here. First of all, this paper is
about learning finite-state languages with neural
networks. It is well known that neural networks can
handle languages of this kind. Furthermore, the language
is an artificial language, that is, the set of words in these
languages is very small. The crucial problem for natural
language is in dealing with languages that are more
complex than a finite-state language and that have a very
large lexicon.
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R7. Reduced vector coding

Gayler and Sommer & Kanerva argue for an alternative
solution of combinatorial structures in terms of reduced
representations in high-dimensional vector spaces. In the
target article, we briefly referred to problems associated
with tensor networks as models for combinatorial struc-
tures, in particular the problem that tensor networks
increase in size with levels of binding. Both Gayler and
Sommer & Kanerva acknowledge this problem, but they
note that the problem can be solved with reduced forms
of representation, as given by vector symbolic architec-
tures (VSAs). In a VSA, the binding between two (or
more) vectors does not result in an increase in size.
Instead, the constituent vectors and the combinatorial
vectors have the same dimensionality. An example of a
VSA is the Holographic Reduced Representation (HRR)
proposed by Plate (1997; 2003). So with VSAs, the
problem of tensor networks is avoided, and one would
have distributed vector processing as the basis of
neurocognition.

It is true that VSAs such as HRR solve the dimensionality
problem of tensor networks. However, the solution itself
prevents their use in truly combinatorial (novel) structures.
We will use HRR to illustrate why this is the case. Consider
the proposition John eats fish. A HRR representation of this
proposition proceeds as follows (e.g., Plate 1997; 2003).
First, John, eats, and fish are represented as n-dimensional
vectors. The exact value of n is not crucial, but it is crucial
that all vectors have the same dimensionality. So the
n-dimensional vectors John, eat, and fish represent the
words John, eat, and fish. Furthermore, the argument
roles of eat are also represented with n-dimensional
vectors, giving eatagent and eattheme. The binding of John
with eatagent is achieved with an intricate mathe-
matical operation called circular convolution. Fortunately,
we do not have to consider the details of this operation.
It suffices to know that it produces an n-dimensional
vector eatagent � John that represents the binding in John
eats (� represents the binding operation). The fact that
eatagent � John has the same dimensionality as John, eat
and eatagent shows that the size problem of binding in
tensor networks is solved. In the same way, eattheme � fish
represents the binding in eats fish.

The entire proposition John eats fish is represented with
the vector P1 ¼ [eat þ eatagent � John þ eattheme � fish].
P1 is just an arbitrary label for this vector. It is also an n-
dimensional vector. The symbol þ denotes the operation
of superposition, which basically consists of adding the
component values of the vectors involved. The brackets
[] denote that P1 is normalized, that is, its magnitude
(Euclidean length) is equal to 1. The proposition fish
eats John can also be represented in this way, with P2 ¼
eat þ eatagent � fish þ eattheme � John. The vectors P1

and P2 are different, so the role reversal of John and fish
is adequately represented with HRR. Because a prop-
osition is itself an n-dimensional vector, it can be used as
an argument in another proposition. For example, con-
sider Susan knows John eats fish. Here, P1 is the “theme”
argument of know. The entire vector for this proposition
is P3 ¼ [know þ knowagent � Susan þ knowtheme � P1].

Because vectors are normalized, some loss of infor-
mation occurs. However, it is remarkable to see how much
information can be encoded in this kind of representation

(see, e.g., Plate 2003). Information retrieval with HRR
proceeds by decoding bindings. For example, John as
the argument of John eats can be found by convolving
the vector eatagent � John with the “approximate inverse”
eat�agent of eatagent. The result eat�agent � eatagent � John is
a noisy version of John. This noisy version of John has to
be “cleaned up” by finding its closest match in a cleanup
memory. This process is a form of pattern recognition
that produces John as its outcome when the input is
eat�agent � eatagent � John. The cleanup memory must
contain all patterns of both objects and structures that
can result from decoding a HHR in the system.

These examples illustrate that HRR (and VSAs) can
encode combinatorial structures. However, encoding is
just one part of the story. It is also important that infor-
mation can be retrieved in a combinatorial manner, that
is, without relying on conjunctive forms of representation.
Moreover, the system itself has to be able to retrieve that
information. With this in mind, we can take a closer look at
the retrieval process in HRR.

Consider the propositions John eats fish and Susan
knows John eats fish. Suppose we ask the binding question
“What does John eat?” to an HRR system. When the pro-
position John eats fish is stored in its memory, the system
could answer the question by first decomposing the vector
P1 ¼ [eat þ eatagent � John þ eattheme � fish] into eat,
eatagent � John, and eattheme � fish. Then it would have
to produce eat�theme � eattheme � fish, and present this
vector to the cleanup memory to produce fish as the
answer. Or the system could calculate eat�theme � P1

directly and present the result to the cleanup memory
(Plate 2003). However, when the proposition Susan
knows John eats fish is stored in its memory, the system
would first have to decompose the vector P3 ¼ [know þ

knowagent � Susan þ knowtheme � P1] into know,
knowagent � Susan, and knowtheme � P1. Then it would
have to compute know�

theme � knowtheme � P1, retrieve
P1 from the cleanup memory, and execute the entire
sequence of operations described for the proposition
John eats fish. Or the system could calculate eat�theme

�knowtheme � P3 directly and present the result to the
cleanup memory (Plate 2003).

So, to answer the question “What does John eat?” differ-
ent operations have to be carried out by the system,
depending on the vector (e.g., P1 or P3) stored in its
memory. To make a selection of the operations to be
carried out, the system has to know which of these two
vectors is stored in its memory. However, both P1 and P3

are n-dimensional numerical vectors. On the surface they
look alike. How is the system to know which of these is
stored in its memory and so which operations it has to
carry out to produce the answer to the binding question?
For example, assume that John eats fish and Susan knows
John eats fish are both novel propositions (of familiar con-
stituents) never seen before by the system. In that case,
P1 and P3 are both novel n-dimensional numerical vectors
never seen before by the system. So on what kind of infor-
mation can the system decide that, for example, P3 is stored
in its memory, so that it has to execute the operations
needed for P3? To argue that there will be some kind of
representation of the proposition in the system that could
guide the decoding processing is, of course, begging the
question. The n-dimensional vector is the representation
of the proposition in the system, and nothing else.
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This problem illustrates an important aspect of combi-
natorial or compositional structures. The constituents of
a combinatorial structure have to be recognizable within
the structure itself. This is where reduced vector coding
fails. As a result of the reduced representation, the con-
stituents are no longer recognizable within the combina-
torial structure. Instead, they are encapsulated within
the combinatorial structure. Because the n-dimensional
vector of a familiar constituent is not recognizable within
the n-dimensional vector of a novel combinatorial struc-
ture, it cannot be used to guide the process of answering
binding questions (as it does in the architecture we
present here, e.g., see Fig. 7a).
Sommer & Kanerva argue that serious progress in

cognitive modeling will be based on the understanding
of the mathematical properties of high-dimensional
representation spaces rather than on a specific solution
to a relatively narrow set of challenge problems, that is,
the ones we discuss here. Of course, more knowledge of
mathematics is always useful, but cognitive modeling is
not just an exercise in mathematics. The aim is to
capture cognitive and brain processing in a cognitive
model in such a manner that “boundary conditions”
related with cognition and the brain are incorporated
in the model. One such boundary condition is the ability
to answer binding questions related to novel combina-
torial structures. The benefit of finding specific solutions
to a relatively narrow set of challenge problems is that
these boundary conditions are incorporated from the
beginning.

R8. Neural basis

Choe addresses the issue of the neural instantiation of our
blackboard architecture for sentence structure. It is inter-
esting to see that a gating circuit can be identified in a cor-
ticothalamic loop. However, like Choe, we do not believe
that the thalamus would be the site of the neural black-
board proposed here. In our view, the neural blackboard
is most likely to be found in the cortex. This is one of
the reasons we included a discussion of the visual black-
board—to illustrate that processes in the blackboard
(e.g., gating, memory by delay activity) can be found in
the cortex. Choe describes a gating circuit, based on disin-
hibition, in the corticothalamic circuit. Gonchar & Bur-
khalter (1999) describe a disinhibition circuit in the
visual cortex of the rat. In terms of evolution, the visual
cortex is one of the oldest parts of the cortex. So if disinhi-
bition circuits are found in the visual cortex and in the
cortex of animals like rats, it could be that they belong to
the “building blocks” that determine the structure of the
cortex (also given the structural similarity found within
the cortex). Delay activity is know to be found in the
cortex as well (e.g., Fuster 1995), so the building blocks
for the gating circuits in our architecture could exist
within the cortex.

Furthermore, the binding structure we illustrated in
Figure 5 should be seen as a structure of cortical
columns. Each column could be a microcolumn or
perhaps hypercolumn in the cortex. They would all
consist of the same kind of circuit, that is, a gating
circuit based on disinhibition, and the same kind of
delay assembly. Regular column structures can be found

in the cortex. An example is the “ice-cube” model of the
primary visual cortex (e.g., Coren, Ward & Enns 1999)
that consists of a very regular pattern of columns each
dedicated to a specific task, such as orientation detection
of edges in a particular direction. In fact, each of these
columns is a local representation of an elementary shape
on a given retinal coordinate. So the brain can develop
regular cortical structures with local representation when
it needs them for specific purposes. We do not see why
such regular and even local structures could not have
evolved for language processing as well.

Examples of regular structures and more or less local
representation can be found in the language areas. For
example, some stroke patients can name tools but not
animals. Other specific naming disabilities include
plants, body parts, and verbs (Calvin & Bickerton 2000;
Pinker 1994). The temporal cortex seems to be organized
in terms of categories of concepts, with different sites for
different concepts. The temporal cortex, in turn, is
connected with the prefrontal language areas with an
important fiber bundle (the arcuate fasciculus), with
axon branches that produce a very regular pattern of
connectivity (Calvin & Bickerton 2000). In fact, the
cortex has a much more regular structure than it is some-
times credited for (Hubel 1995).

A regular structure of columns also answers the
question about the duplication of structure assemblies.
They are not duplicated on the fly, but they form an exist-
ing structure (produced in a period of development).
Again, the ice-cube model in the visual cortex comes to
mind. Here one also finds a regular structure with
repetitions (duplications) of the same representations
(e.g., orientation columns).

R8.1. Dynamics

In their commentary, Grüning & Treves argue that we
should combine our architecture with an effective use of
cortical attractor dynamics. It is indeed our intention to do
so. In fact, there is more attractor dynamics implied in the
architecture than we were able to illustrate and describe.
The word assemblies are indeed assumed to be attractor-
like networks and not just symbolic representations in
neural terms. This impression may follow from the fact
that we have connected word assemblies directly to the
structure assemblies in the blackboard. However, as we
discuss in section R4, word assemblies will interact with
the sentence blackboard through a phonological black-
board. The word assemblies are located outside the phono-
logical (and sentence) blackboard. They would consist of
attractors that are more or less distributed.

In terms of attractor dynamics, one could think of word
assemblies as different attractors in the same network.
That is, each word assembly would be an attractor state
of the same set of neurons. This is most likely not the
way in which word structures are instantiated in the
brain. It does not agree, for example, with the fact that
very specific loss of word use can be found in patients.
Among anomic patients (i.e., patients who have trouble
using nouns) one can find those who have difficulties in
using concrete nouns but not abstract nouns, or vice
versa. Similarly, one can find patients who have difficulties
in using nouns for living things but not for nonliving
things, or vice versa. Other examples include specific
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deficits for naming animals, body parts, fruits and veg-
etables, colors, proper names, or objects that are typically
found indoors (see, e.g., Pinker 1994). If all these words
were instantiated as attractors in the same network, that
would be hard to explain.

Therefore we assume that word assemblies are partly
overlapping, sharing network structures with some words
in one domain and with other words in other domains.
In each of these domains one will find attractor dynamics
that selects an attractor state in these domains. Together,
the domains interact to select the overall word assembly
at a given moment. The dynamics that select a word
assembly will consist of a combination of attractor
dynamics and interactive activation. The word assemblies
we have shown are just those parts of the overall word
assemblies that are connected to the sentence blackboard
(or better, to the phonological blackboard).

R8.2. Hippocampus

The role of the hippocampus in our architecture is dis-
cussed by Shastri and Whitney. The hippocampus
(HC) model we used to explain one-trial learning is the
Hebb-Marr model. The neuroscientific evidence for this
model is well documented (e.g., Rolls & Treves 1998).
This model, as explained in section 6.5, provides a “snap-
shot” memory of about a second of an ongoing event.
We showed how a sentence structure can be encoded in
this way. Contrary to Shastri’s assumption, longer sen-
tences can also be encoded in HC in terms of separate
but partly overlapping events, as illustrated in Figure 12.
The fact that a sentence is temporarily encoded in HC
does not mean that every sentence will eventually be
encoded in long-term memory nor that a sentence will
always be encoded in the way it was presented. In fact,
the role of the HC in memory encoding is to form an
initial storage of information that can be used in an elabor-
ate process that incorporates aspects of that information
into existing cortical memory structures. A discussion of
this process and of the role of the HC can be found in
O’Reilly & Rudy (2001).

Whitney notes that the sentence structure in the HC
could interfere with the sentence structure in the black-
board because of an overlap in the structure assemblies
used. This is not a real issue. First of all, the HC does
not play a direct role in sentence processing in our
model. The role of the HC concerns the transfer of infor-
mation to long-term memory. But the issue of using the
same structure assemblies would not really be important
even if the HC was involved (e.g., in longer sentences).
It is likely that a kind of “inhibition of return” occurs
that prevents recently used structure assemblies being
used again. So the chances of an overlap, even for longer
sentences, are small.

R8.3. Central pattern generator

The central pattern generator (CPG) does not regulate
the flow of activation in a gating circuit, as assumed by
Choe. It regulates the onset and offset of different
stages of competition in the process of answering a
binding question. In this way, it resembles motor
control, in which the onset and offset of muscle activation
has to be regulated. Motor control consists of controlling

the interaction between a specific set of muscles. In a
similar way, the competition in the blackboard controls
the interaction between a specific set of structure assem-
blies. The control of the competition process in the black-
board is not programmed, as assumed by Durstewitz.
Instead, as suggested by Grüning & Treves, it will
have developed on the basis of self-organization during
language development. Because the control of the black-
board as given by a CPG does not depend on the specific
content in the blackboard, it is possible to learn over time
how control of specific sentence types (or clause types)
proceeds in the blackboard. Further understanding of
how motor control proceeds in the brain will be useful
for understanding dynamic control in the blackboard as
well. But in addition to motor control, linguistic proces-
sing is faced with the combinatorial productivity of
language. The blackboard architecture was introduced
to solve this issue.

R8.4. Development and evolution

The issue of how an architecture like the one we have pre-
sented can develop and evolve is raised by Durstewitz,
Grüning & Treves, Hadley, and Müller. This is an
important topic for further research. To study these
issues, we have chosen a “backtrack” approach (van der
Velde 2005). The aim of this approach is first to develop
an architecture that can handle a number of linguistic
issues (including human processing) reasonably well.
Then this architecture can be used as a “target” architec-
ture to investigate how this target architecture can
develop on the basis of a more simplified version of it in
combination with learning and development procedures.
The benefit of this approach is that the information avail-
able on language and processing can be used to guide the
process of development. Furthermore, the functionality of
the target architecture is known, so there is no risk of
getting stuck halfway. That risk is a serious problem of
the procedure in which language development and
evolution is modeled on the basis of arbitrary (i.e., unstruc-
tured) architectures and learning procedures. There is no
guarantee that language can develop on the basis of any
given neural structure. In fact, most species have not
developed brains that can handle cognition of the
complexity comparable to language. With this procedure,
one could get stuck halfway, that is, even after some
initial success, the initial architecture might not develop
further to a more complete architecture for language
(van der Velde 2005).

The fact that, for example, orientation maps and
single-cell selectivity to orientation are already available
at birth (e.g., Chapman et al. 1996) is in line with this
approach. Apparently, basic elements of structure in
the brain are available before learning. The disinhibition
circuits in the cortex (e.g., Gonchar & Burkhalter 1999),
the circuits for delay activity in the cortex (e.g., Fuster
1995), and the regular pattern of connectivity in the
superficial layers of the cortex (e.g., Calvin 1995) could
also belong to the building blocks of brain structure
that are available before learning occurs. In this way,
the development of the blackboard could indeed be the
result of a process of self-organization, as suggested by
Grüning & Treves.
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R9. Linguistic issues

Several commentators have raised interesting linguistic
issues concerning the blackboard for sentence structure
and the processes related with it. Further development
of the language blackboard is a topic for future research.
But as Jackendoff (2002) noted, a solution of the problems
he describes will produce a more productive dialogue
between linguistic theory and neural network modeling.
The issues raised by the commentators illustrate the
beginning of such a dialogue.

R9.1. Complexity

We have argued that aspects of the neural dynamics in the
architecture (e.g., dynamic interactions) can account for
some complexity effects observed in linguistic processing.
A more substantial account of these effects will depend on
a further development of the architecture. However, the
effect of dynamics can be used to illustrate the complexity
difference between complement clause within relative
clause (RC/CC) versus relative clause within complement
clause (CC/RC) referred to by Whitney. The examples
provided by Gibson (1998) are:

CC/RC: The fact that the employee who the manager hired
stole office supplies worried the executive.
RC/CC: The executive who the fact that the employee stole
office supplies worried hired the manager.

The RC/CC sentence is more complex than the CC/RC
sentence. Figure R2 provides the basic structure of the
sentences in terms of the blackboard architecture (ignor-
ing the and office). On the face of it, they are similar and
of equal complexity. However, in terms of the dynamics
in the architecture, the situation is different. Delay
activity, as used in our model, is based on stochastic
neural activity (e.g., Amit 1989). This will have at least
two effects on complexity. First, the longer it takes for a
binding to occur, the greater the chance that delay activity
(of a subassembly) is disrupted before a binding needs to

be produced. Secondly, any binding conflict between sub-
assemblies (even of an unequal nature) will affect the com-
plexity of a sentence.

In this respect, the sentences in Figure R2 are different.
In the RC/CC sentence, the binding of executive (with
worried) spans a greater interval of time compared to
the CC/RC sentence. Furthermore, there is a conflict
with the binding of stole with supplies, which occurs
within this interval. In the CC/RC sentence, the interval
of binding employee with hired is shorter, and there is
no conflict in between. An additional aspect of complexity
may result from the ambiguity associated with the word
fact. This word can introduce a complement clause, but
it can also be a theme of a next verb. The human language
processor, operating in an incremental manner, often
makes a choice between these ambiguities. It could be
that when fact is found at the beginning of sentence, it is
interpreted more often as a noun that introduces a comp-
lement clause (based on a familiarity with this sentence
type). Instead, when fact occurs within the sentence, it
could also be interpreted as a noun that can be the
theme of the next verb. In that case, the RC/CC sentence
in Figure R2 is even more complex than the RC/RC
sentence in Figure 18.

The fact that delay activity, in particular in binding con-
flicts, can be disrupted (i.e., disappear) could account for
the observation that RC/RC sentences can be perceived
as grammatical when the second verb has been omitted,
as noted by Whitney. For example, if the activity of the
theme subassembly of cat in Figure 18a is disrupted
(because of the long binding interval and binding conflict),
the sentence without bites would indeed be perceived as
grammatical (no open bindings or conflicts remain with
this sentence).
Whitney argues that her TPARRSE model could

provide an alternative to our architecture. Unfortunately,
we are not familiar with the details of this model, so a
more detailed comparison with our architecture will
have to wait. However, there are a few aspects about
the model referred to by Whitney that raise doubts
about it. The first is the aspect of vector coding and
vector operations for binding in this model. In section
R7 we discuss vector coding and binding in more
detail. It seems that there are two possibilities. The
binding operations could be like those found in tensor
models. In that case, the need for an increase of structure
with depth of binding will be a serious problem for Whit-
ney’s model, as it is for tensor networks. The second
option is the use of reduced vector representation to
account for binding. However, we argue in section R7
that there is a fundamental flaw with this form of
binding. Constituent representations are encapsulated
in reduced vector coding, so they cannot be used to
guide the process of answering binding questions. This
means that, certainly in novel binding structures, the
system has no information in order to decide on its own
what sequence of operations it has to execute to answer
a given binding question.

The second aspect of Whitney’s model that raises
doubts is the use of “firing order” to implement a stack
memory. How can firing order distinguish between differ-
ent occurrences of the same word? Consider, for example,
A spy to spy on our spy who searches for their spy (van der
Velde 1999). The noun spy occurs in three positions in this

Figure R2. (a) Illustration of the structure of The executive who
the fact that the employee stole office supplies worried hired the
manager (without the and office). (b) Illustration of the
structure of The fact that the employee who the manager hired
stole office supplies worried the executive (without the and office).
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sentence: beginning, middle, and end. So it has to have
three firing orders at the same time. It would seem,
though, that any new occurrence of a word will eliminate
its previous firing order, leaving only the last firing order
for spy in this sentence.

R9.2. Cross-serial dependency

In her commentary, Whitney also refers to the relative
ease of cross-serial dependencies in Dutch. As an illus-
tration, consider the difference between the following
clauses (see, e.g., Steedman 2000):
. . . omdat Jan Hans Peter de paarden zag helpen voeren.
. . . because Jan Hans Peter the horses saw help feed.
. . . because Jan saw Hans help Peter feed the horses.

The clause Jan Hans Peter de paarden zag helpen voeren
is an example of cross-serial dependency in Dutch. The
English clause Jan saw Hans help Peter feed the horses
illustrates the binding relations in the Dutch clause. The
binding relations are cross-serial because the first
“agent” (Jan) binds with the first verb (zag/saw). The
binding relations between the other “agents” and verbs
proceed in the same way. Figure R3a illustrates the bare
encoding of the English clause Jan saw Hans help Peter
feed the horses in the blackboard architecture, using the
Wx assemblies of the “phonological” blackboard illustrated
in Figure R1. The temporal order in which the words bind
to their Wx assemblies is the same as the temporal order in
which the Wx assemblies bind to the structure assemblies
(NP and VP) and the temporal order in which the struc-
ture assemblies bind to each other.

Figure R3b illustrates the bare encoding of the Dutch
structure Jan Hans Peter de paarden zag helpen voeren.
The structure is the same as the English structure in
Figure R3a. The difference is in the temporal order of
binding. Because word assemblies now bind to Wx assem-
blies, VP assemblies can be activated ahead of verbs. So V1

and V2 can be activated in anticipation of a verb. In the
case of V1, its “word” subassembly will be activated, and
in the case of V2, its main assembly. In this way, W5

(zag) will bind with V1; W6 (helpen) can then bind with
V2. After that, W7 (voeren) can bind to V3, which can
bind to the “agent” subassembly of N3 and to N4 (with
their “theme” subassemblies). Figure R3b illustrates that
this binding sequence is possible in the architecture,
although it is of a more elaborate nature than the
binding sequence for the equivalent English structure
(Fig. R3a). This might account for the fact that cross-
serial dependencies do not occur very often in languages.
The fact that the English and Dutch binding structures in
the architecture are similar may relate to the fact that both
languages are grammatically related, despite the differ-
ence in the surface structure of the clauses involved
(see, e.g., Steedman 2000). The binding process in
Figure R3b is easier than the binding process with
center embedding illustrated in Figure 18a.

R9.3. Processing

Several questions are raised concerning processing in the
model. Powers argues that we have not shown how words
are recognized, including their semantics. Word recog-
nition was not a topic in our article because it has been a

topic in neural network research for many years.
Feed-forward networks, interactive activation networks
(see, e.g., McClelland & Rumelhart 1981), or ART
(see, e.g., Grossberg 1999) could, in our view, be used
for this purpose. Our aim was to discuss how words,
once recognized, can be combined in combinatorial struc-
tures. Figure R1 illustrates that the word assemblies inter-
act with the sentence blackboard through the phonological
blackboard. As a result, the word assemblies can be as
distributed as they need to be. Semantics will derive
from the web of relations between the word assemblies
and between word assemblies and other structures in
the brain, such as the motor cortex or the visual cortex,
as illustrated in Figure 27.

One aspect of word recognition is that it will provide
information about the lexical nature of a word. In turn,
this information will be used in the binding process in
the architecture, as we illustrated in Figure 20. This is
an aspect of the architecture that needs to be developed
much further. Nevertheless, the circuit in Figure 20 illus-
trates some basic aspects of this process, in particular its
incremental and interactive nature. What the circuit in
Figure 20 does not show is the stochastic nature of this
process. Consider a sentence like The man who hunts
ducks out on weekend (Pinker 1994). The word duck
is ambiguous because it can be a noun and a verb. We
assume that the neural structure of the word duck
(e.g., its word assembly) contains both kinds of infor-
mation, which can be activated in the course of word pro-
cessing. However, the incremental nature of human
processing suggest that a competition between these
aspects occurs that results in one interpretation of duck
(i.e., noun or verb), which is then used in a circuit for
binding, as illustrated in Figure 20. The garden-path
nature of this sentence suggest that duck is interpreted
initially as a noun.

Several factors could influence the competition between
the ambiguous information that is related to a word, for
example, the content of the sentence already processed,
familiarity, or syntactic priming, that is, sentence

Figure R3. (a) Illustration of the clause Jan saw Hans help Peter
feed the horses. (b) Illustration of the Dutch clause Jan Hans
Peter de paarden zag helpen voeren.
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structures of previously processed sentences (e.g., Picker-
ing & Branigan 1999). Aspects of prosody could also be of
influence. For example, the sentence The man who hunts
ducks . . . out on weekend would be interpreted differently
from the sentence The man who hunts . . . ducks out on
weekend because of the difference in the moment of the
pause.

In terms of neural networks, these competition
processes could be instantiated in interactive activation
networks or attractor neural networks, as suggested by
Grüning & Treves. In fact, we have already used attrac-
tor dynamics in the production of a context-free language
with a production system (van der Velde 1995). This is, of
course, a toy model of language production, but it illus-
trates that attractor networks can be used to implement
control-like structures, as presented in Figure 20.
Because the attractor dynamics used in the model was sto-
chastic, the model already shows the noise tolerance,
context-sensitivity, and analogue nature of processing
referred to by Durstewitz and Grüning & Treves. It
could also result in underspecified representations of a
given sentence (Sanford & Sturt 2002).

So the fact that the rules would operate in a stochastic
manner, as noted by Powers, is not a real issue. Having
statistical rules is not the same as having no rules. The
difference is that the application of a rule is not determi-
nistic but depends on a stochastic process that can be
influenced by a number of factors (e.g., context, syntactic
priming). This kind of processing fits very well with the
abilities of interactive activation networks or attractor
neural networks. The interaction between these networks
and the blackboard for sentence structure can account for
the resolution of ambiguity, which, as Baars notes, will
consist of an expectation-driven process that selects the
most plausible interpretation, disregarding the multitude
of other options.

R9.4. Challenges

In their commentary, Phillips & Wagers raise a number
of very interesting challenges for the blackboard architec-
ture and suggestions for its further development. This is an
illustration of how the interaction between linguistics and
neural network modeling can begin to be more productive.
Phillips & Wagers argue that hierarchical constituent

structure is missing in the architecture. In the target
article we noted that binding in this architecture is not a
state but a process (see also sect. R3). The same is true
for constituents. Assemblies such as Si or Ci do not them-
selves represent constituents, as correctly noted by Phillips
& Wagers. But they are crucial for the process in which
constituents can be retrieved. For example, in Figure
16a, cat that bites the dog is a hierarchical constituent
because it can be reactivated (retrieved) from S1 down-
ward. That is, by opening all “downward” gating circuits
in a hierarchical manner, the reactivation process will
eventually reach N2. But it will also stop there, which indi-
cates that a constituent boundary has been reached. This
illustrates that hierarchical constituent structure is given
by a process in this architecture (i.e., the process that reac-
tivates the constituent in a hierarchical manner). Issues
related to constituents, as discussed by Phillips &
Wagers, should be handled in the same way in the
further development of the architecture.

Coordination rules, addressed by Phillips & Wagers,
are an important topic for further development. One sug-
gestion we have been exploring is the introduction of
specific structure assemblies for coordination (e.g., “and”
assemblies). This solution is in line with the suggestion
made by Phillips & Wagers that NP and VP assemblies
should bind recursively. (Furthermore, Figure R1 illus-
trates that they do not directly bind to words in the
present version of the architecture.) A question that we
explore is whether these coordination assemblies should
be general (i.e., used for all coordination) or specific
(e.g., specific “and” assemblies for NPs). Coordination
assemblies could also be used for structures such as six
big red India rubber, which could be seen as an elliptic
version of six (and) big (and) red (and) India (and)
rubber. The word and is dropped, but the “and” assem-
blies could still be used.

Anaphoric relations are not yet included in the black-
board architecture. An interesting aspect of anaphoric
relations is that they can reach beyond the boundaries of
a sentence. For example, in The boy sees ice cream. He
wants it, the anaphoric relations bind information across
sentences. In Figure R1 we illustrate a (quasi-)architec-
ture for structure within words. In the target article we
discussed an architecture for structure within sentences
and clauses. A direct extension would be a specific black-
board architecture for structure beyond sentence bound-
aries, as given by anaphoric relations.

R10. Final remarks

The purpose of the target article was to show how true
combinatorial structures can be instantiated in neural
terms. True combinatorial structures depend on constitu-
ent structures that can be combined on the fly. Further-
more, information can be retrieved from the
combinatorial structures on the basis of their constituents.
In this way (and, as we argue, only in this way) can infor-
mation be processed and retrieved in a manner that is pro-
ductive and systematic. Neural structure and dynamics
seem to prevent constituents being copied and moved
elsewhere. Therefore we suggest that neural represen-
tations of constituents remain “in situ.” Combinatorial
structures can be instantiated on the basis of these con-
stituents by dynamic binding processes and structures
(e.g., structure assemblies) of the kind illustrated in the
target article.

However, the success of a particular approach cannot
be determined on the basis of a single article. This is
true for the architecture we present here as well as for
the alternative approaches discussed here or presented
elsewhere in the literature. In the end, the success of
any approach is determined by the research program it
initiates and the progress of that program. We are fully
aware that we are just at the beginning of such a
program and that it is far too soon to determine
whether it will be successful. The commentators have
been very helpful in pointing out and discussing the pro-
blems that have to be solved and the difficulties that have
to be surmounted. Most likely, more difficulties will be
lurking in the background, waiting to pop up at the
right (or wrong) moment. However, we have not yet
seen a problem that seems to be unsolvable nor any

Response/van der Velde & de Kamps: Neural blackboard architectures of combinatorial structures in cognition

BEHAVIORAL AND BRAIN SCIENCES (2006) 29:1 103
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0140525X06009022
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:22:49, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0140525X06009022
http:/www.cambridge.org/core


difficulty that seems to be insurmountable. This raises our
confidence in the further development of the
architectures we present here.
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