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In 1978, Dhar suggested a model of a lattice gas whose states are partial orders. In this

context he raised the question of determining the number of partial orders with a fixed

number of comparable pairs. Dhar conjectured that in order to find a good approximation

to this number, it should suffice to enumerate families of layer posets. In this paper we

prove this conjecture and thereby prepare the ground for a complete answer to the question.

1. Introduction and results

Let Pn be the set of all labelled partial orders with point set [n] = {1, . . . , n}. A trivial

lower bound on |Pn| is given by

|Pn| > 2
n2

4 ,

since we can fix two antichains X and Y , each on n/2 points, and decide independently

for each of the n2/4 pairs (x, y) ∈ X × Y whether or not x < y should hold.

Upper bounds are much harder to obtain. In 1970, Kleitman and Rothschild [3] first

gave the following bound:

|Pn| 6 2n
2/4+O(n3/2 log2 n). (1.1)
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160 H. J. Prömel, A. Steger and A. Taraz

A few years later [4], they were able to compute the exponent much more precisely:

log2 |Pn| =
n2

4
+

3n

2
+ O(log2 n). (1.2)

The underlying principle of the proofs of these results can be stated in rough terms as

follows. Find a subclass Qn ⊆ Pn that on the one hand has a nice structure and can

therefore be enumerated easily. On the other hand it should be so large that |Qn| is a good

approximation for |Pn|. Here Kleitman and Rothschild chose Qn so that it contained only

3-layer posets – these are posets whose point set can be partitioned into three antichains

X1, X2, X3 such that no point in X1 is above any element of X2, no point in X2 is above any

element of X3, and every point in X1 is below every point in X3. One of the particularly

appealing features of this technique is that it also proves that the proportion of posets in

Pn that are 3-layer posets tends to one as n tends to infinity – in other words, almost all

posets are 3-layer posets [4].

The central purpose of this paper is the investigation of the number of partial orders

with a fixed number of comparable pairs. More precisely, for 0 < d < 1
2

denote by Pn,d
those posets in Pn with [dn2] comparable pairs (where [dn2] denotes the nearest integer

to dn2) and let

c(d) := lim
n→∞

log2 |Pn,d|
n2

, in other words, |Pn,d| = 2c(d)n2+o(n2),

provided the limit exists. Recall from (1.1) that, for any d,

c(d) 6
1

4
. (1.3)

In 1978, Dhar [1] raised the question of determining c(d) and suggested that partial orders

can represent the states of a certain model of lattice gas with energy proportional to the

number of comparable pairs in the order. In this context, c(d) would correspond to the

entropy function of the lattice gas.

Results due to Dhar [1, 2] as well as Kleitman and Rothschild [5] show that, in the

whole range 0 < d < 1
2
, the function c(d) is continuous and that

for 0 < d 6
1

8
, c(d) =

1

4
·H(4 · d), (1.4)

for
1

8
6 d 6

3

16
, c(d) ≡ 1

4
, (1.5)

where H(x) = −x log2 x− (1− x) log2(1− x). The problem has remained open for larger

values of d. Here Dhar conjectured that for each d there is a family of k-layer posets

that is large enough to ‘dominate’ the set Pn,d and thus determine c(d) (see below for the

formal definitions). In other words, this family would have a significance for Pn,d similar

to the one that the 3-layer posets had for Pn. The aim of this paper is to prove this

conjecture and thereby prepare the ground for a complete solution of the problem.

We first extend the definition of a 3-layer poset to a k-layer poset in a natural way. A

poset P = (X, P ) is a k-layer poset, if there exists a partition of its point setX = X1∪. . .∪Xk
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Counting Partial Orders with a Fixed Number of Comparable Pairs 161

into k disjoint antichains (the so-called layers) such that

x < y with x ∈ Xi and y ∈ Xj =⇒ i < j,

for every i, j with j > i+ 1 : x ∈ Xi, y ∈ Xj =⇒ x < y.

For some constants λ1, . . . , λk with 0 < λi < 1 and
∑

i λi = 1 and a constant 0 6 p 6 1,

we say that a poset P ∈ Pn has configuration Q = (λ1, . . . , λk; p), if it belongs to the

set Pn,Q ⊆ Pn, which is defined as the set containing all k-layer posets in Pn that have

p |Xi||Xi+1| comparable pairs between Xi and Xi+1 (for all i ∈ [n−1]) and satisfy |Xi| = λin

(for all i ∈ [n]). For the sake of a more legible introduction, let us assume for now that

all the real numbers p |Xi||Xi+1| and λin happen to be integers. Of course, we will need to

fix this inaccuracy (and will do so at the end of this introduction), but given that we are

only aiming at a very rough approximation of |Pn,d|, namely, the coefficient c(d) of the

leading term in the logarithm, it should be clear that this is by no means critical.

Obviously, any two posets P and P ′ with the same configuration must have the same

number of comparable pairs, which means that for every Q there exists a d such that, for

every n,

Pn,Q ⊂ Pn,d. (1.6)

The main result of this paper states that, on the other hand, for each d we can find

a configuration Q such that (1.6) holds almost with equality and thereby proves the

conjecture of Dhar mentioned above.

Theorem 1.1. For every 0 < d < 1
2

there exists a configuration Q = (λ1, . . . , λk; p) with

Pn,Q ⊂ Pn,d such that

lim
n→∞

log2 |Pn,Q|
n2

= lim
n→∞

log2 |Pn,d|
n2

= c(d),

in other words

2o(n
2) |Pn,Q| = |Pn,d|.

The following two observations will be helpful when it comes to actually constructing

the configuration Q mentioned in the theorem.

Lemma 1.2. For 1
8
6 d 6 1

2
, the configuration Q = (λ1, . . . , λk; p) must be chosen so that

p > 1
2
.

Kleitman and Rothschild [5] observed that

for 0 < d 6
1

8
: Q =

(
1

2
,
1

2
; 4d

)
(1.7)

satisfies the requirements of Theorem 1.1. We shall re-prove this statement when we prove

Theorem 1.1 for 0 < d 6 1
8
. Our methods used to prove the above results do not seem

strong enough to give results about almost all posets in Pn,d. We conjecture, however, that

indeed almost all posets in Pn,d lie in some Pn,Q.
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162 H. J. Prömel, A. Steger and A. Taraz

Before we come to the proofs, we indicate how Theorem 1.1 can be used to compute c(d).

Consider an arbitrary configuration Q = (λ1, . . . , λk; p). Clearly, the number of comparable

pairs in every poset in Pn,Q is given by d(Q)n2, where

d(Q) := p

k−1∑
i=1

λiλi+1 +

k−2∑
i=1

k∑
j>i+2

λiλj . (1.8)

On the other hand, the only degree of freedom one has when constructing a poset in

Pn,Q lies in the placement of the comparable pairs between successive layers. Thus we let

c(Q) := H(p)
∑k−1

i=1 λiλi+1 and arrive at the following estimate for |Pn,Q|:
k−1∏
i=1

(
λiλi+1n

2

p · λiλi+1n2

)
= 2
∑k−1

i=1
H(p)λiλi+1n

2 +o(n2) = 2 c(Q)n2+o(n2). (1.9)

(Actually we did have more freedom: since we are considering labelled posets we also

had the choice of assigning points to classes. But this merely gives a factor of O(n!) =

O(2n log2 n).)

This now puts us in the following position: in order to determine c(d) for some fixed

d, it suffices to determine the configuration Q whose existence is proved in Theorem 1.1,

since we then know that c(d) = c(Q). To find Q, one can use the fact that there cannot

be another configuration Q′ with d(Q′) = d(Q) and c(Q′) > c(Q). Hence Q must be the

solution to the following maximization problem:

Choose k, λ1, . . . , λk, and p such as to maximize H(p)

k−1∑
i=1

λiλi+1,

subject to p

k−1∑
i=1

λiλi+1 +

k−2∑
i=1

k∑
j>i+2

λiλj = d,

k∑
i=1

λi = 1, 0 < λi < 1, 0 6 p 6 1.

However, the solution of this problem is technically quite involved and we therefore defer

it to a separate paper [6], where – based on the results presented here – we determine c(d)

in the complete interval 0 < d < 1
2
.

Let us say a few words about the underlying idea of the proof of Theorem 1.1. We first

show that every poset is very close to one with a certain ‘partitionable’ structure. Here

the main tool will be Szemerédi’s Regularity Lemma, or rather an analogue of the latter

for partial orders (Lemma 3.1), which might be of independent interest. Then we prove in

a second step that it suffices to consider the case where the partition classes are arranged

in a ‘linear’ way, i.e., where they form a layer poset. For this step we shall use and prove

the following elementary lemma, which may find further applications, too.

Lemma 1.3. For every poset P ∈ Pn with height k there exists a k-layer poset P ′ ∈ Pn
that has

(i) at least as many comparable pairs as P , and

(ii) at least as many cover relations as P .
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This paper is organized as follows. We conclude this introduction with a few words

on how to round real numbers when defining the set Pn,Q and with some remarks

concerning notation and terminology. Section 2 contains the proof of Lemma 1.3, our

first auxiliary result. In Section 3 we then prove Theorem 1.1, using the second auxiliary

result, Lemma 3.1, whose proof can be found in Section 4.

Consider an arbitrary configuration Q = (λ1, . . . , λk; p) with 0 < λi < 1,
∑

i λi = 1, and

0 6 p 6 1. When we defined the set Pn,Q we assumed that λin and pλiλi+1n
2 were integers.

Here we demonstrate that this assumption can be made without loss of generality. More

precisely, we will show that for every n it is possible to choose λ′1, . . . , λ′k and p′1,2, . . . , p′k−1,k

such that

λ′in ∈ N, p′i,i+1λ
′
iλ
′
i+1n

2 ∈ N, ∑
i

λ′in = n,

∑
i

p′i,i+1λ
′
iλ
′
i+1n

2 +
∑
j>i+2

λ′iλ′jn2 =

[∑
i

pλiλi+1n
2 +

∑
j>i+2

λiλjn
2

]
, (1.10)

|λi − λ′i| = O(1/n) and |p− p′i,i+1| = O(1/n) (1.11)

will hold. Now we redefine Pn,Q to be the set of all k-layer posets P ∈ Pn (with

layers X1, . . . , Xk) that satisfy |Xi| = λ′in and have exactly p′i,i+1|Xi||Xi+1| comparable pairs

between Xi and Xi+1. By (1.10), posets in Pn,Q have [d(Q)n2] comparable pairs, where

d(Q) is still defined via the λi and p as in (1.8). Obviously, λ′i and p′i,i+1 will now depend

on n, but, as observed in (1.11), they will always be very close to λi and p. Hence the

estimate for |Pn,Q| from (1.9) remains true for the old definition of c(Q) via the λi and p

together with the new definition of Pn,Q via the λ′i and p′i,i+1.

To see that it is possible to choose λ′i and p′i,i+1 as above, choose some integers ni
that satisfy bλinc 6 ni 6 dλine and

∑
ni = n, and let λ′i := ni/n. This already implies

|λi − λ′i| = O(1/n), and hence∣∣∣∣∣ ∑
j>i+2

λ′iλ′jn2 − ∑
j>i+2

λiλjn
2

∣∣∣∣∣ = O(n).

In other words, by rounding the λi we obtain a linear error in the number of comparable

pairs between Xi and Xj (where j > i+2), which we need to balance in order to guarantee

(1.10). The balancing can be done by slightly varying the number of comparable pairs

between Xi and Xi+1: choose p′i,i+1 so that p′i,i+1λ
′
iλ
′
i+1n

2 is an integer, |p′i,i+1λ
′
iλ
′
jn

2 −
pλiλjn

2| = O(n) and (1.10) is satisfied.

For a partially ordered set P = (X, P ) (often abbreviated as poset) and two points

x, y ∈ X, we write x 6 y if (x, y) ∈ P , and x < y if x 6 y and x 6= y. If x < y then we say

that x, y form a comparable pair, or, in abuse of notation, a relation. If neither x 6 y nor

y 6 x then we say that x and y are incomparable and write x‖y. We denote by inc(x) the

set of all points that are incomparable to x. Moreover we say that x is covered by y (also

y covers x, or (x, y) is a cover relation) if x < y and there is no point z for which x < z

and z < y holds. In this case we write x <: y. On the other hand, if x < y but (x, y) is not

a cover relation, we write x�y and call it a forced relation.

A subset {x1, . . . , xk} ⊆ X is called a chain if all pairs xi, xj are comparable. It is called
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164 H. J. Prömel, A. Steger and A. Taraz

an antichain if all pairs are incomparable. In the case of a chain we write [x1, . . . , xk] if

x1 < · · · < xk . If the complete point set X is a chain, P is called a linear order.

A point x is called maximal (respectively, minimal ) if there is no point y with x < y

(respectively, y < x). A chain is called maximal if it cannot be extended to a larger chain.

It is called maximum if no other chain contains more points. The height of a poset is the

number of points in a maximum chain.

With a poset P = (X, P ) we associate the comparability digraph G and the cover graph

G′. The vertex-sets of both graphs are given by X, the edges (x, y) in G are formed by

the comparable pairs x < y in P , while the edges {x, y} in G′ are formed by the cover

relations x <: y in P .

2. Proof of Lemma 1.3

For a poset P , denote by σ(P ) the number of comparable pairs, by σ∞(P ) the number

of incomparable pairs, and by σ1(P ) the number of cover relations in P . Every pair is

counted only once.

Proof of Lemma 1.3. Let C1, . . . , C` be a chain decomposition of P that is obtained by

recursively removing maximum chains from P . Hence we have that |C1| > · · · > |C`| and

furthermore that Ci is a maximal chain in P −C1−· · ·−Ci−1 for all i ∈ [`]. Let ci := |Ci|.
Note that c1 = height(P ) = k. The underlying idea of the proof is to glue the chains Ci
together again, but in such a way as to control carefully the parameters σ and σ1.

We first give bounds on σ1(P ) and σ∞(P ). Within each chain Ci there can be at most

ci − 1 cover relations. Denote the number of cover relations between two chains Ci and

Cj with i < j by σ1(Ci, Cj). Hence

σ1(P ) 6
∑̀
i=1

(ci − 1) +
∑
i<j

σ1(Ci, Cj), (2.1)

and we claim that

σ1(Ci, Cj) 6


2cj − 2, if ci = cj ,

2cj − 1, if ci = cj + 1,

2cj , always.

(2.2)

The best way to see this might be to view this as a bipartite graph with vertex-sets Ci, Cj
where an edge represents a cover relation. Since each point in one chain can cover at most

one point and can be covered by at most one point from the other chain, the graph has

maximum degree at most 2. Let Ci = [xci , . . . , x1] and Cj = [ycj , . . . , y1]. Then x1 cannot

be covered by any element in Cj and xci cannot cover any element in Cj (otherwise Ci
would not be maximal), so they have degree at most one. Hence the sum of the degrees

in Ci is bounded from above by 2ci − 2 (which settles the first case of the claim) and the

sum of the degrees in Cj is bounded from above by 2cj (which settles the third case).

For the second case, where ci = cj + 1, the only possibility that might contradict our

claim would be if σ1(Ci, Cj) = 2cj = 2ci − 2, implying that all points in Ci and Cj indeed

have degree 2 except for x1 and xci , which have degree 1. Now if x1 did cover yi for any
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i > 1, then the point y1 could not be covered, hence y1 <: x1. Similarly y1 cannot cover

any point other than x2, for otherwise x2 could not be covered. Thus x2 <: y1. But now

[xci , . . . , x3, x2, y1, x1] contradicts the maximality of Ci. This completes the proof of (2.2).

To give a lower bound on σ∞(P ) note that any incomparable pair in Ci ∪ Cj must

obviously have one point in Ci and one point in Cj . Denote the number of such pairs by

σ∞(Ci, Cj). We claim that

σ∞(Ci, Cj) > cj . (2.3)

Suppose that a point y ∈ Cj were comparable to all points x ∈ Ci. This would imply

the existence of some index t with 0 6 t 6 ci such that xt+1 < y < xt. But then

[xci , . . . , xt+1, y, xt, . . . , x1] contradicts the maximality of Ci. (The cases t = 0 and t = ci
then correspond to [xci , . . . , x1, y] and [y, xci , . . . , x1].) Therefore every point y ∈ Cj must

be incomparable to at least one point x ∈ Ci, hence in total σ∞(Ci, Cj) > cj , which proves

(2.3).

If we now succeed in constructing a layer poset P ′ by taking the chains C1, . . . , C` as

‘building blocks’ (which means that, again, Ci is a maximum chain in P ′ −C1−· · ·−Ci−1)

and combining them in such a way that (2.1), (2.2), and (2.3) hold for P ′ with equality,

then

σ1(P ′) > σ1(P )

and

σ∞(P ′) 6 σ∞(P ).

Observe that this would immediately imply (i) and (ii) as stated in the lemma.

To construct P ′ now renumber the points in the chains Ci so that

Ci = [xici , . . . , x
i
4, x

i
2, x

i
1, x

i
3, . . . , x

i
ci−1] if ci is even,

Ci = [xici−1, . . . , x
i
4, x

i
2, x

i
1, x

i
3, . . . , x

i
ci
] if ci is odd.

For s = 1, . . . , c1 we now let the sets

As := {xis : for all i ∈ [`] where s 6 ci}
form antichains. (They constitute the layers in P ′.) Now add all cover relations in

. . . , A4 × A2, A2 × A1, A1 × A3, A3 × A5, . . . .

(An alternative description of the same construction is to say that P ′ is a c1-layer poset

with configuration (. . . , a4, a2, a1, a3, . . . ; 1) where as := |As|/n.) For an illustration of this

construction see Figure 1, where only the cover relations inside the chains Ci and those

involving x3
1 are shown.

Observe that, for any two chains Ci and Cj with i < j, the only point in Ci ∪ Cj that

is incomparable to xjs ∈ Cj is xis, hence (2.3) holds with equality. Moreover it is easy to

see that equality also holds in (2.1) and (2.2). Finally, by the construction of P ′, it is clear

that height(P ′) = c1 = k.
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Figure 1 Construction of P ′

3. Proof of Theorem 1.1

In order to prove the main theorem, we need a slightly more general concept of a

configuration than the one used in the introduction. By a k-configuration Q we now mean

a weighted poset with point set {x1, . . . , xk}, where every point xi carries weight λi (where

0 < λi < 1 and
∑

i λi = 1) and every relation (xi, xj) carries weight 0 6 pi,j 6 1. Forced

relations (xi, xj) must all have weight pi,j ≡ 1.

We say that a poset P = (X, P ) ∈ Pn has k-configuration Q, if there exists a partition

of its point set X = X1 ∪ . . . ∪ Xk into k antichains such that, for x ∈ Xi and y ∈ Xj ,

one can only have x < y in P if xi < xj in Q. On the other hand, if xi < xj in Q then

there must be exactly pi,j |Xi||Xj | comparable pairs x < y with x ∈ Xi and y ∈ Xj in

P . Furthermore we require that the partition classes satisfy |Xi| = λi · n for all i. Again,

Pn,Q denotes the set of all posets in Pn that have configuration Q. (Obviously the same

remarks concerning the rounding of real numbers as in the introduction apply, so we do

not repeat them here.)

A poset P = (X, P ) ∈ Pn will be called k-partitionable if it has a k-configuration.

Obviously, every poset is n-partitionable (in which case its configuration is just the poset

itself), but we will be interested in partitionable posets with a constant number of classes.

If the number of points in a k-configuration Q is clear or irrelevant, we will simply

speak of a configuration. A configuration Q is called linear if Q is a linear order. It is

called p-uniform if there exists a 0 6 p 6 1 such that pi,j ≡ p for all cover relations (xi, xj)

in Q. The unique (up to isomorphism) complete poset P induced by a configuration Q is

obtained by letting pi,j ≡ 1 for all relations (xi, xj) in Q.

Comparing this with the terminology used in the introduction, a poset is a k-layer poset

if it has a p-uniform linear k-configuration.

For the proof of Theorem 1.1, the following lemma makes the breakthrough by showing

that every poset is ‘close’ to a k-partitionable poset (for some constant k).

Lemma 3.1. For every ε > 0 and every 0 < d < 1
2
, there exist two constants k0, n0 such

that, for every poset P ∈ Pn,d with n > n0, there is a k-partitionable poset P ′ ∈ Pn,d with

k 6 k0 that differs from P in at most εn2 relations and in which the partition classes differ

in size by at most one.

The proof of this lemma is based on Szemerédi’s Regularity Lemma, and shows in

addition to the above properties that the partition is ε-regular in the usual sense (see
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Section 4). It thus seems to be the natural translation of the Regularity Lemma to partial

orders and may well find further applications. However, the proof of Lemma 3.1 requires

some work and is different in nature from the other proofs in this section, so we defer it

to the last section.

Denote by Pkn,d the family of all k-partitionable posets from Pn,d. Then Lemma 3.1

states that we can enumerate the set Pn,d in the following way: for every ε there exist two

constants k0, n0 such that, if n > n0,

Pn,d =

k0⋃
k=1

⋃
P∈Pk

n,d

Γε(P ),

where Γε(P ) denotes all those posets in Pn,d that can be constructed from P by changing

at most εn2 relations: these are no more than(
n2

ε · n2

)
= 2(1+o(1))H(ε)n2

,

where, as before, H(ε) denotes the entropy function. Thus the following corollary holds.

Corollary 3.2. For every ε > 0 there exists a constant k0 such that

|Pn,d| = 2(1+o(1))H(ε)n2 ·
k0∑
k=1

|Pkn,d|.

For a given configuration we would like to count the number of different posets that

have this configuration. The following is no more than a generalization of the discussion

in the introduction. Let P be a k-partitionable poset with partition X1, . . . , Xk and let Q

be its configuration with point set {x1, . . . , xk}. When counting the number of posets with

configuration Q it is clear that the degree of freedom we have lies in where we place

the pi,j |Xi||Xj | relations between Xi and Xj when xi <: xj in Q. Hence the number is

approximately ∏
xi<:xj

(
λiλjn

2

pi,j · λiλjn2

)
= 2

∑
i,j
H(pi,j )λiλjn

2 +o(n2)
.

where the sum is taken over all pairs i, j with xi <: xj . (Again, we wasted a factor of

O(n!) = O(2n log2 n) since we did not assign points to classes.) Let

c(Q) :=
∑
xi<:xj

H(pi,j)λiλj .

Observe that Q determines the total number of relations in P . It must have dn2 relations

where

d = d(Q) :=
∑
xi�xj

λiλj +
∑
xi<:xj

pi,jλiλj .

We will refer to these parameters as the c-value and the d-value of the configuration Q. A

configuration is called d-significant if it has d-value d and if there is no other configuration

(possibly with a different number of partition classes) that has the same d-value and a
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higher c-value. Sometimes we only say that a configuration Q is significant – obviously

this means that it is d(Q)-significant.

Notice that since k is a constant and independent of n, there are not actually all that

many different k-configurations: there are less than 2k
2/2 posets, for each Xi there is a

choice of at most n values to determine |Xi|. Finally, for each pair (Xi, Xj) there is a

choice of less than n2 values to determine the number of relations between Xi and Xj .

Therefore in total there are 2o(n
2) different k-configurations. Hence, if Q is a d-significant

configuration then

|Pkn,d| =
∑
Q′

2c(Q
′)n2

= 2c(Q)·n2+o(n2),

where the sum is taken over all k-configurations Q′ with d(Q′) = d. Together with

Corollary 3.2 this now proves the following lemma.

Lemma 3.3. For any 0 < d < 1
2

let Q be a d-significant configuration. Then

|Pn,d| = |Pn,Q| 2o(n
2) = 2c(Q)·n2+o(n2).

Comparing our present position as stated in Lemma 3.3 with our aim as stated in

Theorem 1.1, it now suffices to show that for each d-significant configuration Q there

exists a p-uniform linear configuration Q′ with d(Q′) = d(Q) and c(Q′) > c(Q).

Lemma 3.4. Any significant configuration Q must be p-uniform for some p ∈ [0, 1].

Proof. Assume without loss of generality that we have the cover relations x1 <: x3 with

weight p1 and x2 <: x4 with weight p2. Suppose that p1 6= p2. Let

p′ :=
p1λ1λ3 + p2λ2λ4

λ1λ3 + λ2λ4

and consider the configuration Q′ derived from Q by replacing both p1 and p2 by p′. In Q

as well as in Q′, the cover relations x1 <: x3 and x2 <: x4 together contribute

p1λ1λ3 + p2λ2λ4

to d(Q) and d(Q′) respectively, so Q and Q′ have the same d-value. But because of the

concavity of H(x) we have that

H(p1)λ1λ3 +H(p2)λ2λ4 < H

(
p1λ1λ3 + p2λ2λ4

λ1λ3 + λ2λ4

)
(λ1λ3 + λ2λ4) = H(p′)(λ1λ3 + λ2λ4),

which means that the c-value of Q is smaller than that of Q′.

In other words, in a significant configuration Q all cover relations carry the same weight,

which we will call the density of Q and denote by p = p(Q).

Recall that we denote by σ(P ) the number of comparable pairs in P and by σ1(P ) the
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number of cover relations in P . Now, similarly for configuration Q, let

σ1(Q) :=
∑
xi<:xj

λiλj , σ2(Q) :=
∑
xi�xj

λiλj , σ(Q) := σ1(Q) + σ2(Q),

σ0(Q) :=

k∑
i=1

(λi)
2, σ∞(Q) :=

∑
xi‖xj

λiλj .

Notice that for a poset P ∈ Pn,Q, a pair xi�xj in Q contributes λiλj to σ(Q) and λiλjn
2

to σ(P ). Similarly, a pair xi <: xj in Q contributes λiλj to σ1(Q) and pi,jλiλjn
2 to σ1(P ).

Thus we have

σ(P ) 6 σ(Q) · n2, σ1(P ) 6 σ1(Q) · n2,

and equality holds if and only if for all xi < xj in Q all cover relations between the two

partition classes Xi and Xj exist in P , i.e., if P is the complete poset induced by Q. The

next step is a corollary derived from Lemma 1.3.

Corollary 3.5. For every k-configuration Q there exists a linear k′-configuration Q′ with

k′ 6 k such that

σ1(Q′) > σ1(Q) and σ(Q′) > σ(Q).

Proof of Corollary 3.5. Denote by P the complete k-partitionable poset on n points

induced by Q. Apply Lemma 1.3 to P and obtain a k′-layer poset P ′. Let Q′ be the (linear)

configuration of P ′. Obviously

σ1(Q′) >
σ1(P ′)
n2

>
σ1(P )

n2
= σ1(Q),

and

σ(Q′) >
σ(P ′)
n2
>
σ(P )

n2
= σ(Q).

Now we use the new terminology to simplify the expressions for c(Q) and d(Q). We

then prove Theorem 1.1 for d ∈ (0, 1
8
]. Note that since

∑k
i=1 λi = 1 we have

2 · (σ1(Q) + σ2(Q) + σ∞(Q)) + σ0(Q) = 1. (3.1)

For a significant configuration we can (using Lemma 3.4) now write

c(Q) = H(p) · σ1(Q) and (3.2)

d(Q) = p · σ1(Q) + σ2(Q) =
1

2
− 1

2
σ0(Q)− (1− p)σ1(Q)− σ∞(Q), (3.3)

where p = p(Q). Observe that for every configuration Q we must have

σ1(Q) 6
1

4
. (3.4)

This can be easily established as follows. Consider the cover graph of Q with weight λi
on the vertex xi. Denote by γi the sum of the weights of all neighbours of xi. We propose

the following process. As long as there are two non-adjacent vertices xi, xj with positive
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170 H. J. Prömel, A. Steger and A. Taraz

weights λi, λj , take the vertex with smaller neighbourhood weight (say γi 6 γj) and shift its

weight completely to the other vertex: λi := 0, λj := λj + λi. We will check the following

two observations.

(1) During this process σ1(Q) does not decrease.

(2) After the process there will be only two vertices with positive weight.

Hence at the end σ1 6
1
4
, which would prove the proposition.

To check (1), simply observe that during one step of the process the loss in σ1 is λi · γi
and the win is λi · γj; hence in total we do not lose anything. As for (2), since the graph

is triangle-free, if there are at least three vertices with positive weight, we will always find

two non-adjacent ones.

Proof of Theorem 1.1 for 0 < d 6 1
8
. By Lemma 3.3 it suffices to prove that, for an

arbitrary d-significant configuration Q′ (which, by Lemma 3.4, must be p-uniform), there

exists a linear configuration Q with d(Q) = d(Q′) and c(Q) > c(Q′). We claim that choosing

Q as in (1.7) will succeed. Q has point set {x1, x2} with

x1 <: x2, λ1 := λ2 :=
1

2
,

p := p(Q) := 4d = 4p′σ1(Q′) + 4σ2(Q′),

where p′ = p(Q′). Obviously d(Q) = 1
4
p = d = d(Q′) and our aim is to show that

c(Q) > c(Q′). Observe that d 6 1
8

implies that p 6 1
2
, hence for any p′′ 6 p we have

H(p) > H(p′′). Furthermore, by the concavity of H(x) we know that, for any 0 < α 6 1,

we have that H(α · x) > α · H(x). Equipped with these facts we abbreviate σ′1 := σ1(Q′)
and σ′2 := σ2(Q′) and obtain

c(Q) = H(p) · λ1λ2 = H(4σ′2 + 4p′σ′1) · 1

4

> H(p′ · 4σ′1) · 1

4
> H(p′)σ′1 = c(Q′),

where we first applied the definition of p, λ1, and λ2, then used p 6 1
2
, and finally relied

on 4σ′1 6 1, which is guaranteed by observation (3.4).

Hence we can from now on assume that d > 1
8
. In the following lemmas we will often

start from a configuration Q and build a new configuration Q′, possibly with a different

number of partition classes, different weights and relations. Often we will shift weight ε

from one point xi to another point xj , i.e., λ(xi) := λ(xi)− ε and λ(xj) := λ(xj) + ε. When

doing so, we will sometimes refer to the original weights as λi, and to the new weights as

λ(xi). Since we will be moving from one linear configuration to another, σ∞(Q) = 0 will

always hold. Therefore (3.1) now stands as

2σ(Q) + σ0(Q) = 1. (3.5)

Another trivial observation: If λi > λj then shifting any weight 0 6 ε 6 λi − λj from xi to

xj will not increase σ0(Q):

σ0(Q′)− σ0(Q) = (λi − ε)2 + (λj + ε)2 − λ2
i − λ2

j = −2ε(λi − λj − ε) 6 0. (3.6)
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Lemma 3.6. For every linear configuration Q and for every 0 < s 6 σ1(Q) there exists a

linear configuration Q′ such that

σ(Q′) > σ(Q) and σ1(Q′) = s.

Proof. Assume w.l.o.g. that s < σ1(Q), for otherwise Q′ := Q does the job. Let Q =

[xk, . . . , x1]. We will shift weights several times, so denote by λi the original weights in Q.

Let ε be such that ε < λi − 2εk for all i ∈ [k]. In a first round we add 2k new points

y1, . . . , y2k and obtain a new configuration [xk, . . . , x1, y1, . . . , y2k]. To the new points we

assign weight λ(yj) := ε for all j ∈ [2k] and reduce the weight of x1 by 2εk. Using

observation (3.6) it is clear that σ0(Q′) 6 σ0(Q). Hence by (3.5) σ(Q′) > σ(Q).

In a second round, for all i ∈ [k] consecutively, shift weight εi from xi to y2i, where

0 6 εi 6 λ(xi)−ε. As before, use observation (3.6) to see that σ0(Q′) 6 σ0(Q) and therefore,

by (3.5), σ(Q′) > σ(Q).

So, no matter how we choose ε and all the εi (provided they satisfy the above inequali-

ties), the first assertion of the lemma is guaranteed. For a particular choice of ε make εi
as large as possible, namely ε1 := λ1 − 2εk − ε and εi := λi − ε for 2 6 i 6 k. Then we

have λ(xi) = λ(y2i−1) = ε for all i ∈ [k], λ(y2) = λ1 − 2εk and λ(y2i) = λi and hence an

upper bound on σ1(Q′) is given by

σ1(Q′) 6 ε2 · k +

k∑
i=1

2ε · λi 6 ε · (k + 2).

This means that for a given s it is possible to choose ε sufficiently small that the above

two-round process can force σ1(Q′) to become arbitrarily small. To ensure that the process

produces σ1(Q′) = s, we choose ε so small that after the first round we still have σ1(Q′) > s

and ε(k + 2) < s. Then continuously increase the εi until at some point the second round

must produce a Q′ with σ1(Q′) = s.

Corollary 3.7. For every configuration Q there exists a linear configuration Q′′ satisfying

σ1(Q′′) = σ1(Q), σ2(Q′′) > σ2(Q).

Proof. Apply Corollary 3.5 to Q and obtain a linear configuration Q′ with

σ1(Q′) > σ1(Q) and σ(Q′) > σ(Q).

Now apply Lemma 3.6 to Q′, setting s := σ1(Q) 6 σ1(Q′). We obtain a linear configuration

Q′′ with

σ1(Q′′) = s = σ1(Q), σ(Q′′) > σ(Q′) > σ(Q),

and therefore

σ2(Q′′) > σ2(Q),

as we were required to prove.
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172 H. J. Prömel, A. Steger and A. Taraz

Lemma 3.8. For every linear configuration Q and for every 0 6 s 6 σ2(Q) there exists a

linear configuration Q′ satisfying

σ1(Q′) > σ1(Q), σ2(Q′) = s.

Proof. Let Q = [xk, . . . , x1]. Again denote by λi := λ(xi) the original weights. Start

with x1 and shift an increasing amount ε1 of weight to x3, until λ(x1) = 0 and hence

λ(x3) = λ3 + λ1. Then move on to x2, shifting weight ε2 to x4 until λ(x2) = 0. Continue

until the final step, where weight εk−2 is shifted from xk−2 to xk .

Notice that, whenever weight εi is shifted from xi to xi+2, we can be sure that xi is

the maximum of the chain and that the only point covered by xi is xi+1, which in turn

also covers xi+2. So if Q′ denotes the new configuration, we have σ1(Q′) > σ1(Q) at any

moment of the process.

Observe that, if the process runs until the very end, Q′ has only two points xk−1 and xk ,

and hence σ2(Q′) = 0. But since this process is continuous it must at one point produce a

Q′ with σ2(Q′) = s for any 0 6 s 6 σ2(Q).

Now we come back to the d- and c-value of a p-uniform linear configuration Q. Recall

that they are given by d(Q) = p · σ1(Q) + σ2(Q) and c(Q) = H(p) · σ1(Q), where p = p(Q).

Corollary 3.9. For every linear configuration Q and for every d with 1
8
6 d 6 d(Q) there

exists a linear configuration Q′ such that

c(Q′) > c(Q), d(Q′) = d.

Proof. Apply Lemma 3.8 to Q, with s slowly decreasing from σ2(Q) to 0. This means that

on the one hand σ1(Q) does not decrease and thus c(Q) does not; and on the other hand

it means that simultaneously σ2(Q) steadily approaches 0. Having arrived there, denote

the new configuration by Q′ and observe that c(Q′) > c(Q) and d(Q′) = pσ1(Q′), where

p = p(Q). If p > 1/2 then let p approach 1/2, thereby increasing c(Q′) = H(p) · σ1(Q′) and

forcing d(Q′) to approach 1
2
σ1(Q′). Owing to (3.4) we know that

1

2
· σ1(Q′) 6

1

8
6 d.

Hence this process must reach the point where d(Q′) = d while maintaining at all times

c(Q′) > c(Q).

The corollary above now allows us to prove the remaining part of our main theorem.

Proof of Theorem 1.1 for d > 1
8
. Consider an arbitrary d-significant configuration Q. By

Lemma 3.3 it suffices to show that there exists a linear configuration Q′ with d(Q′) = d(Q)

and c(Q′) > c(Q). By Corollary 3.7 there exists a linear configuration Q′′ with

σ1(Q′′) = σ1(Q) and σ2(Q′′) > σ2(Q).
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Setting p(Q′′) := p(Q), this immediately implies that

c(Q′′) = c(Q) and d(Q′′) > d(Q).

Now apply Corollary 3.9 to Q′′ and d. Hence there must be a linear configuration Q′ with

d(Q′) = d = d(Q) and c(Q′) > c(Q′′) = c(Q).

We conclude this section with the proof of Lemma 1.2.

Proof of Lemma 1.2. Suppose to the contrary that there were a significant linear config-

uration Q with d(Q) > 1
8

and p := p(Q) < 1
2
. Then increase p very slightly, thereby causing

H(p) to increase and thus both d(Q) and c(Q) must increase. Call the new configuration

Q′′ and set d := d(Q) so that

1

8
6 d < d(Q′′).

Applying Corollary 3.9 to Q′′ and d, there must be a linear configuration Q′ with

d(Q′) = d = d(Q) and c(Q′) > c(Q′′) > c(Q).

Hence Q cannot be significant.

4. Proof of Lemma 3.1

We start with a simple lemma which states that one can add or remove relations to

a partitionable poset without forcing or destroying other relations, and still maintain a

partitionable poset.

Lemma 4.1. For any two constants d, d′ in the interval (0, 1
2
) and any k ∈ N, there exists

a k̄ = k̄(d, d′, k) ∈ N such that the following holds. For every k-partitionable poset P ∈ Pn,d
whose partition classes differ in size by at most one, there exists a k′-partitionable poset

P ′ ∈ Pn,d′ with k 6 k′ 6 k̄. The new poset P ′ differs from P in exactly |d′ − d| · n2 relations

and, again, its partition classes differ in size by at most one.

Proof. Let Q be the configuration of P . If d′ < d, then first remove relations between

Xi and Xj whenever xi <: xj in Q. If in all such pairs no relations are left, then this will

turn previously forced relations in Q into cover relations and so the process can continue

until there are no relations at all.

If d′ > d, then we will have to add relations and there are three ways to do so:

(i) whenever xi <: xj in Q simply add new relations between Xi and Xj . If this is not

enough, then

(ii) whenever xi‖xj in Q, add new relations between Xi and Xj . Here some care is needed

to avoid the forcing of other relations: let xi be a point in Q with inc(xi) 6= ∅ and

choose xj to be a point that is maximal within inc(xi). Again, if this is not enough,

then
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(iii) split all partition classes Xi into two parts X−i and X+
i so that X−i and X+

i differ

in size by at most one, maintain all previous relations and add new relations x < y

where x ∈ X−i and y ∈ X+
i .

Repeating and combining these steps produces a k′-partitionable poset P ′ ∈ Pn,d′ where

d′ can be arbitrarily close to 1
2
. Observe also that, in order to obtain a density of at most

d′ < 1
2
, we can bound k′ by a constant that depends only on d, d′ and k, but not on n.

For the proof of Lemma 3.1 we need Szemerédi’s Regularity Lemma and some related

definitions. Let G = (V , E) be a graph and consider two disjoint subsets A,B ⊂ V . Denote

by E(A,B) the set of those edges in E that have one endpoint in A and one endpoint in

B. Then the density d(A,B) is defined as

d(A,B) =
|E(A,B)|
|A| · |B| .

For ε ∈ (0, 1) a pair A,B is called ε-regular if, for every X ⊆ A and Y ⊆ B satisfying

|X| > ε|A| and |Y | > ε|B|,
it is true that

|d(X,Y )− d(A,B)| < ε.

To say it roughly, the Regularity Lemma [7] guarantees that, for every graph, one can

find a partition of its vertex-set into classes of almost the same size such that almost all

pairs are regular. Natural modifications to the original proof easily give the following

variant, for which we need a few more definitions.

Let G1, . . . , Gr be spanning subgraphs of a graph G = (V , E). In this setting a partition

V = X1 ∪ . . . ∪ Xk is called ε-regular if the classes Xi differ in size by at most 1 and all

but at most εk2 pairs are ε-regular for all Gi. Such a partition is said to refine another

partition V = V1 ∪ . . . ∪ Vk′ if for each 1 6 i 6 k there exists a 1 6 j 6 k′ so that Xi ⊆ Vj .

Theorem 4.2 (Szemerédi’s Regularity Lemma). For every ε̃ > 0 and `, r > 1 there exist

two positive integers ñ0 = ñ0(ε̃, `, r) and k̃0 = k̃0(ε̃, `, r) such that the following is true. If

G = (X,E) is a graph with |X| > ñ0 and X = X ′1 ∪ . . . ∪X ′̀ is a partition where the classes

differ in size by at most one, and if G1, . . . , Gr are spanning subgraphs of G, then there exists

an ε̃-regular partition X = X1 ∪ . . .∪Xk with ` 6 k 6 k̃0 that refines the previous partition.

Proof of Lemma 3.1. Let G = (X,E) be the comparability digraph of P .

Set ε̃ := ε/12. Choose an integer k′ so that 1/k′ < ε̃ and take an arbitrary partition

X = X ′1 ∪ . . . ∪X ′k′ satisfying⌊ n
k′
⌋
6 |X ′i | 6

⌈ n
k′
⌉

for all 1 6 i 6 k′.

Colour the edges of G in the following way. An edge (x, y) is coloured in blue if x <: y

in P . Otherwise it is coloured in red. Note that for every red edge (x, y) there must be a

directed path x, z1, . . . , zk, y with k > 1 of blue edges.
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Since we want to turn P into a partitionable poset, we will have to remove edges from

G. Obviously red edges cannot be removed without destroying the transitivity. Thus by

removing a family F of edges we always mean removing all blue edges in F and putting

a spell on the red edges in F: if later red edges in F turn blue, we will remove them

as well. Notice that removing a blue edge results in a digraph which is the comparability

digraph of a poset with one relation less.

We start by removing all edges of G that lie inside a class X ′i .
By the (ordered) pair (X ′i , X ′j) we denote the bipartite graph on the vertices X ′i ∪ X ′j that

contains all edges that in G leave X ′i and enter X ′j . (Note that in (X ′i , X ′j) the edges are

undirected.) Let

E< :=
⋃
i<j

E(X ′i , X ′j), E> :=
⋃
i>j

E(X ′i , X ′j),

and consider the two graphs G< := (X,E<) and G> := (X,E>).

Now apply Theorem 4.2 with parameters ε̃, ` := k′ and r := 2, a first partition

X = X ′1 ∪ . . .∪X ′k′ and the two spanning graphs G< and G>. Thus we obtain two integers

ñ0 and k̃0. Choose the constants n0, k0 in the statement of Lemma 3.1 so that n0 > ñ0 as

well as k0 > k̄(d ± ε/2, d, k̃0). (The latter will enable us to apply Lemma 4.1 at the very

end of our proof.) We are then guaranteed a partition

X = X1 ∪ . . . ∪Xk

with k 6 k̃0 that refines X = X ′1 ∪ . . . ∪X ′k′ and has the property that, for all but at most

ε̃k2 pairs i < j, both (Xi, Xj) and (Xj,Xi) are ε̃-regular (and the Xi differ in size by at

most one).

Consider the following properties of an arbitrary pair A,B.

(i) All but at most ε̃|A| vertices in A have degree at least 2ε̃|B|, and analogously with

the roles of A and B exchanged.

(ii) For every set A′ ⊆ A with |A′| > ε̃|A| the set of neighbours Γ(A′) must have

cardinality at least (1− ε̃)|B|, and analogously with the roles of A and B exchanged.

Any ε̃-regular pair with density at least 3ε̃ satisfies property (i). For if not, then denote

those vertices with degree less than 2ε̃|B| by A′; then d(A′, B) < 2ε̃ would contradict the

regularity. Any ε̃-regular pair with density at least ε̃ satisfies property (ii); if not, then the

pair A′, B \ Γ(A′) would again contradict the regularity.

The following third property is obviously not possessed by every regular pair.

(iii) All but at most ε̃|A| vertices in A have degree at least (1 − ε̃)|B|, and analogously

with the roles of A and B exchanged.

Now call a pair (Xi, Xj) good if it has properties (i) and (ii). Call it bad otherwise. Observe

that (iii) implies both (i) and (ii), so a pair satisfying (iii) will always be good. Remove

those edges in G that lie in a bad pair (Xi, Xj) or (Xj,Xi), where i < j. Denote by P ′
the poset that is obtained in this way. Since all ε̃-regular pairs with density at least 3ε̃

are good, observe that up to now at most 5ε̃n2 edges (that is, relations in P ) have been
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removed, namely

at most k′( n
k′ )

2 6 ε̃n2 edges inside the X ′i ,
at most k2 · 3ε̃ · ( n

k
)2=3ε̃n2 edges inside pairs (Xi, Xj) with density less than 3ε̃,

at most ε̃k2( n
k
)2 = ε̃n2 edges inside irregular pairs (Xi, Xj).

Consider the digraph R with vertex-set {X1, . . . , Xk} and edges (Xi, Xj) if the pair (Xi, Xj)

is good. We claim the following.

Claim 1. If Y1, Y2, . . . , Yl is a dipath in R with l > 3, then (Y1, Yl) has property (iii).

Claim 2. R is acyclic.

Claim 3. All the edges left in G lie in good pairs.

These claims are easily verified as follows.

Proof of Claim 1. Recall that G is still a comparability digraph, that is, (x, y) ∈ E and

(y, z) ∈ E imply that (x, z) ∈ E. We assume that (Y1, Y2) and (Y2, Y3) are good pairs and

prove that this implies that (Y1, Y3) has property (iii). Then Claim 1 follows by induction

on l. As (Y1, Y2) has property (i), all but at most ε̃|Y1| vertices in Y1 have degree at least

2ε̃|Y2| > ε̃|Y2|. Now, since (Y2, Y3) has property (ii), we are done.

Proof of Claim 2. By Claim 1 we know that any cycle Y1, Y2, . . . , Yl−1, Y1 implies that

all but at most ε̃|Y1| vertices in Y1 have at least (1 − ε̃)|Y1| neighbours in Y1. This in

turn implies a directed cycle y1, y2, . . . , yl−1, y1 in G, which is impossible, since G is the

comparability digraph of P ′.

Proof of Claim 3. This is obviously true for blue edges. For red edges it might seem a

little surprising at first glance, since so far we have never bothered to remove red edges.

Nevertheless it is true: consider a red edge (y1, yl) with y1 ∈ Y1 and yl ∈ Yl . Then there

must be a path y1, y2, . . . , yl of blue edges. Since blue edges can only be found in good

pairs, there must be a directed path Y1, . . . , Yl in R. Since R is acyclic, we must have

Y1 6= Yl , and Claim 1 implies that (Y1, Yl) is also good.

By Claims 1 and 2, R is a comparability digraph and we denote by Q the corresponding

poset with point set {x1, . . . , xk}. Then Claims 1 and 3 assert that P ′ will have configuration

Q if we complete all pairs (Xi, Xj) that satisfy property (iii) at the cost of at most(
k

2

)(
ε̃
n

k
· n
k

+ ε̃
n

k
· n
k

)
< ε̃n2

new relations (and then choose the weights λi and pi,j in Q accordingly). Note that inserting

these new relations does not violate transitivity: any new edge (y, y′) lies in a pair with

property (iii), and if, together with another (new or old) edge (y′, y′′), it requires the edge

(y, y′′) to exist, then, since (y′, y′′) lies in a good pair, we know by Claim 1 that (y, y′′) lies

in a pair with property (iii); hence it either already exists or will be inserted anyway in

the completion process.

In total we have changed less than 6ε̃n2 = ε
2
n2 edges and the new poset now has

configuration Q. In order to satisfy the requirements of Lemma 3.1 we have to make
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sure that it has the same number of relations as in the beginning, which means that we

might have to add or remove at most ε
2
n2 relations. This can be done as described by

Lemma 4.1.
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[6] Prömel, H. J., Steger, A. and Taraz, A. (1999) Phase transitions in the evolution of partial

orders. J. Combin. Theory Ser. A, to appear.
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