Counting Partial Orders with a Fixed Number of Comparable Pairs

HANS JÜRGEN PRÖMEL, ${ }^{1}+$ ANGELIKA STEGER ${ }^{2}$
and ANUSCH TARAZ
${ }^{1}$ Institut für Informatik, Humboldt-Universität zu Berlin 10099 Berlin, Germany
(e-mail: proemel@informatik.hu-berlin.de,
taraz@informatik.hu-berlin.de)
${ }^{2}$ Institut für Informatik, Technische Universität München, 80290 München, Germany
(e-mail: steger@in.tum.de)

Received 17 May 1999; revised 3 March 2000

Abstract

In 1978, Dhar suggested a model of a lattice gas whose states are partial orders. In this context he raised the question of determining the number of partial orders with a fixed number of comparable pairs. Dhar conjectured that in order to find a good approximation to this number, it should suffice to enumerate families of layer posets. In this paper we prove this conjecture and thereby prepare the ground for a complete answer to the question.

1. Introduction and results

Let \mathscr{P}_{n} be the set of all labelled partial orders with point set $[n]=\{1, \ldots, n\}$. A trivial lower bound on $\left|\mathscr{P}_{n}\right|$ is given by

$$
\left|\mathscr{P}_{n}\right| \geqslant 2^{\frac{n}{2}_{4}^{4}},
$$

since we can fix two antichains X and Y, each on $n / 2$ points, and decide independently for each of the $n^{2} / 4$ pairs $(x, y) \in X \times Y$ whether or not $x<y$ should hold.

Upper bounds are much harder to obtain. In 1970, Kleitman and Rothschild [3] first gave the following bound:

$$
\begin{equation*}
\left|\mathscr{P}_{n}\right| \leqslant 2^{n^{2} / 4+O\left(n^{3 / 2} \log _{2} n\right)} . \tag{1.1}
\end{equation*}
$$

[^0]A few years later [4], they were able to compute the exponent much more precisely:

$$
\begin{equation*}
\log _{2}\left|\mathscr{P}_{n}\right|=\frac{n^{2}}{4}+\frac{3 n}{2}+O\left(\log _{2} n\right) \tag{1.2}
\end{equation*}
$$

The underlying principle of the proofs of these results can be stated in rough terms as follows. Find a subclass $\mathscr{Q}_{n} \subseteq \mathscr{P}_{n}$ that on the one hand has a nice structure and can therefore be enumerated easily. On the other hand it should be so large that $\left|\mathscr{V}_{n}\right|$ is a good approximation for $\left|\mathscr{P}_{n}\right|$. Here Kleitman and Rothschild chose $\mathscr{2}_{n}$ so that it contained only 3-layer posets - these are posets whose point set can be partitioned into three antichains X_{1}, X_{2}, X_{3} such that no point in X_{1} is above any element of X_{2}, no point in X_{2} is above any element of X_{3}, and every point in X_{1} is below every point in X_{3}. One of the particularly appealing features of this technique is that it also proves that the proportion of posets in \mathscr{P}_{n} that are 3-layer posets tends to one as n tends to infinity - in other words, almost all posets are 3-layer posets [4].

The central purpose of this paper is the investigation of the number of partial orders with a fixed number of comparable pairs. More precisely, for $0<d<\frac{1}{2}$ denote by $\mathscr{P}_{n, d}$ those posets in \mathscr{P}_{n} with [dn ${ }^{2}$] comparable pairs (where [dn ${ }^{2}$] denotes the nearest integer to $d n^{2}$) and let

$$
\mathrm{c}(d):=\lim _{n \rightarrow \infty} \frac{\log _{2}\left|\mathscr{P}_{n, d}\right|}{n^{2}}, \quad \text { in other words, } \quad\left|\mathscr{P}_{n, d}\right|=2^{\mathrm{c}(d) n^{2}+o\left(n^{2}\right)}
$$

provided the limit exists. Recall from (1.1) that, for any d,

$$
\begin{equation*}
\mathrm{c}(d) \leqslant \frac{1}{4} \tag{1.3}
\end{equation*}
$$

In 1978, Dhar [1] raised the question of determining $\mathrm{c}(d)$ and suggested that partial orders can represent the states of a certain model of lattice gas with energy proportional to the number of comparable pairs in the order. In this context, $\mathrm{c}(d)$ would correspond to the entropy function of the lattice gas.

Results due to Dhar [1, 2] as well as Kleitman and Rothschild [5] show that, in the whole range $0<d<\frac{1}{2}$, the function $\mathrm{c}(d)$ is continuous and that

$$
\begin{array}{rlrl}
\text { for } 0<d \leqslant \frac{1}{8}, & \mathrm{c}(d) & =\frac{1}{4} \cdot H(4 \cdot d) \\
\text { for } \frac{1}{8} & \leqslant d \leqslant \frac{3}{16}, & \mathrm{c}(d) & \equiv \frac{1}{4}, \tag{1.5}
\end{array}
$$

where $H(x)=-x \log _{2} x-(1-x) \log _{2}(1-x)$. The problem has remained open for larger values of d. Here Dhar conjectured that for each d there is a family of k-layer posets that is large enough to 'dominate' the set $\mathscr{P}_{n, d}$ and thus determine $\mathrm{c}(d)$ (see below for the formal definitions). In other words, this family would have a significance for $\mathscr{P}_{n, d}$ similar to the one that the 3-layer posets had for \mathscr{P}_{n}. The aim of this paper is to prove this conjecture and thereby prepare the ground for a complete solution of the problem.

We first extend the definition of a 3-layer poset to a k-layer poset in a natural way. A poset $P=(X, P)$ is a k-layer poset, if there exists a partition of its point set $X=X_{1} \cup \ldots \cup X_{k}$
into k disjoint antichains (the so-called layers) such that

$$
\begin{aligned}
x<y \text { with } x \in X_{i} \text { and } y \in X_{j} & \Longrightarrow \quad i<j, \\
\text { for every } i, j \text { with } j>i+1: \quad x \in X_{i}, y \in X_{j} & \Longrightarrow \quad x<y
\end{aligned}
$$

For some constants $\lambda_{1}, \ldots, \lambda_{k}$ with $0<\lambda_{i}<1$ and $\sum_{i} \lambda_{i}=1$ and a constant $0 \leqslant p \leqslant 1$, we say that a poset $P \in \mathscr{P}_{n}$ has configuration $Q=\left(\lambda_{1}, \ldots, \lambda_{k} ; p\right)$, if it belongs to the set $\mathscr{P}_{n, Q} \subseteq \mathscr{P}_{n}$, which is defined as the set containing all k-layer posets in \mathscr{P}_{n} that have $p\left|X_{i}\right|\left|X_{i+1}\right|$ comparable pairs between X_{i} and X_{i+1} (for all $i \in[n-1]$) and satisfy $\left|X_{i}\right|=\lambda_{i} n$ (for all $i \in[n]$). For the sake of a more legible introduction, let us assume for now that all the real numbers $p\left|X_{i}\right|\left|X_{i+1}\right|$ and $\lambda_{i} n$ happen to be integers. Of course, we will need to fix this inaccuracy (and will do so at the end of this introduction), but given that we are only aiming at a very rough approximation of $\left|\mathscr{P}_{n, d}\right|$, namely, the coefficient $\mathrm{c}(d)$ of the leading term in the logarithm, it should be clear that this is by no means critical.

Obviously, any two posets P and P^{\prime} with the same configuration must have the same number of comparable pairs, which means that for every Q there exists a d such that, for every n,

$$
\begin{equation*}
\mathscr{P}_{n, Q} \subset \mathscr{P}_{n, d} . \tag{1.6}
\end{equation*}
$$

The main result of this paper states that, on the other hand, for each d we can find a configuration Q such that (1.6) holds almost with equality and thereby proves the conjecture of Dhar mentioned above.

Theorem 1.1. For every $0<d<\frac{1}{2}$ there exists a configuration $Q=\left(\lambda_{1}, \ldots, \lambda_{k} ; p\right)$ with $\mathscr{P}_{n, Q} \subset \mathscr{P}_{n, d}$ such that

$$
\lim _{n \rightarrow \infty} \frac{\log _{2}\left|\mathscr{P}_{n, Q}\right|}{n^{2}}=\lim _{n \rightarrow \infty} \frac{\log _{2}\left|\mathscr{P}_{n, d}\right|}{n^{2}}=\mathrm{c}(d)
$$

in other words

$$
2^{o\left(n^{2}\right)}\left|\mathscr{P}_{n, Q}\right|=\left|\mathscr{P}_{n, d}\right|
$$

The following two observations will be helpful when it comes to actually constructing the configuration Q mentioned in the theorem.

Lemma 1.2. For $\frac{1}{8} \leqslant d \leqslant \frac{1}{2}$, the configuration $Q=\left(\lambda_{1}, \ldots, \lambda_{k} ; p\right)$ must be chosen so that $p \geqslant \frac{1}{2}$.

Kleitman and Rothschild [5] observed that

$$
\begin{equation*}
\text { for } 0<d \leqslant \frac{1}{8}: \quad Q=\left(\frac{1}{2}, \frac{1}{2} ; 4 d\right) \tag{1.7}
\end{equation*}
$$

satisfies the requirements of Theorem 1.1. We shall re-prove this statement when we prove Theorem 1.1 for $0<d \leqslant \frac{1}{8}$. Our methods used to prove the above results do not seem strong enough to give results about almost all posets in $\mathscr{P}_{n, d}$. We conjecture, however, that indeed almost all posets in $\mathscr{P}_{n, d}$ lie in some $\mathscr{P}_{n, Q}$.

Before we come to the proofs, we indicate how Theorem 1.1 can be used to compute $\mathrm{c}(d)$. Consider an arbitrary configuration $Q=\left(\lambda_{1}, \ldots, \lambda_{k} ; p\right)$. Clearly, the number of comparable pairs in every poset in $\mathscr{P}_{n, Q}$ is given by $\mathrm{d}(Q) n^{2}$, where

$$
\begin{equation*}
\mathrm{d}(Q):=p \sum_{i=1}^{k-1} \lambda_{i} \lambda_{i+1}+\sum_{i=1}^{k-2} \sum_{j \geqslant i+2}^{k} \lambda_{i} \lambda_{j} . \tag{1.8}
\end{equation*}
$$

On the other hand, the only degree of freedom one has when constructing a poset in $\mathscr{P}_{n, Q}$ lies in the placement of the comparable pairs between successive layers. Thus we let $\mathrm{c}(Q):=H(p) \sum_{i=1}^{k-1} \lambda_{i} \lambda_{i+1}$ and arrive at the following estimate for $\left|\mathscr{P}_{n, Q}\right|:$

$$
\begin{equation*}
\prod_{i=1}^{k-1}\binom{\lambda_{i} \lambda_{i+1} n^{2}}{p \cdot \lambda_{i} \lambda_{i+1} n^{2}}=2^{\sum_{i=1}^{k-1} H(p) \lambda_{i} \lambda_{i+1} n^{2}+o\left(n^{2}\right)}=2^{\mathrm{c}(Q) n^{2}+o\left(n^{2}\right)} . \tag{1.9}
\end{equation*}
$$

(Actually we did have more freedom: since we are considering labelled posets we also had the choice of assigning points to classes. But this merely gives a factor of $O(n!)=$ $O\left(2^{n \log _{2} n}\right)$.)

This now puts us in the following position: in order to determine $\mathrm{c}(d)$ for some fixed d, it suffices to determine the configuration Q whose existence is proved in Theorem 1.1, since we then know that $\mathrm{c}(d)=\mathrm{c}(Q)$. To find Q, one can use the fact that there cannot be another configuration Q^{\prime} with $\mathrm{d}\left(Q^{\prime}\right)=\mathrm{d}(Q)$ and $\mathrm{c}\left(Q^{\prime}\right)>\mathrm{c}(Q)$. Hence Q must be the solution to the following maximization problem:

$$
\begin{gathered}
\text { Choose } k, \lambda_{1}, \ldots, \lambda_{k} \text {, and } p \text { such as to maximize } H(p) \sum_{i=1}^{k-1} \lambda_{i} \lambda_{i+1}, \\
\text { subject to } \quad p \sum_{i=1}^{k-1} \lambda_{i} \lambda_{i+1}+\sum_{i=1}^{k-2} \sum_{j \geqslant i+2}^{k} \lambda_{i} \lambda_{j}=d \\
\sum_{i=1}^{k} \lambda_{i}=1, \quad 0<\lambda_{i}<1, \quad 0 \leqslant p \leqslant 1 .
\end{gathered}
$$

However, the solution of this problem is technically quite involved and we therefore defer it to a separate paper [6], where - based on the results presented here - we determine $\mathrm{c}(d)$ in the complete interval $0<d<\frac{1}{2}$.

Let us say a few words about the underlying idea of the proof of Theorem 1.1. We first show that every poset is very close to one with a certain 'partitionable' structure. Here the main tool will be Szemerédi's Regularity Lemma, or rather an analogue of the latter for partial orders (Lemma 3.1), which might be of independent interest. Then we prove in a second step that it suffices to consider the case where the partition classes are arranged in a 'linear' way, i.e., where they form a layer poset. For this step we shall use and prove the following elementary lemma, which may find further applications, too.

Lemma 1.3. For every poset $P \in \mathscr{P}_{n}$ with height k there exists a k-layer poset $P^{\prime} \in \mathscr{P}_{n}$ that has
(i) at least as many comparable pairs as P, and
(ii) at least as many cover relations as P.

This paper is organized as follows. We conclude this introduction with a few words on how to round real numbers when defining the set $\mathscr{P}_{n, Q}$ and with some remarks concerning notation and terminology. Section 2 contains the proof of Lemma 1.3, our first auxiliary result. In Section 3 we then prove Theorem 1.1, using the second auxiliary result, Lemma 3.1, whose proof can be found in Section 4.

Consider an arbitrary configuration $Q=\left(\lambda_{1}, \ldots, \lambda_{k} ; p\right)$ with $0<\lambda_{i}<1, \sum_{i} \lambda_{i}=1$, and $0 \leqslant p \leqslant 1$. When we defined the set $\mathscr{P}_{n, Q}$ we assumed that $\lambda_{i} n$ and $p \lambda_{i} \lambda_{i+1} n^{2}$ were integers. Here we demonstrate that this assumption can be made without loss of generality. More precisely, we will show that for every n it is possible to choose $\lambda_{1}^{\prime}, \ldots, \lambda_{k}^{\prime}$ and $p_{1,2}^{\prime}, \ldots, p_{k-1, k}^{\prime}$ such that

$$
\begin{gather*}
\lambda_{i}^{\prime} n \in \mathbb{N}, \quad p_{i, i+1}^{\prime} \lambda_{i}^{\prime} \lambda_{i+1}^{\prime} n^{2} \in \mathbb{N}, \quad \sum_{i} \lambda_{i}^{\prime} n=n, \\
\sum_{i} p_{i, i+1}^{\prime} \lambda_{i}^{\prime} \lambda_{i+1}^{\prime} n^{2}+\sum_{j \geqslant i+2} \lambda_{i}^{\prime} \lambda_{j}^{\prime} n^{2}=\left[\sum_{i} p \lambda_{i} \lambda_{i+1} n^{2}+\sum_{j \geqslant i+2} \lambda_{i} \lambda_{j} n^{2}\right], \tag{1.10}\\
\left|\lambda_{i}-\lambda_{i}^{\prime}\right|=O(1 / n) \quad \text { and } \quad\left|p-p_{i, i+1}^{\prime}\right|=O(1 / n) \tag{1.11}
\end{gather*}
$$

will hold. Now we redefine $\mathscr{P}_{n, Q}$ to be the set of all k-layer posets $P \in \mathscr{P}_{n}$ (with layers X_{1}, \ldots, X_{k}) that satisfy $\left|X_{i}\right|=\lambda_{i}^{\prime} n$ and have exactly $p_{i, i+1}^{\prime}\left|X_{i}\right|\left|X_{i+1}\right|$ comparable pairs between X_{i} and X_{i+1}. By (1.10), posets in $\mathscr{P}_{n, Q}$ have [$\left.\mathrm{d}(Q) n^{2}\right]$ comparable pairs, where $\mathrm{d}(Q)$ is still defined via the λ_{i} and p as in (1.8). Obviously, λ_{i}^{\prime} and $p_{i, i+1}^{\prime}$ will now depend on n, but, as observed in (1.11), they will always be very close to λ_{i} and p. Hence the estimate for $\left|\mathscr{P}_{n, Q}\right|$ from (1.9) remains true for the old definition of $\mathrm{c}(Q)$ via the λ_{i} and p together with the new definition of $\mathscr{P}_{n, Q}$ via the λ_{i}^{\prime} and $p_{i, i+1}^{\prime}$.

To see that it is possible to choose λ_{i}^{\prime} and $p_{i, i+1}^{\prime}$ as above, choose some integers n_{i} that satisfy $\left\lfloor\lambda_{i} n\right\rfloor \leqslant n_{i} \leqslant\left\lceil\lambda_{i} n\right\rceil$ and $\sum n_{i}=n$, and let $\lambda_{i}^{\prime}:=n_{i} / n$. This already implies $\left|\lambda_{i}-\lambda_{i}^{\prime}\right|=O(1 / n)$, and hence

$$
\left|\sum_{j \geqslant i+2} \lambda_{i}^{\prime} \lambda_{j}^{\prime} n^{2}-\sum_{j \geqslant i+2} \lambda_{i} \lambda_{j} n^{2}\right|=O(n)
$$

In other words, by rounding the λ_{i} we obtain a linear error in the number of comparable pairs between X_{i} and X_{j} (where $j \geqslant i+2$), which we need to balance in order to guarantee (1.10). The balancing can be done by slightly varying the number of comparable pairs between X_{i} and X_{i+1} : choose $p_{i, i+1}^{\prime}$ so that $p_{i, i+1}^{\prime} \lambda_{i}^{\prime} \lambda_{i+1}^{\prime} n^{2}$ is an integer, $\mid p_{i, i+1}^{\prime} \lambda_{i}^{\prime} \lambda_{j}^{\prime} n^{2}-$ $p \lambda_{i} \lambda_{j} n^{2} \mid=O(n)$ and (1.10) is satisfied.

For a partially ordered set $P=(X, P)$ (often abbreviated as poset) and two points $x, y \in X$, we write $x \leqslant y$ if $(x, y) \in P$, and $x<y$ if $x \leqslant y$ and $x \neq y$. If $x<y$ then we say that x, y form a comparable pair, or, in abuse of notation, a relation. If neither $x \leqslant y$ nor $y \leqslant x$ then we say that x and y are incomparable and write $x \| y$. We denote by inc (x) the set of all points that are incomparable to x. Moreover we say that x is covered by y (also y covers x, or (x, y) is a cover relation) if $x<y$ and there is no point z for which $x<z$ and $z<y$ holds. In this case we write $x<: y$. On the other hand, if $x<y$ but (x, y) is not a cover relation, we write $x \ll y$ and call it a forced relation.

A subset $\left\{x_{1}, \ldots, x_{k}\right\} \subseteq X$ is called a chain if all pairs x_{i}, x_{j} are comparable. It is called
an antichain if all pairs are incomparable. In the case of a chain we write $\left[x_{1}, \ldots, x_{k}\right]$ if $x_{1}<\cdots<x_{k}$. If the complete point set X is a chain, P is called a linear order.

A point x is called maximal (respectively, minimal) if there is no point y with $x<y$ (respectively, $y<x$). A chain is called maximal if it cannot be extended to a larger chain. It is called maximum if no other chain contains more points. The height of a poset is the number of points in a maximum chain.

With a poset $P=(X, P)$ we associate the comparability digraph G and the cover graph G^{\prime}. The vertex-sets of both graphs are given by X, the edges (x, y) in G are formed by the comparable pairs $x<y$ in P, while the edges $\{x, y\}$ in G^{\prime} are formed by the cover relations $x<: y$ in P.

2. Proof of Lemma 1.3

For a poset P, denote by $\sigma(P)$ the number of comparable pairs, by $\sigma_{\infty}(P)$ the number of incomparable pairs, and by $\sigma_{1}(P)$ the number of cover relations in P. Every pair is counted only once.

Proof of Lemma 1.3. Let C_{1}, \ldots, C_{ℓ} be a chain decomposition of P that is obtained by recursively removing maximum chains from P. Hence we have that $\left|C_{1}\right| \geqslant \cdots \geqslant\left|C_{\ell}\right|$ and furthermore that C_{i} is a maximal chain in $P-C_{1}-\cdots-C_{i-1}$ for all $i \in[\ell]$. Let $c_{i}:=\left|C_{i}\right|$. Note that $c_{1}=\operatorname{height}(P)=k$. The underlying idea of the proof is to glue the chains C_{i} together again, but in such a way as to control carefully the parameters σ and σ_{1}.

We first give bounds on $\sigma_{1}(P)$ and $\sigma_{\infty}(P)$. Within each chain C_{i} there can be at most $c_{i}-1$ cover relations. Denote the number of cover relations between two chains C_{i} and C_{j} with $i<j$ by $\sigma_{1}\left(C_{i}, C_{j}\right)$. Hence

$$
\begin{equation*}
\sigma_{1}(P) \leqslant \sum_{i=1}^{\ell}\left(c_{i}-1\right)+\sum_{i<j} \sigma_{1}\left(C_{i}, C_{j}\right) \tag{2.1}
\end{equation*}
$$

and we claim that

$$
\sigma_{1}\left(C_{i}, C_{j}\right) \leqslant \begin{cases}2 c_{j}-2, & \text { if } c_{i}=c_{j} \tag{2.2}\\ 2 c_{j}-1, & \text { if } c_{i}=c_{j}+1 \\ 2 c_{j}, & \text { always }\end{cases}
$$

The best way to see this might be to view this as a bipartite graph with vertex-sets C_{i}, C_{j} where an edge represents a cover relation. Since each point in one chain can cover at most one point and can be covered by at most one point from the other chain, the graph has maximum degree at most 2 . Let $C_{i}=\left[x_{c_{i}}, \ldots, x_{1}\right]$ and $C_{j}=\left[y_{c_{j}}, \ldots, y_{1}\right]$. Then x_{1} cannot be covered by any element in C_{j} and $x_{c_{i}}$ cannot cover any element in C_{j} (otherwise C_{i} would not be maximal), so they have degree at most one. Hence the sum of the degrees in C_{i} is bounded from above by $2 c_{i}-2$ (which settles the first case of the claim) and the sum of the degrees in C_{j} is bounded from above by $2 c_{j}$ (which settles the third case). For the second case, where $c_{i}=c_{j}+1$, the only possibility that might contradict our claim would be if $\sigma_{1}\left(C_{i}, C_{j}\right)=2 c_{j}=2 c_{i}-2$, implying that all points in C_{i} and C_{j} indeed have degree 2 except for x_{1} and $x_{c_{i}}$, which have degree 1 . Now if x_{1} did cover y_{i} for any
$i>1$, then the point y_{1} could not be covered, hence $y_{1}<: x_{1}$. Similarly y_{1} cannot cover any point other than x_{2}, for otherwise x_{2} could not be covered. Thus $x_{2}<: y_{1}$. But now $\left[x_{c_{i}}, \ldots, x_{3}, x_{2}, y_{1}, x_{1}\right]$ contradicts the maximality of C_{i}. This completes the proof of (2.2).

To give a lower bound on $\sigma_{\infty}(P)$ note that any incomparable pair in $C_{i} \cup C_{j}$ must obviously have one point in C_{i} and one point in C_{j}. Denote the number of such pairs by $\sigma_{\infty}\left(C_{i}, C_{j}\right)$. We claim that

$$
\begin{equation*}
\sigma_{\infty}\left(C_{i}, C_{j}\right) \geqslant c_{j} \tag{2.3}
\end{equation*}
$$

Suppose that a point $y \in C_{j}$ were comparable to all points $x \in C_{i}$. This would imply the existence of some index t with $0 \leqslant t \leqslant c_{i}$ such that $x_{t+1}<y<x_{t}$. But then $\left[x_{c_{i}}, \ldots, x_{t+1}, y, x_{t}, \ldots, x_{1}\right]$ contradicts the maximality of C_{i}. (The cases $t=0$ and $t=c_{i}$ then correspond to $\left[x_{c_{i}}, \ldots, x_{1}, y\right]$ and $\left[y, x_{c_{i}}, \ldots, x_{1}\right]$.) Therefore every point $y \in C_{j}$ must be incomparable to at least one point $x \in C_{i}$, hence in total $\sigma_{\infty}\left(C_{i}, C_{j}\right) \geqslant c_{j}$, which proves (2.3).

If we now succeed in constructing a layer poset P^{\prime} by taking the chains C_{1}, \ldots, C_{ℓ} as 'building blocks' (which means that, again, C_{i} is a maximum chain in $P^{\prime}-C_{1}-\cdots-C_{i-1}$) and combining them in such a way that (2.1), (2.2), and (2.3) hold for P^{\prime} with equality, then

$$
\sigma_{1}\left(P^{\prime}\right) \geqslant \sigma_{1}(P)
$$

and

$$
\sigma_{\infty}\left(P^{\prime}\right) \leqslant \sigma_{\infty}(P)
$$

Observe that this would immediately imply (i) and (ii) as stated in the lemma.
To construct P^{\prime} now renumber the points in the chains C_{i} so that

$$
\begin{aligned}
& C_{i}=\left[x_{c_{i}}^{i}, \ldots, x_{4}^{i}, x_{2}^{i}, x_{1}^{i}, x_{3}^{i}, \ldots, x_{c_{i}-1}^{i}\right] \text { if } c_{i} \text { is even, } \\
& C_{i}=\left[x_{c_{i}-1}^{i}, \ldots, x_{4}^{i}, x_{2}^{i}, x_{1}^{i}, x_{3}^{i}, \ldots, x_{c_{i}}^{i}\right] \text { if } c_{i} \text { is odd. }
\end{aligned}
$$

For $s=1, \ldots, c_{1}$ we now let the sets

$$
A_{s}:=\left\{x_{s}^{i}: \text { for all } i \in[\ell] \text { where } s \leqslant c_{i}\right\}
$$

form antichains. (They constitute the layers in P^{\prime}.) Now add all cover relations in

$$
\ldots, A_{4} \times A_{2}, A_{2} \times A_{1}, A_{1} \times A_{3}, A_{3} \times A_{5}, \ldots
$$

(An alternative description of the same construction is to say that P^{\prime} is a c_{1}-layer poset with configuration $\left(\ldots, a_{4}, a_{2}, a_{1}, a_{3}, \ldots ; 1\right)$ where $a_{s}:=\left|A_{s}\right| / n$.) For an illustration of this construction see Figure 1, where only the cover relations inside the chains C_{i} and those involving x_{1}^{3} are shown.

Observe that, for any two chains C_{i} and C_{j} with $i<j$, the only point in $C_{i} \cup C_{j}$ that is incomparable to $x_{s}^{j} \in C_{j}$ is x_{s}^{i}, hence (2.3) holds with equality. Moreover it is easy to see that equality also holds in (2.1) and (2.2). Finally, by the construction of P^{\prime}, it is clear that height $\left(P^{\prime}\right)=c_{1}=k$.

3. Proof of Theorem 1.1

In order to prove the main theorem, we need a slightly more general concept of a configuration than the one used in the introduction. By a k-configuration Q we now mean a weighted poset with point set $\left\{x_{1}, \ldots, x_{k}\right\}$, where every point x_{i} carries weight λ_{i} (where $0<\lambda_{i}<1$ and $\sum_{i} \lambda_{i}=1$) and every relation (x_{i}, x_{j}) carries weight $0 \leqslant p_{i, j} \leqslant 1$. Forced relations (x_{i}, x_{j}) must all have weight $p_{i, j} \equiv 1$.

We say that a poset $P=(X, P) \in \mathscr{P}_{n}$ has k-configuration Q, if there exists a partition of its point set $X=X_{1} \cup \ldots \cup X_{k}$ into k antichains such that, for $x \in X_{i}$ and $y \in X_{j}$, one can only have $x<y$ in P if $x_{i}<x_{j}$ in Q. On the other hand, if $x_{i}<x_{j}$ in Q then there must be exactly $p_{i, j}\left|X_{i}\right|\left|X_{j}\right|$ comparable pairs $x<y$ with $x \in X_{i}$ and $y \in X_{j}$ in P. Furthermore we require that the partition classes satisfy $\left|X_{i}\right|=\lambda_{i} \cdot n$ for all i. Again, $\mathscr{P}_{n, Q}$ denotes the set of all posets in \mathscr{P}_{n} that have configuration Q. (Obviously the same remarks concerning the rounding of real numbers as in the introduction apply, so we do not repeat them here.)

A poset $P=(X, P) \in \mathscr{P}_{n}$ will be called k-partitionable if it has a k-configuration. Obviously, every poset is n-partitionable (in which case its configuration is just the poset itself), but we will be interested in partitionable posets with a constant number of classes.

If the number of points in a k-configuration Q is clear or irrelevant, we will simply speak of a configuration. A configuration Q is called linear if Q is a linear order. It is called p-uniform if there exists a $0 \leqslant p \leqslant 1$ such that $p_{i, j} \equiv p$ for all cover relations (x_{i}, x_{j}) in Q. The unique (up to isomorphism) complete poset P induced by a configuration Q is obtained by letting $p_{i, j} \equiv 1$ for all relations (x_{i}, x_{j}) in Q.

Comparing this with the terminology used in the introduction, a poset is a k-layer poset if it has a p-uniform linear k-configuration.

For the proof of Theorem 1.1, the following lemma makes the breakthrough by showing that every poset is 'close' to a k-partitionable poset (for some constant k).

Lemma 3.1. For every $\epsilon>0$ and every $0<d<\frac{1}{2}$, there exist two constants k_{0}, n_{0} such that, for every poset $P \in \mathscr{P}_{n, d}$ with $n \geqslant n_{0}$, there is a k-partitionable poset $P^{\prime} \in \mathscr{P}_{n, d}$ with $k \leqslant k_{0}$ that differs from P in at most ϵn^{2} relations and in which the partition classes differ in size by at most one.

The proof of this lemma is based on Szemerédi's Regularity Lemma, and shows in addition to the above properties that the partition is ϵ-regular in the usual sense (see

Section 4). It thus seems to be the natural translation of the Regularity Lemma to partial orders and may well find further applications. However, the proof of Lemma 3.1 requires some work and is different in nature from the other proofs in this section, so we defer it to the last section.

Denote by $\mathscr{P}_{n, d}^{k}$ the family of all k-partitionable posets from $\mathscr{P}_{n, d}$. Then Lemma 3.1 states that we can enumerate the set $\mathscr{P}_{n, d}$ in the following way: for every ϵ there exist two constants k_{0}, n_{0} such that, if $n \geqslant n_{0}$,

$$
\mathscr{P}_{n, d}=\bigcup_{k=1}^{k_{0}} \bigcup_{P \in \mathscr{P}_{n, d}^{k}} \Gamma_{\epsilon}(P)
$$

where $\Gamma_{\epsilon}(P)$ denotes all those posets in $\mathscr{P}_{n, d}$ that can be constructed from P by changing at most ϵn^{2} relations: these are no more than

$$
\binom{n^{2}}{\epsilon \cdot n^{2}}=2^{(1+o(1)) H(\epsilon) n^{2}}
$$

where, as before, $H(\epsilon)$ denotes the entropy function. Thus the following corollary holds.
Corollary 3.2. For every $\epsilon>0$ there exists a constant k_{0} such that

$$
\left|\mathscr{P}_{n, d}\right|=2^{(1+o(1)) H(\epsilon) n^{2}} \cdot \sum_{k=1}^{k_{0}}\left|\mathscr{P}_{n, d}^{k}\right| .
$$

For a given configuration we would like to count the number of different posets that have this configuration. The following is no more than a generalization of the discussion in the introduction. Let P be a k-partitionable poset with partition X_{1}, \ldots, X_{k} and let Q be its configuration with point set $\left\{x_{1}, \ldots, x_{k}\right\}$. When counting the number of posets with configuration Q it is clear that the degree of freedom we have lies in where we place the $p_{i, j}\left|X_{i}\right|\left|X_{j}\right|$ relations between X_{i} and X_{j} when $x_{i}<: x_{j}$ in Q. Hence the number is approximately

$$
\prod_{x_{i}<: x_{j}}\binom{\lambda_{i} \lambda_{j} n^{2}}{p_{i, j} \cdot \lambda_{i} \lambda_{j} n^{2}}=2^{\sum_{i, j} H\left(p_{i, j}\right) \lambda_{i} \lambda_{j} n^{2}+o\left(n^{2}\right)} .
$$

where the sum is taken over all pairs i, j with $x_{i}<: x_{j}$. (Again, we wasted a factor of $O(n!)=O\left(2^{n \log _{2} n}\right)$ since we did not assign points to classes.) Let

$$
\mathrm{c}(Q):=\sum_{x_{i}<: x_{j}} H\left(p_{i, j}\right) \lambda_{i} \lambda_{j}
$$

Observe that Q determines the total number of relations in P. It must have $d n^{2}$ relations where

$$
d=\mathrm{d}(Q):=\sum_{x_{i} \ll x_{j}} \lambda_{i} \lambda_{j}+\sum_{x_{i}<: x_{j}} p_{i, j} \lambda_{i} \lambda_{j} .
$$

We will refer to these parameters as the c-value and the d-value of the configuration Q. A configuration is called d-significant if it has d -value d and if there is no other configuration (possibly with a different number of partition classes) that has the same d-value and a
higher c-value. Sometimes we only say that a configuration Q is significant - obviously this means that it is $\mathrm{d}(Q)$-significant.

Notice that since k is a constant and independent of n, there are not actually all that many different k-configurations: there are less than $2^{k^{2} / 2}$ posets, for each X_{i} there is a choice of at most n values to determine $\left|X_{i}\right|$. Finally, for each pair $\left(X_{i}, X_{j}\right)$ there is a choice of less than n^{2} values to determine the number of relations between X_{i} and X_{j}. Therefore in total there are $2^{o\left(n^{2}\right)}$ different k-configurations. Hence, if Q is a d-significant configuration then

$$
\left|\mathscr{P}_{n, d}^{k}\right|=\sum_{Q^{\prime}} 2^{c\left(Q^{\prime}\right) n^{2}}=2^{c(Q) \cdot n^{2}+o\left(n^{2}\right)}
$$

where the sum is taken over all k-configurations Q^{\prime} with $\mathrm{d}\left(Q^{\prime}\right)=d$. Together with Corollary 3.2 this now proves the following lemma.

Lemma 3.3. For any $0<d<\frac{1}{2}$ let Q be a d-significant configuration. Then

$$
\left|\mathscr{P}_{n, d}\right|=\left|\mathscr{P}_{n, Q}\right| 2^{o\left(n^{2}\right)}=2^{c(Q) \cdot n^{2}+o\left(n^{2}\right)}
$$

Comparing our present position as stated in Lemma 3.3 with our aim as stated in Theorem 1.1, it now suffices to show that for each d-significant configuration Q there exists a p-uniform linear configuration Q^{\prime} with $\mathrm{d}\left(Q^{\prime}\right)=\mathrm{d}(Q)$ and $\mathrm{c}\left(Q^{\prime}\right) \geqslant \mathrm{c}(Q)$.

Lemma 3.4. Any significant configuration Q must be p-uniform for some $p \in[0,1]$.

Proof. Assume without loss of generality that we have the cover relations $x_{1}<$: x_{3} with weight p_{1} and $x_{2}<: x_{4}$ with weight p_{2}. Suppose that $p_{1} \neq p_{2}$. Let

$$
p^{\prime}:=\frac{p_{1} \lambda_{1} \lambda_{3}+p_{2} \lambda_{2} \lambda_{4}}{\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{4}}
$$

and consider the configuration Q^{\prime} derived from Q by replacing both p_{1} and p_{2} by p^{\prime}. In Q as well as in Q^{\prime}, the cover relations $x_{1}<: x_{3}$ and $x_{2}<: x_{4}$ together contribute

$$
p_{1} \lambda_{1} \lambda_{3}+p_{2} \lambda_{2} \lambda_{4}
$$

to $\mathrm{d}(Q)$ and $\mathrm{d}\left(Q^{\prime}\right)$ respectively, so Q and Q^{\prime} have the same d -value. But because of the concavity of $H(x)$ we have that

$$
H\left(p_{1}\right) \lambda_{1} \lambda_{3}+H\left(p_{2}\right) \lambda_{2} \lambda_{4}<H\left(\frac{p_{1} \lambda_{1} \lambda_{3}+p_{2} \lambda_{2} \lambda_{4}}{\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{4}}\right)\left(\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{4}\right)=H\left(p^{\prime}\right)\left(\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{4}\right)
$$

which means that the c-value of Q is smaller than that of Q^{\prime}.

In other words, in a significant configuration Q all cover relations carry the same weight, which we will call the density of Q and denote by $p=\mathrm{p}(Q)$.

Recall that we denote by $\sigma(P)$ the number of comparable pairs in P and by $\sigma_{1}(P)$ the
number of cover relations in P. Now, similarly for configuration Q, let

$$
\begin{gathered}
\sigma_{1}(Q):=\sum_{x_{i}<: x_{j}} \lambda_{i} \lambda_{j}, \quad \sigma_{2}(Q):=\sum_{x_{i} \ll x_{j}} \lambda_{i} \lambda_{j}, \quad \sigma(Q):=\sigma_{1}(Q)+\sigma_{2}(Q), \\
\sigma_{0}(Q):=\sum_{i=1}^{k}\left(\lambda_{i}\right)^{2}, \quad \sigma_{\infty}(Q):=\sum_{x_{i} \| x_{j}} \lambda_{i} \lambda_{j} .
\end{gathered}
$$

Notice that for a poset $P \in \mathscr{P}_{n, Q}$, a pair $x_{i} \ll x_{j}$ in Q contributes $\lambda_{i} \lambda_{j}$ to $\sigma(Q)$ and $\lambda_{i} \lambda_{j} n^{2}$ to $\sigma(P)$. Similarly, a pair $x_{i}<: x_{j}$ in Q contributes $\lambda_{i} \lambda_{j}$ to $\sigma_{1}(Q)$ and $p_{i, j} \lambda_{i} \lambda_{j} n^{2}$ to $\sigma_{1}(P)$. Thus we have

$$
\sigma(P) \leqslant \sigma(Q) \cdot n^{2}, \quad \sigma_{1}(P) \leqslant \sigma_{1}(Q) \cdot n^{2}
$$

and equality holds if and only if for all $x_{i}<x_{j}$ in Q all cover relations between the two partition classes X_{i} and X_{j} exist in P, i.e., if P is the complete poset induced by Q. The next step is a corollary derived from Lemma 1.3.

Corollary 3.5. For every k-configuration Q there exists a linear k^{\prime}-configuration Q^{\prime} with $k^{\prime} \leqslant k$ such that

$$
\sigma_{1}\left(Q^{\prime}\right) \geqslant \sigma_{1}(Q) \quad \text { and } \quad \sigma\left(Q^{\prime}\right) \geqslant \sigma(Q) .
$$

Proof of Corollary 3.5. Denote by P the complete k-partitionable poset on n points induced by Q. Apply Lemma 1.3 to P and obtain a k^{\prime}-layer poset P^{\prime}. Let Q^{\prime} be the (linear) configuration of P^{\prime}. Obviously

$$
\sigma_{1}\left(Q^{\prime}\right) \geqslant \frac{\sigma_{1}\left(P^{\prime}\right)}{n^{2}} \geqslant \frac{\sigma_{1}(P)}{n^{2}}=\sigma_{1}(Q),
$$

and

$$
\sigma\left(Q^{\prime}\right) \geqslant \frac{\sigma\left(P^{\prime}\right)}{n^{2}} \geqslant \frac{\sigma(P)}{n^{2}}=\sigma(Q) .
$$

Now we use the new terminology to simplify the expressions for $\mathrm{c}(Q)$ and $\mathrm{d}(Q)$. We then prove Theorem 1.1 for $d \in\left(0, \frac{1}{8}\right]$. Note that since $\sum_{i=1}^{k} \lambda_{i}=1$ we have

$$
\begin{equation*}
2 \cdot\left(\sigma_{1}(Q)+\sigma_{2}(Q)+\sigma_{\infty}(Q)\right)+\sigma_{0}(Q)=1 . \tag{3.1}
\end{equation*}
$$

For a significant configuration we can (using Lemma 3.4) now write

$$
\begin{align*}
& \mathrm{c}(Q)=H(p) \cdot \sigma_{1}(Q) \quad \text { and } \tag{3.2}\\
& \mathrm{d}(Q)=p \cdot \sigma_{1}(Q)+\sigma_{2}(Q)=\frac{1}{2}-\frac{1}{2} \sigma_{0}(Q)-(1-p) \sigma_{1}(Q)-\sigma_{\infty}(Q), \tag{3.3}
\end{align*}
$$

where $p=\mathrm{p}(Q)$. Observe that for every configuration Q we must have

$$
\begin{equation*}
\sigma_{1}(Q) \leqslant \frac{1}{4} \tag{3.4}
\end{equation*}
$$

This can be easily established as follows. Consider the cover graph of Q with weight λ_{i} on the vertex x_{i}. Denote by γ_{i} the sum of the weights of all neighbours of x_{i}. We propose the following process. As long as there are two non-adjacent vertices x_{i}, x_{j} with positive
weights λ_{i}, λ_{j}, take the vertex with smaller neighbourhood weight (say $\gamma_{i} \leqslant \gamma_{j}$) and shift its weight completely to the other vertex: $\lambda_{i}:=0, \lambda_{j}:=\lambda_{j}+\lambda_{i}$. We will check the following two observations.
(1) During this process $\sigma_{1}(Q)$ does not decrease.
(2) After the process there will be only two vertices with positive weight.

Hence at the end $\sigma_{1} \leqslant \frac{1}{4}$, which would prove the proposition.
To check (1), simply observe that during one step of the process the loss in σ_{1} is $\lambda_{i} \cdot \gamma_{i}$ and the win is $\lambda_{i} \cdot \gamma_{j}$; hence in total we do not lose anything. As for (2), since the graph is triangle-free, if there are at least three vertices with positive weight, we will always find two non-adjacent ones.

Proof of Theorem $\mathbf{1 . 1}$ for $\mathbf{0}<\boldsymbol{d} \leqslant \frac{\mathbf{1}}{\mathbf{8}}$. By Lemma 3.3 it suffices to prove that, for an arbitrary d-significant configuration Q^{\prime} (which, by Lemma 3.4, must be p-uniform), there exists a linear configuration Q with $\mathrm{d}(Q)=\mathrm{d}\left(Q^{\prime}\right)$ and $\mathrm{c}(Q) \geqslant \mathrm{c}\left(Q^{\prime}\right)$. We claim that choosing Q as in (1.7) will succeed. Q has point set $\left\{x_{1}, x_{2}\right\}$ with

$$
\begin{gathered}
x_{1}<: x_{2}, \quad \lambda_{1}:=\lambda_{2}:=\frac{1}{2} \\
p:=\mathrm{p}(Q):=4 d=4 p^{\prime} \sigma_{1}\left(Q^{\prime}\right)+4 \sigma_{2}\left(Q^{\prime}\right),
\end{gathered}
$$

where $p^{\prime}=\mathrm{p}\left(Q^{\prime}\right)$. Obviously $\mathrm{d}(Q)=\frac{1}{4} p=d=\mathrm{d}\left(Q^{\prime}\right)$ and our aim is to show that $\mathrm{c}(Q) \geqslant \mathrm{c}\left(Q^{\prime}\right)$. Observe that $d \leqslant \frac{1}{8}$ implies that $p \leqslant \frac{1}{2}$, hence for any $p^{\prime \prime} \leqslant p$ we have $H(p) \geqslant H\left(p^{\prime \prime}\right)$. Furthermore, by the concavity of $H(x)$ we know that, for any $0<\alpha \leqslant 1$, we have that $H(\alpha \cdot x) \geqslant \alpha \cdot H(x)$. Equipped with these facts we abbreviate $\sigma_{1}^{\prime}:=\sigma_{1}\left(Q^{\prime}\right)$ and $\sigma_{2}^{\prime}:=\sigma_{2}\left(Q^{\prime}\right)$ and obtain

$$
\begin{aligned}
c(Q) & =H(p) \cdot \lambda_{1} \lambda_{2}=H\left(4 \sigma_{2}^{\prime}+4 p^{\prime} \sigma_{1}^{\prime}\right) \cdot \frac{1}{4} \\
& \geqslant H\left(p^{\prime} \cdot 4 \sigma_{1}^{\prime}\right) \cdot \frac{1}{4} \geqslant H\left(p^{\prime}\right) \sigma_{1}^{\prime}=\mathrm{c}\left(Q^{\prime}\right)
\end{aligned}
$$

where we first applied the definition of p, λ_{1}, and λ_{2}, then used $p \leqslant \frac{1}{2}$, and finally relied on $4 \sigma_{1}^{\prime} \leqslant 1$, which is guaranteed by observation (3.4).

Hence we can from now on assume that $d \geqslant \frac{1}{8}$. In the following lemmas we will often start from a configuration Q and build a new configuration Q^{\prime}, possibly with a different number of partition classes, different weights and relations. Often we will shift weight ϵ from one point x_{i} to another point x_{j}, i.e., $\lambda\left(x_{i}\right):=\lambda\left(x_{i}\right)-\epsilon$ and $\lambda\left(x_{j}\right):=\lambda\left(x_{j}\right)+\epsilon$. When doing so, we will sometimes refer to the original weights as λ_{i}, and to the new weights as $\lambda\left(x_{i}\right)$. Since we will be moving from one linear configuration to another, $\sigma_{\infty}(Q)=0$ will always hold. Therefore (3.1) now stands as

$$
\begin{equation*}
2 \sigma(Q)+\sigma_{0}(Q)=1 \tag{3.5}
\end{equation*}
$$

Another trivial observation: If $\lambda_{i} \geqslant \lambda_{j}$ then shifting any weight $0 \leqslant \epsilon \leqslant \lambda_{i}-\lambda_{j}$ from x_{i} to x_{j} will not increase $\sigma_{0}(Q)$:

$$
\begin{equation*}
\sigma_{0}\left(Q^{\prime}\right)-\sigma_{0}(Q)=\left(\lambda_{i}-\epsilon\right)^{2}+\left(\lambda_{j}+\epsilon\right)^{2}-\lambda_{i}^{2}-\lambda_{j}^{2}=-2 \epsilon\left(\lambda_{i}-\lambda_{j}-\epsilon\right) \leqslant 0 \tag{3.6}
\end{equation*}
$$

Lemma 3.6. For every linear configuration Q and for every $0<s \leqslant \sigma_{1}(Q)$ there exists a linear configuration Q^{\prime} such that

$$
\sigma\left(Q^{\prime}\right) \geqslant \sigma(Q) \quad \text { and } \quad \sigma_{1}\left(Q^{\prime}\right)=s
$$

Proof. Assume w.l.o.g. that $s<\sigma_{1}(Q)$, for otherwise $Q^{\prime}:=Q$ does the job. Let $Q=$ $\left[x_{k}, \ldots, x_{1}\right]$. We will shift weights several times, so denote by λ_{i} the original weights in Q. Let ϵ be such that $\epsilon<\lambda_{i}-2 \epsilon k$ for all $i \in[k]$. In a first round we add $2 k$ new points $y_{1}, \ldots, y_{2 k}$ and obtain a new configuration $\left[x_{k}, \ldots, x_{1}, y_{1}, \ldots, y_{2 k}\right]$. To the new points we assign weight $\lambda\left(y_{j}\right):=\epsilon$ for all $j \in[2 k]$ and reduce the weight of x_{1} by $2 \epsilon k$. Using observation (3.6) it is clear that $\sigma_{0}\left(Q^{\prime}\right) \leqslant \sigma_{0}(Q)$. Hence by (3.5) $\sigma\left(Q^{\prime}\right) \geqslant \sigma(Q)$.

In a second round, for all $i \in[k]$ consecutively, shift weight ϵ_{i} from x_{i} to $y_{2 i}$, where $0 \leqslant \epsilon_{i} \leqslant \lambda\left(x_{i}\right)-\epsilon$. As before, use observation (3.6) to see that $\sigma_{0}\left(Q^{\prime}\right) \leqslant \sigma_{0}(Q)$ and therefore, by (3.5), $\sigma\left(Q^{\prime}\right) \geqslant \sigma(Q)$.

So, no matter how we choose ϵ and all the ϵ_{i} (provided they satisfy the above inequalities), the first assertion of the lemma is guaranteed. For a particular choice of ϵ make ϵ_{i} as large as possible, namely $\epsilon_{1}:=\lambda_{1}-2 \epsilon k-\epsilon$ and $\epsilon_{i}:=\lambda_{i}-\epsilon$ for $2 \leqslant i \leqslant k$. Then we have $\lambda\left(x_{i}\right)=\lambda\left(y_{2 i-1}\right)=\epsilon$ for all $i \in[k], \lambda\left(y_{2}\right)=\lambda_{1}-2 \epsilon k$ and $\lambda\left(y_{2 i}\right)=\lambda_{i}$ and hence an upper bound on $\sigma_{1}\left(Q^{\prime}\right)$ is given by

$$
\sigma_{1}\left(Q^{\prime}\right) \leqslant \epsilon^{2} \cdot k+\sum_{i=1}^{k} 2 \epsilon \cdot \lambda_{i} \leqslant \epsilon \cdot(k+2)
$$

This means that for a given s it is possible to choose ϵ sufficiently small that the above two-round process can force $\sigma_{1}\left(Q^{\prime}\right)$ to become arbitrarily small. To ensure that the process produces $\sigma_{1}\left(Q^{\prime}\right)=s$, we choose ϵ so small that after the first round we still have $\sigma_{1}\left(Q^{\prime}\right)>s$ and $\epsilon(k+2)<s$. Then continuously increase the ϵ_{i} until at some point the second round must produce a Q^{\prime} with $\sigma_{1}\left(Q^{\prime}\right)=s$.

Corollary 3.7. For every configuration Q there exists a linear configuration $Q^{\prime \prime}$ satisfying

$$
\sigma_{1}\left(Q^{\prime \prime}\right)=\sigma_{1}(Q), \quad \sigma_{2}\left(Q^{\prime \prime}\right) \geqslant \sigma_{2}(Q)
$$

Proof. Apply Corollary 3.5 to Q and obtain a linear configuration Q^{\prime} with

$$
\sigma_{1}\left(Q^{\prime}\right) \geqslant \sigma_{1}(Q) \quad \text { and } \quad \sigma\left(Q^{\prime}\right) \geqslant \sigma(Q)
$$

Now apply Lemma 3.6 to Q^{\prime}, setting $s:=\sigma_{1}(Q) \leqslant \sigma_{1}\left(Q^{\prime}\right)$. We obtain a linear configuration $Q^{\prime \prime}$ with

$$
\sigma_{1}\left(Q^{\prime \prime}\right)=s=\sigma_{1}(Q), \quad \sigma\left(Q^{\prime \prime}\right) \geqslant \sigma\left(Q^{\prime}\right) \geqslant \sigma(Q)
$$

and therefore

$$
\sigma_{2}\left(Q^{\prime \prime}\right) \geqslant \sigma_{2}(Q)
$$

as we were required to prove.

Lemma 3.8. For every linear configuration Q and for every $0 \leqslant s \leqslant \sigma_{2}(Q)$ there exists a linear configuration Q^{\prime} satisfying

$$
\sigma_{1}\left(Q^{\prime}\right) \geqslant \sigma_{1}(Q), \quad \sigma_{2}\left(Q^{\prime}\right)=s
$$

Proof. Let $Q=\left[x_{k}, \ldots, x_{1}\right]$. Again denote by $\lambda_{i}:=\lambda\left(x_{i}\right)$ the original weights. Start with x_{1} and shift an increasing amount ϵ_{1} of weight to x_{3}, until $\lambda\left(x_{1}\right)=0$ and hence $\lambda\left(x_{3}\right)=\lambda_{3}+\lambda_{1}$. Then move on to x_{2}, shifting weight ϵ_{2} to x_{4} until $\lambda\left(x_{2}\right)=0$. Continue until the final step, where weight ϵ_{k-2} is shifted from x_{k-2} to x_{k}.

Notice that, whenever weight ϵ_{i} is shifted from x_{i} to x_{i+2}, we can be sure that x_{i} is the maximum of the chain and that the only point covered by x_{i} is x_{i+1}, which in turn also covers x_{i+2}. So if Q^{\prime} denotes the new configuration, we have $\sigma_{1}\left(Q^{\prime}\right) \geqslant \sigma_{1}(Q)$ at any moment of the process.

Observe that, if the process runs until the very end, Q^{\prime} has only two points x_{k-1} and x_{k}, and hence $\sigma_{2}\left(Q^{\prime}\right)=0$. But since this process is continuous it must at one point produce a Q^{\prime} with $\sigma_{2}\left(Q^{\prime}\right)=s$ for any $0 \leqslant s \leqslant \sigma_{2}(Q)$.

Now we come back to the d- and c-value of a p-uniform linear configuration Q. Recall that they are given by $\mathrm{d}(Q)=p \cdot \sigma_{1}(Q)+\sigma_{2}(Q)$ and $\mathrm{c}(Q)=H(p) \cdot \sigma_{1}(Q)$, where $p=\mathrm{p}(Q)$.

Corollary 3.9. For every linear configuration Q and for every d with $\frac{1}{8} \leqslant d \leqslant \mathrm{~d}(Q)$ there exists a linear configuration Q^{\prime} such that

$$
\mathrm{c}\left(Q^{\prime}\right) \geqslant \mathrm{c}(Q), \quad \mathrm{d}\left(Q^{\prime}\right)=d
$$

Proof. Apply Lemma 3.8 to Q, with s slowly decreasing from $\sigma_{2}(Q)$ to 0 . This means that on the one hand $\sigma_{1}(Q)$ does not decrease and thus $\mathrm{c}(Q)$ does not; and on the other hand it means that simultaneously $\sigma_{2}(Q)$ steadily approaches 0 . Having arrived there, denote the new configuration by Q^{\prime} and observe that $\mathrm{c}\left(Q^{\prime}\right) \geqslant \mathrm{c}(Q)$ and $\mathrm{d}\left(Q^{\prime}\right)=p \sigma_{1}\left(Q^{\prime}\right)$, where $p=\mathrm{p}(Q)$. If $p>1 / 2$ then let p approach $1 / 2$, thereby increasing $\mathrm{c}\left(Q^{\prime}\right)=H(p) \cdot \sigma_{1}\left(Q^{\prime}\right)$ and forcing $\mathrm{d}\left(Q^{\prime}\right)$ to approach $\frac{1}{2} \sigma_{1}\left(Q^{\prime}\right)$. Owing to (3.4) we know that

$$
\frac{1}{2} \cdot \sigma_{1}\left(Q^{\prime}\right) \leqslant \frac{1}{8} \leqslant d
$$

Hence this process must reach the point where $\mathrm{d}\left(Q^{\prime}\right)=d$ while maintaining at all times $c\left(Q^{\prime}\right) \geqslant c(Q)$.

The corollary above now allows us to prove the remaining part of our main theorem.

Proof of Theorem $\mathbf{1 . 1}$ for $\boldsymbol{d}>\frac{\mathbf{1}}{\mathbf{8}}$. Consider an arbitrary d-significant configuration Q. By Lemma 3.3 it suffices to show that there exists a linear configuration Q^{\prime} with $\mathrm{d}\left(Q^{\prime}\right)=\mathrm{d}(Q)$ and $\mathrm{c}\left(Q^{\prime}\right) \geqslant \mathrm{c}(Q)$. By Corollary 3.7 there exists a linear configuration $Q^{\prime \prime}$ with

$$
\sigma_{1}\left(Q^{\prime \prime}\right)=\sigma_{1}(Q) \quad \text { and } \quad \sigma_{2}\left(Q^{\prime \prime}\right) \geqslant \sigma_{2}(Q)
$$

Setting $\mathrm{p}\left(Q^{\prime \prime}\right):=\mathrm{p}(Q)$, this immediately implies that

$$
\mathrm{c}\left(Q^{\prime \prime}\right)=\mathrm{c}(Q) \quad \text { and } \quad \mathrm{d}\left(Q^{\prime \prime}\right) \geqslant \mathrm{d}(Q)
$$

Now apply Corollary 3.9 to $Q^{\prime \prime}$ and d. Hence there must be a linear configuration Q^{\prime} with

$$
\mathrm{d}\left(Q^{\prime}\right)=d=\mathrm{d}(Q) \quad \text { and } \quad \mathrm{c}\left(Q^{\prime}\right) \geqslant \mathrm{c}\left(Q^{\prime \prime}\right)=\mathrm{c}(Q)
$$

We conclude this section with the proof of Lemma 1.2.

Proof of Lemma 1.2. Suppose to the contrary that there were a significant linear configuration Q with $\mathrm{d}(Q) \geqslant \frac{1}{8}$ and $p:=\mathrm{p}(Q)<\frac{1}{2}$. Then increase p very slightly, thereby causing $H(p)$ to increase and thus both $\mathrm{d}(Q)$ and $\mathrm{c}(Q)$ must increase. Call the new configuration $Q^{\prime \prime}$ and set $d:=\mathrm{d}(Q)$ so that

$$
\frac{1}{8} \leqslant d<\mathrm{d}\left(Q^{\prime \prime}\right)
$$

Applying Corollary 3.9 to $Q^{\prime \prime}$ and d, there must be a linear configuration Q^{\prime} with

$$
\mathrm{d}\left(Q^{\prime}\right)=d=\mathrm{d}(Q) \quad \text { and } \quad \mathrm{c}\left(Q^{\prime}\right) \geqslant \mathrm{c}\left(Q^{\prime \prime}\right)>\mathrm{c}(Q)
$$

Hence Q cannot be significant.

4. Proof of Lemma 3.1

We start with a simple lemma which states that one can add or remove relations to a partitionable poset without forcing or destroying other relations, and still maintain a partitionable poset.

Lemma 4.1. For any two constants d, d^{\prime} in the interval $\left(0, \frac{1}{2}\right)$ and any $k \in \mathbb{N}$, there exists $a \bar{k}=\bar{k}\left(d, d^{\prime}, k\right) \in \mathbb{N}$ such that the following holds. For every k-partitionable poset $P \in \mathscr{P}_{n, d}$ whose partition classes differ in size by at most one, there exists a k^{\prime}-partitionable poset $P^{\prime} \in \mathscr{P}_{n, d^{\prime}}$ with $k \leqslant k^{\prime} \leqslant \bar{k}$. The new poset P^{\prime} differs from P in exactly $\left|d^{\prime}-d\right| \cdot n^{2}$ relations and, again, its partition classes differ in size by at most one.

Proof. Let Q be the configuration of P. If $d^{\prime}<d$, then first remove relations between X_{i} and X_{j} whenever $x_{i}<: x_{j}$ in Q. If in all such pairs no relations are left, then this will turn previously forced relations in Q into cover relations and so the process can continue until there are no relations at all.

If $d^{\prime}>d$, then we will have to add relations and there are three ways to do so:
(i) whenever $x_{i}<: x_{j}$ in Q simply add new relations between X_{i} and X_{j}. If this is not enough, then
(ii) whenever $x_{i} \| x_{j}$ in Q, add new relations between X_{i} and X_{j}. Here some care is needed to avoid the forcing of other relations: let x_{i} be a point in Q with $\operatorname{inc}\left(x_{i}\right) \neq \emptyset$ and choose x_{j} to be a point that is maximal within $\operatorname{inc}\left(x_{i}\right)$. Again, if this is not enough, then
(iii) split all partition classes X_{i} into two parts X_{i}^{-}and X_{i}^{+}so that X_{i}^{-}and X_{i}^{+}differ in size by at most one, maintain all previous relations and add new relations $x<y$ where $x \in X_{i}^{-}$and $y \in X_{i}^{+}$.

Repeating and combining these steps produces a k^{\prime}-partitionable poset $P^{\prime} \in \mathscr{P}_{n, d^{\prime}}$ where d^{\prime} can be arbitrarily close to $\frac{1}{2}$. Observe also that, in order to obtain a density of at most $d^{\prime}<\frac{1}{2}$, we can bound k^{\prime} by a constant that depends only on d, d^{\prime} and k, but not on n.

For the proof of Lemma 3.1 we need Szemerédi's Regularity Lemma and some related definitions. Let $G=(V, E)$ be a graph and consider two disjoint subsets $A, B \subset V$. Denote by $E(A, B)$ the set of those edges in E that have one endpoint in A and one endpoint in B. Then the density $d(A, B)$ is defined as

$$
d(A, B)=\frac{|E(A, B)|}{|A| \cdot|B|}
$$

For $\epsilon \in(0,1)$ a pair A, B is called ϵ-regular if, for every $X \subseteq A$ and $Y \subseteq B$ satisfying

$$
|X|>\epsilon|A| \quad \text { and } \quad|Y|>\epsilon|B|
$$

it is true that

$$
|d(X, Y)-d(A, B)|<\epsilon
$$

To say it roughly, the Regularity Lemma [7] guarantees that, for every graph, one can find a partition of its vertex-set into classes of almost the same size such that almost all pairs are regular. Natural modifications to the original proof easily give the following variant, for which we need a few more definitions.

Let G_{1}, \ldots, G_{r} be spanning subgraphs of a graph $G=(V, E)$. In this setting a partition $V=X_{1} \cup \ldots \cup X_{k}$ is called ϵ-regular if the classes X_{i} differ in size by at most 1 and all but at most ϵk^{2} pairs are ϵ-regular for all G_{i}. Such a partition is said to refine another partition $V=V_{1} \cup \ldots \cup V_{k^{\prime}}$ if for each $1 \leqslant i \leqslant k$ there exists a $1 \leqslant j \leqslant k^{\prime}$ so that $X_{i} \subseteq V_{j}$.

Theorem 4.2 (Szemerédi's Regularity Lemma). For every $\tilde{\epsilon}>0$ and $\ell, r \geqslant 1$ there exist two positive integers $\tilde{n}_{0}=\tilde{n}_{0}(\tilde{\epsilon}, \ell, r)$ and $\tilde{k}_{0}=\tilde{k}_{0}(\tilde{\epsilon}, \ell, r)$ such that the following is true. If $G=(X, E)$ is a graph with $|X| \geqslant \tilde{n}_{0}$ and $X=X_{1}^{\prime} \cup \ldots \cup X_{\ell}^{\prime}$ is a partition where the classes differ in size by at most one, and if G_{1}, \ldots, G_{r} are spanning subgraphs of G, then there exists an $\tilde{\epsilon}$-regular partition $X=X_{1} \cup \ldots \cup X_{k}$ with $\ell \leqslant k \leqslant \tilde{k}_{0}$ that refines the previous partition.

Proof of Lemma 3.1. Let $G=(X, E)$ be the comparability digraph of P.
Set $\tilde{\epsilon}:=\epsilon / 12$. Choose an integer k^{\prime} so that $1 / k^{\prime}<\tilde{\epsilon}$ and take an arbitrary partition $X=X_{1}^{\prime} \cup \ldots \cup X_{k^{\prime}}^{\prime}$ satisfying

$$
\left\lfloor\frac{n}{k^{\prime}}\right\rfloor \leqslant\left|X_{i}^{\prime}\right| \leqslant\left\lceil\frac{n}{k^{\prime}}\right\rceil \quad \text { for all } 1 \leqslant i \leqslant k^{\prime}
$$

Colour the edges of G in the following way. An edge (x, y) is coloured in blue if $x<: y$ in P. Otherwise it is coloured in red. Note that for every red edge (x, y) there must be a directed path $x, z_{1}, \ldots, z_{k}, y$ with $k \geqslant 1$ of blue edges.

Since we want to turn P into a partitionable poset, we will have to remove edges from G. Obviously red edges cannot be removed without destroying the transitivity. Thus by removing a family \mathscr{F} of edges we always mean removing all blue edges in \mathscr{F} and putting a spell on the red edges in \mathscr{F} : if later red edges in \mathscr{F} turn blue, we will remove them as well. Notice that removing a blue edge results in a digraph which is the comparability digraph of a poset with one relation less.

We start by removing all edges of G that lie inside a class X_{i}^{\prime}.
By the (ordered) pair ($X_{i}^{\prime}, X_{j}^{\prime}$) we denote the bipartite graph on the vertices $X_{i}^{\prime} \cup X_{j}^{\prime}$ that contains all edges that in G leave X_{i}^{\prime} and enter X_{j}^{\prime}. (Note that in $\left(X_{i}^{\prime}, X_{j}^{\prime}\right)$ the edges are undirected.) Let

$$
E_{<}:=\bigcup_{i<j} E\left(X_{i}^{\prime}, X_{j}^{\prime}\right), \quad E_{>}:=\bigcup_{i>j} E\left(X_{i}^{\prime}, X_{j}^{\prime}\right)
$$

and consider the two graphs $G_{<}:=\left(X, E_{<}\right)$and $G_{>}:=\left(X, E_{>}\right)$.
Now apply Theorem 4.2 with parameters $\tilde{\epsilon}, \ell:=k^{\prime}$ and $r:=2$, a first partition $X=X_{1}^{\prime} \cup \ldots \cup X_{k^{\prime}}^{\prime}$ and the two spanning graphs $G_{<}$and $G_{>}$. Thus we obtain two integers \tilde{n}_{0} and \tilde{k}_{0}. Choose the constants n_{0}, k_{0} in the statement of Lemma 3.1 so that $n_{0} \geqslant \tilde{n}_{0}$ as well as $k_{0} \geqslant \bar{k}\left(d \pm \epsilon / 2, d, \tilde{k}_{0}\right)$. (The latter will enable us to apply Lemma 4.1 at the very end of our proof.) We are then guaranteed a partition

$$
X=X_{1} \cup \ldots \cup X_{k}
$$

with $k \leqslant \tilde{k}_{0}$ that refines $X=X_{1}^{\prime} \cup \ldots \cup X_{k^{\prime}}^{\prime}$ and has the property that, for all but at most $\tilde{\epsilon} k^{2}$ pairs $i<j$, both $\left(X_{i}, X_{j}\right)$ and $\left(X_{j}, X_{i}\right)$ are $\tilde{\epsilon}$-regular (and the X_{i} differ in size by at most one).

Consider the following properties of an arbitrary pair A, B.
(i) All but at most $\tilde{\epsilon}|A|$ vertices in A have degree at least $2 \tilde{\epsilon}|B|$, and analogously with the roles of A and B exchanged.
(ii) For every set $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right|>\tilde{\epsilon}|A|$ the set of neighbours $\Gamma\left(A^{\prime}\right)$ must have cardinality at least $(1-\tilde{\epsilon})|B|$, and analogously with the roles of A and B exchanged.

Any $\tilde{\epsilon}$-regular pair with density at least $3 \tilde{\epsilon}$ satisfies property (i). For if not, then denote those vertices with degree less than $2 \tilde{\epsilon}|B|$ by A^{\prime}; then $d\left(A^{\prime}, B\right)<2 \tilde{\epsilon}$ would contradict the regularity. Any $\tilde{\epsilon}$-regular pair with density at least $\tilde{\epsilon}$ satisfies property (ii); if not, then the pair $A^{\prime}, B \backslash \Gamma\left(A^{\prime}\right)$ would again contradict the regularity.

The following third property is obviously not possessed by every regular pair.
(iii) All but at most $\tilde{\epsilon}|A|$ vertices in A have degree at least $(1-\tilde{\epsilon})|B|$, and analogously with the roles of A and B exchanged.

Now call a pair $\left(X_{i}, X_{j}\right)$ good if it has properties (i) and (ii). Call it bad otherwise. Observe that (iii) implies both (i) and (ii), so a pair satisfying (iii) will always be good. Remove those edges in G that lie in a bad pair $\left(X_{i}, X_{j}\right)$ or (X_{j}, X_{i}), where $i<j$. Denote by P^{\prime} the poset that is obtained in this way. Since all $\tilde{\epsilon}$-regular pairs with density at least $3 \tilde{\epsilon}$ are good, observe that up to now at most $5 \tilde{\epsilon} n^{2}$ edges (that is, relations in P) have been
removed, namely

$$
\begin{aligned}
& \text { at most } k^{\prime}\left(\frac{n}{k^{\prime}}\right)^{2} \leqslant \tilde{\epsilon} n^{2} \text { edges inside the } X_{i}^{\prime} \text {, } \\
& \text { at most } k^{2} \cdot 3 \tilde{\epsilon} \cdot\left(\frac{n}{k}\right)^{2}=3 \tilde{\epsilon} n^{2} \text { edges inside pairs }\left(X_{i}, X_{j}\right) \text { with density less than } 3 \tilde{\epsilon} \text {, } \\
& \text { at most } \tilde{\epsilon} k^{2}\left(\frac{n}{k}\right)^{2}=\tilde{\epsilon} n^{2} \text { edges inside irregular pairs }\left(X_{i}, X_{j}\right) .
\end{aligned}
$$

Consider the digraph R with vertex-set $\left\{X_{1}, \ldots, X_{k}\right\}$ and edges $\left(X_{i}, X_{j}\right)$ if the pair (X_{i}, X_{j}) is good. We claim the following.
Claim 1. If $Y_{1}, Y_{2}, \ldots, Y_{l}$ is a dipath in R with $l \geqslant 3$, then $\left(Y_{1}, Y_{l}\right)$ has property (iii).
Claim 2. R is acyclic.
Claim 3. All the edges left in G lie in good pairs.
These claims are easily verified as follows.
Proof of Claim 1. Recall that G is still a comparability digraph, that is, $(x, y) \in E$ and $(y, z) \in E$ imply that $(x, z) \in E$. We assume that $\left(Y_{1}, Y_{2}\right)$ and $\left(Y_{2}, Y_{3}\right)$ are good pairs and prove that this implies that (Y_{1}, Y_{3}) has property (iii). Then Claim 1 follows by induction on l. As $\left(Y_{1}, Y_{2}\right)$ has property (i), all but at most $\tilde{\epsilon}\left|Y_{1}\right|$ vertices in Y_{1} have degree at least $2 \tilde{\epsilon}\left|Y_{2}\right|>\tilde{\epsilon}\left|Y_{2}\right|$. Now, since (Y_{2}, Y_{3}) has property (ii), we are done.
Proof of Claim 2. By Claim 1 we know that any cycle $Y_{1}, Y_{2}, \ldots, Y_{l-1}, Y_{1}$ implies that all but at most $\tilde{\epsilon}\left|Y_{1}\right|$ vertices in Y_{1} have at least $(1-\tilde{\epsilon})\left|Y_{1}\right|$ neighbours in Y_{1}. This in turn implies a directed cycle $y_{1}, y_{2}, \ldots, y_{l-1}, y_{1}$ in G, which is impossible, since G is the comparability digraph of P^{\prime}.

Proof of Claim 3. This is obviously true for blue edges. For red edges it might seem a little surprising at first glance, since so far we have never bothered to remove red edges. Nevertheless it is true: consider a red edge $\left(y_{1}, y_{l}\right)$ with $y_{1} \in Y_{1}$ and $y_{l} \in Y_{l}$. Then there must be a path $y_{1}, y_{2}, \ldots, y_{l}$ of blue edges. Since blue edges can only be found in good pairs, there must be a directed path Y_{1}, \ldots, Y_{l} in R. Since R is acyclic, we must have $Y_{1} \neq Y_{l}$, and Claim 1 implies that (Y_{1}, Y_{l}) is also good.
By Claims 1 and $2, R$ is a comparability digraph and we denote by Q the corresponding poset with point set $\left\{x_{1}, \ldots, x_{k}\right\}$. Then Claims 1 and 3 assert that P^{\prime} will have configuration Q if we complete all pairs (X_{i}, X_{j}) that satisfy property (iii) at the cost of at most

$$
\binom{k}{2}\left(\tilde{\epsilon} \frac{n}{\bar{k}} \cdot \frac{n}{k}+\tilde{\epsilon}_{\tilde{k}}^{n} \cdot \frac{n}{k}\right)<\tilde{\epsilon} n^{2}
$$

new relations (and then choose the weights λ_{i} and $p_{i, j}$ in Q accordingly). Note that inserting these new relations does not violate transitivity: any new edge $\left(y, y^{\prime}\right)$ lies in a pair with property (iii), and if, together with another (new or old) edge ($y^{\prime}, y^{\prime \prime}$), it requires the edge $\left(y, y^{\prime \prime}\right)$ to exist, then, since $\left(y^{\prime}, y^{\prime \prime}\right)$ lies in a good pair, we know by Claim 1 that $\left(y, y^{\prime \prime}\right)$ lies in a pair with property (iii); hence it either already exists or will be inserted anyway in the completion process.

In total we have changed less than $6 \tilde{\epsilon} n^{2}=\frac{\epsilon}{2} n^{2}$ edges and the new poset now has configuration Q. In order to satisfy the requirements of Lemma 3.1 we have to make
sure that it has the same number of relations as in the beginning, which means that we might have to add or remove at most $\frac{\epsilon}{2} n^{2}$ relations. This can be done as described by Lemma 4.1.

Acknowledgement

We would like to thank an anonymous referee, whose careful work and suggestions improved the presentation of this paper.

References

[1] Dhar, D. (1978) Entropy and phase transitions in partially ordered sets. J. Math. Phys. 19 1711-1713.
[2] Dhar, D. (1980) Asymptotic enumeration of partially ordered sets. Pacific J. Math. 90 299-305.
[3] Kleitman, D. J. and Rothschild, B. L. (1970) The number of finite topologies. Proc. Amer. Math. Soc. 25 276-282.
[4] Kleitman, D. J. and Rothschild, B. L. (1975) Asymptotic enumeration of partial orders on a finite set. Trans. Amer. Math. Soc. 205 205-220.
[5] Kleitman, D. J. and Rothschild, B. L. (1979) A phase transition on partial orders. Physica 96A 254-259.
[6] Prömel, H. J., Steger, A. and Taraz, A. (1999) Phase transitions in the evolution of partial orders. J. Combin. Theory Ser. A, to appear.
[7] Szemerédi, E. (1978) Regular partitions of graphs. In Problèmes en Combinatoire et Théorie des Graphes, Proc. Colloque Inter. CNRS (J.-C. Bermond, J.-C. Fournier, M. Las Vergnas, D. Sotteau, eds), CNRS, Paris, pp. 399-401.

[^0]: \dagger Research supported in part by DFG-project Pr 296/4-2.

