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In 1903 Minkowski showed that, given pairwise different unit vectors u
"
,… , u

m
in Euclidean n-space

2n which span 2n, and positive reals µ
"
,… ,µ

m
such that 3m

i="
µ
i
u
i
¯ 0, there exists a polytope P in 2n,

unique up to translation, with outer unit facet normals u
"
,… , u

m
and corresponding facet volumes

µ
"
,… ,µ

m
. This paper deals with the computational complexity of the underlying reconstruction problem,

to determine a presentation of P as the intersection of its facet halfspaces. After a natural reformulation
that reflects the fact that the binary Turing-machine model of computation is employed, it is shown that
this reconstruction problem can be solved in polynomial time when the dimension is fixed but is g0-hard
when the dimension is part of the input.

The problem of ‘Minkowski reconstruction’ has various applications in image processing, and the
underlying data structure is relevant for other algorithmic questions in computational convexity.

0. Introduction

0.1. The Minkowski reconstruction problem

This paper deals with the following problem. Given an m¬n matrix A and

positive reals µ
"
,… ,µ

m
, does there exist a polytope P¯²x :Ax% b´ with m facets

F
"
,… ,F

m
(indexed so that the ith facet corresponds to the ith row of A) such that

Vol
n−"

(F
i
)¯µ

i
for i¯ 1,… ,m? If such a polytope exists, compute a corresponding

right-hand side b of 2m efficiently !

This algorithmic question is motivated by applications to problems in computer

vision [11, 12, 15, 16, 28] and other algorithmic tasks of computational convexity (see

[7]), and in view of the following classical theorem of Minkowski [18, Section 4; 19,

Section 9] it seems fair to say that this problem is a basic question in computational

convexity in that it essentially asks for the conversion of one data structure (facet

normals and facet volumes) of polytopes into another (intersection of finitely many

closed halfspaces).

P 1 (Minkowski 1897}1903). Let u
"
,… , u

m
be pairwise different unit

�ectors of Euclidean n-space 2n which span 2n, and let µ
"
,… ,µ

m
be positi�e reals such

that 3m

i="
µ
i
u
i
¯ 0. Then there exists a polytope P with outer facet normals u

"
,… , u

m

and corresponding facet �olumes µ
"
,… ,µ

m
. Further, P is unique up to translation.
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Note that the assumptions imply that 2n is actually positively spanned by

u
"
,… , u

m
, that is,

pos ²u
"
,… , u

m
´¯2n.

Further, the condition Σm

i="
µ
i
u
i
¯ 0 is equivalent to

3
m

i="

µ
i
©u

i
, yª¯ 0 for all y `2nc²0´,

which simply reflects the fact that the orthogonal projections of a polytope in

directions ³y coincide. For extensions of Proposition 1 see [21–23].

Proposition 1 solves the theoretical part of our problem completely. Moreover,

Minkowski’s original proof is constructive. However, the question of efficiency is by

no means clear: can a right-hand side b be computed in polynomial time? We will

show that (a natural reformulation of) this Minkowski reconstruction problem can

indeed be solved in polynomial time, if the dimension is fixed, but is gP-hard, if n is

part of the input.

0.2. Problems and main results

We employ the binary Turing-machine model of computation in which the input

data is encoded in binary form, and the performance of an algorithm on a given input

is measured in terms of the number of operations of a Turing machine. This model

leads to the condition that all input and all output be rational ; hence A¯ (a
"
,… , a

m
)T

is a rational matrix and b¯ (β
"
,… , β

m
)T is a rational vector of 2m, whence

P¯²x `2n :Ax% b´ is a rational polytope. Clearly, for rational polytopes P neither

the facet volumes µ
i
nor the outer facet unit normals need to be rational. Since the

vertices of P are rational vectors it follows that for each facet

F
i
¯²x `P :©a

i
,xª¯ β

i
´

of P, and each rational point p a aff (F
i
),

µ
i
¯Vol

n−"
(F

i
)¯

nsa
i
s

rβ
i
®©a

i
, pªr

Vol
n
(conv (F

i
e²p´)),

whence the product ν
i
¯ sa

i
s−"Vol

n−"
(F

i
) is rational. (As a notational convenience,

s s always denotes the Euclidean norm, while other F
p
-norms will be denoted by

s s
p
. Further, "n is the Euclidean unit ball in 2n, and Vol is used as an abbreviation

for Vol
n
.)

Therefore we replace the facet volumes µ
"
,… ,µ

m
in the input of our problem by

the vector

�¯ (ν
"
,… , ν

m
)T, where ν

i
¯ sa

i
s−"µ

i
for i¯ 1,… ,m.

Then for each rationally presented polytope P¯²x `2n :Ax% b´ the corresponding

Minkowski data is rational. This takes care of the rationality of the input.

The rationality requirement for the output b is a different problem since the

converse of the above argument fails : even if A and � are rational, the Minkowski

reconstruction problem may not admit a rational solution unless n% 2. For instance,

let n& 3, let I
n

be the n¬n identity matrix, let

A¯ 0 I
n

®I
n

1 and �¯ (2n,… , 2n)T `2#n.

http:/www.cambridge.org/core/terms. http://content-service:5050/content/id/urn:cambridge.org:id:article:S0024610799007413/resource/name/S0024610799007413a.pdf
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 16 Sep 2016 at 05:36:14, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://content-service:5050/content/id/urn:cambridge.org:id:article:S0024610799007413/resource/name/S0024610799007413a.pdf
http:/www.cambridge.org/core


’   1083

One can easily check (using Proposition 1) that the corresponding polytopes are the

translates of the cube P¯ 2"/(n−") [®1, 1]n. Clearly, P is not rational, and neither

is any translate of P. Hence, for our algorithmic purposes we need to resort to the

following problem, MinkApp.

Instance : m, n `. ; vectors a
"
,… , a

m
`1nc²0´, no two positively dependent,

which span 2n ; positive rationals ν
"
,… , ν

m
such that 3m

i="
ν
i
a
i
¯ 0; a positive rational

error bound ε.

Task : Determine a rational vector bh ¯ (βh
"
,… , βh

m
)T such that, for i¯ 1,… ,m,

the volume µh
i
of the ith facet Fh

i
¯²x `Ph :©a

i
,xª¯ βh

i
´ of the polytope

Ph ¯²x `2n :Ax% b4 ´
satisfies rµh

i
®ν

i
sa

i
sr% ε.

We will often ‘collect ’ the input data of an instance of MinkApp in a string

(n,m ;A, � ; ε), where A is the matrix with rows aT

"
,…, aT

m
, and �¯ (ν

"
,… , ν

m
)T. If the

dimension n is not part of the input, but a constant that has been fixed in advance,

we call the problem n-MinkApp, while the ‘exact variant ’ of MinkApp (where ε is 0)

will in the following be denoted by MinkRecon.

The original proof of Minkowski models MinkRecon as the task to minimise a

linear functional over a closed convex region CZ2m ; see Section 1±4. Little [16] (see

also [11, 15]) used standard methods from convex minimisation to develop an

algorithm for MinkApp in dimension 3, which was then applied to a practical

problem of computer vision. However, even though Little’s work [16] is restricted to

polytopes in 2$, there is no polynomial bound on the running time of his algorithm.

Here we settle the related complexity question completely by showing the

following theorems.

T 1. For each fixed n `., n-MinkApp can be sol�ed in polynomial time.

T 2. MinkApp is g0-equi�alent, that is, g0-hard and g0-easy.

For an introduction to the complexity classes g0, g0-hard, g0-complete and g0-

equivalent see for example [6, 13, 25, 26].

The proofs of (slightly stronger versions of) our main Theorems 1 and 2 are given

in Sections 2 and 3, while Section 1 contains basic prerequisites and tools for these

proofs. In particular, we give a brief summary of the ‘oracle-based’ algorithmic

theory of convex bodies of [10], collect basic results on the complexity of volume

computation, state relevant results of Brunn–Minkowski theory, and outline

Minkowski’s reduction of MinkRecon to a convex program.

We close this section by posing two open problems. While Theorem 2 shows that

MinkApp is g0-hard, it does not rule out the possibility that there is a polynomial-

time randomised algorithm for MinkApp. The existence of such an algorithm remains,

however, open.

If, for a given instance of n-MinkRecon, it is known beforehand that there is a

rational solution of binary size bounded by a polynomial in the size of the input, then

one can produce an exact solution from one of n-MinkApp (for sufficiently small ε)
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by standard rounding procedures. (Such a case of special interest is that of 0-1-

polytopes.) Then, of course, the full combinatorial structure of the corresponding

polytopes is available. One might be tempted to believe that following the approach

of [17] for dealing with algebraic numbers by encoding the coefficients of their

minimal monic polynomial the above approach can easily be extended to the general

case. This is, however, not true, so the problem remains open in general as to

whether, given an instance of n-MinkRecon, the combinatorial structure of its

(up to translation) unique solution can be determined efficiently.

1. Preliminaries

1.1. Presentations of polytopes and general con�ex bodies

From an algorithmic point of view, polytopes are dealt with much more easily

than general convex bodies, because polytopes can be presented in a finite manner,

namely in terms of their vertices (‘6-presentation’) or in terms of their facet

halfspaces (‘(-presentation’). For this paper, polytopes are naturally presented in

the latter way. Since the underlying model of computation is the binary Turing-

machine model (which – in the case of convex bodies – will be augmented by certain

oracles (see [6, 10])) we will have to restrict our polytopes to those which can be

presented by rational data. Clearly, from an algorithmic point of view it is not the

geometric object that is relevant but its presentation. Hence we use the following

notation; see for example [7].

A string (n,m ;A, b), where n,m `., A is a rational m¬n matrix and b `1m such

that P¯²x `2n :Ax% b´ is a polytope is called an (-polytope in 2n. Of course, we

will often identify (n,m ;A, b) with the geometric object P.

The binary size (or simply size) ©Pª of an (-polytope P is the number of binary

digits needed to encode the data of the presentation. Specifically, the size of an integer

τ is

©τª¯ 1­8log
#
(rτr­1)7,

the size of a rational number ρ written in coprime presentation ρ¯ ρ
"
}ρ

#
, ρ

"
`:,

ρ
#
`. is ©ρ

"
ª­©ρ

#
ª and the size of a rational (m¬n)-matrix A¯ (α

i,j
) is

Σm

i="
Σn

j="
©α

ij
ª. Consequently, when P is the (-polytope (n,m ;A, b), we have

©Pª¯©Aª­©bª.

Unlike for polytopes, there is in general no finite manner to present arbitrary

convex sets. To deal with convex bodies algorithmically, Gro$ tschel, Lova! sz and

Schrijver [10] augment the Turing-machine model by so-called ‘oracles ’ which

provide information about the convex body in question. For instance, we say that a

convex body K of 2n is given by a membership oracle if there is an algorithm that

provides for any given input point y the information ‘y `K ’ or ‘y aK ’. Similarly an

optimisation oracle accepts as input a linear functional x*©c,xª and outputs a

solution of the linear program min ²©c,xª :x `K ´. Note that these oracles function as

‘black boxes’ ; there is no assumption as to how they obtain the output information.

Further, the number of calls to an oracle enters the complexity of an algorithm for

a convex body. The underlying model of computation is only able to deal with

rational numbers; computations are performed only to finite precision. Hence,

generally, an exact solution to – say – an optimisation problem cannot be stored or

processed. For this reason we have to resort to weak oracles that allow for rounding

errors.
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Now, let us make these remarks precise. Let #n denote the family of all closed

convex subsets of 2n with non-empty interior, and let +n denote the set of all convex

bodies, that is, of all compact members of #n. Further, define for C `#n and ε& 0

C(ε)¯C­ε"n ¯²x­εy :x `Cgy `"n´, C(®ε)¯Cc((2ncC )­ε"n),

the outer and the inner parallel sets of C, respectively. Then the oracles for sets C `#n

that are most relevant for our purposes solve one of the following problems.

W  . Given a vector y `1n and a rational number

ε" 0,

(i) assert that y `C(ε) ; or

(ii) assert that y aC(®ε).

W  . Given c `1nc²0´, γ `1 and a rational ε" 0,

(i) assert that ©c,xª% γ­ε for every x `C(®ε) ; or

(ii) assert that there exists a vector y `C(ε) such that ©c, yª& γ®ε.

W  . Given a vector c `1nc²0´ and a rational number

ε" 0,

(i) compute a vector y `1nfC(ε) such that ©c, yª%©c,xª­ε for every

x `C(®ε) ; or

(ii) assert that C(®ε) is empty; or

(iii) assert that x*©c,xª is not bounded below on C.

If a set C `#n is given by an algorithm / that solves the weak membership

problem, the weak validity problem or the weak optimisation problem, we say that C

is given by a weak membership oracle, a weak �alidity oracle or a weak optimisation

oracle /, respectively. C is called well-guaranteed if rational numbers r,R are given in

advance such that C contains a ball of radius r and CZR"n. If a vector a `1n and

a positive rational r are given beforehand, such that a­r"n ZC we call C centred.

Note that a well-guaranteed set C `#n is compact, whence contained in +n.

The size ©Kª of a centred well-guaranteed body K `+n with parameters r, R and

a that is given by any of the above oracles is defined as

©Kª¯ n­©rª­©Rª­©aª.

Furthermore, the input sizes of the above three problems are, respectively,

©yª­©εª, ©cª­©γª­©εª, ©cª­©εª.

Using the ellipsoid algorithm, Gro$ tschel et al. [10] show, in particular, that when

the underlying class of convex bodies is restricted to those which are centred and well-

guaranteed the above three oracles do not differ in their ‘algorithmic strength’.

P 2. The problem whose instance is a centred well-guaranteed body

K `+n gi�en by an oracle for one of the problems weak membership, weak �alidity, or

weak optimisation, and whose task it is to sol�e the other two problems, admits an

oracle-polynomial-time algorithm.

Gro$ tschel et al. [10] give a slightly sharper version of Proposition 2, in fact the

assumptions ‘centred’ and ‘well-guaranteed’ are not needed in every single case of the
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above assertion. (For simplicity, we refrained from stating all six cases separately.)

Note that these assumptions can be satisfied for (-polytopes in the following sense ;

see for example [10].

P 3. The following problems can be sol�ed in polynomial time. Gi�en an

(-polytope P,

(i) decide whether P¯W ; or

(ii) find an (irredundant) rational (-presentation of aff (P), and compute a point

a `P and rational numbers r,R such that (a­r"n)faff (P)ZPZR"n.

Clearly, ©aª, ©rª and ©Rª are bounded by a polynomial in ©Pª, specifically,

r& 2−%
©Pª and R% 2%

©Pª.

1.2. Polytope �olume computation

Here we state some results concerning the complexity of computing the volume of

(-polytopes. More precisely, we deal with the following problem VolApp (and its

variant, VolComp, for ε¯ 0). Given an (-polytope P¯ (n,m ;A, b), and a positive

rational ε, compute a rational number VW such that rVW ®Vol (P)r% ε.

Let us point out that Lawrence [14] has shown that ©Vol (P)ª cannot be bounded

from above by a polynomial in ©Pª if n is part of the input. This means that, in

general, Vol (P) cannot be computed exactly. The non-trivial part of the following

proposition is due to Dyer and Frieze [4].

P 4. If the dimension n is fixed, VolComp can be sol�ed in polynomial

time; otherwise, VolApp is g0-equi�alent.

For a survey on volume computation and its application see [7]. Let us close this

subsection by mentioning that VolApp is g0-hard in the strong sense : the g0-

hardness persists if the input data in (A, b) is restricted to ²®1, 0, 1´ [1].

1.3. Some results of Brunn–Minkowski theory

It is one of Minkowski’s great achievements to have connected operations on +n

such as scalar multiplication and (Minkowski)-addition

λK¯²λx :x `K´ λ `2 ;K `+n

K
"
­K

#
¯²x­y :x `K

"
, y `K

#
´ K

"
,K

#
`+n

with the theory of valuations. In particular, he proved the following fundamental

theorem [20].

P 5. Let K
"
,K

#
`+n. Then the function ξ*Vol (K

"
­ξK

#
) is a

polynomial on [0,¢[ of degree at most n.
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If the coefficient of ξ i is expressed as

§¨n−i© §¨i ©

0ni1V(K
"
,… ,K

"
,K

#
,… ,K

#
),

the numbers

§¨n−i© §¨i ©
V
i
(K

"
,K

#
)¯V(K

"
,… ,K

"
,K

#
,… ,K

#
) (i¯ 0,… , n)

are called the mixed �olumes of K
"

and K
#
. Mixed volumes are non-negative,

monotone, multilinear, and continuous valuations; see [23] for an excellent treatment

of the Brunn–Minkowski theory, and see [5] for a study of algorithmic problems

related to mixed volumes and their applications to a number of diverse algorithmic

questions including problems in mixture management, combinatorics and algebraic

geometry; see also [7] for a survey.

Two important results that are relevant to our paper are the following

Brunn–Minkowski theorem and the Minkowski inequality ; see [23, Chapter 6].

P 6. Gi�en K
"
,K

#
`+n, the function

ξ* g(ξ )¯ (Vol ((1®ξ )K
"
­ξK

#
))"/n

is conca�e on [0, 1], and it is linear on [0, 1], if and only if the bodies are homothetic.

P 7. Let K
"
,K

#
`+n, then

Vn

"
(K

"
,K

#
)&Voln−"(K

"
)Vol (K

#
).

Equality occurs if and only if the bodies K
"

and K
#

are homothetic.

1.4. A con�ex program related to MinkRecon

Following Minkowski’s proof of Proposition 1, we will apply Proposition 7 to

polytopes which are ‘candidates ’ for a solution of MinkRecon.

Let A be a rational m¬n matrix with rows aT

"
,…, aT

m
, no two positively dependent,

such that pos ²a
"
,… , a

m
´¯2n, and for b¯ (β

"
,… , β

m
)T `2m let

P
A
(b)¯²x :Ax% b´.

For simplicity, we will sometimes suppress the subscript A when there is no risk of

confusion. For i¯ 1,… ,m let

H
i
(b)¯²x `2n :©a

i
,xª¯ β

i
´ and F

i
(b)¯P

A
(b)fH

i
(b).

Note that the input vectors �¯ (ν
"
,… , ν

m
)T of MinkRecon are contained in the kernel

N
A

of the linear mapping y* yTA. Further, observe that for t `2n

t­P
A
(b)¯P

A
(b­At).

This implies that for each admissible vector �¯ (ν
"
,… , ν

m
)T `N

A
the solutions of

MinkRecon correspond to an equivalence class b­Nv

A
, where Nv

A
¯²At : t `2n´.

Hence each instance of MinkRecon determines a point in the (m®n)-dimensional

quotient space X
A
¯2m}Nv

A
.
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For i¯ 1,… ,m let µ
i
(b)¯Vol

n−"
(F

i
(b)), and let µ :X

A
!2m be the mapping

2m ¢ b*µ(b)¯ (µ
"
(b),µ

#
(b),… ,µ

m
(b))T.

Then µ is injective, and its image is Y(N
A
), where Y¯diag (sa

"
s,… , sa

m
s). The aim

is to compute its inverse.

The hyperplanes H
i
(b) are at distances sa

i
s−" β

i
from the origin; hence

Vol (P
A
(b))¯

1

n
3
m

i="

µ
i
(b)

β
i

sa
i
s
.

For z¯ (ζ
"
,… , ζ

m
)T `2m and i¯ 1,… ,m, let h

i
(z) denote the value of the support

function of P
A
(z) in direction pos ²a

i
´. (In standard terminology, h

i
(z)¯

h(P
A
(z), a

i
}sa

i
s).) Then

h
i
(z)¯max (- a

i

sa
i
s
,x. :x `P

A
(z)*%

ζ
i

sa
i
s
,

with equality if and only if H
i
(z) supports P

A
(z), whence, particularly, if µ

i
(z)" 0.

Now let b, z `2m such that P
A
(b) has the desired facet-volumes µ

i
(b)¯ ν

i
sa

i
s, and

that Vol (P
A
(z))¯ 1. Since

V
"
(P

A
(b),P

A
(z))¯

1

n
lim
ξ!

!

Vol (P
A
(b)­ξP

A
(z))®Vol (P

A
(b))

ξ
¯

1

n
3
m

i="

µ
i
(b) h

i
(z),

Proposition 7 (applied to K
"
¯P

A
(b) and K

#
¯P

A
(z)) yields

01n3
m

i="

µ
i
(b) h

i
(z)1n & 01n3

m

i="

µ
i
(b) h

i
(b)1n−"

Vol (P
A
(z)).

Since h
i
(z)% ζ

i
}sa

i
s, we have

3
m

i="

µ
i
(b) h

i
(z)%©�, zª, (1)

and hence with Vol (P
A
(z))¯ 1,

©�, zªn & n©�, bªn−" ;

equality holds if and only if P
A
(b) and P

A
(z) are homothetic. Now, with

ρ¯ 0 n

©�, bª1
"/n

¯Vol (P
A
(b))−"/n and bV¯ ρb,

we have Vol (P
A
(bV))¯ 1, and ©�, bVªn ¯ ρn©�, bªn ¯ n©�, bªn−", whence

©�, zªn &©�, bVªn.

It follows that bVminimises the function z*©�, zª on the set ²z `2m :Vol (P
A
(z))¯ 1´,

if and only if P
A
(bV) is homothetic to a solution of MinkRecon; specifically

b¯
1

ρ
bV¯ 01n©�, bª1"/n bV¯ 01n©�, bVª1"/(n−")

bV.

This proves the following proposition.

P 8. Let (n,m ;A, �) denote an instance of MinkRecon, let b be a

solution (that is, P
A
(b) has facet �olumes ν

i
sa

i
s). Further, let bV be an optimiser of

min ²©�, zª :Vol (P
A
(z))¯ 1´.
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Then P
A
(bV) is homothetic to P

A
(b) ; specifically, λbV with λ¯ (©�, bVª}n)"/(n−") sol�es

MinkRecon.

Clearly, the optimum does not change when we replace the feasible region by

C¯²z `2m :Vol (P
A
(z))& 1´.

Note that C is closed (since the volume is continuous) and by the Brunn–Minkowski

theorem, Proposition 6, C is convex. Hence MinkRecon is equivalent to the following

convex program, MinkConvMin.

MCM. Given an instance (n,m ;A, �) of MinkRecon, minimise the

linear functional z*©�, zª on C¯²z `2m :Vol (P
A
(z))& 1´.

Note that C­A2n ZC ; in fact, A2n is the lineality space of C. This shows again

that the condition �TA¯ 0 is necessary for the solvability of MinkConvMin.

Let us finally point out that though it is constructive, the above characterisation

is not fully adequate for our algorithmic purposes. In particular, the convex set C is

unbounded, and its lineality space is n-dimensional. This causes problems for

applying results from the algorithmic theory of convex bodies. The main difficulty,

however, is to handle the fact that only approximative solutions will be available : the

oracles are weak. This means, we need strong stability estimates for MinkRecon

relating the error term ε in the optimisation problem to an appropriate distance

measure for the corresponding polytopes.

2. Minkowski reconstruction from a �olume oracle

We will now show that MinkApp can be reduced to VolApp in polynomial time.

Theorem 1 and the easiness part of Theorem 2 will then follow from Proposition 4.

Subsection 2.1 derives some bounds that will allow us to replace the unbounded

feasible regions C of MinkConvMin by convex bodies K. Since it is easy to see that

an oracle for approximating the volume of (-polytopes provides a weak membership

oracle for K, Proposition 2 allows us then to solve the weak optimisation problem

over K in polynomial time. Hence we can construct in polynomial time a polytope

which has ‘nearly’ volume 1 and is ‘nearly’ homothetic to an exact solution of

MinkRecon on the given input. Subsection 2.2 contains some stability estimates

which are applied in Subsection 2.3 to show that the ‘weak solution’ can be used to

approximate an exact solution of MinkRecon with respect to the translati�e

Hausdorff metric

δ(K
"
,K

#
)¯min ²d(t­K

"
,K

#
) : t `2n´ (K

"
,K

#
`+n),

the translation-invariant version of the Hausdorff metric

d(K
"
,K

#
)¯min ²τ& 0:K

"
ZK

#
­τ"ngK

#
ZK

"
­τ"n´ (K

"
,K

#
`+n).

Subsection 2.4 extends these results to give a full solution of MinkApp.

2.1. Bounds for solutions of MinkCon�Min

In order to solve MinkConvMin by way of Proposition 2, we have to replace the

unbounded set C by a suitably centred well-guaranteed convex body KZC without

changing the optimal value of the objective function. Let L denote the size of the

input (n,m ;A, �), and let again C¯²z :Vol (P
A
(z))& 1´.
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First, note that it suffices to consider only Cf]0,¢[m since under our general

assumptions, there is a proper polytope P
A
(b) that solves MinkRecon, and the

translation invariance of the problems allows us to assume that 0 ` int (P
A
(b)), that is,

b" 0. Now let

¬¯ (1,… , 1)T `2m, ω
n
¯Vol ("n), κ

"
¯ "

#
8on7[ max

i=",
…,m

8sa
i
s7,

κ
#
¯ (min ²ν

"
,… , ν

m
´)−"©�, ¬ª and p¯κ

"
¬.

Then "

#

on"n ZP
A
(p), whence 1% ("

#

on)n ω
n
%Vol (P

A
(p)), and thus p `C. Since then

also p­[0,¢[mZC, we have 2p­κ
"
"mZC. Further, we have for any positive

solution bV¯ (βV
"
,… , βV

m
)T of MinkConvMin, and i¯ 1,… ,m,

βV
i

%
©�, bVª

ν
i

%
©�, pª

ν
i

%κ
"
κ
#
.

Therefore, the optimum of MinkConvMin remains unchanged if we replace C by the

convex body

D¯²z `C :0% z% 3κ
"
κ
#
¬´.

Note that DZ 2#L[0, 1]m, and 2p­κ
"
"mZD ; hence D is centred well-guaranteed.

Further, D is stable in the following sense. If

�h `S(�)¯²�h `N
A
:s�h ®�s¢ % "

#
min ²ν

"
,… , ν

m
´´,

then D still contains an optimiser of the modified instance (n,m ;A, �h ) of

MinkConvMin. This follows from the fact that the hyperplane Hh ¯²z :©�h , zª¯
©�h , pª´ meets the coordinate axes in points that are at most at distance 3κ

"
κ
#

from

the origin.

Further, note that for each z `D the circumradius R(P
A
(z)) of P

A
(z) is bounded

above by 2"#L.

For the proof of our tractability results we will also need a lower bound on the

distance of suitable optimisers from the coordinate hyperplanes. For z `D we have

1%Vol (P
A
(z))% (2R(P

A
(z)))n−"[w(P

A
(z)),

where w(P
A
(z))¯minsus="

max
x,y`PA(z)

©u,x®yª is the width of P
A
(z). By Steinhagen’s

inequality [24] we have for the inradius r(P
A
(z)) of P

A
(z),

r(P
A
(z))&

1

2on­1
w(P

A
(z))&

1

2on­1
(2R(P

A
(z)))"−n,

so we may use the translation invariance of MinkRecon again to assume that

2−nR(P
A
(z))"−n (n­1)−"/#"n ZP

A
(z).

Since 2−n(n­1)−"/#R(P
A
(z))"−n sa

i
s& 2−"%nL, at least one optimiser of MinkConvMin

is contained in

K¯Df4
m

i="

²x :©x, e
i
ª& 2−"%nL´,

where e
i
is the ith standard unit vector of 2m. Clearly, since the preceding argument

only involved A, the body K contains optimisers also for all instances (n, m ; A, �h ) of

MinkConvMin with �h `S(�).
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The essence of the above conclusions is summarised in the following lemma. (Note

that some of the given bounds are not tight – Lemma 1 is stated as it is to make the

technical computations in the following subsections as simple as possible.)

L 1. Let (n,m ;A, �) be an instance of MinkCon�Min of size L, and let bV

denote a positi�e solution. Further, let "¯ 2−"'nL, Θ¯"−" and I¯ [",Θ], and set

K¯²z :2−"&nL¬% z% 2#L¬gVol (P
A
(z))& 1´.

Then the following statements hold.

(i) K is a centred, well-guaranteed con�ex body of 2m, KZ In and ©Kª is bounded

by a polynomial in L.

(ii) bV ` "

$
2#L[0, 1]m.

(iii) Whene�er �h `S(�), the body K contains an optimiser bh V for the instance

(n,m ;A, �h ) of MinkCon�Min.

(iv) R(P
A
(z))%Θ whene�er z `K.

(v) ©�h , zª ` nI for e�ery �h `S(�) and z `K.

(vi) λh ¯ (©�h , bh Vª}n)"/(n−") ` I, for e�ery �h `S(�) (λ is the scaling factor defined in the

pre�ious subsection).

(vii) R(P
A
(bh ))%Θ#, where bh is any solution of MinkRecon on the input (n,m ;A, �h )

with �h `S(�).

2.2. Some stability estimates

We begin with a result of Groemer [8] ; see also [23, p. 318]. (For earlier results see

[2, 3, 27], and see [9] for a survey on the stability of geometric inequalities.)

P 9. Let K
"
,K

#
`+n with Vol (K

"
)¯Vol (K

#
)¯ 1. Further, define

R¯max ²R(K
"
),R(K

#
)´, and

∆(K
"
,K

#
)¯Vn

"
(K

"
,K

#
)®Voln−"(K

"
)Vol (K

#
)¯Vn

"
(K

"
,K

#
)®1.

Then

δ(K
"
,K

#
)% 0 1

2n1
"/(n+")

(4[6±00025[n)[2R[∆(K
"
,K

#
)"/(n+") % 50Rn∆(K

"
,K

#
)"/(n+").

Note that ∆(K
"
,K

#
)¯ 0 if and only if the bodies K

"
and K

#
are homothetic.

While the proof of Proposition 9 is quite involved, the following lemma is rather

easy to show; it will be needed for estimating the error that is induced by rescaling a

convex body.

L 2. Let K
"
,K

#
`+n, set R¯max ²R(K

"
),R(K

#
)´, and let λ

"
, λ

#
be non-

negati�e reals. Then

δ(λ
"
K

"
, λ

#
K

#
)% rλ

"
®λ

#
rR­δ(K

"
,K

#
)max ²λ

"
, λ

#
´.

Proof. We may assume that K
#
ZR"n. Now, suppose that for some points

t
"
, t

#
`2n

t
"
­K

"
ZK

#
­δ(K

"
,K

#
)"n and t

#
­K

#
ZK

"
­δ(K

"
,K

#
)"n.
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Then we have

λ
"
t
"
­λ

"
K

"
Z λ

"
K

#
­δ(K

"
,K

#
) λ

"
"n ¯ (λ

#
­(λ

"
®λ

#
))K

#
­δ(K

"
,K

#
) λ

"
"n

Z λ
#
K

#
­rλ

"
®λ

#
rR"n­δ(K

"
,K

#
) λ

"
"n ¯ λ

#
K

#
­(rλ

"
®λ

#
rR­δ(K

"
,K

#
) λ

"
)"n.

Interchanging the roles of K
"
and K

#
yields a second inclusion which, together with

the first, gives the assertion. *

2.3. Minkowski reconstruction for the translati�e Hausdorff distance

We now give proofs of the tractability results for the variant of MinkApp that is

obtained by replacing its distance measure max
i=",

…,m
²rµh

i
®µ

i
r´ by the translative

Hausdorff distance δ. This is in fact the main step in the proofs of our ‘positive’

results.

Let (n,m ; A, � ; ε) be an instance of MinkApp, let L denote its size, and suppose

that ε! 1. We want to construct a vector bh `1m such that

δ(P
A
(b),P

A
(bh ))% ε,

where b denotes again an (exact) solution of MinkRecon on the instance (n,m ;A, �).

Without further notice, we use the notation of Lemma 1 (and we will also make use

of the results of Lemma 1 without always referring to it). The construction falls into

two steps : first we derive a weak optimisation oracle for the set K and compute a

rational polytope P¯P
A
(σh bh V) with δ(P,P

A
(bV))% ε

"
, where bV is an exact solution to

MinkConvMin on the input (n,m ;A, �), and ε
"
¯ "

%
"ε. In the second step we compute

bh by means of a suitable scaling.

By Proposition 4, VolApp is g0-easy and, moreover, is in 0 when the dimension

is fixed. Suppose we have an algorithm ! for VolApp. Then ! can be used to solve

the weak membership problem for K in oracle-polynomial time. In fact, checking the

coordinate bounds in the definition of K is easy, and – using Proposition 3 and some

simple calculations involving mixed volumes – it is also standard fare to show that the

approximation measure in VolApp and the weakness notion in the weak membership

problem are sufficiently compatible. (Note that when the dimension is fixed even the

strong membership problem for K can be solved in polynomial time.) By Proposition

2 we can then solve the weak optimisation problem for K in oracle-polynomial time.

Let us call such a weak optimisation oracle with input � and error bound

η¯
1

(200n)n+"[8n
"n+#εn+"

"
.

Since K(®η)1W, the oracle outputs a vector bh V¯ (βh V
"
,… , βh V

m
)T `1m such that

bh V `K(η) and ©�, bh Vª%©�, zª­η for all z `K(®η).

With the aid of Lemma 1 it is easy to see that bh V­η¬ `C, and bV­η¬ `K(®η),

whence

Vol (P
A
(bh V­η¬))& 1 and ©�, bh Vª%©�, bVª­η©�, ¬ª%©�, bVª­η2L. (2)

Since for i¯ 1,… ,m,

βh V
i
®(1®2ηΘ) (βh V

i
­η)& η(2Θβh V

i
®1)& 0,

we have
P
A
(bh V)[P

A
((1®2ηΘ) (bh V­η¬)),

whence
Vol (P

A
(bh V))& (1®2ηΘ)n.
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Now let σ¯Vol (P
A
(bh V))−"/n. Then Vol (P

A
(bV))¯Vol (P

A
(σbh V))¯ 1, and it follows

that σ% (1®2ηΘ)−"! %

$
. Using the homogenity of mixed volumes, it follows from

Proposition 8 that

V
"
(P

A
(b),P

A
(σbh V))¯

1

n
©�, bVª[V

"
(P

A
(bV),P

A
(σbh V)) ;

and since by (1)

V
"
(P

A
(b),P

A
(σbh V))%

σ

n
©�, bh Vª and η©�, ¬ª% ηΘ%

1

8n
,

we have (with the aid of (2) and Lemma 1)

∆(P
A
(bV),P

A
(σbh V))¯V

"
(P

A
(bV),P

A
(σbh V))n®1

¯ 0 n

©�, bVª
V
"
(P

A
(b),P

A
(σbh V))1n®1%σn 0©�, bh Vª

©�, bVª1
n

®1

%σn 01­
η2L

©�, bVª1
n

®1% 0 1­ηΘ

1®2ηΘ1
n

®1

% (1­4ηΘ)n®1% 4nηΘ­3
n

j=#

(4nηΘ)j % 8nηΘ.

Since bh V `K(η) it follows from Lemma 1(iv) that R(P
A
(bh V®η¬))%Θ. Further, since

βh V
i

% $

#
(βh V

i
®η), for i¯ 1,… ,m, and σ% %

$
,

max ²R(P
A
(bV)),R(P

A
(σbh V))´% 2Θ.

Using Proposition 9, we obtain

δ(P
A
(σbh V),P

A
(bV))% 50n[2Θ[(8nηΘ)"/(n+") % "

#
ε
"
.

Now we use ! to approximate Vol (P
A
(bh V)) to absolute error "#ε

"
. Using the fact that

σ% %

$
, and applying the mean value theorem of calculus to the function x*x−"/n, we

obtain an estimate σh of σ such that

rσ®σh r% "

%
"ε

"
.

By Lemma 2,

δ(P
A
(σh bh V),P

A
(σbh V))% rσh ®σr[2Θ% "

#
ε
"
,

whence

δ(P
A
(σh bh V),P

A
(bV))% δ(P

A
(σh bh V),P

A
(σbh V))­δ(P

A
(σbh V),P

A
(bV))% ε

"
.

This concludes the first step of the construction.

To obtain the desired vector bh `1m with δ(P
A
(b),P

A
(bh ))% ε, we will now apply a

suitable scaling to bh V. Let

λ¯ 01n©�, bVª1"/(n−")

and λh ¯ 01n©�, bh Vª1"/(n−")

;

see Proposition 8. Using Lemma 1, we obtain

1

n
©�, bh Vª¯

1

n
©�, bh V­η¬ª®

1

n
η©�, ¬ª&"®ηΘ&

3

4
" and

1

n
©�, bVª&

3

4
".
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Further,

©�, bVª%σ©�, bh Vª% (1­4ηΘ)©�, bh Vª%©�, bh Vª­4ηΘ#.

With the aid of (2) and the mean value theorem applied to the function x*x"/(n−"),

it follows that

rλh ®λr%
1

n®1 0
3"

4 1
("/(n−"))−"

4ηΘ#! 6ηΘ$.

Now, we approximate λh to absolute error 2ηΘ$ ; let λW denote the corresponding

estimate. Then, using 8η%"# and λ%Θ, we have

rλW ®λr% 8ηΘ$ and max ²λ, λW ´% 2Θ.

Setting bh ¯ λW σh bh V, and using η% "

)
"$ε

"
, Lemma 2 yields

δ(P
A
(b),P

A
(bh ))¯ δ(λP

A
(bV), λh P

A
(σh bh V))% 8ηΘ$[2Θ­2Θ[ε

"
% ε,

and this is the desired estimate.

2.4. From Hausdorff to Minkowski

The following lemma gives a relation between the Hausdorff distances of two

polytopes P
A
(z

"
), P

A
(z

#
) and the distances of corresponding facets.

L 3. Let a
"
,… , a

m
`2nc²0´, mutually non-collinear, with pos ²a

"
,… , a

m
´¯

2n, let A denote the matrix with rows aT

"
,… , aT

m
, let ε" 0 and let z

"
, z

#
`2m such that

d(P
A
(z

"
),P

A
(z

#
))% ε.

For i¯ 1,… ,m, let F
i
(z

"
) and F

i
(z

#
) denote the facets of P

A
(z

"
) and P

A
(z

#
), respecti�ely,

that correspond to a
i
, and let t

i
` ε"n such that F

i
(z

"
) and t

i
­F

i
(z

#
) lie in a common

hyperplane H
i
perpendicular to a

i
. Then we ha�e for the Hausdorff distance d

H
relati�e

to H
i
,

d
H
(F

i
(z

"
), t

i
­F

i
(z

#
))%

2ε

1®α#

% 2εΘ,

where

α¯max (- a
k

sa
k
s
,

a
l

sa
l
s. :1%k! l%m* .

Proof. Let i ` ²1,… ,m´. Since t
i
` ε"n, we have d(P

A
(z

"
), t

i
­P

A
(z

#
))% 2ε, so we

may prove the assertion under the assumption that t
i
¯ 0 and d(P

A
(z

"
),P

A
(z

#
))% 2ε.

Let x `F
i
(z

"
)cF

i
(z

#
), and let y `F

i
(z

#
) be closest to x. Clearly, y is contained in some

other facet F
j
(z

#
) of P

A
(z

#
) whose supporting halfspace misses x. Hence the ray

x®[0,¢[a
j

intersects the hyperplane aff (F
j
(z

#
)) in some point x

!
of the form

x®λ
!
a
j
}sa

j
s with λ

!
" 0. Let y

!
be the point in P

A
(z

#
) closest to x. Then sx®y

!
s% 2ε,

and the segment conv ²x, y
!
´ intersects aff (F

j
(z

#
)). This implies that λ

!
% 2ε. Now,

consider the (possibly degenerate) triangle conv ²x, y,x
!
´, and let φ denote its angle at

y. Then

sx®ys¯
λ

sinφ
¯

λ
!

o1®cos#φ
%

λ
!

o1®α#

%
2ε

1®α#

,

and (since z
"
and z

#
play symmetric roles) this implies the first part of the assertion.
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For the second inequality just note that for 1% i! j%m the vectors a
i
and a

j
are

linearly independent, whence τ
ij
¯©a

i
, a

i
ª©a

j
, a

j
ª®©a

i
, a

j
ª# is a positive rational

bounded below by 2−%nL. This implies that

1®α#¯ min

"
%i!j%m

©a
i
, a

i
ª©a

j
, a

j
ª®©a

i
, a

j
ª#

sa
i
s#[sa

j
s#

¯ min

"
%i!j%m

τ
ij

sa
i
s#[sa

j
s#

&",

and concludes the proof of Lemma 3. *

L 4. Let K
"
,K

#
`+n, both contained in R"n. Then, with ω

n
¯Vol ("n),

rVol (K
"
)®Vol (K

#
)r%ω

n
Rn 001­

d(K
"
,K

#
)

R 1n®11 .
Proof. Let d¯ d(K

"
,K

#
). Then K

"
ZK

#
­d"n, and this implies that

§¨n−i© §¨i ©
Vol (K

"
)%Vol (K

#
­d"n)¯Vol (K

#
)­3

n

i="

0ni1V(K
#
,… ,K

#
,"n,… ,"n) d i

§ª¨n−iª© §¨i ©
%Vol (K

#
)­3

n

i="

0ni1V(R"n,… ,R"n,"n,… ,"n) d i

¯Vol (K
#
)­ω

n
Rn3

n

i="

0ni1 0
d

R1
i

¯Vol (K
#
)­ω

n
Rn 001­

d

R1
n

®11 ;
since the roles of K

"
and K

#
can be reversed, this implies the assertion. *

We are now able to finish the proof of our tractability results. Let (n,m ;A, b ; ε)

be an instance of MinkApp, let L denote its size, and assume that ε! 1. Calling the

algorithm of Subsection 2.3 with error bound

ε
#
¯

1

4n
"$n+"

1

8ω
n−"

7
ε,

we obtain a polytope P
A
(bh ) satisfying δ(P

A
(b),P

A
(bh ))% ε

#
, where b is a solution of

MinkRecon on the input (n,m ;A, b). Now let i ` ²1,… ,m´. If necessary, we apply a

translation t
i

to move the faces F
i
(b) of P

A
(b) and F

i
(bh ) of P

A
(bh ) into the same

hyperplane H
i
¯ aff(F

i
(b)). Then by Lemma 3,

d¯ d(F
i
(bh ), t

i
­F

i
(b))%

"$nε

2nω
n−"

.

Now R(P
A
(b)),R(P

A
(bh ))%Θ$, and hence, clearly, R(F

i
(b)),R(F

i
(bh ))%Θ$. We can

apply Lemma 4 to conclude that

rν
i
sa

i
s®µ

i
(bh )r%ω

n−"
Rn−" 001­

d

R1
n−"

®11%ω
n−"

3
n−"

j="

(dn) j Rn−j−"

%ω
n−"

Θ$n
dn

1®dn
% 2ω

n−"
Θ$n dn% ε.

This concludes the proof of the g0-easiness of MinkApp and the proof of Theorem

1. Note that we have actually shown slightly more: whenever VolApp can be solved
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in polynomial time for a class of (-polytopes, MinkApp can also be solved in

polynomial time. This includes the class of all ‘near-simplicial ’ polytopes in varying

dimensions; see [7].

3. Hardness of Minkowski reconstruction

In the last section we showed that any oracle for computing the volume of an (-

polytope can be used to devise an oracle-polynomial-time algorithm for the weak

optimisation problem MinkConvMin, whence for MinkApp. In the present section

we reverse this argument and show that any oracle for MinkApp gives an oracle-

polynomial-time algorithm for computing the volume of (-polytopes. Since the

latter problem is g0-hard if the dimension is part of the input, so is the former.

The proof of the g0-hardness of MinkApp falls into three parts. Subsection 3.1

contains the reduction of VolApp to the weak membership problem for the feasible

regions C of MinkConvMin. In Subsection 3.2 we use techniques from computational

convexity to extend Proposition 2 and show that this weak membership problem (for

the unbounded sets C ) can be reduced to the weak optimisation problem for the same

sets. The weak optimisation problem is then reduced to MinkApp in Subsection 3.3.

3.1. Reduction of VolApp to a weak membership problem

Let (n,m ;A, b ; ε) be an instance of VolApp, let L denote its size, and let P be the

corresponding (-polytope. Using Proposition 3, we can decide in polynomial time

whether P has empty interior (or, equivalently, Vol (P)¯ 0), or otherwise find a point

p interior to P. Suppose that Vol (P)" 0, and (applying a translation about ®p, if

necessary) that b¯ (β
"
,… , β

m
)T " 0. Let β

min
¯min ²β

"
,… , β

m
´ and β

max
¯

max ²β
"
,… , β

m
´.

Again with the aid of Proposition 3, we may rescale P and compute an integer ζ

of size bounded by a polynomial in L such that 1!Vol (P)! ζ. Note that for ξ" 0,

ξb `C5 ξnVol (P
A
(b))& 15Vol (P

A
(b))& ξ−n.

Now suppose a weak membership oracle is available for C. On the input (ξb, η) (with

ξ, η `1, ξ, η" 0), the oracle may supply the answers ‘ξb `C(η) ’ or ‘ξb aC(®η) ’. In

the first case, ξb­η¬ `C. Using the fact that ξb­η¬% (ξ­η
"
) b, where η

"
¯ ηβ−"

min
, we

see that (ξ­η
"
) b `C, whence

Vol (P
A
(b))& (ξ­η

"
)−n.

In the second case, that is, when the oracle answers ‘ξb aC(®η) ’, we have ξb®η¬ aC.

Using ξb®η¬& (ξ®η
"
) b, it follows that (ξ®η

"
) b aC, whence

Vol (P
A
(b))! (ξ®η

"
)−n.

Now choose η specifically to be a positive rational of size bounded by a

polynomial in L such that

η%min ( β
min

4n+#nζ #ε
,
β
min

4ζ "/n
* ,

and set, as before, η
"
¯ η}β

min
. Since η

"
% "

%
ζ−"/n, we can compute some rational

number
ξ
min

` ["
#
ζ−"/n, ζ−"/n®η

"
].
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Then (ξ
min

­η
"
)−n & ζ, whence the oracle answers ‘ξ

min
b aC(®η) ’. Similarly, on

ξ
max

¯ 2& 1­η
"
the oracle produces the answer ‘ξ

max
b `C(η) ’ since Vol (P

A
(b))" 1.

Standard application of binary search enables us now to compute rational numbers

ξ
"
, ξ

#
with 0! ξ

#
®ξ

"
% 2η

"
on which the oracle answers ‘ξ

#
b `C(η) ’ and

‘ξ
"
b aC(®η) ’. Note that ©η

"
ª is bounded by a polynomial in L ; hence the binary

search terminates in polynomial time. We obtain

(ξ
#
­η

"
)−n %Vol (P

A
(b))% (ξ

"
®η

"
)−n,

and with the aid of the mean value theorem applied to the function x*x−n, we see

that
(ξ

"
®η

"
)−n®(ξ

#
­η

"
)−n % n("

%
ζ−"/n)−n−" (2η

"
­2η

"
)% n4n+"ζ #[4η

"

¯ η4n+#nζ #β−"
min

% ε.

Hence VW ¯ (ξ
#
­η

"
)−n is a desired approximation of Vol (P). This completes our

reduction and proves, in particular, that the weak membership problem for the

feasible regions C of MinkConvMin is g0-hard.

3.2. Reduction of weak membership for sets C to weak optimisation

Now we show how a weak optimisation oracle for MinkConvMin can be used to

devise an oracle-polynomial-time algorithm for the weak membership problem for

the underlying convex sets C. Note that Proposition 2 is restricted to convex bodies,

and hence does not directly apply to the unbounded sets C.

Let (n,m ;A) be given as before, let C¯²z `2m :Vol (P
A
(z))& 1´, and suppose that

a weak optimisation oracle for C is available for positive rational inputs (�, ε) with

� `N
A
. Suppose, now, that (b, ε) is a given instance of the corresponding weak

membership problem, that is, b `1m is the query point, and ε is the positive rational

error bound. Since C­A2n ZC, we may assume that b" 0.

Note that we are not really interested in points of C whose components are much

greater than those of b. This fact can be used to show that for solving the weak

membership problem on the input (b, ε) we need only calls to the optimisation oracle

whose set of optimisers contains points not much greater than b. To make this

observation precise, we will now cut off points of C by considering the polar of some

translate of C.

Let p `Cf1m with b! p, let ρ `1, ρ" 0 such that 2p­ρ"mZC, and suppose

that ©pª and ©ρª are bounded by a polynomial in the input size. Now, let

CW ¯®2p­C and let bW ¯ b®2p ; note that bW ! 0. Clearly, solving the weak

membership problem for C on the input (b, ε) is equivalent to solving the weak

membership problem for CW on the input (bW , ε). To cut off all points of CW that are not

lying in the negative orthant, we use polarity :

CW °¯ ²y `2m :©z, yª% 1­2©p, yª for all z `C ´.

Since C contains the ball 2p­ρ"m, the set CW ° is bounded. Further, CW ­
[0,¢[m­Nv

A
ZCW , whence CW °Z]®¢, 0]mfN

A
. Moreover, CW Z®2p­[0,¢[m­Nv

A
;

hence TfN
A
ZCW °, where T is the simplex that is cut out of the negative orthant by

the halfspace ²y :©p, yª&®"

#
´. Since the columns of AT positively span 2n, the linear

space N
A
¯kerAT contains a point of ]®¢, 0[m, whence CW ° has non-empty interior

relative to N
A
.

Clearly, the weak optimisation oracle for C leads to a weak validity oracle for CW .
Further, it is not hard to see that one can hence derive an oracle-polynomial-time
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algorithm that solves the weak membership problem for CW ° relative to N
A
; a detailed

proof of this fact is given in [10, Lemma 4.4.1, pp. 114–115] (it is formulated there

only for convex bodies but extends word by word to our situation). By Proposition

2 (applied to CW ° relative to N
A
) we obtain an oracle-polynomial-time weak

optimisation algorithm for CW °. Now note that ]0,¢[mfN
A
1W (since the vector of

scaled facet volumes of the polytope P
A
(b) is contained in this set). We use linear

programming to compute in polynomial time a point qW of ]0,¢[mfN
A
, and set

S¯ conv (CW °e²qW ´). Clearly, S is again a centred well-guaranteed convex body in N
A
,

and 0 ` relintS. Further, the weak optimisation algorithm for CW ° can easily be

extended to S, whence, again by Proposition 2, the weak validity problem for S

(relative to N
A
) can be solved in oracle-polynomial time. This means that we can solve

the weak membership problem in oracle-polynomial time for the polar Ca of S relative

to N
A
. Note that

Ca ¯CW fN
A
f²z `2m :©qW , zª% 1´.

Further, ©qW , bW ª% 0! 1; thus bW `CW (³ε) if and only if the orthogonal projection bW « of

bW onto N
A

is contained in Ca (³ε). This concludes our reduction.

3.3. From Minkowski to weak optimisation

This subsection completes the g0-hardness proof by showing that an oracle ! for

solving MinkApp can be used to produce weak minima of linear functionals

z*©�, zª over the sets C, where � ` ]0,¢[mfN
A
. We use the notation of Subsections

1.4 and 2.1.

Let (n,m ;A ; �) be an instance of MinkConvMin, let L denote its size, and let ε `1

with 0! ε% 1. We have to compute a weak minimum of the linear functional

z*©�, zª over C¯²z :Vol (P
A
(z))& 1´ or over the restricted body K of Lemma 1.

We call the oracle ! on the input (n,m ;A ; � ; η), where η¯""!ε to produce a rational

vector bh `2m such that, for the facet volumes µh
i
of P

A
(bh ),

rµh
i
®ν

i
sa

i
sr! η for i¯ 1, 2,… ,m.

Let �h ¯ (µh
"
sa

"
s−",… ,µh

m
sa

m
s−")T ; then

s�®�h s%
omη

min ²sa
"
s,… , sa

m
s´

% η2L,

whence, in particular, �h `S(�). Now, let bV and bh V be solutions of MinkConvMin in

K on the inputs (n,m ;A, �) and (n,m ;A, �h ), respectively. Then

b¯ ρ−"bV and bW ¯ ρh −"bh V

are solutions of MinkRecon on the inputs (n,m ;A ; �) and (n,m ;A ; �h ), respectively,

where

ρ¯Vol (P
A
(b))−"/n ¯ 0 n

©�, bª1
"/n

and ρh ¯Vol (P
A
(bW ))−"/n ¯ 0 n

©�h , bh ª1
"/n

.

Since �h `S(�), Lemma 1 shows that all entries of bh V and bV are bounded above by Θ.

Further,

r©�, bh Vª®©�, bVª r% r©�, bh Vª®©�h , bh Vªr­r©�h , bh Vª®©�, bVªr

% r©�®�h , bh Vªr­max ²©�h ®�, bVª,©�®�h , bh Vª´

% s�®�h s (sbh Vs­max ²sbh Vs, sbVs´)% η2L[2omΘ% ηΘ#.
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Note that ρW ¯ ((1}n)©�, bh ª)−"/n is an estimate of ρh ¯ ((1}n)©�h , bh ª)−"/n (the latter

number cannot be computed directly since �h is not available), and we may use ρW bh as

an estimate for bh V.

By Lemma 1, "% ρh %Θ, whence

1

n
©�, bh ª¯

1

n
ρh −"©�, bh Vª&

1

n
ρh −"©�, bVª&"#,

and

1

n
r©�, bh ª®©�h , bh ªr%

1

n
s�®�h s[ρh −"sbh Vs%

om

n
η2LΘ#.

Using the mean value theorem for x*x−"/n we obtain

rρh ®ρW r¯ )01n©�, bh ª1−"/n®01n©�h , bh ª1−"/n)% 1

n
"−#(n+")/n

om

n
η2LΘ#%

1

n
ηΘ(.

Since ρW can be approximated to any absolute accuracy in polynomial time we can

compute a rational number ρ« with rρ«®ρh r% ηΘ(. Setting bh «¯ ρ«bh we have

r©�, bVª®©�, b«ªr% r©�, bVª®©�, bh Vªr­r©�, bh Vª®©�, b«ªr

% ηΘ#­rρh ®ρ«r s�s sbh s% ηΘ#­ηΘ(m2LΘ#% ηΘ"!¯ ε.

All that remains to be shown is that b« `C(ε), but this follows from the fact that

bh V `C, in conjunction with the inequality

sbh V®b«s% rρh ®ρ«r sbh s% ηΘ(omΘ#% ε.

This completes the final reduction in proof of the hardness of MinkApp.
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