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Abstract

K-loops have their origin in the theory of sharply 2-transitive groups. In this
paper a proof is given that K-loops and Bruck loops are the same. For the
proof it is necessary to show that in a (left) Bruck loop the left inner mappings
L(b) L(a) L(ab)~! are automorphisms. This paper generalizes results of Glauberman[3],
Kist[8] and Kreuzer|[9].

1. Introduction

In order to describe sharply 2-transitive groups, H. Karzel introduced in [4] the
notion of a neardomain (¥, @, -) (cf. [16]). The crucial difficulty of a neardomain is
the additive structure (I, @), which need not be associative and no example of a
proper neardomain is known (cf. [6, 16]). To obtain partial results, W. Kerby and
H. Wefelscheid considered separately the additive structure (¥, @) and called such
loops K-loops (see definition in Section 2). Since 1988 the interest in K-loops has
been revived because A. A. Ungar has found a famous physical example.

A. A. Ungar investigated the relativistic addition @ of the velocities R?:=
{veR3®:|v| < ¢}. He showed that (R, @) is a non-associative and non-commutative
loop with characteristic automorphisms, which he calls a gyrogroup. Ungar proved
that for any two velocities a,beR; there is an automorphism 4, , of (RZ, @), the
so-called Thomas rotation, satisfying a @ (b @ x) = (a ® b) ® 24, , (cf. [14, 15]), i.e.
d,. is a left inner mapping of the loop. H. Wefelscheid recognized then that (R, ®)
is a K-loop.

At first it was discovered by G. Kist that there is a connection between K-loops
and Bruck loops [8, p. 27|. G. Kist remarks, that already from results of G.
Glauberman [3] one can deduce that every finite Bruck loop of odd order is a K-loop.
As a generalization it is proved in [9, theorem 1] that every Bruck loop with no
element of order 2 is a K-loop.

In this note we prove that K-loops and Bruck loops are the same. For that mainly
we have to show that the left inner mappings of a (left) Bruck loop are automorphisms
of the loop, denoted as axiom (I). (In general the right inner mappings of a left Bruck
loop are not automorphisms, hence Bruck loops are clearly not A-loops in the sense
of Bruck and Paige[2], but left 4-loops by definition 1-1-4 of Nagy and
Strambach [11], and in particular homogenous loops.) In Sections 1 and 2, we give
the definitions and some easy results, partly known, which we need in Section 3. The
main results are Theorems 3-1 and 3-3.
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In this paper, unlike other papers on K-loops [5,9, 10] we use ‘- " instead of * +°
for the binary operation, as is customary for loops.

2. Left inner mappings
Let (K, -) be a loop with the identity element 1, and for xe K let 2!, 2*€ K be the
unique elements with x'x = xa2” = 1. If 2! = 2?, then 27! = 2" = 2* is the inverse of z.
Let N, ={beK:a bc = ab-cforall a,ce K} denote the middle nucleus. For any fixed
element a€ K, the map
L(a): K—~K; x—uzL(a)=ax (2-1)

is called left translation. The group M, = {L(x): x€ K) of all permutations of K which
is generated by all left translations (and their inverses) is called the left multiplication
group of (K, -).

Let K= {L(x): x€ K} be the subset of all left translations of M,.

We recall that the middle nucleus N, of a loop is a subgroup (cf. [12, theorem
(I'3-4)]). Clearly, beN  if and only if ab- ¢ = c¢L(ab) = a-bc = ¢L(b) L(a), i.e. if and only
if L(ab) = L(b) L(a) for every ae K. Assume L(b)L(a) = L(x)eK, then 1L(b)L(a) =
ab = 1L(x) = x, i.e. x = ab. Hence

beN, ifandonlyif L(b)L(a)eK forevery aek. (2:2)
We call the permutations of A== {axeM,: la = 1} the left inner mappings of (K, -).

LemMA 2:-1. M, = AK and M, = KA are exact decompositions, i.e. for every pwe M, there
are unique elements L(a), L(b)eK, a, feA with u = al(a) = L(b)f and we have a =
bPu?.

Proof. For ueM, let a=1u,s=1p'eK, ie. su=1. Set b=s", then u=
uli(a) (a) = L)L) 'p with o= ul(a)™,f=Lb)ueA, since 1ul(a)™ =
al(@)™ =1 and sL(s") =1, hence 1L(b) 'y =1L(s"Y"'u=spu=1. Clearly b'u*=
sup = 1upp = 1p = a.

Assume p = al(a) = a'L(a’), then o' 'a = L(a’) L(a)™ and 1 = 1L(a") L(a)™!, ie.
1L(a) =a=a =1L(a")and o’ = a. Hence ae L, ae Aand also be L, f € A are uniquely
determined.

For fixed elements a,beK let

L(a,b) = L(a) L(b) L(ba)". (2:3)

In papers on K-loops the notation 4, , is used instead of L(a,b) due to the origin of
K-loops as the additive structure of neardomains. In this paper we prefer to write
L(a,b) rather than &, , to match up papers on Bol and Bruck loops.

Let A= {L(x,y): x,yeK) be the subgroup of M, which is generated by all
permutations L(x,y). By [7, proposition 1| we get (cf. also [1, IV, lemma 1-2] and
(12, I'5:2)):

Levma 2.2, A= {L(x,y): 2, yeK).

Clearly definition (2:3) implies for a,b,x€K:

a-bx = ab-xL(b,a), (24)
L(l,a) = L(a,1) = . (2:5)
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LemMA 2:3. In a loop (K, *) the following are equivalent :
() L(a,a) =id,
(i) L(a") = L(a)™* (left inverse property).

Proof. Obviously L(a,a") = L(a) L(a") L(1)™! = id if and only if L(a') = L(a)™*.

We recall that the left inverse property implies ¢! = a* = a™".

A loop (K, +) is called a left A-loop if (I), a left K-loop if (I), (II) and (I1I), a left
Bol loop if (B), and a left Bruck loop if (B) and (III) are satisfied:

(I) For all x,yeK, L(x,y) is an automorphism of (K, +).
(IT1)  L(x,y) = L(zy,y) for all x,yeK.
(ITT)  (Automorphic inverse property) (ab)™* = a'b~* for all a,beK.
(B) (left Bol identity) a(b-ac) = (a-ba)c forall a,b,ceK.

In the following we omit the word ‘left” and refer by the phrase Bol (Bruck, K-) loop
always to left Bol (Bruck, K-) loops.

By (IT) and (2'5), L(a*,a) = L(a’a,a) = L(1,a) = id, hence by (2'4) a = a-a’a =
aa’-al(a',a) = aa’-a. We obtain (cf. [10, (2:10)]) ae* =1, L(a,a") = L(aa’, a') =
L(1,a") =id and id = L(1,a) = L(a,a), i.e. by Lemma 23, ¢ ax = x and a-ax =
a?- x, properties which are well known for Bol loops (cf. [1, 12, 13]). Hence:

LemMA 2-4. In loops with (I1), in K-loops and Bol loops the left inverse property
ar-ac = ¢, and the left alternative law a-ac = a®c is satisfied.

Lemma 2:5. Let (K, +) be a loop. Then the following are equivalent :
(i) (B),
(it) L(ba,a) = L(a,b)™* for all a,be K,
(i) L(a)KL(a) = K for all ae K.

Proof. By (24) a(b-ac) = a(ba-cL(a,b)) = (a*ba)cL(a,b) L(ba,a), hence a(b-ac) =
(a-ba)c for every ceK, if and only if L(a,b)L(ba,a) =id. Since a(b-ac) = cL(a)
L(b) (La) and (a-ba)c = cL(a-ba), (B) is equivalent to L(a) L(b) L(a) = L(a-ba)eK for
every a,be K. Since 1L(a) L(b) L(a) = a-ba, L(a) L(b) L(a)eK implies L(a) L(b) L(a) =
L(a-ba).

By [9. (1-2)]. [10, (2:12)]:
LEemmA 2:6. Every K-loop satisfies the Bol identity and is a Bruck loop.

3. Left inner automorphisms
Now we describe properties of the loop (K, -) in the left multiplication group
M, = KA.
THEOREM 3-1. An inner mapping €A is an automorphism of (K, -) if and only if
o Ko < K.
Proof. Let x,yeK and a€A. Then (xy)a =uxo yo is equivalent to ay =

(e yo) o, hence

L(x) = al(xa)o™, ie. o 'L(x)a = L(zx)eK, (3-1)
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if and only if a is an isomorphism. Assume o 'L(x)a = L(2")eK for some z' €K,
then 1 = 1ot and la 'L(x)a = xa = 1L(x") = 2" and (3-1) is satisfied, i.e. o is an
automorphism.

THeEOREM 3-2. Let (K, ) be a Bol loop and let a,be K. Then the inner mapping

L(b,a) is an automorphism of (K, *) if and only if
ab-(a”'b"")eN,, (3-2)
where N, denotes the middle nucleus.

Proof. For L(x)eK let y = L(b,a) L(x) L(b,a)™" = L(b) L(a) L(ab)™* L(x) L(ab) L(a)™*
L(b)"teM,. By Theorem 3-1, L(b,a) is an automorphism if and only if yeK, and by
Lemma 25 yeK if and only if L(ab) ' L(a) L(b) yL(b) L(a) L(ab)™* €K or

L(ab)™ L(a) L(b)* L(a) L(ab) ' L(x)eK. (3-3)
For ze K, the Bol identity implies
2L(ab)t L(a) L(b)* L(a) L(ab)™ = (ab)™' - (a{b?[a - (ab) ™1 2]})
(B) (B)
= (ab)™"-[(a-b%a) (ab)™ 2] = [(ab)™" - (a-b%a) (ab) ']z
= zL((ab)™t (a-b%a) (ab)™)
and by (2-2) it follows that (3:3) is valid if and only if:
s:=(ab)™'(a-b*a)(ab) "N, (3-4)
With (B) and Lemma 24, (a-b%)-a b = a-b*(a-a 'b~') = ab. Hence it follows 1 =
(ab)™ +{(a-b*a)-[(ab) ™" (ab) (@b~ )]} = [(ab) ™" (a-b*a) (ab) '] (ab) (a™'b7"), ie. 7' =
ab-(a~'b7"). Because N, is a subgroup of K, se N, if and only if s™' € N,. We summarize
that L(b,a) is an automorphism if and only if ab-(a™'b67")€N,.

Since A = (L(a,b): a,be K, Theorem 3-2 implies:

COROLLARY 3-3. In every Bruck loop (K, -), Ais a group of automorphisms of (K, *),
i.e. the axiom (1) is satisfied and (K, -) is a left A-loop.

THEOREM 34. Bruck loop and K-loops are the same.

Proof. By Lemma 2:6 every K-loop is a Bruck loop. By [10, (2:-12)] in a loop with
(I), (IT) and the (left) inverse property, (II) and (B) are equivalent, hence in a loop

with (I), (I11) and (B), (IT) is satisfied, i.e. by Theorem 3-2, every Bruck loop is a
K-loop.

The question whether the axioms (I1) and (I11) also imply (I) is answered to the
negative by the following:

Example 3-5. Let (R, +.) be an associative and commutative ring with zero
element O, with x-x = 0 = x4 for every xeR and with four elements p,q,r. s
satisfying pgrs # 0. (For instance for neN with n >4 let R:=Z2""" be the vector
space over Z, with dimension 2" —1. We write the vectors of a basis B in the following
way :

B=A{lk.k,y ... . k,|: ke{0,1} for ¢e{l,....n} and [k,....k,]F+]0,...,0]}.
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Let O be the zero vector. We define by -0 = O-b for every beB and

O if k;+{,=2 forsome i€e{l,...,n}

[k“kz"“’k"]'[ll’l2"”’Z”]:{[kﬁzl,kﬁzz,...,kn+zn1 else

an associative and commutative multiplication on B and extend this multiplication
to a distributive multiplication of R. Then obviously x-2 = O and

[1,0,0,0,...1:10,1,0,0,...]-]0,0,1,0,...1-[0,0,0,1, ... | = [1,1,1,1,... ] & O).
Now we define on K := R x R the following operation:
D:KxK K, (a,.a,) ® (by,b,) = (a,+b,+a,a,b, by, a,+b,). (36)

Then for a = (ay,a,).b = (by,b,) €K, (x;,x,) = (a; + b, +a, b, a,b,, a,+b,) is the unique
solution of the equation (ay, a,) ® (x;,x,) = (by,b,) and (0, O) is the zero element, i.e.
(K, ®) is a commutative loop. Every element of K\{(O, O)} has order 2, hence (K, ®)
satisfies (IIT). We compute that

(21, 2,) L(b, @) = (214 ay ay(by 2y +by2y) 4 (ay by +ay by) 2y 2y, ) (3:7)
and L(b,a) = L(b® a,a), i.e. (I1) is satisfied. But for the elements p,q,r, se R with
pqrs =0 we have: (p,0)®{(q,7) D [(p,0) D (0,s)|} = (g+pqrs,r+s) * (¢, r+s) =

{(p,0)® [(q,7) D (p,0)]} ® (0, s), i.e. the Bol identity (B) is not satisfied and by
Lemma 2-6 neither is (I).

Added in proof. The result of Corollary 3-3 can also be found with different proofs
in [17, corollary 3-12-1] and [18, corollary 5-2].
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