Inner mappings of Bruck loops

By ALEXANDER KREUZER

Mathematisches Institut, Technische Universität München, Arcisstr. 21, 80290 München, Germany

(Received 20 October 1995; revised 12 February 1996)

Abstract

K-loops have their origin in the theory of sharply 2-transitive groups. In this paper a proof is given that K-loops and Bruck loops are the same. For the proof it is necessary to show that in a (left) Bruck loop the left inner mappings $L(b)L(a)L(ab)^{-1}$ are automorphisms. This paper generalizes results of Glauberman [3], Kist[8] and Kreuzer[9].

1. Introduction

In order to describe sharply 2-transitive groups, H. Karzel introduced in [4] the notion of a neardomain (F, \oplus, \cdot) (cf. [16]). The crucial difficulty of a neardomain is the additive structure (F, \oplus) , which need not be associative and no example of a proper neardomain is known (cf. [6, 16]). To obtain partial results, W. Kerby and H. Wefelscheid considered separately the additive structure (F, \oplus) and called such loops K-loops (see definition in Section 2). Since 1988 the interest in K-loops has been revived because A. A. Ungar has found a famous physical example.

A. A. Ungar investigated the relativistic addition \oplus of the velocities $\mathbb{R}^3_c := \{v \in \mathbb{R}^3 : |v| < c\}$. He showed that (\mathbb{R}^3_c, \oplus) is a non-associative and non-commutative loop with characteristic automorphisms, which he calls a gyrogroup. Ungar proved that for any two velocities $a, b \in \mathbb{R}^3_c$ there is an automorphism $\delta_{a,b}$ of (\mathbb{R}^2_c, \oplus) , the so-called Thomas rotation, satisfying $a \oplus (b \oplus x) = (a \oplus b) \oplus x\delta_{a,b}$ (cf. [14, 15]), i.e. $\delta_{a,b}$ is a left inner mapping of the loop. H. Wefelscheid recognized then that (\mathbb{R}^3_c, \oplus) is a K-loop.

At first it was discovered by G. Kist that there is a connection between K-loops and Bruck loops [8, p. 27]. G. Kist remarks, that already from results of G. Glauberman [3] one can deduce that every finite Bruck loop of odd order is a K-loop. As a generalization it is proved in [9, theorem 1] that every Bruck loop with no element of order 2 is a K-loop.

In this note we prove that K-loops and Bruck loops are the same. For that mainly we have to show that the left inner mappings of a (left) Bruck loop are automorphisms of the loop, denoted as axiom (I). (In general the right inner mappings of a left Bruck loop are not automorphisms, hence Bruck loops are clearly not A-loops in the sense of Bruck and Paige[2], but left A-loops by definition $1 \cdot 1 \cdot 4$ of Nagy and Strambach[11], and in particular homogenous loops.) In Sections 1 and 2, we give the definitions and some easy results, partly known, which we need in Section 3. The main results are Theorems $3 \cdot 1$ and $3 \cdot 3$.

In this paper, unlike other papers on K-loops [5, 9, 10] we use '·' instead of '+' for the binary operation, as is customary for loops.

2. Left inner mappings

Let (K, \cdot) be a loop with the identity element 1, and for $x \in K$ let $x^{\lambda}, x^{\rho} \in K$ be the unique elements with $x^{\lambda}x = xx^{\rho} = 1$. If $x^{\lambda} = x^{\rho}$, then $x^{-1} = x^{\lambda} = x^{\rho}$ is the inverse of x. Let $N_{\mu} = \{b \in K : a \cdot bc = ab \cdot c \text{ for all } a, c \in K\}$ denote the middle nucleus. For any fixed element $a \in K$, the map

$$L(a): K \to K; \quad x \to xL(a) := a \cdot x$$
 (2.1)

is called *left translation*. The group $M_{\lambda} := \langle L(x) : x \in K \rangle$ of all permutations of K which is generated by all left translations (and their inverses) is called the *left multiplication group* of (K, \cdot) .

Let $K := \{L(x) : x \in K\}$ be the subset of all left translations of M_{λ} .

We recall that the middle nucleus N_{μ} of a loop is a subgroup (cf. [12, theorem (I·3·4)]). Clearly, $b \in N_{\mu}$ if and only if $ab \cdot c = cL(ab) = a \cdot bc = cL(b)L(a)$, i.e. if and only if L(ab) = L(b)L(a) for every $a \in K$. Assume $L(b)L(a) = L(x) \in K$, then 1L(b)L(a) = ab = 1L(x) = x, i.e. x = ab. Hence

$$b \in N_u$$
 if and only if $L(b)L(a) \in K$ for every $a \in K$. (2.2)

We call the permutations of $A := \{\alpha \in M_{\lambda} : 1\alpha = 1\}$ the *left inner mappings* of (K, \cdot) .

LEMMA 2·1. $M_{\lambda} = \mathsf{AK}$ and $M_{\lambda} = \mathsf{KA}$ are exact decompositions, i.e. for every $\mu \in \mathsf{M}_{\lambda}$ there are unique elements $L(a), L(b) \in \mathsf{K}, \alpha, \beta \in \mathsf{A}$ with $\mu = \alpha L(a) = L(b)\beta$ and we have $a = b^{\rho}\mu^{2}$.

Proof. For $\mu \in M_{\lambda}$ let $a = 1\mu, s = 1\mu^{-1} \in K$, i.e. $s\mu = 1$. Set $b = s^{\lambda}$, then $\mu = \mu L(a)^{-1}L(a) = L(b)L(b)^{-1}\mu$ with $\alpha = \mu L(a)^{-1}, \beta = L(b)^{-1}\mu \in A$, since $1\mu L(a)^{-1} = aL(a)^{-1} = 1$ and $sL(s^{\lambda}) = 1$, hence $1L(b)^{-1}\mu = 1L(s^{\lambda})^{-1}\mu = s\mu = 1$. Clearly $b^{\rho}\mu^{2} = s\mu \mu = 1\mu^{-1}\mu\mu = 1\mu = a$.

Assume $\mu = \alpha L(a) = \alpha' L(a')$, then $\alpha'^{-1}\alpha = L(a')L(a)^{-1}$ and $1 = 1L(a')L(a)^{-1}$, i.e. 1L(a) = a = a' = 1L(a') and $\alpha' = \alpha$. Hence $a \in L$, $\alpha \in A$ and also $b \in L$, $\beta \in A$ are uniquely determined.

For fixed elements $a, b \in K$ let

$$L(a,b) := L(a)L(b)L(ba)^{-1}.$$
 (2.3)

In papers on K-loops the notation $\delta_{b,a}$ is used instead of L(a,b) due to the origin of K-loops as the additive structure of neardomains. In this paper we prefer to write L(a,b) rather than $\delta_{b,a}$ to match up papers on Bol and Bruck loops.

Let $A' := \langle L(x,y) : x,y \in K \rangle$ be the subgroup of M_{λ} which is generated by all permutations L(x,y). By [7, proposition 1] we get (cf. also [1, IV, lemma 1·2] and [12, I·5·2]):

LEMMA 2.2. $A = \langle L(x, y) : x, y \in K \rangle$.

Clearly definition (2·3) implies for $a, b, x \in K$:

$$a \cdot bx = ab \cdot xL(b, a), \tag{2.4}$$

$$L(1,a) = L(a,1) = id.$$
 (2.5)

Lemma 2.3. In a loop (K, \cdot) the following are equivalent:

- (i) $L(a, a^{\lambda}) = id$,
- (ii) $L(a^{\lambda}) = L(a)^{-1}$ (left inverse property).

Proof. Obviously $L(a, a^{\lambda}) = L(a)L(a^{\lambda})L(1)^{-1} = id$ if and only if $L(a^{\lambda}) = L(a)^{-1}$.

We recall that the left inverse property implies $a^{\lambda} = a^{\rho} = a^{-1}$.

A loop (K, \cdot) is called a left A-loop if (I), a left K-loop if (I), (II) and (III), a left Bol loop if (B), and a left Bruck loop if (B) and (III) are satisfied:

- (I) For all $x, y \in K, L(x, y)$ is an automorphism of (K, \cdot) .
- (II) L(x, y) = L(xy, y) for all $x, y \in K$.
- (III) (Automorphic inverse property) $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in K$.
- (B) (left Bol identity) $a(b \cdot ac) = (a \cdot ba)c$ for all $a, b, c \in K$.

In the following we omit the word 'left' and refer by the phrase Bol (Bruck, K-) loop always to left Bol (Bruck, K-) loops.

By (II) and (2·5), $L(a^{\lambda}, a) = L(a^{\lambda}a, a) = L(1, a) = id$, hence by (2·4) $a = a \cdot a^{\lambda}a = aa^{\lambda} \cdot aL(a^{\lambda}, a) = aa^{\lambda} \cdot a$. We obtain (cf. [10, (2·10)]) $aa^{\lambda} = 1$, $L(a, a^{\lambda}) = L(\alpha \cdot a^{\lambda}, a^{\lambda}) = L(1, a^{\lambda}) = id$ and id = L(1, a) = L(a, a), i.e. by Lemma 2·3, $a^{\lambda} \cdot ax = x$ and $a \cdot ax = a^{2} \cdot x$, properties which are well known for Bol loops (cf. [1, 12, 13]). Hence:

Lemma 2·4. In loops with (II), in K-loops and Bol loops the left inverse property $a^{\lambda} \cdot ac = c$, and the left alternative law $a \cdot ac = a^2c$ is satisfied.

Lemma 2.5. Let (K, \cdot) be a loop. Then the following are equivalent:

- (i) (B),
- (ii) $L(ba, a) = L(a, b)^{-1}$ for all $a, b \in K$,
- (iii) $L(a) \mathsf{K} L(a) \subset \mathsf{K}$ for all $a \in \mathsf{K}$.

Proof. By $(2\cdot 4)$ $a(b\cdot ac)=a(ba\cdot cL(a,b))=(a\cdot ba)\,cL(a,b)L(ba,a)$, hence $a(b\cdot ac)=(a\cdot ba)\,c$ for every $c\in K$, if and only if $L(a,b)L(ba,a)=\mathrm{id}$. Since $a(b\cdot ac)=cL(a)L(b)\,(La)$ and $(a\cdot ba)\,c=cL(a\cdot ba)$, (B) is equivalent to $L(a)\,L(b)\,L(a)=L(a\cdot ba)\in K$ for every $a,b\in K$. Since $1L(a)\,L(b)\,L(a)=a\cdot ba,L(a)\,L(b)\,L(a)\in K$ implies $L(a)\,L(b)\,L(a)=L(a\cdot ba)$.

By [9, (1.2)], [10, (2.12)]:

Lemma 2.6. Every K-loop satisfies the Bol identity and is a Bruck loop.

3. Left inner automorphisms

Now we describe properties of the loop (K,\cdot) in the left multiplication group $M_{\lambda}=KA$.

THEOREM 3·1. An inner mapping $\alpha \in A$ is an automorphism of (K, \cdot) if and only if $\alpha^{-1}K\alpha \subset K$.

Proof. Let $x, y \in K$ and $\alpha \in A$. Then $(xy)\alpha = x\alpha \cdot y\alpha$ is equivalent to $xy = (x\alpha \cdot y\alpha)\alpha^{-1}$, hence

$$L(x) = \alpha L(x\alpha) \alpha^{-1}$$
, i.e. $\alpha^{-1}L(x) \alpha = L(x\alpha) \in K$, (3.1)

if and only if α is an isomorphism. Assume $\alpha^{-1}L(x)\alpha = L(x') \in K$ for some $x' \in K$, then $1 = 1\alpha^{-1}$ and $1\alpha^{-1}L(x)\alpha = x\alpha = 1L(x') = x'$ and (3·1) is satisfied, i.e. α is an automorphism.

Theorem 3.2. Let (K, \cdot) be a Bol loop and let $a, b \in K$. Then the inner mapping L(b, a) is an automorphism of (K, \cdot) if and only if

$$ab \cdot (a^{-1}b^{-1}) \in N_u,$$
 (3.2)

where N_{μ} denotes the middle nucleus.

Proof. For $L(x) \in K$ let $\gamma := L(b,a)L(x)L(b,a)^{-1} = L(b)L(a)L(ab)^{-1}L(x)L(ab)L(a)^{-1}$ $L(b)^{-1} \in M_{\lambda}$. By Theorem 3·1, L(b,a) is an automorphism if and only if $\gamma \in K$, and by Lemma 2·5 $\gamma \in K$ if and only if $L(ab)^{-1}L(a)L(b)\gamma L(b)L(a)L(ab)^{-1} \in K$ or

$$L(ab)^{-1}L(a)L(b)^{2}L(a)L(ab)^{-1}L(x) \in K.$$
(3.3)

For $z \in K$, the Bol identity implies

$$\begin{split} zL(ab)^{-1}L(a)L(b)^{2}L(a)L(ab)^{-1} &= (ab)^{-1} \cdot (a\{b^{2}[a \cdot (ab)^{-1}z]\}) \\ &= (ab)^{-1} \cdot [(a \cdot b^{2}a) \cdot (ab)^{-1}z] \stackrel{\text{(B)}}{=} [(ab)^{-1} \cdot (a \cdot b^{2}a) (ab)^{-1}]z \\ &= zL((ab)^{-1} \cdot (a \cdot b^{2}a) (ab)^{-1}) \end{split}$$

and by $(2\cdot2)$ it follows that $(3\cdot3)$ is valid if and only if:

$$s := (ab)^{-1} \cdot (a \cdot b^2 a) (ab)^{-1} \in N_u. \tag{3.4}$$

With (B) and Lemma 2·4, $(a \cdot b^2 a) \cdot a^{-1} b^{-1} = a \cdot b^2 (a \cdot a^{-1} b^{-1}) = ab$. Hence it follows $1 = (ab)^{-1} \cdot \{(a \cdot b^2 a) \cdot [(ab)^{-1} \cdot (ab) (a^{-1} b^{-1})]\} = [(ab)^{-1} \cdot (a \cdot b^2 a) (ab)^{-1}] \cdot (ab) (a^{-1} b^{-1})$, i.e. $s^{-1} = ab \cdot (a^{-1} b^{-1})$. Because N_{μ} is a subgroup of $K, s \in N_{\mu}$ if and only if $s^{-1} \in N_{\mu}$. We summarize that L(b,a) is an automorphism if and only if $ab \cdot (a^{-1} b^{-1}) \in N_{u}$.

Since $A = \langle L(a,b) : a, b \in K \rangle$, Theorem 3.2 implies:

COROLLARY 3.3. In every Bruck loop (K, \cdot) , A is a group of automorphisms of (K, \cdot) , i.e. the axiom (I) is satisfied and (K, \cdot) is a left A-loop.

Theorem 3.4. Bruck loop and K-loops are the same.

Proof. By Lemma 2·6 every K-loop is a Bruck loop. By [10, (2·12)] in a loop with (I), (III) and the (left) inverse property, (II) and (B) are equivalent, hence in a loop with (I), (III) and (B), (II) is satisfied, i.e. by Theorem 3·2, every Bruck loop is a K-loop.

The question whether the axioms (II) and (III) also imply (I) is answered to the negative by the following:

Example 3.5. Let $(R, +, \cdot)$ be an associative and commutative ring with zero element $\mathbf{0}$, with $x \cdot x = \mathbf{0} = x + x$ for every $x \in R$ and with four elements p, q, r, s satisfying $pqrs \neq \mathbf{0}$. (For instance for $n \in \mathbb{N}$ with $n \geq 4$ let $R := \mathbb{Z}_2^{2^{n-1}}$ be the vector space over \mathbb{Z}_2 with dimension $2^n - 1$. We write the vectors of a basis B in the following way:

$$B = \{[k_1, k_2, \dots, k_n] \colon k_i \in \{0, 1\} \quad \text{for} \quad i \in \{1, \dots, n\} \quad \text{and} \quad [k_1, \dots, k_n] \neq [0, \dots, 0]\}.$$

Let **O** be the zero vector. We define by $b \cdot \mathbf{O} = \mathbf{O} \cdot b$ for every $b \in B$ and

$$[k_1, k_2, \dots, k_n] \cdot [l_1, l_2, \dots, l_n] \coloneqq \begin{cases} \mathbf{0} & \text{if} \quad k_i + l_i = 2 \quad \text{for some} \quad i \in \{1, \dots, n\} \\ [k_1 + l_1, k_2 + l_2, \dots, k_n + l_n] & \text{else} \end{cases}$$

an associative and commutative multiplication on B and extend this multiplication to a distributive multiplication of R. Then obviously $x \cdot x = \mathbf{0}$ and

$$[1,0,0,0,\dots] \cdot [0,1,0,0,\dots] \cdot [0,0,1,0,\dots] \cdot [0,0,0,1,\dots] = [1,1,1,1,\dots] \neq 0$$
.

Now we define on $K := R \times R$ the following operation:

$$\bigoplus : K \times K \to K, (a_1, a_2) \oplus (b_1, b_2) = (a_1 + b_1 + a_1 \, a_2 \, b_1 \, b_2, a_2 + b_2). \tag{3.6}$$

Then for $a=(a_1,a_2), b=(b_1,b_2)\in K, (x_1,x_2)=(a_1+b_1+a_1b_1a_2b_2,a_2+b_2)$ is the unique solution of the equation $(a_1,a_2)\oplus (x_1,x_2)=(b_1,b_2)$ and (0,0) is the zero element, i.e. (K,\oplus) is a commutative loop. Every element of $K\backslash\{(\textbf{0},\textbf{0})\}$ has order 2, hence (K,\oplus) satisfies (III). We compute that

$$(x_1, x_2)L(b, a) = (x_1 + a_1 a_2(b_1 x_2 + b_2 x_1) + (a_1 b_2 + a_2 b_1) x_1 x_2, x_2)$$
(3.7)

and $L(b,a) = L(b \oplus a,a)$, i.e. (II) is satisfied. But for the elements $p,q,r,s \in R$ with $pqrs \neq 0$ we have: $(p,0) \oplus \{(q,r) \oplus [(p,0) \oplus (0,s)]\} = (q+pqrs,r+s) \neq (q,r+s) = \{(p,0) \oplus [(q,r) \oplus (p,0)]\} \oplus (0,s)$, i.e. the Bol identity (B) is not satisfied and by Lemma 2·6 neither is (I).

Added in proof. The result of Corollary 3·3 can also be found with different proofs in [17, corollary 3·12·1] and [18, corollary 5·2].

REFERENCES

- [1] Bruck, R. H. A survey of binary systems (Springer-Verlag, 1958).
- [2] BRUCK, R. H. and PAIGE, L. J. Loops whose inner mappings are automorphisms. Ann. Math. 63 (1956), 308–323.
- [3] GLAUBERMAN, G. On loops of odd order. J. Algebra 1 (1966), 374–396.
- [4] Karzel, H. Zusammenhänge zwischen Fastbereichen, scharf zweifach transitiven Permutationsgruppen und 2-Strukturen mit Rechtecksaxiom. Abh. Math. Sem. Univ. Hamburg 32 (1968), 191–206.
- [5] Karzel, H. and Wefelscheid, H. Groups with an involutory antiautomorphism and K-loops; application to space-time-world and hyperbolic geometry. Res. Math. 23 (1993), 338-354.
- [6] Kerby, W. und Wefelscheid, H. Bemerkungen über Fastbereiche und scharf 2-fach transitive Gruppen. Abh. Math. Sem. Univ. Hamburg 37 (1971) 20-29.
- [7] Kikkawa, M. Geometry of homogeneous Lie loops. Hiroshima Math. J. 5 (1975), 141–179.
- [8] Kist, G. Theorie der verallgemeinerten kinematischen Räume. Beiträge zur Geometrie und Algebra 14, TUM-Bericht M8611 (München, 1986).
- [9] Kreuzer, A. Beispiele endlicher und unendlicher K-Loops. Res. Math. 23 (1993), 355–362.
- [10] Kreuzer, A. and Wefelscheid, H. On K-loops of finite order. Res. Math. 25 (1994), 79–102.
- [11] NAGY, P. T. and STRAMBACH, K. Loops as invariant sections of groups, and their geometry. Can. J. Math 46 (1994), 1027–1056.
- [12] Pflugfelder, H. Quasigroups and loops, an introduction (Heldermann Verlag, 1990).
- [13] Robinson, D. A. Bol-loops. Trans. Amer. Math. Soc. 123 (1966), 341–354.
- [14] Ungar, A. A. Thomas rotation and the parametrization of the Lorentz transformation group. Found. Phys. Lett. 1 (1988), 57–89.
- [15] Ungar, A. A. Weakly associative groups. Res. Math. 17 (1990), 149–168.
- [16] Wähling, H. Theorie der Fastkörper (Thales Verlag, 1987).
- [17] GOODAIRE, E. G. and ROBINSON, D. A. Semidirect products and Bol loop. Demonstratio Mathematica 27 (1994), 573–588.
- [18] Funk, M. and Nagy P. T. On collineation groups generated by Bol reflections. J. of Geometry 48 (1993), 63–78.