Simple motion systems and Banach spaces associated to uniformly bounded representations

BY MATTHIAS MAYER AND CHRISTIAN SALLER

Technische Universität München, Zentrum Mathematik, D-80333 München, Germany e-mail: mayerm@mathematik.tu-muenchen.de e-mail: sallerc@mathematik.tu-muenchen.de

(Received 29 October 1997; revised 26 May 1998)

Abstract

Given a uniformly bounded representation of a locally compact group, we consider the closed circled convex hull K of the orbit of a vector. We call K a simple motion system (SMS) and endow its linear hull with the Minkowski functional of K. The representation theory on these 'SMS-spaces' is discussed, in particular for C_0 -representations, for irreducible representations of connected groups and for integrable representations. As an application we give a criterion for the decomposibility of representations.

1. Introduction

We describe the behaviour of a vector x under the action of a uniformly bounded representation π of a locally compact group in terms of an associated Banach-space, the 'SMS-space' to π and x. This is done in a geometric way.

We consider the closed circled convex hull K of the orbit of x which we call the simple motion system (SMS) and endow its linear hull with the Minkowski functional of K. Obviously this space is invariant under G however the restriction of π is not usually strongly continuous with respect to this Minkowski-norm.

In Section 2 we present this construction and discuss the representation theory on general SMS-spaces. Section 3 is devoted to the study of C_0 -representations. Here the SMS-space and the space of strongly continuous vectors are revealed as the orbits of x under the measure algebra M(G) and the group algebra $L^1(G)$, respectively.

Sections 4 and 5 are concerned with certain canonical SMS-spaces associated to irreducible GCR-representations of connected groups and to integrable representations of unimodular groups, respectively.

Finally Section 6 generalizes the concept of SMS-spaces. We show that the SMS-spaces associated with unitary representations are dual spaces. Furthermore the theory applies to certain subspaces of the Fourier–Stieltjes algebra. Using a theorem of Taylor, we give a criterion for the decomposibility of a representation into irreducible ones.

2. Simple motion systems associated to group representations

Throughout this paper let G be a locally compact second countable topological group and (π, \mathscr{B}_{π}) be a uniformly bounded, strongly continuous representation of G on a Banach space \mathscr{B}_{π} . In addition we assume (π, \mathscr{B}_{π}) to be cyclic.

Definition 2.1. Let $x \in \mathscr{B}_{\pi}$ be a cyclic vector with respect to (π, \mathscr{B}_{π}) . We call the closed circled convex hull of the orbit of x

$$K \coloneqq \operatorname{cl}\left(\operatorname{cco} \pi(G)x\right)$$

the simple motion system associated to π and x.

The dense subspace

134

$$E := \text{SMS}(\pi, x) := \text{span } K = \mathbb{R}^+ \cdot K$$

of \mathscr{B}_{π} endowed with the Minkowski functional of K

$$||y||_E \coloneqq \mu_K(y) \coloneqq \inf \{\lambda \in \mathbb{R}^+ \mid y \in \lambda \, K\}$$

is called the SMS-space associated to π and x, the vector x its starting vector.

Example $2 \cdot 2$.

(i) Let λ_Z be the regular representation of the integers on l²(Z) and consider the starting vector x := δ₀. We find

$$\operatorname{cco} \lambda_{\mathbb{Z}}(\mathbb{Z}) x = \left\{ \sum_{i=-n}^{n} \lambda_{i} \delta_{i} \, | \, n \in \mathbb{N}, \sum_{i=-n}^{n} |\lambda_{i}| \leqslant 1 \right\},\$$

hence the unit ball $\ell^1(\mathbb{Z})_{\leq 1}$ of $\ell^1(\mathbb{Z})$ is densely contained in the simple motion system $K = \operatorname{cl}(\operatorname{cco}(\lambda_{\mathbb{Z}}(\mathbb{Z})\delta_0))$. Since the inclusion $\iota: \ell^1(\mathbb{Z}) \hookrightarrow \ell^2(\mathbb{Z})$ is weak-* weak continuous, $\ell^1(\mathbb{Z})_{\leq 1}$ is weakly-compact, whence it is norm-closed in $\ell^2(\mathbb{Z})$. This yields $K = \ell^1(\mathbb{Z})_{\leq 1}$ and SMS $(\pi, \delta_0) = \ell^1(\mathbb{Z})$.

(ii) Now consider the regular representation $(\lambda_{\mathbb{R}}, L^2(\mathbb{R}))$ of the reals. A function $x \in L^2(\mathbb{R})$ is cyclic if and only if its Plancherel-transform vanishes at most on a null set. We will see in the next section that

$$\begin{split} K &= \{\mu * x \, | \, \mu \in \mathcal{M}(\mathbb{R})_{\leq 1} \} \\ E &\coloneqq \mathrm{SMS} \, (\lambda_{\mathbb{R}}, x) \simeq \mathcal{M}(\mathbb{R}) \quad \text{(isometrically isomorphic).} \end{split}$$

PROPOSITION 2.3. With the notations of Definition 2.1 and $M \coloneqq \sup_{g \in G} \|\pi(g)\|$ we have

- (i) The Minkowski functional μ_K defines a norm on $E = \text{SMS}(\pi, x)$.
- (ii) The unit ball $E_{\leq 1}$ of E coincides with the simple motion system K.
- (iii) The embedding ι: E → ℬ_π has norm less or equal M ||x||_{ℬπ}. In particular the transposed embedding ι^t: ℬ'_π → E' has norm less or equal M ||x||_{ℬπ}.
- (iv) The normed space $(E, \|.\|_E)$ is complete.

Proof. (i)–(iii) are immediate, since K is closed, circled convex and bounded. To prove (iv) consider a Cauchy sequence $\{y_n\}_{n\in\mathbb{N}}$ with respect to $\|.\|_E$. Then $\{y_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence with respect to $\|.\|_{\mathscr{B}_{\pi}}$ by (iii), hence has a limit y in \mathscr{B}_{π} with respect to $\|.\|_{\mathscr{B}_{\pi}}$. But the Cauchy-property with respect to $\|.\|_E$ assures that for $\varepsilon > 0$ and a large enough number $N \in \mathbb{N}$

$$y_m \in y_n + \varepsilon . K \quad \forall m, n \ge N.$$

Since K is closed in \mathscr{B}_{π} this yields $y \in y_n + \varepsilon K$, hence $y \in E$ and $y_n \to y$ with respect to $\|.\|_E$. \Box

Thus the representation (π, \mathscr{B}_{π}) associates to the starting vector x a dense subspace E in \mathscr{B}_{π} carrying a Banach-norm which is finer than the original one. Obviously K is G-invariant and G acts on E via $\tilde{\pi}(g) \coloneqq \pi(g)|_{E}$.

THEOREM 2.4. We keep the notation of Definition 2.1. Then G acts on E by isometries. In fact, the unit ball K is invariant under the simple motions, that is

$$\pi(\mu). K \subseteq K \quad for \ \mu \in \mathcal{M}(G)_{\leq 1}.$$

In particular the representation

$$\tilde{\pi}: \mathbf{M}(G) \to \mathbf{BL}(E), \quad \mu \mapsto \pi(\mu)|_{F}$$

is norm-decreasing.

Proof. Clearly, G acts by isometries. As to the remainder of the theorem, assume the statement not to be true. Then there exist $y \in K$ and $\mu \in \mathcal{M}(G)_{\leq 1}$ with $\pi(\mu)y \notin K$. But K is circled convex and closed in \mathscr{B}_{π} , whence the Hahn–Banach theorem forces a $\lambda \in \mathscr{B}'_{\pi}$ with

$$|\lambda(k)| \leq 1 \ \forall k \in K \quad \text{but} \quad |\lambda(\pi(\mu)y)| > 1.$$

This implies

$$\begin{split} 1 < |\lambda(\pi(\mu))y| &= \Big| \int_{G} \lambda(\pi(g)y) \ d\mu(g) \Big| \\ &\leqslant \int_{G} |\lambda(\pi(g)y)| \ d|\mu|(g) \ \leqslant \ \int_{G} d|\mu|(g) \leqslant 1, \end{split}$$

a contradiction. \Box

Observe that it is not a priori clear that $\pi(\mu)$ is an element of E, which would simplify the proof above.

Our next aim is to describe the space

$$\tilde{E} \coloneqq \{ y \in E \mid g \mapsto \tilde{\pi}(g) y \text{ is continuous} \}$$

of the strongly continuous vectors for $\tilde{\pi}$ (which is closed by boundedness of $\tilde{\pi}$).

PROPOSITION 2.5. For all $\mu \in M(G)$ the integrated representation $\tilde{\pi}(\mu)$ of $\tilde{\pi}|_{\tilde{E}}$ coincides with $\pi(\mu)|_{\tilde{E}}$.

Proof. For $\lambda \in \mathscr{B}'_{\pi} \subseteq E'$ and $y \in E$ we have

$$\lambda(\tilde{\pi}(\mu)y) = \int \lambda(\tilde{\pi}(g)y)d\mu(g) = \int \lambda(\pi(g)y)d\mu(g) = \lambda(\pi(\mu)y).$$

This shows the claim, since \mathscr{B}'_{π} separates the points in $E \subseteq \mathscr{B}_{\pi}$. \Box

If E, F is a dual pair of vector spaces, we denote by $\sigma(E, F)$ and $\tau(E, F)$ the weak and the Mackey topology on E, respectively.

THEOREM 2.6. We keep the notation of Definition 2.1. Then the space

 $\tilde{E} \coloneqq \{ y \in E \mid g \mapsto \pi(g)y \text{ is continuous} \}$

of the strongly continuous vectors coincides with

136

$$\pi(\mathrm{L}^1(G)) \cdot E$$
.

Thus $\tilde{\pi}$ is strongly continuous on a $\tau(E, \mathscr{B}'_{\pi})$ -dense, norm closed, subspace of E.

Proof. By Theorem 2.4 we have a continuous representation of M(G) on E, and furthermore the regular representation of G on $L^1(G)$ is strongly continuous. Thus $\tilde{\pi}$ is strongly continuous on $\pi(L^1(G))$. E.

On the other hand the factorization theorem (e.g. $[7,\,11\cdot10],\,)$ together with Proposition 2.5 shows

$$\tilde{E} = \tilde{\pi}(\mathcal{L}^1(G)) \cdot \tilde{E} = \pi(\mathcal{L}^1(G)) \cdot \tilde{E} \subseteq \pi(\mathcal{L}^1(G)) \cdot E,$$

which settles the first part of the theorem.

As to the Mackey-density, observe that $\pi(L^1(G))E$ is dense in \mathscr{B}_{π} with respect to the norm topology, hence $\sigma(\mathscr{B}_{\pi}, \mathscr{B}'_{\pi})$ -dense in \mathscr{B}_{π} . Therefore it is $\sigma(E, \mathscr{B}'_{\pi})$ -dense in E, thus $\tau(E, \mathscr{B}'_{\pi})$ -dense in E, by convexity. \Box

Note that the continuity properties on the SMS-space correspond to the continuity properties of the regular representation λ_G of G on $\mathcal{M}(G)$: the space of strongly continuous vectors of λ_G is exactly $\mathcal{L}^1(G) = \lambda_G(\mathcal{L}^1(G)) \cdot \mathcal{M}(G)$.

Thus in Example 2.2(ii) the representation $\tilde{\pi}$ is not strongly continuous on the whole SMS-space.

3. SMS-spaces associated to C_0 -representations

In this section, we present a rather satisfactory description of SMS-spaces associated to an important class of representations, the C_0 -representations.

Definition 3.1. A cyclic uniformly bounded representation (π, \mathscr{B}_{π}) on a Banach space \mathscr{B}_{π} is called a C_0 -representation, if there exists a cyclic vector $x \in \mathscr{B}_{\pi}$, such that the matrix coefficients

$$v_{\lambda,x}(g) \coloneqq \lambda(\pi(g)x)$$

belong to the space $C_0(G)$ of functions vanishing at infinity for all continuous linear functionals $\lambda \in \mathscr{B}'_{\pi}$. This implies immediately that for all $\lambda \in \mathscr{B}'_{\pi}, z \in \mathscr{B}_{\pi}$ the matrix coefficient $v_{\lambda,z}$ is in $C_0(G)$. If (π, \mathscr{H}_{π}) is a unitary representation on a Hilbert space \mathscr{H}_{π} this is equivalent to the fact that, for some cyclic vector $x \in \mathscr{H}_{\pi}$, the positive definite function

$$v_{x,x}(g) \coloneqq \langle x, \pi(g)x \rangle$$

vanishes at infinity.

Example $3 \cdot 2$.

- (i) The regular representation is a C_0 -representation (cf. [9, 3.7]). In particular, the Duflo-Moore theorem ([8]) implies that square-integrable and integrable representations are C_0 -representations.
- (ii) If G is a semisimple connected Lie group with finite centre, every strongly continuous unitary representation on a Hilbert space (π, \mathscr{H}_{π}) is a C_0 -representation, provided that the restriction $\pi|_S$ of π to every simple non-compact component $S \triangleleft G$ does not contain the trivial representation of S. This is due to Howe and Moore ([12]).

(iii) A faithful irreducible representation of a minimal analytic group, i.e. a connected Lie group with compact centre and a closed adjoint group, has C_0 -coefficients (cf. [15]). Similar statements are valid for connected so called totally minimal groups ([16])

We now calculate the SMS-space associated to a C_0 -representation.

THEOREM 3.3. Let (π, \mathscr{B}_{π}) be a C_0 -representation with cyclic vector x. Then

$$K = \operatorname{cl}\left(\operatorname{cco}\pi(G)x\right) = \pi(\operatorname{M}(G)_{\leq 1})x.$$

In particular, SMS (π, x) is the orbit of x under the action of M(G).

Proof. We know from Theorem 2.4 that $\pi(\mathcal{M}(G)_{\leq 1})x \subseteq K$. To show the other inclusion, take $y \in \operatorname{cl}(\operatorname{cco} \pi(G)x)$ and a sequence $\{x_k\}_{k\in\mathbb{N}}\subseteq\operatorname{cco} \pi(G)x$ converging to y. Thus

$$x_k = \sum_{i=1}^{n_k} c_{ik} \pi(g_{ik}) x$$
 with $n_k \in \mathbb{N}, \ g_{ik} \in G, \ \sum_{i=1}^{n_k} |c_{ik}| \leqslant 1.$

Hence with $\mu_k \coloneqq \sum_{i=1}^{n_k} c_{ik} \delta_{g_{ik}} \in \mathcal{M}(G)_{\leq 1}$ we have

$$x_k = \pi(\mu_k)x.$$

Now, since G is separable, the unit ball $M(G)_{\leq 1}$ is weak-* sequentially compact, hence we may assume that $\{\mu_k\}_{k\in\mathbb{N}}$ converges to a $\mu \in M(G)_{\leq 1}$ in the weak-* topology. Together with the C_0 -property of π , this implies for $\lambda \in \mathscr{B}'_{\pi}$

$$\begin{split} \lambda(y) &= \lim_{k \to \infty} \lambda(x_k) = \lim_{k \to \infty} \lambda(\pi(\mu_k)x) \\ &= \lim_{k \to \infty} \int_G \lambda(\pi(g)x) d\mu_k(g) = \lambda(\pi(\mu)x). \end{split}$$

An application of the Hahn-Banach theorem finishes the proof. \Box

To identify the Banach space structure of $(E, \|.\|_E)$ observe the following:

LEMMA 3.4. Let E, F be Banach-spaces and $T: E \to F$ a continuous linear onto mapping. Then the factor space $E/\ker T$ endowed with the quotient norm is isometrically isomorphic to F if and only if $T(E_{\leq 1}) = F_{\leq 1}$.

Proof. Standard.

THEOREM 3.5. Let (π, \mathscr{B}_{π}) be a C_0 -representation and x a cyclic vector for π and $E := \text{SMS}(\pi, x)$. Define $\mathscr{F}_x(\pi) := \{v_{\lambda,x} \mid \lambda \in \mathscr{B}'_{\pi}\} \subset C_0(G)$ and its polar $I := \mathscr{F}_x(\pi)^\circ$ in M(G). Then

$$I = \{\mu \in \mathcal{M}(G) : \pi(\mu)x = 0\}$$

and I is a weak- \ast -closed left ideal in M(G). We have the following isometric isomorphisms:

$$E \xrightarrow{\text{isometrically}} M(G)/I \xrightarrow{\text{isometrically}} \mathscr{F}_x(\pi)'$$

via

$$\operatorname{M}(G)/I \ni \mu + I \mapsto \pi(\mu)x \in E$$

138 and

$$\mathcal{M}(G)/I \ni \mu + I \mapsto (v_{\lambda,x} \mapsto \mu(v_{\lambda,x}) = \lambda(\pi(\mu)x)) \in \mathscr{F}_x(\pi)',$$

respectively. Furthermore, for $\lambda \in \mathscr{B}'_{\pi} \subset E'$ (cf. Proposition 2.3) one has

$$\|\lambda\|_{E'} = \|v_{\lambda,x}\|_{\infty}$$

Proof. We have

$$\mu \in \mathscr{F}_x(\pi)^{\circ} \iff 0 = \int v_{\lambda,x} d\mu(x) = \lambda(\pi(\mu)x) \quad \forall \lambda \in \mathscr{B}'_{\pi}$$
$$\iff \pi(\mu)x = 0.$$

Therefore, as a polar, I is weak-*-closed while by the second description it is a left ideal.

Now by Theorem 3.3 and the previous lemma the first isomorphism follows. The second one is due to general functional analysis.

Finally, for $\lambda \in \mathscr{B}'_{\pi}$, Theorem 3.3 implies:

$$\|\lambda\|_{E'} = \sup_{y \in E_{\leqslant 1}} |\lambda(y)| = \sup_{\mu \in M(G)_{\leqslant 1}} |\lambda(\pi(\mu)x)| = \sup_{\mu \in M(G)_{\leqslant 1}} |\mu(v_{\lambda,x})| = \|v_{\lambda,x}\|_{\infty}.$$

The next theorem identifies the space of the strongly continuous vectors in E as the $L^1(G)$ -orbit of the starting vector x.

THEOREM 3.6. In the situation of Theorem 3.3 the space \tilde{E} of $\tilde{\pi}$ -strongly continuous vectors in E coincides with the $L^1(G)$ -orbit of x.

Proof. By Theorems $2 \cdot 6$ and $3 \cdot 3$ one has

$$\tilde{E} = \pi(L^1(G))E = \pi(L^1(G))\pi(M(G))x = \pi(L^1(G) * M(G))x = \pi(L^1(G))x.$$

COROLLARY 3.7. The starting vector x is a strongly continuous vector for $\tilde{\pi}$ in its own SMS-space $E = \text{SMS}(\pi, x)$ if and only if there is $f \in L^1(G)$ with $\pi(f)x = x$. In this case, $\tilde{\pi}$ is strongly continuous on E and

$$E = \pi(\mathcal{L}^1(G))x.$$

Example 3.8.

(i) Consider the regular representation (λ_ℝ, L²(ℝ)) of the reals and a cyclic vector x ∈ L²(ℝ), so that the Plancherel-transform x̂ of x satisfies x̂(t) ≠ 0 a.e. Then for μ ∈ M(ℝ) : λ_ℝ(μ)x = μ * x = 0 if and only if the Fourier–Stieltjes transform μ̂ = 0, thus I = {0}. Therefore we find

$$E = \text{SMS} \ (\lambda, x) \xrightarrow{\text{isometrically}} M(\mathbb{R}),$$
$$\tilde{E} \xrightarrow{\text{isometrically}} L^1(\mathbb{R}).$$

In particular the starting vector x is not strongly continuous in its SMS-space.

(ii) Now consider the representation of (i) as a representation of the discretisized group \mathbb{R}_d . The SMS-space remains of course unchanged, hence

SMS
$$(\lambda_{\mathbb{R}}, x) = \pi(\mathbf{M}(\mathbb{R})) x \supseteq \pi(\ell^1(\mathbb{R})) x = \pi(\mathbf{M}(\mathbb{R}_d)) x.$$

Thus Theorem 3.3 fails if the C_0 -property is not satisfied.

(iii) Let (π, \mathscr{B}_{π}) be an infinite dimensional cyclic representation of a compact group G with cyclic vector x. Then x is not strongly continuous in $E = \text{SMS}(\pi, x)$. As to the proof, assume x to be strongly continuous. Since the circled convex hull of a compact set is totally bounded by Mazur's theorem ([3, VI·4·8]),

$$\tilde{K} \coloneqq \operatorname{cls}\left(\operatorname{cco}\tilde{\pi}(G)x, \|.\|_{E}\right)$$

is compact. As the topology on E is finer than that on \mathscr{B}_{π} , we have

$$\tilde{K} \subset K = E_{\leq 1}$$

On the other hand Proposition 2.5 and Theorem 3.3 imply:

$$K = \pi(\mathcal{M}(G)_{\leq 1})x = \tilde{\pi}(\mathcal{M}(G)_{\leq 1})x \subset \tilde{K}.$$

Hence the closed unit ball of E would be compact, forcing E to be finite dimensional. But this is a contradiction to x being cyclic for π .

- (iv) If (π, \mathscr{B}_{π}) is an irreducible C_0 -representation and if $x \in \mathscr{B}_{\pi}$ such that the SMS-space $E = \text{SMS}(\pi, x)$ is minimal with respect to inclusion among SMS-subspaces, then $\tilde{\pi}$ is strongly continuous on E. Take $0 \neq y \in \tilde{E}$; then, by Theorem 3.6, $y = \pi(f)x$ for a suitable $f \in L^1(G)$. Since $y \in E$, the minimality of E implies that $E = \text{SMS}(\pi, y) = \pi(M(G))y$. Thus there is a $\mu \in M(G)$ with $\pi(\mu)y = x$, whence one has $x = \pi(\mu)\pi(f)x = \pi(\mu * f)x$. But $\mu * f \in L^1(G)$ and Corollary 3.7 shows the claim. (Note that irreducibility of π is needed to assure that the vector y used in the proof is cyclic, so that $\text{SMS}(\pi, y)$ is well-defined.)
- (v) On the other hand, if (π, \mathscr{B}_{π}) is a C_0 -representation and $x \in \mathscr{B}_{\pi}$ is a cyclic vector such that $E = \text{SMS}(\pi, x)$ is maximal with respect to inclusion among SMS-subspaces, then again $\tilde{\pi}$ is strongly continuous on E. In fact, by the factorization theorem, there are $y \in \mathscr{B}_{\pi}$ and $f \in L^1(G)$ with $x = \pi(f)y$, therefore y is cyclic for π and $x \in \text{SMS}(\pi, y)$, so the maximality of E implies $\text{SMS}(\pi, y) = E = \pi(M(G))x$ and again we see $x \in \pi(L^1(G))x$. Combined with (i) this shows that for every cyclic $f \in L^2(\mathbb{R})$ there is a sequence $f_n \in L^2(\mathbb{R})$ such that

$$\pi(\mathbf{M}(\mathbb{R}))f \subseteq \pi(\mathbf{M}(\mathbb{R}))f_1 \subseteq \pi(\mathbf{M}(\mathbb{R}))f_2\dots$$

(In other words, there is a strictly increasing sequence of subspaces of $L^2(\mathbb{R})$ that are in a natural way algebraically isomorphic to $M(\mathbb{R})$.)

4. SMS-spaces of irreducible GCR-representations

In this Section we are concerned with SMS-spaces associated to irreducible unitary GCR-representations. The significant fact here is the existence of a unique minimal SMS-space. The most important tool is the following result which is an easy generalization of a very deep one, due to Poguntke [17].

THEOREM 4.1. Let (π, \mathscr{H}_{π}) be an irreducible unitary representation of a connected locally compact group G. Furthermore let (π, \mathscr{H}_{π}) be GCR, i.e. the operation of the C^{*}algebra contains a compact operator. Then there exists $f \in L^1(G)$ such that $\pi(f)$ is a nontrivial finite dimensional operator.

Downloaded from http://www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:25:59, subject to the Cambridge Core terms of use, available at http://www.cambridge.org/core/terms. http://content-service:5050/content/id/urn:cambridge.org:id:article:S0305004199003631/resource/name/S0305004199003631a.pdf

140 MATTHIAS MAYER AND CHRISTIAN SALLER

Proof. The result in [17] shows the statement in the Lie case. Now let G be an arbitrary connected locally compact group. There exists a net $\{K_{\alpha}\}_{\alpha}$ of compact normal subgroups $K_{\alpha} \triangleleft G$ such that G is the projective limit of the Lie groups G/K_{α} . By [2, lemma 2] there is an α_0 with $K_{\alpha} \subseteq \ker \pi$ for all $\alpha \ge \alpha_0$. In particular for such an α the canonical representation π' of G/K_{α} with $\pi \coloneqq \pi' \circ p_{\alpha}$ (where p_{α} denotes the canonical projection) is irreducible and Poguntke's result guarantees an $f \in L^1(G/K_{\alpha})$ such that $\pi'(f)$ is a nontrivial finite dimensional operator. Now the canonical onto homomorphism $\sigma \colon L^1(G) \to L^1(G/K_{\alpha})$ fulfills $\pi = \pi' \circ \sigma$. Hence there exists $g \in L^1(G)$ satisfying $\pi(g) = \pi'(\sigma(g)) = \pi'(f)$ and shows the statement. \Box

Our interest on L^1 -functions that operate as finite rank operators is based on the following fact:

PROPOSITION 4.2. Let (π, \mathscr{H}_{π}) be an irreducible representation of a locally compact group and assume that

$$J_{\pi} \coloneqq \{ f \in L^{1}(G) \mid \pi(f) \text{ has finite rank} \}$$

is not the kernel of π . Then

$$\mathscr{H}_{\text{fin}} \coloneqq \operatorname{span} \{ \pi(f) x \mid x \in \mathscr{H}_{\pi}, f \in J_{\pi} \}$$

is a dense subspace and $\mathscr{H}_{\text{fin}} = \pi(J_{\pi})x$ for all $x \in \mathscr{H}_{\pi}$. In particular, $L^{1}(G)$ acts algebraically irreducibly on \mathscr{H}_{fin} . Furthermore \mathscr{H}_{fin} is the only subspace of \mathscr{H}_{π} with the latter property.

Proof. The proof is based on that of theorem 2 in [6]. It is worked out in [14].

Remark 4.3. If G is unimodular, the vectors in \mathscr{H}_{fin} are the best integrable vectors in the following sense. If there exists a nontrivial coefficient function $v_{x,y} \in L^p(G)$, $p \ge 1$, then for all u, w in \mathscr{H}_{fin} we have

$$v_{u,w} \in \mathrm{L}^p(G).$$

Indeed, take $x, y \in \mathscr{H}_{\pi} \setminus \{0\}$ with $v_{x,y} \in L^{p}(G)$ and $u, w \in \mathscr{H}_{\text{fin}}$. By the above, there are integrable functions f_{u} and f_{w} with

$$\pi(f_u)x = u$$
 and $\pi(f_w)y = w$.

Thus we find

$$v_{u,w} = v_{\pi(f_u)x,\pi(f_w)y} = f_u * v_{x,y} * \tilde{f}_w,$$

where $\tilde{f}(g) \coloneqq \bar{f}(g^{-1})$. Now the usual convolution formulas (e.g. [11, 2.39]) show $v_{u,w} \in L^p(G)$.

THEOREM 4.4. Keep the assumptions and notations of Proposition 4.2. Then

- (i) For all x ∈ ℋ_π \ {0} the space ℋ_{fin} is contained in the strongly continuous part of SMS (π, x) and the restriction of π̃ to the closure of ℋ_{fin} is irreducible.
- (ii) For every $y \in \mathscr{H}_{\text{fin}}$ the SMS-space SMS (π, y) coincides with \mathscr{H}_{fin} and all the SMS-norms are equivalent.

In particular \mathscr{H}_{fin} is the only minimal SMS-space.

Proof.

- (i) By Theorem 2.6, $\tilde{E} \supseteq \pi(L^1(G))E \supseteq \pi(J_\pi)x = \mathscr{H}_{\text{fin}}$. The second statement is a consequence of the fact that $\pi(L^1(G)) \cdot y$ contains \mathscr{H}_{fin} for all $y \in \mathscr{H}_{\pi}$.
- (ii) This is a consequence of the algebraic irreducibility of \mathscr{H}_{fin} under $L^1(G)$. The second assertion is trivial.

Remark 4.5.

- (i) If the ideal J_π is dense in L¹(G), the representation π̃ is irreducible on the continuous part of every SMS-space. Indeed, for x ∈ ℋ_π \ {0}, the strongly continuous part of E := SMS (π, x) is Ẽ = π(L¹(G))E, by Theorem 2.6. Thus the density of J_π and the strong continuity show that ℋ_{fin} is dense in Ẽ and Theorem 4.4(i) is applicable. It is known that J_π is dense in L¹(G) if G is a connected Lie group which is nilpotent (cf. [6, theorem 2]) or semisimple (cf. Remark 4.5(ii)). But for the affine group J_π is not dense ([13, theorem 6]). More generally J_π is not dense in L¹(G) if the representation is not CCR.
- (ii) Let K < G be a compact subgroup and let (π, \mathscr{H}_{π}) be a *K*-finite representation, i.e. the isotypic components of the *K*-irreducible subrepresentations are all finite dimensional. This is the case for irreducible representations of connected semisimple groups and for the euclidean motion groups (cf. [19, chapter 4.5·2]) if *K* is a maximal compact subgroup. Now, for all irreducible subrepresentations $\sigma < \pi|_K$, the orthogonal projection onto its (by assumption finite dimensional) isotypic component is given by $(1/d_{\sigma})\pi(\bar{\chi}_{\sigma})$, where χ_{σ} is the character of σ . Thus $\pi(f * \bar{\chi}_{\sigma})$ has finite rank for all $f \in L^1(G)$. In particular, the space of *K*-finite vectors with respect to π is contained in \mathscr{H}_{fin} . By the Peter–Weyl theorem, the unique minimal SMS-space is the closure of the *K*-finite vector.
- (iii) Observe that in the Lie case \mathscr{H}_{fin} contains a dense set of C^{∞} -vectors (cf. Theorem 4.1). But in general not all vectors in \mathscr{H}_{fin} are differentiable. Thus a G-orbit of a vector does not span \mathscr{H}_{fin} , in general.

5. SMS-spaces associated to integrable representations

As in the last Section we reveal a canonical SMS-space associated to an irreducible representation (π, \mathscr{H}_{π}) , now described by a growth condition on the matrix coefficients.

We assume G to be *unimodular* but not necessarily connected and fix a Haarmeasure μ_G on G.

Definition 5.1. A unitary irreducible representation (π, \mathscr{H}_{π}) is integrable if there exists a vector $x \neq 0$ in \mathscr{H}_{π} with $v_{x,x} \in L^{1}(G)$. Any such x is called an integrable vector.

By Example 3.2(i), integrable representations are C_0 -representations. We summarize some facts about integrable representations. Proofs and further results are contained in [5, sections 14.3, 14.4], for instance. Let d_{π} be the formal dimension of π . We have the following orthogonality relations (with respect to the inner products of $L^2(G)$ and \mathscr{H}_{π} , respectively):

(i) $\langle v_{x,y}, v_{x',y'} \rangle = (1/d_{\pi}) \langle x, x' \rangle \langle y', y \rangle;$

(ii) $v_{x,y} * v_{x',y'} = (1/d_{\pi}) \langle x', y \rangle v_{x,y'};$

142

(iii) $v_{y,x} * v_{x,x} = v_{y,x}$ if $||x|| = \sqrt{d_{\pi}}$.

Furthermore in case $||x|| = \sqrt{d_{\pi}}$ the right-convolution in $L^2(G)$ with the positive definite function $v_{x,x}$ is the orthogonal projection onto the space

$$\mathscr{K} \coloneqq \{ v_{h,x} \, | \, h \in \mathscr{H}_{\pi} \}$$

and the wavelet-transform $\mathscr{H}_{\pi} \ni h \mapsto v_{h,x}$ defines a unitary intertwining operator between π and the restriction of the regular representation to \mathscr{K} . We need the following easy observation:

PROPOSITION 5.2. Let $x_1, x_2 \in \mathscr{H}_{\pi} \setminus \{0\}$ with $v_{x_i,x_i} \in L^1(G)$, i = 1, 2. Then

$$\pi(\mathcal{L}^{1}(G))x_{1} = \{y \mid v_{y,x_{1}} \in \mathcal{L}^{1}(G)\} = \{z \mid v_{z,z} \in \mathcal{L}^{1}(G)\} = \pi(\mathcal{L}^{1}(G))x_{2}.$$

Proof. This is easily seen by $[10, \text{lemma } 4 \cdot 2]$.

This yields immediately

COROLLARY 5.3. Let \mathscr{H}_{π} be an integrable representation of the unimodular group G. Then

- (i) For all integrable $x \in \mathscr{H}_{\pi} \setminus \{0\}$ the SMS-spaces coincide and have equivalent SMS-norms.
- (ii) The SMS-space of the integrable vectors E_{int} is a minimal SMS-space. The canonical mapping

$$L^1(G)/\tilde{I} \ni f + \tilde{I} \mapsto \pi(f)x, \quad (x \neq 0)$$

is norm-decreasing, where $\tilde{I} := \{f \in L^1(G) | \pi(f)x = 0\}$. The representation on E_{int} is strongly continuous.

(iii) If, in addition, G is connected, E_{int} is the unique minimal SMS-space and is contained in all SMS-spaces. In particular, for every $y \in \mathscr{H}_{\pi}$ exists an $f \in L^{1}(G)$ such that $\pi(f)y$ is integrable.

Proof.

- (i) Is obvious by the above.
- (ii) We assume without loss of generality $||x|| = \sqrt{d_{\pi}}$. Thus we have

$$E \coloneqq \text{SMS}(\pi, x) = \pi(\text{M}(G))x = \pi(\text{M}(G) * v_{x,x})x \subseteq \pi(\text{L}^{1}(G))x.$$

The minimality follows from Proposition 5.2. Let $I := \{ \mu \in \mathcal{M}(G), \pi(\mu)x = 0 \}$. Then

$$\|\pi(f)x\|_{\mathrm{SMS}(\pi,x)} = \|f+I\|_{\mathrm{M}(G)} \leq \|f+\tilde{I}\|_{1}.$$

(iii) Now assume G to be connected. Since (π, \mathscr{H}_{π}) is integrable, $\pi(f)$ is a Hilbert– Schmidt operator for every $f \in L^1(G) \cap L^2(G)$ (cf. [5, 14.4.3]). Therefore π is GCR and Theorem 4.4 shows that E_{int} coincides with \mathscr{H}_{fn} . \Box

For noncompact groups it is not possible that all matrix coefficients are integrable (see for instance [4, p. 233]). In particular the canonical subspace E_{int} is always a proper subspace.

6. SMS-type spaces

In Theorem 3.5 we saw that the SMS-space E associated with a C_0 -representation (π, \mathscr{B}_{π}) is the dual of a Banach space, namely of the closure of \mathscr{B}'_{π} with respect to the norm of E'. This result remains true in a more general functional analytic setting that is introduced below. These generalized SMS-spaces provide more information for rather general representations.

Moreover this theory applies to the concept of Fourier–Stieltjes algebras and Arsac-spaces. This yields, for instance, a necessary and sufficient criterium for a unitary representation on a separable Hilbert space to split into irreducible ones.

Definition 6.1. Let E and B be Banach spaces and $\iota: E \hookrightarrow B$ be a one-to-one continuous mapping with dense image such that

$$\iota(E_{\leq 1}) \text{ is closed in } B. \tag{(*)}$$

Then E is called an SMS-space in B. Very often we identify E with its dense image in B.

Definition 6.1 gives a natural generalization of the objects of our first five sections. To find new examples we need the following

PROPOSITION 6.2. Let E, B be Banach spaces and $\iota: E \hookrightarrow B$ be continuous, one-toone with dense image.

(i) If E is in addition the dual space of a Banach space 'E and ι^t: B' → E' is the transposed mapping, then E is an SMS-space in B, provided that

$$\iota^{\mathrm{t}}(B') \subseteq E' \subseteq E'$$

where we identify 'E with the corresponding subspace of the bidual E'.

 (ii) If E and B are dual spaces of Banach spaces 'E and 'B, respectively, then E is an SMS-space in B if the mapping ι is continuous with respect to the weak-* topologies.

Proof.

- (i) The unit ball $E_{\leq 1}$ is compact with respect to $\sigma(E, \iota^{t}(B'))$ since it is $\sigma(E, 'E)$ compact by the Banach-Alaoglu theorem. Now ι is $\sigma(E, \iota^{t}(B')) \sigma(B, B')$ continuous, forcing $\iota(E_{\leq 1})$ to be $\sigma(B, B')$ -closed. In particular $\iota(E_{\leq 1})$ is norm
 closed, proving the claim.
- (ii) Is an immediate consequence of the Banach-Alaoglu theorem.

Example 6.3.

- (i) In case $1 \leq r \leq p < \infty$ the sequence-space ℓ^r is an SMS-space in ℓ^p with respect to the canonical injection.
- (ii) Let (X, μ) be a probability space. Then for $1 \leq r \leq p \leq \infty$ the Lebesguespace $L^p(X)$ is an SMS-space in $L^r(X)$.
- (iii) Let H be a Hilbert space and $L^{1}(H)$, $L^{2}(H)$, $\mathscr{K}(H)$ be the spaces of trace-class operators, Hilbert–Schmidt operators and compact operators, respectively. We have $L^{1}(H) \subseteq L^{2}(H) \subseteq \mathscr{K}(H) \subseteq BL(H)$ and

$$\mathbf{L}^{2}(H)' = \mathbf{L}^{2}(H), \quad \mathscr{K}(H)' = \mathbf{L}^{1}(H).$$

This reveals $L^1(H)$ as an SMS-space in $L^2(H)$ and as an SMS-space in $\mathscr{K}(H)$ and $L^2(H)$ as an SMS-space in $\mathscr{K}(H)$.

If we strengthen the condition (*) to

 $\iota(E_{\leq 1})$ is weakly-compact in B, (**)

we find the following striking theorem:

THEOREM 6.4. Let E be a SMS-space in the Banach space B satisfying the weakcompactness hypothesis (**). Then $(E, \|.\|_E)$ is isometrically isomorphic to the dual

 $(B', \|.\|_{E'})'$

via the canonical mapping

$$E \ni e \mapsto (\lambda \mapsto \lambda(e)).$$

More precisely: E is (canonically isometrically isomorphic to) the dual space of B' endowed with the norm inherited from E' (cf. Proposition 2.3).

Proof.

144

- (1) Let M equal $\{f \in E'': f(\lambda) = 0 \text{ for all } \lambda \in B' \subset E'\}$, let $\Phi: E \to E''$ be the canonical embedding and let $\pi_M: E'' \to E''/M$ be the canonical projection. Consider the mapping $\psi = \pi_M \circ \Phi: E \to E''/M$.
 - (a) ψ is one-to-one. If $\psi(x) = 0$ then $\Phi(x) \in M$, thus $0 = \Phi(x)(\lambda) = \lambda(x)$ for all $\lambda \in B'$, hence x = 0.
 - (b) ψ is onto. Consider the following topological spaces.
 - E endowed with $\sigma(E, B')$ (which is possible, since $i': B' \to E'$ is one-to-one);
 - E'' with $\sigma(E'', B')$ (this is possible, since $i': B' \to E' \subset E'''$ is one-to-one);
 - E''/M with $\sigma(E''/M, B')$ (which is possible for the following reasons: as $M \subset \ker(\lambda)$ for all $\lambda \in B' \subset E' \subset E'''$, the mapping $\tilde{\lambda} : x + M \mapsto \lambda(x)$ is well-defined for all $\lambda \in B'$. Also, the mapping $B' \ni \lambda \mapsto \tilde{\lambda} \in (E''/M)^*$ is one-to-one. For if $\tilde{\lambda} = 0$ one has $\tilde{\lambda}(x + M) = 0$ for all $x \in E''$, hence $\lambda(x) = 0$ for all $x \in E''$, especially for all $x \in E$; as E is dense in B, it follows that $\lambda = 0$.)

Now, observe that:

- $(E, \sigma(E, B'))$ is Hausdorff as B' separates points of $E \subseteq B$;
- $(E''/M, \sigma(E''/M, B'))$ is Hausdorff. Assume that for $x + M \in E''/M$, $\lambda(x + M) = 0$ for all $\lambda \in B'$. Then $x(\lambda) = 0$ for all $\lambda \in B'$, hence $x \in M$ and $x + M = 0_{E''/M}$; therefore B' separates points of E''/M;
- $\Phi: (E, \sigma(E, B')) \to (E'', \sigma(E'', B'))$ is clearly continuous;
- π_M : $(E'', \sigma(E'', B')) \rightarrow (E''/M, \sigma(E''/M, B'))$ is continuous, as $\sigma(E''/M, B')$ is just the final topology on E''/M with respect to π_M if E'' is endowed with $\sigma(E'', B')$.

Since $E_{\leq 1}$ is $\sigma(B, B')$ -compact, it follows that it is $\sigma(E, B')$ -compact and $\psi(E_{\leq 1}) = \pi_M \circ \Phi(E_{\leq 1})$ is $\sigma(E''/M, B')$ -compact, in particular closed. On the other hand, $\Phi(E_{\leq 1})$ is $\sigma(E'', E')$ -dense in $E''_{\leq 1}$, so by $B' \subset E'$ it is also $\sigma(E'', B')$ -dense in $E''_{\leq 1}$. As π_M is continuous and onto, $\psi(E_{\leq 1}) = \pi_M \circ \Phi(E_{\leq 1})$ is $\sigma(E''/M, B')$ -dense in $\pi_M(E''_{\leq 1})$. By closedness of $\psi(E_{\leq 1})$ with respect to $\sigma(E''/M, B')$, it follows that $\pi_M(E''_{\leq 1}) \subset \psi(E_{\leq 1})$, and hence $E''/M = \pi_M(E'') \subset \psi(E)$. Thus ψ is onto.

Downloaded from http://www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:25:59, subject to the Cambridge Core terms of use, available at http://www.cambridge.org/core/terms. http://content-service:5050/content/id/urn:cambridge.org:id:article:S0305004199003631/resource/name/S0305004199003631a.pdf

(2) By (1) we have a mapping $E \to E''/M$ that is one-to-one and onto. By the definiton of M and a well-known theorem in functional analysis, it follows that

$$E''/M \cong (B, \|.\|_{E'})'.$$

Hence the mapping

$$\kappa \colon (E, \|.\|_E) \to (B', \|.\|_{E'}), \quad \kappa(e)(\lambda) = \lambda(e) = i'(\lambda)(e)$$

is one-to-one and onto.

(3) κ is isometric: as $E''/M \cong (B, \|.\|_{E'})'$ is isometric, we have $\|\kappa\| = \|\psi\| = \|\pi_M \circ \Phi\| \leq \|\pi_M\| \|\Phi\| \leq 1$; whence for all $e \in E \|\kappa(e)\| \leq \|e\|_E$. On the other hand, by definition, one has $\|\kappa(e)\| = \sup\{|\lambda(e)| \mid \|\lambda\|_{E'} \leq 1, \lambda \in B'\}$. Now take $e \in E$ with $\|e\|_E = 1$, then $te \notin E_{\leq 1}$ for every t > 1, hence by the Hahn-Banach theorem, for all t > 1 exists $\lambda_t \in B'$ with $|\lambda_t(k)| \leq 1$ for all $k \in E_{\leq 1}$, but $|\lambda_t(te)| \ge 1$. Thus $\|\lambda_t\|_{E'} \leq 1$, but $|\kappa(e)(\lambda_t)| \ge 1/t$. It follows that

$$\|\kappa(e)\| = \sup_{\|\lambda\|_{E'} \leqslant 1} |\lambda(e)| \geqslant \sup_{t>1} |\lambda_t(e)| \geqslant \sup_{t>1} |1/t| = 1 = \|e\|_E, \quad \text{as required.}$$

Example 6.5.

- (i) If (π, ℬ_π) is a uniformly bounded representation on a reflexive Banach space with cyclic vector x, SMS (π, x) is an SMS-space in ℬ_π satisfying (**), whence it is a dual space. If (π, ℬ_π) is a C₀-representation the simple motion system K is weakly compact, due to the fact that the mapping M(G) ∋ μ → π(μ)x is weak-* weak continuous. Furthermore, Theorem 3.5 shows that the space whose dual is SMS (π, x) by Theorem 6.4, coincides with that one we have computed in Section 3.
- (ii) More generally, in case that E is an SMS-space in a reflexive Banach space B, Theorem 6.4 shows

$$E = (B', \|.\|_{E'})'.$$

In particular, if B is a Hilbert space, the density of E in B yields

$$E = (B, \|.\|_{E'})' = (E, \|.\|_{E'})'.$$

We conclude this paper with an application of our results to Fourier–Stieltjes algebras. Let us recall at first some results concerning the Arsac-spaces associated to a unitary representation (π, \mathcal{H}_{π}) .

Denote by W_{π} the von Neumann algebra generated by the operators $\pi(g), g \in G$ and consider the predual $W_{\pi*}$, that is the dual of W_{π} with respect to the ultraweak topology $\sigma(\operatorname{BL}(\mathscr{H}_{\pi}), \operatorname{L}^{1}(\mathscr{H}_{\pi}))$. Then $W_{\pi*}$ is canonically isomorphic to the quotient of $\operatorname{L}^{1}(\mathscr{H}_{\pi})$ by the ultraweak polar W_{π}° of W_{π} .

Taking account of the fact that $L^1(\mathscr{H}_{\pi})$ is the projective tensor product of \mathscr{H}_{π} with its dual Hilbert space $\overline{\mathscr{H}_{\pi}}$ we see that the canonical mapping

$$v_{x,y} \mapsto (T \mapsto \langle x, \pi(T)y \rangle), \quad x, y \in \mathscr{H}_{\pi}$$

extends to an isometric isomorphism between A_{π} , the closure of the space of matrix coefficients with respect to the norm of the Fourier–Stieltjes algebra B(G), and the predual $W_{\pi*}$ (cf. [1, chapter 1]).

146 MATTHIAS MAYER AND CHRISTIAN SALLER

THEOREM 6.6. Consider a unitary representation (π, \mathscr{H}_{π}) on a separable Hilbert space \mathscr{H}_{π} . Then π splits into irreducible subrepresentations if and only if $W^{o}_{\pi} \subseteq L^{1}(\mathscr{H}_{\pi})$ is closed in $L^{1}(\mathscr{H}_{\pi})$ with respect to the Hilbert–Schmidt norm.

'⇐' Assume that the condition holds. Let $\operatorname{cl}(W^{\circ}_{\pi})$ be the closure of W°_{π} in $L^{2}(\mathscr{H}_{\pi})$. By assumption, $W^{\circ}_{\pi} = L^{1}(\mathscr{H}_{\pi}) \cap \operatorname{cl}(W^{\circ}_{\pi})$, thus we have a norm-decreasing one-to-one mapping

$$\iota: \mathbf{A}_{\pi} \simeq \mathbf{L}^{1}(\mathscr{H}_{\pi}) / \mathbf{W}_{\pi}^{\mathrm{o}} \to \mathbf{L}^{2}(\mathscr{H}_{\pi}) / (\mathrm{cl}\,(\mathbf{W}_{\pi}^{\mathrm{o}})), \quad T + \mathbf{W}_{\pi}^{\mathrm{o}} \mapsto T + \mathrm{cl}\,(\mathbf{W}_{\pi}^{\mathrm{o}}).$$

Since $L^1(\mathscr{H}_{\pi})_{\leq 1}$ is weakly compact in $L^2(\mathscr{H}_{\pi})$, we have

$$\iota((\mathrm{L}^{1}(\mathscr{H}_{\pi})/(\mathrm{W}_{\pi}^{\mathrm{o}}))_{\leq 1}) = \iota(\mathrm{L}^{1}(\mathscr{H}_{\pi})_{\leq 1}) + \mathrm{cl}(\mathrm{W}_{\pi}^{\mathrm{o}})$$

is weakly compact and A_{π} is an SMS-space in $L^2/(cl(W_{\pi}^{\circ}))$. Hence Theorem 6.4 shows that A_{π} is a dual space and by a theorem of Taylor π splits (cf. [18, theorem 3.5]).

' \Rightarrow ' We may assume π to be multiplicity free. Then

$$\pi \simeq \begin{pmatrix} \rho_1 & 0 \\ & \rho_2 & \\ 0 & & \ddots \end{pmatrix}$$

with inequivalent, irreducible (and therefore disjoint) representations ρ_k . This implies

$$\mathbf{W}_{\pi} = \begin{pmatrix} \mathbf{BL}(\mathscr{H}_{\rho_1}) & \mathbf{0} \\ & \mathbf{BL}(\mathscr{H}_{\rho_2}) & & \\ \mathbf{0} & & \ddots & \end{pmatrix}$$

and the operators in W^o_{π} are those trace class operators on \mathscr{H}_{π} with zeros on the diagonal, that is the operators of the form

$$T = \begin{pmatrix} 0 & * \\ & 0 & \\ * & \ddots \end{pmatrix}.$$

This space is closed in $L^1(\mathscr{H}_{\pi})$ with respect to the Hilbert–Schmidt norm.

Acknowledgements. We want to thank our teacher Professor G. Schlichting who motivated us to investigate simple motion systems.

REFERENCES

- G. ARSAC. Sur l'espace de Banach engendré par les coefficients d'une représentation unitaire. Thesis, Université de Lyon (1973).
- [2] L. BAGETT and K. TAYLOR. Riemann–Lebesgue sets of \mathbb{R}^n and representations which vanish at infinity. J. Funct. Anal. 28 (1978), 168–181.
- [3] J. CONWAY. A course in functional analysis (Springer Verlag, 1985).
- [4] M. Cowling. The Kunze Stein phenomenon. Ann. Math. 107 (1978), 209-234.
- **[5]** J. DIXMIER. C^{*}-Algebras (North-Holland, 1982).
- [6] J. DIXMIER. Opérateurs de rang fini dans les répresentations unitaires. Publ. Math. I.H.E.S. 6 (1960), 305–317.

- [7] F. F. BONSALL and J. DUNCAN. Complete normed algebras (Springer Verlag, 1973).
- [8] M. DUFLO and C. C. MOORE. On the regular representation of a non unimodular locally compact group. J. Funct. Anal. 21 (1976), 209–243. [9] P. EYMARD. L'algébre de Fourier d'un groupe localement compact. Bull. Soc. Math. France 92
- (1964). 181-263.
- [10] H. G. FEICHTINGER and K. GRÖCHENIG. A unified approach to atomic decompositions via integrable group representations, in Function spaces and applications, Lecture Notes in Math. vol. 1302 (Springer Verlag, 1988), pp. 52-73.
- [11] G. FOLLAND. A course in abstract harmonic analysis (Studies in advanced mathematics, CRC Press, 1995).
- [12] R. HOWE and C. C. MOORE. Asymptotic properties of matrix coefficients. J. Funct. Anal. 32 (1979), 72-96.
- [13] I. KHALIL. Sur l'analyse harmonique du groupe affine de la droite. Stud. Math. 51 (1974), 139-167.
- [14] A. LÜDEKING and D. POGUNTKE. Cocycles on abelian groups and primitive ideals in group C^* -algebras of two-step nilpotent groups and connected Lie groups. J. Lie Theory 4 (1994), 39-103.
- [15] M. MAYER. Asymptotics of matrix coefficients and closures of Fourier-Stieltjes algebras. J. Funct. Anal. 143 (1997), 42-54.
- [16] M. MAYER. Strongly mixing groups. Semigroup Forum 54 (1997), 303-316.
- [17] D. POGUNTKE. Unitary representations of Lie groups and operators of finite rank. Ann. Math. **140** (1994), 503–556.
- [18] K. TAYLOR. Geometry of the Fourier algebras and locally compact groups with atomic unitary representations. Math. Ann. 262 (1983), 183-190.
- [19] G. WARNER. Harmonic analysis on semisimple Lie groups I (Springer Verlag, 1972).