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Abstract

We consider finite dimensional representations of the dihedral group D2p over an algeb-
raically closed field of characteristic two where p is an odd prime and study the degrees of
generating and separating polynomials in the corresponding ring of invariants. We give an
upper bound for the degrees of the polynomials in a minimal generating set that does not
depend on p when the dimension of the representation is sufficiently large. We also show
that p + 1 is the minimal number such that the invariants up to that degree always form a
separating set. We also give an explicit description of a separating set.

1. Introduction

Let V be a finite dimensional representation of a group G over an algebraically closed
field F . There is an induced action of G on the algebra of polynomial functions F[V ] on
V that is given by g( f ) = f ◦ g−1 for g ∈ G and f ∈ F[V ]. Let F[V ]G denote the ring
of invariant polynomials in F[V ]. One of the main goals in invariant theory is to determine
F[V ]G by computing the generators and the relations. One may also study subsets in F[V ]G

that separate the orbits just as well as the full invariant ring. A set A ⊆ F[V ]G is said to
be separating for V if for any pair of vectors u, w ∈ V , we have: if f (u) = f (w) for

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S030500411100065X
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:37:57, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S030500411100065X
http:/www.cambridge.org/core


2 MARTIN KOHLS AND MÜFIT SEZER

all f ∈ A, then f (u) = f (w) for all f ∈ F[V ]G . There has been a particular rise of
interest in separating invariants following the publication the book [1]. Over the last decade
there has been an accumulation of evidence that demonstrates that separating sets are better
behaved and enjoy many properties that make them easier to obtain. For instance, explicit
separating sets are given for all modular representations of cyclic groups of prime order
in [8]. Meanwhile generating sets are known only for very limited cases for the invariants
of these representations. In addition to attracting attention in their own right, separating
invariants can be also used as a stepping stone to build up generating invariants, see [2]. For
more background and motivation on separating invariants we direct the reader to [1] and [4].

In this paper we study the invariants of the dihedral group D2p over a field of charac-
teristic two where p is an odd prime. The invariants of dihedral groups in characteristic
zero have been worked out by Schmid in [7] where she sharpened Noether’s bound for non-
cyclic groups. Specifically, among other things, she proved that the invariant ring C[V ]D2p

is generated by polynomials of degree at most p + 1. Obtaining explicit generators or even
sharp degree bounds is much more difficult when the order of the group is divisible by the
characteristic of the field. The main difficulty is that the degrees of the generators grow
unboundedly as the dimension of the representation increases. Recently, Symonds [9] es-
tablished that F[V ]G is generated by invariants of degree at most (dim V )(|G| − 1) for any
representation V of any group G. In Section 3 we improve Symonds’ bound considerably
for D2p in characteristic two. The bound we obtain is about half of dim(V ) and it does not
depend on p if the dimension of the part of V where D2p does not act like its factor group
Z/2Z is large enough. In Section 4 we turn our attention to separating invariants for these
representations. The maximal degree of an element in the generating set for the regular rep-
resentation provides an upper bound for the degrees of separating invariants. We build on
this fact and our results in Section 3 to compute the supremum of the degrees of polynomials
in (degreewise minimal) separating sets over all representations. This resolves a conjecture
in [5] positively. Then we describe an explicit separating set for all representations of D2p.
Our description is recursive and inductively yields a set that is ”nice” in terms of constructive
complexity. The set consists of invariants that are in the image of the relative transfer with
respect to the subgroup of order p of D2p together with the products of the variables over
certain summands. Moreover, these polynomials depend on variables from at most three
summands.

2. Notation and conventions

In this section we fix the notation for the rest of the paper. Let p � 3 be an odd number
and G := D2p be the dihedral group of order 2p. We fix elements ρ and σ of order p and 2
respectively. Let H denote the subgroup of order p in G. Let F be an algebraically closed
field of characteristic two, and λ ∈ F a primitive pth root of unity.

LEMMA 1. For 0 � i � (p −1)/2 let Wi denote the two dimensional module spanned by
the vectors v1 and v2 such that ρ(v1) = λ−iv1, ρ(v2) = λiv2, σ(v1) = v2 and σ(v2) = v1.
Then the Wi together with the trivial module represent a complete list of indecomposable
D2p-modules.

Proof. Let V be any D2p-module. As p is odd, the action of ρ is diagonalizable. For any
k ∈ Z, σ induces an isomorphism of the eigenspaces of ρ, σ : Eig(ρ, λk)

∼→ Eig(ρ, λ−k).
Therefore as D2p-module, V decomposes into a direct sum of Eig(ρ, 1) and some Wi ’s with
1 � i � (p − 1)/2. The action of σ on Eig(ρ, 1) decomposes into a direct sum of trivial
summands and summands isomorphic to W0.
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Invariants of the dihedral group D2p in characteristic two 3

Note that Wi is faithful if and only if i and p are coprime. Let V be a reduced G-module,
i.e., it does not contain the trivial module as a summand. Then

V =
r⊕

i=1

Wmi ⊕
s⊕

i=1

W0,

where r, s, mi are integers such that r, s � 0 and 0 < mi � (p − 1)/2 for 1 � i � r .
By a suitable choice of basis we identify V = F2r+2s with a space of 2(r + s)-tuples
{(a1, . . . , ar , b1, . . . , br , c1, . . . , cs, d1, . . . , ds) | ai , bi , c j , d j ∈ F, 1 � i � r, 1 � j � s}
such that the projection (a1, . . . , ar , b1, . . . , br , c1, . . . , cs, d1, . . . , ds) → (ai , bi) ∈ F2

is a D2p-equivariant surjection from V to Wmi for 1 � i � r and the projection
(a1, . . . , ar , b1, . . . , br , c1, . . . , cs, d1, . . . , ds) → (c j , d j ) ∈ F2 is a D2p-equivariant sur-
jection from V to W0 for 1 � j � s. Let x1, . . . , xr , y1, . . . , yr , z1, . . . , zs, w1, . . . , ws

denote the corresponding basis elements in V ∗, so we have

F[V ] = F[x1, . . . , xr , y1, . . . , yr , z1, . . . , zs, w1, . . . , ws],
with σ interchanging xi with yi for 1 � i � r and z j with w j for 1 � j � s. The action of
ρ is trivial on z j and w j for 1 � j � s. Meanwhile ρ(xi ) = λmi xi and ρ(yi ) = λ−mi yi for
1 � i � r .

3. Generating invariants

In this section we give an upper bound for the degree of generators for F[V ]G . So far
p � 3 can be an odd number, but later p is an odd prime. We continue with the introduced
notation. In particular, V is still reduced. For 1 � i � r and 1 � j � s, let ai , bi , c j , d j de-
note non-negative integers. Let m = xa1

1 . . . xar
r yb1

1 . . . ybr
r zc1

1 . . . zcs
s w

d1
1 . . . wds

s be a monomial
in F[V ]. Since ρ acts on a monomial by multiplication with a scalar, all monomials that
appear in a polynomial in F[V ]G are invariant under the action of ρ. For a monomial m
that is invariant under the action of ρ, we let o(m) denote its orbit sum, i.e. o(m) = m if
m ∈ F[V ]G and o(m) = m + σ(m) if m ∈ F[V ]ρ \ F[V ]G . As σ permutes the monomials,
we have the following:

LEMMA 2. Let M denote the set of monomials of F[V ]. F[V ]G is spanned as a vector
space by orbit sums of ρ-invariant monomials, i.e. by the set

{o(m) : m ∈ Mρ} = {m + σ(m) : m ∈ Mρ} � {m : m ∈ MG}.

Let f ∈ F[V ]G
+. We call f expressible if f is in the algebra generated by the invariants

whose degrees are strictly smaller than the degree of f .

LEMMA 3. Let m = xa1
1 · · · xar

r yb1
1 · · · ybr

r zc1
1 · · · zcs

s w
d1
1 · · · wds

s ∈ Mρ such that o(m) is not
expressible. Then

∑
1� j�s(c j + d j ) � s.

Proof. Assume by contradiction that
∑

1� j�s(c j + d j ) > s. Pick an integer 1 � j � s
such that c j + d j � 2. If both c j and d j are non-zero, then m is divisible by the invariant
z jw j . It follows that o(m) is divisible by z jw j , hence o(m) is expressible. Now assume
c j � 2 and d j = 0. Note that m/z j ∈ Mρ . We consider the product

o(z j )o(m/z j) = (z j + w j )(m/z j + σ(m)/w j ) = o(m) + (mw j/z j + σ(m)z j/w j ).

As mw j/z j is divisible by z jw j (because m is divisible by z2
j ), the invariant f := mw j/z j +

σ(m)z j/w j is divisible by z jw j . Hence o(m) = o(z j )o(m/z j) + f is expressible. The case
c j = 0 and d j � 2 is handled similarly.
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4 MARTIN KOHLS AND MÜFIT SEZER

THEOREM 4. For p an odd prime, F[V ]G is generated by invariants of degree at most
s + max{r, p}.

Proof. By Lemma 2 it suffices to show that o(m) is expressible for any monomial
m = xa1

1 · · · xar
r yb1

1 · · · ybr
r zc1

1 · · · zcs
s w

d1
1 · · · wds

s ∈ Mρ of degree bigger than or equal to
s + max{r, p} + 1. Also by the previous lemma we may assume that

∑
1� j�s(c j + d j ) � s.

But then t := ∑
1�i�r (ai + bi ) � max{r, p} + 1 � r + 1, so we may take a1 + b1 � 2.

As before, not both of a1 and b1 are non-zero because otherwise o(m) is divisible by the
invariant polynomial x1 y1 and so is expressible. So without loss of generality we assume
that a1 � 2, b1 = 0. Let κF denote the character group of H , whose elements are group
homomorphisms from H to F∗. Note that κF � H . For 1 � i � r , let κi ∈ κF denote the
character corresponding to the action of H on xi . By construction the character correspond-
ing to the action on yi is −κi . Since ρ(m) = m we have

∑
1�i�r (aiκi − biκi ) = 0. This

is an equation in a cyclic group of order p, and the sum contains at least t � p + 1 (not
distinct) nonzero summands. Therefore Proposition 6 applies to the sequence κ1, κ1, . . . , κ1

(a1 times), . . . , −κr , . . . , −κr (br times). As a1 � 2, we get non-negative integers a′
i � ai

and b′
i � bi for 1 � i � r with 0 < a′

1 < a1 satisfying
∑

1�i�r (a
′
iκi − b′

iκi) = 0. Hence

m1 := x
a′

1
1 · · · xa′

r
r y

b′
1

1 · · · yb′
r

r zc1
1 · · · zcs

s w
d1
1 · · · wds

s is ρ-invariant. Thus m2 := m/m1 is also
ρ-invariant. Since 0 < a′

1 < a1, both m1 and m2 are divisible by x1. Now consider

(m1 + σ(m1))(m2 + σ(m2)) = o(m) + (m1σ(m2) + σ(m1)m2).

As m1σ(m2) is divisible by x1 y1, so is f := (m1σ(m2) + σ(m1)m2). It follows that o(m) =
(m1 + σ(m1))(m2 + σ(m2)) + f is expressible.

Remark 5. Let p � 3 be an odd number and assume that V = Wi for some 1 � i �
(p − 1)/2 such that i and p are coprime and set x = x1 and y = y1. Then F[V ]G is
generated by orbit sums o(m) of monomials m ∈ Mρ . If m ∈ MG \ {1}, then m is divisible
by xy ∈ MG . Otherwise, o(m) = xkp + ykp for some k. Using the displayed formula
above with m1 = x p, m2 = x (k−1)p, one sees o(m) is expressible if k � 2. It follows that
F[V ]G = F[x p + y p, xy].

In the proof, we have used the following result of Barbara Schmid, which we state here
for convenience of the reader:

PROPOSITION 6 (see [7, proof of proposition 7·7]). Let x1, . . . , xt ∈ (Z/pZ) \ {0} (p an
odd prime) be a sequence of t � p + 1 nonzero elements. Let k1, k2 ∈ {1, . . . , t}, k1 � k2

be a pair of different indices such that xk1 = xk2 (such a pair obviously exists). Then there
exists a subset of indices {i1, . . . , ir } ⊆ {1, . . . , t} \ {k1, k2} such that

xk1 + xi1 + · · · + xir = 0.

Note that in this proposition we have to assume p prime in order to make an arbitrary
choice of indices k1, k2 with xk1 = xk2 . For p a natural number, a weaker version holds, see
the paper of Schmid.

4. Separating invariants

For a finite group G and a fixed (algebraically closed) field F , let βsep(G) denote the
smallest number d such that for any representation V of G there exists a separating set of
invariants of degree � d.
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Invariants of the dihedral group D2p in characteristic two 5

PROPOSITION 7 (see [3, proof of corollary 3·11] or also [5, proposition 3]). The number
βsep(G) is the smallest number d such that for the regular representation Vreg := FG,
invariants up to degree d form a separating set for F[Vreg]G.

Now we get:

THEOREM 8. For an algebraically closed field F of characteristic 2 and p an odd prime,
we have βsep(D2p) = p + 1.

Note that in [5, proposition 10 and example 2], bounds for βsep(D2p) are given only in
characteristics� 2, and the theorem above was conjectured. For example by [5], when p is
an odd prime and equals the characteristic of F , then βsep(D2pr ) = 2pr for any r � 1.

Proof. We look at the regular representation Vreg = FG, which decomposes into Vreg =
⊕ p−1

2
i=1 Wi ⊕ ⊕ p−1

2
i=1 Wi ⊕ W0. This can be seen by considering the action of G on the basis of

FG consisting of the elements vk := ∑p−1
j=0 λk jρ j and wk := σ(vk) for k = 0, . . . , p − 1,

where λ is a primitive pth root of unity. Then ρ(vk) = λ−kvk, ρ(wk) = σρ−1vk = λkwk ,
and σ interchanges vk and wk . It follows that 〈vk, wk〉� Wk if 0 � k � p−1

2 and 〈vk, wk〉�
Wp−k if p+1

2 � k � p − 1.

By Theorem 4, F[Vreg]G is generated by invariants of degree � 1+max{p, 2 p−1
2 } = 1+ p.

Hence βsep(G) � p + 1 by Proposition 7. Note that this also follows constructively from
Theorem 9. To prove the reverse inequality, consider V := W1 ⊕ W0. We use the notation
of section 2, so F[V ] = F[x, y, z, w] (omitting indices since r = s = 1) and look at the
points v1 := (0, 1, 1, 0) and v2 := (0, 1, 0, 1) of V . They can be separated by the invariant
zx p + wy p. Assume they can be separated by an invariant of degree less or equal than p.
By Lemma 2, F[V ]G is generated by invariant monomials m ∈ F[V ]G and orbit sums
m + σ(m) of ρ-invariant monomials m ∈ F[V ]ρ . If such an element separates v1 and v2,
we have m(v1) � m(v2) or (m + σm)(v1) � (m + σm)(v2) respectively. The latter implies
m(v1)� m(v2) or σ(m)(v1)�σ(m)(v2). Replacing m by σ(m) if necessary, we thus have a
ρ-invariant monomial m separating v1, v2 of degree � p. Therefore, x does not appear in m,
so m = yazbwc. First assume a = 0. If b = c, then m is G-invariant, and does not separate
v1, v2. If b � c, then m is not G-invariant, and m + σ(m) = zbwc + zcwb does not separate
v1, v2. So a > 0. As m is ρ-invariant, we have a � p. Since deg m � p, we have a = p and
b = c = 0. Then m + σ(m) = y p + x p does not separate v1, v2. We have a contradiction.

Theorem 8 gives an upper bound for the degrees of polynomials in a separating set. In the
following, we construct a separating set explicitly. We use again the notation of section 2.
We assume that V is a faithful G-module. In particular we have r � 1. Let 1 � i � r − 1 be
arbitrary. Since the action of ρ is non-trivial on each of the variables xr , y1, . . . , yr−1 there
exists a positive integer ni � p −1 such that xr yni

i and xr x p−ni

i are invariant under the action
of ρ. We thus get invariants

fi := xr yni
i + yr xni

i , gi := xr x p−ni

i + yr y p−ni

i ∈ F[V ]G for i = 1, . . . , r − 1.

For 1 � i � r − 1 and 1 � j � s we also define

fi, j := xr yni
i z j + yr xni

i w j , h j := x p
r z j + y p

r w j ∈ F[V ]G .

Set V ′ = ⊕r−1
i=1 Wmi ⊕ ⊕s

i=1 W0.
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6 MARTIN KOHLS AND MÜFIT SEZER

THEOREM 9. Let p be an odd prime. Let S be a separating set for V ′. Then S together
with the set

T = {xr yr , x p
r + y p

r , fi , gi , fi, j , h j | 1 � i � r − 1, 1 � j � s}
of invariant polynomials is a separating set for V .

Note that a separating set for
⊕s

i=1 W0 is given in [8].

Proof. We have a surjection V → V ′ : (a1, . . . , ar , b1, . . . , br , c1, . . . , cs, d1, . . . , ds) →
(a1, . . . , ar−1, b1, . . . , br−1, c1, . . . , cs, d1, . . . , ds) which is G-equivariant. Therefore by [6,
theorem 1] it suffices to show that the polynomials in T separate any pair of vectors v1 and
v2 in different G-orbits that agree everywhere except r th and 2r th coordinates. So we take

v1 = (a1, . . . , ar , b1, . . . , br , c1, . . . , cs, d1, . . . , ds)

and

v2 = (a1, . . . , ar−1, a′
r , b1, . . . , br−1, b′

r , c1, . . . , cs, d1, . . . , ds).

Assume by way of contradiction that no polynomial in T separates v1 and v2. Since
{xr yr , x p

r + y p
r } ⊆ T is a separating set for Wmr by Remark 5, we may further take that

(ar , br ) and (a′
r , b′

r ) are in the same G-orbit. Consequently, there are two cases.
First we assume that there exists an integer t such that (a′

r , b′
r ) = ρ t(ar , br ). Hence a′

r =
λ−tmr ar and b′

r = λtmr br . Set c := λ−tmr . Notice that ar and br can not be zero simultaneously
because otherwise v1 = v2. Without loss of generality we take ar � 0. Also if ai = bi = 0
for all 1 � i � r − 1 then we have ρ t(v1) = v2, hence r > 1 and there is an index
1 � q � r−1 such that at least one of aq or bq is non-zero. We show in fact both aq and bq are
non-zero together with br . First assume that aq � 0. If one of bq or br is zero, then gq(v1) =
ar a

p−nq
q and gq(v2) = car a

p−nq
q . This yields a contradiction because gq(v1) = gq(v2). Next

assume that bq � 0. If one of aq or br is zero then fq(v1) = ar b
nq
q and fq(v2) = car b

nq
q ,

yielding a contradiction again. In fact, applying the same argument using the invariant gi (or
fi ) shows that for 1 � i � r − 1 we have: ai � 0 if and only if bi � 0. We claim that
a p

i = bp
i for 1 � i � r − 1. Clearly we may assume ai � 0. From fi(v1) = fi(v2) we get

(1 + c)ar bni
i = (1 + c−1)br ani

i . Similarly from gi (v1) = gi (v2) we have (1 + c)ar a p−ni

i =
(1 + c−1)br bp−ni

i . It follows that

c−1 = ar bni
i

br ani
i

= ar a p−ni

i

br bp−ni

i

.

This establishes the claim. For 1 � i � r −1, let ei denote the smallest non-negative integer
such that bi = λei ai . We also have br = cλei ni ar provided ai � 0. We now show that c j = d j

for all 1 � j � s. From fq, j (v1) = fq, j (v2) we have c j ar b
nq
q + d j br a

nq
q = cc j ar b

nq
q +

c−1d j br a
nq
q . Putting bq = λeq aq and br = cλeq nq ar we get c j arλ

eq nq a
nq
q + d j cλeq nq ar a

nq
q =

cc j arλ
eq nq a

nq
q + c−1d j carλ

eq nq a
nq
q which gives c j + cd j = cc j + d j . This implies c j = d j as

desired because 1 + c � 0 . We now have

v1 = (a1, . . . , ar , λ
e1a1, . . . , λ

er−1 ar−1, cλeq nq ar , c1, . . . , cs, c1, . . . , cs)

and

v2 = (a1, . . . , ar−1, car , λ
e1 a1, . . . , λ

er−1 ar−1, λ
eq nq ar , c1, . . . , cs, c1, . . . , cs).

Since 0 < mr < p, there exists an integer 0 � h � p − 1 such that −hmr + eqnq ≡ 0
mod p. We obtain a contradiction by showing that ρhσ(v1) = v2. Since the action of ρ on
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Invariants of the dihedral group D2p in characteristic two 7

the last 2s coordinates is trivial it suffices to show that λ−hmi bi = ai for 1 � i � r − 1
and λ−hmr br = car . Hence we need to show −hmi + ei ≡ 0 mod p for 1 � i � r − 1
when ai � 0, and −hmr + eqnq ≡ 0 mod p. The second equality follows by the choice
of h. So assume that 1 � i � r − 1 and ai � 0. We have mr − ni mi ≡ 0 mod p because
xr yni

i is invariant under the action of ρ. It follows that eqnq − hni mi ≡ 0 mod p. But since
ei ni ≡ eqnq (as br = cλei ni ar = cλeq nq ar ) we have ni (ei − hmi ) ≡ 0 mod p. Since ni is
non-zero modulo p we have ei − hmi ≡ 0 mod p as desired.

Next we consider the case (a′
r , b′

r ) = ρ tσ(ar , br ) for some integer t . Hence a′
r = λ−tmr br

and b′
r = λtmr ar . Set c := λ−tmr . As in the first case one of ar or br is non-zero, so without

loss of generality we take ar � 0. As h j (v1) = h j (v2) for 1 � j � s, we get (a p
r +

a′p
r )c j = (bp

r + b′p
r )d j , which implies (a p

r + bp
r )c j = (a p

r + bp
r )d j . If a p

r = bp
r , we have

br = λlar for some l. Then we have (a′
r , b′

r ) = (λ−tmr +lar , λ
tmr −lbr ) ∈ 〈ρ〉 · (ar , br ), so

we are again in the first case. Therefore we can assume a p
r � bp

r , and we get c j = d j for
all 1 � j � s. Now, if ai = bi = 0 for all 1 � i � r − 1, then v2 = ρ tσ(v1). Hence
r > 1 and there is an index 1 � q � r − 1 such that at least one of aq or bq is non-zero.
Let 1 � i � r − 1. From fi (v1) = fi (v2) we get ar bni

i + br ani
i = cbr bni

i + c−1ar ani
i and so

ani
i (c−1ar + br ) = bni

i (ar + cbr ). Note that c−1ar + br � 0 because otherwise v1 = v2. So
we have ani

i = cbni
i . Along the same lines, from gi (v1) = gi (v2) we obtain bp−ni

i = ca p−ni

i .
It follows that a p

i = bp
i . As before, for 1 � i � r − 1 let ei denote the smallest non-

negative integer such that bi = λei ai . We also have c = λ−ni ei for all 1 � i � r − 1 with
ai � 0. We have v1 = (a1, . . . , ar , λ

e1 a1, . . . , λ
er−1 ar−1, br , c1, . . . , cs, c1, . . . , cs) and v2 =

(a1, . . . ar−1, cbr , λ
e1a1, . . . , λ

er−1 ar−1, c−1ar , c1, . . . , cs, c1, . . . , cs). We finish the proof by
demonstrating that v1 and v2 are in the same orbit. Since 0 < mr < p, there exists an integer
0 � h � p−1 such that λ−hmr = c. Equivalently, −hmr +eqnq ≡ 0 mod p. We claim that
ρhσ(v1) = v2. Since c j = d j for 1 � j � s and the action of ρ on the last 2s coordinates
is trivial we just need to show that λ−hmi bi = ai for 1 � i � r − 1 and λ−hmr br = cbr .
Since the last equation is taken care of by construction we just need to show −hmi +ei ≡ 0
mod p for 1 � i � r − 1 when ai � 0. We get ei ni ≡ eqnq from c = λ−ei ni = λ−eq nq . Now
the proof can be finished by exactly the same argument as in the first case.
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