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Abstract—This paper shows a new method of detecting the 

degeneration of the electrical drivetrain in modern electric 

vehicles due to ageing, overload or manufacturing errors of the 

components by fusing sensor data with vehicle history data. This 

information will be used for an accurate range prediction and a 

residual value estimation of the electric vehicle. Furthermore, 

malfunctions of the drive train components can be detected. The 

methods introduced will be implemented as an online solution and 

are shown on a test vehicle. The traction battery is the focus of this 

paper, while the components inverter and motor are outlined and 

are the subject of further research. 
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I.  INTRODUCTION 

Both, politicians and manufacturers, see electric mobility as 
one of the greatest impositions the automotive industry has faced 
since the last century. In order to meet the CO2 fleet limit, most 
manufacturers see vehicles with hybrid drive trains as a bridging 
solution on the way to battery electric vehicles (BEV). After the 
emergence of using defeat devices by a German car 
manufacturer, the enforcement of federal emission laws and 
their surveillance could be handled more severely in the future. 
This fact can be regarded as a benefit to the BEV technology. 
The customers, however, still treat electric mobility with 
skepticism. This is mainly due to constant high costs of the 
traction battery, the comparable low range and an uncertain 
residual value. This paper will target the degeneration 
(efficiency decrease), which correlates with a reduction in value 
on a component basis. As stated by the ADAC (General German 
Automobile Association) [1] the drop in value of a battery 
electric vehicle is higher compared to combustion engine 
vehicles. The knowledge of degeneration from a component 
point of view is seen as important information for the owner, the 
manufacturer and the property insurer. Components could be 
reused, recycled or sold on a second life market as an alternative 
to a trade on the used car market (Baumann [2], Bowler [3] and 
Neubauer [4]). It is conceivable that a component change of the 
electrical drivetrain is mandatory in order to improve the 
residual value of future BEVs. 

Having detailed knowledge of the efficiency parameters of 
the drivetrain components of a BEV, however, is a great 

challenge. The state of the art is that the range prediction, which 
correlates with the actual efficiency, is only done on a state of 
charge (SOC) basis of the battery, without parameter and 
efficiency fading taken into account. From a research point of 
view, several methods of estimating battery and motor 
parameters were introduced in the last decade. High effort in 
computation and the risk of instability, however, prevent 
commercial use today. This is why a new method is introduced 
in this paper that gives a reliable online solution for calculating 
the state of health of the traction battery, the inverter and electric 
motor. 

In this paper, first the test bed—an electrified Smart—with 
all its components is described in Chapter II. The test bed is used 
in order to monitor frequently arising driving patterns. The 
commuter’s cycle monitoring is presented as a component 
independent method of data comparison in order to derive fading 
trends due to the degeneration or ageing of the drivetrain 
components, which is outlined in Chapter III.  

Chapter IV gives a detailed overview of state of the art 
algorithms for observing the traction battery of BEVs. 
Furthermore, a new method for the state of health (SOH) 
calculation is introduced. The degeneration process of the 
inverter and the electric motor is discussed conceptually in 
Chapter V. It should be outlined that the presented methods of 
observing the components are developed for online use. Due to 
limited computing power and memory, the results are not 
comparable to scientific benchmarks. Reliability and feasibility 
in this case are in the foreground.  

II. ELECTRIC VEHICLE TESTBED 

As the test bed for implementing the methods in Chapter III 
and Chapter V, a Smart 451 was chosen (Figure 1). At the 
Institute of Automotive Technology the smart was reequipped 
with an electric drivetrain. The inverter and the electric motor 
were bought by prototype suppliers. With an installed capacity 
of 22 kWh, a range of 200 km is possible under nominal 
conditions (NEDC). 
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Figure 1: FORELMO test bed 

A. Mechanical parameters of the testbed 

The AKOE electric motor (induction motor—IM) of 
Schwarz Elektromotoren GmbH was chosen because of the low 
costs and size. The electric motor was installed directly to the 
gearbox, which is fixed to the third gear (5.697 gear ratio). The 
alternating current is provided by an inverter (Supplier: DMC—
Digital Motor Control GmbH) consisting of several H-bridges 
with commercial Mosfets (IRFS4115PBF). The traction battery, 
consisting of 8 modules with 14S 18P interconnection was 
planned and assembled, using Panasonic NCR18650PF (NCA) 
cells. The inverter and the battery modules are cooled by a liquid 
cooling circle controlled by the Electronic Control Unit (ECU) 
and based on component temperatures. That way all components 
operating under specified temperature conditions is guaranteed. 

B. ECU- and Sensornetwork 

The Battery Management System (BMS) consists of several 
intelligent units and sensors (Figure 2). Each battery module is 
equipped with a dedicated hardware. These hardware units 
measure the cell voltages of each serial string and the module 
temperature at two thermal hot-spots using a PTC (positive 
temperature coefficient) element. This information is sent via 
CAN to the BMS-ECU and an observing unit on a 25 ms time 
base. An additional sensor measures the system current and 
redundantly the total voltage of the battery system. On the BMS-
ECU a real-time framework is implemented in embedded C. 
Based on the module’s information, the security of the battery 
pack is ensured by actively shutting down the drivetrain in the 
case of an error. The BMS-ECU is responsible for triggering and 
observing the main relays and evaluating the sensor information. 
The switch commands are derived automatically by the 
framework with respect to the driver request and battery 
operating conditions. 

In addition to the BMS measuring modules and the BMS- 
ECU, an observer unit (OBS in Figure 2) is installed. The 
observer receives the CAN messages from the BMS measuring 
modules and the current sensor. The algorithm for the state 
estimations, which are introduced in Chapter IV.B, are generated 
with an automatic code generator from Simulink and are 
integrated into an embedded Linux system with additional driver 
components on the observer unit. Using this toolchain it is 
possible to implement and parametrize various algorithms with 
low programming effort and a short roundtrip time. 
Furthermore, a Model-in-the-Loop simulation can be directly 
compared to a Processor-in-the-Loop simulation in order to 

minimize implementation or scaling errors. Thereby, it can be 
verified that the simulation merits match the calculation results 
on the hardware. The comparison of the different filter 
approaches regarding code size and execution time are done on 
a 1 GHz ARM Cortex-A8 processor. 

 
Figure 2: Battery Management System 

III. COMPONENT INDEPENDENT COMMUTER’S CYCLE 

MONITORING (CCM) 

In order to derive degeneration states of the drivetrain 
components, a new observer technique is presented. Common 
methods, which are applied in discrete control theory, such as 
Luenberger-Observer and Kalman-Filter, have the disadvantage 
that the underlying discretization techniques require small 
sample periods. According to Raviv [5], the observers may 
become instable at low sampling rates due to assumptions during 
the zero order hold discretization. Schmalstieg [6] states, the 
process of degeneration exhibits large time constants, as the 
system components parameters fade irreversibly over several 
months or even years in a perceivable range. Therefore, control 
theory methods are enhanced with data storage, where the cycle 
data (speed and current profile) are also stored as the available 
measurements.  

The idea of this new method is the following: It is assumed 
that a certain route is taken on a daily or weekly basis, for 
example, the way to work of a commuter. The cycle information 
paired with the measurements of the sensor network is stored in 
a data container (Figure 3).  

 

Figure 3: Observer with data container 

After a certain period of time, data sets of the commuter 
cycle can be selected from the data container and compared with 
one another, if the environmental conditions (e.g. temperature, 
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traffic situation, driving style) match. This method is named the 
commuter’s cycle monitoring (CCM). Due to the comparison, a 
trend of degeneration effects is derived that can be used to 
update the parameters of the state estimators presented in 
Chapter IV.B. Figure 4 shows a simulation of the test bed model 
using parameters that represent a drive train SOH from a new car 
(𝑆𝑂𝐻𝐷𝑇  ≈ 100 %) until approximately 150.000 km (𝑆𝑂𝐻𝐷𝑇 ≈
80 %). The stimulus signal for all simulation runs was the 
Artemis Urban cycle. The SOC is plotted over the simulated 
time. It can be noticed, that the SOC signature fades in a 
measurable range over time. Under the assumption that the SOC 
can be estimated, the delta SOC is a direct representation of the 
SOH of the drive train. A concept of using the CCM to determine 
the fading efficiency of the electric motor is given in Chapter 
V.B.  

 

Figure 4: SOC signature for different SOH 

In order to implement and test the method, a complex data 
matching algorithm, accurate GPS data and an actual 
commuter’s route have to be available. Initially, a representative 
commuter cycle will be used as a test signal on a roller bench. 
Due to a speed controller implemented on the roller bench 
control unit, this commuter cycle runs on the roller bench with 
exactly matching environmental conditions. Using this method, 
enough data will be produced in order to verify the CCM 
method, which is the subject of further research. As a second 
step, the influence of sensor and system noise due to unstable 
environmental conditions have to be investigated. Also the 
environmental data that actually have an impact on the 
measurement have to be defined. However, it is likely that a 
comparison of multiple data sets will average out this impact. 

IV. TRACTION BATTERY 

The focus of this research is the traction battery. As already 
investigated by various research institutes in the last decade, 
estimating the SOC of a traction battery by Kalman Filters can 
be considered as state of the art. The approaches, however, are 
mostly implemented offline in simulation environments such as 
MATLAB/Simulink. One of the aims of this research was to 
implement the most common filter approaches published by the 
research community and compare them not only regarding the 
accuracy, but also the code size, the implementation effort and 
the processing time on an embedded hardware. Since not only 

the SOC should be well known in order to tab the full potential 
of the battery, the degeneration process also has to be tracked. 
Plett [7] introduced a joint Kalman Filter in order to estimate the 
parameters that  should correlate with the degeneration. 
Unfortunately, this correlation cannot be ensured by the 
presented method since the parameters are used to estimate the 
states at an optimum. More disadvantages of the joint Kalman 
Filter are worked out in Chapter IV.C and a new method of 
determining the degeneration process is proposed in Chapter 
IV.D.  

A. Modeling battery behavior 

Using an electric equivalent circuit is the most common 
approach to estimate the non-measurable SOC of a battery cell. 
To depict the chemical behavior, it is possible to use a series 
connection of multiple R-C elements. In this application, the R-
C element reproduces the system dynamic. To reproduce the 
dynamic more accurately, a second R-C element is added as in 
Figure 5. With two R-C elements, the polarization and diffusion 
effects can be simulated. The model behavior with one and two 
R-C elements is directly compared. Equation (1) is the output 
equation of the system. According to Jaechan [8] it can be 
assumed that the matrix multiplication with floating point data 
types dominates the costs when solving the extended Kalman 
filter algorithm. Therefore, the computational complexity of the 
algorithm will be calculated by 𝒪(𝑛3), which means that the 
costs will rise cubically with the number of states. This is why 
an implementation with more than 2 RC-Elements is not seen 
for embedded solutions. 

𝑈term = 𝑈OCV + 𝑈Ri
+ 𝑈RC1 + ⋯ + 𝑈RC𝑛 (1) 

 

Figure 5: Electric equivalent circuit 

There are multiple methods of finding the parameters  
(𝑅i, 𝑅1, 𝐶1, . . , 𝑅𝑛, 𝐶𝑛) under laboratory conditions. The method 
of direct current pulses, which is explained by Varela [9], was 
used for parameter identification. Independent of the method of 
measurement, it is possible to determine static parameters that 
will result in a linear time invariant system (LTI) or one can 
provide parameters dependent on the SOC, the C-rate and the 
temperature as a lookup table, hereinafter called a linear 
parameter variant system (LPV). The open circuit voltage 
(OCV) curve (including a hysteresis for charge and discharge 
operation) was measured by current pulses and plotted in Figure 
6.  
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Figure 6: Plot of OCV Curve 

It should be noticed that there are no degeneration effects 
modeled with the parameters, yet. From the equivalent circuit 
model shown in Figure 5, a continuous system description can 
be deployed using the form of a state space model which is stated 
in Equation (2): 

𝜕

∂𝑡
[
𝑆𝑂𝐶
URC1

URC2

]= 

[
 
 
 
 
0 0 0

0 −
1

𝐶1 ⋅ 𝑅1
0

0 0 −
1

𝐶2 ⋅ 𝑅2]
 
 
 
 

⋅ [
𝑆𝑂𝐶
𝑈𝑅𝐶1

𝑈𝑅𝐶2

] +

[
 
 
 
 
 
 
1

𝐶N

1

𝐶1

1

𝐶2]
 
 
 
 
 
 

⋅ 𝐼term. 

(2) 

 
The state space model shown in Equation (3) can be 

discretized to a time step 𝑘 with the help of zero order hold. The 
static parameters were measured by the method of current steps 
at a SOC of 80 % (Table 1). 

Table 1: Parameter values EKF3LTI 

Parameter Single cell Cell string (18p) 

𝐶N 10440 As 187920 As 

𝑅i 25.5 mΩ 1.42 Ω 

𝑅1 16.5 mΩ 0.917 mΩ 

𝐶1 2.3392 F 42.1 F 

𝑅2 23.5 mΩ 1.31 mΩ 

𝐶2 1290.9 F 23236.2 F 

 

𝒙𝒌+𝟏 = [

𝑆𝑂𝐶𝑘+1

𝑈𝑅𝐶1,𝑘+1

𝑈𝑅𝐶1,𝑘+1

] = 

[
 
 
 
 
1 0 0

0 exp (−
Δ𝑡𝑘

𝑅1 ⋅ 𝐶1
) 0

0 0 exp (−
Δ𝑡𝑘

𝑅2 ⋅ 𝐶2
)
]
 
 
 
 

⋅ [

𝑆𝑂𝐶𝑘

𝑈𝑅𝐶1,𝑘

𝑈𝑅𝐶2,𝑘

] + 

(3) 

[
 
 
 
 
 
 

Δ𝑡𝑘
𝐶N

(1 − 𝑒𝑥𝑝 (
−Δ𝑡𝑘
𝑅1 ⋅ 𝐶1

)) ⋅ 𝑅1

(1 − 𝑒𝑥𝑝 (−
Δ𝑡𝑘

𝑅2 ⋅ 𝐶2
)) ⋅ 𝑅2]

 
 
 
 
 
 

⋅ 𝐼term,𝑘 

 
The system output 𝑦𝑘  will be equal to the terminal voltage 

𝑈𝑡𝑒𝑟𝑚 since it is the only measurable value besides the current 
𝐼𝑡𝑒𝑟𝑚 which is already the input vector (or scalar in this case) of 
the system. It is important to notice that the output equation is 
dependent on a state (𝑆𝑂𝐶𝑘). Since 𝑦𝑘 = ℎ(𝑥𝑘 , 𝑢𝐾) with respect 
to the state and the input vector, the output is a nonlinear 
function. Due to this output nonlinearity, a nonlinear filter 
approach has to be chosen in order to estimate the SOC as well. 
The output equation can be calculated with Kirchhoff’s law to:  

𝑈term,𝑘 = 𝑈OCV(𝑆𝑂𝐶𝑘) + 𝑠𝑖𝑔𝑛(𝐼term,𝑘) ⋅ 𝑈hyst(𝑆𝑂𝐶𝑘)

+ 𝑈𝑅𝐶1,𝑘 + 𝑈𝑅𝐶2,𝑘 + 𝑅𝑖,𝑘 ⋅ 𝐼term,𝑘 
(4) 

The application of a Kalman-Filter for nonlinear problems 
(extended Kalman-Filer, EKF) is considered as state of the art 
and is shown by Plett [10]. The seed estimation-error covariance 
matrix 𝑃0 is developed as 

𝑃0 = 𝑃0
𝑇 = [

𝑒𝑆𝑂𝐶
2 0 0

𝑠𝑦𝑚. 𝑒URC1
2 𝑒URC1 ⋅ 𝑒URC2

𝑠𝑦𝑚. 𝑠𝑦𝑚. 𝑒URC2
2

] = 

[
0.25 0 0
0 0.0625 0.0375
0 0.0375 0.085

]. 

(5) 

The process noise of especially the SOC is considered low 
and constant and can therefore be chosen as: 

𝑄𝑥𝑥 = 𝑄𝑥𝑥,𝑘 = [
10−9 0 0

0 0.001 0.001
0 0.001 0.001

]. (6) 

And a constant measuring noise in the range of the error of 
the plant model derived from the equivalent circuit 

𝑅𝑦𝑦 = 𝑅𝑦𝑦,𝑘 = |𝑦meas − 𝑦̂3𝑥3|max
2 = 0.1. (7) 

The noise and covariance matrices are not used to 
parametrize the filter algorithm in order to have a physical 
representation in the system of both the parameters of the 
equivalent circuit and the noise and covariance matrices.  

B. Comparison and discussion of different implementations 

In order to compare different Kalman-filter approaches, it 
was mandatory to set up a toolchain for a fast implementation of 
the algorithms to an embedded hardware platform. The target for 
the comparison was the ARM cortex-A8. A real-time framework 
based on the Linux Debian 7.9 distribution was developed. 
Within the framework, a hardware abstraction layer (CAN, 
RTT) and the basic software, which contains the startup 
functions, the infinite loop and the function, calls to the user 
functions EKF(1..n) or Spherical Simplex Kalman filter (SPKF). 
The user functions are developed and tested in 
MATLAB/Simulink and are then generated to embedded C code 
as C-functions. After generating the code, the function call in the 
basic software has to be mapped to the desired algorithm. With 
the help of this toolchain, it is possible to change the parameters 
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and the filter approach in Simulink and verify the results in the 
model. Then the embedded C-code is generated and flashed with 
the basic software on the target with a round-trip time of under 
20 seconds (Simulink model to compiled and flashed solution 
on the target). Figure 7 shows the system view of the framework 
based on the AUTOSAR system description. The measurement 
modules of the cell voltages have a duty cycle of 25 ms. In order 
to provide the highest possible accuracy, the provided observer 
hardware should be able to calculate a Kalman-filter step for 
every parallel string of the traction battery. In other words, 14 
times 8 steps (14 serial cell strings per module, 8 modules per 
battery) have to be calculated in less than 25 ms. 

 

Figure 7: Real-time Framework 

As described in Chapter IV.A a combination of an EKF with 
two and three states with both LTI and LPV models are 
implemented. In addition, a SPKF (Sigma Point Kalman Filter) 
is implemented with a parameter weighting for the fastest and 
best convergence, and compared to the EKF methods. The 
theoretical background of the SPKF can be taken from Julier 
[11] as it is beyond the frame of this paper. The comparison is 
done with the fixed parameter set and derived from a step 
response measurement under a fixed temperature. Various 
standard driving cycles (NEDC, Artemis Urban and Artemis 
Rural) and real driving data were taken to test the filters. For the 
following comparisons, the Artemis Urban cycle was taken. As 
a dynamic and comparable long cycle, it is well suited for 
convergence and benchmark comparison. Figure 8 shows the 
error over simulation of the EKF using one RC-element with the 
LPV and LTI system model. It can be seen that the error stays 
under 2 % in a realistic simulation time of 140 minutes. However 
it can also be noticed that the error development is neither robust 
for the LPV nor for the LTI model. 

 

Figure 8: error comparison EKF two states 

In a direct comparison to the same filter approach with a 
three state model (2 R-C elements in the equivalent circuit), 
much better convergence results can be produced (Figure 9). In 
this case the LPV converges into a tolerance band of 1 % after 8 
minutes of simulation. The LTI is in the same range.  

 

Figure 9: error comparison EKF three states 

The SPKF shows promising results (Figure 10). Dependent 
on the driving cycle, the error development of the SPKF was 
sometimes better and sometimes worse than the EKF3x. With 
the sigma-points, there are more degrees of freedom for 
adjusting the filter. In the benchmark, the SPKF was 
parametrized for fast convergence (SPKF Fast) or for a 
minimized error (SPKF Best). Compared to the high complexity 
of the algorithm, however, the results are near to the EKF3x 
filters. It was shown that the SPKF filter shows different results 
for different stimulus signals. Because of the high dynamics of 
the Artemis cycle, the SPKF takes at best almost 30 min for 
convergence. 

EKF(1)

Function wrapper

Basic SW-

Framework

Linux Debian 7.9

...

HW 

Abstraction

EKF(n) SPKF
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Figure 10: error plot SPKF 

After the modeling and parametrization in Simulink, the 
three filter algorithms are tested on the ARM cortex-A8 with a 
simulated CAN bus network first (Hardware-in-the-Loop), and 
on the real environment afterwards. The results in Table 2 show 
that the algorithm with parameter sets, implemented as lookup 
tables, are comparable in execution time and processor load, but 
they consume almost 12 times as much flash memory. It was not 
possible to run the Sigma Point Kalman-filter under real time 
conditions since the ARM Processor would be overloaded (1049 
% processor load). A possibility would be to take average values 
and only calculate one step per module. However, this will lead 
to significantly larger errors, due to the averaging. The statement 
of Plett [12] “The computational complexity of SPKF is of the 
same order as EKF, so the gains are made at little or no 
additional cost.”, could not be met for the used hardware 
platform.  

Table 2: comparison of resource consumption 

Filter 𝒕𝒎𝒆𝒂𝒏 𝒊𝒏 𝝁𝒔 𝒕𝒎𝒂𝒙 𝒊𝒏 𝝁𝒔 𝜼𝑪𝑷𝑼 𝒊𝒏 % 𝑹𝑶𝑴 𝒊𝒏 𝒌𝑩 

EKF2LTI 39.7 6521 44.5 66 

EKF2LPV 60.4 4486 67.7 560 

EKF3LTIa 57.25 6271 64.1 69 

EKF3LPV 86.2 3811 96.5 800 

SPKF 936.6 6848 1049 135 

a. Best results for convergence and resource need. (Benchmark on ARM cortex-A8) 

As a conclusion we could imply that the SPKF has the best 
results regarding convergence, but this is completely out of step 
regarding the hardware consumption. The EKF with three states 
and a fixed parameter set was highlighted to have good accuracy 
and robustness with a low mean processor load. This is why the 
EKF3LTI will be the underlying filter for further degeneration 
investigation. If the temperature is the focus of research, it is 
recommended to use a LPV approach in order to depict the 
temperature influence in the system behavior.  

C. Degeneration parameters of a Lithium Ion Battery 

The degeneration of the traction battery is expressed by the 
following Parameters: 

 

 Actual capacity 𝐶act 

 Internal resistance 𝑅𝑖 

A good overview of the definitions is given by Waag [13]. These 
parameters are subjected to a degeneration process due to 
irreversible ageing of the battery (influenced by the DOD, mean 
SOC and the calendric age) and due to the temperature and actual 
C-rate (𝐼term,𝑘). The influence of the C-rate to the nominal 

capacity expressed by Peukert’s equation is neglected in this 
case because of the low C-rates, which are run on the testbed 
(1.2 C peak). Additionally, Hausmann [14] determines the 
Peukert constant k to 1.02 for NCA cells. This is very close to 
an ideal battery, and, thus, the capacity is nearly independent of 
the current. Detecting the parameters of the traction battery, the 
use of a Dual Kalman filter is recommended by publications of 
Walder [15], [16]. In practice, however, this approach has the 
disadvantage of high computational effort, the risk of instability 
and, worse, the algorithm does not guarantee the correspondence 
of the parameters with the true physical values, by name, actual 
capacity and the inner resistance. This correspondence, 
however, is mandatory in order to derive an efficiency loss and 
a value reduction over the lifetime of the energy storage. Due to 
this fact, an alternative method of detecting the nominal capacity 
of the traction battery is presented in Chapter IV.D. More 
investigation will be done in the field of estimating the internal 
resistance of the battery at a system level using vehicle data. 

D. Identification of the capacity 

An estimation error of the EKF3LTI filter introduced in 
Chapter IV.B is existent due to the fading of 𝑅i and 𝐶act. The 
fading of 𝑅𝑖 is yet to be neglected since it is the focus of future 
research on the Smart testbed using CCM. The datasheet of the 
supplier states a reduction of the nominal capacity of 24 % after 
500 standard cycles. A standard cycle is equivalent to a 
discharge rate of 1 C and a charge rate of 0.7 C at a temperature 
of 25 °C, respectively. In a real driving cycle, however, the 
maximum discharge current 𝐼𝑡𝑒𝑟𝑚,𝑚𝑎𝑥  and the minimal state of 

charge 𝑆𝑂𝐶𝑚𝑖𝑛  can be considered to be higher. The temperature 
can also largely differ from the standard cycle. The real 
degeneration expressed through the 𝐶act can, therefore, differ a 
great amount. By correcting the parameter 𝐶act it should be 
noticed that the degeneration of the capacity after one full cycle 
has the following magnitude if a linear ageing process is 
assumed:  

Δ𝐶act

𝐶act,0
=

0.24

500
= 0.048 %. 

(8) 

A higher degeneration can be due to a lower cell-temperature 
𝑇𝐶  compared to the previous observed cycle. In order to have a 
safe operation of the BEV using a maximum load, one has to 
make sure that the capacity is never estimated too highly: 

𝐶act < 𝐶act,real. (9) 

If the filter estimates a too highly rated SOC 

𝑆𝑂𝐶filter(𝑡) > 𝑆𝑂𝐶real(𝑡), ∀𝑡 > 0 (10) 

with a low real SOC, a deep discharge cannot be excluded 

𝑆𝑂𝐶filter(𝑡
′) < |𝑆𝑂𝐶filter(𝑡

′) − 𝑆𝑂𝐶real(𝑡
′)|max. (11) 
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The estimation of the actual capacity is executed in two 
steps: 

(1) feed forward-model 

The interconnection between the standard cycle and the 
actual capacity expressed in Equation (8) can be determined by 
cycle measurements or it can be extracted from the datasheet of 
the cell manufacturer. Furthermore, a linear relationship 
between the depth of discharge (DOD) of a cycle and the 
incremental reduction of the nominal capacity caused by the 
same is presupposed by Schmalstieg [6]. Equation (7) is re-
dimensioned and factorized with the actual DOD solved by the 
updated nominal capacity 

𝐶act,𝑘
− = 𝐶act,𝑘−1 −

δC

𝑛cycles
(1 − 𝑆𝑂𝐶𝑘), (12) 

with a reduction of the nominal capacity   

δC = 𝐶act,0 − 𝐶act(𝑛cycles). (13) 

(2) feedback-correction 

The correction of the provisionally nominal capacity 𝐶𝑎𝑐𝑡,𝑘
−  

is used to minimize the primary error 

 𝑒1 = 𝐶act,𝑘
− − 𝐶act,real. (14) 

The primary error induces a secondary error of the state of 
charge (SOC) estimation  

𝑒2 = 𝑆𝑂𝐶est − 𝑆𝑂𝐶real~𝑓(𝑒1, ∫ 𝐼term) (15) 

of the EKF3LTI. The nominal capacity, however, can only be 
measured with the sought accuracy under laboratory conditions 
because a cell has to be completely charged and discharged with 
the possibility of an accurate current measuring unit. The 
secondary error 𝑒2 can be approximately estimated for a parked, 
not fully charged BEV by utilizing the inverse OCV. As seen in 

Table 1, the time constant of the impedance R-C element, a 

maximum time constant 𝜏2,𝑚𝑎𝑥 = 30 s, a capacitance resistance 

of 𝑅2,max = 1.31 mΩ and a maximum discharge current of 

𝐼term,max = 180 A is presumed. After 300 seconds, the 

maximum possible voltage drop is 

URC2(𝑡 = 300s) = 𝑅2,max ⋅ 𝐼term,max ⋅ exp (−
300s

𝜏2,max
)

= −0.0107 mV. 

(16) 

Further relaxation processes cannot be observed. For a given 
state of charge, the terminal voltage calculates to 

ξ(𝑆𝑂𝐶real) ≔ 𝑈𝑂𝐶𝑉(𝑆𝑂𝐶real) − 𝑈𝐻𝑦𝑠𝑡(𝑆𝑂𝐶real)

≈ 𝑈kl(𝑡 = 300𝑠). 
(17) 

Since the terminal voltage can be assumed to be constant in this 
case, the made approximation is sufficiently accurate. The 
difference function ξ of the OCV-function deducting the voltage 
hysteresis is a continuous, strictly monotonic mapping. Hence, 
the inverse ξ−1 does exist. The higher the error of the current 
capacity estimation 𝐶act,𝑘

−  and the higher the nominal depth of 

discharge, the higher the estimation error 𝑒2: 

Δ𝑆𝑂𝐶 = 𝑆𝑂𝐶est − 𝑆𝑂𝐶real

≅
𝐶act,k

− − 𝐶act,real

𝐶act,real
⋅ (1 − 𝑆𝑂𝐶real). 

(18) 

𝐶act,𝑟𝑒𝑎𝑙  is substituted with the corrected estimation 𝐶act,𝑘 and 

the equation (18) solved to 𝐶act,𝑘 results in  

𝐶act,𝑘 = 𝜔d ⋅
𝐶act,𝑘

−

𝑆𝑂𝐶est − 𝑆𝑂𝐶real

1 − 𝑆𝑂𝐶real
+ 1

 (19) 

using a damping factor 𝜔𝑑 ≤ 1 for preventing instability. 

In The CCM is not yet applied to the alternative of estimating 
the capacity without using an ideal state estimator (Kalman-
Filter), presented here. Future work will show whether applying 
CCM will result in better estimations or whether, more likely, a 
combination of this method and CCM is advised. 

E. Methods of verification 

The traction battery construction, which uses a clamping 
method for contacting the battery cells, offers the possibility of 
disassembling the battery modules in order to measure the 
parameters 𝑅i and 𝐶act on a cell level under laboratory 
conditions. This parameter verification will be done every 5,000 
km of driven distance of the test bed. Since not all 2016 cells can 
be measured, only 10 cells of each module are chosen to deliver 
the benchmark. After the measurement, the battery modules can 
be assembled in the same manner as before. This method offers 
reliable results to verify the estimation approach over the 
lifetime of a battery pack. 

In addition to the cell test, it is possible to run a driving cycle 
on a roller test bench environment using a speed control 
mechanism. The battery data can be saved and compared to 
datasets that were produced under the exact same conditions 
(e.g. speed profile, start SOC, ambient temperature). The 
comparison of the data sets reflect a trend of the degeneration. 

V.  DEGENERATION OF THE POWER UNIT  

The power unit, consisting of the DC-AC converter and the 
electric machine is hooked up with an observer unit, based on a 
second ARM Cortex A8 rapid control prototype hardware. The 
real time framework introduced in Chapter IV.B is reused for 
this solution. The DC and AC power is measured by two 
automotive voltage-current sensor units (Isabellenhuette IVT-
MOD, 0.1% accuracy). The motor speed is measured by the 
motor control function. With an additional sensor, the motor 
torque is measured. Figure 11 shows an overview of the electric 
drive train, which is installed in the test bed. In the field of 
automotive technology, it will be likely that the components are 
designed less robustly or an overloading of the components will 
be tolerated in order to save weight and costs. 

 

Figure 11: Electrical Power Unit 
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A. Efficiency fading of DC-AC Converters 

The DC-AC converter (inverter) adapts the DC current 
provided by the traction battery to a three phases AC current 
pulled by the electric induction motor. In order to identify the 
losses of the inverter, a component view of the semiconductors 
(Power Mosfets) is proposed.  

It is important to notice that both, the conduction losses and 
the switching losses are independent of time or switching 
numbers for common automotive Mosfets. Therefore, an ageing 
process cannot be noted, if the semiconductor runs under normal 
temperature conditions (Datasheet Mosfets: -55 to 175°C), 
which was investigated by Saha [17]. Because of the active 
cooling circuit and a temperature monitoring, normal conditions 
can be guaranteed. Furthermore, the electrical DC-power and 
AC-power is measured by the sensor network. Even though it is 
unlikely to drop, the efficiency can be tracked during operation, 
and an efficiency fading will be noticed by the system. A CCM 
implementation is renounced due to high data management 
effort with low profit in system information. 

B. Lifetime monitoring of induction motor 

Since a method like CCM only detects an efficiency loss in 
the entire drivetrain, an accurate knowledge of the electric motor 
is required. The possible degeneration effects of an induction 
motor are given by Ojo [18]. The degeneration effects are 
evaluated with respect to a possible efficiency fading over a 
lifetime. According to Rothe [19] induction motor degeneration 
can be grouped into four classes: mechanical, electrical, 
environmental and thermal effects. However, most of the ageing 
effects will lead to fatal failure of the IM. 

Erbay [20] makes detailed analyses of common failures of 
modern induction motors with the background of stationary 
machines. It is supposed that the same behavior can be adapted 
to a mobile application of induction motors. A detailed summary 
of the failure-modes of the stator can be found in the dissertation 
of Mayer [21]. Basically there are three parts that are influenced 
by degeneration effects (Figure 12): 

 Stator, including the isolated windings 

 Rotor 

 Bearing of shaft to rotor. 

 

Figure 12: Induction Motor 

According to Erbay, an analysis of the power or current 
signature and the temperature applied with a data-fusion will 
provide accurate knowledge about the actual health of the motor. 
Furthermore, an apriority estimation about the end of life (EOL) 
is made by Huger [22], which is confined, however, in this paper 
in order to compliment the CCM approach. A total failure of the 
motor will be detected by the electronic control unit and the 
information will be passed to the user. In focus is the 
degeneration of the induction motor during a lifetime, which 
results in efficiency or power fading.  

First of all, the motor’s behavior can deviate from the 
predicted behavior, due to manufacturing tolerances. One effect 
that can lead to power fading over a lifetime is a short circuiting 
of the windings. Having a short circuit between two phases will 
lead into failure of the IM if a special machine design is not 
chosen that allows control even under special failure conditions. 
A short circuit in between one phase will result in a lower 
windings number of one phase or a partial discharge, which will 
lead to an irregularly running of the machine. Also, the control 
mechanism is likely to be less efficient. The one phase short can 
be emulated in a trivial manner. The effect will be measured and 
saved into an updated motor efficiency diagram. Having the 
updated diagram, a method of using the current and temperature 
profile will be derived. 

VI. CONCLUSION 

The focus of this paper’s research was the drive train 
components: traction battery, inverter and induction motor of 
common BEVs. The aim was not to investigate the cause or to 
predict, but to detect degeneration processes inside these 
components. State estimators for batteries are considered state 
of the art. However, a benchmark of the most promising filter 
approaches was done in order to suggest a suitable solution. The 
state estimator was enhanced with parameter detection based on 
the introduced CCM. This method will show a trend of the 
overall degeneration of the drivetrain, whereat the battery 
degeneration is uncertain and the inverter efficiency over a 
lifetime is regarded as static. The motor degeneration will be 
detected by an enhanced observer model, which will be the 
subject of further research, using the same test bed. Using a long 
term data procedure, robust information about the SOH of the 
battery and the function level of the drive train can be given. 
Using the electrified Smart testbed, enhanced with parametrized 
simulation model results of using CCM in order to calculate 
value and the efficiency of the drivetrain over a lifetime, will be 
in focus of further research. 
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