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Abstract

Motivation: Many methods predict the physical interaction between two proteins (protein-protein

interactions; PPIs) from sequence alone. Their performance drops substantially for proteins not

used for training.

Results: Here, we introduce a new approach to predict PPIs from sequence alone which is based

on evolutionary profiles and profile-kernel support vector machines. It improved over the state-of-

the-art, in particular for proteins that are sequence-dissimilar to proteins with known interaction

partners. Filtering by gene expression data increased accuracy further for the few, most reliably

predicted interactions (low recall). The overall improvement was so substantial that we compiled a

list of the most reliably predicted PPIs in human. Our method makes a significant difference for

biology because it improves most for the majority of proteins without experimental annotations.

Availability and implementation: Implementation and most reliably predicted human PPIs

available at https://rostlab.org/owiki/index.php/Profppikernel.

Contact: rost@in.tum.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

PPIs: physical protein–protein interactions between different pro-

teins. We define PPIs as interactions that bring two different proteins

A and B directly into ‘physical contact’. This ‘molecular’ perspective

on PPIs differs from the view adopted by many ‘users’ of interaction

data who look for associations. Again: for us the crucial aspect of an

interaction is the direct physical contact. This molecular perspective is

a crucial component of curated resources such as Hippie (Schaefer,

et al., 2012), as well as of our method.

Predictions and experimental evidence intertwined. PPIs are

supported by an increasing amount of data, derived for example

from sequences, structures, co-evolution, co-expression, domain

co-occurrence, text-mining or subcellular co-localization. Many in

silico tools use these data to enrich PPI networks and to predict new

interactions (Lees et al., 2011; Liu et al., 2008; Mosca et al., 2013).

For instance, high-throughput data in integrative models such as

Bayesian Networks improves predictions and blurs the line between

in vitro and in silico (Jansen et al., 2003). Predictions can be im-

proved further by, e.g. developing better statistical models (Jansen

et al., 2003; Soong, 2009; Zhang et al., 2012).

Protein sequences improve most integrative models, e.g. through

homology-based inference and are highly predictive of PPIs on their

own (Martin et al., 2005; Pitre et al., 2012). Sequences are also by

far the most abundant data.

Homology-based inference assigns feature F to a protein A if

another protein B is experimentally annotated with feature F and

sequence-similar to A. This concept works well for Gene Ontology

terms (Hamp et al., 2013; Radivojac et al., 2013) and can even out-

perform advanced predictions of subcellular localization (Goldberg

et al., 2014). For PPIs, however, it is substantially more challenging

(Mika and Rost, 2006) and many advanced sequence-based PPI

prediction methods have been developed.
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New prediction method for difficult cases. Park and Marcotte re-

cently introduced three classes of difficulty for predicting whether

proteins A and B interact: C1 if both A and B were in the dataset

used to develop the prediction method (but not the PPI A–B itself),

C2 if this was the case for either A or B and C3 if neither of the two

was in the dataset (Park and Marcotte, 2012). Even today’s best

sequence-based methods perform significantly worse if A and B

were not used for method training. Here, we introduce a new

method that tackles this problem. It only uses features that are avail-

able for all proteins of known sequence and combines empirical

rules with advanced machine learning protocols. We show that it

slightly outperformed other methods for classes C1 and C2 and that

it improved substantially for C3. A filter based on recent tissue-spe-

cific gene expression data further increased performance. Finally, by

generalizing classes C1–C3, we could identify and predict all diffi-

cult query protein pairs in human.

2 Methods

Park and Marcotte datasets. Park and Marcotte used all human and

yeast PPIs from PINA v3/2010 (Wu et al., 2009). They redundancy

reduced both sets such that no two proteins had >40% pairwise se-

quence identity. For cross-validation, they divided each set into 10

partitions, using nine to train and one to test. Each test interaction

between proteins A and B was assigned to one of the three classes of

difficulty (C1–C3: Introduction). Non-interactions (‘negatives’)

were sampled randomly from the respective proteins in each of the

four PPI sets (one training, three testing). Datasets and cross-

validation splits were publicly available, allowing us to perform

exactly the same cross-validations as in Supplementary Table 2 of

Park and Marcotte (2012).

New high-quality datasets. The Hippie database collects human PPIs

with experimental annotations (Schaefer et al., 2012). Reliability

scores grade the interactions by considering, e.g. the number of

publications or the type of experimental support. We picked the 10%

top-scoring interactions from Hippie v1.2 (10/2011) to obtain a high-

quality subset (dubbed HumanHQ). We applied the same procedure

to Hippie v1.6 (11/2013) and used the difference between both sets of

PPIs for testing (HumanHQ_new). High-quality yeast PPIs were

available from the Database of Interacting Proteins (DIP) core set,

which is a subset of the full DIP database and contains only the most

reliable physical PPIs (Salwinski et al., 2004). We used DIP v04/2014

(YeastHQ), because slow growth prevented compiling a ‘new’ dataset

for yeast.

Redundancy reduction. We redundancy reduced HumanHQ and

YeastHQ such that no two PPIs were sequence-similar. Two PPIs

were considered similar if at least one pair of their sequences had

HVAL >20 (Rost, 1999; Sander and Schneider, 1991). This corres-

ponds to �40% pairwise sequence identity for 250 aligned residues.

We refer to the non-redundant sets as HumanHQ_nr and

YeastHQ_nr.

Cross-validations and test on new PPIs. Next, we split each non-re-

dundant set into 10 parts, using nine for training and one for testing.

By definition, all such test cases were in class C3, because neither

protein of a query interaction A–B was sequence-similar to a protein

in the training set. We obtained C2 test cases by going through the

full redundant high-quality sets (HumanHQ or YeastHQ) and by

taking all PPIs A–B for which either A or B was sequence-similar

(HVAL >20) to the proteins in the training set. This set of C2 test

cases was then internally redundancy reduced as described earlier

for the full high-quality sets. Analogously, we created C1 test cases

(both proteins A and B of a query A–B were sequence-similar to pro-

teins in the training set). We repeated all this 10 times, so that each

of the 10 splits of the full non-redundant set was the test split exactly

once. In the end, there were 1825, 2046 and 842 PPIs in C1–C3 in

the human cross-validation and 1636, 1663 and 746 PPIs in the

yeast cross-validation.

The tests with HumanHQ_new were constructed similarly: as

the training set (i.e. the old interactions), we used the full

HumanHQ_nr. To obtain new C3 test PPIs, we first collected all

interactions A–B in HumanHQ_new for which neither A nor B was

sequence-similar to a protein in HumanHQ_nr. Then we redun-

dancy reduced this new set internally exactly as HumanHQ. C2 and

C1 were created in the same way, except that one (C2) or both (C1)

proteins of an interaction in HumanHQ_new had to be sequence-

similar to interactions in HumanHQ_nr. This resulted in 392, 580

and 218 new human test PPIs in classes C1–C3.

Negative interactions. Park and Marcotte made it clear that we need

to distinguish between classes C1–C3. It is less clear, however, how

to sample negatives for these classes. Here, we propose a solution

that is especially suited for the prediction of the ‘full interactome’,

arguably the most common and challenging application.

Our definition of classes C1–C3 only required two proteins to be

similar to be in class C1 or C2, not identical as for Park and

Marcotte (Fig. 1). Hence, given a positive training set (e.g. a training

split in the cross-validation with HumanHQ), we could assign each

possible protein pair in an organism to one of the classes C1–C3.

This allowed us to measure how well a method separated interacting

(positives) from non-interacting (negatives) pairs in each class: the

positives were already given because each positive training set was

associated with three test sets (C1–C3). We obtained the negatives

by randomly sampling from all the pairs in the respective class, e.g.

from all the C3 pairs in human (10 negatives for each positive PPI).

Prediction performance for all C3 pairs was then estimated by

Fig. 1. Comparison of Park and Marcotte and our dataset. Nodes are proteins

and edges are PPIs. Proteins closer in space are more sequence-similar. (A)

Park and Marcotte redundancy reduced the dataset on the level of proteins.

Training proteins (‘Tr’) can have many interaction partners and form net-

works. Each test interaction A–B (gray and/or dotted nodes/edges) was as-

signed to one of three classes (‘C1–C3’) based on whether A and/or B were in

the training set. (B) In our datasets, there is no sequence similarity between

training PPIs (‘Tr’) because both proteins of a training interaction A–B needed

to be dissimilar to all other proteins. We also distinguished between three

types of test pairs (‘C1–C3’), but our classification was based on sequence

similarity to the training proteins, not on whether the exact same protein has

already occurred in the training set.
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measuring how the positive C3 test PPIs ranked among the negative

C3 test PPIs, e.g. as a recall-precision curve.

Most PPI prediction methods also require training on negatives

(non-interacting proteins). In supervised learning, training and test

data should be sampled from the same population, which in our

case is the same set of protein pairs. Hence, we sampled negatives

for training in the same way as for testing, i.e. from all pairs in one

of the classes C1–C3 (again: 10 negatives for each positive training

PPI). Note that this still did not allow predicting PPIs simply by simi-

larity between single proteins: in case of C3, e.g., both negative and

positive test PPIs were sequence-similar to negative training PPIs,

but sequence-dissimilar to positive training PPIs.

All proteins of each organism were provided by the EMBL-EBI

Reference Proteomes (Dessimoz et al., 2012). We removed short

(<50 residues) and long (>5000) proteins. Additionally, we ascer-

tained that no negative was listed as positive in the full Hippie 1.2

database (i.e. as a PPI with experimental evidence that we deemed

insufficient for training).

Performance measures. All methods tested here could be re-trained

with custom PPIs and provided a score for each prediction. Hence, we

could calculate standard recall-precision curves. To minimize sampling

noise, we followed a standard procedure and repeated each experiment

10 times from the start (Witten and Frank, 2005). Thus, we performed

10 times 10-fold cross-validations with HumanHQ and YeastHQ

(including re-sampling of negatives) and also repeated the tests on new

human PPIs 10 times, each time with a new sample of negatives. In the

end, we always averaged over the 10 curves.

New method: profile interaction kernel. Our new method uses sup-

port vector machines (SVMs) which calculate hyperplanes that opti-

mally separate data points (high dimensional numerical vectors) of

one class from those of another class (Schölkopf and Smola, 2001).

The evolutionary profile kernel designed by the Leslie group defines

one such feature vector for each protein (Kuang et al., 2005). Each

element represents a sequence of k residues (k-mer). If k¼3, e.g. the

feature vector has 203¼8000 elements (all possible 3-mers taken

from 20 amino acids). The value of an element is the number of times

this k-mer is conserved in the evolutionary profile of the protein, i.e.

how often the sum of amino acid substitution scores is below a user-

defined threshold r. Let us illustrate this for the 3-mer WTG. To test

whether it is conserved at residue 37, we look up the frequency of

W at residue 37 and convert it to a score by taking the negative loga-

rithm. Then we do the same for T and G at positions 38 and 39, sum

up the three scores and check whether the sum is smaller than r.

[Note that there can be more than one conserved k-mer per position:

e.g. with r¼1, there are 20k conserved k-mers for every position in

a sequence of length n, and hence, n�20k in total]. The profile ker-

nel is then defined as the dot product of two such vectors of k-mer

counts. In the actual implementation, an efficient k-mer trie-based

algorithm takes all evolutionary profiles at once and calculates all

dot products in one traversal of the trie. Recently, we further acceler-

ated this algorithm and made it easier to use (Hamp et al., 2013).

In our new PPI feature space, each dimension represents a pair of

k-mers. Continuing the example earlier: in addition to WTG in pro-

tein A, we now also look for conserved k-mer LGA in protein B and

count how often WTG and LGA co-occurred in the interaction. This

new feature space has 20k�20k dimensions. However, the dot prod-

uct between two such feature vectors (i.e. two PPIs) only requires

dot products in the 20k-dimensional single-protein feature space

(Supplementary S1) (Martin et al., 2005). More formally:

K IA�B; IA0 �B0
� �

¼ bK A;A
0� � bK B;B

0� �
þ bK A;B

0� � bK A
0
;B

� �
, where K

is the profile kernel in interaction space, IA�B and IA0�B0 are the PPIs

A–B and A0-B0, respectively, and bK is the dot product in single-pro-

tein space, i.e. the original profile kernel.

Other sequence-based methods. We compared our method to

PIPE2 (Pitre et al., 2012), SigProd (Martin et al., 2005) and

AutoCorrelation (Guo et al., 2008), which performed well com-

pared with other sequence-based PPI prediction methods in a recent

assessment (Park and Marcotte, 2012). All implementations were

freely available and provided the functionality to re-train the

method with custom PPIs.

PIPE2. For each query PPI A–B, PIPE2 counts how often two par-

ticular 20-mers from A and B co-occur in training interactions. The

result is stored in a matrix with all 20-mers of A as rows and all 20-

mers of B as columns. Each cell gives the number of PPIs this pair of

20-mers has been observed in. The matching of 20-mers is inexact,

i.e. not exactly the same 20-mer has to be found in a training protein

A0 (B0) to be considered a hit for A (B). A PAM120 score above a

certain threshold suffices. The matrix is smoothed by a sliding 3�3

window (central value replaced by the median over the window). A

and B are predicted to interact if the average score in a 3�3 window

of the new matrix exceeds a certain threshold.

SigProd. Proteins are encoded as vectors of ‘signatures’. A signature

is a pair of 3-mers that have the same amino acid at position 2 and

the same set of amino acids at positions 1 and 3 (e.g. GTW¼WTG).

Each element is the number of times this signature has been

observed in the protein. A PPI is represented as a vector of signature

co-occurrences, as explained for the profile-kernel. Thus, our ap-

proach can be seen as an enhancement of the signature PPI kernel by

using protein profiles instead of sequences, extending the single-pro-

tein feature space (�4000 signatures versus 3.2M k-mers with k¼5)

and introducing and optimizing critical parameters (k, r and C).

AutoCorrelation. A sliding window extracts all pairs of residues in a

protein that are x residues apart in sequence [e.g. residues (1,4),

(2,5), . . . for x¼2]. An amino acid index (e.g. polarity) encodes

these pairs as 2D numerical vectors. A feature is defined as the

correlation coefficient between the first and second element of these

vectors. Doing this for all x 2 [0,1, . . . ,29] and seven different

amino acid indices creates a total of 30�7¼210 features. A PPI is

encoded by concatenating the features of the two proteins (420

features). As proposed in (Park and Marcotte, 2012), we used

random forests to make PPI predictions.

Optimization of free parameters. For our new method, we

optimized the k-mer length (k) and the substitution score threshold

(r) empirically with a grid search on one split (90%) of the full

HumanHQ_nr cross-validation (all test cases in C3). Possible values

for k and r were [4,5,6] and [4,5, . . . ,11]. This procedure should

have prevented ‘leaks’ of test data into the training phase

(Supplementary S2). To keep training times low, we re-used the best

combination found (k¼5, r¼9) in all other experiments (C1–C2

HumanHQ; C1–C3 YeastHQ, Park&Marcotte and HumanHQ_new).

Leaks could be ruled out in these cases. In fact, here we might under-

estimate performance due to potentially suboptimal k and r. For

classification, we always used the Sequential Minimal Optimization

(Platt, 1999) implementation in Weka (Hall et al., 2009). This plat-

form also allowed optimizing the complexity parameter C for every
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SVM that we trained (internal 10-fold cross-validation; values for C

were 10�2, �1, . . . , 2). In all optimizations, we chose the param-

eter combination that achieved the highest average precision up to a

recall of 25% (step size of 5%). Evolutionary profiles were taken

from PredictProtein (Yachdav et al., 2014).

As mentioned earlier, all methods compared provided the func-

tionality to re-train on custom PPIs. The developers of those meth-

ods had only defined the template, i.e. which parameters to optimize

how during training. We did not change any method in this respect.

Instead, we re-trained each method for every training-test set com-

bination such that all methods had always used the same training set

when predicting a test set. As we had optimized the parameters of

our method only with older human C3 PPIs, all methods were

equally ‘blind’ for all other test sets.

Expression data. We used recently published human gene expression

data to filter protein pairs that are unlikely to interact because they

are expressed in different tissues (Fagerberg et al., 2014). The min-

imum expression level (measured in fragments per kilobase of tran-

script per million mapped reads) was set to 10, corresponding to

‘high expression’ according to (Fagerberg et al., 2014). 6656 of the

20 249 proteins in the EBI reference proteome could not be mapped

to tissues, either because they were not measured (1276) or because

no expression level was high enough (5380). The filter worked by

removing each protein pair A–B, if any of the two proteins could not

be mapped to tissues or if there was no tissue in which both proteins

A and B were expressed. A comparison of the filtered and unfiltered

pairs in terms of house-keeping genes and over- and underrepre-

sented protein functions revealed significant, but overall rather small

changes (Supplementary S4.1). The key factors that determined

whether a method could benefit from the filtering are discussed in

Supplementary S4.3.

3 Results and discussion

New method improves sequence-based PPI prediction. Our new ap-

proach for predicting PPIs from sequence alone is based on

Table 1. Best AUCs for Park and Marcotte datasets

Human Yeast

Method C1 C2 C3 C1 C2 C3

PPI-PK 87 6 1 69 6 1 67 6 2 87 6 2 69 6 2 68 6 2

Old best 85 6 1 64 6 1 59 6 2 85 6 1 67 6 1 59 6 2

We evaluated our new method (PPI-PK) as in (Park and Marcotte, 2012).

‘Old best’ marks the best AUC achieved by previously published methods.

C1: both proteins A and B of a query PPI A–B used to train, C2: only one

used to train, C3: none used to train.

Fig. 2. Better predictions for high-quality PPIs. Our new method (PPI-PK) compared favorably to the three state-of-the-art sequence-based methods SigProd,

PIPE2 and AutoCorrelation. All lines show standard recall-precision curves. Columns describe different data sets: leftmost [Human (new)]: test with new human

interactions added after those used for development (Methods: Human_new); middle [Human (cross-validation)] and rightmost [Yeast (cross-validation)]: tests

with the cross-validation sets (Methods: HumanHQ_nr and YeastHQ_nr). For each query interaction between proteins A and B, we distinguished three difficulty

classes: C1 if both A and B (or homologs) were used for training (but not the interaction A–B); C2 if either A or B (or homologs) were used to train; C3 if neither of

the two nor their homologs were used to train. ‘PPI-PK & Expr’ refers to results obtained after applying our baseline gene expression filter to the predictions by

PPI-PK. Negatives were always ten times more frequent than positives.
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evolutionary profiles and the profile-based kernel designed by the

Leslie group (Kuang et al., 2005). We compared it to state-of-the-art

sequence-based methods using experimental PPIs from human and

yeast. Only few known proteins have experimentally annotated PPIs

and even fewer have reliable annotations. Hence, most pairs fall into

classes C2 and C3. Prediction methods, however, were mainly tested

on class C1 due to a flaw in the traditional cross-validation scheme.

This was recently discovered with a refined cross-validation proced-

ure (Park and Marcotte, 2012).

Better for Park and Marcotte data. Using exactly the same proced-

ure and data introduced by Park and Marcotte, our new method im-

proved over the state-of-the-art for yeast and human for all classes

of difficulty (Table 1). The improvement was highest for interactions

between proteins that were sequence-dissimilar to proteins in the

training set (C3). For instance, our new method pushed the C3 area

under the ROC curve (AUC) mark for human to 67 6 2% compared

with the previous best of 59 6 2% (random¼50%), i.e. almost dou-

bling the ‘distance to random’. Confirming Park and Marcotte, our

method also performed best if both proteins of a query interaction

were used to train (but not the interaction itself).

Evaluation with most reliable PPIs. In another test, we only used

highly reliable PPIs from Hippie and DIP and rigorously reduced

redundancy (Methods; discussion and comparison to redundant

datasets in Supplementary S3). Generalized classes C1–C3 only

needed proteins to be similar, not identical, to put the corresponding

PPIs into class C1 or C2 (Methods). As before, we compared our

method to SigProd (Martin et al., 2005), PIPE2 (Pitre et al., 2012)

and AutoCorrelation (Guo et al., 2008), previously established as

top sequence-based methods (Park and Marcotte, 2012).

Our new method compared favorably to others throughout the

recall-precision curves (Fig. 2) except for very low recall in C1–C2

(PIPE2 better in C1 and almost on par in C2). PIPE2 seemed to per-

form quite well for a few C1 cases. SigProd (for human) and our

new method (for human and yeast) overtook for higher recall. This

realm of high recall is important for users who try to get many inter-

actions from as few wet-lab experiments as possible. For C3, our

method consistently improved greatly over both PIPE2 and SigProd.

AutoCorrelation was not competitive although it slightly improved

in C1–C2 with more redundancy in the training sets (Supplementary

S3). Filtering out proteins not highly expressed in at least one com-

mon tissue increased precision for human C3 interactions, in par-

ticular for the test with new human interactions (HumanHQ_new).

For the other classes, we observed minor improvements exclusively

for low recall levels. We observed a similar trend when applying the

filter to the other methods (Supplementary S4.2); possible reasons

for this are discussed in Supplementary S4.3.

We repeated our analysis (shown in Fig. 2) with the least reliable

PPIs added between 2011 and 2013 (Supplementary S5). All

methods except AutoCorrelation performed substantially worse.

This result justified our initial selection of only the most reliable

PPIs.

Full human interactome prediction. The interaction partners of

many human proteins remain unknown. Several in silico methods

help annotating experimental data and designing new experiments.

As the method introduced here performed better than those previ-

ously established as the state-of-the-art for sequence based PPI

prediction, we made the best 200 000 of all human C2 and C3

predictions available online. First analyses indicate a large diversity

of proteins and similar degree distributions as in the full Hippie

database, except that large hubs (>50 interactions) are slightly more

frequent among our predictions (Supplementary S6).

4 Conclusions

We introduced a new method that predicts physical protein–protein

interactions from sequence alone by using evolutionary profiles

through profile-kernel SVMs. It is optimized to predict pairs of

proteins that come into close contact at some point in time, not to

predict functional associations. In our hands, this method improved

over the state-of-the-art in methods that exclusively rely on sequence

information. The improvements were most substantially for proteins

without significant sequence similarity to proteins with reliable

experimental annotations. These by far outnumber the set of ‘well

characterized’ proteins even for the best-studied model organisms. A

simple filter removing protein pairs not expressed in the same tissue

further improved performance. We provide downloadable imple-

mentations to re-train our method with custom PPIs, together with a

list of the 200 000 most reliably predicted human proteins pairs that

are sequence-dissimilar to known interactions.
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