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Expitope: a web server for epitope expression
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Abstract

Motivation: Adoptive T cell therapies based on introduction of new T cell receptors (TCRs) into pa-

tient recipient T cells is a promising new treatment for various kinds of cancers. A major challenge,

however, is the choice of target antigens. If an engineered TCR can cross-react with self-antigens in

healthy tissue, the side-effects can be devastating. We present the first web server for assessing

epitope sharing when designing new potential lead targets. We enable the users to find all known

proteins containing their peptide of interest. The web server returns not only exact matches, but

also approximate ones, allowing a number of mismatches of the users choice. For the identified

candidate proteins the expression values in various healthy tissues, representing all vital human

organs, are extracted from RNA Sequencing (RNA-Seq) data as well as from some cancer tissues

as control. All results are returned to the user sorted by a score, which is calculated using well-es-

tablished methods and tools for immunological predictions. It depends on the probability that the

epitope is created by proteasomal cleavage and its affinities to the transporter associated with anti-

gen processing and the major histocompatibility complex class I alleles. With this framework, we

hope to provide a helpful tool to exclude potential cross-reactivity in the early stage of TCR selec-

tion for use in design of adoptive T cell immunotherapy.

Availability and implementation: The Expitope web server can be accessed via http://webclu.bio.

wzw.tum.de/expitope.

Contact: d.frishman@wzw.tum.de

1 Introduction

In adoptive immunotherapy, engineered T cell receptors (TCRs) are

introduced into natural patient cytotoxic T lymphocytes. After this

treatment, the T cells recognize a specific tumor antigen and will

thus start to target cancer cells. It is vital for the success of the ther-

apy that the antigen is only expressed in cancer cells or non-vital tis-

sue, otherwise the effects can be devastating for the patients.

Recent studies showed that not only the expression of the direct

target has to be examined across all vital tissues, but also approxi-

mate sequences have to be considered, as TCRs are not perfectly

exact in their epitope choice. In one study, Morgan et al. (2013) re-

ported cross-recognition of a MAGE-A3 TCR with a MAGE-A12

epitope that was later found to be expressed in the brain. The

MAGE-A12 epitope had one mismatch when compared with the ini-

tial target of the study, but was apparently recognized by the TCR

and the treatment was fatal for some patients (Morgan et al., 2013).

In another case, Linette et al. (2013) used a different MAGE-A3-spe-

cific TCR that was found to show cross-recognition of an epitope

present in titin, a protein expressed in the heart, although the titin-

associated epitope had four mismatches compared with the original
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MAGE-A3 epitope. Nevertheless, titin was targeted by the engin-

eered T cells and the patients suffered cardiac arrest (Linette et al.,

2013).

In order to see potential off-target recognition when designing

new lead targets, until now one needed to search protein databases

for approximate hits and than evaluate each hit for its potential to be

an epitope. Our Expitope web server combines all these searches and

evaluation in one place and even reports the expression of the associ-

ated transcripts in all vital human tissues to facilitate TCR selection.

2 Methods

2.1 RNA-seq database
As the basis for the epitope expression analysis we set up a database

containing RNA-seq results from multiple different healthy tissues.

A very comprehensive set can be found in the Illumina Human Body

Map (GEO identifier: GSE30611), which provides 16 normal tissues

from unrelated donors. To provide a positive control for most of the

cancer antigens, we also included expression values for three cancer-

ous cell lines from the ENCODE project (GEO identifier:

GSM758575, GSM981253 and GSM958749) (ENCODE Project

Consortium, 2011). To obtain expression values for all annotated

transcripts, we used GenCodeV19 (Harrow et al., 2006) and

counted the reads per every exon, so we could sum up the coverage

over all alternative transcripts. As raw read counts are not easily

comparable between different samples due to different library sizes,

we normalized the counts to fragments per kilobase of exon per

million fragments mapped values with the bamutils tool count

(Breese and Liu, 2013).

As the brain constitutes one of the most vital organs, for which

cross reaction has to be excluded very vigorously, we integrated add-

itional brain isoform expression data published by Wang et al.

(2008). They analysed the transcriptomes of 15 different human tis-

sues, among them six individual brain samples, and provide the

RPKM (reads assigned per kilobase of transcript per million mapped

reads) values for 23 115 Ensembl gene identifier. As the integration

of RNA-seq data into the database is fully automated, it is easy to

add additional tissues or cell types on demand.

2.2 Epitope lookup
Our server requires an epitope (a string of amino acids in one letter

code) and a number of allowed mismatches (integer value) as input.

A search for all occurrences of the given epitope is implemented

against the entire protein sequence database of the National Center

for Biotechnology Information, including all annotated isoforms. All

matches with zero up to the defined number of mismatches are re-

ported and the corresponding protein identifiers stored. All obtained

protein identifiers from entries of interest are mapped to Ensembl

transcript identifiers via a lookup file downloaded from biomart

(Smedley et al., 2009).

The set of transcript IDs is then used to query the database of ex-

pression values in all tissues, as described earlier. These results are

presented to the user in form of a table, which additionally contains

the exact epitope found in a certain protein and its sequence position.

2.3 Output ranking
2.3.1 Combined score

To sort the potentially long list of results with regard to their real

potential to function as an epitope, we apply a scoring function as

proposed by Kes�mir et al. (2002). It combines the probability that a

given peptide is cleaved from its original sequence, transported to

the endoplasmic reticulum and bound by major histocompatibility

complex (MHC) class I proteins. The resulting score Q is defined as

Q ¼ P

ATAP � AMHC

where P is the proteasomal cleavage probability, and the A-terms

are affinities in IC50 values (dose of peptide which displaces 50% of

a competitive ligand) to the transporter associated with antigen pro-

cessing (TAP) and MHC complex.

2.3.2 Proteasomal cleavage prediction

To calculate the proteasomal cleavage probability, we used the pro-

gram NetChop 3.1 (Kes�mir et al., 2002; Nielsen et al., 2005). We

ran the program on all current RefSeq protein entries and obtained a

cleavage probability for every position. These values are stored in an

additional database table to avoid executing NetChop for every web

server query. We are using the prediction method ‘C-term 3.0’ which

is a neural network trained on a database containing 1260 publicly

available MHC class I ligands.

2.3.3 TAP affinity prediction

Peters et al. (2003) have established a 9�20 matrix, mati,j, that con-

tains for each amino acid at every possible epitope position (of

length nine) a log(IC50) value which can be summed up to obtain an

IC50 value for the complete peptide. When evaluating their method,

the authors observed that the best concordance to experimental

values is achieved, when taking precursor peptides into account, i.e.

instead of the initial nonamer they calculated the affinity for an

N-terminal elongated sequence. In order to use this approach with

epitopes of fixed length provided by the users, we modified the

established formula to work without precursor sequences. Hence,

only the IC50 values for the C-terminal residue as well as a weighted

sum of the three N-terminal amino acids are used for the scoring.

2.3.4 MHC binding prediction

For the affinity prediction of the epitopes to the MHC for a large

range of human leukocyte antigen (HLA) alleles, we integrated

NetMHC 3.0 (Nielsen et al., 2003; Lundegaard et al., 2008a,b) into

our web server. It offers artificial neural networks trained on 55 dif-

ferent MHC alleles and returns the affinity of a given peptide to the

specified alleles in nM IC50 values. The Expitope server reports the

exact IC50 values predicted by NetMHC for every MHC allele that

was selected in the query, but only the best (lowest) is used in the

calculation of the combined score Q.

3 Conclusion

To test the capability of Expitope, we investigated a previous TCR

gene therapy in which unanticipated cross-recognition of healthy tis-

sues led to patient deaths. We used the target that Linette et al.

(2013) had engineered in their study and allowed for up to four mis-

matches. Cross-recognition of titin was identified by our web server

and although the sequence has four mismatches, the predicted

affinity to MHC allele A0101 was even higher for the titin antigen

than that for the original MAGE-A3 peptide. Although we would

like to remind all users that the predictions are only to be used as a

first instance of TCR selection and need to be validated experimen-

tally before used in therapy, we expect our Expitope web server to

be a useful tool for recognizing potential cross-reactivity in the

early stage of TCR selection and designing adoptive T cell

immunotherapies.
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