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Abstract— Dynamic Movement Primitives (DMPs) represent
stable goal-directed or periodic movements, which are learned
from observations or demonstrations. They rely on proper func-
tion approximators, which are sufficiently flexible to represent
arbitrary movements but also ensure goal convergence in point-
to-point motions. This work shows that Gaussian Processes
(GPs) are suitable as a regressor for learning movements with
DMPs ensuring stability. In addition, GPs provide a measure
for the uncertainty about the current movement, which we
exploit by proposing a new cooperation scheme for DMPs: For
better reproduction of demonstrations, we follow the intuition,
that individuals with more knowledge lead towards the goal,
while others follow and focus on cooperation. Along with
simulation results, we validate the presented methods in a
robotic cooperative object manipulation task.

I. INTRODUCTION

Transferring skills from humans to robots is contemporary
in many aspects of robotic research. Seeing that humans are
able to perform multi agent tasks such as cooperative object
manipulations reliably and with ease, imitating their trajec-
tory generation capabilities and team behaviour is of great
value. Thus a framework, which allows robots to extract and
learn individual movements from observations and interact
human-like in a team, is desirable. In setups, where indi-
viduals make separate decisions but have a common (team)
goal, the coordination among the members is essential. In the
example of joint object manipulation, maintaining a given
formation is crucial as otherwise the object is exposed to
high forces or is dropped.

In human cooperation individuals with more knowledge
about the task take over leading roles, while individuals
with less knowledge tend to follow the leader and act more
supportively [1]. In situations with asymmetric information,
this leads to a knowledge-based role assignment (leader or
follower). This is advantageous as only a subset of the
team members has to be instructed which then lead the less
knowledgeable members, while receiving their support in the
task execution [2].

Another area of ongoing research in robotics is gen-
erating flexible goal directed movements with guaranteed
convergence. More recently, learning dynamical systems
from demonstration has gained popularity, but comes with
difficulties regarding the guaranteed stability of the repro-
duction. In [3] a learning approach is presented, which
constrains the leaning to stable motions employing Gaussion
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Mixture Models and dynamical systems in combination with
Lyapunov theory. As an alternative, Dynamic Movement
Primitives (DMPs), initially proposed in [4], provide a very
flexible method for representing goal directed or periodic
movements with dynamical systems. Trajectories are learned
from demonstration and are generalized during execution.
Their application ranges from sculpting [5] to tennis racket
swinging [6]. DMPs have extensions for multiagent inter-
action, where cooperation is based on virtual or measured
forces at the end-effectors [7] [8], or relies in potential
field for reaching consensus [9]. In all these approaches
the possibility of asymmetric distributed training data is
not considered, which makes the cooperating agents always
equal partners. Modelling the uncertainty of training data
for DMPs is considered in [10], where the concern lies
with reproducing the uncertainty. In contrast, this work aims
to utilize uncertainty for parallel tasks, e.g. multi agent
cooperation.

The main contribution of this paper is a new approach
towards learning guaranteed converging point-to-point move-
ments from demonstrations, while exploiting uncertainty
information for the reproduction. We propose a combination
of Dynamic Movement Primitives with Gaussian Processes
(GPs). In order to guarantee goal convergence, i.e. stabil-
ity of the underlying dynamics, a transformation of the
GP’s input space is introduced. Furthermore, this GP-based
DMP approach is employed in a newly proposed scheme
for learning cooperative tasks including role assignment
from demonstrations. Therefore the uncertainty information
encoded in the GP in terms of the predicted variance is
exploited: following the human example the robots adapt
their roles and cooperation behaviour depending on their
individual knowledge. The proposed approach is validated in
simulations and experiments for cooperative manipulation.

The remainder of this paper is structured as follows:
Section II reviews fundamentals, namely cooperative DMPs
(II-A) and Gaussian Process Regression (II-B). Section III
introduces GPs for DMPs including the proof for stability,
followed by the concept of dynamic cooperation in IV.
Simulative and experimental results are shown in section V.

II. BACKGROUND

A. Cooperative DMPs

DMPs generate flexible trajectories based on a stable
dynamical system. Either goal directed or periodic move-
ments are learned from demonstration and encoded in the
DMP. The work in [9] focuses on trajectories for cooperative



object manipulation using DMPs by having multiple agents
maintaining a formation or moving synchronously.

For goal directed movements, DMPs are based on a point
attractive system1

τ ż = α(β(g − x)− z) + f(s), τ ẋ = z, (1)
where x, z, g ∈ Rn are position, velocity and goal points,
respectively and α,β, τ > 0 regulate the goal convergence of
the linear part. The nonlinearity f(s) : R+ → Rn adds the
required flexibility for nonlinear behaviour to the system and
depends on the scalar phase variable s, which is generated
by the canonical system

τ ṡ = −γs, γ > 0, s(0) = s0 > 0. (2)
The canonical system removes explicit time dependency of
f and therefore allows to react online, e.g. to perturbation,
by slowing down the movement.

To guarantee stability, f(s) → 0 must hold for s → 0.
Thus, for t→∞, the point attractive system (1) is reduced
to its linear part, which converges to [z∗ x∗] = [0 g].
DMPs are also capable of representing periodic movement
if f(s) is chosen to be a periodic function. GP are applicable
in this case as well by using a periodic kernel function.

The nonlinearity f(s), which acts as a external force
on the linear spring-damper system, allows DMPs to gen-
erate any smooth trajectory. It is obtained from train-
ing/observation data and usually modelled using Locally
Weighted Projection Regression (LWPR) [11]. For each ob-
servation of the demonstrated movement(s) x(k), ẋ(k), ẍ(k)

for k = 1 . . .m the output training data is computed by
rearranging (1) to

f (k) = τ2ẍ(k) − α(β(g − x(k))− τ ẋ(k)). (3)
The input training data is obtained from simulating (2)
and taking samples at a constant rate, resulting in s(k),
concatenated in X ∈ Rm+ . For this input-output mapping,
in our approach, as described in the section III, LWPR is
replaced by Gaussian Process Regression (GPR).

Cooperative DMPs, introduced in [9], extend DMPs to a
network of i = 1 . . . N agents

τ żi = αi(βi(gi − xi)− zi) + f i(si), (4)
τ ẋi = zi + κici(xNi), (5)

τ ṡi =
γisi

1 + ‖ηici(xNi)‖2
, (6)

where xNi contains the state of all agents in set Ni, which
is the set of neighbours of agent i, meaning they are
capable of communicating their current state to agent i. The
scalar constants ηi,κi > 0 determine the influence of the
cooperation term ci : Rn|Ni| → Rn defined as

ci(xNi) = −
∑
j∈Ni

δij
xi − xj
‖xi − xj‖

(‖xi − xj‖ − dij), (7)

where the scalar dij > 0 denotes the Euclidean desired
distance between agent i and j and δij > 0 allows to weight
some links more than others. The distributed formation

1Notation: Bold symbols denote vectors. Capital letters denote matrices.
‖a‖ denotes euclidean norm of vector a. ‖N‖ denotes the cardinality of
the set N . Ip denotes the p × p identity matrix. A � 0 denotes positive
definiteness of the matrix A. Time dependencies of x(t),z(t), s(t) have
been removed for simplification. lnx denotes the natural logarithm of x.

control law originates from a potential field approach [12]
and relies on reaching consensus on formation in distributed
networks [13].

The results in [9] show that the cooperation successfully
maintains a formation during execution. In the application to
cooperatively manipulating an object, this leads to significant
reduction of the internal stress on the manipulated object. So
far only equal cooperation among all agents is assumed and
therefore cases, where individual agents obtain asymmetric
data about their individual trajectory are not considered, e.g.:
• For a human demonstrator, it is more convenient to

only train a subset of agents. E.g. for a N dimensional
movement training N manipulators (assuming enough
links) is sufficient for successful reproduction of the
object manipulation.

• For certain parts of the task some manipulators could
be subject to tight constraints, e.g. navigating through
a narrow gap, while others are not. So demonstrating
critical passages to individual manipulators increases
the safety during execution.

• Sensor limitation may cause missing data for individ-
ual manipulators, e.g. due to occlusion of an optical
tracking system. Our cooperation scheme is able to
compensate that by providing guidance to the agents
with missing data.

B. Gaussian Process Regression

Numerous methods exist for solving regression tasks but
more recently non-parametric methods are gaining in popu-
larity as their explanatory power and flexibility grows with
the amount of data available [14].

The task is to model the latent function g(ξ) of which
noisy measurements D = {ξk, yk}mk=1 originate from
yk = g(ξk) + εk with εk ∼ N (0,σ2

n). The inputs ξk ∈ X are
concatenated in Ξ, while outputs yk are, for now, assumed
to be scalar and concatenated in y. A Gaussian Process is
fully described by its mean mg(ξ) and covariance function
kvar(ξ, ξ′). The mean function is commonly, due to lack
of prior knowledge, set to zero. A popular choice for the
covariance function is the squared exponential (SE) kernel

kSE(ξ, ξ′) = σ2
g exp

(
−1

2
(ξ − ξ′)TΛ−2(ξ − ξ′)

)
(8)

with the hyperparameters signal variance σg > 0 and length-
scales Λ = diag(l) � 0, as it allows to model any smooth
function. The hyperparameters are obtained from a (log)
likelihood optimization, thus maximizing the probability of
the seen data to occur given the current parameters [14] and
input values

[Λ∗,σ∗g ] = arg max
Λ,σg

log p(y|Ξ, Λ,σg).

This optimization also reliably avoids overfitting. The
regression at a single test input ξ∗ returns a mean
and variance prediction with k∗ = kvar(Ξ, ξ∗) ∈ Rm and
K = kvar(Ξ, Ξ) ∈ Rm×m

E[g(ξ∗)] = mg(ξ∗) + kT∗ (K + σ2
nIm)−1y, (9)

V[g(ξ∗)] = kvar(ξ∗, ξ∗)− k
T
∗ (K + σ2

nIm)−1k∗. (10)



For multiple output dimensions, multiple GPs are applied
independently. For a more detailed description see [14].

III. GAUSSIAN PROCESSES FOR DMPS

As mentioned above, previous work on DMPs apply
LWPR to fit the steering term f(s) in (1) to the demonstra-
tion data. It is based on dimensionality reduction and fitting
a finite number of linear models to the data [11]. It comes
with the advantage of low computational complexity in the
number of training data O(m) and is therefore applicable in
real-time learning applications. But LWPR requires manually
adjusted meta-parameters and many local models as the
linearity assumption only holds in small regions [15]. The
work in [16] formulates the problem of learning DMPs with
Gaussian Mixture Regression (GMR), a probabilistic ap-
proach, but here no formal convergence guaranties are shown
and the variance is exploited for stiffness modulation. GMR
is also a parametric model as the number of components is
set a priori.

In comparison, the hyperparameters for GPR are automat-
ically adjusted based on marginal likelihood optimization.
Its major limitation is the high computational complexity
of O(m3) for training, but many recent developments have
successfully tackled this problem using approximations, e.g.
[15]. It also comes with the major advantage of providing
an uncertainty measure with each prediction, allowing for a
judgement on the model fidelity. We exploit the variance for
dynamic cooperation as described in section IV.

So instead of using LWPR to fit the nonlinearity f(s) to
the training data, we propose to use GPR, more precisely its
mean prediction (9) as a steering function for DMPs.

a) Prior Knowledge: We assume that f(s) is a con-
tinuous differentiable function, which justifies the use of a
squared exponential covariance function. Under the assump-
tion, that no prior knowledge about the nonlinearity function
is available, we employ a zero prior mean function mf = 0.
We will later see, that any other kernel, which approaches
zero for infinitely large distance between test and training
points, and any prior mean converging to zero at the input
origin are applicable.

b) Logarithmic Transformation: Taking samples from
the simulation of the canonical system (2) with constant sam-
pling time results in the input training data points becoming
denser and denser close to the origin due to its exponential
decay. Directly applying these training data points to the
GP results in poor regression performance and additionally
comes with issues regrading the systems stability guarantee
as described in paragraph III-.0.c. Therefore, we propose a
logarithmic transformation of the input space

s̃(k) = ln s(k) (11)
to obtain equally spaced input training data. The input
space of f therefore now ranges from −∞ to ln s0. This
allows better fitting of hyperparameters of the covariance
function, as illustrated in Fig. 1. It is also assumed, that each
demonstration has finite duration, thus s(k) is lower bounded
by a strictly positive number mink s

(k) > 0 and therefore
mink s̃

(k) > −∞, i.e., s̃(k) has a finite lower bound.

c) Stability: One of the significant advantages of DMPs
as given through equation (1) and (2) is the guaranteed goal
convergence. As previously mentioned, this is achieved if the
steering term vanishes over time, which is the case for the
following reasons:

According to both (2) and (6) (for bounded cooperation
or perturbation terms) s is, in the reproduction, guaranteed
to converge to zero over time. Using the logarithmic trans-
formation, s̃ approaches −∞ over time. Thus, the distance
between training samples s̃(k) and phase variable during
execution s̃ approaches infinity for large times, due to the
fact that demonstration movements have finite duration

lim
t→∞

‖s̃− s̃(k)‖ =∞.

Therefore, the squared exponential kernel returns decreasing
correlation between those points, expressed in k∗, which is,
assuming finite lengthscales, in the limit zero:

lim
‖s̃−s̃(k)‖→∞

kSE(s̃, s̃(k)) = 0, ∀k

Thus, the second term in (9) vanishes for t → ∞ under
the mentioned conditions. The first part of (9), mg , also
becomes zero for s → 0 or s̃ → −∞ due to the lack
of prior knowledge, as mentioned above. With a vanishing
steering function, the point attractive system is linear and
stable system according to the positive choice of α,β, τ .

Thus, by using the mean of GPR for steering DMPs,
stability is preserved naturally under very mild conditions
regarding the prior mean and covariance function. This is
summarized in the following proposition

Proposition 1 (Stability of DMP with GPR): The point
attractive system (1), with f(s) being the GP mean
prediction (9) and given

• the logarithmic transformation of the phase variable
according to (11) and of the corresponding training data
s̃(k) = ln s(k), ∀k as input to the GP,

• a prior mean function mf (s̃) which is zero in the limit
s̃→ −∞,

• any kernel kvar for which holds

lim
‖s̃−s̃′‖→∞

kvar(s̃, s̃
′) = 0,

• finite demonstration time, thus s̃(k) > −∞, ∀k,
• strictly positive bounded parameters α,β, γ, τ ,

converges to the equilibrium point [z∗ x∗] = [0 g].
Thus, by using the logarithmic transformation, the SE kernel
and a zero mean prior, DMPs based on GPR are asymptoti-
cally stable.

A. Simulation GPR for DMPs

To validate the usage of GPR in DMPs and illustrate
the stability proposition, we simulate the reproduction of an
analytically generated trajectory for a goal directed single
agent movement (Sim 1). Fig. 1 depicts the GPs predicted
mean and variance next to the LWPRs regression result.
The training data and reproduced movement with LWPR and
GP, which uses the logarithmic transformation are shown in
Fig. 2.
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As described in section III, the logarithmic transformation
spreads the training data evenly throughout the input space
of s. Therefore, the GP with logarithmic transformation is
able to fit the given data better than the non logarithmic
variation. The hyperparameters optimization for unevenly
distributed training data does fail in either the region with
dense data or widely spread data, which is the case in Fig. 1.
The resulting reproduced trajectories with GP and LWPR in
Fig. 2 are very similar. As demonstrated both reproductions
converge towards the goal point, supporting the theoretical
justifications for stability made in section III.

Remark: The GP’s variance in DMPs can be used in many
different ways. Here we focus on the application to multi
agent systems, e.g. variance-based impedance control [17].

IV. APPLICATION TO KNOWLEDGE-BASED
COOPERATION

After utilising the mean prediction (9) in the previous sec-
tion, we now show how the variance in (10) is exploited for
dynamic cooperation. The measure of uncertainty provided
by the GP reflects the proximity to training data available at
the current point of the task: Variance is low if many training
data points exist near the current point and high if moving
in regions with sparse training data. Again, the core idea is
that agents with more training data have more knowledge
and therefore are more dedicated to follow their individual
trajectory, while agents with less training data focus on
maintaining the formation following the more knowledgeable

individuals. The amount of training data available to each
agent, and with that the variance, may change throughout
the task (e.g due to occlusion of sensors in certain regions
or lack of demonstrations).

With the predicted variance, GPR delivers a measure for
the model fidelity and thus for availability of training data in
each phase of the desired movement. Based on this measure,
we vary the influence of the cooperation term on each agents
movement. More formally, rather then using constant κi in
(5) and ηi in (6)) we propose to employ variance dependent
functions

κi(σNi) : [σn,i σf ,i]
|Ni| → [0 κmax], (12)

ηi(σNi) : [σn,i σf ,i]
|Ni| → [0 ηmax], (13)

where κmax > 0, ηmax < ∞ and σNi concatenates the
variances of neighbouring agents σi, ∀i ∈ Ni and σi is
obtained during reproduction from (10). The terms σf ,i,σn,i

denote the GP hyperparameters signal variance and signal
noise of agent i, respectively. Thus, along with the state xi,
the uncertainty of agent i, σi (as computed from GPR eq.
(10)) is the only communicated quantity.

The functions (12), (13) determine the trade-off between
pursuing the individual or the team goal and basically
encode the team behaviour. Many choices for the functions
κi(σNi), ηi(σNi) can be justified, here only a few options
and boundary conditions are discussed. For simplicity, we
limit the discussion to κi.

• From intuition: agents increase their dominance in the
team with increased knowledge about the task. Thus in
our framework κi(σNi) must monotonically decrease
with σi.

• If too many agents claim the leadership and formation
is not respected agent i = L with the highest certainty
acts as leader (following the demonstration accurately)
while all others cooperate

κL = 0, κi = κmax ∀i 6= L. (14)

Note, that the error in the formation in this way can be
made arbitrarily small by increasing κmax but cannot be
completely eliminated.

• The overall level of cooperation is kept constant, e.g.

N∑
i=1

κi = κmax ∀σNi . (15)

Breaking this down for two agents i and j and presum-
ing a linear function, we derive the function

κi = κmax

σi − σn,i

σi,f − σn,i

σi − σn,i

σi,f − σn,i
+

σj − σn,j

σj,f − σn,j

, (16)

which is used in the following experiments. A visual-
ization of the function for κi is shown in Fig. 3.



α β γ κmax η τ
0.1 0.025 0.05 5N 0.0005 1

Sim 1 Sim 2 Sim 3 Exp 1 Exp 2
Λ optimized diag(0.5) diag(0.1) diag(0.01) diag(0.01)
σf optimized 1 1 0.02 0.02
σn 0.01 0.01 0.01 0.0001 0.0001

TABLE I: Parameters used in simulations and experiments
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V. RESULTS

The parameters used in all simulations and experiments
are listed in Tab. I. The DMP parameters where chosen to
critically damp the linear system. Whenever hyperparameters
of the GP are not optimised, it is done to save computational
effort. The coupling and time scaling parameters κmax and
η can be modified to affect the trade-off between trajectory
tracking and formation maintenance.

A. Multi Agent Simulations

The following simulation focuses on cooperation among
multiple agents and exploits the variance values yielded
from the GP.

1) Two Agent Dynamic Cooperation (Sim 2):
a) Setup and Results: Both agents are supposed to

perform a one dimensional movement with x1 = 200 +
100 tanh( t−50

10 ), x2 = 300 + 100 tanh( t−50
10 ), while main-

taining the constant distance of d1,2 = 100. This is an
example of a one dimensional translation of an object by two
manipulators with smooth acceleration and deceleration. To
illustrate the difference between the dynamic and constant
cooperation, training data is divided sparsely among the
agents. This leads to varying uncertainty for both agents, thus
making dynamic cooperation in the sense of dynamic role
assignment necessary. We choose the κ-function to be the
linear function (16). Fig. 4 shows the simulated reproduced
trajectories of both cooperation methods along with the
dynamic cooperation term κ (κmax = 10).

b) Discussion: The dynamic cooperation reproduction
follows the training data more accurately than the one
simulated with constant κ values. The two agents switch
their leader and follower roles sufficiently fast to improve
the resulting joint trajectory.
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Fig. 4: Sim 2: Reproduced 1D movement for constant coop-
eration (κ = 5) and dynamic cooperation (κ in lower plot)
with sparse training data for both agents. The maintained
distance is identically as it only depends on the sum κ1 +κ2

which is constant, also in the dynamical cooperation case.

2) Three Agent Joint Task (Sim 3):
a) Setup and Results: Three agents in the xy-plane are

placed in an equilateral triangle formation and are taught to
execute a rotational movement around the triangle’s center,
while translating it with constant speed in x direction.
Training data is given to the first two agents, whereas the
third only received start and goal points. The reproduction
of the training data is performed with dynamic as well as
constant cooperation. The spacial trajectories are shown in
Fig. 5.

b) Discussion: The simulation shows, the reproduction
with dynamic cooperation traces the training data closely,
whereas the agents in the constant cooperation variation
deviate from their desired trajectory significantly. The repro-
duction with constant cooperation also reduces the execution
speed and therefore fails to converge to the goal in the
demonstration time.

B. Experiments

The experiments are designed to illustrate the application
of our varying cooperation scheme in a real world setting.
They are performed on two 7 DoF KUKA LWR robot
manipulators as cooperating agents, providing measurement
data on end-effector position and forces. The manipulators
including an attached object are shown in Fig. 6.

a) Goal: The experiments aim to imitate a human
motion, while maintaining the desired euclidean distance
between the agents. We compare how the usage of dynamic,
constant or no cooperation affects the robots performance in
both retaining the formation as well as in the accuracy of
the reproduced movement.

b) Setup: We use kinesthetic teaching by a human
operator for the demonstration without the object attached.
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The employed Cartesian impedance controller are set to zero
stiffness in the allowed Cartesian directions and constrained
movements in all other directions as well as any rotations.
After data recording, it is processed offline to keep the
realtime constraints of the GPR. This processing includes
down sampling, smoothing using a moving average and the
numerical computation of the derivatives needed in (3). Also
the computationally critical part of GPR (9), (10), the inverse
(K + σ2

nIm)−1 is computed offline.
Furthermore, data is only added to the training set if at

the time of its recording an external force is measured. This
makes only the movements, which are indeed induced by
the human demonstrator, be learned by the GP and leads to
a different data set for each of the agents. By demonstrating
one part of the movement on only one manipulator and the
second part on the other, it is determined which of them takes
the lead at a certain point in time. The object is attached
to the end-effectors not during the demonstration but in
reproduction. Therefore the robots are required to keep the
desired distance of d = 0.4m.

c) Outcome: In the first iteration of the experiment
(Exp 1) the demonstrated motion moves only in the y-
direction. Fig. 7 shows the reproductions i) without coop-
eration, ii) with constant cooperation and iii) with dynamic
cooperation. The error in maintaining the initial distance
between the manipulators is shown in Fig. 8. During the
reproductions ii) and iii) an object is attached to the end-
effectors, which verifies, that the formation is maintained
throughout the motion, as it was not dropped. The sec-

ond part of this experiment (Exp 2), extends the allowed
demonstration domain to the zy-plane. Here, we focus on the
difference in spatial reconstruction of the training trajectory
between the two cooperation methods, which is shown in
Fig. 9. In this depiction each agent’s trajectory does not lie
entirely on training points since in the time periods where
they don’t have training data they follow their partner to keep
the distance.

d) Discussion: These experiments demonstrate that af-
ter preprocessing the data offline, GPR is capable of keeping
the real-time constraint for the 1 kHz update rate of the robot.
The movements without any cooperation follow the training
data almost perfectly, emphasizing that GPR is suitable
to replace LWPR. However, the formation constraints are
ignored and therefore joint tasks cannot be successfully
executed. The comparison of different cooperation styles
illustrates higher tracking precision of dynamic cooperation
in contrast to constant cooperation. Only through the use of
dynamic cooperation with a leader follower concept, both
reconstruction accuracy and formation maintenance are sat-
isfied. This becomes especially apparent in the reconstruction
of the two dimensional movement seen in Fig. 9, where
constant cooperation causes severe deviation from the desired
motion. The approach is currently limited to cases where
training data is provided at different time intervals to the
agents. Multiple training trajectories can be handled, but the
GP only considers their mean at each time step.

VI. CONCLUSION

In this paper, we propose a new approach towards learn-
ing guaranteed converging point-to-point movements from
demonstrations while exploiting uncertainty information for
the reproduction. We employ a combination of Gaussian Pro-
cesses with Dynamic Movement Primitives. A logarithmic
transformation of the GPs input data is introduced in order
to guarantee stability. Using GPs, we gain a measure of
confidence at each phase of the motion, based on which we
implement a dynamic leader-follower scheme as an extension
to the cooperative DMP concept. It shows superior behaviour
in jointly executed tasks with asymmetric data distributions.
Simulations and robot experiments show the validity of
this approach and demonstrate how it outperforms static
cooperation in terms of tracking precision.
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