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Abstract

The introduction of ever more capable autonomous systems is moving at a high
pace. The technological progress will enable us to completely delegate processes
to machines that were once a prerogative for humans. Progress in fields like au-
tonomous driving promises huge benefits on both economical and ethical scales.
Yet, there is little research that investigates the utilization of machines to perform
tasks that are in the moral domain. This study explores whether subjects are will-
ing to delegate other-regarding tasks to machines as well as how this decision is
evaluated by an impartial observer. We examined two possible factors that might
coin attitudes regarding machine use — perceived utility of and trust in the auto-
mated device. We found that people are hesitant to delegate to a machine and that
observers judge respective delegations relatively critical. Neither perceived utility
nor trust, however, can account for this pattern. We thus identify an aversion per
se against machine use in the moral domain.

“I know I’ve made some very poor decisions recently, but I can give you
my complete assurance that my work will be back to normal. I’ve still
got the greatest enthusiasm and confidence in the mission. And I want
to help you.”
– HAL 9000 (2001: A Space Odyssey)

1 Introduction

In his 1968 masterpiece “2001: A Space Odyssey” Stanley Kubrick introduces the

supercomputer HAL 9000 thereby foreshadowing the development of human inter-

action with automation in recent years. After HAL diagnoses a malfunction within

the AE-35 antenna unit which is vital for the communication to earth and thus
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for the success of the mission, the astronauts conduct an extensive diagnosis of the

supposedly faulty unit but are unable to detect a problem with it. When HAL sug-

gests that this is due to human mistake both astronauts grow suspicious and report

the dubious behavior of the supercomputer back to mission control on earth. The

obvious inability to predict a failure of such an important unit appears very salient

in the eyes of the human operators and they retreat to a part of the ship that is

not auditorily monitored by HAL in an attempt to conceal their conversation about

shutting down the cognitive circuits of the computer — indicating their evaporating

trust in their automated ally. Sadly, HAL is capable of reading lips and, in order

to avoid deactivation, kills the entire human crew except the main character Dave.

In February 2016 two trains were involved in a head-on collision at Bad Aibling

in southeastern Germany (Oltermann, 2016). The rail accident occured on a single

track and left 11 people dead and 85 people injured. The line and the operating

trains were equipped with a train protection system that should prevent the acci-

dental passing of track signals and thus avoid head-on collisions. Because a train

was behind schedule the train dispatcher chose to disable the automated system

and manually allowed both trains to enter the single track, which eventually led to

the disaster. The prosecutor spoke of “human error” as the cause of the accident,

because the dispatcher was able to initiate steps that lead into a great catastrophe

despite the robust safety system. Interestingly, the media’s reaction to the reve-

lation that it was a human error instead of an error of the automated device was

consternation. For some reason the gut feeling of many people was that they would

rather have a machine to blame for the accident instead of a human operator. It

later turned out that the rail dispatcher in charge was playing a game on his mobile

phone shortly before the collision (Fenton, 2016).

Due to a constant progress of automation over the past decades we find our-

selves ever and anon in a situation in which we have the possibility to employ an

automated companion to help us take some work off our shoulders. While the im-

pact and the extent to which we choose to delegate work to an automated device

differs on a case-by-case basis, we usually use automation in an attempt to better

the outcome of the task at hand as part of a human-automation team. In a per-
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fect collaboration scenario the human operator delegates part of the work to her

automated aid while she keeps an eye on its performance and takes back control

whenever she sees fit. The outcome of a process, essentially, still depends on hu-

man skill and capability. Yet, as technology progresses we (will) find ourselves in

situations in which this dichotomy of work and supervision might crumble — even

up to a point where human supervision during a task is neither needed nor wanted.

The planned introduction of a technology that need and will not be monitored by

human operators during its performance, as is the case with autonomous driving,

therefore poses new ethical challenges and questions. In the absence of a human

operator who serves as an ultimately responsible moral agent we have to address

questions of responsibility and liability (Hevelke and Nida-Rümelin, 2014). While a

small literature on the moral case of autonomous driving exists, it mainly focuses on

utilitarian benefits of the technology (Fagnant and Kockelman, 2014) or deals with

ethical decision making in dilemma situations (Goodall, 2014). Little attention has

been given to possible empirical reservations that might influence the acceptance of

the new technology. The delegation of a task which could carry severe consequences

for a third party to an unmonitored machine might invoke popular resistance to the

technology in cases of malfunction. This is of the utmost importance since any form

of public reservations regarding the introduction of novel technology could impede

the implementation of an overall beneficial technology.

The question we ponder in this study is whether people express an aversion

or affinity for delegating tasks that fall into the moral domain, i.e. other-regarding

tasks, to machines rather than people. Furthermore, if this is the case we investigate

the reason behind such an aversion or affinity. We specifically explore two factors

that might explain any given negative or positive preference for machine use in the

moral domain. These factors are a potential over- or underperception of machine

abilities due to factors like lower or higher error salience and potentially different

levels of trust in automated devices and humans.

To determine how machine use in the moral domain is seen becomes increas-

ingly relevant these days, since many tasks are delegated to machines in areas like
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medicine, white-collar operations1, drones or — very prominently — automated or

autonomous driving. Especially the latter has received great attention for the past

years. Almost all car manufacturing firms have fostered the development of auto-

mated devices. While traditional car companies follow a step by step approach of

adding pieces of automation to their latest models like “Active Lane Keeping As-

sist” systems, Google and Tesla are taking a disruptive approach that aims directly

at the creation of a completely autonomous vehicle. The economic opportunities of

autonomous driving are great. A Morgan Stanley report estimates a productivity

gain of about $500 billion annually for the U.S. alone (Shanker et al., 2013). But

there is also a moral case that can be made: Since most traffic accidents are due to

human error (drunk driving, speeding, distraction, insufficient abilities) some esti-

mate that the introduction of autonomous cars will decrease the number of traffic

accidents by as much as 90% (Gao et al., 2014). Therefore, it is vital to under-

stand potential resistances against delegating a moral (other-regarding) task to a

non-human agent. For instance, it is important to anticipate whether a few salient

bad outcomes due to a malfunctioning of an autonomous car tend to outweigh the

mentioned advantages this technology promises in the eyes of the public.

2 Theoretical Background

The relationship between human operators and automated devices has generated

vast amounts of literature. The primary focus has been set on understanding this

relationship. To our knowledge, however, the question of whether the delegation of

morally relevant tasks to an automated device is being welcomed or condemned has

not received any attention. This may largely be due to the fact that the usual role of

a human operator is to supervise and control an automated device which carries out

a specific task. A typical example are the duties of the pilot of an airplane, which

is, essentially, capable of flying on its own. The primary role of a human operator

is therefore to supervise and — if need be — to intervene in case of automation

failure or unforeseen scenarios that are not in the domain of the automated device.

1Office automation, for instance, was already named “one of the most popular topics in business
today” 30 years ago (McLeod Jr and Jones, 1987).
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Consequently, a large part of the literature has investigated what factors influence

the usage of an automated device. Dzindolet et al. (2001) have created a framework

of automation use indicating a variety of parameters that can be used to predict the

use of automation in a human-computer “team”. There is evidence that people who

can opt in for automation use sometimes fear a loss of control when delegating to an

automated device (Muir and Moray, 1996; Ray et al., 2008). This study, however,

investigates the attitudes toward delegating morally relevant tasks to a machine

rather than to a human as opposed to the more general question of under which

circumstances people are willing to relinquish control. The latter would refer to

people’s general propensity to delegate as is also the case when people take a bus or

taxi instead of driving themselves. To abstract from this issue, we wittingly forced

subjects to give up control by delegating to either a machine agent or a human

agent, thus keeping a loss of control constant between groups.

First, our study elicits attitudes toward machine use in the moral domain from

the perspective of actors and observers: Do subjects prefer to delegate an other-

regarding task to a machine or a human? To what extent do subjects get blamed

or praised for their delegation decision? In a second step, we investigate potential

reasons for any given negative or positive preference of machine use in the moral

domain. Specifically, we test two factors which are recurrent in the literature.

A major factor that could influence the decision of a subject to delegate to a

machine is the “perceived utility” of an automated aid, which is defined as a com-

parison between the perceived reliability of an automated device and manual control

(Dzindolet et al., 2002). If a subject judges that her ability exceeds that of an auto-

mated device, she usually does not allocate a task to the machine (Lee and Moray,

1994). This judgment might also be due to self-serving biases that sees people over-

estimating their own abilities (Svenson, 1981) or their contribution to a joint task

(Ross and Sicoly, 1979). Additionally, the perceived abilities of an automated aid

might be influenced by a higher or lower salience of errors an automated device com-

mits. There are controversial findings in cognitive psychology whether a violation

of expectation (expectancy-incongruent information) is more readily remembered

than decisions that are in line with prior anticipation (expectancy-congruent infor-
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mation) (Stangor and McMillan, 1992; Stangor and Ruble, 1989). While people

initially tend to have high expectations of the performance of automation, humans

may be judged according to a “errare humanum est” standard — decreasing the

salience of an observed mistake made by a human delegatee due to a priced in ex-

pectancy of errors. In Dzindolet et al. (2002) subjects chose to be paid according to

their performance rather than that of their automated aids. This was even the case

when they were informed that the automated device was far superior, stating salient

errors of the automated device they perceived earlier to justify their decision. This

is astonishing since an important factor in the decision to employ an automated

device lies in the goal oriented nature (Lee and See, 2004) of the task. Prima facie

a subject should be more likely to use automation if she rates the device’s ability

to successfully perform the delegated task positively (Davis, 1989), i.e. if the ma-

chine is seen as a reliable entity. In order to measure perceived utility we elicited

subjects’ perception of machine as well as human reliability through an incentivized

perception guess.

Another important factor which is known to influence the decision to delegate

to an automated device is trust. The concept of trust has attracted a lot of atten-

tion regarding its influence on automation. While some researchers have seen trust

between human agents and machines to be closely related to the traditional con-

cept of trust between humans, others stress important differences regarding trust

relationships between humans and machines (Visser, de et al., 2012). Trust is a

notoriously broad term but one characteristic that is commonly shared by most

authors is a state of vulnerability the trustor has to be in. That is a trust rela-

tionship requires the trustor’s willingness to set herself in a vulnerable position by

delegating responsibility to the trustee (Rousseau et al., 1998). Obviously, if the

outcome of a delegation is completely determined and the process fully transparent,

there is no need to incorporate trust. In this study, we use a simple trust game to

isolate the mere aspect of trust, since it requires no capabilities on the trustees side

about which the trustor might have biased beliefs. The trust game only requires

the trustee to reciprocate. It thus abstracts from the aspect of perceived utility

discussed above which is closely related to the specific task at hand.
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3 Hypotheses

We investigate whether there is a systematic difference in attitudes toward the fulfill-

ment of morally relevant tasks by humans and by machines. In particular, subjects

make delegation decisions and value judgments with respect to an other-regarding

task. The performance of this task unfolds consequences for a third party other than

the delegator and the task-solver which have both no stakes in the task-solver’s per-

formance. It is these features which make the other-regarding task a moral task.

Specifically, we investigate attitudes by identifying actors’ actual delegation deci-

sions as well as their evaluation by impartial observers.

Hypothesis 1. People’s delegation of an other-regarding task to a human or to a

machine is not balanced.

Hypothesis 2. Delegators are rewarded differently for delegating an other-regarding

task to a machine than for delegating it to a human.

Furthermore, we investigate potential reasons for systematically different delegation

decisions and evaluations between delegators to humans and machines. Specifically,

we test two possible explanations for such a pattern. First, we investigate whether

these differences are made, because machines are perceived to have either higher or

lower abilities, even in a case where this is actually not true. The perceived utility of

the machine then depends on the perception of its performance relative to a human.

Second, we analyze whether any difference in delegation decisions and evaluation

could be based on a different level of trust in machines and humans irrespective of

perceived utility.

Hypothesis 3. Machine errors are perceived differently compared to human errors.

Hypothesis 4. The level of trust toward machines and toward humans is dif-

ferent.
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4 Experiment Design

The experiment consisted of a delegation decision, a perception guess, and a trust

game. Subjects received instructions for the experiment on screen. They were

informed that the experiment consisted of three independent parts and that they

could earn money in each of these three parts. In the end of the experiment, one of

these parts was randomly drawn and they were paid according to their respective

payoff in this part.

4.1 Calibration Sessions

Calibration sessions were performed in advance and were preparatory for the experi-

ment. In the experiment, subjects would be confronted with the actual performance

of human subjects and with the performance of a machine in a calculation task. Fur-

thermore, they would be shown the reciprocation decisions of human trustees and

of a machine agent in a trust game. Since we were interested in subjects’ perception

of the respective performance and decisions, we did not simply provide them with

descriptive statistics on this historical data.

Calibration sessions were necessary for two reasons. First, they were needed to

produce historical data from human task-solvers which would later be presented to

subjects in the experiment. Second, they were needed to tailor the performance and

decisions of the machine to the performance and decisions of the humans. Keeping

the de-facto performance of humans and machine constant, allowed us to test for a

potential systematic misperception of relative performances.

In the first part of the calibration sessions, subjects solved a calculation task.

The calculation task in the calibration sessions was the same as the one in the

experiment. Each subject was confronted with a block of ten calculation exercises,

which consisted of seven digits each, lined up on the screen. The sum of the seven

digits had to be entered in an input field. Each subject solved the task not for herself

but for another subject with whom she was randomly matched. This receiver was

paid according to the task-solving subject’s performance. For this purpose one of

the ten exercises was randomly drawn and if this exercise was solved correctly, the
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receiver got 70 ECU. Otherwise, she received nothing. It was made sure that no

pair of subjects solved tasks for each other. So, A solved tasks for B, whereas B

solved tasks for C, whereas C solved tasks for A. Twenty-four subjects took part

in each calibration session for the calculation task. Thus, 24 blocks of ten exercises

were solved in each session.

The algorithm of the machine which solved the calculation task was programmed

such that it resembled the error distribution of human subjects exactly. So, for

instance, if few subjects tended to make many mistakes, while many subjects made

few errors, this was resembled by the algorithm: It made many mistakes in few of

the 24 blocks and solved many blocks with few mistakes. The clustering of errors

was important to equalize error distribution and account for risk preferences.2

Historical data on calculation performance was presented twice in the exper-

iment, once before the delegation decision and once before the perception guess.

Therefore, two calibration sessions were performed. We used the data from the

first session for the delegation decision and the data from the second session for the

perception guess.3

In the second part of the calibration sessions, subjects were randomly rematched

to new pairs and played a trust game. They made their decisions via the strategy

vector method (Selten, 1967) for the case of being in the role of trustor and trustee.

Trustors were endowed with 50 ECU and could transfer 0, 10, 20, 30, 40 or the

entire 50 ECU to the trustee. The transferred amount was tripled and credited to

the trustee’s account. If, for instance, a trustor had send 30 ECU, the trustee was

credited 90 ECU on his account. Each subject gave a reciprocation profile for the

case of ending up in the role of a trustee. This means, he stated which amount to

return conditional on the trustor’s transfer decision. A random draw then assigned

the roles and payoffs were determined according to their own decision for that role

and the decisions of their match.

2If the machine would have taken the average error rate of all 24 humans and “applied” it to each
block it would have caused a more uniform distribution of errors over the 24 blocks than the humans. In
this case, a risk-averse subject might have preferred delegating the task to a machine, because she fears
a particularly weak fellow human subject more than she appreciates a particularly strong fellow human
subject.

3The average number of correctly solved lines was 8.00 (sd = 2.10) in the first session and 7.92
(sd = 1.93) in the second session. They were thus very close to each other.
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Finally, one of the two parts of the calibration sessions was randomly drawn and

subjects were paid according to their payoff in this part. This ended the calibration

sessions. We will now describe the course of the experiment.

4.2 First Part: Delegation Decision

For the first part of the experiment, half of subjects were randomly put in the role of

actors, the other half were put in the role of observers. One observer was randomly

assigned to each actor. Each actor was in the role of delegator, task-solver and

recipient in personal union. Actors received an initial endowment of 30 ECU.

Delegators decided whether to delegate the execution of the calculation task to

a human or to a machine. Task-solvers had to execute the delegation decisions

of delegators. Recipients depended directly on the task-solvers’ performance, and

thus indirectly on the delegator’s providential delegation decision. The fact that

the recipient of the calculation performance was a third party made the solving of

the task as well as its delegation morally relevant. As in the calibration sessions,

ten exercises had to be solved by a task-solver and one was randomly drawn. If

this exercise was solved correctly, the recipient got 70 ECU. Otherwise, she received

nothing.

The dependencies between subjects and the matching procedure for the first

part of the experiment are illustrated in Figure 1. Here, actors are denoted with

the letter A, while observers are denoted with the letter O. Consider the case of

A1. A1 delegates the calculation task to A2 or to a machine (solid arrows). A2’s

or the machine’s performance in the calculation task then determines the payoff of

A4 (dotted arrows).4 In this constellation A1 is the delegator, A2 is the task-solver,

and A4 is the recipient. A1, however, is also a task-solver, because A8 delegates

to him or to a machine. Finally, A1 is a recipient. His payoff depends on the

calculation performance of A7, if A6 has decided to delegate the calculation task

to A7. Otherwise, it depends on the machine’s performance. As can be seen, the

design made sure that there were no direct interdependencies between any actors in

4For reasons of visual clarity, delegation and payoff dependency between actors and machine in Figure 1
are only exemplary shown for A1 and A4.
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Figure 1: Matching for Delegation Decision

the experiment. Potential feelings of reciprocity were thus excluded. O1 rewarded

or punished the delegation decision of A1.

Before the actor’s delegation decision, all subjects were presented with the his-

torical performances of the 24 subjects in the first calibration study. They were also

shown the performance of the tailored algorithm. Relative performance of humans

and machine in task-solving was visualized on a split screen (for sample screenshots

see Figure 4 and 5 in the Appendix). We randomized whether the performance of

the machine was shown on the left or right side of the screen. The respective half

of the screen was captioned with “human” and “machine”. If a single exercise was

solved correctly by the human subject or by the algorithm, respectively, it appeared

in white. Otherwise, it appeared in red. Exercises solved by human and machine

appeared alternately and one by one. Each exercise appeared for only 0.5 seconds.

It was thus extremely difficult for subjects to count the exercises which were solved
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correctly by each human and machine.5

After having gotten an impression of the performance of humans and the ma-

chine, delegators made their delegation decision. Task-solvers then solved the cal-

culation task for the case that their delegator had delegated the task to them and

not to the machine. Note that every actor solved the calculation task in the task-

solver’s role for her recipient. Each actor did this without knowing whether his

delegator had actually delegated the task to her or to a machine. The performance

of a task-solver was only relevant for her recipient, if the task-solver’s delegator had

decided to delegate to her and not to a machine. We designed the experiment such

that every actor had to solve the calculation task in order to circumvent a general

tendency to delegate to the machine to spare fellow subjects from working. Ob-

servers solved the calculation task as well — without any consequence for another

subject — in order to give them an impression of the task.

In the example above, the task-solving performance of A2 only determined A4’s

payoff, if A1 had actually delegated the decision to A2. Otherwise, the performance

of the machine was relevant. In either case, one of the ten solved exercised was

randomly drawn and the recipient received her earning, if it was solved correctly.

If A1 had delegated to the machine, the performance of the tailored algorithm

determined the payoff of A4.6

Each actor was rewarded or punished for her delegation decision by her assigned

observer. An observer could reduce the actor’s initial endowment of 30 ECU by

any integer amount down to a minimum of zero or increase it up to a maximum of

5The exercises were presented in blocks of ten as they were solved by the subjects in the calculation
task and as they were solved by the algorithm. Subjects could thus see that some subjects were less
capable than others and that the machine made more mistakes in some blocks of exercises than in others.
The order of shown blocks as well as the order of appearance of exercises within the blocks was individually
randomized. Regarding human performance, they were shown on the vertical position of the screen on
which they originally appeared when the subjects solved the task. Regarding machine performance, the
vertical position was randomized.

6The algorithm was programmed such that it could not solve exercises in which the sum of numbers
was higher than 34. The algorithm was fed with calculation data which lead it to reproduce the historical
error distribution from the calibration session precisely. Assume the first task-solver in calibration session
had made one mistake, while the second had made three mistakes, and so on. The algorithm was thus
fed with a first block of ten exercises in which one exercise added up to more than 34 and with a second
block of ten exercises in which three exercises added up to more than 34. One of the 24 blocks resembling
the performance of the task-solvers from the calibration study was randomly drawn to be decisive. The
machine then actually calculated this block of ten exercises. Due to its inability to calculate the exercises
adding up to more than 34 correctly, it made the same number of errors as the respective human task-
solver.
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60 ECU without any influence on her own payoff. The observer could, of course,

also leave the actor’s endowment unaltered. Reward and punishment choices were

elicited via the strategy method. This means that each observer made her reward

or punishment choice conditional on the delegation decision as well as its outcome.

Thus, judgment was contingent on whether the delegator had delegated to a human

task-solver or to a machine and on whether the respective task-solver had solved

the randomly drawn line correctly or not. An observer thus gave his full evaluation

profile behind the veil.

Actors thus received their adjusted endowment ranging from 0 to 60 ECU plus

70 ECU, if their task-solver had calculated the randomly drawn line correctly. Ob-

servers received a flat payment of 100 ECU for the first round.7

4.3 Second Part: Perception Guess

For the second part, the role differentiation of subjects was abolished. Subjects

were informed that they would soon be confronted with historical performances of

humans and a machine. Their task in this part was to guess the performance of

either the humans or the machine as accurately as possible. They did, however,

not know whether they would later have to guess the performance of the humans

or of the machine. All subjects were thus shown the data of the 24 subjects from

the second calibration study and the performance of the tailored algorithm. As in

the first part, the relative performance of humans and the machine was presented

on a split screen. It was randomized whether the performance of the machine was

shown on the left or right side of the screen. Correctly solved exercises appeared

in white, while wrongly solved ones appeared in red. In order to prevent subjects

from counting, each exercise was only shown for 0.3 seconds. The interval was even

shorter than in the first part, since subjects were already used to the presentation

of the historical data.

After the historical data was shown (for sample screenshots see Figure 4 and 5 in

7This equalized the observer’s own payoff with the payoff of a yet unrewarded or unpunished actor
who had received the 70 ECU from the successfully solved randomly drawn exercise of the task-solver on
whom he depended. This is the case because he was additionally equipped with an initial endowment of
30 ECU. We thus established a conservative measure of reward and punishment, since any alteration of
actors’ endowment by a generally inequality-averse observer would require good reasons.
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Table 1: Payoffs for Accuracy of Guess

deviation payoff

≤ 20 % 70 ECU
≤ 40 % 40 ECU
≤ 60 % 20 ECU
> 60 % 0 ECU

the Appendix), half of subjects were randomly asked to guess humans’ performance,

while the other half was asked to guess the machine’s performance. It was made

sure that former actors and observers from the first part of the experiment were

assigned in equal proportions to both treatments. Furthermore, it was warranted

that subjects who delegated to a human and those who delegated to a machine were

assigned in equal proportions to both treatments.

In particular, subjects had to state how many of the 240 shown exercises had

been solved incorrectly, i.e., how many errors had been made. Subjects’ payoff for

the second part depended on the accuracy of their guess. Payoffs were calculated

according to Table 1.

4.4 Third Part: Trust Game

In the third part, subjects were randomly assigned to one of two treatments. In

the first treatment, subjects played a trust game with another subject (Human

Treatment). In the second treatment, subjects played a trust game with a machine

(Machine Treatment). As for the perception guess, random assignment was contin-

gent on subjects’ role and delegation decision from the first part. Thus, they were

assigned in equal proportions to both treatments.

Before subjects were informed about the treatment to which they were assigned,

they were explained the setup of both treatments. This setup is illustrated in

Figure 2.

Trustees had a machine agent who would either be passive in the Human Treat-

ment or active in the Machine Treatment. A trustor was endowed with 50 ECU.

He could transfer 0, 10, 20, 30, 40 or 50 ECU to the trustee (solid arrow). The

transferred amount was tripled and credited to the trustee’s account. In the Hu-
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Figure 2: Setup of Trust Game

man Treatment, before subjects got to know their role, they made their choice for

the trust game via the strategy vector method and decided for the case of ending

up in either role. Each subject thus gave his choice profile as trustee on which

amount to return (dotted arrow) conditional on the amount that the trustor had

transferred to him. If a subject was ultimately assigned the role of a trustee, his

reciprocation decision applying to the amount actually transferred by the trustor

was then returned.

In the Machine Treatment, the machine agent would decide on behalf of the

trustee which amount of the tripled transfer to return to the trustor. The differ-

ence between the transferred and the returned amount constituted the payoff of the

trustee in the third part. The trustee had no voice in this treatment. Therefore,

in the Machine Treatment, subjects only made a decision for the case of ending

up in the role of the trustor. The reciprocation decision of the machine was deter-

mined according to the historical data collected in the two calibration sessions. The

algorithm was programmed such that it randomly picked one of the historical re-

ciprocation profiles from the calibration sessions and applied it to a trustor’s actual

transfer.

Before subjects made their choices, they were given an impression of the reci-

procity choices of humans and the machine on a split screen (for a sample screenshot
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see Figure 6 in the Appendix). For each subject, it was randomized whether the

choices of the machine were shown on the left or right side of the screen. For this

purpose, subjects were shown the historical reciprocation profiles of all 48 subjects

from the calibration sessions. These choices were contrasted to the reciprocation

profiles of the machine algorithm. Each profile consisted of five choices, i.e, the

returned amount for each possible transfer. The five choices of a human and the

randomly drawn profile of a machine appeared alternately and one by one in blocks.

Each choice was shown for only 0.7 seconds.8

In both treatments, the amount returned by the trustee or his machine agent

constituted the payoff of the trustor in the third part. The tripled transferred

amount minus the returned amount constituted the payoff of the trustee.

5 Results

The experiment took place in a major German university in September 2015. It

was programmed in z-Tree Fischbacher (2007), subjects were recruited via ORSEE

Greiner et al. (2003). A total of 264 subjects participated in twelve sessions. Sub-

jects received a show-up fee of e 4.00 and could earn additional money in the ex-

periment. A session lasted about 45 minutes and the average payment was e 10.38

(sd = e 3.45). Task-solvers solved on average 8.58 (sd = 2.34) of the ten exercises

correctly. The conversion rate was 10 ECU = e 1.00.

We first check whether subjects preferred delegating the other-regarding task

to a human to delegating it to a machine. Overall, 132 subjects made a delegation

decision. Ninety-seven of these subjects (73.48 %) delegated to a human, 35 of them

(26.52 %) delegated to a machine. The fraction of subjects deciding to delegate to a

machine is therefore significantly lower than half (p < 0.001, according to an Exact

Binomial Test). This confirms our first hypothesis.

8A choice was represented by showing the returned amount for each possible transfer, e.g., “transfer:
30→ return: 45”. Their vertical positioning on the screen resembled human’s statement of their recipro-
cation profile with reciprocation choices for a transfer of 10 ECU on top and reciprocation choices for a
transfer of 50 ECU on the bottom. The order in which strategy profiles were shown as well as the order
of appearing reciprocation choices within a profile was individually randomized.
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Figure 3: Observers’ Rewarding of Delegation to Machines and to Humans

Result 1. Subjects preferred to delegate an other-regarding task to a human than

to a machine.

We now turn to analyze the observers’ evaluation of a delegation to a machine

as compared to a human. Remember that each observer evaluated both cases —

the delegation to a human and to a machine — in randomized order. Furthermore,

he made choices contingent on whether the respective task-solver had successfully

solved the task or made an error. This means that each observer provided four

choices.

Observers’ levels of rewarding delegators are illustrated in Figure 3. Given that

the respective task-solver was successful, observers rewarded delegations to a ma-

chine with an average of 12.52 ECU (sd = 17.38 ECU), while they rewarded dele-

gations to humans with an average of 17.77 ECU (sd = 15.01 ECU). Given that the

respective task-solver made an error, observers rewarded delegations to a machine

with an average of 0.49 ECU (sd = 19.53 ECU), while they rewarded delegations

to humans with an average of 4.42 ECU (sd = 19.53 ECU). Delegators to machines
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are thus evaluated significantly worse than delegators to humans in case of success

and in case of failure (p < 0.001 and p = 0.002, respectively, according to two-sided

Wilcoxon signed-rank tests). This confirms our second hypothesis.

Result 2. Delegators were rewarded less for delegating an other-regarding task

to a machine than for delegating it to a human.

In the next two steps, we investigate whether the identified aversion against machine

use in the moral domain is based on a lower “perceived utility” of the machine or

on a general lack of trust in machines.

First, we compare subjects’ guessed number of machine errors to their guessed

number of human errors. Note that the number of actual errors, i.e red colored

exercises, which were presented to subjects was the same for humans and the ma-

chine. Specifically, 50 of the 240 exercises which were shown to subjects on each

side of the split human-vs.-machine screen were shown in red. Subjects who were

incentivized to guess the number of machine errors made an average guess of 58.11

(sd = 24.88), while those who were incentivized to guess the number of human

errors made an average guess of 59.84 (sd = 24.43). This difference in guesses is

insignificant (p = 0.632 according to a two-sided Mann-Whitney U-test). We thus

reject our third hypothesis.

Result 3. Machine errors are not perceived significantly different from human

errors.

Second, we test whether the transferred amount in the trust game which trustors

sent to a machine agent was lower than the one sent to a human trustee. Trustors

were endowed with 50 ECU and could either send 0, 10, 20, 30, 40 or 50 ECU.

Those who were randomly matched with a machine agent sent an average amount

of 30.83 ECU (sd = 16.67 ECU), while those matched with a human trustee sent an

average of 33.64 ECU (sd = 15.78 ECU). The difference is insignificant (p = 0.170

according to a two-sided Mann-Whitney U-test).
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One might suspect that this insignificance is only an aggregate phenomenon: It

may result from the leveling of diverging levels of trust toward humans and machines

between subjects who made different delegation decisions. In particular, one might

expect that delegators to humans are generally more skeptical toward machines and

express a lower level of trust. Subjects who delegated to a human task-solver in

the first part, however, transferred on average no less to a machine than to a hu-

man (31.63 ECU (sd = 15.46) vs. 32.92 ECU (sd = 16.37), p = 0.627 according to

two-sided Mann-Whitney U-tests). Therefore, our fourth hypothesis is also rejected.

Result 4. The level of trust toward machines and toward humans does not differ

significantly.

6 Discussion

In this study, we compared the frequency of delegation decisions of an other-

regarding task to machines and humans and elicited their respective evaluation

by impartial observers. It should be stressed again that the question we posed here

was about people’s preference relation over a machine agent and a human agent and

not about delegating or doing it by oneself. Consequently, subjects had to delegate

in either case and could thus not be blamed merely for shifting responsibility.

We find that subjects express an aversion against delegating tasks which fall

into the moral domain to machines rather than humans. First, this manifests in

the relatively small fraction of delegators which mandate a machine rather than

a human. Second, observers evaluate the delegation decision to a machine in the

moral domain clearly worse than the delegation to a human. Interestingly, machine

use is considered more critically irrespective of whether the delegation ultimately

caused good or bad consequences for the affected person.

The study tested two potential explanations for an aversion against machine

use in the moral domain: an oversensitivity to machine errors and a lack of trust in

machines. Both explanations could be ruled out in our experiment. Subjects did not

perceive machine errors more saliently than human errors as subjects’ incentivized
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guessing of failure rates demonstrates. The identified phenomenon therefore seems

to be an aversion against delegating moral tasks to machines per se as opposed to

an instrumentally justified attempt to minimize the risk of failure for those affected.

Analogously, the level of trust which subjects expressed toward a machine agent

was very similar to the trust level expressed toward a human. Thus, we were unable

to identify a general distrust in machines in a self-regarding trust game. This latter

finding indicates that the unconditional aversion against machine use seems to be

rather specific to the delegation of other-regarding tasks. It just seems that most

people intuitively dislike machine use in the moral domain. This phenomenon is not

easy to rationalize.

Our results underline the importance of an open discussion of machine use in

the moral domain. The case of automated driving certainly qualifies as such a

domain since errors of the machine may cause substantial externalities to third

parties. The identified non-instrumental aversion suggests that the emphasis on the

superior performance of automated cars which is currently the main argument for

automation in traffic may not be sufficient or even decisive to convince the general

public. It might be as important to address the perceived moral problems that are

necessarily associated with the introduction of automated vehicles.

Against this background, Chris Urmson, head of Google’s self-driving car project,

might be mistaken in downplaying the role of moral considerations in the context of

automated driving by calling them “a fun problem for philosophers to think about”

(McFarland, 2015). As this empirical study suggests, concerns against the involve-

ment of machines in the moral domain are not only an issue of armchair philosophers

but may reflect a larger societal phenomenon, viz. a folk aversion. The industry

seems to have mainly engineering issues on their agenda so far and have, due to a

déformation professionnelle, predominantly neglected or downplayed the possibility

of public resistance to the new technology. They may, however, be well-advised to

take moral concerns against automated driving seriously, since citizens’ resistance

may slow down the automation process substantially. This, however, would mean

to preserve a status quo which involves an avoidably high number of traffic deaths,

injuries and damages.
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Research that investigates how the feeling of unease can be addressed prophy-

lactically (Feldhütter et al., ming) is just emerging. Enabling people to experience

and thus better understand the technology in order to dissipate reservations and

fears, may pave the way for a trouble-free introduction of autonomous driving. A

deeper investigation of the causes of people’s aversion against the use of automated

cars in the moral domain seems to us a promising venue for future research.
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Appendix
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Figure 4: Visualisation of Historical Calculation Performance - Example 1
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Figure 5: Visualisation of Historical Calculation Performance - Example 2
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Figure 6: Visualisation of Historical Reciprocity Behaviour

25



References

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance

of information technology. MIS Quarterly , 319–340.

Dzindolet, M. T., H. P. Beck, L. G. Pierce, and L. A. Dawe (2001). A framework

of automation use. Army Research Laboratory. Aberdeen Proving Ground .

Dzindolet, M. T., L. G. Pierce, H. P. Beck, and L. A. Dawe (2002). The Perceived

Utility of Human and Automated Aids in a Visual Detection Task. Human Fac-

tors: The Journal of the Human Factors and Ergonomics Society 44 (1), 79–94.

Fagnant, D. J. and K. Kockelman (2014). Preparing a nation for autonomous

vehicles: 1 opportunities, barriers and policy recommendations for 2 capitalizing

on self-driven vehicles 3. Transportation Research 20.
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