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Abstract

This work package presents an information exposure checker which is designed to detect infor-
mation exposures in C/C++ code.
Information flow vulnerabilities in C code are detrimental as they can cause data leakages or
unexpected program behavior. Detecting such vulnerabilities with static code analysis techniques
is challenging because of complex control and data flow. Static analysis tools used for detecting
information exposure bugs can help software engineers detecting bugs without introducing
run-time overhead. Such tools can make the detection of information-flow bugs faster and
cheaper without having to provide user input in order to trigger the bug detection. We present
a bug-detection tool for detecting information exposure bugs in C/C++ programs. Our tool is
context-sensitive and uses static code analysis for bug detection, which was developed in the
SIBASE working package 5.2.1. We developed our bug finding tool as an Eclipse plugin in
order to easily integrate it in software development work flows. Textual annotations introduce
information flow constraints into code as described in the SIBASE working package 5.1.2. The
constraints are checked later by our tool. The bug reports provide user friendly visualizations
that can be easily traced back to the location where the bug was detected. We discuss one static
analysis approach for detecting information exposure bugs and relate briefly the usability of our
bug testing tool to empirical research. We conducted an empirical evaluation based on 90 test
programs which were selected from the National Institute of Standards and Technology (NIST)
Juliet test suite for C/C++ code. We reached a true-positive coverage of 94.6% in ≈121 seconds
for the test programs . Our results show that our approach is effective and can be further applied
to detection of different types of vulnerabilities. This report is based on publications listed in
Chapter 6.
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Chapter 1: Introduction

Information exposure weaknesses are a type of Information Flow (IF) weaknesses. IF weaknesses
represent one type of software weakness, which can exist in the software without directly breaking
the code but rather offering useful information to an attacker who could exploit IF leakages [66].
These types of software bugs can lie dormant in an application for a long time period without
being detected and can cause huge harm [66]. According to Common Weakness Enumeration
(CWE) CWE-200 (the parent weakness class of the test programs used in this paper) [37]
Information Exposure (IE) is the “intentional or unintentional disclosure of information to an
actor that is not explicitly authorized to have access to that information”. IE vulnerabilities are a
subtype of IF vulnerabilities. As of 2007 IE leakages rank 6th in the OWASP top ten list [50]
and as of 2010 rank 7th according to VERACODE mobile app top ten list [62]. In the past 12
months, 7.76% of all the vulnerabilies and exposures registered in the US National Vulnerability
Database (NVD) [49] are information leaks/disclosures caused by inappropriate handling of
information flow in software applications. We argue that software should be thoroughly tested
before it is released in order to detect potential exploitable IF vulnerabilities.
The process of software testing accounts for more than 50% of the whole effort during software
engineering projects according to [34] and [35]. Detecting software bugs, which cause infor-
mation exposure vulnerabilities is crucial because potential exploitation possibilities should be
removed from source code before release. Software weaknesses are hard to detect and can cause
information leaks which attackers can exploit. By building Control Flow Graphs (CFG) which
describe possible execution paths and tracking taint data as it “moves” along the path nodes
guarantees high path coverage.
Many static analysis approaches are very promising but still have to be applied to security
scenarios. At the same time a relative high number of tool vendors (e.g., Microsoft, IBM,
Coverity, klocWork, Infosys, Cognizant, Hexaware) start to address the need for static analysis
into mainstream tools. Some example tools are ESP [19], which is a large scale property
verification approach, model checkers as SLAM [5] and BLAST [29], which use predicate
abstraction to examine program safety properties. FindBugs [52] is a lightweight byte code
checker based on predefined bug patterns. Triggering IF bugs is not a trivial job and can be
addressed using dynamic analysis, static analysis or hybrid approaches. Dynamic analysis
introduces computing overheads and it cannot guarantee that all possible execution paths are
exercised. Where as static execution provides all potentially execution paths but needs some
heuristic for selecting only the relevant paths. Also it is relevant to select only reachable paths,
which can be determined with the help of an SMT solver. The mathematical expressions provided
to the SMT solver often are blown up in size and can get very complex [10].
IF vulnerabilities can be addressed by dynamic analysis, as for example by Fenton et al. [23] or
by Sabelfeld et al. [55], static analysis techniques [2, 26, 47, 57, 60, 63], and hybrid approaches
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Chapter 1. Introduction

which combine static and dynamic techniques‘[41]. Tracking taint variables through the program
execution is key to detect IE weaknesses, which are a type of IF vulnerabilities. IF controls focus
on preventing leaks from confidential (or high) to output (or low) data. The desired baseline
policy is noninterference [18] that demands that there is no dependence of public outputs on
confidential inputs. There are two types of IF variants, which can be taken into account when
dealing with variable interference. Information is passed from right-hand side to left-hand in an
assignment through an explicit flow. Assume variables confidential and output have high and
low security levels, respectively. For example, the assignment

output := confidential

exhibits an explicit flow from confidential to output. Information is passed via control-flow
structure in an implicit flow. For example, the conditional statement

if confidential then output := true else output := false fi

has an implicit flow. The value of the output variable depends on the confidential variable. We
will call a conditional or a loop high if its guard involves a high variable. Information-flow control
is concerned with preventing explicit and implicit flows in order to guarantee non-interference.
One possibility to prevent explicit and implicit flows is by using purely static Denning-style
enforcement [22]. Each assignment is checked if it fulfills the following conditions: the level
of the assigned variable must be high when there is a variable on the right-hand side of the
assignment (tracking explicit flows) or in case the assignment appears inside of a high conditional
or loop (tracking implicit flows). This mechanism guarantees that no low computation occurs in
the branches of high conditionals and loops as used by Russo et al. [54].
Another possibility is through dynamic enforcement, which is based on dynamic security checks
similar to the ones done by static analysis as presented by Russo et al. [54]. Whenever there is a
high variable on the right hand side in an assignment (tracking explicit flows) or the assignment
appears inside a high conditional or while loop (tracking implicit flows) then the assignment is
only allowed when the assigned variable is high. This mechanism dynamically keeps a simple
invariant of no assignment to low variables in high context
We have chosen the C programming language and Eclipse IDE [61] as stated in the proposal. By
designing an Information Exposure Checker (IEC), which can run in different running modes, we
think that we can increase the productivity of the code debugging process. The IEC can detect
bugs during run-time of the Eclipse IDE and it offers two main advantages. First, it offers the
possibility of detecting IE bugs during development. Second, we get a high level of integration
between the IDE and the bug detection mechanisms.
The goal of our research is to develop a tool for detecting IF exposure bugs using static analysis.
The tool should use context-sensitive analysis and should rely on a Satisfiable Modulo Theories
(SMT) [1, 28] solver. In summary we make the following contributions:

• We developed an context-sensitive IE detection tool capable to detect information exposure
bugs fully automated using SMT-LIB 2.0 [6].

• We devised a novel light-weight security annotation language used to define information
flow constraints in source code.

• We propose a new method to define sinks, sources and taint confidential symbolic variables
by first, function models, and, second, automatically loading previously added code
annotations.

10



Chapter 1. Introduction

• We defined an easy-to-use method for adding new checkers into the Static Analysis Engine
(SAE) [32] by adding the required function models for the sinks, sources and tainting
confidential variables.

• The SAE statement processor was extended to support explicit information flow propagation
of symbolic variables.

• We designed our checker as an eclipse plug-in which can be run in different modes: as
presented in Fig. 1.1.

IF checker can be run:

• as the user types in,

• on incremental build,

• on full build, or

• on demand.

Figure 1.1: IF checker running modes

The remainder of the paper is organized as follows: Chapter presents related work, Chapter
3 gives a brief overview about the architecture and the implementation, Chapter 4 presents
experimental results, and Chapter 5 contains the conclusion and future steps.

11



Chapter 2: Related Work

This Chapter presents related work to ours: first, static analysis techniques and tools are pre-
sented 2.1, second, dynamic analysis techniques are presented 2.2, and finally, hybrid analysis
techniques are presented 2.3.
According to Ceara et al. [11] every kind of static taint analysis is based on a type of formalization.
For example program dependence graphs as used by Hammer et al. [27, 59], program slicing
techniques as used by Pistoia et al. [51], or type systems used by Foster et al. [25] in their tool
cqual [24] tool.
For scalability reasons, internal representations as Static Single Assignment (SSA), Gated Single
Assignment (GSA) or Augmented Single Static Assignment (aSSA) are used [56]. Similarly, we
employ symbolic execution in which per each path we use a separate set of symbolic variables.
We check for potential IE bugs only for reachable paths by querying the path validation. The path
validation decides, based on queries submitted to the Z3 SMT solver [20], whether the current
path is satisfiable or not.
Deciding during static execution whether a path is reachable reduces computational overhead
and the total number of potential paths on which IE bugs could be located. Tainting confidential
variables is done statically in the function models which are used to model each trust-boundary.
Taint variable propagation is based on explicit IF.
Thus, a large amount of research work has been already published concerning symbolic variables
tainting and propagating their values using static, dynamic, or hybrid taint-analysis.
We briefly review in this section the most commonly used approaches focusing more on the
works that are close to the one we proposed in this paper.

2.1 Static Taint-Analysis

One of the approaches to compute variable taintness is to use Static Taint Analysis (STA)
techniques, allowing taking into account all possible execution paths. STA does not provide
runtime information, and environment interaction has to be simulated. Thus, the environment
model introduces imperfections because it can not capture each real-world interaction.
The majority of static taint analysis tools are based on user input dependencies [12]. Our tool
handles each potential input source independently by modeling it with function models that
simulate their execution during static execution. We are capable to model inputs from users, files,
sockets and input streams in this way. Our tool is similar to the compile time analyzer PREfix
[7] in the sense that both tools sequentially are tracing distinct execution paths and simulate the
action of each operator and function call on the path.
Static taint-analysis can be used to enforce privacy control on mobile devices. Xiao et al. [63]
propose a transparent privacy control approach that uses static symbolic execution [34] based

12



Chapter 2. Related Work

on implicit IFs. Data is tainted using scripts developed with TouchDevelop [42], which allows
users to create applications using an imperative and statically typed language. Variable tainting
is based on the fact that the whole TouchDevelop API on which the user scripts are based is
in advance tainted with information concerning sources and sinks. This approach is different
from ours because it supposes a previously known API where everything is tainted and no other
untainted sources or sinks exist. We define our sinks and sources directly in the function models
and simulate real execution using them. Our approach can handle the definition of sinks and
sources for the same procedure. This introduces more flexibility during analysis.
Guarnieri et al. [26] taint variables using a central knowledge base. The authors propose an
Eclipse-based tool capable to detect IF vulnerabilities due to missing input validation with the
help of a decentralized knowledge base and on AST’s generated by the JDT compiler. The
static analyzer detects security issues related to input validation problems in web applications.
The IF analysis does not consider context sensitivity and it is not using a SMT solver. The
framework offers the possibility to taint classes, packages or methods as trusted. The problem of
IF vulnerability detection translates to identifications of errors between entry (sources) and exit
points (sinks) that do not use a trusted object.
FindBugs [3, 4, 30] is based on Eclipse; it does not detect IE bugs but uses the concept of easy
integration of new checkers into the static analysis. It checks for bugs in Java byte code based on
currently 300 patterns of coding mistakes for Java byte code. It employs intra-procedural analysis
that takes into account information from instance of tests. FindBugs has a plugin architecture in
which detectors (code checkers) can be defined reporting different bug patterns. Detectors can
access information about types, constant values, special flags and values stored on the stack or
local variables. Some of the defined detectors perform intra-procedural summary information.
FindBugs doesn’t use SMT [28] or a SAT [1] solvers in order to perform the static analysis but
is rather based on the previously mentioned patterns, which can be extended by the so-called
detector concept. This is similar to our checker concept of easily attaching checkers to the
language interpreter.

2.2 Dynamic Taint-Analysis

Another approach to computer variable taintness is based on Dynamic Taint Analysis (DTA),
meaning that concrete program execution is performed. The main advantage of DTA is the
possibility to use data flow information available during runtime but only from one path of
execution at a time. Thus sanity checks can be handled accurately avoiding many false positives.
However, since each analysis is reduced to a single (current) execution path, its coverage level
may remain very weak and control dependencies cannot be fully taken into account. At the same
time it cannot guarantee that all possible execution paths are exercised. Thus, it is in general
geared towards explicit IF’s.
The notion of taint variable was introduced with the Perl scripting language and its taint run-
ning mode where taint variables are propagated using the language interpreter across variable
assignment, and security errors are raised when an insecure system call appears. There is a
wide range of proposed tools until now which are based on language information-flow security:
Java-based JFlow [47] with its software tool Jif [15] developed an annotation language for Java
code. Data values are labeled using security policies. The attached labels restrict the movement
of data values thus enforcing a policy on the data flow. The programming languages such as an
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Chapter 2. Related Work

Caml-based FlowCaml [58], an Ada-based SPARK Examiner [13] and scripting languages Perl,
PHP, Ruby, and Python have a taint mode similar to the taint mode available in Perl.
Dynamic taint analysis is not suitable for us because we want to have high path coverage and
exercise all possible execution paths. Thus, we rely on a SMT solver, which helps to detect
satisfiable paths and afterward to provide candidate paths to our IE checker.

2.3 Hybrid Taint-Analysis

Hybrid taint-analysis is a combination of the previously two mentioned approaches. Hybrid
taint-analysis approaches benefit from making information from dynamic execution available to
static analysis or vice-versa (to dynamic execution from static analysis). This circumvents some
shortcomings of the two approaches.
The first approach explores executable paths in the same way as static symbolic execution does,
interleaving concrete execution with symbolic execution. Concrete values from execution are
used by these techniques when difficult constraints are reached, allowing the algorithm to proceed.
Concolic testing [53] is one of the most prominent hybrid analyses. Concolic techniques can
reason precisely about complex data structures and simplify constrains when they exceed the
capabilities of the solver. KLEE [8], as a part of another tool S2E [14], is a concolic testing tool
for C programs which extends EXE [9] and addresses path explosion by allowing interaction
with the outside environment without using entirely concrete procedure call arguments.
The second approach is mostly based on IF monitors which monitor the execution of the program
and use information from a static analysis to decide, for example, when it is safe to stop tracking
confidential variables.
Moore et al. [41] propose a hybrid IF monitor, which combines static analysis and dynamic
mechanisms in order to provide strong information security guarantees. Their implementation
extends the information-flowmonitor presented by Russo et al. [54]. Their approach adds runtime
overhead in comparison to pure static analysis. The authors argue that their static analysis can
determine when it is sound for a monitor to stop tracking the security level of certain variables.
This extra information is provided through the usage of static analysis, which can reason in
general more precise about certain IF’s as discused by Russo and Sabelfeld [54].
The authors present conditions for incorporating memory abstractions and analysis into a hybrid
information-flow monitor. The static analysis relies on a flow-sensitive security type system [31]
which helps to determine when a variable cannot cause a security violation.
The environment taints each program variable with a security level and tracks the currently stored
security level. Thus, allowing for a kind of automatic tainting and propagation of taint variables
whereas we initially taint variables statically in our function models.
To the best of our knowledge our checker is the only IE bug checker that uses symbolic execution
to find potential candidate paths on which IE bugs could reside and that propagates confidential
variables based on explicit IF’s.

14



Chapter 3: Architecture and Implementation

This Chapter presents: first, present the architecture of our tool 3.1, second, the inference rules
used inside our tool 3.2, third, briefly implementation details of our tool 3.3, and finally, how our
tool can be used in order to detect information flow bugs 3.4.

3.1 Architecture

Our IE checker is based on the static analysis engine [32] which is used for C/C++ source code
analysis and has in the back-end the MathSat [17] SMT solver. This engine was developed within
the SIBASE working package 5.2.1 [33]. Here, we explain the steps needed to extend the SAE.
A new function model is created for each sink and source and added to the environment models
package, which contains models for all potential sources and sinks present in the selected test
cases. Function models are used to model sinks, sources and other types of trust-boundaries.
At the same time function models are used to notify the interpreter when a previously tagged
variable is about to pass through a trust boundary. The interpreter will be notified by sending it a
potential tagged symbolic variable. Afterward all the currently attached checkers will be notified
by sending the tagged symbolic variable to them. Inside the checker class it is checked if the
variable is confidential, sensitive, etc. If the check if positive then a bug report will be issued.
We expand on our checker and its subsequent improvements in more detail in [44, 46], for now
we are taking a short overview.

3.1.1 Static Analysis Engine Architecture

The function models contain a tainted symbolic variable with a confidential label assigned to it.
The symbolic variable will be propagated along a path. The interpreter will be notified when
passing over a sink. The sink notifies the interpreter by sending a symbolic variable, which could
be confidential or not. The interpreter calls each previously attached checker. The symbolic
variable is checked whether or not it is confidential by the checker. If the variable is confidential
then a bug report will be issued. If additional logic for checking other relevant conditions is
needed then this can be added in the IE checker class. The architecture of the used static analysis
engine is presented in Figure 3.1. A more-detailed explanation of the main classes contained
in the SAE can be seen in the paper [32]. The reused Codan API interfaces and classes are
presented in the Codan API package shown in Figure 3.1. The interface IChecker adds to the
implementing class the possibility to work with project resources such as: projects, files, etc.
The class AbstractCheckerWithProblemPreferences is an extension of the class
AbstractChecker. It contains methods for defining the run-time settings for the checker
class. Checkers can generate several types of outputs. Each checker preference settings can be
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Chapter 3. Architecture and Implementation

Figure 3.1: SAE architecture

defined individually. The abstract class ASTVisitor is a Codan base class, which is extended
by all visitor classes that need to traverse the nodes of an Abstract Syntax Tree (AST). The class
ASTVisitor implements the visitor design pattern. The visit() methods implement a
top-down traversal and the leave() methods implement a bottom-up traversal of a C statement
represented as an AST. Details on the engine, including the main classes contained in the SAE,
are given in [32, 44].

3.1.2 Information Exposure Checker Architecture

The blue lines in Figure 3.2 indicate all the dependencies between the SAE presented in Figure 3.1
and our IE checker. Implementation details for the InformationExposureChecker class
(IECC) will be presented since it contains the bug triggering logic. In the class SymVarSSA
we declared a symbolic boolean variable confidential and defined its getter and setter. We used
it to set the return value of the function call getenv("PATH") to confidential. Thus, it is
possible to specify other types of variables (sensitive, etc.) and expressions, which could be
tainted. The class ModelGetEnvironment (MGE) contained in Figure 3.2 implements the
IFunctionModel interface. The MGE sink model of the getenv("PATH") contains the
implementations of the exec() and getSignature() methods. The exec() method will
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Chapter 3. Architecture and Implementation

Figure 3.2: The IF checker architecture

be called by the Interpreter in order to get the return value of the getenv().
In getSignature() the parameters of the getenv() are defined and a return type is set. In
the exec() method we taint the confidential value to be the return value of the exec() method.
The IECCwill be attached to the Interpreter in the class SymbolicExecutionEngine
that contains the main program loop, which iterates through all program paths. During loop
iteration when the Interpreter reaches the C function printf() or other trust-boundaries
then the exec() method contained in the sink function model ModelPrintf will be called.
Then the Interpreter calls the updateChecker() method which notifies the IE checker
contained in IECC. Details on the IE checker architecture are given in [44].

3.2 Inference Rules for Secure Information Flows

Based on a runtime language interpreter we are handling symbolic variables during static
execution. The details are expanded on in the SIBASE working package 5.1.2 [43]; here we are
going to give an overview. Our statement processor enforces secure typing of C/C++ expressions,
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Chapter 3. Architecture and Implementation

variables, and statements as the AST is traversed. For each node contained in the new path a
statement processor instance will be instantiated. The inference information is constructed for
each statement on the fly by enforcing inference rules based on explicit IF’s.
The rules themselves are based on the lattice model of Denning [21] in the formulation of Volpano
et al. [60]. Mainly, they represent an adaption of the the secure flow typing rules of Volpano et
al. (Figure 2 and Figure 3 in [60]) to the setup of two security levels L (low security, public)
and H (high security, private), ordered by L ≤ H. Only those rules were implemented which
were required by the examples. In addition, two rules were added that check that the user-given
ordering of procedures holds. We are not going to discuss them here and defer the reader to [46].

3.3 Implementation

In this section we are going to present the implementation details of our checker.

void CWE526_bad() {
if(staticFive == 5) {

/* FLAW: environment variable exposed */
printLine(getenv("PATH"));

}
}

Figure 3.3: CWE-526 test program’s source, according to [48].

void printLine(const char* line) {
if(line)

printf("%s\n", line);
}

Figure 3.4: CWE-526 test program’s sink, according to [48].

In order to propagate the confidential return value from the getenv() source to the printf()
sink (see Figs. 3.3 and 3.4) we had to extend the StatementProcessor (SP) class. A
Interpreter object is instantiated for each new path. A new SP object will be instantiated
by the Interpreter for every IASTNode (IBasicBlock) contained in the current path.
Thus, propagating only the symbolic variables belonging to one execution path at a time. For each
IASTNode the corresponding leave() methods are called depending on the type of the node.
The leave() methods are used to traverse each statement AST in a bottom-up fashion. The
leave() methods are also used for confidential variables propagation. The SP extends the
ASTVisitor class which is an implementation of the visitor design pattern providing top-down
(visit() methods) and bottom-up (leave() methods) traversal of each node contained in
the current path. Each IASTNode is a C/C++ line (no comment lines are included) originating
from the C/C++ test program file. When the SP detects that a symbolic variable or function return
variable is confidential as each statement is traversed on the current path it tries to propagate the
confidential variable based on explicit IF. For the CWE-526 test programs MGE is the source
because from here confidential information flows into the program and ModelPrintf is the
sink because here the potential information is leaving the program. When the SP detects the
getenv() function inside the wrapper function printLine() then it adds a new confidential
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variable in the Interpreter. The confidential return value comes from MGE, which is the
function model of the getenv() function call. The confidential variable is propagated to
printLine() as parameter. When the SP reaches the printLine() statement a binding
call is made. The binding call returns the parameters names of the printLine() header
function. The new parameter names are needed because these are used inside the printLine()
implementation. These parameter names are potential confidential symbolic variables.
The printLine() function header has a single parameter line. After we detect line
in the method header and we know that we are on a potentially reachable path we add a
new confidential variable called line in the Interpreter. This means that on this path
from the source printLine(getenv("PATH")) to the sink printf("%s\n",line)
the getenv("PATH") confidential return value will be assigned to the variable line
which becomes also confidential. This happens when printLine() calls the execute()
method. The implementation contains printf(), as presented in Figure 3.4. The SP pro-
ceeds until it reaches the printf("%s\n",line) node. After reaching this statement
the Interpreter will be notified from the function model ModelPrintf using line as pa-
rameter. The interpreter will be notified because the statement printf("%s\n",line)
is a sink. The Interpreter will be called with resolveOrigSymVar() and di-
rectly afterwards the getCurrentSSACopy() method will be called. These methods
search in the Interpreter for a symbolic variable called line. After this call we
get a SymPointerSSA variable s that we send over to the Interpreter by calling
ps.notifyTrustBoundary(s). The Interpreter then calls our previously at-
tached IF checker by calling his updateChecker(SymVarSSA s, IFile file,
IASTFileLocation loc) method. The Interpreter sends to the IF checker the previ-
ously found s variable, the file, and the location in the file from where it was notified. The IEC
checks in the updateChecker() method if s is confidential. If s is confidential then a new
a bug report will be created. For the test programs contained in CWE-534 and CWE-535 the
propagation is similar to what we previously presented; only the sinks and sources are different.
A detailed explanation of the checker is contained in [44].

3.3.1 Tainting and Triggering

The implementation of the static analysis engine [32] is based on function models used for
behavior description of standard C/C++ library function calls. A function model class contains
five methods and implements the interface IFctModel:

• the constructor, which sets the used program interpreter,

• the method getName() which returns the name of the function

• getLibrarySignature() returns the whole function header as it is defined in the C
standard library

• exec(SymFunctionCall call) which is used for static execution of function calls
(variables can be here tainted (Figure 3.5, line 28) and trust boundaries used for notifying
a checker)

• getSignature() returns a SymFctSignature object containing the data types of
the function parameters and the return type of the function.
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0. private Interpreter ps;
1.
2. public Mgetenv ( Interpreter ps) {
3. this .ps = ps;
4. }
5.
6. public String getName () {
7. return " getenv ";
8. }
9.
10. public String getLibrarySignature () {
11. return " extern char * getenv ( const char * name );"
12. }
13.
14. public SymFunctionReturn exec ( SymFunctionCall call ) {
15. ArrayList < IName > plist = call . getParams ();
16. SymPointerOrig isp = ps. getLocalOrigSymPointer ( plist . get (0)

);
17. IName nebn = new EnvVarName ();
18. SymIntOrig sb_size = new SymIntOrig ( new ImpVarName ());
19. SymArrayOrig sb = new SymArrayOrig (nebn , sb_size );
20. SymPointerSSA isp_ssa = null ;
21. try {
22. sb. setElemType ( eSymType . SymPointer );
23. ps. declareLocal (sb);
24. ps. declareLocal ( sb_size );
25. SymArraySSA sb_ssa = ( SymArraySSA ) ps.

getLocalOrigSymArray ( nebn ). getCurrentSSACopy ();
26. isp_ssa = ( SymPointerSSA ) ps. ssaCopy ( isp );
27. isp_ssa . setTargetType ( eSymType . SymPointer );
28. isp_ssa . setConfidential ( true );
29. isp_ssa . setTarget (sb);
30. } catch ( Exception e){
31. e. printStackTrace ();
32. }
33. return new SymFunctionReturn ( isp_ssa );
34. }
35.
36. public SymFctSignature getSignature () {
37. SymFctSignature fsign = new SymFctSignature ();
38. fsign . addParam ( new SymPointerOrig ( eSymType . SymArray , new

Integer (1) ));
39. fsign . setRType ( new SymPointerOrig ( eSymType . SymPointer , new

Integer (1) ));
40. return fsign ;
41. }

Figure 3.5: The getenv() function model.

Figure 3.5 depicts the function model of getenv(). This function model represents a symbolic
approximation of the actual behavior of the getenv() function in all possible contexts.The
difference between the sink function model of printf() and the source function model of
getenv() is that in the exec() method of the printf() model class we notify our IF
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checker that a trust-boundary is about to be passed and in the exec() method of the getenv()
model we set the return value to confidential. Similarly it is implemented for the sinks and
sources contained in the CWE-534/535 test programs.
The SAE currently contains function models for the following C func-
tions: atoi(), fclose(), fgets(), fgetws(), fopen(), free(),
gets(), memcpy(), mod(), pthread_create(), pthread_exit(),
pthread_join(), pthread_mutex_destroy(), pthread_mutex_init(),
pthread_mutex_lock(), pthread_mutex_unlock(), puts(), rand(),
srand(), strcpy(), strlen(), time(), wcscpy(), wcslen(). For the IE
test programs the following function models were added: CWE-526 getenv() (source),
printf() (sink), CWE-534 and CWE-535 LogonUserA(), LogonUserW() (sources),
fprintf(), fwprintf() (sinks).
The models are used either to taint a symbolic variable with the tag confidential or to notify the
IF checker that a confidential tagged variable is about to pass a trust-boundary.
Initially [44], the aforementioned function models were hard-coded. In [46], we improved the
checker by parsing the information from the user-given annotations in the source test files rather
than hardcoding the models in the code of the checker.

3.4 Exposure Checker Usage

Figure 3.6: Information exposure checker work-flow.

Figure 3.6 depicts the work flow used for running our checker. First, the C/C++ test programs
have to be selected and test programs created in the workspace. Second, the trust boundaries
have to be defined and confidential variables need to be tainted. Third, one or more test programs
available in the workspace can be selected and the submenu button Run C/C++ Code Analysis
needs to be selected.
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An explicit IF theory for propagating confidential variables from trust-boundaries (sources) or
other program points to trust-boundaries (sinks) was used in this paper. Our information-flow
checker is based on the SAE that proved to scale for other types of bug checkers and larger test
cases as well.
When the static analysis is discovering that a confidential variable is about to pass through
a previously defined trust-boundary then an IE bug report is issued which is reported in the
Problems view inside the second Eclipse CDT instance. By clicking on the bug report available in
the Problems view the user navigates to the bug location in the file where the bug was discovered.
A bug report is composed of the file and line number where the bug was detected.

Figure 3.7: Starting the IF checker from the Codan GUI.

Figure 3.7 depicts how our checker is started. The IE checker runs as an Eclipse plug-in project.
The checker is launched as a standard Eclipse application. After starting the checker a second
Eclipse CDT instance will be launched. For the test cases CWE-526/534/535 we had 90 Test
Programs (TPr) contained each in an separate Eclipse CDT project. The TPr’s don’t have to be
executable in order for us to perform static analysis. We run our checker by right-click on the
16th project for example and selecting Run C/C++ Code Analysis as highlighted in Figure 3.7
with the mouse pointer. The sub-menu presented in Figure 3.7 appears by clicking right on one
or more selected Eclipse CDT projects.
The Codan API [36] provides a Graphical User Interface (GUI) for running checkers.
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Figure 3.8: IF checker bug report and bug highlighting.

Figure 3.8 highlights the main GUI features available after running the IE checker. These features
are marked with circled numbers from 1 to 3 . Number 1 indicates for which project the IE
checker was started. Number 2 indicates the bug report associated to the found bug. A bug
icon near number 3 indicates that at line 13 a buggy statement was detected. Also the whole
statement where the bug was detected will be highlighted with an underlining zigzag line.
For the bug report presented in Figure 3.8 with number 2 we get the Description (containing a
string which the user can configure), Resource (the file where the bug has appeared), Path (path
of the file in the project hierarchy were the bug has appeared), Location (the line where the bug
was reported) and Type (the type of the reported bug).
The output of the IF checker is a bug report for each detected IE bug. By double clicking on 2
the user can navigate in the file at the line number where the bug was detected. One such bug
report for the test program 12 contained in the test case CWE-526 is highlighted in Figure 3.8
with number 2 and the file location (file name and line number) of the bug with number 3 .
Another Codan API feature used for displaying bug reports is represented by the possibility to
configure bug reports as Warnings, Errors or Infos, as presented in Figure 3.9.
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Figure 3.9: Codan report types.

Figure 3.9 presents bug reports in a tree based view where every bug is classified based on one
of the following three categories: Warnings (yellow triangle icon), Errors (red circle icon) or
Infos (blue “i” symbol icon). The warning (Information Exposure Bug) presented in Fig. 8a
corresponds to the bug report presented in Fig. 7. The “Errors” and “Infos” reports presented in
Figure 3.9 are not related to our IE checker. Codan reports use three different bug icons.
By clicking on the generated Information Exposure Bug report presented in Figure 3.9 the
appropriate file containing the bug is opened in the main view and the mouse cursor will point
to the line number containing the bug as presented in Figure 3.8, number 3 . The Codan API
offers the possibility to configure each checker to be launched in different modes as presented in
Figure 1.1. This bug triggering features can help a developer to control how and when Eclipse
will trigger the bug detection analysis, thus, helping to avoid bug insertion during software
development. A detailed explanation of user interface can be found in [44].

3.4.1 Source Code Editor

We implemented a source code editor which offers annotation language proposals which are
context sensitive with respect to the position of the currently edited syntax line. If for example,
a C expression is not properly parsed then the proposal mechanism would not work from that
line on until the end of the file. Thus, the editor suggestions work only if the whole file is parsed
without errors. Particularities of the source code editor are given in [46].
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This Chapter presents first, the test methodology used during our experiments 4.1 and second,
the obtained results and constraints 4.2.
The goal of our empirical evaluation is to assess the efficiency of our IF checker in terms of
number of detected false-negatives, false-positives, true-positives and execution time. At the
same time we want to highlight to what extent our research work is significant. We present
results 1) for the case that the function annotations are hard-coded, and 2) for the case that code
annotations for the functions are automatically loaded. The evaluation was performed using the
IE checker presented in Section 3 and the Juliet test cases CWE-524/534/535.

4.1 Methodology

The test cases CWE-526/534/535 were selected because they contain information exposure bugs
which we want to detect. These test cases are publicly available in the last version of the Juliet
test suite [48]. CWE-526 contains 18 Test Programs (TPr), CWE-534 contains 36 TPr, and
CWE-535 contains 36 TPr. For all the test programs contained in CWE-526/534/535 we created
a separate Eclipse CDT project. The test programs were then inserted in one Eclipse workspace.
In Fig. 3.8 some of the analyzed test programs can be observed.
The IE checker was run automatically for each test program available in the workspace by selecting
once all the Eclipse CDT projects available in the workspace and selecting the sub-menu Run
C/C++ Code Analysis. We measured the time from the moment of clicking the sub-menu button
until all the projects in the workspace were completely analyzed. We also measured the execution
time for the test programs belonging to one test case. We report the intermediate execution time
(for test programs belonging to one test case), total execution time, number of true positives,
false negatives and false positives in Section 4.2. For measuring the time between the moment
when the analysis was started and the moment when all the test programs in the workspace
were analyzed we used the following time stopping criteria. For determining the total execution
time we monitored the event when there was no longer output messages in the console. For
determining the intermediate execution times for test programs belonging to one of the test cases
CWE-526/534/535 we monitored when all the test programs had a bug icon attached to them.
We new in advance which test programs should have an bug icon attached to them after running
the static analysis and which test programs should not have a bug icon (for 5 out of 90 test
programs it was not possible to perform the static analysis, this is reported in the next section)
attached from previous runs. One such bug icon is presented in Fig. 3.8 above number 1 and
represents a yellow triangle with an exclamation mark inside.
In addition, we analyzed three simplified C programs in which the prescribed order of operations
is broken. They stem from [40] (the programs contain a hard-coded password, which it uses
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for its own inbound authentication or for outbound communication to external components),
CWE-325 [38] (the software does not implement a required step in a cryptographic algorithm,
resulting in weaker encryption than advertised by that algorithm), CWE-666 [39] (the software
performs an operation on a resource at the wrong phase of the resource’s lifecycle, which can
lead to unexpected behaviours). For each of these three programs, the checker described in
Chapter 3 was suitably adapted.

4.2 Results and Constraints

Table 4.1, contains the results obtained by analyzing CWE-526, CWE-534 and CWE-535 with
our IE checker. Table 4.1 contains the following abbreviations: Test Program (TPr), FP (False-
Positives), FN (False-Negatives), True Positives (TP) for programs without the C goto statement
included, Total True-Positives (TTP) per test case (all programs included), and Total Execution
Time in seconds (TET[s]) per test case. The used system was Ubuntu 12.04 LTS, Kernel
3.8.0-35-generic, 64-bit, Intel R© CoreTM i7-4770 CPU @3.40GHz × 8, 16 GB RAM.

Test case TPr FP FN TP TTP TET[s]
CWE-526 18 0 0 17 18 30
CWE-534 36 0 0 34 36 46
CWE-535 36 0 0 34 36 45

Total 90 0 0 85 90 121

Table 4.1: IF checker running time results without annotated code.

Table 4.1 presents the timing results for running our tools with hard-coded annotations inside
our function models. Our tool found 85 TP out of 90 TP present in the used test cases. We were
able to detect all IE bugs. It was not possible to test all test programs available in the test cases
because the Codan API is not supporting the building of the CFG for source code containing C
goto statements, e.g., goto stop;.
The test cases CWE-526/534/535 contain 1, 2, and respectively 2 test programs containing the C
goto statement. In total 5 (1 + 2 + 2) out of 90 test programs were not analyzable. Thus, we
reached 94.44% test coverage. We think that if this limitation will be removed from Codan API
releases then 100% test coverage is achievable.
In [46], we improved the checker by automatically loading the annotations from source code.

Test case TPr FP FN TP TTP TET[s]
CWE-526 18 0 0 17 18 37
CWE-534 36 0 0 34 36 88
CWE-535 36 0 0 34 36 86

Total 90 0 0 85 90 213

Table 4.2: IF checker running time results with annotated code.

Table 4.2 presents the timing results of running the same test programs as above through the
improved checker version.
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These running times are higher due to the overhead of loading and interpreting the annotated
library in which sinks and sources are annotated for each of the test programs. This library gets
loaded each time the plug-in is started—which is due to the current Eclipse plug-in implementa-
tion. If the annotated library would be loaded only once, the overhead would be approximately
only 1.1%. More details on the running times of the improved checker are found in [46].
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5.1 Conclusion

We successfully proved that our IE checker can be used for detecting IE bugs and at the same
time we have shown to what extent our work is significant by comparing it with related research
work. Comparison with related work is not presented in this report, only in the original paper
(see [44]).
The Codan API was used for parsing source files, dealing with project resources and interpreting
C/C++ code. Bug location marking was easily implemented using the markup capabilities offered
by the Codan API.
The AST traversing mechanisms offered the possibility to focus more on static analysis rather
than on re-implementing utility functions for manipulating AST nodes. Building of CFG for test
programs containing C goto statements should be possible in future Codan API releases, thus,
removing one of the current implementation constrains.
We successfully used the SAE engine for propagating symbolic variables tags based on explicit
information flow. The SAE engine was easily extendable and offered the possibility of plugging
our IE checker in the existing language interpreter. The computational overhead introduced by
SMT-LIB [6] statement construction and the calling of an external command line tool could be
avoided by using an SMT solver which has an API compatible with our development language
[16] or [20].
The static definition of sinks, sources and confidential variables can be made more user-friendly
by going via a UMLmodel of the code as we are going to sketch now. First, one can automatically
transform source code into UML state chart diagrams. Second, one can attach extra security
information in these diagrams to the methods and attributes. Third, one can automatically
generate source code with auxiliary assertions stemming from the prior UML description. These
areas are going to be expanded on in the SIBASE working package 5.1.3 [45]. Moreover, the
definition of sinks, sources and confidential variables can be further automated by providing
annotated test cases or libraries containing this information. Alternatively, one can load a
configuration file containing the specifications.
We think that static analysis is worthwhile to be used for detecting IE bugs related to security
concerns and future research in this area is needed.

5.2 Future Work

In future we plan to do research in the area of annotating whole C/C++ libraries and reusing these
annotated libraries during static analysis for trust-boundaries definition and symbolic variable
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tainting. We envisage that advanced checks for sinks and sources on a potential bug prone path
could reduce the number of candidate paths.
The process of manually determining which function models (trust-boundaries) could produce IE
leaks could be automated by preprocessing the source code and determiningwhich functions could
represent potential candidates for sinks and sources. This could be based on a previously annotated
C/C++ library with annotation tags attached to function headers. Information propagation could
be used in order to detect other potential sink, sources, etc., thus, fully automating the process of
trust-boundary definition and initial variable tainting.
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