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Abstract— In this paper, we consider a nonlinear delay
process to be controlled over a communication network in
the presence of disturbances and study robustness of the
resulting closed-loop system with respect to network-induced
phenomena such as sampled, distorted and delayed data as well
as scheduling protocols. Maximally Allowable Transfer Interval
(MATI) labels the greatest transmission interval for which
a prescribed Lp-gain, as a measure of control performance,
is attained. The proposed methodology combines impulsive
delay system modeling with Lyapunov-Razumikhin techniques
to allow for communication delays greater than MATIs. Other
salient features of our methodology are the consideration of
nonuniform variable delays and employment of model-based
estimators to prolong MATIs. The present stability results are
provided for the class of Uniformly Globally Exponentially
Stable (UGES) scheduling protocols such as Round Robin (RR)
and Try-Once-Discard (TOD). Finally, a nonlinear example is
provided to demonstrate the benefits of our methodology.

I. INTRODUCTION

Networked Control Systems (NCSs) are spatially dis-
tributed systems for which the communication between
sensors, actuators and controllers is realized by a shared
(wired or wireless) communication network [1]. In compar-
ison with conventional control systems in which parts of
control loops exchange information via dedicated point-to-
point connections, NCSs offer several advantages such as
reduced installation and maintenance costs as well as greater
flexibility. However, NCSs also generate imperfections (e.g.,
sampled, corrupted and delayed data) that impair the control
system performance and can even lead to instability. In addi-
tion, scheduling protocols might govern the communication
medium access due to channel capacity constraints or to
reduce packet collisions among uncoordinated NCS links.
Since the aforementioned network-induced phenomena occur
simultaneously, the investigation of their cumulative adverse
effects on the NCS performance is of particular interest.

In this paper, we consider a nonlinear delay system
to be controlled by a nonlinear delay dynamic controller
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over a communication network in the presence of exoge-
nous/modeling disturbances, scheduling protocols among
NCS links, time-varying signal delays, time-varying trans-
mission intervals and distorted data. Besides network-
induced delays, notice that delays might be present in the
plant and controller dynamics as well. Hence the term
delay NCSs. The present paper extends the emulation-based
approach from [2] towards plants and controllers with delay
dynamics as well as towards nonuniform time-varying NCS
link delays. In other words, different NCS links induce
different nonconstant delays. To the best of our knowledge,
the work presented herein is the most comprehensive study
of the aforementioned cumulative effects as far as the actual
plant-controller dynamics (i.e., time-varying, nonlinear, de-
layed and with disturbances) and interconnection (i.e., output
feedback) as well as the variety of scheduling protocols (i.e.,
UGES protocols) and other network-induced phenomena are
concerned (i.e., variable delays, communication channels
with distortions). For instance, [3] focuses on time-varying
control affine plants (i.e., no delay dynamics in the plant
nor controller) and state feedback with a constant delay
whilst neither exogenous/modeling disturbances, distorted
data nor scheduling protocols are taken into account. Similar
comparisons can be drawn with respect to other related works
(see [1]–[6] and the references therein).

Our methodology employs impulsive delay system model-
ing and Lyapunov-Razumikhin techniques when computing
Maximally Allowable Transmission Intervals (MATIs) that
provably stabilize NCSs for the class of Uniformly Globally
Exponentially Stable (UGES) scheduling protocols. Besides
merely stabilizing MATIs, our methodology also designs
MATIs that yield a prespecified level of control system
performance in terms of Lp-gains. Delay system modeling
(rather than ODE modeling as in [4]) allows us to employ
model-based estimators in order to increase MATIs [7]. In
addition, real-life applications are characterized by corrupted
data due to, among others, measurement noise and commu-
nication channel distortions. In order to include distorted in-
formation (in addition to exogenous/modeling disturbances)
into the stability analyses, we use the notion of Lp-stability
with bias.

The main contributions of this paper are fourfold: a) the
design of MATIs in nonlinear delay NCSs with UGES pro-
tocols even for the so-called large delays; b) the Lyapunov-
Razumikhin-based procedure for rendering Lp-stability of
nonlinear impulsive delay systems and computing the as-
sociated Lp-gains; c) the consideration of NCS links with
nonidentical time-dependent delays; and d) the inclusion of



model-based estimators. In contrast to [2], this paper incor-
porates nonuniform variable delays, plants/controllers with
delay dynamics, provides a nonlinear numerical example and
designs model-based estimation that prolongs MATIs.

The remainder of this paper is organized as follows.
Section II presents the utilized notation and stability notions
regarding impulsive delay systems. Section III states the
problem of finding MATIs for nonlinear delay NCSs with
UGES protocols in the presence of nonuniform commu-
nication delays and exogenous/modeling disturbances. A
methodology to solve the problem is presented in Section IV.
A numerical example is provided in Section V. Conclusions
and future challenges are in Section VI.

II. PRELIMINARIES

A. Notation

To simplify notation, we use (x, y) := [x> y>]>. The
dimension of a vector x is denoted nx. Next, let f : R→ Rn
be a Lebesgue measurable function on [a, b] ⊂ R. We use

‖f [a, b]‖p :=

(∫
[a,b]

‖f(s)‖pds

) 1
p

to denote the Lp-norm of f when restricted to the interval
[a, b]. If the corresponding norm is finite, we write f ∈
Lp[a, b]. In the above expression, ‖·‖ refers to the Euclidean
norm of a vector. If the argument of ‖ · ‖ is a matrix
A, then it denotes the induced 2-norm of A. Furthermore,
| · | denotes the (scalar) absolute value function. The n-
dimensional vector with all zero entries is denoted 0n. In
addition, Rn+ denotes the nonnegative orthant. The natural
numbers are denoted N or N0 when zero is included.

Left-hand and right-hand limits are denoted x(t−) =
limt′↗t x(t′) and x(t+) = limt′↘t x(t′), respectively. Next,
for a set S ⊆ Rn, let PC([a, b],S) =

{
φ : [a, b] →

S
∣∣ φ(t) = φ(t+) for every t ∈ [a, b), φ(t−) exists in S

for all t ∈ (a, b] and φ(t−) = φ(t) for all but at most a finite
number of points t ∈ (a, b]

}
. Observe that PC([a, b],S)

denotes the family of right-continuous functions on [a, b)
with finite left-hand limits on (a, b] contained in S and whose
discontinuities do not accumulate in finite time.

B. Impulsive Delay Systems

In this paper, we consider nonlinear impulsive delay
systems

Σ


χ(t+) = hχ(t, χt) t ∈ T
χ̇(t) = fχ(t, χt, ω)

y = `χ(t, χt, ω)

}
otherwise,

(1)

where χ ∈ Rnχ is the state, ω ∈ Rnω is the input and
y ∈ Rny is the output. The functions fχ and hχ are regu-
lar enough to guarantee forward completeness of solutions
which, given initial time t0 and initial condition χt0 ∈
PC([−d, 0],Rnχ), where d ≥ 0 is the maximum value of all
time-varying delay phenomena, are given by right-continuous
functions t 7→ χ(t) ∈ PC([t0−d,∞],Rnχ). Furthermore, χt
denotes the translation operator acting on the trajectory χ(·)

defined by χt(θ) := χ(t+θ) for −d ≤ θ ≤ 0. In other words,
χt is the restriction of trajectory χ(·) to the interval [t−d, t]
and translated to [−d, 0]. For χt ∈ PC([−d, 0],Rnχ), the
norm of χt is defined by ‖χt‖ = sup−d≤θ≤0 ‖χt(θ)‖. Jumps
of the state are denoted χ(t+) and occur at time instants
t ∈ T := {t1, t2, . . .}, where ti < ti+1, i ∈ N0. The value
of the state after a jump is given by χ(t+) for each t ∈ T .
For a comprehensive discussion regarding the solutions to
(1) considered herein, refer to [8, Chapter 2 & 3].

Definition 1 (Lp-Stability with Bias b): Let p ∈ [1,∞].
The system Σ is Lp-stable with bias b(t) ≡ b ≥ 0 from
ω to y with (linear) gain γ ≥ 0 if there exists K ≥ 0 such
that, for each t0 ∈ R and each χt0 ∈ PC([−d, 0],Rnχ),
each solution to Σ from χt0 satisfies ‖y[t0, t]‖p ≤ K‖χt0‖+
γ‖ω[t0, t]‖p + ‖b[t0, t]‖p for each t ≥ t0.

Definition 2 (Lp-Detectability): Let p ∈ [1,∞]. The state
χ of Σ is Lp-detectable from (y, ω) with (linear) gain γ ≥
0 if there exists K ≥ 0 such that, for each t0 ∈ R and
each χt0 ∈ PC([−d, 0],Rnχ), each solution to Σ from χt0
satisfies ‖χ[t0, t]‖p ≤ K‖χt0‖ + γ‖y[t0, t]‖p + γ‖ω[t0, t]‖p
for each t ≥ t0.
When b = 0, we say “Lp-stability” instead of “Lp-stability
with bias 0”.

III. PROBLEM STATEMENT

Consider a nonlinear plant with delay dynamics

ẋp = fp(t, xpt , u, ωp),

y = gp(t, xpt), (2)

and a controller with delay dynamics

ẋc = fc(t, xct , uc, ωc),

yc = gc(t, xct), (3)

interconnected via the assignment

yc = u, y = uc, (4)

where xp ∈ Rnp and xc ∈ Rnc are the states, y ∈ Rny
and u ∈ Rnu are the outputs, and (u, ωp) ∈ Rnu × Rnωp
and (y, ωc) ∈ Rny × Rnωc are the inputs of the plant
and controller, respectively, where ωp and ωc are external
disturbances to (and/or modeling uncertainties of) the plant
and controller, respectively. The translation operators xpt and
xct are defined in Section II-B while the corresponding plant
and controller delays are dp ≥ 0 and dc ≥ 0, respectively. For
notational convenience, constant plant and controller delays
are considered.

Let us now model the communication network between
the plant and controller over which intermittent exchange
of information takes place (see Figure 1). The value of u
computed by the controller that arrives at the plant is denoted
û. Similarly, the values of y that the controller actually
receives are denoted ŷ. We proceed further by defining the
error vector

e =

[
ey(t)
eu(t)

]
:=

[
ŷ(t)− yt
û(t)− ut

]
, (5)



Fig. 1. A plant and controller interacting over a communication network.
The switches indicate that the information between the plant and controller
are exchanged (complying with some scheduling protocol among the NCS
links) at discrete time instants belonging to a set T . The communication
delays in each NCS link are time varying and different.

where yt and ut are translation operators and the maximal
network-induced delay d ≥ 0 (e.g., propagation delays
and/or delays arising from protocol arbitration). The op-
erator (yt, ut) in (5) delays each component of (y, u) for
the respective delay. Essentially, if the ith component of
(y(t), u(t)), that is (y(t), u(t))i, is transmitted with delay
di : R → R+, then the ith components of (yt, ut), that is
(yt, ut)i, is in fact (y(t−di(t)), u(t−di(t)))i. Accordingly,
d := max{supt∈R d1(t), . . . , supt∈R dny+nu(t)}.

Due to intermittent transmissions of the components of y
and u, the respective components of ŷ and û are updated at
time instants t1, t2, . . . , ti, . . . ∈ T , i.e.,

ŷ(t+i ) = yt + hy(ti, e(ti))

û(t+i ) = ut + hu(ti, e(ti))

}
ti ∈ T , (6)

where hy : R×Rne → Rny and hu : R×Rne → Rnu model
measurement noise, channel distortion and the underlying
scheduling protocol. The role of hy and hu is as follows.
Suppose that the NCS has l links. Accordingly, the error
vector e can be partitioned e := (e1, . . . , el). In order to
avoid cumbersome indices, let us assume that each NCS link
is characterized by its own delay. Hence, there are merely l
(rather than ny + nu) different delays di : R → R+ in (5).
Besides the already introduced upper bound d on di(t)’s, we
assume that di(t)’s are differentiable with bounded |ḋi(t)|.
As orchestrated by (6), if the jth NCS link is granted
access to the communication medium at some ti ∈ T ,
the corresponding components of (ŷ(ti), û(ti)) jump to the
received values. It is to be noted that all other components
of (ŷ(ti), û(ti)) remain unaltered. Consequently, the related
components of e(ti) reset to the noise νj(ti) present in the
received data, i.e.,

ej(t
+
i ) = νj(ti), (7)

and we assume that

sup
t∈R,j∈{1,...,l}

‖νj(t)‖ = Kν .

Noise νj(ti), which is embedded in hy and hu, models any
discrepancy between the received values and their actual val-
ues at time ti−dj(t) (when the jth NCS link of (y(t), u(t))
was sampled). We point out that νj has nothing to do with ωp
nor ωc.

In between transmissions, the values of ŷ and û need not
to be constant as in [4], but can be estimated in order to
extend transmission intervals (consult [7] for more). In other
words, for each t ∈ [t0,∞) \ T we have

˙̂y = f̂p
(
t, xpt , xct , ŷt, ût, ωp, ωc

)
,

˙̂u = f̂c
(
t, xpt , xct , ŷt, ût, ωp, ωc

)
. (8)

The commonly used Zero-Order-Hold (ZOH) strategy is
characterized by ˙̂y ≡ 0ny and ˙̂u ≡ 0nu .

The following definition of UGES scheduling protocols is
extracted from [9] and [4].

Definition 3: Consider the noise-free setting, i.e., Kν = 0.
The protocol given by h := (hy, hu) is UGES if there exists a
function W : N0×Rne → R+ such that W (i, ·) : Rne → R+

is locally Lipschitz (and hence almost everywhere differen-
tiable) for every i ∈ N0, and if there exist positive constants
a, a and 0 ≤ ρ < 1 such that

(i) a‖e‖ ≤W (i, e) ≤ a‖e‖, and
(ii) W (i+ 1, h(ti, e)) ≤ ρW (i, e),

for all (i, e) ∈ N0 × Rne .
Commonly used UGES protocols are the Round Robin
(RR) and Try-Once-Discard protocol (TOD) (consult [4], [9],
[10]). The corresponding constants are aRR = 1, aRR =

√
l,

ρRR =
√

(l − 1)/l for RR and aTOD = aTOD = 1,
ρTOD =

√
(l − 1)/l for TOD.

The properties imposed on the NCS in Figure 1 are summa-
rized in the following standing assumption.

Assumption 1: The jump times of the NCS links at the
controller and plant end obey the underlying UGES schedul-
ing protocol and occur at transmission instants belonging to
T := {t1, t2, . . . , ti, . . .}, where ε ≤ ti+1 − ti ≤ τ for each
i ∈ N0 with ε > 0 arbitrarily small. The received data is
corrupted by measurement noise and/or channel distortion.
In addition, each NCS link is characterized by the network-
induced delay di(t), i ∈ {1, . . . , l}.
The existence of a strictly positive τ , and therefore the
existence of ε > 0, is demonstrated in Remark 2.

A typical closed-loop system (2)-(3) might be robust (in
the Lp sense according to (15)) only for some sets of di(t),
i ∈ {1, . . . , l}. We refer to the family of such delay sets as
the family of admissible delays and denote it D. Next, given
some admissible delays di(t), i ∈ {1, . . . , l}, the maximal
τ which renders Lp-stability (with a desired gain) of the
closed-loop system (2)-(3) is called MATI and is denoted τ .

Problem 1: Given admissible delays di(t), i ∈ {1, . . . , l},
estimator (8) and the UGES protocol of interest, determine
the MATI τ to update components of (ŷ,û) such that the NCS
(2)-(3) is Lp-stable with bias and a prespecified Lp-gain for
some p ∈ [1,∞].

IV. METHODOLOGY

Along the lines of [9], we rewrite the closed-loop sys-
tem (2)-(3) in the following form amenable for small-gain



theorem (see [11, Chapter 5]) analyses:

x(t+) = x(t)

e(t+) = h(t, e(t))

}
t ∈ T (9a)

ẋ = f(t, xt, e, ω)

ė = g(t, xt, et, ωt)

}
otherwise, (9b)

where x := (xp, xc), ω := (ωp, ωc), and functions f , g and h
are given by (10) and (11). We assume enough regularity on
f and g to guarantee existence of the solutions on the interval
of interest [8, Chapter 3]. Observe that differentiability of
di(t)’s and boundedness of |ḋi(t)| play an important role
in attaining regularity of g. For the sake of simplicity, our
notation does not explicitly distinguish between translation
operators with delays dp, dc, d or 2d in (10), (11) and in what
follows. In this regard, we point out that the operators xpt
and xct are with delays dp and dc, respectively, the operators
gpt and gct within f̂p and f̂c are with delay 2d while all
other operators are with delay d. In what follows we also
use d := 2d+ max{dp, dc}, which is the maximum value of
all delay phenomena in (11).

For future reference, the delay dynamics

x(t+) = x(t)
}

t ∈ T (12a)
ẋ = f(t, xt, e, ω)

}
otherwise, (12b)

are termed the nominal system Σn, and the impulsive delay
dynamics

e(t+) = h(t, e(t))
}

t ∈ T (13a)
ė = g(t, xt, et, ωt)

}
otherwise, (13b)

are termed the error system Σe. The remainder of our
methodology interconnects Σn and Σe using appropriate
outputs. Subsequently, the small-gain theorem is employed
to infer Lp-stability with bias.

A. Lp-Stability with Bias of Impulsive Delay LTI Systems

Let us establish conditions on the transmission interval τ
and delay d(t) that yield Lp-stability with bias for a class
of impulsive delay LTI systems. Clearly, the results of this
subsection are later on applied towards achieving Lp-stability
with bias and an appropriate Lp-gain of Σe.

Consider the following class of impulsive delay LTI sys-
tem

ξ̇(t) = aξ(t− d(t)) + ũ(t), t /∈ T (14a)
ξ(t+) = cξ(t) + ν̃(t), t ∈ T , (14b)

where a ∈ R and c ∈ (−1, 1), initialized with some ξt0 ∈
PC([−d̆, 0],R). In addition, d(t) is a continuous function
upper bounded by d̆ while ũ, ν̃ : R → R denote external
inputs and ν̃ ∈ L∞.

Lemma 1: Assume ũ ≡ 0, ν̃ ≡ 0 and consider a positive
constant r. In addition, let λ1 := a2

r , and λ2 := c2 for c 6= 0
or merely λ2 ∈ (0, 1) for c = 0. If there exist constants
λ > 0, M > 1 such that the conditions

(I) τ
(
λ+ r + λ1Me−λτ

)
< lnM , and

(II) τ
(
λ+ r + λ1

λ2
eλd̆
)
< − lnλ2

hold, then the system (14) is UGES and ‖ξ(t)‖ ≤√
M‖ξt0‖e−

λ
2 (t−t0) for all t ≥ t0.

The previous lemma, combined with the work presented in
[12], results in the following theorem.

Theorem 1: Suppose that the system given by (14) is
UGES with constants λ > 0 and M > 1 and that
supt∈R ‖ν̃(t)‖ ≤ K̃ν . Then, the system (14) is Lp-stable
with bias K̃ν

√
M

e
λε
2 −1

from ũ to ξ and with gain 2
λ

√
M for each

p ∈ [1,∞].

B. Obtaining MATIs via the Small-Gain Theorem

We now state the main result of this paper. Essentially, we
interconnect Σn and Σe via suitable outputs (i.e., H and W ,
respectively), impose the small-gain condition and invoke the
small-gain theorem.

Theorem 2: Suppose the underlying UGES protocol,
d1(t), . . . , dl(t) and Kν ≥ 0 are given. In addition, assume
that
(a) there exists a continuous function H :

PC([−d, 0],Rnx) × PC([−d, 0],Rnω ) → Rm such
that the system Σn given by (12) is Lp-stable from
(W,ω) to H(xt, ωt) for some p ∈ [1,∞], i.e., there
exist KH , γH ≥ 0 such that

‖H[t, t0]‖p ≤KH‖xt0‖+ γH‖(W,ω)[t, t0]‖p, (15)

for all t ≥ t0, and
(b) there exists L ≥ 0 and d : R → R+, supt∈R d(t) = d̆,

such that for almost all t ≥ t0, almost all e ∈ Rne
and for all (i, xt, ωt) ∈ N0 × PC([−d, 0],Rnx) ×
PC([−d, 0],Rnω ) it holds that〈∂W (i, e)

∂e
, g(t, xt, et, ωt)

〉
≤LW (i, e(t− d(t)))+

+ ‖H(xt, ωt)‖. (16)

Then, the NCS (9) is Lp-stable with bias from ω to (H, e) for
each τ for which there exist M > 1 and λ > 0 satisfying (I),
(II) and 2

λ

√
MγH < 1 with parameters a = a

aL and c = ρ.
Remark 1: According to Problem 1, condition (a) re-

quires the underlying delays to be admissible, i.e.,
{d1(t), . . . , dl(t)} ∈ D. Condition (a) implies that the nomi-
nal system is robust with respect to intermittent information
and disturbances. Condition (b) relates the current growth
rate of W (i, e) with its past values. As shown in Section
V, all recommendations and suggestions from [9] and [4]
regarding how to obtain a suitable W (i, e) readily apply
because W (i, e) describes the underlying UGES protocol
(and not the plant-controller dynamics).

Remark 2 (Zeno-freeness): The left-hand sides of condi-
tions (I) and (II) from Lemma 1 are nonnegative continuous
functions of τ ≥ 0 and approach ∞ as τ →∞. Also, these
left-hand sides equal zero for τ = 0. Note that both sides of
(I) and (II) are continuous in λ, M , λ1, λ2 and d̆. Hence, for
every λ > 0, λ1 ≥ 0, M > 1, λ2 ∈ (0, 1) and d̆ ≥ 0 there
exists τ > 0 such that (I) and (II) are satisfied. Finally, since
2
λ

√
M is continuous in λ and M , we infer that for every



f(t, xt, e, ω) :=

[
fp
(
t, xpt , gct(t, xct) + eu(t), ωp(t)

)
fc
(
t, xct , gpt(t, xpt) + ey(t), ωc(t)

)] =:
[
f1(t,xt,e,ω)
f2(t,xt,e,ω)

]
; h(t, e(t)) :=

[
hy
(
t, e(t)

)
hu
(
t, e(t)

)] (10)

g(t, xt, et, ωt) :=


f̂p

(
t,xpt ,xct ,gpt (t,xpt )+eyt ,gct (t,xct )+eut ,ω(t)

)︸ ︷︷ ︸
model-based estimator

−
(
∂gp
∂t

)
t
(t,xpt )−

(
∂gp
∂xp

)
t
(t,xpt )f1t (t,xt,e,ω)

︷ ︸︸ ︷
f̂c

(
t,xpt ,xct ,gpt (t,xpt )+eyt ,gct (t,xct )+eut ,ω(t)

)
−
(
∂gc
∂t

)
t
(t,xct )−

(
∂gc
∂xc

)
t
(t,xct )f2t (t,xt,e,ω)

 (11)

finite γH > 0 there exists τ > 0 such that 2
λ

√
MγH < 1.

In other words, for each admissible di(t), i ∈ {1, . . . , l},
the unwanted Zeno behavior is avoided and the proposed
methodology does not yield continuous feedback that might
be impossible to implement. Notice that each τ yielding
2
λ

√
MγH < 1 is a candidate for τ . Depending on r, λ2,

λ and M , the maximal such τ is in fact MATI τ .
Corollary 1: Assume that the conditions of Theorem 2

hold and that x is Lp-detectable from (W,ω,H). Then the
NCS (9) is Lp-stable with bias from ω to (x, e).

V. NUMERICAL EXAMPLE

The following numerical example is inspired by [13,
Example 2.2.] and all the results are provided for p = 2.
Consider the following nonlinear delay plant[

ẋp1(t)
ẋp2(t)

]
=[

−0.5xp1(t)+xp2(t)−0.25xp1(t) sin
(
u(t)xp2(t−dp1)

)
xp1(t) sin

(
u(t)xp2(t−dp1)

)
+1.7xp2(t−dp2)+u(t)−xp2(t)

]
+

+
[
ω1(t)
ω2(t)

]
controlled with

u(t) = −2xp1(t)− 2xp2(t).

Apparently, x(t) := xp(t) = (xp1(t), xp2(t)). Additionally,
ω(t) := (ω1(t), ω2(t)).

Let us consider the NCS setting in which noisy informa-
tion regarding xp1 and xp2 are transmitted over a commu-
nication network while the control signal is not transmitted
over a communication network nor distorted (i.e., û = u). In
addition, suppose that the information regarding xp2 arrives
at the controller with delay d while information regarding
xp1 arrives in timely manner (i.e., dp1 = 0). For the sake of
simplicity, let us take d = dp2. Apparently, the output of the
plant is y(t) = xp(t) = x(t) and there are two NCS links
so that l = 2. Namely, xp1 is transmitted through one NCS
link while xp2 is transmitted through the second NCS link.
The repercussions of these two NCS links are modeled via
the following error vector

e =

[
e1

e2

]
= ŷ −

([
xp1(t)

0

]
+

[
0

xp2(t− d)

]
︸ ︷︷ ︸

yt

)
.

The expressions (10) and (11) for this example become:

ẋ(t) =
[−0.5 1

−2 −1

]︸ ︷︷ ︸
A1

x(t) +
[
0 0
0 −0.3

]︸ ︷︷ ︸
A2

x(t− d)+

+
[−0.25 0

1 0

]︸ ︷︷ ︸
B1

x(t)N(xt, e) +
[

0 0
−2 −2

]︸ ︷︷ ︸
B

e(t) + ω(t), (17)

ė(t) = ˙̂y −Be(t− d) +
[
0.5 −1
0 0

]︸ ︷︷ ︸
C1

x(t) +
[
0 0
2 2

]︸ ︷︷ ︸
C2

x(t− d)+

+
[
0 0
0 0.3

]︸ ︷︷ ︸
C3

x(t− 2d) +
[
0.25 0
0 0

]︸ ︷︷ ︸
C4

x(t)N(xt, e)+

+
[

0 0
−1 0

]︸ ︷︷ ︸
C5

x(t− d)N(xt, et) +
[−1 0

0 0

]︸ ︷︷ ︸
C6

ω(t) +
[
0 0
0 −1

]︸ ︷︷ ︸
C7

ω(t− d),

where N(xt, e) := sin

([
− 2
(
xp1(t)+ e1(t)

)
− 2
(
xp2(t− d)+

e2(t)
)]
xp2(t− dp1)

)
and N(xt, et) := sin

([
− 2
(
xp1(t− d) +

e1(t− d)
)
− 2
(
xp2(t− 2d) + e2(t− d)

)]
xp2(t− dp1 − d)

)
.

According to [9] and [4], we select WRR(i, e) := ‖D(i)e‖
and WTOD(t, e) := ‖e‖, where D(i) is a diagonal matrix
whose diagonal elements are lower bounded by 1 and upper
bounded by

√
l. Next, we determine LRR, HRR(x, ω, d),

LTOD and HTOD(x, ω, d) from Theorem 2 for the ZOH
strategy (i.e., ˙̂y ≡ 0ny ) as follows:〈∂WRR(i, e)

∂e
, ė
〉
≤ ‖D(i)ė‖ ≤

√
l‖B‖‖D(i)e(t− d)‖+

+
√
l
(
‖C1x(t) + C2x(t− d) + C3x(t− 2d) + C6ω(t)+

+ C7ω(t− d)‖+ ‖C4x(t)‖+ ‖C5x(t− d)‖
)
(xt, ωt),〈∂WTOD(i, e)

∂e
, ė
〉
≤ ‖B‖‖e(t− d)‖+

+
(
‖C1x(t) + C2x(t− d) + C3x(t− 2d) + C6ω(t)+

+ C7ω(t− d)‖+ ‖C4x(t)‖+ ‖C5x(t− d)‖
)
(xt, ωt),

In order to estimate γH , we utilize the following Lyapunov-
Krasovskii functional

V (xt) = x(t)>Cx(t) +

∫ 0

−d
x(t+ θ)>Ex(t+ θ)dθ, (18)

where C and E are positive-definite symmetric matrices [14,
Chapter 6], [15].

Detectability of x from (W,x,H), which is a condition
of Corollary 1, is easily inferred by taking x(t) to be the
output of the nominal system and computing the respective
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Fig. 2. Numerically obtained MATIs for different delay values d ≥ 0 in scenarios with and without estimation.

L2-gain γd. Next, let us take the output of interest to be x
and find MATIs that yield the desired Lp-gain from ω to x
to be γdes = 50. Essentially, the following condition

γW γH < 1− γd
γdes

needs to be satisfied (by changing γW through changing
MATIs) in order to achieve the desired gain γdes.

Furthermore, we utilize the following estimator

˙̂y = Bŷ(t− d) = B

(
e(t− d) +

[
1 0
0 0

]
x(t− d)+

+

[
0 0
0 1

]
x(t− 2d)

)
.

Figure 2 provides evidence that the TOD protocol results
in greater MATIs (at the expense of additional implemen-
tation complexity/costs [10]) and that the model-based esti-
mators significantly prolong MATIs, when compared with
the ZOH strategy, especially as d increases. In addition,
notice that the case d = 0 boils down to ordinary differential
equation modeling so that we can employ less conservative
tools for computing L2-gains. Apparently, MATIs pertaining
to Lp-stability from ω to (x, e) are greater than the MATIs
pertaining to Lp-stability from ω to x with γdes = 50.

VI. CONCLUSION

In this paper, we study how much information exchange
between a plant and controller can become intermittent (in
terms of MATIs) such that the performance objectives of in-
terest are still met. Our framework incorporates time-varying
delays and transmission intervals that can be smaller than
the delays, plants/controllers with delay dynamics, external
disturbances (or modeling uncertainties), UGES scheduling
protocols (e.g., RR and TOD protocols), distorted data and
model-based estimators. As expected, the TOD protocol
results in greater MATIs than the RR protocol. Likewise,
estimation (rather than the ZOH strategy) in between two
consecutive transmission instants extends the MATIs.

The future work is oriented towards devising event- and
self-triggered realizations of our approach.
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