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Abstract— Enabling a robot to perform assistive tasks in ev-
eryday human environments requires adaptation capabilities to
compensate for unknown physical interaction forces. Impedance
defines the reaction behavior to such contacts, hence robust
and safe interaction may be facilitated by founding suitable
impedance gains. This paper proposes a novel reinforcement
learning approach to simultaneously learn trajectories and
impedance behaviors. A modified version of dynamic movement
primitives is used to compactly encode skills as a mixture of
dynamical systems. The resulting algorithm learns impedance
behaviors considering couplings across motor control variables
to allow a better exploitation of the dynamic capabilities of the
robot. A simulated comparison with state-of-the-art approaches
demonstrates the effectiveness of the proposed approach.

I. INTRODUCTION

Novel assistive robotics applications require efficient phys-
ical interaction with unknown environments and human
beings in a safe and robust manner. Having a set of fixed
impedance gains it is probably not sufficient to adapt the
robot’s behavior to different interaction scenarios.

A possible solution to find proper impedance gains is
offered by the framework of Reinforcement Learning (RL)
[1]. A valuable asset of RL is the availability of model-free
algorithms that do not require any model knowledge of the
robot nor the environment. This is a desirable property for
learning interaction tasks where good contact models are
hard to derive [2]. Due to the high-dimensional nature of
robot control problems, the robotics community focused on
policy-search RL methods [3]–[5], which search for solutions
in a smaller policy space that contains all possible policies
representable by a certain parametrization.

Recent developments in RL have brought out two dif-
ferent policy-search algorithms, namely Policy learning by
Weighting Exploration with the Returns (PoWER) [3] and
Policy Improvement with Path Integrals (PI2) [4], which
are considered state-of-the-art RL algorithms in robotics [5].
The empirical comparison between PoWER and PI2 in [4]
resulted in compatible performance of both algorithms. How-
ever, in case of PI2, the immediate cost in the reward function
can be chosen arbitrary. Hence, boolean cost functions can
be used to encode whether a task has been succeeded or not
[2]. Although it cannot be concluded from these findings that
PI2 outperforms PoWER, a case may be made for a simpler
realization and a broader scope of applicability of PI2.

Policy parametrization is a crucial aspect to reduce the
search space and to guarantee a rapid convergence. Hu-
man demonstrations can be used to initialize position [6]
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and impedance [7] policy parameters. In [2], PI2 is ap-
plied to simultaneously learn motion trajectories and vari-
able impedance gains using Dynamic Movement Primitives
(DMPs) [8] as policy representation. The impedance behav-
ior of each joint is described by a DMP and a diagonal
stiffness matrix is learned, neglecting the interdependency
among different DoFs. Learning synergies and couplings in
motor control helps to better exploit dynamics capabilities
of human limbs [9], [10]. The benefits of considering off-
diagonal (coupling) terms in gain matrices are highlighted
in [11] with a robot weightlifting experiment. To reduce the
number of parameters, in [12] impedance tasks are efficiently
encoded as Correlated DMPs [13]. Full stiffness matrices
(coordination matrices) are associated to each primitive,
allowing to learn synergies across different motion variables.

We propose a novel RL algorithm to learn variable
impedance behaviors explicitly considering synergies among
DoFs. The proposed Coordination Policy Improvement with
Path Integral (C-PI2) combines the flexibility of PI2, that
allows arbitrary reward functions, with the possibility, offered
by Correlated DMPs, to learn couplings between DoFs.
Hence, rather than gain scheduling for each DoF, full stiff-
ness matrices are learned by robot self practice. The proposed
approach outperform PI2 (and slightly PoWER) in terms of
learning speed, in tasks for which couplings among DoFs
cannot be neglected. In contrast to [12], where PoWER is
used to update the policy, our approach does not impose any
restriction on the immediate cost of the reward function.

II. PROPOSED APPROACH

A. Correlated Dynamic Movements Primitives (C-DMPs)

Consider that M demonstrations of a task are given
as a set of N positions xt, velocities ẋt and accel-
erations ẍt in joint or Cartesian space. C-DMPs [13]
represent training data {{xt, ẋt, ẍt}Nt=1}Mi=1 as a mixture
of P spring-damper (PD like) dynamical systems ẍ =∑P
j=1 ht,j

[
KPj (µXj − xt)− κV ẋt

]
with attractor vectors

µXj , full stiffness matrices (i.e. coordination matrices) KPj
and scalar damping gain κV . The set {µXj ,K

P
j }Pj=1 repre-

sents the learnable parameters.
To reproduce a desired path xti,d, ẋti,d, ẍti,d (discretized

into N time steps ti with i = 0, 1, . . . , N − 1), the desired
position can be computed by summarizing the weighted at-
tractor points over all basis functions xti,d =

∑P
j=1 hti,jµ

X
j ,

where hti,j =
ψti,j∑P
l=1 ψti,l

and ψti,j = N (ti;µ
T
j ,Σ

T
j ) are

composed of equally in time distributed Gaussians with
means µTj and variances ΣTj . The ψti,j are activated by



ti = − ln(νti )

αντ
, where αν and τ determine the movement

duration. νt is set to νt = 1 to initiate the movement and
then converges to zero. The temporal varying stiffness matrix
KPti is computed as KPti =

∑P
j=1 hti,jK

P
j , to generate the

PD motor command

ẍti,d = KPti(xti,d − xti)− κ
V ẋti (1)

B. Coordination Policy Improvement with Path Integrals

In order to additionally learn the couplings between motor
control variables, the PI2 algorithm must be viewed from
a different perspective. A trajectory can be learned by
parametrizing the attractors xti,d in the policy form

xti,d =

P∑
j=1

hti,j(µ
X
j + εXti,j) =

P∑
j=1

hti,j(θ
X
j + εXti,j) (2)

with parameter vectors θXj and exploration noise vectors
εXti,j . To learn full stiffness matrices, the policy KPti can
be parametrized in the policy form

KPti =

P∑
j=1

hti,j(K
P
j + ΞPti,j) =

P∑
j=1

hti,j(Θ
P
j + ΞPti,j) (3)

with parameter matrices ΘPj and exploration noise matrices
ΞPti,j . The parameters θXj = µXj and ΘPj = KPj form
the policy output ẍti,d in equation (1), which can be in-
terpreted as the motor command for the C-PI2 algorithm. As
a consequence, the immediate cost can be expressed [4] as
rti = qti + 1

2 ẍ
T
ti,dRẍti,d with an arbitrary, state-dependent

cost function qti and a quadratic control weight matrix R.
The exploration vector for the trajectory in equation (2)

is drawn from a zero-mean Gaussian distribution εXti,j ∼
N (0,ΣXj ) with covariance ΣXj for each basis function.
Similarly, the exploration matrix in equation (3) is drawn
from ΞPti,j ∼ N (0,ΣPj ), despite the covariance matrices ΣPj
have to be chosen to guarantee that the stiffness matrix KPti
in (3) is symmetric and positive semidefinite (SPS). Recalling
that the sum of two SPS matrices is a SPS matrix, a valid full
stiffness matrix KPti is obtained if the exploration matrices
are all SPS. These properties are retained in C-PI2, since a
weighted averaging over SPS matrices is a SPS matrix.

The generalized cost term from PI2 is [4]

S(τ i) = φtN +

N−1∑
j=i

qtj +
1

2

N−1∑
j=i+1

ẍTtj ,dRẍtj ,d (4)

where φtN is the terminal cost. The generalized cost of
each rollout path defines a probability of a path τ ki as
P (τ ki ) =

ES(τ
k
i )∑K

k=1 ES(τ
k
i )

with automatic sensitivity regula-

tion term ES(τ ki ) = exp
(
−hλ S(τki )−minS(τki )

maxS(τki )−minS(τki )

)
that

maximizes the discrimination between experienced paths
for every time step i with sensitivity regulation constant
hλ [4]. Probability-weighted averaging over K rollouts
yields the trajectory and stiffness parameter updates at
each time step δθXti,j =

∑K
k=1 P (τ ki )εX ,kti,j

and δΘPti,j =∑K
k=1 P (τ ki )ΞP,kti,j

. Temporal weighted averaging over N

time steps δθXj =
∑N−1
i=0 (N−i)ψti,jδθ

X
ti,j∑N−1

i=0 ψti,j(N−i)
and δΘPj =∑N−1

i=0 (N−i)ψti,jδΘ
P
ti,j∑N−1

i=0 ψti,j(N−i)
, leads eventually to parameter updates

θXj ← θXj + δθXj , ΘPj ← ΘPj + δΘPj (5)

individually performed for each basis function j = 1, .., P .

III. SIMULATION RESULTS

A. Tuning Parameters Selection

The number of re-used rollouts for learning in C-PI2 (PI2)
is set to σ = 5 and the number of rollouts per epoch used
for parameter updating is set to K = 10. Thus, C-PI2 (PI2)
updates after the first 10 rollouts and then after 5 more
rollouts using these 5 new rollouts and the best 5 of the
latter epoch. On the other hand, PoWER updates after each
rollout using the best σ = 5 performed rollouts.

In order to refine and adapt the policy, the parameter
space must be explored by perturbing the parameters through
exploration noise εt. The exploration noise is sampled from a
zero-mean Gaussian distribution at the beginning of a rollout
and kept constant during the entire rollout. To increase the
exploitation of the learned information, the exploration noise
magnitude ξ is decreased over the number of updates ϑ by
multiplying it with a decay parameter γϑ. We set γϑ = 0.99ϑ

for C-PI2 (PI2) and γϑ = 0.99ϑ/(K−σ−1) for PoWER.

B. Via-points task

The objective of this experiment is to learn to traverse
two given positions before reaching the goal position. We
consider the 2D point mass system ẍt = 1

m (ut − dẋt) with
point mass m = 1, damping constant d = 1 and motor
command ut = mẍt,d + dẋt. The desired acceleration ẍt,d
in ut is generated with C-DMPs for C-PI2 and PoWER, with
DMPs for PI2. Training data are generated using minimum
jerk trajectories.

The cost function is chosen to force the movement of
the point mass to pass through two intermediate via-points
p1 = [0.4 0.2]T and p2 = [0.6 0.8]T . The cost function
for PI2 and C-PI2 algorithm is rt = w1 δ(t − 0.2)‖p1 −
xt‖2 + w2 δ(t − 0.4)‖p2 − xt‖2, where w1 = w2 = 1e10.
The Dirac delta function δ(•) pushes the point mass to
traverse p1 at t = 0.2s and p2 at t = 0.4s. To have an
equivalent optimization problem with PoWER, we use the
reward function r̃t = δ(t − 0.2) exp

(
−w1

λ ‖p1 − xt‖
2
)

+
δ(t−0.4) exp

(
−w2

λ ‖p2 − xt‖
2
)

with w1 = w2 = 1e10. The
magnitudes of trajectory and stiffness exploration noises are
respectively set to ξX = 0.03 and ξP = 10 for C-DMPs and
ξX = 20 and ξP = 10 for gain-scheduling DMPs, which
yields a similar exploration in motor command space.

The cost over 2005 rollouts (400 updates of PI2 and C-PI2)
of PoWER, PI2 and C-PI2 is depicted in Fig. 1. To achieve
the task (see Fig. 2) the novel C-PI2 algorithm needs only
120 rollouts, whereas PI2 converges after about 1500 rollouts.
Even though PoWER uses the same policy representation as
C-PI2, it converges roughly after 200 rollouts, while the final
cost is approximately the same (see Fig. 1).
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Fig. 1. The noiseless costs (averaged over 10 experiments) of PI2, PoWER
and C-PI2 are plotted on a semilogarithmic scale over 2005 rollouts with
standard deviation error bars. The plot on the right side zooms in to show
the final cost during the last 20 rollouts.
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Fig. 2. Trajectory of the point mass. (Left) Trajectory learned with PI2

after 1500 rollouts. (Right) Trajectory learned with C-PI2 and PoWER after
respectively 120 and 200 rollouts.

C. Via-gains task

Inspired by the previous via-points task, this experiment
shows how it is possible to learn specified stiffness gains at
certain time instants (via-gains) using C-PI2. Learning dif-
ferent impedance behaviors in different directions is useful,
for example, in assembly tasks (peg in the hole). The cost
function is chosen as rt = w1 δ(t − 0.2)‖K1 − KPt ‖2 +
w2 δ(t− 0.4)‖K2 −KPt ‖2 to have KPt = K1 at t = 0.2s
and KPt = K2 at t = 0.4s. The variable stiffness matrix
KPt , learned with C-PI2 (after 210 rollouts), is depicted
in Fig. 3. The result is obtained with w1 = w2 = 1e5,
ξX = 0.03, ξP = 10 and

K1 =

[
250 20
20 150

]
and K2 =

[
150 −20
−20 250

]
(6)

The initial stiffness gains are learned considering the vari-
ability in the training data as in [14]. Note that PI2 cannot
be adopted in this task since it learns a gain for each DoF,
while similar results can be achieved using PoWER.

Examples in this section show that learning the couplings
across dimensions may enhance the learning speed. Although
the performance of PoWER and C-PI2 are similar, C-PI2

has still the advantage of allowing arbitrary cost functions.
We want to underline that the proposed evaluation is not
a comparison between the general frameworks of PI2 and

Fig. 3. Variable stiffness gains in the via-gains experiment. Gains KP
1,1

(left), KP
1,2 = KP

2,1 (middle) and KP
2,2 (right) reach the specified set points

at t = 0.2s and t = 0.4s (green circles).

PoWER. However, this comparison shows the benefits of
learning full stiffness matrices when the coupling among
DoFs is not negligible.

IV. CONCLUSIONS

A novel RL algorithm, namely C-PI2, has been proposed
to simultaneously learn trajectories and variable impedance
behaviors. The proposed approach improves the so-called PI2

algorithm, giving the possibility to learn couplings between
DoFs. C-PI2 uses C-DMPs, the same policy representation of
the PoWER algorithm. While PoWER imposes restrictions
on the reward function, in C-PI2 the reward function can be
arbitrary. A comparison on simulated tasks shows that C-PI2

converges faster than state-of-the-art RL approaches.
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